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I believe there is no philosophical high-road in science, with epistemological signposts. No, we are

in a jungle and find our way by trial and error, building our road behind us as we proceed.

–Max Born, 1943

When we try to pick out anything by itself, we find it hitched to everything else in the universe.

–John Muir, 1911
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Abstract

This thesis contains work on four topics which fit into two broad areas of research: the quest to

understand structure formation and through it the properties of the dark matter, and the search for

primordial gravitational radiation. The first project details the effect of an accretion shock on the

colors of satellites in galaxy clusters. A new model of ram pressure stripping including an accretion

shock with variable radius is developed and implemented in the Galform semi-analytic model of

galaxy formation. A comparison of this model with previous models and with observations indicates

that current data is unable to discriminate between models, though future observations will be able

to place stronger constraints on the role of ram pressure stripping in and around clusters.

Next, an analysis of the angular momentum evolution of dark matter particles in high-resolution

N-body simulations of dark matter halos is presented. We find that individual particle angular

momentum is not conserved, and also that the angular momentum of radial shells varies over the

age of the Universe by up to factors of a few. These results have serious implications for the validity

of current analytical models that assume angular momentum conservation.

Two methods for detecting the primordial gravitational wave (GW) background are then pre-

sented. Such a background, if detected, could greatly impact our understanding of the early universe.

The first proposed method uses the apparent angular velocities of astrophysical objects induced by

GWs, which may be detectable with upcoming astrometric missions such as the GAIA satellite.

This work improves upon previous order-of-magnitude estimates, and presents a full calculation of

the expected signal from a stochastic background of GWs.

The second method uses bipolar spherical harmonics decomposition, a formalism to characterize

departures from statistical isotropy and Gaussianity, to quantify the expected lensing of the cosmic

microwave background (CMB) and 21 cm radiation by GWs. The lensing of the CMB by GWs

is found to not be detectable, but that of future 21 cm surveys could give a very high quality

measurement of the primordial GW background.
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Chapter 1

General Introduction and
Summary

Theoretical cosmology consists, at its heart, of thinking about the Universe at large, and as such

does not appear to differ fundamentally from other philosophical pursuits. Indeed, until fairly

recently cosmology was just that, a branch of philosophy, a subject for intellectual debate detached

from external data. However, cosmology has undergone a complete revolution, and now can be

considered an exact science. All of this has come about due to advanced technology for observing

the sky and recording the light that we see in different frequency bands, providing an unprecedented

quantity and accuracy of data. It is thus an extremely privileged time to be a theoretical cosmologist,

with a wealth of observations from which to piece together the history and fundamental laws of the

Universe.

The standard picture of the Universe that we have uncovered, though far from complete and far

from settled, provides a relatively elegant and straightforward place to start. In this picture, the

Universe first went through a period of exponential growth, referred to as inflation. This prediction

elegantly solves the problem of how the cosmic microwave background (CMB) can be so remarkably

uniform over large scales that in the simplest model of big bang cosmology could not have been

causally connected when it was emitted. Inflation solves this problem through the simple hypothesis

that in the early Universe there existed a period in which the expansion was accelerated. We can

see that the problem of the homogeneity of the CMB can be solved if the Universe expands by a

factor of at least 1028 during this time.

It is at these very early times that the perturbations that later become all of the structures in

the Universe are laid down. In the inflationary model, these perturbations are quantum fluctua-

tions which are blown up to astronomical scales during the period of accelerated expansion. These

perturbations not only include the scalar perturbations that lead to structure formation, but also

tensor perturbations, propagating perturbations in the metric known as gravitational waves. The

properties of these initial perturbations depend on the physics at work during the inflationary era,
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and therefore can be used as probes of these early times.

After the initial perturbations are laid down during and immediately after inflation, their large-

scale evolution is governed completely by gravitation, and is determined by the constituents of the

Universe: radiation, matter (dark and baryonic), and the dark energy, where dark indicates that

these components do not interact via electromagnetism, and not coincidentally also indicates that

we do not know what they are. After inflation, the energy density of the Universe, and thus its

expansion, was dominated by relativistic components. The Universe expanded and cooled, moving

eventually to the photon-baryon fluid phase, during which tightly coupled photons, nucleons, and

electrons filled the Universe. This fluid exhibited acoustic oscillations due to the opposition between

photon pressure and the gravitational pull of the dark matter.

Note that the background of gravitational radiation that was produced during inflation decoupled

from matter only 10−22 seconds after the end of inflation, while neutrinos decoupled at 2 seconds.

After decoupling, these fields streamed freely, carrying their information about the early Universe

to us today unimpeded. Two possible methods to detect the gravitational wave background are

presented in Chapters 4 and 5. Meanwhile, at a redshift of around 103, three very important

processes occur. The energy density of radiation drops below that of matter, which decays less

quickly with the expansion of the Universe. Then, the electrons and nucleons combine to form

neutral atoms, and subsequently the photons, no longer coupled to matter, stream freely (modulo

many other small effects), bringing us the CMB. In Chapter 5 we address one of these small effects,

in which the gravitational wave background lenses the CMB.

After decoupling, gravitation is no longer impeded by the pressure of photons, and the per-

turbations in the baryon field stop oscillating and collapse. Also, matter perturbations that enter

the horizon after matter-radiation equality collapse much faster than those that enter before, intro-

ducing a characteristic scale into the matter power spectrum. The process of collapse of the dark

matter, while complicated, is governed entirely by gravitational forces, and many approximations

(e.g., spherical top-hat collapse and the Press-Schechter model, see Section 2.1.1) have been devel-

oped to qualitatively describe this epoch and the statistics of the resulting gravitationally collapsed

structures (dark matter halos). However, there are still a number of complexities, due for example

to the presence of dark matter substructure and interaction with external structures, that must be

modeled computationally. In Chapter 3 we present one such consideration, the evolution of the

angular momentum of dark matter particles in halos.

Of course, we, our galaxy, and indeed all of the matter that we observe in the Universe is ordi-

nary, baryonic matter, whose interactions are far more complicated than merely gravitation. Thus,

explaining the structures that we see, such as galaxies and clusters of galaxies, based on the theory

of dark matter halos that has been developed, must necessarily include the many complications of

baryonic matter and its interactions (this refers to all of astrophysics, for example). This is an
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extremely important field, since it allows a great deal of cosmological information to be gleaned

from the properties of the galaxies and large-scale structures of the (relatively) nearby Universe.

Progress in this field hinges upon simulations, due to the interplay between the many processes that

determine structure formation and evolution. One very promising method is semi-analytic modeling

of structure formation, in which baryonic physics is overlaid on a model of the dark matter structure

of the Universe. This method has a great deal of power, since it can quickly determine the effect of

different models of baryonic physics upon the observable properties of the galaxy field. In Chapter

2 we present such a study, looking into the effects of accretion shocks on clusters of galaxies.

As discussed above, this thesis contains four chapters, each one discussing a different aspect

of theoretical cosmology. In the first two chapters, we discuss different aspects of the formation

of gravitationally bound structures, and in the second two chapters we analyze two methods of

detecting primordial gravitational waves. All of these topics are connected through the central role

of gravitation, which of course is the main driving force of most of cosmology. The collapse of matter

perturbations to form halos and galaxies is driven by gravitation, while gravitational radiation is

clearly highly sensitive to the form of gravitation. The work contained in this thesis is primarily

reproduced from published work, with permission from the publishers. New material is indicated at

the beginning of each chapter.
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Chapter 2

The Role of Ram Pressure
Stripping in the Quenching of
Cluster Star Formation1

2.1 Introduction

It is widely known that the star formation rate (SFR) of galaxies depends on the density of their

environment, and specifically that galaxies within galaxy clusters tend to be forming stars at a lower

rate than comparable field galaxies. Since star formation is fueled by gas, this leads to the conclusion

that galaxies in clusters tend to have less gas from which to form stars than their counterparts in

less-dense environments (3).

Several mechanisms have been proposed to explain the observed trend of star formation with

environment. It is well known that spiral galaxies tend to be bluer, and therefore forming stars at

a higher rate, than elliptical and S0 galaxies (the so-called morphology-density relation (4)) and

that spiral galaxies tend to be rarer in the centers of galaxy clusters than early type galaxies (5; 6).

It is clear, therefore, that morphological transformation, driven by interactions such as mergers

or multiple weak gravitational encounters with other satellites (galaxy harassment, e.g., 7), likely

plays a role in driving the observed quenching of star formation in clusters. However, this cannot

completely explain the trend as it has been observed that even among galaxies with the same bulge-

to-disk ratio, field galaxies are forming stars at higher rates than cluster galaxies (8).

Gas may be removed from galaxies passing through the dense intergalactic medium of a cluster

by means of ram pressure stripping (RPS). As originally envisaged, in this mechanism the interstellar

medium (ISM) of a satellite galaxy is lost due to interaction with the dense gas of the host halo

through which it is moving (9; 10; 11; 12). Alternatively, a satellite moving through less-dense

1The work presented in this chapter was adapted from the paper “The Role of Ram Pressure Stripping in the
Quenching of Cluster Star Formation,” L. G. Book and A. J. Benson, Astrophys J 716, 1 (2010). Reproduced with
permission, copyright (2010) by the American Astronomical Society. Sections 2.1.1 and 2.1.2, covering analytical
models of structure formation and cosmological applications of galaxy clusters, respectively, are new material.
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material may lose just a portion of its diffuse atmosphere of hot halo gas (colloquially known as

starvation or strangulation, e.g., 13; 14). Finally, it is inevitable in a hierarchical Universe that

many cluster galaxies were previously members of lower mass groups of galaxies, and environmental

effects such as strangulation in these lower density environments may have begun the quenching of

the star formation of these galaxies before they were accreted onto the cluster (15; 16; 17; 18).

It has traditionally been assumed that these environmental effects only occurred once satellites

had fallen through the virial radius of a host halo. However, recent observational studies of satellite

galaxy SFR versus cluster-centric radius have found that the SFR remains depressed relative to the

field out to two to three times the virial radius of clusters (1; 2; 19). Three explanations have been

suggested for the radial extent of environmental effects: that group-scale effects in the locality of the

cluster are having a large impact on these cluster galaxies (15), that many satellite galaxies follow

highly elliptical orbits which take them close to the cluster center, where they experience strong

RPS, and then back out to large radius (1), and that the radius at which cluster environmental

effects begins to become important is further out than the virial radius.

In fact, it is already known that using the virial radius as the location at which environmental

processes related to the cluster begin is only an approximation. In current structure formation

scenarios, dark matter halos are formed through gravitational collapse when an overdense patch of

dark matter stops expanding with the Universe and collapses. The surrounding gas then falls into

this potential well. If the scale of the halo is large enough so that the gravitational dynamical time

of the halo is much less than the cooling time of the gas, then the gas will form an accretion shock,

where the kinetic energy of the infalling gas is converted into thermal energy, heating the gas to the

virial temperature of the halo (20). These are the so-called “virial shocks,” as they are expected to

form near the virial radius of the halo.

Accretion shocks were predicted in a cosmological scenario by (21), who found self-similar, spheri-

cally symmetric analytic solutions of collisional gas falling into a density perturbation in an Einstein-

de Sitter universe. More recently, models of large-scale, spherical accretion shocks have been devel-

oped by (22) and (23), and three-dimensional cosmological N-body and hydrodynamical simulations

have confirmed the existence of such shocks (24; 25). Further, (25) has predicted that the extent of

such shocks should be observable in the Sunyaev-Zel’dovich effect of clusters with next-generation

radio telescopes such as ALMA. While virial shocks may be unstable, and so not survive, around low

mass halos, they are expected to be an inevitable result of structure formation for halos above a few

times 1011M� (26; 27), including groups and clusters of galaxies. When applied in the Galform

semi-analytic structure formation code, the criterion for shock stability of (26) gives the similar

result that stable shocks form only in halos more massive than around 1012M� (28).

To determine the cosmological importance of accretion shocks, we apply this well-developed

theory to galaxy formation, and, in particular, to the environmental effects on galaxies in clusters.
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Semi-analytic models of structure formation are a very powerful tool to investigate the impact of

this additional physics on structure formation, as their relatively light computational requirements

allow us to probe the effects of accretion shocks on large samples of galaxy clusters, therefore

complementing the hydrodynamical simulations mentioned above. Such semi-analytic models have

proven to be very successful probes of galaxy formation; they have well reproduced the luminosity

function of galaxies locally (29; 30; 31), and at high redshift (32). The addition of astrophysical

effects such as supernova feedback, a photoionizing background, and environmental effects have

substantially improved the fit at low luminosities (33; 34; 35), while the recent addition of feedback

and heating effects to counter large-scale cooling flows, such as heat conduction and feedback from

active-galactic nuclei, have produced faithful matches to the high-luminosity tail of the luminosity

function (36; 37; 38). The colors of satellite galaxies have also recently been matched by the addition

of a more-detailed model of RPS (39; see also 40; 41).

In this work, we consider the physical and observational consequences of the onset of environ-

mental effects at the radius of the accretion shock rather than around the virial radius as has been

previously assumed. To study this problem we apply RPS including accretion shocks to the clusters

in the Millennium Simulation (42) using the Galform semi-analytic model of structure formation.

In Section 2.1.1 we review spherical top hat collapse and the Press-Schechter model, and in Section

2.1.2 we review the ways in which galaxy clusters are important for cosmology. In Section 2.2.1 we

describe the Galform model that we use as the basis of our calculations, while in Section 2.2.2

we briefly describe our calculation of the location of the accretion shock and its implementation

in the semi-analytic model, giving a more-detailed description of our calculation in the Appendix.

In Section 2.3 we present the cluster galaxy properties produced by our model, and compare them

with other models of RPS. In Section 2.4 we compare our model with recent observational results of

the SFRs of cluster galaxies, and in Section 2.5 we discuss the conclusions that we draw from these

results for the observability of environmental effects in clusters.

2.1.1 Analytical Prescriptions for Structure Formation

Inflation predicts that the initial perturbations in the matter field were Gaussian, making the statis-

tics of their distribution very simple. Then they underwent gravitational collapse, which removed

them from the regime of linear perturbation theory and Gaussianity. However, this picture is still

relatively simple, since we have so far ignored baryonic matter and any non-gravitational forces.

Thus, many attempts have been made to explain the distribution of collapsed dark matter struc-

tures analytically.

The simplest way to understand the nonlinear gravitational collapse of a matter overdensity

is called “spherical top hat collapse.” As the name suggests, in this model we begin by assuming

that the universe is completely homogeneous, other than a slightly overdense, spherically symmetric
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region. Birkhoff’s theorem states that, in such a region, nothing external to the sphere can have an

impact on the evolution of internal matter. Thus, we can consider the spherical region in isolation,

resulting in equations for its evolution much like those for the evolution of the Universe as a whole.

Using Newtonian gravity, which is a good approximation for the relatively small densities and

distances considered here, we can see that the acceleration of a particle on the edge of the overdensity,

relative to the center, is
d2r

dt2
= −GM

r2
, (2.1)

where M is the total mass of the overdensity, and r is its radius. This differential equation has a

parametric solution

r(θ) = rmax(1− cos θ)

t(θ) =

√
r3
max

GM
(θ − sin θ) . (2.2)

Here, θ ranges from 0 to 2π. For convenience, let us define A ≡
√

r3
max

GM . We can expand in a Taylor

series

r(θ) ∼ rmax

(
1
2!

θ2 − 1
4!

θ4 +
1
6!

θ6

)
t(θ) ∼ A

(
1
3!

θ3 − 1
5!

θ5 +
1
7!

θ7

)
. (2.3)

We wish to write the radius as a function of time. The first-order behavior is r(t) ∼ rmax/2(6t/A)2/3.

The next order gives

r(t) ∼ rmax

2

(
6t

A

)2/3
(

1− 1
20

(
6t

A

)2/3
)

. (2.4)

This gives a first-order fractional change in the radius of

δr

r
= − 1

20

(
6t

A

)2/3

, (2.5)

leading to a fractional change in the density, i.e., an overdensity

δ = −3
δr

r
=

3
20

(
6t

A

)2/3

. (2.6)

The goal of this derivation is to determine the value of the overdensity, in linear theory, at which the

spherical halo collapses. This occurs in the linear model derived above when the radius shrinks back

to zero at θ = 2π. The overdensity at this point, extrapolated (incorrectly) from the linear theory is

δc ≈ 1.69. Using this value, we can approximate the number of collapsed halos by simply counting
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the number of places in the linear density field with overdensities in excess of δc, a calculation that

is even tractable analytically, with simplifications.

Now that we have understood the collapse of an (admittedly highly simplified) overdensity, we

would like to apply it to find the number density of halos as a function of their mass. To do so,

we will use the simple Press-Schechter (PS) argument. The basis of the idea is as follows: the

density fluctuations of the Universe can be written as δ(~x) = ρ(~x)−ρ̄
ρ̄ , where ρ(~x) is the matter

density at position ~x and ρ̄ is the average density of the universe at the time being considered. As

mentioned above, inflation predicts that this field will initially be Gaussian distributed (putting aside

considerations that δ cannot become less than −1, while it can and definitely does go beyond 1. The

PS argument states that, if we smooth the density field over a mass scale M (corresponding to radii

R =
(

3M
4πρ̄

)1/3

), every point at which δ exceeds the linear collapse threshold δc = 1.69 (calculated

above) resides in a halo with mass M (or greater). The assumption of Gaussianity implies that the

probability for δ to obtain any given value at a specific point in space is

P (δ) =
1

σ(M)
√

2π
e−δ2/2σ(M)2 , (2.7)

where σ(M) is the variance in the density field for regions with typical mass M. Thus, the probability

that the overdensity at a given position is above the critical linear density for collapse is

p(δ > δc) =
1

σ(M)
√

2π

∫ ∞

δc

dδ e−δ2/2σ(M)2 . (2.8)

Then, the PS argument says that the fraction of the mass in the Universe contained within bound

halos with mass greater than M is given by

F (M) = 2 p(δ > δc) =
2

σ(M)
√

2π

∫ ∞

δc

dδ e−δ2/2σ(M)2 . (2.9)

Here, the factor of two was added ad hoc to fix the problem that only the matter in overdense

regions is assumed to end up in bound structures in this model, and can be derived exactly in the

excursion set approach. From here, we can obtain the number density of halos with mass in the range

M +dM , n(M) dM , by multiplying the fraction of the universe contained in such halos dF (M)/dM

by the number density that objects of this mass would have if they contained all of the mass in the

Universe, ρ̄/M

n(M)dM = −dF (M)
dM

dM
ρ̄

M
, (2.10)

where the minus sign accounts for the fact that σ(M) is a monotonically decreasing function of M ,

and therefore F (M) is also monotonically decreasing with M . Plugging in the fraction of halos with
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mass greater than M , we find the result

n(M) = −
√

2
π

ρ̄

M2

δc

σ(M)
d lnσ(M)

d lnM
e−δ2

c/2σ(M)2 . (2.11)

Thus, in this simple theory we predict that the number density of halos will fall off exponentially

fast at masses higher than a critical mass M∗, for which σ(M∗) = δc. This mass today is around

1013 h−1M�, corresponding to poor galaxy clusters. Therefore, clusters with masses greater than

this characteristic scale probe the exponential tail of the distribution.

This simple argument has been applied to obtain halo merger rates (43; 44; 45), and expanded

to fit N-body simulations (46). Despite the amazingly simple derivation of these results, they are

the backbone of current structure formation research.

2.1.2 Cosmological Implications of Galaxy Cluster Properties

In the simple PS model presented above, we saw that the number of halos above the critical mass M∗

falls off exponentially fast. This is the key to one of the main uses of galaxy clusters in cosmology,

the measurement of the number count of clusters as a function of mass or of redshift. Since these

objects are generally above the critical mass, they are very sensitive to the cosmological parameters

that influence the number density through ρ̄, σ(M) and ρc, including the matter density ΩM ,

the baryon density Ωb, the dark energy density ΩΛ, the scalar spectral index ns and the power

spectrum normalization ∆R(k0). Note that other effects, such as non-Gaussianity (47; 48; 49; 50)

or departures from general relativity (51; 52), also affect the number densities of bounds structures,

and thus can also be constrained using cluster number counts. There are several current and future

surveys aiming to measure cluster number counts and therefore directly constrain these parameters

(53; 54; 55; 56; 57; 58; 59; 60; 61).

The main difficulty with the above approach is the determination of cluster masses—the expo-

nential sensitivity of the number density of clusters to their mass means that a small mass error

can translate into an enormous error in cosmological parameter estimation. There are several ap-

proaches currently used to estimate cluster mass, including x-ray luminosity, cluster kinematics, the

Sunyaev-Zel’dovich effect and weak lensing.

Let us first consider the x-ray luminosity of clusters as a probe of their mass. In hydrostatic

equilibrium, the pressure P of gas in a cluster is directly related to the cluster’s gravitational potential

Φ

∇P = ρg ∇Φ, (2.12)

where ρg is the gas density. The gas temperature can then be linearly related to the pressure using

the ideal gas law. We can therefore see that a very deep potential well, such as that caused by a
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massive cluster, will host very hot gas, and that, moreover, the cluster mass can be directly obtained

from the gas temperature and density profiles. This method of measuring the mass of clusters from

x-ray luminosity has been well studied both in theory (62; 63) and observation (64; 65; 66; 67).

Similarly, the velocities of satellite galaxies in clusters are directly related to the gravitational

potential of the cluster. For example, for a spherically symmetric cluster whose satellites have an

isotropic velocity distribution, the gravitational potential Φ(r) and radial velocity dispersion σr (the

rms radial velocity) can be related via

d

dr

(
ρ(r)σ2

r

)
= ρ(r)

dΦ
dr

, (2.13)

where ρ(r) is the (total) matter density at radius r. In this way, we can relate the observable velocity

dispersion to the gravitational potential, providing another measurement of cluster density profiles

and thus masses (68; 69; 70; 71).

A massive cluster, containing hot gas as described above, will also inverse Compton scatter the

relatively cold CMB photons, shifting lower-frequency photons to higher frequency and resulting

in cold or warm spots in the CMB (depending on the wavelength of the measurement) which are

correlated with cluster positions. This process is called the thermal Sunyaev-Zel’dovich effect (72;

73), and the shape of the effect with frequency is very well understood. The amplitude of the effect

is directly proportional to an integral of the pressure of the gas along the line of sight, which is then

proportional to the temperature times the electron density integrated along the line of sight (from

the ideal gas law). Thus, if the temperature of the cluster gas is understood, we can extract the

electron density, and from there infer its mass by applying models of the composition and ionization

state of the cluster gas. This effect has been observed in the CMB by a number of missions,

including the Planck satellite, the South Pole Telescope, and the Atacama Cosmology Telescope

(55; 58; 59; 60; 61; 74; 75).

All of the methods discussed above to measure cluster masses depend on assumptions about the

dynamical state of the cluster. However, we can get rid of these assumptions (or check them) by

using the gravitational effect of a cluster on passing photons to directly measure its mass. This is the

field of lensing, also discussed in Section 5.1.3. In this method, the shapes of background galaxies

can be measured and related directly to the gravitational potential of the cluster (and any other

mass along the line of sight). Specifically, let us consider a photon emitted from a galaxy a comoving

distance χ away from us, with transverse coordinates (χ ~θS), and look at the effect of lensing upon

the observed angular position of the origin of this photon ~θ. We define Aij ≡ ∂θi
S

∂θj , the change in

shape of background galaxies, and relate it to the foreground gravitational potential evaluated along
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the trajectory of the photon (76)

Aij − δij = 2
∫ χ

0

dχ′ Φ,ij(χ′) χ′
(

1− χ′

χ

)
. (2.14)

This quantity can then be related to the induced ellipticities of background galaxies (in the case of

weak lensing), providing a complementary probe of cluster masses to the previous methods, since

it relies on completely different assumptions and thus is sensitive to different systematics. These

distortions in the shapes of background galaxies are clearly measurable with current telescopes

(77; 78; 79; 80). These methods agree fairly well (75), and together provide us with fairly robust

cluster masses.

Beyond cluster number counts, there are many other ways of using galaxy clusters in cosmology.

For example, since clusters are extremely large systems, whose mass has been collected over a huge

area of around 1000 Mpc3, it is theorized that the ratio of baryonic to dark matter in clusters should

be representative of that of Universe as a whole (81; 82; 83; 84). Also, clusters are important probes

of the formation of structure, and their study can provide information about the processes relevant

in galaxy formation. This then allows us to better understand galaxies and their properties for use

in cosmology.

2.2 Simulations

2.2.1 The GALFORM Semi-Analytic Model

We use as the basis of our work the Galform semi-analytic model of galaxy formation as described

by (37), to which the reader is referred for a detailed description of the model formulation. As

described in (37, see also 85), we apply this model to the detailed merger histories of the entire

volume of the Millennium Simulation (42). Our model uses the same cosmological parameters as

that simulation: Ωm = 0.25, Ωb = 0.045, Λ = 0.75, and h = 0.73 at z = 0.

As we are working with N-body merger trees, there are situations in which halos decrease in

mass with time (85), as a result of unbound particles incorrectly being tagged as halo members, for

example. The original implementation of our semi-analytic model was not well equipped to deal with

mass loss in halos, so these N-body merger trees were artificially forced to conserve mass. However,

in this work we utilize the merger trees without requiring mass conservation, as described by (86),

as this is a fairer representation of the true behavior of the N-body simulation and is important for

this work in which we utilize halo mass growth rates to compute virial shock radii. We find that

relaxing the requirement of mass conservation results in an increase in the mean stellar mass content

of galaxies of around 0.3 dex. This change is larger than expected from the work of (85), due to the

sensitive nature of the AGN feedback included in our current model (but which was not present in
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that of 85).

We therefore found it necessary to adjust a single parameter of our model relative to that of (37)

to retain a good fit to the observed local bJ - and K-band galaxy luminosity functions. Specifically

we adjust the parameter αcool, described by (37), which determines the halo mass scale above which

AGN feedback becomes effective. We find that increasing αcool from 0.58 to 0.9 reduces the lower

mass limit for AGN heating to become effective from a few times 1011M� in the Bower model to a

few times 1010M� in this work, and therefore reduces the mean stellar mass of galaxies. This change

tends to cancel out the change of stellar masses caused by not conserving mass in merger trees (as

was done in (37), and brings our model back into agreement with the local luminosity functions.

The prescription for the treatment of reheated gas in satellite galaxies that we adopt is the same

as that of (39), to which the reader is directed for complete description. In brief, gas in a satellite

galaxy that is reheated by supernovae or AGN feedback is transferred to the hot halo of the satellite,

from which it is transferred to the host halo as the satellite is ram pressure stripped.

In the (37) model, a galaxy that is identified as part of a friends-of-friends group of a more-

massive halo is considered its satellite. These tend to roughly correspond to satellites within the

virial radius of the halo, although the prescription is by no means spherically symmetric. The

satellite has all of its hot gas instantaneously stripped away, leaving the cold gas in the ISM of the

galaxy but removing the source of gas to be accreted onto the galaxy and form stars. Although this

model has been quite successful in reproducing the luminosity function and star formation history

of galaxies and their evolution, it fails to reproduce the colors of satellite galaxies, tending to predict

them to be redder than is observed.

The challenge to reproduce the correct colors of satellite galaxies was taken up by (39), who

implemented a more-nuanced approach to the RPS of satellite galaxies based on the hydrodynamic

simulations of (14). Keeping the definition of satellite galaxies as those belonging to the friends-of-

friends group of a more-massive halo, in their model each satellite is assigned an orbit assuming the

velocity distributions determined by (87), and from this they calculate the maximum ram pressure

exerted on the satellite by the host halo and galaxy, which occurs at the pericenter of its orbit. The

radius at which this maximum ram pressure is equal to the gravitational restoring force per unit

area of the satellite is termed the stripping radius, and all of the hot halo gas beyond this radius is

stripped at the moment that the satellite crosses the virial radius of the host halo. This calculation

was repeated (possibly resulting in more gas being removed from the satellite) every time its host

halo doubled in mass since the previous ram pressure calculation. This model provides a less-extreme

implementation of RPS, and manages to match the colors of satellite galaxies by allowing them to

accrete hot gas and remain blue for a longer time after being accreted.

However, the ram pressure model of (39) continues to use the virial radius as the location around

which a satellite begins to feel ram pressure from its host galaxy. In fact, ram pressure forces begin
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to be felt by the infalling galaxy when it passes through the accretion shock, at which the cluster

gas temperature, density and pressure discontinuously increase. The accretion shock can be up to

twice as far from the host galaxy as the virial radius, potentially significantly altering the effect of

a massive host halo on nearby galaxies. Additionally, the model of (39) uses randomly assigned

orbital parameters for satellites to compute their orbit and, therefore, the ram pressure force that

they experience.

2.2.2 Implementation of Accretion Shocks

In this work we calculate the location of the accretion shock of halos and use this as the radius at

which the RPS of satellite galaxies begins, thereby more completely modeling the environmental

effects of a host halo on its satellites. We calculate the radius of the accretion shock with a model

based on the calculations of (88, hereafter V03), with a few assumptions relaxed to obtain a more-

accurate accretion radius in a wider range of situations. We use the method of (39) to implement

the RPS of a galaxy once it comes within this radius of the cluster, but use the actual orbit of the

satellite (taken directly from the N-body simulation) to compute the ram pressure force experienced

at each timestep of our calculation.

The method of accretion shock calculation of V03 is an approximate solution with many sim-

plifying assumptions. For example, it assumes smooth, spherical accretion, an assumption that is

known to be quite incorrect in the context of hierarchical galaxy formation. For this reason, there

is uncertainty as to the accuracy of the predictions of this model for the hydrostatic structure of

cluster gas. For example, cosmological hydrodynamic simulations have shown that the hot gas halo

of a cluster can extend well beyond the location of the accretion shock (89), pointing to far more

complicated physics than is included in the simple V03 model. This discrepancy is likely to be small,

as the relative velocity between infalling satellite galaxies and accreting gas, which determines the

ram pressure along with the density, will tend to be low outside the shock radius since they are

both falling into the host halo and feel little pressure, while within the shock radius the accreted

gas becomes nearly stationary creating a large relative velocity with the satellites. However, as it

has been shown in numerical simulations of the hierarchical dark matter and gas evolution of galaxy

clusters that the profiles of the outer regions of clusters tend to agree with smooth accretion models

(90), we use this simplified model in this work.

The V03 calculation of the accretion shock radius also assumes that the accretion shock is always

perfectly strong, so that the Mach number of the shock approaches infinity. We relax the strong-

shock assumption to allow the accretion shock to have any strength, which we find to be justified

as even some massive clusters have accretion shocks with Mach numbers M ∼ 10. We also correct

for the neglect of an integration constant in the hydrostatic profile derived for the clusters, which

we found to be non-negligible.
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Briefly, the calculation of the accretion shock proceeds as follows: using the shock jump conditions

and the assumption that the total accreted gas mass must be contained within the accretion shock,

we obtain a simple hydrostatic model of the cluster gas. Using this model we derive an equation for

the accretion radius in terms of the halo mass, mass accretion rate and halo concentration, as well

as the Mach number of the accretion shock. By also assuming that the cluster gas has adiabatically

contracted from a temperature of TIGM = 3000K in the intergalactic medium, we simultaneously

solve for the Mach number of the accretion shock and its position.

The calculation on which our model is based is described in Appendix A of V03, and a more-

detailed description of our generalized version of the calculation can be found in the appendix.

2.3 Cluster Galaxy Properties with Different Models of Ram

Pressure Stripping

We first compare the properties of galaxies in our model, in which the stripping of gas begins at the

radius of the accretion shock, with the similar model of (39) in which these effects begins at the virial

radius, and with the model of (37) in which all of a satellite galaxy’s hot gas, not just the maximum

amount as determined by the parameters of its orbit within the host halo, is stripped away at the

virial radius. We will call these models the Shocks, Font, and Bower models, respectively.

In Figure 2.1 we show the resulting stellar mass, cold gas mass and gas fraction profiles of cluster

galaxies, excluding the central galaxy, averaged within cluster-centric radial bins. The values of the

central galaxies are plotted, for comparison, as points at zero radius. Here we define galaxy clusters

as halos whose mass is greater than 1014h−1M�, and we include all galaxies in each radial bin in the

averages. It should be noted that the choice of which galaxies to include makes a large difference

in the properties that are observed, as can be seen in the significantly different trends obtained in

Figures 2.3 and 2.4 where we have selected a different set of galaxies to compare to observations.

We compare our Shocks model (red solid lines), with the Font (green solid lines) and Bower

(blue solid lines) models. It should be noted that there are other parameter differences between

these models: the Shocks model has had a parameter associated with AGN feedback adjusted from

its Bower model value to match the local galaxy bJ - and K-band luminosity functions, while the

Font model has a different value of the metal yield to match the zero point colors of the red and blue

sequences. Thus, the difference between the Bower model and the Shocks and Font models is due

both to their differing treatments of RPS, and to their different physical parameters. To assess the

relative contributions of each of these components, we also consider the Shocks, Font, and Bower

models without RPS, thus isolating the effects of the parameter changes (red, green and blue dotted

lines). We also show the position of the average accretion shock radius of these clusters as a black

dashed vertical line, and the properties of the central galaxies as crosses. When these values are very
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Figure 2.1: Stellar mass (M∗, top), cold gas mass (Mgas, middle), and the gas fraction, Mgas/M∗
(bottom), averaged for satellite galaxies in radial bins, as a function of the cluster-centric radius
divided by the virial radius of the cluster. The black dashed line shows the average position of the
accretion shock in these clusters, while the blue, green, and red solid lines show the results for the
(37), (39), and Shocks models. The blue, green, and red dotted lines show the Bower, Font, and
Shocks models without ram pressure stripping, respectively. The crosses at zero radius indicate the
average properties of the central galaxies.

different from those of the satellite galaxies, we leave them out of the plot as the satellite galaxy

trends are more interesting for the purposes of this work.

In the top panel of Figure 2.1, we see that in all of the models there is a peak in galactic stellar

mass in the centers of clusters; as the central galaxy has been excluded, this shows an increase in

stellar mass of the innermost satellites in all models. This is reasonable, as we expect more-massive

satellite galaxies to sink deeper into the potential well of the cluster. Further, other than a slight

rise in stellar mass towards the center of clusters in the Font and Shocks models, the average stellar
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mass of galaxies remains more-or-less constant with radius, with the Shocks model having the lowest

average level of stellar mass, the Bower model slightly more, and the Font model having the most

stellar mass of all. The flatness of these curves indicates that most of the stars of satellite galaxies

were formed before they merged with the cluster. Note that the central galaxies in all of the models

have more than an order of magnitude more stellar mass than the satellite galaxies, as would be

expected since they are at the center of the potential well of the cluster and are not subject to RPS.

The distribution of cold gas mass, in the middle panel of Figure 2.1, shows a different trend. The

Bower model, with its more-extreme removal of gas in clusters, shows the least cold gas in satellite

galaxies, with a very distinct drop in gas mass at around 1.5 times the virial radius. This drop in cold

gas mass is quite steep, with its slope determined by the timescale of satellite orbits as compared to

the timescale on which cold gas is made into stars in the satellite galaxies. Interestingly, the Shocks

model shows a very similar trend with slightly more gas mass inside the radius of the accretion

shock, as would be expected. That the Bower model also shows a drop at around this radius, which

happens to be the average accretion shock radius, is interesting, and points to the “preprocessing”

of satellite galaxies, in which satellite galaxies experience weaker environmental effects as members

of smaller groups of galaxies before merging with the cluster. The Bower model is likely to exhibit

stronger group effects than the Shocks and Font models, since its RPS efficiency is always very

high, while the RPS of the Shocks and Font models depend on the density of the halo intracluster

medium (ICM). Thus, we see that these two very different models of environmental effects give a

similar qualitative prediction for the radial dependence of satellite gas mass, indicating that if such

a trend in gas mass is observed, we cannot distinguish between a model whose RPS starts at the

accretion radius and a much stronger RPS model which starts at the virial radius.

The Font model predicts a higher level of gas mass at all radii, as is reasonable due to its less-

harsh RPS implementation, while as expected the models without ram pressure exhibit significantly

higher gas mass at all radii than the other models, since it is RPS that is mainly responsible for the

sharp drop in gas mass with decreasing cluster-centric radius. It is reasonable that there is a slight

drop-off in gas mass towards the center of the cluster even in these models, since in these models

the accretion of new gas from the intergalactic medium (IGM) onto the hot gaseous halo of the

satellites is suppressed though none of their halo gas is removed. We see that the central galaxies

have higher gas mass than satellites, as they are not affected by RPS and also gain gas through

mergers. The higher level of gas mass in central galaxies in the models without RPS is likely due

to merging satellites, which have not had gas removed by RPS and therefore give more gas mass to

the central galaxy.

Finally, in the bottom panel of Figure 2.1 we can see the average ratio of cold gas to stellar mass

in satellite galaxies. It is quite striking that, despite the differences in gas mass and stellar mass

when averaged separately, the average of their ratio is nearly the same in all of these models, with
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the only significant difference occurring between the Bower model and the Font and Shocks models

at less than half of the virial radius. The general behavior of this quantity, in all of the models, is

a gradual increase in gas fraction moving into the cluster until the virial radius, at which the gas

mass declines precipitously. This peak is likely due to the biased sample of galaxies located close to

massive clusters. As they are in general more massive, they may well still be cooling gas and thus

forming stars at rates higher than further away from the cluster.

Further inwards, the Shocks and Font models reach a higher, roughly flat, central gas fraction

than the Bower model, as expected due to their less-extreme removal of gas in cluster members.

We also see that the gas fraction reaches only a slightly larger value in the runs without any RPS,

indicating that at least the subtle ram pressure of the Shocks and Font models makes little difference

in the gas fraction of cluster galaxies, while the implementation of a Bower-type complete removal of

gas makes a far larger difference. Note, finally, that the spike in the Bower model gas fraction very

close to the center is due to a single galaxy in our sample, which formed in the final timestep and

so exhibits an unusually low stellar mass and therefore a very high gas fraction. Its location deep

within the cluster is surprising given its very recent formation and it may represent a flaw in the halo

detection or tree building algorithms. We leave it in the sample in any case for completeness. Finally,

the gas fractions of central galaxies in these models are all well below those of satellites, which is

reasonable as cluster central galaxies tend to be ellipticals which have little cold gas although they

may have large hot gas halos.

In Figure 2.2, we show observationally measurable quantities related to the implementation of

RPS: the B−V color, SFR, and specific SFR of satellite galaxies in clusters. Each of these quantities,

as in the previous figure, is calculated for each galaxy and then averaged within cluster-centric radial

bins.

In the top panel of Figure 2.2 we can see that in all of the models the satellite galaxies become

increasingly redder moving towards the center of the cluster, as expected, with this reddening be-

ginning around the virial radius and having the same general shape in all models. We see that the

Shocks model has bluer colors than the other models, and that the Font model has slightly redder

colors than the Bower model. The Font model, with the most gas, has the most dust extinction, and

it is this effect which makes it redder than the Bower model. As the separation between the Shocks

and Font models is preserved when RPS is turned off, we see that these average color differences

result from the star formation and AGN feedback parameter adjustments which were required to

bring the models into agreement with the local luminosity function. As expected, without RPS

we see much bluer colors in all of the models. The central galaxies are all much redder than their

satellites, which follows from our knowledge that these galaxies tend to be large elliptical galaxies.

In the middle panel of Figure 2.2, we see the SFR variation with cluster-centric radius. The

SFR versus radius for the Shocks and Font models decreases moderately inside the virial radius,
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Figure 2.2: B-V colors (top), star formation rate (middle), and specific star formation rate (bottom)),
averaged for satellite galaxies in radial bins, as a function of the cluster-centric radius divided by
the virial radius of the cluster. The lines and models are the same as in Figure 2.1.

in a similar manner to the gas mass, though not quite as steep. We see a distinct decrease in star

formation in the Bower model towards the center of the cluster, due to its harsher implementation

of RPS and thus lower gas mass. The Font model has more star formation at all radii with respect

to the other models, while the Bower model always has the lowest SFR. This is reasonable as it

mirrors the order of strength of RPS in these models. Also as expected, the models without RPS

show higher rates of star formation than the other models. The central galaxies in these models

have much larger SFRs than their satellite galaxies, which is reasonable given their larger gas mass.

In the lower panel of Figure 2.2, we see the average specific SFR, that is the average of the ratio

of the SFR and the total stellar mass of satellite galaxies. The trends in this plot are very similar
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to those of the gas fraction plotted in the lower panel of Figure 2.1. This is no coincidence; in fact

the SFR in Galform is determined such that

Ṁ∗

M∗
=

ε

τdisk
(1−R)

Mgas

M∗
, (2.15)

where ε is the star formation efficiency, τdisk is the disk timescale, and R is the fraction of mass

going into stars that is recycled back into the interstellar medium. As with the gas fraction, a single

outlier galaxy in the Bower model is causing the spike at low radius, and can be ignored. We see

that the central galaxies in all models have significantly higher specific SFR, as expected. Also, the

specific SFR is directly proportional to the gas fraction, and as ε and R are constants and τdisk does

not depend strongly on environment, we see similar behavior in the specific SFR as a function of

cluster-centric radius as we saw in the gas fraction. As with the gas fraction, it is very similar in

all models and shows a very slightly rising level moving in towards the virial radius, at which there

is a peak and then a sharp decline towards the center of the cluster. As with the gas fraction, the

models without RPS reach a higher central value of the specific SFR, the Font and Shocks models

are very similar, and the Bower model shows a much lower central specific SFR. The central galaxies

in these clusters all show a much lower specific SFR than the satellites; this is directly related to

their low gas fraction, which is understood as these galaxies tend to be large ellipticals.

2.4 Comparison with Observations

We compare the results of our Galform model including accretion shocks and the more-extreme

RPS model of (37) to recent observations and simulations. In Section 2.4.1, we compare with the

simulations of (1) and their observational dataset selected from the CNOC1 cluster redshift survey

(91). In Section 2.4.2 we compare the Shocks model to the cluster spectroscopy of (2). In both

papers, cosmological parameters Λ = 0.7, Ω0 = 0.3, and h = 0.7 are used. Despite the fact that

Galform uses a different set of cosmological parameters as listed in Section 2.2.1, we conduct our

comparison analyses using the same parameters as the observations so as to better reproduce their

analysis. In both comparisons, we plot the properties only of satellites in halos with masses greater

than 1014h−1M� to more accurately mimic the selection of massive clusters in these two samples.

2.4.1 Comparison to CNOC1 Cluster Redshift Survey as Selected by

Balogh et al. (2000)

The cluster redshift survey CNOC1 (91) provides spectra for member galaxies of 15 x-ray luminous

clusters. We compare our simulations to the sample of twelve of these clusters presented in (1),

which were selected to lie within a redshift range 0.19 < z < 0.45 and have well-defined cluster
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Figure 2.3: Comparison of the cluster redshift survey CNOC1 data as obtained by (1), with the
Millennium results using three different implementations of RPS. The CNOC1 data is shown as
black squares and solid lines, while the extreme ram pressure stripping model of (37) is shown in
blue dotted lines, the more-nuanced accretion shocks model of this chapter is shown in red dashed
lines, and this same Shocks model without ram pressure stripping is shown in purple dot-dashed
lines. The vertical lines show the average virial radius (cyan long-dashed) and accretion shock radius
(green short dot-dashed) for the clusters considered in our semi-analytic model. Note that the x-axis
of this plot is the projected cluster-centric radius divided by r200, as defined in the text.

centers. Cluster members were selected based on velocity and magnitude cuts. The cluster-centric

radii of galaxies were measured relative to r200, the radius at which the interior density is 200 times

the critical density. See (1) for a complete description of the selection criteria.

To ensure accurate comparison to the data, we mimic the observational techniques as described in

Section 2 of (1) in our analysis of the Millennium/Galform models. We analyze clusters at redshift

z = 0.3, and cluster members are selected based on projected radial position, magnitude, and
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velocity. Specifically, we select galaxies whose projected cluster-centric radius is less than 2 r200,

where r200 is calculated assuming an NFW-type density profile, with a Gunn r-band magnitude

greater than −18.8 + 5 log h at z= 0.3, and with velocity within 3 σ of the average velocity of all

previously selected galaxies, including the effect of Hubble expansion. The average virial radius (as

defined by Galform using the overdensity of a spherical top-hat collapse model for this cosmology)

of the clusters we “observe” in this manner is 1.37 r200. As in (1), we remove the central cluster

galaxies from the sample.

We calculate the SFR as was done with the observations, by using the equivalent width of the

OII line as a direct indicator of SFR. (1) find a prescription to determine SFR from observed line

widths and luminosities that matches the relationship between these quantities that they see in

their semi-analytic simulations. In their prescription, the SFR is the product of this equivalent

width with the rest-frame B-band luminosity, an extinction factor, and a normalization constant

chosen by comparison with their simulations. In Figure 2.3 we show the comparison of the CNOC1

data of (1) with the results of taking our semi-analytically determined cluster galaxy luminosities

and line widths and plugging them into this prescription. We note that this prescription tends to

under-predict the SFRs of our galaxies as compared to the rates directly obtained from Galform,

and that this effect is strongest for models with less RPS, more galactic gas and dust and thus more

extinction. Thus, the SFRs inferred from this method agree fairly well with the directly computed

rates for the Bower model, but are much lower than the directly computed rates of the Shocks

model. This shows that prescriptions to determine SFR from observed quantities are quite model

dependent, and in this case disagree with the relationship we see in Galform.

The resulting curves are compared with the CNOC1 data in Figure 2.3. Here we plot three models

of ram-pressure stripping: the (37) model, our new Shocks model, and this same Shocks model with

the RPS turned off (blue dotted, red dashed and purple long-dot-dashed lines, respectively). We

also show, with cyan long-dashed and green short-dot-dashed lines, the average virial and accretion

shock radii of the clusters considered. The radius plotted on the x-axis is the projected cluster-centric

radius. Note that the SFRs shown in Figure 2.3 are different from those in Figure 2.2 due to their

differing definitions of radius, different selection of galaxies, the different units and the linear scale

in Figure 2.3 as compared to the logarithmic scale in Figure 2.2. When taking these into account,

the SFRs in the two plots are similar.

We can see that all three models predict similar radial trends in SFR. The Bower model, with

more-extreme RPS, is quite close to the data in the innermost regions, but has a much steeper

rise to larger radii than is observed, thus overproducing the SFR in the outer regions. The Shocks

model rises more gradually in the outer regions of the cluster, bringing both of these models into

better agreement with the data than the Bower model at large radii. However, we can see that,

given the large error bars on the data, neither the Shocks model (with RPS) or the Bower model is
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Figure 2.4: Comparison of the (2) cluster spectroscopy with our semi-analytic results using three
different implementations of ram pressure stripping. The x-axis is the projected cluster-centric radius
divided by r200, which is defined differently than in the previous section, as explained in the text.
The solid black lines with dark grey shading show the observed cluster results and their errors, while
the solid grey lines surrounded by light gray show the observed results and errors for field galaxies.
The models shown here are the same as in Figure 2.3.

a significantly better fit to the observations. This interesting result implies that, even if only RPS

is acting to cause these gradients in SFR, from data such as these alone we cannot distinguish the

details of the active RPS mechanism. Nevertheless, our Shocks model is marginally the best match

to the data.
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2.4.2 Comparison to Verdugo et al. (2008) Cluster Spectroscopy

We also compare with the sample of six galaxy clusters spectroscopically observed by (2). The star

formation activity of cluster galaxies as a function of cluster-centric radius was investigated using

the equivalent widths of the Hα and OII emission lines, and a significant drop in star formation in

cluster galaxies relative to the field was observed. For the details of the observations, the reader is

referred to (2).

To mimic the observational selection and analysis, we determine the mean cluster redshift and

the cluster velocity dispersion using the bi-weight location and scale estimators of (92), and select

cluster members as galaxies whose redshift is within 3σ of the mean cluster redshift. We use the

projected cluster radius normalized to r200, where r200 is here defined to be

r200 =
√

3
10

σ

H(z)
. (2.16)

We further remove from our cluster galaxy sample those galaxies whose apparent I-band mag-

nitude is above the survey spectroscopic limit I = 19.5, those whose line-of-sight velocity relative

to the cluster center places them clearly outside of the cluster, and those whose absolute I-band

magnitude is greater than the limit of MI = −21.4, which was imposed on the observed data to

treat clusters at different redshifts with the same luminosity restrictions.

The comparison of the observational results of (2) with our ram pressure implementations is

shown in Figure 2.4. The solid black lines with dark grey shading show the observed cluster results

and their errors, while the solid grey lines surrounded by light grey show the observed results and

errors for field galaxies. To this we compare our models; as in Figure 2.3, we show the Bower model

(blue dotted), and the Shocks model with (red dashed) and without (purple dot-dashed) RPS. We

also show the average virial radius (cyan long-dashed) and accretion radius (green short dot-dashed)

for the Millennium clusters considered.

In Figure 2.4 we can see that, as in Figure 2.3, the average virial radius of these clusters is around

1.4 r200, while the average accretion shock radius is at 2.5 r200. This is just at the edge of the radial

extent of the observations, and indicates that if our model of the accretion shock is correct, then the

current observations are not probing the cluster beyond the radius of environmental effects.

The top panel of Figure 2.4 shows the radial dependence of the OII equivalent width. We see that

the three models predict very similar, nearly straight-line radial profiles, all of which are plausible

given the size of the observational error bars. Therefore, these cluster galaxy OII data cannot

reliably determine whether any form of RPS is causing the observed decline in SFR. However, all of

the models tend to predict a shallower slope than is observed.

In the lower panel of Figure 2.4, we see the radial profile of the Hα line equivalent width. In this

case, both the Bower and Shocks models are plausible with the given error bars, while the Bower
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model predicts a lower overall equivalent width and fits the data slightly better.

It can be seen that the data from both (2) and (1) have a local star formation peak at around

0.5 r200. The statistical significance of these peaks, due to the size of the errors, is questionable, and

their correlation can not be immediately understood to be due to the same phenomenon, as r200

was defined differently in these two papers. However, if these peaks do in fact represent a general

feature of cluster members’ star formation rates, then this effect is the product of physics which has

not been included in the current model.

2.5 Discussion and Conclusions: Implications for Observa-

tions of Ram Pressure Stripping

We have addressed the question of the nature of the environmental effects felt by satellite galaxies in

galaxy clusters by implementing three different prescriptions of RPS onto the Millennium Simulation,

using the semi-analytic galaxy formation model of Galform. The three models implemented are

the complete RPS of (37), in which all of the hot gaseous halo of a galaxy is removed when it is

first identified as a member of the friends-of-friends group of a more-massive halo, the more-nuanced

model of (39), in which hot halo gas is only stripped up to a maximum stripping radius determined

by the orbit of the satellite, and our new model which incorporates the nuanced Font RPS model but

differs from their model by using the radius of the cluster accretion shock as the location at which

these effects begin and by utilizing the actual satellite orbit measured directly from the N-body

simulation.

Considering the results of applying these models to the detailed merger histories provided by

the Millennium Simulation, we see that, in general, all of the models show similar trends in stellar

and gas mass with cluster-centric radius, with differences in normalization due to the different ram

pressure models and due to the different parameters adopted in the models to obtain a close fit to

the properties of the local galaxy population. Further, the gas fraction and therefore the specific

SFR is very similar in all of the models considered, with differences only apparent in the regions

less than half of a virial radius from the center of the cluster. We see that, in particular, the Shocks

and Bower models predict very similar radial average gas mass profiles, with a sharp down-turn at

1.5 virial radii, the average radius of the accretion shock in these clusters. This indicates that if we

were to observe the gas mass trend in cluster galaxies, we would not be able to distinguish these two

very different implementations of RPS.

As expected, we find that the B-V colors of satellite galaxies in all of the models become redder

towards the center of the cluster, and that in all of the models we considered these effects begin just

outside the virial radius of the cluster. The onset of this reddening well outside of the virial radius,

as well as the decrease in gas mass beyond than the virial radius, indicate either the preprocessing of
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satellite galaxies before their accretion onto clusters or the presence of satellites on highly elliptical

orbits which have already passed through the central regions of the cluster.

We have compared the results of our accretion shock model of RPS and that of (37) with the

observational results of (2) and those of (91) as selected by (1). We see in these comparisons that both

of these models are consistent with the observations, given their uncertainties. Thus, we conclude

that current observational data on the radial SFR gradient in clusters do not strongly discriminate

between different models of cluster environmental effects. However, our models clearly indicate that

the presence of RPS has a strong effect on radial trends within clusters and we expect that it will

be possible to constrain the details of these models given future observations with larger samples of

cluster galaxies.

Recent work on the semi-analytical modeling of satellite galaxy stripping effects in clusters was

carried out by (41). As in this work, they have modified previous models, in which all halo gas was

stripped as soon as a galaxy became a satellite in a larger halo (93), to include a more-nuanced form

of gas stripping. They model cluster-environment effects entirely with tidal stripping, and presume

that gas is lost from satellite galaxies in proportion to the loss of dark matter. The baryonic physics

of RPS is neglected in the model of (41), while in the model of this work we neglect tidal stripping. Of

course, in cosmological structure formation both of these mechanisms have an effect on the stripping

of gas from satellite galaxies. However, using the virial scaling relations, we find that the ratio of

the forces of ram pressure and tidal stripping is given by

FRPS

FTS

∣∣∣∣
rvir

= A

(
Mhost

Msat

)2/3

, (2.17)

where A is a constant of order unity, so the force of RPS is larger than that of tidal stripping, for

a satellite at the virial radius, by a factor proportional to the ratio of the mass of the host halo

to the mass of the satellite to the two-thirds power. By this argument then, at least at the virial

radius RPS exerts a larger force on gas in a satellite halo, and so we can be confident that we have

included the dominant physical effect in the present work. The results of (41) are compatible with

our results, and they also find that several of their models are plausible given the error bars of the

data with which they compare.

In conclusion radial trends in galaxy properties around clusters can now be accurately predicted

by the Galform model of galaxy formation. Measurements of these trends therefore have the

potential to place strong constraints on the processes of mass accretion and star formation, both of

which are key components of our picture of galaxy formation. We have not discussed the distribution

of cluster gas in detail in this work, but it is clearly a key ingredient in any model invoking RPS as

a driver of cluster galaxy evolution. Recently, (94) described a more-advanced calculation of cluster

gas physics within Galform which aimed to match the x-ray properties of clusters. Future work
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in this subject should clearly explore both cluster galaxy and x-ray properties in tandem to ensure

realistic modeling of the cluster physics. This, coupled with larger samples of cluster galaxies would

greatly improve the statistical power of this method as an important constraint on galaxy formation

physics.
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Chapter 3

Angular Momentum Evolution in
Dark Matter Halos1

3.1 Introduction

Recent years have seen much progress in our understanding of the growth of dark-matter halos

from initial density fluctuations and the characterization of their properties. For example, it has

been possible to find analytic results to describe the merger trees of dark matter-only systems

(95; 96; 97; 98; 99; 100). Additionally, high-resolution N-body simulations containing only cold (i.e.,

non-relativistic at the epoch of kinetic decoupling) dark matter have been performed (42; 101; 102;

103; 104), leading to detailed knowledge of the structure of cold dark-matter halos, such as the fact

that halos have an approximately universal radial density profile (105; 106; 107) and are generally

triaxial in shape (108).

There is currently a great deal of interest in the angular momentum of particles in dark matter

halos, since it is this angular momentum, when transferred to baryons, that creates the disks of

galaxies. It is also interesting to look at this topic in the light of the adiabatic contraction (AC)

model, which is used to model how the condensation of baryons during the formation of a galaxy

affects the mass profile of its host halo (e.g., 109; 29; 38; 110). In this model, it is assumed

that the gravitational potential of the system changes very slowly, so that it can be approximated

as adiabatic. Further, two simplifying assumptions are usually employed to calculate the density

increase resulting from the growth of galaxies at centers of dark-matter halos using AC. First, the

gravitational potential of the system (including contributions from both the dark-matter halo and

the galaxy) is assumed to be spherically symmetric and the orbits of particles are presumed to be

circular, such that the angular momentum of particles is conserved.
1The work presented in this chapter was adapted from the paper “Angular momentum evolution in dark-matter

haloes,” L. G. Book, A. Brooks, A. H. G. Peter, A. J. Benson, and F. Governato, MNRAS 411, 1963 (2011).
Reproduced with permission, copyright (2011) by the Royal Astronomical Society. Discussion of the details of the
adiabatic contraction method and the N-body simulation have been added to Sections 3.1.1 and 3.2, respectively.
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The back reaction of the evolution of those galaxies on the dark matter is poorly understood.

The properties of the galaxy population and of the dark-matter response appear to depend quite

strongly on the star-formation prescription and strength of feedback processes, among other things,

but a physically motivated and vetted mapping between baryonic physics and the evolution in the

dark-matter phase-space density is lacking (29; 111; 112; 113; 114; 38; 115; 116; 110; 117; 118).

The development of an accurate model of this back reaction is required to accurately compare

theoretical predictions of galaxy formation, both in the context of canonical cold-dark-matter and

alternative dark-matter cosmologies with observations. A number of observed galaxy properties,

such as the rotation curves of disk galaxies and the associated Tully-Fisher relation (119), depend

on the gravitational potential of both baryons and dark matter. In particular, the Tully-Fisher

relation is frequently used as a constraint on galaxy evolution processes in models of galaxy formation

(29; 120; 121; 36; 122; 123; 38; 124; 110). Moreover, different dark-matter candidates are expected

have noticeably different distributions in dark-matter halos in the absence of baryons (e.g., 125;

126; 127; 128); it is not clear how those distributions will change as a result of baryonic physics.

Observed density profiles sometimes appear consistent with cold-dark-matter predictions in the

absence of baryons, and sometimes do not (129; 130; 131; 132; 133; 134; 135; 136). In the absence

of a physically vetted predictive model for the impact on baryonic physics processes on dark-matter

distributions in halos, variations on the adiabatic contraction (AC) model are often applied to

compare galaxy evolution and dark-matter theories with observations (e.g., 109; 29; 38; 110).

In this work, we examine two key assumptions of the AC model in the context of dark-matter-only

simulations of galaxy-mass halos: the adiabaticity of the evolution of the gravitational potential, and

the angular momentum distribution of dark-matter particles halos. Specifically, we will investigate

the extent to which angular momentum is invariant for individual particles and subsets of particles,

as is assumed in the spherically symmetric model that is generally applied (and which will be

true even if particle orbits are non-circular). Invariance may be broken for a number of reasons,

including a break down of the adiabatic assumption, the non-sphericity of the halo potential and

torques from the external mass distribution. Even if the angular momentum of individual particles

is not conserved due to the triaxiality of the halo density profile, AC might be applicable if the

distribution of angular momenta of all particles were invariant with time. If the angular momentum

distribution varies with time then the simple model of AC cannot work precisely for even the simplest

galaxy-evolution models.

Note that, as we are working with dark-matter-only simulations, we set only lower limits on the

level to which AC is not applicable in halos with both dark matter and baryons, as the inclusion of

baryonic physics is likely to exacerbate these effects. The observed angular momentum distribution

of baryons in galaxies has been shown to deviate significantly from that expected based on simu-

lations (137; 138; 139), so we do not expect the angular momentum distribution that we measure
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to be representative of the baryonic distribution of angular momenta. However, the extent of non-

conservation of angular momentum in dark-matter-only simulations is likely to be less than that

when baryons are added, since baryons and dark matter can exchange angular momentum. Hence,

in this chapter, we examine the accuracy of the adiabatic assumption and the level to which the

angular momentum distribution changes with time in dark-matter-only simulations, as this places a

limit on the possible accuracy of the AC model. Our intention is not to provide a precise quantifi-

cation of this limit, but merely to highlight its existence and provide an approximate measure of its

magnitude.

This chapter is organized as follows: in Section 3.2, we describe the simulations and halos that we

analyze, and we describe the particle subsets that we use in Section 3.2.1. We show how the average

angular momentum of halo particles with respect to the center of mass is evolving in Section 3.3,

and analyze the extent to which the adiabatic approximation is valid in the halos in Section 3.3.1.

In Section 3.3.2 we present the evolution of the average angular momentum of halo particles with

respect to the center of the halo, and we present the evolution of the angular momentum distribution

in Section 3.3.3. Finally, we examine the causes of this evolution in Section 3.4, and discuss our

results in Section 3.5.

3.1.1 Adiabatic Contraction Model

Here, we provide a review of the AC model as it is commonly applied, with some derivations of the

important results. We follow the discussion of Binney and Tremaine (2008) (140).

We first consider a system with a stationary (time-independent) potential, and consider the

Hamiltonian for a test particle as a function of generalized coordinates θi (i = 1, 2, 3) and conjugate

momenta Ji, H = H(θi, Ji). If we presume that all three momenta are conserved integrals of the

motion, Hamilton’s equations give us

∂H

∂θi
= −dJi

dt
= 0

∂H

∂Ji
=

dθi

dt
= Ωi(J), (3.1)

where Ωi(J) are constants, not dependent on time. We can thus write the time evolution of θi as

θi(t) = θi(0) + Ωit. (3.2)

This implies, then, that if we can find three integrals of motion in this potential, then the conjugate

coordinates behave in this very simple way. Note that, even if only one or two integrals of motion can

be found, this argument still holds for their conjugate coordinates, greatly simplifying the analytical

consideration of orbits in such systems.
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Now, let us consider in Cartesian space the orbits described by the coordinates θi. We can see

from Eq. (3.2) that the θi increase monotonically with time. However, these coordinates must be

able to represent bound orbits, for which the corresponding Cartesian coordinates xi(t) are bounded.

This then implies that the xi(t) must be periodic functions of the θi; let us consider one specific

orbit, and renormalize the θi such that the particle returns to the same position (in xi) when

each θi → θi + 2π. (This renormalization has no effect on the previous argument, since it simply

renormalizes the conjugate momenta by the same amount, without affecting their constancy over

the orbit.) We can then expand the orbit in a Fourier series

xi(θ,J) =
∑
n

Xn(J) ei niθ
i

, (3.3)

where n is a vector of integers. Thus, we can write the orbit as a series with the frequencies multiples

of the fundamental frequencies Ωi.

The Ji thus presented are called the “actions” of the system, while the θi are the “action angles”.

The reason why we are interested in these quantities is their property that, if the potential is changed

slowly enough, the actions of individual orbits remain unchanged. This result gives a great deal of

power to the theorist, since it allows for a direct understanding of the final state of all of a system’s

particles given the initial and final states of the potential. The more-precise condition of a “slow

enough” change in the potential is that dynamical time of the change in the potential is much longer

than the orbital periods of the particles. Under these conditions, it can be proved with more detail

than is needed here that the actions of each individual orbit are unchanged.

Now let us consider a spherically symmetric system, and derive its actions. To do so, we consider

two sets of coordinates, spatial ones xi and conjugate momenta pi, and the action angle variables

considered above, θi and Ji. We can find a function S(xi, Ji) (the “generating function” of the

coordinate transformation) such that

∂S(xi, Ji)
∂Ji

= θi

∂S(xi, Ji)
∂xi

= pi. (3.4)

We know that the Hamiltonian, evaluated along a particle’s orbit, will give that particle’s energy.

Assuming no dissipative properties, this energy is conserved along the orbit. Using the above

generating function to write the Hamiltonian as a function of xi and Ji, we have

H

(
xi,

∂S

∂xi

)
= E. (3.5)

This is known as the Hamilton-Jacobi equation. We can find the actions of a given potential using
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the above equation and

Ji =
1
2π

∫
Ci

∂S

∂xj
dxj , (3.6)

where Ci is the path determined by varying θi from 0 to 2π while holding the other action angles

fixed. This equation comes from the recognition that (for renormalized θi as discussed above)

Ji =
1
2π

∫ ∫
interiorofCi

dθidJi, (3.7)

and since this integral is a Poincaré invariant, it is the same for any set of conjugate coordinates

and momenta, so we can equally well write

Ji =
1
2π

∫ ∫
interiorofCi

dxjdpj . (3.8)

Finally, we note that we can rewrite Eq. (3.8) as a line integral using Green’s theorem

Ji =
1
2π

∫
Ci

pj dxj . (3.9)

We finally use Eq. (3.4) to obtain Eq. (3.6).

From these equations, assuming a spherically symmetric potential, we can obtain the forms for

the conserved actions. I will skip the algebra here (look at (140) for the details); the result is that

the actions for a potential Φ(r) are

Jφ =Lz

Jθ =L− |Lz|

Jr =
1
π

∫ rmax

rmin

dr

√
2E − 2Φ(r)− L2

r2
. (3.10)

In Eq. (3.10), θ is the polar angle of the spatial coordinate system, not an action angle, and L is

the angular momentum of the particle.

Now, let us give a brief description of the AC model as it relates to the above results. If our

potential is indeed integrable such that we can find three conserved actions, then we can define a

distribution function (DF) f = f(Ji) such that f(Ji)d3J that the orbit of a given particle can be

described by actions in the volume d3J . Note that, since the actions are invariant under adiabatic

changes of the potential, as long as this constraint is justified the DF is independent of time. This

then gives the AC model in its purest form: given the initial DF, AC tells us that the final DF is

the same. However, transforming from a DF to a spatial distribution is non-trivial, and so simple

approximations to the true AC model are often used instead. The two most common simplifying

assumptions are that the gravitational potential (from both the dark matter and the galaxy) is
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spherically symmetric, such that the magnitude of the angular momentum and the radial action

are the relevant action variables as we saw above; and that all orbits are circular such that angular

momentum is the only nonzero and non-infinite-period angle variable (141). If we assume circular

orbits, then the total angular momentum per particle mass can be written as |L|/m =
√

GrM(r),

where M(r) is the mass contained within the orbit of the particle. This is the origin of the commonly

used form of the AC model in which the quantity rM(r) is held constant, leading to a very simple

expression for the evolution of halo density with baryon condensation. Occasionally, the assumption

of circular orbits is swapped in favor of choosing a variant of the radial action as a conserved quantity

(141; 111).

One can thus analytically calculate the final mass profile of the dark matter given the growth of

the galaxy. Although these simple models have a mixed track record of matching observations and

hydrodynamic simulations of galaxy evolution, they are currently the only predictive models for the

effects of galaxy evolution on the dark-matter profile in halos (134; 135; 136; 129; 131; 130; 124;

112; 113; 114; 115; 118; 116; 117).

3.2 Simulations

The dark-matter halos used in this study were simulated with the code PKDGrav (142). PKDGrav

is a parallel N-body code, which uses a tree data storage structure optimized for massively parallel

gravitational simulations. It improves efficiency by using multipole expansions to approximate the

gravitational force, and using the local expansion to treat the force due to distant masses. Its name

derives from the data structure, k-d trees (“k-dimensional” trees), upon which the code’s more-

specialized spatial binary trees are based. Periodic boundary conditions are approximated using the

Ewald summation (143).

We used the Wilkinson Microwave Anisotropy Probe (WMAP) three-year cosmology (Ωm =

0.24, ΩΛ = 0.76, H0 = 73 km/s, σ8 = 0.77; 145). Our four halos were originally chosen from a

low-resolution volume of 50 Mpc on a side, and selected to span a range of merger histories and

spin values at roughly the mass of the Milky Way halo. Each halo was then re-simulated using the

volume renormalization technique (146). This approach creates successively finer resolution layers

around the halo of interest, allowing for high resolution on one halo while maintaining the large-scale

structure (from the original 50 Mpc box) at lower resolution. Importantly, the large-scale structure

can deliver tidal torques and angular momentum to the halo.

Table 3.1 lists properties of each of the simulated halos. Three of the four halos have been

presented at similar resolution, but including gas through smoothed particle hydrodynamics (SPH),

in previous papers (e.g., 147; 148; 149; 150; 151). As examined in (149) and (151), halo h258 has an

approximately binary merger that occurs at z ∼ 1, but exhibits a very quiescent evolution afterward.
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Table 3.1: Simulated galaxy properties

simulation Mvir [M�] λa zLMM
b N within Rvir

c

H239 9.3×1011 0.01 1.25 7.6×105

H258 8.2×1011 0.03 1.25 6.7×105

H277 7.2×1011 0.03 2.5 5.9×105

H285 7.4×1011 0.02 3.75 6.1×105

a Global spin parameter as defined in (158)
b Redshift of last major merger
c Number of dark matter particles within the virial radius at z = 0

(150) showed that h277 has a fairly quiescent merger history back to z ∼ 3, while h285 experiences

a large number of minor mergers all the way to redshift 0, despite not having a major merger since

high redshift. Halo h239 is presented here for the first time. It has a continually active merger

history, both major and minor, until z ∼ 0.5.

The mass resolution of the particles that make up these halos is 1.2×106 M�, with a spline force

softening of 350 pc. At each output time step (∼ 80 Myr), high-resolution halos with more than

64 particles (above which the mass function converges, 152; 153) in the volume are identified using

AHF (AMIGA’s Halo Finder, 154; 155). AHF adopts results from (156), calculating the overdensity

assuming a spherical top hot collapse, under the assumption that the halo has just virialized. The

definition for δvir differs from its value as defined in (157) by the factor Ω(z) ∗ (1 + δvir). Thus ∆c,

the value for which ρvir = ∆cρcrit, is ∼ 100 at z = 0. We follow the main halo through time by

identifying the most massive progenitor at high redshift.

3.2.1 Particle Subsets

There are several different subsets of particles whose properties we analyze here. We take two

different approaches to selecting particles; in the first case, we choose particles based on their radius

relative to the halo center at z = 0 and follow these same particles back through the simulation

(Lagrangian selection), while in the second case we choose particles based on their radius at each

time step (Eulerian selection). We use the Lagrangian method to highlight the evolution over the

course of the simulation of those particles that will be at a certain radius at z = 0. The Eulerian

approach is complementary, as it shows how the particles at a certain radius at each timestep are

related. This is relevant in the context of galaxy evolution, as the baryons condense to a specific

region of physical space.

We also use two different methods of averaging the angular momenta of particles, one adding them

as vectors, and a second simply adding their magnitudes. These methods also highlight different

features of the angular momentum distribution. The vector addition of angular momenta allows us
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to see the extent to which a given set of particles have their angular momenta aligned, as a decrease

in angular momentum may represent a mixing of angular momentum directions as well as a change in

magnitude. Thus, the vector-averaged angular momentum of a radial shell of particles is essentially

telling us about the evolution of the “spin” of that shell. In contrast, adding the magnitudes allows

us to single out only the change in the magnitude of particle angular momentum, and therefore tells

us about changes in the particle orbits. It is this quantity which is relevant for the distribution

function and adiabatic invariance.

3.3 Halo Evolution

Before we describe the evolution of the angular momentum distribution in the simulations outlined

in Section 3.2, we show the results of two simple checks. First, to determine that any evolution in

the angular momentum distribution is real and not a numerical artifact, we simulated a 1012 M�,

spherically symmetric halo with equilibrium initial conditions, which in the absence of a spurious

numerical effect would maintain a static distribution of angular momenta. These initial conditions

were used in (161) in the context of decaying dark matter2. The orbits of 106 M� particles were

integrated for 10 Gyr using PKDGrav (142). We found no secular drift in the angular momentum

distribution of particles in the halo, just as we expected for a spherically symmetric halo in equilib-

rium. Further, we found that the angular momentum distribution in radial shells is invariant with

time. Thus, we determined that the angular momentum evolution that we see in the cosmological

case is not due to numerical effects.

As a further check, we compared the evolution of the total center-of-mass angular momentum

of our cosmological models with that found by other authors. In Figure 3.1, we plot the specific

halo angular momentum with respect to the center of mass of the system of all particles that are

within the virial radius of the halo at z = 0 (i.e., the Lagrangian region corresponding to the

z = 0 halo) for halos (a) 239, (b) 258, (c) 277, and (d) 285, as a function of the cosmological scale

factor a. Specifically, in the top panel of each panel we show the specific angular momentum L, as

defined above in the center-of-mass frame, divided by its value L0 at z = 0. Tidal torque theory,

as was first calculated by (159) and was observed in simulations by (160), implies that the specific

angular momentum of a halo grows as a3/2 until the halo virializes, at which point it becomes

roughly constant. In the lower panels, we show the L/L0 now divided by a3/2 to explicitly remove

this expected dependence. We find that in most of our halos the angular momentum defined with

respect to the center of mass of the system behaves in the manner expected from tidal torque theory.

Halo 239 also follows this trend but has significantly bumpier evolution than the other halos, possibly

as a result of its continuously active merger history.
2No decay term was included in this work, however.



35

(a) (b)

(c) (d)

Figure 3.1: The evolution of the specific halo angular momentum, with respect to the center of mass
of the system, of all particles that are within the virial radius of the halo at z = 0 for halos (a) 239,
(b) 258, (c) 277, and (d) 285. All halos follow a basic trend that agrees with the results of tidal
torque theory (159; 160).
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3.3.1 Validity of the Adiabatic Approximation

To determine how well the prescription of adiabatic contraction is followed in simulations, we must

first determine to what extent the potential of a halo evolves adiabatically. The adiabatic contraction

model is only applicable if the typical time scale for order unity changes to the halo gravitational

potential be long compared to the dynamical time of a typical particle in the halo. If this is not the

case it would be an indication that the adiabatic contraction approximation may not be used3.

To answer this question, we examined the energies and time scales of all particles within the

virial radius of each halo. We show these quantities for halo 239 in Figures 3.2 and 3.3. The top

panel in Figure 3.2 shows the dynamical time of the entire halo, defined as the virial radius divided

by the virial velocity, with the time scale for the potential of the entire halo to change by order

unity. The potential change time scale is defined as tpot = |Φ/ (dΦ/dt)|, and has been smoothed on

the dynamical time of the halo. It can be seen that, in general, the dynamical time is at least an

order of magnitude smaller than the time scale for the gravitational potential to change by order

unity, implying that the adiabatic approximation is reasonably accurate in these regions. However,

when a halo experiences a merger, the potential change time scale is reduced and the evolution of

the potential is non-adiabatic. Such mergers occur here at redshifts 2.2 and 1.2, with mass ratios

of 1.1 and 1.9, respectively. The lower panel of Figure 3.2 shows the evolution of the potential

and kinetic energy of all particles within the virial radius at each timestep, and shows that the halo

reaches a stable quasi-equilibrium around a redshift of z = 1. Overall, we see that the halo is roughly

adiabatically evolving, particularly after this redshift.

As galaxies generally form in the inner regions of their host halos, we would also like to determine

whether the adiabatic approximation is valid in the innermost regions of halos. This can be seen in

Figure 3.3, which shows the same quantities as Figure 3.2 but for only those halo particles that are

within the Eulerian-selected region r(z) < 0.1 rvir(z = 0). The potential change time scale of the

inner halo is generally much closer to the dynamical time of this region, implying that the adiabatic

approximation is less valid for the inner halo. We can see from the evolution of the kinetic and

potential energies that the inner region reaches a state of stable quasi-equilibrium around z = 1,

similar to the outer regions. However, we notice that halo 239 has a more-rapid change in angular

momentum than the other halos (see Figure 3.1. Thus, we would expect the other halos to have

larger angular momentum change timescales, and for the adiabatic approximation to be more correct

in those cases.

These figures show that the approximation that the halo is evolving adiabatically is roughly

accurate for the halos studied herein, although the dynamical time is often only an order of magnitude

or less smaller than the potential change time scale. The entire halo reaches a quasi-equilibrium by
3This does not, of course, address the issue of whether changes in the potential remain adiabatic once baryonic

physics are included.
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around z = 1 here, while halos with more-quiescent merger histories reach an equilibrium earlier.

However, in the inner regions of the halo where a galaxy might form, the adiabatic approximation

is not as good, with the potential time scale usually above but frequently close to the dynamical

time scale. Thus we must apply the assumption of adiabaticity with caution in the inner regions of

the halo, and to some extent even in the outer regions, especially as work in the context of decaying

dark matter has shown that AC works well only if the time scale for changes in the potential is much

longer than the dynamical time (161).

3.3.2 Angular Momentum Evolution

We next examine the extent to which angular momentum is conserved in our dark-matter-only halos.

Here, we consider only angular momentum with respect to the center of the halo, and not the center

of mass (as in, e.g., the comparison with 160, at the beginning of this section). The center of the halo

is determined by AHF, which uses an adaptive mesh to search for overdensities in the simulation.

Once it identifies a halo, it defines the center of the halo as the center of mass of the particles on

the highest refinement grid. We show the average particle angular momentum as it evolves over

the course of the simulation for various groups of particles, chosen to emphasize particular physical

characteristics of the system. In all cases, we bin particles radially so that the innermost ten percent

of the halo particles are placed into bin 0, the next ten percent into bin 1, and so forth.

We present this information in Figs. 3.4 and 3.5. In Figure 3.4 we show the evolution of the

vector-averaged angular momentum of particles chosen to lie within radial bins interior to the virial

radius at z = 0 (Lagrangian radial selection, solid black lines), compared to the evolution of the

vector-averaged angular momentum of all particles within the virial radius at z = 0 (blue dashed

lines), for halos (a) 239, (b) 258, (c) 277, and (d) 285. The angular momenta in these plots were

vector-added and then divided by the particle number to obtain the average, i.e., the specific angular

momentum. Particles were placed into 10 radial bins at z = 0, and we show the 0th (innermost with

respect to the halo center), 5th (middle), and 9th (outermost) bins in the top, middle and bottom

panels of each plot. We also show the redshift at which the average radius of particles in this radial

bin passes within the virial radius of the halo (green dot-dashed vertical lines), and the ratios of

the angular momentum at z = 1 and at the redshift of their accretion onto the halo to illustrate

quantitatively the extent of angular momentum loss. In this plot, we can see that generally, the

particles that end up in the inner regions of these halos at z = 0 lose a larger fraction of their angular

momentum than those that end up in the outer regions, and the angular momentum of these z = 0

inner particles also fluctuates more rapidly. The blue dashed line, which shows the evolution of

the average angular momentum of all particles within the virial radius at z = 0, shows the average

behavior of the particles in all bins, and, like the binned behavior, always decreases.

As mentioned earlier, the angular momentum of particles selected based on their Eulerian radius
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Figure 3.2: Energies and time scales of all particles within the virial radius at each timestep. The
halo shown is halo 239. The top panel shows the dynamical time of the entire halo vs. the time
scale for changes to the gravitational potential, which has been smoothed over the dynamical time
of the halo. The bottom panel shows the evolution of the potential and kinetic energy of all particles
within the virial radius at each time step.
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Figure 3.3: This figure shows the same quantities as Figure 3.2, but for only those halo particles
that are at each time step within a physical radius 0.1rvir(z = 0) of the center of the halo.
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is an interesting compliment to the Lagrangian case as it shows how those particles that are in a

given radial bin at each timestep evolve in angular momentum, and thus more clearly illustrates

the evolution of the radial angular momentum profile of the halo. By contrast, the angular momen-

tum evolution of radially Lagrangian-selected particles shows how the angular momentum of those

particles which end up in certain radial bins have changed over time.

The quantities shown in Figure 3.5 are similar to those in Figure 3.4, except that the particles

here (specifically, all particles that are within the virial radius at z = 0) were binned radially at

each time step in an Eulerian fashion, so that the “bin 0” line shows the specific angular momentum

of the ten percent of particles that are closest to the center of the halo at each time step. The

magenta long-dashed line shows the specific angular momentum of all particles that are within the

virial radius at each time step. This quantity goes to zero at the beginning of the simulation as

the virial radius is zero at the first time step and increases from there. This line tends to increase

because the virial radius increases with time. This is different from the binned values which include

all particles that are within the virial radius at z = 0 and thus always contain a nonzero number of

particles. All of the angular momenta in this plot were vector added as in the previous figure.

In Figure 3.5, there is no clear pattern as to which bin loses a larger fraction of its angular

momentum, although the inner bin generally has less angular momentum. This shows that, in

general, particles throughout the halo lose a comparable fraction of their angular momentum, but

those in the inner regions at each timestep tend to have less angular momentum than those in the

outer regions. However, we saw in Figure 3.4 that when the particles were binned in a Lagrangian

fashion, the particles in the inner regions lost a larger fraction of their angular momentum as well

as having lower angular momentum in general. Noting that both Figures 3.5 and 3.4 must and do

converge to the same value at z = 0, this implies that the particles that end up in the innermost bin

at z = 0 both begin with a larger angular momentum than those particles that are in the innermost

bin at the beginning of the simulation, and subsequently lose this angular momentum at a faster

rate than those particles that are at each timestep at the center of the halo. This behaviour is to be

expected, as the particles at the center of the halo at each timestep will tend to have a low angular

momentum, and it is reasonable to expect that this value will tend to drop rather slowly since we

are choosing new, low-angular-momentum sets of particles at each timestep in the innermost bin.

We also examined the evolution of the angular momentum in radial shells when averaged us-

ing the magnitudes of particle angular momenta rather than vector-averaging. We have omitted

plots of the magnitude-averaged cases as they are similar to Figs. 3.4 and 3.5, and have instead

included the relevant information about their evolution in Table 3.2. As we noted in Section 3.2.1,

magnitude-averaged angular momenta tell us about the evolution of particle orbits, thus providing

complementary information to the vector-averaged angular momenta that tell us about the evolution

of the spin of radial shells. Further, it is the magnitude of angular momentum which is most relevant
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Table 3.2: Ratios of the average binned angular momentum at z = 1 and at accretion of the
radial bin to the value of the bin’s average angular momentum at z = 0 for both Lagrangian and
Eulerian selected radial bins, differing from Figures 3.4 and 3.5 in that the angular momenta are
magnitude-averaged rather than vector-averaged

Lagrangian Eulerian
Bin 0 Bin 5 Bin 9 Bin 0 Bin 5 Bin 9

L1/L0 La/L0 L1/L0 La/L0 L1/L0 La/L0 L1/L0 La/L0 L1/L0 La/L0 L1/L0 La/L0

H239 2.24 3.45 1.44 1.27 1.41 1.07 1.29 1.22 1.2 1.2 2.52 1.05
H258 2.42 5.96 1.21 1.23 1.3 1.03 1.31 1.31 1.08 1.29 1.81 0.99
H277 1.63 3.31 1.31 1.45 1.38 1.06 1.18 1.64 1.19 1.08 1.68 1.01
H285 1.22 3.55 1.11 1.1 1.05 0.99 0.95 1.36 1.04 1.12 1.28 1.02

for the distribution function and adiabatic invariance.

The magnitude-averaged angular momenta evolve much more smoothly than the vector-averaged

ones, indicating that cancellation between particles in the vector-averaged case causes more vari-

ability than in the magnitude-averaged case. We show in Table 3.2 the values of L[1]/L[0] and

L[zacc]/L[0] for these cases. The particles that end up in the inner regions tend to have a higher

angular momentum to start with than those particles that are in the innermost bin at the beginning

of the simulation, and subsequently tend to lose this angular momentum more rapidly, though the

effect is not as pronounced as in Figure 3.4. The more pronounced nature of this effect in Figure 3.4

indicates that the inner particles also tend to have their directions scrambled more (i.e., are more

thoroughly virialized) than those in outer regions.

The mean magnitude-averaged angular momentum in each radial bin also decreases from the

time of accretion to the present, while the vector-averaged angular momenta in Figure 3.5 in general

decrease more since their accretion and have lower values. In both cases, the inner regions lose

a larger fraction of their angular momentum than the outer regions. It should be noted that the

trend of inner particles losing more angular momentum than outer particles was also found by (160).

The generally larger decrease over time in the vector-averaged angular momenta implies that the

scrambling, or decoherence, of angular momentum direction in the halo tends to increase over time.

Thus, we have found that those particles that end up in the inner regions of halos lose a larger

fraction of their angular momentum than other halo particles, and that all of the particles in the

halo tend to have the direction of their angular momenta scrambled progressively more over time.

Further, we see that those particles that end up in the inner regions of the halo at z = 0 tend to

start out with a higher angular momentum than those particles that are in the innermost bin at

each timestep, and that they tend to lose this angular momentum more quickly.

3.3.3 Distribution of Angular Momentum

Next, we consider changes to the distribution of the magnitudes of the particle angular momenta, not

just the average as shown in the last section. In Figure 3.6, we show the distributions of angular mo-
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(a) (b)

(c) (d)

Figure 3.4: The evolution of the average angular momentum of particles chosen in a Lagrangian
fashion to lie within the 0th, 5th, and 9th of ten radial bins (solid black lines) compared to the
evolution of the average angular momentum of all halo particles that are within the virial radius at
z = 0 (blue dashed lines), for halos (a) 239, (b) 258, (c) 277, and (d) 285. The angular momenta in
these plots were vector-averaged, and we show the redshift at which each bin is accreted onto the
halo (green dot-dashed vertical lines). In each panel is given the ratios of the angular momentum
at z = 1 and at the redshift of their accretion, zacc, onto the halo to the value at z = 0.
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(a) (b)

(c) (d)

Figure 3.5: Similar to Figure 3.4, except that the particles here are binned radially in an Eulerian
fashion. The magenta long-dashed line shows the specific angular momentum of all halo particles
within the virial radius at the given redshift.
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menta of all halo particles and inner halo particles for all four halos. The top panel shows the angular

momentum distribution of all particles within the virial radius chosen in an Eulerian fashion. Here,

the number of particles, as well as their mean angular momentum, increases with time. In the middle

and bottom panels, we show the evolution of “inner” halo particles chosen in an Eulerian fashion, de-

fined as those particles within 0.1 rvir(z = 0) (middle) and the innermost 90000 particles correspond-

ing to the innermost 1011M� (bottom). We also show in these panels the Boltzmann parametric

fit N = A (log10(L/(kpc km/s))− log10(L0))2 exp
(
−(log10(L/(kpc km/s))− log10(L0))2/2a2

)
. The

number of particles in the middle panel increases with time, while in the bottom panel it remains

constant.

The inner particles have a lower average angular momentum than all halo particles, as is to be

expected. The evolution of the distribution of angular momenta of all halo particles is qualitatively

similar in all four halos, with the average angular momentum of halo particles increasing with time

as higher angular momentum particles are accreted.

Looking at the middle and lower panels, we can see that for halo 277 the angular momentum

distribution stays roughly constant in the inner regions, with few extra particles entering 0.1 rvir at

each time step. There is, however, a gradual decline in average angular momentum with time. This

smooth evolution is related to the relatively quiescent evolution of halo 277. By contrast, we find

that the innermost 1011M� of halo 258 have a significantly lower average angular momentum after

z = 1 than before, reflecting a major merger around this redshift. In general, all of these angular

momentum profiles have a similar shape, which we find is fit well by the above fitting function.

In all the halos, though, there are changes of the angular momentum distribution with redshift.

This implies that the angular momentum of a particle is strictly not an adiabatic invariant (or,

perhaps, the time scale for changes is not sufficiently slow for the adiabatic approximation to hold).

This means that assuming that the distribution function is constant when expressed in terms of the

angular momentum during periods when a galaxy is growing is formally incorrect. In practice, this

lack of precise conservation simply sets a limit on how accurate the AC approach can ever be.

As a test, we show the fit parameters to the Boltzmann distribution as a function of redshift.

In Figure 3.7 we show the evolution of the parameters of the Boltzmann fitting function N =

A(log10(L/(kpc km/s))− log10(L0))2 exp
(
−(log10(L/(kpc km/s))− log10(L0))2/2a2

)
, as shown in

Figure 3.6, for each of the four halos we consider. Solid lines correspond to the particles selected to

lie within 0.1 rvir(z = 0) in an Eulerian fashion, as in the middle panel of Figure 3.6, while the dotted

lines correspond to the innermost 1011M� as shown in the bottom panel of Figure 3.6. The x-axis

shows the redshift. Note that the discrete nature of the curves is a byproduct of the discrete sampling

of fit parameters used to determine the minimum χ2 fit. The trends in these plots are qualitatively

related to the merger history of the halos. We know that halo 277 (lower left) is quite quiescent

since around z = 2, which is reflected in the mostly smooth evolution of its fit parameters. Halo 258
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(a) (b)

(c) (d)

Figure 3.6: The evolution of the angular momentum of halo dark-matter particles for halos (a)
239, (b) 258, (c) 277, and (d) 285. In each figure, the top panel shows the angular-momentum
distribution of all particles within the virial radius selected in an Eulerian fashion. In the middle
and bottom panels, we present the evolution of “inner” halo particles, also selected in an Eule-
rian fashion, chosen radially (middle) and by mass (bottom). We also show in these panels the
fit N = A (log10(L/(kpc km/s)) − log10(L0))2 exp

(
−(log10(L/(kpc km/s))− log10(L0))2/2a2

)
as

dotted lines.
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(a) (b)

(c) (d)

Figure 3.7: Evolution of the parameters of N = A (log10(L/(kpc km/s)) −
log10(L0))2 exp

(
−(log10(L/(kpc km/s))− log10(L0))2/2a2

)
, the Boltzmann fitting function in

Figure 3.6, shown here for each of the four halos, where solid lines correspond to the particles
selected to lie within 0.1 rvir(z = 0) as in the middle panel of Figure 3.6, while the dotted lines
correspond to the innermost 1011M� as shown in the bottom panel of Figure 3.6. The x-axis shows
the redshift. The trends in these plots are qualitatively related to the merger history of the halos.
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(top right), whose last major merger occurred around z = 1, shows roughly smooth evolution after

this point. Halos 239 and 285 (top left and bottom right), which have more-active merger histories

up to the present time, have more variation in their parameter evolution. As yet, though, we do

not have a quantitative description of the fit parameters as a function of halo-evolution properties,

nor do we know if a quantitative fit is possible. Investigations into such a description would likely

require a far larger statistical study than we have presented here.

3.4 Causes of Angular Momentum Evolution

We have seen that there is significant evolution over the history of these halos of the average angular

momentum (Section 3.3.2) and of the angular momentum distribution (Section 3.3.3). We now

investigate the origin of the torques that are causing this non-conservation of angular momentum.

There are several possibilities for the origin of these torques, including external structure, non-

sphericity of the halo itself, or infalling substructures that we would expect to play a role since we

saw in the previous section that merger events are correlated with changes in the distribution of

angular momenta.

To investigate the relative importance of these mechanisms to the inner halo, we show in Figure

3.8 the time scale associated with torques on the inner halo due to particles that are members of

the host halo at z = 0 (blue dotted lines) and due to particles which are members of clumped

substructures which will be within the virial radius at z = 0 (red dashed lines). We define the inner

halo as those particles within the Eulerian-selected region r(z) < 0.1 rvir(z = 0). We compare this

with the time scale for the angular momentum to change due to all torques, defined as the ratio

of the total angular momentum of the inner region to its time derivative Lin/[dLin/dt] (black solid

lines), and the inner halo dynamical time (magenta dot-dashed lines). Note that a longer time scale

here implies a weaker torque, and conversely a small time scale implies a strong torque that can

change the angular momentum relatively quickly.

From these figures we can see that, in general, the time scale for the angular momentum to

change by order unity due to all external and internal torques is at least an order of magnitude

less than that for the angular momentum to change due to torques only by other particles in the

halo or by clumped substructures, implying that the torques due to non-sphericity of the host

halo and clumpy substructure are far weaker than torques due to external structure in the angular

momentum evolution of the inner halo. Thus, external torques are the dominant source of angular

momentum evolution of the inner halo as a whole. We also observe that all of these time scales

become large relative to the inner halo dynamical time during quiescent merger phases, for example

after redshift z ∼ 1 for halo 258, while the angular momentum change time scale becomes comparable

to the dynamical time during mergers both major and minor. This is reasonable, as it implies
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(a) (b)

(c) (d)

Figure 3.8: Time scales associated with torques on the inner halo due to outer halo particles (blue
dotted lines), clumpy substructure particles (red dashed lines), and all torques (black solid lines), for
halos (a) 239, (b) 258, (c) 277, and (d) 285. Also plotted is the inner halo dynamical time (magenta
dot-dashed lines).



49

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Total torque on selected halo particles (solid black lines) compared with the torque due
to halo particles (blue dotted lines) and particles which are members of clumped substructures that
will be within the virial radius of the halo at z = 0 (red dashed lines). The torque is shown on a
linear scale in the top panel, and its absolute value is shown on a log scale in the middle panel of
each figure. The units of the torque in the top two panels are km kpc s−1 Gyr−1. In the bottom
panel, we show the radius of this particle (black solid lines) and compare it with the virial radius
of the halo (green long-dashed lines), and the line 0.10rvir(z = 0) (magenta dot-dashed lines). The
top three plots show three particles in halo 239, while the bottom three are from halo 258. For each
halo we have chosen one “outer”, one “orbiting,” and one “inner” particle to show here.
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that the angular momentum changes slowly during periods of quiescent evolution. Note that the

angular momentum change time scale of halo 277 is closer to the dynamical time scale during its

quiescent evolution after z = 3, while the angular momentum change time scale of halo 258 becomes

significantly larger than its dynamical time scale when it is quiescent after z ∼ 1. This indicates

that the speed of the evolution of angular momentum during quiescent phases does vary between

halos, probably due to the environment of the halo which is producing external torques.

We address the role played by these torques on individual particles in Figure 3.9, in which we

show the total torque dL/dt on selected particles (solid black lines), and compare this with the

torque on these particles due to particles that are currently bound to the main halo and no other

substructure (blue dotted lines) and particles which are members of clumped substructures at the

given redshift that will be within the virial radius of the halo at z = 0 (red dashed lines). These

torques are shown on a linear scale in the top panel, and their absolute value on a log scale is

shown in the middle panel of each figure. The difference between the sum of the torques due to

halo particles and clumped particles and the total torque is the torque due to external structure,

from particles that are not members of the halo at z = 0. The units of the torque in the top two

panels are km kpc s−1 Gyr−1. In the bottom panel, we show the radius of each individual particle

(black solid lines) and compare it with the virial radius of the halo (green long-dashed lines), and

the line 0.10rvir(z = 0) (magenta dot-dashed lines) below which particles are classified as inner halo

particles. The top three plots show three particles in halo 239, while the bottom three are from

halo 258. For each halo we have randomly chosen one particle that spends most of its time outside

the virial radius (“outer particle”), one that orbits the halo, entering the virial radius on its closest

approach (“orbiting particle”), and a particle that spends much of its time in the inner regions of

the halo (“inner particle”).

In general, we see that the torque on the individual particles that we have chosen is dominated

by smaller subhalos before the particle is accreted, but that this torque falls below that due to halo

particles after the particle is accreted onto the halo. However, in Figure 3.8 we saw that the angular

momentum of the inner halo as a whole is dominated by external torques, with mergers also tending

to lower the inner halo angular momentum. When taking the individual particle behavior shown in

Figure 3.9 together with the behavior of the entire inner halo in Figure 3.8, we see that the importance

of torques due to halo and clumped particles in the evolution of some of the individual particles goes

away when considering the inner halo as a whole. Also, external structure, which plays a relatively

minor role in the evolution of some of the individual particle angular momenta, is a dominant effect

on the evolution of the total angular momentum of the inner halo. We may interpret this to say

that external structure tends to torque each particle in the entire halo coherently, while torques

due to other halo particles and clumpy substructures can be larger on individual particles but are

incoherent when considering the entire inner halo. If this is the case, then the torques due to halo
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particles will tend to cancel out when averaged over many individual particles in the inner halo,

explaining the relative unimportance of these torques for the entire inner halo, and why external

structure comes to dominate the evolution of the inner halo.

3.5 Discussion

We have analyzed whether the assumptions of the AC model are valid in the case of simulated

dark matter halos. Specifically, we have looked into whether such halos can be characterized as

adiabatically evolving, and whether their angular momentum or angular momentum distributions

are conserved as we would expect from the assumption of spherical symmetry in the model of AC

most commonly applied to dark matter halos. We have found that the assumption of adiabatic

evolution of halos is not completely correct, that the angular momentum of regions of the halo is

not an adiabatic invariant as is assumed in the AC model, and that its distribution also varies. We

have investigated the sources of these torques, and found that external torques are the main source

of torque on the halo as a whole.

In greater detail, our major results are as follows:

1. Halo particles follow the trend of center-of-mass angular momentum expected from tidal torque

theory.

2. In general, the gravitational potential of our halos changes on time scales larger than the

dynamical time in the halos, which is a prerequisite for adiabatic invariance. For the halo as a

whole, the potential change time scale is generally around an order of magnitude larger than

the dynamical time scale, while for the inner halo the potential change time scale is only a

factor of a few larger than the dynamical time scale.

3. Angular momentum is lost from all particles as halos virialize, more from those particles that

end up in the center of halos. We find that both the vector- and magnitude-averaged angular

momentum in fixed radial bins about the halo center decreases with time, by a few tens of

percent to factors of a few. The vector-averaged quantities usually decrease more than the

magnitude-averaged ones, implying that the directions of angular momenta in radial bins

become progressively more misaligned over time.

4. The distribution of angular momentum magnitudes is well fit by a simple Boltzmann fitting

function. Trends in the evolution of these distributions qualitatively reflect the merger history

of the halo.

5. External torques dominate the angular momentum evolution of the inner halo, while substruc-

ture and halo non-sphericity torques can be important for the angular momentum evolution of
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individual particles. The dominant role of external torques in changing the angular momen-

tum of halo particles agrees with the results of (162), who found the evolution of halos during

baryonic condensation to be mostly reversible when external torques were not included.

We find that halo particles are losing angular momentum even in these dark-matter-only simu-

lations, and that the net angular momentum loss of the inner regions of the halo is due mainly to

external tidal torques. The amount of this decrease depends on what region we choose and how we

add the angular momenta, but the ratio of angular momenta at z = 1 and z = 0 can vary from a

few tenths to a few. The distribution of angular momenta in both the halos as a whole and in the

innermost parts in which a galaxy would live are not time-invariant, which means that the spheri-

cally symmetric form of adiabatic contraction that is typically applied to dark-matter halo profiles

is not strictly valid.

While we find indications that the evolution in the angular-momentum distribution is correlated

with the halo accretion histories, we have not found a quantitative description of these changes.

Larger statistical studies are required to determine if a quantitative relation between the angular

momentum distribution and halo accretion history can be established.

Many previous studies of AC have found it to overpredict the effect of baryon condensation

on dark matter density in the centers of halos under the assumption that angular momentum is

conserved. Our finding that angular momentum is lost from all particles in the halo over time likely

exacerbates this problem, as it implies that even more mass would be concentrated in the center

due to dark matter only interactions. The interaction of the angular momentum loss of dark matter

particles observed here with baryonic physics is an interesting direction for future research.

That angular momentum does not behave as a perfect adiabatic invariant is not surprising

since, for example, halos are non-spherical and evolve with time. Our results serve to highlight

the magnitude of this issue and serve as a caution to applications of the adiabatic contraction

approximation—there is a limit to the precision which we can reasonably expect it to provide. The

fact that recent simulations show that no single model of adiabatic contraction works well in all

cases (e.g., (112)) suggests that this limit may have been reached. Overall, our results imply that

a fundamental limit to the applicability of current adiabatic contraction models which should be

kept in mind when applying these approximations to the effects of galaxy formation on dark matter

halos.
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Chapter 4

Astrometric Effects of a Stochastic
Gravitational Wave Background 1

4.1 Introduction and Summary of Results

4.1.1 The Stochastic Gravitational Wave Background

There is great interest in detecting or constraining the strength of stochastic gravitational waves

(GWs) that may have been produced by a variety of processes in the early Universe, including

inflation. The strength of the waves is parameterized by their energy density per unit logarithmic

frequency divided by the critical energy density, Ωgw(f). Current observational upper limits include

(i) the constraint Ωgw . 10−13(f/10−16 Hz)−2 for 10−17 Hz . f . 10−16 Hz from large angular

scale fluctuations in the cosmic microwave background temperature (163); (ii) the cosmological

nucleosynthesis and cosmic microwave background constraint
∫

d ln f Ωgw(f) . 10−5, where the

integral is over frequencies f & 10−15 Hz (164); (iii) the pulsar timing limit Ωgw . 10−8 at 10−9 Hz .

f . 10−8 Hz (165); (iv) the current LIGO/VIRGO upper limit Ωgw . 7× 10−6 at f ∼ 100 Hz (166);

and (v) the limit
∫

d ln f Ωgw . 10−1 for 10−17 Hz . f . 10−9 Hz from VLBI radio astrometry of

quasars.

Many new techniques also promise future measurements of these primordial GWs. Firstly, it has

been shown that such a GW background would leave a detectable signature in the polarization of

the cosmic microwave background (CMB; 167; 168), which will be measured by many current and

future observational efforts (169; 170; 171; 172; 173; 174; 175; 176; 177; 178). The planned space-

based interferometer eLISA/NGO will also set limits on the primordial stochastic gravitational

wave background (SGWB) (179; 180). Similarly, DECIGO is a space-based interferometer mission

designed primarily to detect the primordial SGWB (181). Advanced LIGO (182) will soon improve

1The work presented in this chapter was reproduced from the paper “Astrometric effects of a stochastic gravita-
tional wave background,” L. G. Book and Éanna É. Flanagan, PRD 83, 024024 (2011). Reproduced with permission,
copyright (2011) by the American Physical Society.
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the limits set by earth-based interferometers, while the European Einstein Telescope has the potential

to significantly enhance the scientific return of these efforts (183). Finally, Seto and Cooray have

suggested that measurements of the anisotropy of time variations of redshifts of distant sources could

provide constraints of order Ωgw . 10−5 at f ∼ 10−12 Hz (184). For more details on GWs, the

search for them, and the SGWB, see the review articles (163; 185; 186).

4.1.2 High-Precision Astrometry

The possibility of using high-precision astrometry to detect GWs has been considered by many

authors (187; 188; 189; 190; 191; 192; 193; 194; 195; 196; 197; 198; 199). There was an early

suggestion by Fakir (190) that GW bursts from localized sources could be detectable by the angular

deflection ∆θ to light rays that they would produce. Fakir claimed that ∆θ ∝ 1/b, where b is the

impact parameter. This claim was shown later to be false, and in fact the deflection scales as 1/b3

(189; 191). Therefore the prospects for using astrometry to detect waves from localized sources are

not promising (199).

However, the situation is different for a SGWB, as first discussed by Braginsky et al. (188). For

a light ray propagating through a SGWB, one might expect the direction of the ray to undergo a

random walk, with the deflection angle growing as the square root of distance. However, this is not

the case; the deflection angle is always of order the strain amplitude hrms of the GWs, and does not

grow with distance 1 (188; 194; 195). Specifically, a SGWB will cause apparent angular deflections

which are correlated over the sky and which vary randomly with time, with an rms deflection δrms(f)

per unit logarithmic frequency interval of (see Eq. 4.3 below)

δrms(f) ∼ hrms(f) ∼ H0

f

√
Ωgw(f). (4.1)

Suppose now that we monitor the position of N sources in the sky, with an angular accuracy

of ∆θ, over a time T. For a single source, one could detect an angular velocity (proper motion)

of order ∼ ∆θ/T , and for N sources, a correlated angular velocity of order ∼ ∆θ/(T
√

N) should

be detectable, assuming that the errors on individual sources are uncorrelated. The rms angular

velocity from (4.1) is ωrms(f) ∼ f δrms(f) ∼ H0

√
Ωgw(f), and it follows that one should obtain

an upper limit on Ωgw of order (198)

Ωgw(f) .
∆θ2

NT 2H2
0

. (4.2)

This bound will apply at a frequency of order f ∼ 1/T . It will also apply at lower frequencies (198)

since the angular velocity fluctuations are white (equal contributions from all frequency scales),

1It is sometimes claimed in the literature that the deflection angle depends only on the GWs near the source and
observer. In fact, this is not true, as we discuss in Appendix A. A similar claim about the frequency shift that is the
target of pulsar timing searches for GWs is also false in general.
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assuming a flat GW spectrum Ωgw = const. The quantity that will be constrained by observations

is roughly this total Ωgw,
∫

f.T−1 d ln fΩgw(f).

The advent of microarcsecond astrometry has started to make the prospects for constraining GW

backgrounds more interesting. The future astrometry mission GAIA (Global Astrometric Interfer-

ometer for Astrophysics) is expected to measure positions, parallaxes and annual proper motions to

better than 20 µas for more than 50 million stars brighter than V ∼ 16 mag and 500,000 quasars

brighter than V ∼ 20 mag (187). Similarly the Space Interferometry Mission (SIM) is expected

to achieve angular accuracies of order 10 µas. Estimates of the sensitivities of these missions to a

SGWB, at the Ωgw ∼ 10−3 – 10−6 level, are given in Refs. (187; 196; 197).

VLBI radio interferometry is another method that can be used to detect the astrometric effects

of a SGWB on distant sources. This method detects the same pattern as that discussed in this

chapter for visible astrometry, and differs from astrometry using the GAIA satellite in its longer

duration (tens of years versus a few years for GAIA), and in the smaller number of sources, on the

order of hundreds, that have currently been measured using this method. In the radio, the planned

Square Kilometer Array (SKA) is also expected to be able to localize sources to within ∼ 10µas

(200). Jaffe has estimated that with 106 QSO sources, the SKA could achieve a sensitivity of order

Ωgw ∼ 10−6 (193).

The astrometric signals due to a SGWB expected for a single object are quite small, on the

order of 0.1 µas yr−1, much smaller than the typical intrinsic proper motion of a star in our galaxy.

We therefore propose to use quasars as our sources, since their extragalactic distances cause their

expected intrinsic proper motions to be smaller than those expected from a SGWB (187). The

construction of a non-rotating reference frame using quasars in astrometric studies will remove the

l = 1 dipole component of the measured quasar proper motions, but will leave intact the l = 2 and

higher multipoles which are expected to be excited by GWs.

Using the estimate N ∼ 106 (GAIA), ∆θ ∼ 10 µas, T ∼ 1 yr gives from Eq. (4.2) the estimate

Ωgw . 10−6

at f . 10−8 Hz for astrometry. This is an interesting sensitivity level, roughly comparable with that

obtainable with pulsar timing (165).

Astrometry has already been applied to obtain upper limits on Ωgw using a number of different

observations. First, Gwinn et al. analyzed limits on quasar proper motions obtained from VLBI

astrometry, and obtained the upper limit Ωgw . 10−1 for 10−17 Hz . f . 10−9 Hz (192). This

limit was recently updated by Titov, Lambert and Gontier (201). Finally, Linder analyzed observed

galaxy correlation functions to obtain the limit Ωgw . 10−3 for 10−16 Hz . f . 10−10 Hz (202).

All of these analyses used a relatively simple model of the effect of gravitational waves on proper
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motions. In this chapter we give a detailed computation of the spectrum of angular fluctuations

produced by a stochastic background, including the relative strengths of E- and B-type multipoles

for each order l.

4.1.3 Summary of Results

For a source in the direction n, the effect of the GW background is to produce an apparent angular

deflection δn(n, t). We first find a general formula for the angular deflection of a photon, for an

arbitrary GW signal hij , emitted by a source that can be at a cosmological distance. This deflection

is derived in Sections 4.2 and 4.3 below, and is given by [see Eq. (4.55)]

δni =
1
2

{
njhij(0)− ninjnkhjk(0)− ω0

ζs

(
δik − nink

)
nj ·

·

[
−2
∫ ζs

0

dζ ′
∫ ζ′

0

dζ ′′hjk,0(ζ ′′) + nl

∫ ζs

0

dζ ′
∫ ζ′

0

dζ ′′ (hjk,l(ζ ′′) + hkl,j(ζ ′′)− hjl,k(ζ ′′))

]}
.

Here, n is the direction to the source, ω0 is the emitted frequency of the photon, ζ parameterizes the

path of the photon τ(ζ) = τ0 + ω0ζ, xi(ζ) = −ζω0n
i, hij(τ,x) is treated as a function of ζ through

this parameterization of the photon path, ζs is the value of ζ at the emission event of the photon at

the source, and the spacetime metric is

ds2 = a(τ)2
{
−dτ2 + [δij + hij(τ,x)] dxidxj

}
.

We then specialize to the limit in which the sources are many gravitational wavelengths away

and to plane waves propagating in the direction p to obtain a simple formula, which generalizes a

previous result of Pyne et al (198). We find that the deflection, as a function of time τ and direction

on the sky n, is given by

δnî(τ,n) =
ni + pi

2(1 + p · n)
hjk(0)njnk −

1
2
hij(0)nj ,

where p is the direction of propagation of the GW, and hij(0) is the GW field evaluated at the

observer, hij(τ,0).

The main result of this chapter is a computation of the statistical properties of the angular

deflection resulting from a SGWB, which is carried out in Sections 4.4 and 4.5. The apparent

angular deflection caused by such a GW background is a stationary, zero-mean, Gaussian random

process. We compute the fluctuations in δn by making two different approximations: (i) The GW

modes which contribute to the deflection have wavelengths λ which are short compared to the horizon

size cH−1
0 today. (ii) The mode wavelengths λ are short compared to the distances to the sources;
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this same approximation is made in pulsar timing searches for GWs (203). Since our calculations are

only valid for GWs with wavelengths much smaller than the horizon, the contribution from waves

with wavelengths comparable to the horizon scale will cause a small deviation from our results (on

the order of a few percent for a white GW spectrum).

The total power in angular fluctuations is then

〈
δn(n, t)2

〉
= θ2

rms =
1

4π2

∫
d ln f

(
H0

f

)2

Ωgw(f). (4.3)

Taking a time derivative gives the spectrum of fluctuations of angular velocity or proper motion:

〈
δṅ(n, t)2

〉
=
∫

d ln fH2
0Ωgw(f),

which gives a rms angular velocity ωrms(f) of order

ωrms(f) ∼ H0

√
Ωgw ∼ 10−2µas yr−1

(
Ωgw

10−6

)1/2

.

This is the signal that we hope to detect.

We now discuss how the angular fluctuations are distributed on different angular scales, or

equivalently how the power is distributed in the spherical harmonic index l. The total angular

fluctuations can be written as

〈
δn(n, t)2

〉
=
∫

d ln f

∞∑
l=2

[
θE
rms,l(f)2 + θB

rms,l(f)2
]
. (4.4)

Here θE
rms,l(f)2 is the total electric-type power in angular fluctuations per unit logarithmic frequency

in multipole sector l, and θB
rms,l(f)2 is the corresponding magnetic-type power. These quantities can

be written as

θQ
rms,l(f)2 = θ2

rms gQ σ(f) αQQ
l , (4.5)

where Q = E or B. The various factors in this formula are as follows. The factors gE and gB are the

fractions of the total power carried by E-modes and B-modes, respectively, and satisfy gE + gB = 1.

Their values are gE = gB = 1/2, implying that electric and magnetic type fluctuations have equal

power. The function σ(f) describes how the power is distributed in frequency, and is the same for

all multipoles, both electric and magnetic. It is normalized so that
∫

d ln fσ(f) = 1, and is given

explicitly by [cf. Eq. (4.3) above]

σ(f) =
f−2 Ωgw(f)∫

d ln f ′f ′ −2 Ωgw(f ′)
. (4.6)



58

Figure 4.1: Here we plot the coefficients αEE
l as defined in Eq. (4.87) vs. multipole l.

Finally, the angular spectra αEE
l and αBB

l describe how the power is distributed in different multi-

poles, starting with the quadrupole at l = 2, and are normalized so that

∞∑
l=2

αQQ
l = 1 (4.7)

for Q = E and Q = B. We show that αEE
l = αBB

l , and this spectrum is plotted in Figure 4.1 and

tabulated in Table 4.1. These coefficients are well fit by the power law αEE
l = 32.34 l−4.921. We

note that the result for the quadrupole, αEE
2 = 5/6, has previously been derived using a different

method in Ref. (198).
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Table 4.1: First 10 nonzero multipole coefficients αEE
l as defined in Eq. (4.87) and plotted in Figure

4.1
l αEE

l

2 0.833333
3 0.116667
4 0.03
5 0.0104762
6 0.00442177
7 0.00212585
8 0.00112434
9 0.000639731
10 0.000385675
11 0.000243696

4.2 Calculation of Astrometric Deflection in a Minkowski

Background Spacetime

4.2.1 Setting the Stage—Minkowski Calculation

We will first calculate the angular deflection due to a small GW perturbation on a flat background

metric,

ds2 ≡ gµνdxµdxν = −dt2 + (δij + hij)dxidxj . (4.8)

We are considering the effect of these GWs on a photon traveling from a source to an observer,

with an unperturbed worldline xα
0 (λ) = ω0(λ,−λn) + (t0, 0, 0, 0), where −n is the direction of the

photon’s travel, ω0 is its unperturbed frequency, and the photon is observed at the origin at time

t0. The photon’s unperturbed 4-momentum is given by kα
0 = ω0(1,−n).

To calculate the geodesics that the photon, source and observer follow, we need the connection

coefficients in this metric. There are three nonzero connection coefficients:

Γk
0i =

1
2
hki,0, Γ0

ij =
1
2
hij,0, Γk

ij =
1
2
[hki,j + hkj,i − hij,k]. (4.9)

First, using the geodesic equation

d2xα

dτ2
= −Γα

βγuβuγ , (4.10)

it is straightforward to verify that the paths of stationary observers in these coordinates are geodesics.

Therefore we can assume that both the source and observer are stationary in these coordinates, with
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xi
obs(t) = 0

xi
s(t) = xi

s = constant.

The affine parameter of the source is therefore

λs = −|xs|
ω0

.

4.2.2 Photon Geodesic

Next, we solve the geodesic equation (4.10) for the path of a photon traveling from the source to

the observer in the perturbed metric. We write this path as the sum of contributions of zeroth and

first order in h,

xα(λ) = xα
0 (λ) + xα

1 (λ). (4.11)

Similarly, the photon 4-momentum is

kα(λ) = kα
0 (λ) + kα

1 (λ). (4.12)

We note that the connection coefficients are all first order in h, so keeping only first-order terms, we

will use only the unperturbed photon 4-momentum in the geodesic equation, yielding

d2x0
1

dλ2
= −ω2

0

2
ninjhij,0, (4.13)

d2xk
1

dλ2
= −ω2

0

2
[−2nihki,0 + ninj (hki,j + hkj,i − hij,k)]. (4.14)

We now integrate the geodesic equation to obtain the perturbed photon 4-momentum and tra-

jectory. The right-hand sides are evaluated along the photon’s unperturbed path from λ = 0 at the

present time back to λ, since they are already first order in h. We define

Iij(λ) =
∫ λ

0

dλ′hij,0(λ′), Jijk(λ) =
∫ λ

0

dλ′hij,k(λ′),

Kij(λ) =
∫ λ

0

dλ′
∫ λ′

0

dλ′′hij,0(λ′′), Lijk(λ) =
∫ λ

0

dλ′
∫ λ′

0

dλ′′hij,k(λ′′), (4.15)

where hij(λ) means hij(t0 + ω0λ,−ω0λn). We find
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k0
1(λ) = −ω2

0

2
ninjIij(λ) + I0, kj

1(λ) = −ω2
0

2
niRij + Jj

0 ,

x0
1(λ) = −ω2

0

2
ninjKij(λ) + I0λ + K0, xj

1(λ) = −ω2
0

2
niSij + Jj

0λ + Lj
0, (4.16)

where I0, Jj
0 , K0 and Lj

0 are constants of integration, and we have defined the quantities

Rij(λ) ≡
[
−2Iij(λ) + nk (Jijk(λ) + Jjki(λ)− Jikj(λ))

]
, (4.17)

Sij(λ) ≡
[
−2Kij(λ) + nk (Lijk(λ) + Ljki(λ)− Likj(λ))

]
. (4.18)

4.2.3 Boundary Conditions

We determine the eight integration constants I0, Jj
0 , K0 and Lj

0 using the boundary conditions of

the problem, namely that the photon path passes through the detection event xµ
obs = (t0, 0, 0, 0),

that it is null, that the photon is emitted with the unperturbed frequency ω0, and that the photon

path intersects the path of the source at some earlier time.

1. Photon path must pass through detection event

First, the perturbed photon trajectory must pass through the detection event t = t0, xi = 0.

Therefore,

xµ(0) = xµ
0 (0) + xµ

1 (0) = (t0, 0, 0, 0),

giving

K0 =
ω2

0

2
ninjKij(0) = 0, Lj

0 =
ω2

0

2
niSij(0) = 0, (4.19)

where we have used the fact that by definition Kij(0) = Sij(0) = 0.

2. Photon geodesic is null

The geodesic of the photon must be null, which gives one more constraint: gµνkµkν = 0. This

is already true to zeroth order. To first-order we get:

0 = hµνkµ
0 kν

0 + 2ηµνkµ
1 kν

0 ,

where kα
0 = ω0(1,−n). Inserting the expression for the perturbed 4-momentum kα

1 given by

Eqs. (4.15) , (4.16) and (4.17) , and simplifying using
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d
dλ

hij = ω0hij,0 − ω0nkhij,k (4.20)

shows that all of the terms involving λ cancel out, as they must, leaving the condition

I0 + niJ
i
0 =

1
2
ω0n

injhij(0). (4.21)

3. Photon is emitted with frequency ω0

The photon is emitted at the source with the unperturbed frequency ω0 = −gµνkµuν
s . The

4-velocity of the source is uµ
s = (1, 0, 0, 0) as it has constant spatial coordinate position, so the

constraint becomes −gµ0k
µ = ω0. The source emits the photon at λ = λs, so from Eq. (4.16)

this yields

I0 =
ω2

0

2
ninjIij(λs) (4.22)

4. Perturbed photon path must hit source worldline somewhere

The constraint that the perturbed photon trajectory must hit the source worldline somewhere

can be written as

xj(λ̃s) = xj
s = xj

0(λ̃s) + xj
1(λ̃s) (4.23)

for some λ̃s. To zeroth order we have λ̃s = λs, but there will be a first-order correction.

Inserting the expression (4.16) for the perturbation of the geodesic gives

xj
s = −ω0λ̃sn

j − ω2
0

2
niSij(λ̃s) + λ̃sJ

j
0 . (4.24)

Projecting this equation perpendicular to n gives a formula for the perpendicular component

of J i
0:

J i
0 ⊥ =

ω2
0

2λs

(
δik − nink

)
njSjk(λs). (4.25)

Here on the right-hand side we have replaced λ̃s with λs, which is valid to linear order. Adding

to this our earlier result for the component of J i
0 parallel to n in Eqs. (4.21) and (4.22) gives

J i
0 =

ω2
0

2λs
njSjk(λs)

(
δik − nink

)
− ω2

0

2
ninjnkIjk(λs) +

1
2
ω0n

injnkhjk(0). (4.26)



63

4.2.4 Perturbation to Observed Frequency

We calculate the observed photon frequency ωobs = −gµνkµuν
obs, where uν

obs = (1, 0, 0, 0), and check

our result against standard formulae for the frequency shift, used in pulsar timing searches for GWs

(204). The observed frequency is, from Eqs. (4.16) and (4.22),

ωobs = k0(0) = ω0 + I0 = ω0 +
ω2

0

2
ninjIij(λs). (4.27)

Using the definition (4.15), the perturbed redshift is therefore

z ≡ ω0 − ωobs

ω0
= −ω0

2
ninj

∫ λs

0

dλ′hij,0(λ′). (4.28)

For a plane wave traveling in the direction of the unit vector p, we have

hij = hij(t− p · x) = hij [ω0λ(1 + p · n)] ,

giving

hij,0 ≡
∂

∂t
hij =

1
ω0(1 + γ)

∂

∂λ
hij ,

where γ = p · n. This gives for the redshift

z = − 1
2(1 + γ)

ninj [hij(λs)− hij(0)] , (4.29)

which agrees with (204) up to a sign, which is an error in their calculation (205).

4.2.5 Local Proper Reference Frame of Observer

We must also account for the changes induced in the basis vectors of the observer’s local proper

reference frame due to the presence of the GW. We introduce a set of orthonormal basis vectors ~eα̂

which are parallel transported along the observer’s worldline, with ~e0̂ = ~u. The parallel transport

equation for the spatial vectors gives

uαeβ

ĵ;α
= uα

[
∂αeβ

ĵ
+ Γβ

αγeγ

ĵ

]
= 0. (4.30)

We separate the basis vectors into two pieces, ei
ĵ

= δi
ĵ
+ δei

ĵ
, where we assume that the unperturbed

basis vectors are aligned with the coordinate basis directions.

Using ~u = ∂t, and the connection coefficients (4.9) of the metric, Eq. (4.30) gives us an expression

for the perturbation to the basis tetrad:
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δei
ĵ
(t) = −1

2
hiĵ(t,0) + ωiĵ ,

where ωi
ĵ

is a matrix of constants. Now, we observe that eĵ is an orthonormal set of three-vectors,

which gives us six constraints on the constants ωi
ĵ
:

(ηmn + hmn)
(
δm
ĵ

+ δem
ĵ

)(
δn
k̂

+ δen
k̂

)
= δĵk̂.

This is identically correct to zeroth order; to first order we get δejk̂ + δekĵ + hjk = 0, or, inserting

our equation for δe, and assuming that hij = hji, we find ωij = −ωji, i.e., that the constants ωij

are antisymmetric in their indices. These constants parameterize an arbitrary infinitesimal time-

independent rotation. Evaluating now at the detection event gives

δei
ĵ

= −1
2
hiĵ(0) + ωiĵ . (4.31)

For the remainder of this chapter we will set to zero the term ωiĵ , since it corresponds to a time-

independent, unobservable angular deflection. The deflections caused by GWs will be observable

because of their time dependence.

4.2.6 Observed Angular Deflection

We can express the four-momentum of the incoming photon in the above reference frame as

kα(0) = ωobsu
α − ωobsn

ĵeα
ĵ
, (4.32)

where δĵk̂nĵnk̂ = 1, uα is the observer’s 4-velocity, and ωobs is given by equation 4.27. Note that we

evaluate all quantities at the detection event t = t0, x = 0. Plugging in our results for the perturbed

4-momentum and the observed frequency, we obtain an equation for the observed direction to the

source nĵ

ki(0) =− ω0n
i +

ω2
0

2λs
njSjk(λs)

(
δik − nink

)
− ω2

0

2
ninjnkIjk(λs) +

1
2
ω0n

injnkhjk(0)

=−
(

ω0 +
ω2

0

2
nknlIkl(λs)

)
nĵ

(
δi
j −

1
2
hi

j(0)
)

. (4.33)

We decompose the direction to the source into zeroth- and first-order pieces as nĵ = nĵ
0 + δnĵ .

The zeroth-order terms in Eq. (4.33) give us nĵ
0 = nj . Plugging this into the first-order terms and

simplifying, we find the perturbation to the source direction
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δnî =
1
2

{
njhij(0)− ω0

λs
njSjk(λs)

(
δik − nink

)
− ninjnkhjk(0)

}
.

Inserting our definition of Sjk, we obtain the solution to the source direction perturbation in

Minkowski space

δnî =
1
2

{
njhij(0)− ninjnkhjk(0)− ω0

λs

(
δik − nink

)
nj

×

[
−2
∫ λs

0

dλ′
∫ λ′

0

dλ′′hjk,0(λ′′) + nl

∫ λs

0

dλ′
∫ λ′

0

dλ′′ (hjk,l(λ′′) + hkl,j(λ′′)− hjl,k(λ′′))

]}
.

(4.34)

As a check of the calculation, we see that δnî is orthogonal to ni, so that ni + δnî is a unit vector,

as expected.

We now specialize to the case of a plane wave propagating in the direction of the unit vector p,

hij(t,x) = hij(t− p · x).

Using the identity (4.20) we can reduce the double integrals in Eq. (4.34) to single integrals, obtaining

δnî =
(
δik − nink

)
nj

{
− 1

2
hjk(0)+

pknl

2(1 + p · n)
hjl(0)+

1
λs

∫ λs

0

dλ

[
hjk(λ)− pknl

2(1 + p · n)
hjl(λ)

]}
.

(4.35)

Evaluating this explicitly for the plane wave

hij(t,x) = Re
[
Hije

−iΩ(t−p·x)
]

gives

δnî =Re

[({
1 +

i(2 + p · n)
ω0λsΩ(1 + p · n)

[
1− e−iΩω0(1+p·n)λs

]}
ni

+
{

1 +
i

ω0λsΩ(1 + p · n)

[
1− e−iΩω0(1+p·n)λs

]}
pi

)
njnkHjke−iΩt0

2(1 + p · n)

−
{

1
2

+
i

ω0λsΩ(1 + p · n)

[
1− e−iΩω0(1+p·n)λs

]}
njHi

je
−iΩt0

]
. (4.36)

If we define the observed angles (θ, φ) by nî = (sin θ cos φ, sin θ sinφ, cos θ), then the observed

angular deflections are
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δθ = eî
θ̂
δnî, δφ =

eî
φ̂
δnî

sin θ
, (4.37)

where eî
θ̂

= (cos θ cos φ, cos θ sinφ,− sin θ) and eî
φ̂

= (− sinφ, cos φ, 0).

As another check of our calculation, we now compare our result with the coordinate (gauge-

dependent) angular deflection computed by Yoo et al. (206). Starting from our Eq. (4.34), we

disregard the first term, which arises from the change from the coordinate basis to the parallel trans-

ported orthonormal basis. The remaining terms in Eq. (4.34) give the coordinate angular deflection

δni. Simplifying using the identity (4.20) and the identity
∫ x

0
dx′
∫ x′

0
dx′′f(x′′) =

∫ x

0
dx′(x−x′)f(x′)

gives

δni = −1
2
ninjnkhjk(0) +

(
δij − ninj

) ∫ λs

0

dλ

{
hjk(λ)− hjk(0)

λs
nk +

ω0

2

(
λs − λ

λs

)
∂j

(
nknlhkl

)}
.

(4.38)

When combined with Eqs. (4.37), this agrees with Eqs. (13) and (14) of (206), specialized to only

tensor perturbations, up to an overall sign. The sign flip is due to the fact that Ref. (206) uses a

convention for the sign of angular deflection, explained after their Eq. (16), which is opposite to

ours.

4.2.7 The Distant Source Limit

We now specialize to the limit where the distance ω0 |λs| to the source is large compared to the

wavelength ∼ cΩ−1 of the GWs. As discussed in the Introduction, astrometry is potentially sensitive

to waves with a broad range of frequencies, extending from the inverse of the observation time (a

few years) down to the Hubble frequency. Therefore this assumption is a nontrivial limitation on

the domain of validity of our analysis. However, for sources at cosmological distances (the most

interesting case), this assumption is not a significant limitation.

In this limit, we can neglect the second term in each of the three small square brackets in Eq.

(4.36), giving

δnî(t,n) = Re
[(

ni + pi
) Hjknjnke−iΩt

2(1 + p · n)
− 1

2
Hijnje−iΩt

]
, (4.39)

where we have written t for t0. This result agrees with and generalizes a calculation of Pyne et al.

(198). We note that this same approximation is used in pulsar timing searches for GWs (204). In

that context the approximation is essentially always valid, since pulsar distances are large compared

to a few light years, and the properties of pulsar frequency noise imply that that pulsar timing is

only sensitive to GWs with periods of order the observation time, and not much lower frequencies,

unlike the case for astrometry.
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4.3 Generalization to Cosmological Spacetimes

Of course, we do not live in Minkowski space. The apparent homogeneity and isotropy of the

Universe imply that our Universe has an FRW geometry, with line element:

ds2 = gαβdxαdxβ = a(τ)2
{
−dτ2 + [δij + hij(τ,x)] dxidxj

}
, (4.40)

where τ is conformal time, and we specialize to the transverse traceless gauge in which δijhij =

δij∂ihjk = 0. To translate our calculation in Minkowski spacetime to this new metric, we define an

unphysical, conformally related metric ḡαβ = a(τ)−2gαβ given by

ḡαβdxαdxβ = −dτ2 + [δij + hij(τ,x)] dxidxj , (4.41)

which has an associated unphysical derivative operator ∇̄α.

4.3.1 Stationary Observers are Freely Falling

As before, it is straightforward to check that observers who are stationary in the coordinates (4.40)

are freely falling. Therefore we assume as before that the observer and source are stationary:

xi
obs(t) = 0, xi

s(t) = xi
s.

4.3.2 Null Geodesic in the Conformal Metric

Let us consider a photon traveling from a distant source to us, which follows a null geodesic in the

physical metric gαβ . Its path is also a null geodesic of the conformally related metric ḡαβ , though

it it is not affinely parameterized in this metric (207). Specifically, the physical 4-momentum of

the photon kµ must satisfy the geodesic equation kµ∇µkν = 0. If we define a conformally related,

unphysical 4-momentum k̄µ = kµ, whose contravariant components are then related to those of the

physical 4-momentum by

k̄µ = ḡµν k̄ν = a(τ)2gµν k̄ν = a(τ)2gµνkν = a(τ)2kµ, (4.42)

then we find that

k̄µ∇̄µk̄ν = a(τ)2kµ∇̄µkν . (4.43)

From (207) we know that for any vector vα, and conformally related derivatives ∇α and ∇̄α, we

have ∇αvβ = ∇̄αvβ − Cγ
αγvγ , where Cγ

αγ = 2δγ
(α∇β) ln a− gαβgγδ∇δ ln a. Thus, we find



68

k̄µ∇̄µk̄ν = a(τ)2kµ∇µkν + a(τ)2kµkρ

(
2δρ

(µ∇ν) ln a− gµνgρσ∇σ ln a
)

= a(τ)2kµ∇µkν + a(τ)2 (kρkρ∇ν ln a + kµkν∇µ ln a− kνkσ∇σ ln a)

= a(τ)2kµ∇µkν , (4.44)

where to get the last line we have used that the geodesic is null. Therefore, if kµ is a null geodesic of

the physical metric gµν , then k̄µ is a null geodesic of the conformally related metric ḡµν . If λ is an

affine parameter of the geodesic, it will not be an affine parameter of the geodesic in the unphysical

metric. The affine parameter λ̄ in the unphysical metric is related to λ by

dλ̄

dλ
=

1
a(τ(λ))2

. (4.45)

4.3.3 Parallel Transport of Basis Vectors in FRW Background Spacetime

We next investigate the parallel transport of the observer’s basis tetrad in a FRW background

spacetime. From the form (4.40) of the metric, we anticipate that the basis vectors must scale as

a−1 to remain normalized. Thus, we will define the basis vectors and their perturbations as

ei
ĵ

=
1
a

(
δi
ĵ
+ δei

ĵ

)
. (4.46)

The relevant connection coefficients are

Γi
0k =

ȧ

a
δi
k +

1
2
δimhmk,0. (4.47)

The parallel transport equation (4.30) for the spatial basis vectors gives us

∂0e
i
ĵ
+ Γi

0kek
ĵ

= 0. (4.48)

Plugging in the connection coefficients (4.47) and the basis vector expansion (4.46), we get

∂0δe
i
ĵ
+

1
2
δimhmĵ = 0, (4.49)

the same equation as before. The solution, as before, will be

δei
ĵ
(t) = −1

2
hi

j(t). (4.50)
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4.3.4 Generalization of Angular Deflection Computation

We parametrize the photon path in the background spacetime by

τ(ζ) = τ0 + ω0ζ, xi(ζ) = −ζω0n
i, (4.51)

where ζ is an affine parameter of the unphysical metric (4.41) (denoted λ̄ above). From the decom-

position (4.32), the observed source direction is

nĵ =
gαβkαeβ

ĵ

gαβkαuβ
. (4.52)

We rewrite all the quantities in this expression in terms of their conformally transformed versions

ḡαβ = a−2gαβ , k̄α = a2kα, ūα = auα, ēα
ĵ

= aeα
ĵ
, (4.53)

which are the quantities that are used in the Minkowski spacetime calculation of Section 4.2. This

gives

nĵ =
ḡαβ k̄αēβ

ĵ

ḡαβ k̄αūβ
, (4.54)

the same expression as in Minkowski spacetime. Therefore, the final result is the same expression

(4.34) as before, except that it is written in terms of the non-affine parameter ζ:

δnî =
1
2

{
njhij(0)− ninjnkhjk(0)− ω0

ζs

(
δik − nink

)
nj

×

[
−2
∫ ζs

0

dζ ′
∫ ζ′

0

dζ ′′hjk,0(ζ ′′) + nl

∫ ζs

0

dζ ′
∫ ζ′

0

dζ ′′ (hjk,l(ζ ′′) + hkl,j(ζ ′′)− hjl,k(ζ ′′))

]}
.

(4.55)

4.3.5 The Distant Source Limit

We now specialize again to the limit where the distance to the source is large compared to the

wavelength ∼ c Ω−1 of the GWs. We also assume that the wavelength c Ω−1 is small compared to

the horizon scale, but we allow the sources to be at cosmological distances.

Starting from Eq. (4.55) and paralleling the derivation of Eq. (4.38) we obtain

δnî(τ0,n) =
1
2
siknjhjk(0) +

siknj

ζs

∫ ζs

0

dζ [hjk(ζ)− hjk(0)] +
ω0sik

2

∫ ζs

0

dζ

(
ζs − ζ

ζs
njnlhjl,k(ζ)

)
,

(4.56)



70

where sik = δik − nink. Now the wave equation satisfied by the metric perturbation is

[
∂2

τ + 2
a,τ

a
∂τ −∇2

]
hij(τ,x) = 0,

and plane wave solutions are of the form

hij(τ,x) = Re
{
Hije

iΩp·xqΩ(τ)
}

,

where the mode function qΩ satisfies

q′′Ω + 2
a′

a
q′Ω + Ω2qΩ = 0. (4.57)

We now evaluate the angular deflection (4.56) for such a plane wave, in the limit where ε ≡

a′/(Ωa) � 1, i.e., the limit where the wavelength ∼ a/Ω of the GW is much smaller than the the

horizon scale ∼ a2/a′. In the second term in (4.56), the term hjk(ζ) is rapidly oscillating, and so

its integral can be neglected compared to the integral of hjk(0); corrections will be suppressed by

powers of ε. In the third term in (4.56), the integrand is rapidly oscillating, and so the integral will

be dominated by contributions near the endpoints, up to O(ε) corrections. However the integrand

vanishes at ζ = ζs, and thus the integral is dominated by the region near ζ = 0. In that region we

can use the leading order WKB approximation to the mode function solution of (4.57),

qΩ(τ) =
1

a(τ)
e−iΩτ ,

and to a good approximation we can replace a(τ) by a(τ0). Thus we see that the same answer is ob-

tained for distant sources as in our Minkowski spacetime calculation, even for sources at cosmological

distances. From Eq. (4.39) we obtain

δnî(τ0,n) =
ni + pi

2(1 + p · n)
hjk(0)njnk −

1
2
hij(0)nj (4.58)

for plane waves in the direction p.

4.4 Calculation of Angular Deflection Correlation Function

Now that we have calculated the deflection of the observed direction to a distant source due to

an arbitrary metric perturbation hij , we would like to determine the properties of the deflection

produced by a SGWB, such as that produced by inflation.
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4.4.1 Description of SGWB as a Random Process

In the distant source limit, the angular deflection (4.58) depends only on the GW field hij evaluated

at the location of the observer for each direction of propagation p. Moreover, we have restricted

attention to modes with wavelengths short compared to the Hubble time. Therefore, it is sufficient

to use a flat spacetime mode expansion to describe the stochastic background. This expansion is

(see, e.g., Ref. (191))

hij(x, t) =
∑

A=+,×

∫ ∞

0

df

∫
d2Ωp hAp(f) e2πif(p·x−t) eA,p

ij + c.c., (4.59)

where f and p are the frequency and direction of propagation of individual GW modes, hAp are the

stochastic amplitudes of modes with polarization A and direction p, and the polarization tensors

eA,p
ij are normalized such that eA,p

ij eB,p∗
ij = 2δAB .

We will assume that hij(x, t) is a Gaussian random process, as it is likely to be the sum of a

large number of random processes. We also assume that it is zero-mean and stationary. It follows

that the mode amplitudes hAp(f) satisfy

〈hAp(f) hBp′(f ′)〉 = 0,

〈hAp(f) hBp′(f ′)∗〉 =
3H2

0Ωgw(f)
32π3f3

δ(f − f ′) δAB δ2(p,p′) (4.60)

for f, f ′ ≥ 0, where H0 is the Hubble parameter and δ2(p,p′) is the delta function on the unit sphere

(see, e.g., (191)).

Since the angular deflection δn(n, t) depends linearly on the metric perturbation, it will also be a

stationary, zero-mean, Gaussian random process, whose statistical properties are determined by its

two point correlation function 〈δniδnj〉. Specializing our expression (4.58) for the angular deflection

to the form (4.59) of the metric perturbation, we find

δni(n, t) =
∑

A=+,×

∫ ∞

0

df

∫
d2Ωp hAp(f) e−2πift Rikl(n,p) eA,p

kl + c.c., (4.61)

where

Rikl(n,p) =
1
2

(
[ni + pi]nknl

1 + p · n
− nkδil

)
. (4.62)

4.4.2 Power Spectrum of the Astrometric Deflections of the SGWB

So, we need only evaluate the two-point correlation function to gain full knowledge of the statistical

properties of the angular deflection due to the SGWB. Writing out this quantity explicitly using Eq.
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(4.61),

〈δni(n, t) δnj(n′, t′)〉 =
∑

A,B=+,×

∫ ∞

0

dfdf ′
∫

d2Ωpd2Ωp′

〈[
hAp(f) e−2πift Rikl(n,p) eA,p

kl + c.c.
]

×
[
hBp′(f ′)∗ e2πif ′t′ Rjrs(n′,p′)

(
eB,p′

rs

)∗
+ c.c.

]〉
. (4.63)

The average, which is an average over ensembles, acts only on the stochastic amplitudes hAp. Using

the mode 2 point function (4.60) in Eq. (4.63), we get the simplified result

〈δni(n, t) δnj(n′, t′)〉 =
∫ ∞

0

df
3H2

0

32π3
f−3Ωgw(f)e−2πif(t−t′)Hij(n,n′) + c.c., (4.64)

where we have defined

Hij(n,n′) =
∑

A=+,×

∫
d2ΩpRikl(n,p) eA,p

kl Rjrs(n′,p)
(
eA,p
rs

)∗
. (4.65)

4.4.3 Basis Tensors and Their Symmetries

We simplify the expression (4.65) for Hij further using the identity

∑
A=+,×

eA,p
ij

(
eA,p
kl

)∗
= 2Pijkl, (4.66)

where Pijkl is the projection tensor onto the space of traceless symmetric tensors orthogonal to p,

given by

2Pijkl = δikδjl+δilδjk−δijδkl+pipjpkpl−δikpjpl−δjlpipk−δilpjpk−δjkpipl+δijpkpl+δklpipj . (4.67)

This gives

Hij(n,n′) = 2
∫

d2ΩpRikl(n,p)PklrsRjrs(n′,p). (4.68)

Noting that the correlation function (4.64) is perpendicular to n on its first index and n′ on its

second, we can decompose it onto a basis of tensors with this property:

Hij(n,n′) = α(n,n′)AiAj + β(n,n′)AiCj + γ(n,n′)BiAj + σ(n,n′)BiCj , (4.69)

for some scalar functions α, β, γ and σ. Here we have defined
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A = n× n′, B = n×A, C = −n′ ×A. (4.70)

We can deduce from Eq. (4.68) that Hij(n,n′)∗ = Hji(n′,n). Noting that Ai(n′,n) = −Ai(n,n′),

and Bi(n′,n) = −Ci(n,n′), this symmetry applied to the expansion (4.69) gives

α(n,n′)∗ = α(n′,n), σ(n,n′)∗ = σ(n′,n), β(n,n′)∗ = γ(n′,n).

We see from Eq. (4.65) that Hij transforms as tensor under rotations. This implies that the functions

α, β, γ and σ must be invariant under rotations, and can only depend on the angle Θ between n

and n′. Thus, α(n,n′) = α(n′,n) = α(Θ) and so forth, so α and σ must be real.

Next, we note that the expression (4.68) for Hij(n,n′) is invariant under the parity transformation

n → −n and n′ → −n′. Looking then at the basis tensors, we see that A is invariant under this

transformation, while B and C change sign. Thus, in order to insure that Hij is invariant, it can

only have terms multiplying AiAj and BiCj , so β(Θ) = 0 = γ(Θ).

Having taken the symmetries of the problem into consideration, we have found Hij to be of the

form

Hij(n,n′) = α(Θ)AiAj + σ(Θ)BiCj . (4.71)

4.4.4 Solving the General Integral

We can evaluate the coefficients in the expansion (4.71) of Hij by contracting it with the basis

tensors:

AiAjHij = sin4(Θ)α(Θ), BiCjHij = sin4(Θ)σ(Θ).

Rewriting these using Eq. (4.68), we find

α(Θ) =
2

sin4(Θ)

∫
d2ΩpAiRikl(n,p)PklrsA

jRjrs(n′,p)∗, (4.72)

σ(Θ) =
2

sin4(Θ)

∫
d2ΩpBiRikl(n,p)PklrsC

jRjrs(n′,p)∗. (4.73)

To simplify the calculation, we define the quantities κ = n · p, κ′ = n′ · p, λ = n · n′, µ = A · p,

which satisfy µ2 + λ2 + κ2 + κ′2 = 1 + 2λκκ′. Using these definitions and the definition (4.62) of

Rikl, we can write
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AiRikl(n,p) =
1
2
nk

(
µnl

1 + κ
−Al

)
, AjRjrs(n′,p) =

1
2
n′r

(
µn′s

1 + κ′
−As

)
,

BiRikl(n,p) =
1
2
nk

(
−κ′ + λ

1 + κ
nl + n′l

)
, CjRjrs(n′,p) =

1
2
n′r

(
− κ + λ

1 + κ′
n′s + ns

)
.

We can then rewrite our expressions for α and σ

α(Θ) =
1

4 sin4(Θ)

∫
d2Ωp2Pklrsnk

(
µnl

1 + κ
−Al

)
n′r

(
µn′s

1 + κ′
−As

)
, (4.74)

σ(Θ) =
1

4 sin4(Θ)

∫
d2Ωp2Pklrsnk

(
−κ′ + λ

1 + κ
nl + n′l

)
n′r

(
− κ + λ

1 + κ′
n′s + ns

)
. (4.75)

Let’s define two new variables ν2 = (1 − κ2), ν′2 = (1 − κ′2). Applying the definition (4.67) of the

projection tensor Pklrs, we can calculate the necessary contractions of Pklrs for α:

2PklrsnkAln
′
rAs = (λ− κκ′)

(
1− λ2 − µ2

)
, 2Pklrsnknln

′
rAs = µ

(
κ′κ2 − 2λκ + κ′

)
,

2PklrsnkAln
′
rn

′
s = µ

(
κκ′2 − 2λκ′ + κ

)
, 2Pklrsnknln

′
rn

′
s = ν2ν′2 − 2µ2, (4.76)

and for σ:

2Pklrsnkn′ln
′
rns = ν2ν′2, 2Pklrsnknln

′
rns = ν2 (λ− κκ′) ,

2Pklrsnknln
′
rn

′
s = ν2ν′2 − 2µ2, 2Pklrsnkn′ln

′
rn

′
s = ν′2 (λ− κκ′) . (4.77)

Plugging these back into Eqs. (4.74) and (4.75) and simplifying, we find

α(Θ) =
1

4 sin4(Θ)

∫
d2Ωp

[
(λ− κκ′)(1− λ2)− µ2(1 + λ) +

2µ2(λ + κ)(λ + κ′)
(1 + κ)(1 + κ′)

]
= −σ(Θ).

Noticing that we can do the integrals
∫

d2Ωpµ2 = 4π
3 sin2 Θ and

∫
d2Ωpκκ′ = 4π

3 cos Θ, but that the

last term is more complicated, we find

α(Θ) = −σ(Θ) =
π

3
(cos Θ− 1)

sin2 Θ
+

1
2 sin4 Θ

∫
d2Ωp

µ2(λ + κ)(λ + κ′)
(1 + κ)(1 + κ′)

. (4.78)

We can reduce the two dimensional integral (4.78) to a one dimensional integral by param-

eterizing p in spherical polar coordinates θp and φp, choosing n = (0, sin(Θ/2), cos(Θ/2)) and

n′ = (0, − sin(Θ/2), cos(Θ/2)) and integrating over φp. This gives
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α(Θ) = −σ(Θ) =
π

3
(cos(Θ)− 1)

sin2(Θ)
+

π

2 sin2 Θ

∫ π

0

dθp sin θp

{
sin2 θp + 8 cos(Θ/2) [cos θp + cos(Θ/2)] [g(θp,Θ)− 1]

}
,

(4.79)

where

g(θp,Θ) =
|cos θp + cos(Θ/2)|

[1 + cos θp cos(Θ/2)]
. (4.80)

We perform the integral over θp, and find the final form of the function α(Θ)

α(Θ) = −σ(Θ) =
π

3 sin2 Θ
(7 cos Θ− 5)− 32π

sin4 Θ
ln (sin(Θ/2)) sin6(Θ/2). (4.81)

A plot of the function α(Θ) is shown in Figure 4.2.

To summarize, we have now completed the calculation of the angular deflection correlation

function. The final answer is given by Eq. (4.64), with Hij(n,n′) given from Eqs. (4.71) and (4.81)

as

Hij(n,n′) = α(Θ) (AiAj −BiCj) . (4.82)

Here the vectors A, B, and C are defined by Eqs. (4.70), and α(Θ) is given by Eq. (4.81).

4.4.5 Special Case: Coincidence

As a check of our calculation, we can solve for the two-point correlation function exactly in the case

that n = n′. Using Eqs. (4.62), (4.67) and (4.68), the integral simplifies to

Hij(n,n) =
1
4

∫
d2Ωp

[
1−

(
p · n)2

)]
(δij − ninj) .

We can solve this integral analytically, getting

Hij(n,n) =
2π

3
(δij − ninj) . (4.83)

This corresponds to the limit of α(Θ)(AiAj − BiCj) as n → n′, with α(Θ) = 2π/(3Θ2) +O(Θ−1)

from Eq. (4.81). Inserting the coincidence limit (4.83) into the correlation function (4.64) yields the

formula (4.3) for the total rms angular fluctuations discussed in the introduction.
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Figure 4.2: Here we plot the function α(Θ), the coefficient of Hij(n,n′) as shown in Eq. (4.82), as
a function of the angle Θ between n and n′.

4.5 Spectrum of Angular Deflection Fluctuations

4.5.1 Overview

In the previous section we computed the correlation function 〈δni(n, t)δnj(n′, t′)〉 as a function of

the unit vectors n and n′. However for many purposes it is more useful to perform a multipole

decomposition of the angular deflection, and to compute the spectrum of fluctuations on different

angular scales l, as is done with cosmic microwave background anisotropies. We decompose δn(n, t)

as
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δn(n, t) =
∑
lm

δnElm(t)YE
lm(n) + δnBlm(t)YB

lm(n), (4.84)

where YE
lm and YB

lm are the electric- and magnetic-type transverse vector spherical harmonics defined

by

YE
lm(n) = (l(l + 1))−1/2∇Ylm(n), YB

lm(n) = (l(l + 1))−1/2(n×∇)Ylm(n). (4.85)

We will show in this section that the statistical properties of the coefficients are given by

〈δnQlm(t) δnQ′l′m′(t′)∗〉 = δQQ′δll′δmm′

∫ ∞

0

df cos[2πf(t− t′)]SQl(f) (4.86)

for Q,Q′ = E or B, for some spectrum SQl(f), a function of frequency f and of angular scale

l. The formula (4.86) shows that different multipoles of the angular deflection are statistically

independent, as required by spherical symmetry of the stochastic background. Also the electric-type

and magnetic-type fluctuations are uncorrelated, as required by parity invariance of the stochastic

background (see below).

The spectrum SQl(f) is given by

SQl(f) =
4π

2l + 1
θ2

rms

σ(f)
f

gQαQQ
l . (4.87)

Here θ2
rms is the total rms angular fluctuation squared, given by Eq. (4.3) in the introduction. The

function σ(f) describes how the power is distributed in frequency. It is the same for all multipoles, is

normalized according to
∫

d( ln f) σ(f) = 1, and is given explicitly by Eq. (4.6) in the introduction.

The quantities gE and gB are the fraction of the total power in electric-type and magnetic-type

fluctuations, and are gE = gB = 1/2. Finally the angular spectra αEE
l and αBB

l describe the

dependence on angular scale, which is the same for all frequencies. They are normalized according

to

∞∑
l=2

αQQ
l = 1, (4.88)

and are the same for E and B modes, αEE
l = αBB

l . This spectrum is plotted in Fig 4.1 and the

first 10 values are listed in Table 4.1. We note that these coefficients are well fit by the power law

αEE
l = 32.34 l−4.921.

Before proceeding with the derivation of the spectrum (4.86), we first derive from (4.86) the

expression (4.4) discussed in the introduction for the total fluctuation power. Squaring the expansion

(4.84), taking an expected value, and then using (4.86) gives
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〈δn(n, t)2〉 =
∑
Qlm

∑
Q′l′m′

YQ
lm(n)YQ′

l′m′(n)∗〈δnQlm(t)δnQ′l′m′(t′)∗〉

=
∑
Ql

∫ ∞

0

σ(f)
f

l∑
m=−l

∣∣∣YQ
lm(n)

∣∣∣2 θ2
rms

4π

2l + 1
gQ αQQ

l . (4.89)

Using Unsöld’s theorem for vector spherical harmonics,

l∑
m=−l

∣∣∣YQ
lm(n)

∣∣∣2 =
2l + 1

4π
,

gives

〈δn(n, t)2〉 =
∑
Ql

∫ ∞

0

θ2
rms

σ(f)
f

gQ αQQ
l , (4.90)

which reduces to Eq. (4.4). Note that using the normalization conventions for αQQ
l and σ(f) now

gives 〈δn(n, t)2〉 = θ2
rms(gE + gB) = θ2

rms, showing consistency of the definitions.

4.5.2 Derivation

We now turn to a derivation of the spectrum (4.87). First we note that the vector spherical harmonics

are transverse in the sense that YQ
lm(n) · n = 0 for Q = E,B, and are orthogonal in the sense that

∫
d2ΩnY Q

lmi(n)Y Q′i∗
l′m′ (n) = δQQ′δll′δmm′ .

Using this orthogonality property, we can extract the coefficients of the expansion (4.84)

δnQlm(t) =
∫

d2Ωnδni(n, t)Y Qi∗
lm (n).

Thus we can write for the correlation function between two of these coefficients

〈δnQlm(t)δnQ′l′m′(t′)∗〉 =
∫

d2Ωnd2Ωn′Y
Q∗
lmi(n)Y Q′

l′m′j(n
′)〈δni(n, t)δnj(n′, t′)〉, (4.91)

or more explicitly, using Eq. (4.64)

〈δnQlm(t)δnQ′l′m′(t′)∗〉 =
3H2

0

16π3

∫ ∞

0

df cos[2πf(t− t′)]
Ωgw(f)

f3
CQlmQ′l′m′ , (4.92)

where
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CQlmQ′l′m′ =
∫

d2Ωnd2Ωn′Y
Q∗
lmi(n)Y Q′

l′m′j(n
′)Hij(n,n′). (4.93)

We now argue that the EB cross-correlation vanishes. From Eq. (4.85), we see that YE
lm(n) has

the same parity under n → −n as Ylm(n), while the parity of YB
lm(n) is opposite. From Section

4.4.3 above Hij(n,n′) is invariant under both n → −n and n′ → −n′. Thus, if Q = E, Q′ = B

in Eq. (4.92), the integral will be symmetric under n → −n but antisymmetric under n′ → −n′,

causing the integral over d2Ωn′ to vanish. Therefore, EB cross correlations vanish, and we need

only calculate the EE and BB correlation functions.

4.5.2.1 EE correlation

Inserting the definition (4.85) of the electric vector spherical harmonics and the formula (4.82) for

Hij into Eq. (4.93) and integrating by parts, we obtain

CElmE′l′m′ =
1

l(l + 1)

∫
d2Ωnd2Ωn′Y

∗
lm(n)Yl′m′(n′)βEE(Θ), (4.94)

where the function βEE is given by

βEE(Θ) = ∇i∇′
j [Hij(n,n′)] = ∇i∇′

j {α(Θ) [AiAj −BiCj ]} . (4.95)

Here ∇i and ∇′
j denote normal three dimensional derivatives with respect to x and x′, where n =

x/|x| and n′ = x′/|x′|. Integration by parts on the unit sphere of this derivative operator is valid as

long as the radial component of the integrand vanishes, from the identity∇iv
i = ∂rv

r+2vr/r+∇AvA,

where ∇A denotes a covariant derivative on the unit sphere. It can be checked that the radial

components do vanish in the above computation.

Next, we expand the function βEE in terms of Legendre polynomials, and use the spherical

harmonic addition theorem, which gives

βEE(Θ) =
∑

l

βEE
l Pl(cos Θ)

=
∑
lm

4π

2l + 1
βEE

l Ylm(n)Ylm(n′)∗ (4.96)

Inserting this into Eq. (4.94) and using the orthogonality of spherical harmonics gives

CElmE′l′m′ = δll′δmm′
1

l(l + 1)
4π

2l + 1
βEE

l . (4.97)

Inserting this into Eq. (4.92) now yields the correlation function given by Eqs. (4.86) and (4.87),
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and using the definitions (4.3) and (4.6) of θ2
rms and σ(f) allows us to read off the electric multipole

spectrum

gE αEE
l =

3
4πl(l + 1)

βEE
l . (4.98)

We will show below that gE = 1/2.

It remains to explicitly evaluate the function βEE(Θ) defined in Eq. (4.95) and evaluate its

expansion coefficients. We have

βEE(Θ) ≡ ∇i∇′
j

[
α(Θ)T ij

]
=
[
∇i∇′

jα(Θ)
]
T ij+[∇iα(Θ)]

(
∇′

jT
ij
)
+
[
∇′

jα(Θ)
] (
∇iT

ij
)
+α(Θ)

(
∇i∇′

jT
ij
)
,

(4.99)

where we have defined T ij =
(
AiAj(n,n′)−BiCj(n,n′)

)
. Using Ai = εijknjn

′
k, Bi = (n·n′)ni−n′i,

Ci = (n · n′)n′i − ni, we can write the tensor T ij in Cartesian coordinates as

T ij = εiklεjrsnkn′lnrn
′
s −

(
(n · n′)ni − n′i

) (
(n · n′)n′j − nj

)
.

Using ∇inj = δij − ninj , ∇′
in
′
j = δij − n′in

′
j , ∇′

in
j = ∇in

′j = 0, and ∇lε
ijk = ∇′

lε
ijk = 0, we

calculate the derivatives

∇iT
ij = (1− 3(n · n′))

(
(n · n′)n′j − nj

)
, ∇′

jT
ij = (1− 3(n · n′))

(
(n · n′)ni − n′i

)
,

∇i∇′
jT

ij =− 9(n · n′)2 + 2(n · n′) + 3. (4.100)

For the gradients of α, we use the fact that cos(Θ) = n ·n′, so that − sin(Θ)∇iΘ = n′i−(n ·n′)ni,

and similarly for ∇′
j . Thus, we find

∇iα(Θ) = −α′(Θ)
n′i − (n · n′)ni

sin(Θ)
, ∇′

jα(Θ) = −α′(Θ)
nj − (n · n′)n′j

sin(Θ)

∇i∇′
jα(Θ) = α′(Θ)

{
δij − ninj − n′in

′
j + (n · n′)nin

′
j

− sin(Θ)
+

cos(Θ) [n′i − (n · n′)ni]
[
nj − (n · n′)n′j

]
− sin3(Θ)

}

+ α′′(Θ)
[n′i − (n · n′)ni]

[
nj − (n · n′)n′j

]
sin2(Θ)

. (4.101)

Plugging Eqs. (4.100) and (4.101) into Eq. (4.99), we get
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βEE(Θ) =
[
−9 cos2(Θ) + 2 cos(Θ) + 3

]
α(Θ)− sin2(Θ)α′′(Θ)

+ [1− 6 cos(Θ)] sin(Θ)α′(Θ). (4.102)

Next, we insert the expression (4.81) for α(Θ) to obtain

βEE(Θ) =
4π

3

(
4 + (1− cos Θ) {12 ln [sin(Θ/2)]− 1}

)
. (4.103)

We numerically compute the coefficients βEE
l of the Legendre polynomial expansion (4.96) of

βEE(Θ), and from them compute αEE
l using Eq. (4.98). The result is plotted in Figure 4.1 and

tabulated in Table 4.1.

4.5.2.2 BB correlation

We now calculate the BB correlation in a similar manner to the EE case above. Inserting into Eq.

(4.93) the definition (4.85) of magnetic vector spherical harmonics and integrating by parts, we find

CBlmBl′m′ =
1

l(l + 1)

∫
d2Ωnd2Ωn′Y

∗
lm(n)Yl′m′(n′)βBB(Θ),

where

βBB(Θ) = ∇l∇′
p [εiklεjmpnkn′mα(Θ)Tij ] . (4.104)

As before, we can derive from here the form (4.86) and (4.87) of the spectrum, with αBB
l given by

gB αBB
l =

3
4πl(l + 1)

βBB
l .

We now show that βBB(Θ) = βEE(Θ), from which it follows that gE = gB = 1/2 and that

αEE
l = αBB

l . To see this we evaluate the cross products in (4.104) using n×A = B, n×B = −A,

n′ ×C = A. This gives

εiklεjmpnkn′mHij = Hlp,

and using the definitions (4.95) and (4.104) of βEE and βBB , it follows that βBB = βEE .
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Chapter 5

Bipolar Spherical Harmonic
Decomposition1

5.1 Introduction

In this chapter we present the method of bipolar spherical harmonic (BiPoSH) decomposition as a

way to characterize departures from Gaussianity and isotropy of a field on the sky. We then discuss

two example applications, the temperature of the cosmic microwave background (CMB) radiation

and the intensity of 21 cm radiation from the dark ages. The remainder of this chapter is structured

as follows: background on the CMB, the 21 cm radiation, weak gravitational lensing, and BiPoSH

decomposition is given in the rest of Section 5.1. In Section 5.2 we review the mathematics of

BiPoSHs, and in Section 5.3 we present a detailed calculation of the expected BiPoSH signals from

the lensing of the CMB (or another field) by intervening scalar and tensor perturbations. In Section

5.4 we calculate the possible constraint on chiral GWs, as an example of a parity-violating process,

using the correlation between opposite parity BiPoSH coefficients and that between opposite-parity

BiPoSH and CMB polarization modes. Finally, in Section 5.5 we discuss the possibility of also

applying the BiPoSH formalism to future 21 cm intensity maps, and the resulting constraint on

primordial GWs that could be obtained.

5.1.1 Cosmic Microwave Background

The CMB is a nearly instantaneous snapshot of the surface of last scatter at redshift z ∼ 1100,

when electrons and protons combined to form neutral atoms, allowing photons to stream freely.

The spectrum of cosmic microwave background (CMB) radiation is an almost perfect black-body

1The material in this chapter was adapted from “Odd-Parity Bipolar Spherical Harmonics,” L. Book, M.
Kamionkowski, and T. Souradeep, PRD 85, 023010 (2012) and “Lensing of 21-cm Fluctuations by Primordial Gravi-
tational Waves,” L. Book, M. Kamionkowski, and F. Schmidt, submitted to PRL. Reproduced here with permission,
copyright (2012) by the American Physical Society. Introductory material has been significantly supplemented, the
discussion of non-cosmological sources of odd-parity BiPoSH in Section 5.3.5 was increased, and Figure 5.6 and
associated discussion was added to Section 5.5.
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spectrum with a temperature of 2.73 K (208). The prediction of this spectral shape, from the idea

that the Universe had expanded and cooled from a hot and dense initial state, was one of the great

successes of the big bang model. This radiation is almost completely isotropic, with fluctuations

around five orders of magnitude smaller than its overall amplitude. The detection of anisotropies in

the CMB (209) has revolutionized the precision with which cosmological measurements can be made.

This precision comes from the fact that, unlike large-scale structure, the small photon perturbations

from early times remain linear all the way to the present time, and therefore provide a far simpler

system from which to extract cosmological information.

Most of the information that has been obtained from the CMB so far has come from its power

spectrum, the two-point correlation function, under the assumptions of isotropy and homogeneity.

Indeed, the amount and precision of information available from this function is extraordinary. The

power spectrum has peaks and troughs resulting from acoustic oscillations of the photon-baryon

fluid prior to recombination, and the precise position and height of these peaks imparts a great

deal of information about the content of the Universe at those times. For example, the relative

height of odd- and even-numbered peaks gives direct information about the density of baryons, due

to the retarding effect of baryons on the sound speed. The amplitude of the peaks is affected not

only by the primordial amplitude and spectral tilt of perturbations, but also by the optical depth to

reionization, which has the effect to wipe out perturbations, the presence of tensor perturbations, the

matter and baryon densities, the cosmological constant, and the curvature of the Universe, as well

as many other parameters at a lower level. While it may seem that this large number of parameters

must necessarily be degenerate, the varying effects of these parameters on the heights of each peak,

their positions, and the amplitude of large angle fluctuations, together with information from other

sources such as supernovae and galaxy surveys, allows for extremely precise determination of all of

these parameters together.

Motivated by the extreme utility of the CMB temperature power spectrum, in recent years,

attention has been paid to effects that go beyond the power spectrum, such as weak lensing (210),

cosmic birefringence (211; 212), and departures from statistical isotropy (SI) (213; 214; 215) and from

Gaussianity (216; 217; 218). In this chapter we present the method of bipolar spherical harmonic

(BiPoSH) decomposition, which are a general way to parametrize departures from statistical isotropy

and Gaussianity, and thereby to efficiently search for information in the CMB beyond the power

spectrum.

5.1.2 21 cm Radiation

Between the time of recombination, described above as the era probed by the CMB, and reionization,

when radiation from the first stars and galaxies dissociated neutral atoms, the Universe was filled

with neutral atoms, mostly hydrogen with some helium and heavier isotopes and elements. Thus,
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the strongest hope of obtaining information about the Universe during this long period of time,

known as the cosmic dark ages (from 1100 < z < 10) comes from detecting the neutral hydrogen.

Although the optical depth to reionization can be obtained with the CMB, the most promising

method of obtaining detailed, three-dimensional maps of the matter during the dark ages comes from

the 21 cm line of neutral hydrogen. This is the radiation emitted when the proton of a hydrogen

atom flips its spin relative to that of the electron, and is emitted, as its name implies, at a wavelength

of 21 cm. This transition is forbidden, with a lifetime of ∼ 3× 107 years, which implies that it is far

from saturation (219). This then means that it can be used to probe the density (and not just the

presence) of neutral hydrogen. Combined with the fact that this is a spectral line, and therefore also

gives a redshift, this allows us to construct three-dimensional maps of the neutral hydrogen density.

While the potential of the 21 cm line to probe cosmology has been known for quite some time,

only recently has technology advanced to the point of possible observation of the cosmological 21

cm signal. Several experiments are poised to soon detect the 21 cm signal from the epoch of

reionization (220), and there are longer-term prospects to delve into the dark ages (221). Due to

these exciting observational prospects, a great deal of effort has gone into the theory of these pre-

structure-formation-era density fluctuations (222; 219; 223). In Section 5.5 we contribute to this

effort by considering the use of BiPoSH decomposition on 21 cm intensity maps, and probe their

utility to detect a background of stochastic GWs.

Atomic hydrogen in the redshift range 30 . z . 200 can absorb radiation deep in the Rayleigh-

Jeans region of the CMB (222). The angular power spectrum of these 21 cm fluctuations extends to

multipole moments l ∼ 107 (limited only by the baryonic Jeans mass) (222), far larger than those,

l ∼ 3000, to which the CMB power spectrum extends (beyond which fluctuations are suppressed by

Silk damping).

5.1.3 Weak Gravitational Lensing

The prediction of the lensing of photons by the sun, and its subsequent observation in 1919, was one

of the great successes of general relativity. The subsequent detection of strongly lensed systems such

that multiple images of the same source are formed, though predicted much earlier, occurred only in

1979 (224). Here, we will consider weak gravitational lensing of large-scale perturbations, known as

cosmic shear. Other important applications of gravitational lensing for cosmology include the study

of the inner regions of galaxy clusters due to lensed background galaxies (225; 226; 227; 228) and

gravitational microlensing of stars in the galaxy to study the presence of dark matter substructure

(229; 230; 231; 232).

Weak gravitational lensing of galaxies by large-scale density perturbations (233) was detected in

2000 (234) and is now a chief aim of a number of ongoing and future galaxy surveys (235; 236; 237).

These efforts seek the lensing-induced distortions of galaxy shapes. Weak lensing of the CMB by
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density perturbations was detected in correlation with large scale structure (238) and more re-

cently using the four-point correlation function of CMB temperature maps (239). The observational

signatures here are lensing-induced position-dependent departures from statistical isotropy in the

two-point CMB correlation functions, or equivalently, the four-point correlation functions induced

by lensing (240).

Primordial gravitational waves can likewise lens both galaxies and the CMB (241; 242; 243). The

most general lensing pattern can, like the CMB polarization, be decomposed into curl and curl-free

parts (244). Since density perturbations produce (to linear order in the deflection angle) no curl in

the lensing pattern, the curl component provides an IGW probe.

5.1.4 Previous Work with Bipolar Spherical Harmonics

Bipolar spherical harmonics (BiPoSHs) are an orthonormal basis for functions of two angles on

the sphere. These functions, also used in nuclear physics to characterize the wavefunctions of two-

particle systems, provide an elegant and general formalism for quantifying departures from statistical

isotropy and Gaussianity (245; 246; 247). If the CMB map is Gaussian and statistically isotropic,

then its statistics are specified entirely in terms of the power spectrum Cl, the expectation value

of the squared magnitude of the spherical-harmonic coefficients alm for the map, and there are no

correlations between different alms. A wide variety of departures from SI and Gaussianity induce

correlations between different alms. The point of the BiPoSH formalism is to parametrize correlations

between two different coefficients, alm and al′m′ , that represent two different “angular-momentum”

states, in terms of total angular momenta L and M .

Since their introduction as tools for cosmology in 2003 (245), bipolar spherical harmonics have

been applied to the CMB in several ways. The pattern of BiPoSH coefficients due to non-standard

cosmic topologies has been calculated (248), those due to anisotropy in primordial power have been

tested for in WMAP data (249; 215), and model-independent departures from SI have been tested

for (250; 251; 247; 252; 253; 254; 255). They have also been used to test for asymmetric beams (256)

and/or other systematic artifacts in WMAP (257). BiPoSHs for polarization have been proposed to

search for position-dependent rotation of the CMB polarization (258; 259; 260; 261).

In this chapter, we discuss another application of BiPoSHs. The majority of physical effects

considered so far induce only even-parity BiPoSH coefficients, and thus previous work neglected

odd-parity BiPoSH modes (257) or disregarded BiPoSH parity altogether. In this chapter we show

that odd-parity BiPoSH modes can provide probes of both cosmological effects and systematic

artifacts that would remain elusive with the even-parity BiPoSHs. We give a detailed treatment of

the BiPoSH coefficients induced by lensing, and show that lensing by gravitational waves (GWs)

can excite odd-parity BiPoSHs. We also discuss observational errors that could excite these modes,

and apply BiPoSH to a new system–future 21 cm intensity maps.
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5.2 Review of Bipolar Spherical Harmonics

5.2.1 Statistically Isotropic and Gaussian Maps

A CMB temperature map T (n̂), as a function of position n̂ on the sky, can be decomposed into

spherical-harmonic coefficients

alm =
∫

d2n̂ T (n̂) Y ∗
lm(n̂).

If the map is statistically isotropic and Gaussian, then the statistics can be determined entirely in

terms of the power spectrum Cl, defined by

〈alma∗l′m′〉 = Cl δll′ δmm′ , (5.1)

where the angle brackets denote an average over all realizations, and δll′ and δmm′ are Kronecker

deltas. Eq. (5.1) states that all of the alm are uncorrelated, and Gaussianity further dictates that the

probability distribution function for any alm to take on a particular value is a Gaussian distribution

with variance Cl.

The spatial temperature autocorrelation function is defined to be C(n̂, n̂′) ≡ 〈T (n̂) T (n̂′)〉. Most

generally it is a function of the two directions n̂ and n̂′. However, if the map is statistically isotropic

and Gaussian, then the spatial correlation function depends only on the angle θ, given by cos θ = n̂·n̂′,

between the two directions. In this case,

C(n̂, n̂′) =
∑

l

(2l + 1)
4π

ClPl(n̂ · n̂′),

where Pl(x) are the Legendre polynomials.

5.2.2 Departures from Gaussianity/SI

Departures from Gaussianity and/or SI will induce correlations between different alms. The most

general correlation between any two alms can be written,

〈alma∗l′m′〉 = Clδll′δmm′ +
∑

LM ;L>0

(−1)m′
〈l m l′, −m′|LM〉ALM

ll′ , (5.2)

where Cl is the (isotropic) power spectrum, 〈l m l′ m′|LM〉 are Clebsch-Gordan coefficients, and the

ALM
ll′ are BiPoSH coefficients. The spatial two-point correlation function is then

C(n̂, n̂′) =
∑

l

(2l + 1)
4π

ClPl(n̂ · n̂′) +
∑

ll′LM

ALM
ll′ {Yl(n̂)⊗ Yl′(n̂′)}LM , (5.3)
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where

{Yl(n̂)⊗ Yl′(n̂′)}LM =
∑
mm′

〈l m l′ m′|LM〉Ylm(n̂)Yl′m′(n̂′), (5.4)

are the bipolar spherical harmonics (BipoSHs). These BiPoSHs constitute a complete orthonormal

basis for functions of n̂ and n̂′ in terms of total-angular-momentum states labeled by quantum

numbers L and M composed of angular-momentum states with lm and l′m′; they are an alternative

to the outer product of the {l,m} and {l′,m′} bases.

5.2.3 Odd-Parity Bipolar Spherical Harmonics

It is instructive to decompose ALM
ll′ into its odd and even parity parts,

ALM
ll′ = A⊕LM

ll′
[1 + (−1)l+l′+L]

2
+ A	LM

ll′
[1− (−1)l+l′+L]

2
, (5.5)

where A⊕LM
ll′ (A	LM

ll′ ) are zero for the sum l+ l′+L being odd (even). It follows from the symmetry

C(n̂, n̂′) = C(n̂′, n̂) that A⊕LM
ll′ (A	LM

ll′ ) are (anti) symmetric in l and l′. We also infer that[
A⊕LM

ll′

]∗
= (−1)MA⊕L−M

ll′ and
[
A	LM

ll′

]∗
= (−1)M+1A	L−M

ll′ . Thus, odd-parity BiPoSHs vanish

for l = l′. Prior literature has considered physical effects (e.g., nontrivial topologies (262), SI

violation (247; 263)) that produce only A⊕LM
ll′ , the even-parity BiPoSHs, and measurements have

been carried out with WMAP data only for the A⊕LM
ll′ (250; 264). In this chapter, we consider also

the odd-parity BiPoSHs A	LM
ll′ .

Estimators for the BiPoSH coefficients (both the ⊕ and 	 modes) can be constructed from a

map of the CMB temperature field T (n̂), as follows:

ÂLM
ll′ =

∑
mm′

W−1
l W−1

l′ amap
lm a∗map

l′m′ (−1)m′
〈l m l′, −m′|LM〉, (5.6)

and this estimator has a variance, under the null hypothesis (a SI Gaussian map),

〈
ÂLM

ll′ ÂL′M ′

l̄l̄′

∗〉
= δLL′ δMM ′

[
δll̄δl′ l̄′ + (−1)l+l′+Lδll̄′δl̄l′

]
Cmap

l Cmap
l′ W−2

l W−2
l′ , (5.7)

where amap
lm = Wl alm + anoise

lm and Cmap
l = W 2

l Cl + Nl are the temperature spherical-harmonic

coefficients and power spectrum corrected for detector noise and finite resolution. The Gaussian

detector window function, which encapsulates the effects of finite detector resolution, is given by

Wl ≡ exp
[
−l2θ2

FWHM/(16 ln 2)
]
, where θFWHM is the full width at half maximum of the detector.

The instrumental noise contribution to the temperature power spectrum is given by

Nl =
4π(NET)2

tobs

√
fsky

,
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where fsky is the fraction of the sky observed, NET is the noise equivalent temperature of the

detector, and tobs is the length of time over which the CMB was observed by a particular survey.

We notice that the variance in Eq. (5.7) vanishes for odd parity and l = l′ = l̄ = l̄′, which is expected

given that odd-parity BiPoSHs with l = l′ vanish.

The noise in any individual ALM
ll′ is large, and so a search for a statistically significant departure

from zero in one or a handful of ALM
ll′ s will probably not be too effective. It is better to consider

specific models and/or parameterizations for departures from SI/Gaussianity and then combine

the ALM
ll′ s into a minimum-variance estimator for the SI/Gaussianity-violating parameters of those

models. For example, Ref. (245; 246) considered the bipolar power spectrum κL ≡
∑

ll′M |ALM
ll′ |2

as a parameterization for departures from SI. As another example, Ref. (249) combined ALM
ll′ s with

L = 2 and l′ = l, l ± 2 to derive minimum-variance estimators for the amplitude of an inflation-

induced primordial-power quadrupole of the type considered in Ref. (265).

5.3 Gravitational Lensing

5.3.1 Gradient and Curl-Type Deflections

Consider a statistically isotropic and homogeneous Gaussian temperature map Tg(n̂) on the sphere,

where n̂ is a position on the sky. Now suppose that each point on the sky n̂ has been deflected

from an original direction n̂ + ~∆(n̂) so that the observed temperature is T (n̂) = Tg(n̂ + ~∆) '

Tg(n̂) + ~∆ · ~∇~θTg(n̂). This deflection might come about cosmologically through weak gravitational

lensing or may arise as an instrumental/measurement artifact (for example, if there are pointing

errors).

The most general deflection field ~∆ can be written in vector notation as

~∆ = ~∇~θ φ(n̂) + ~∇~θ × Ω(n̂), (5.8)

or in component notation, ∆i =
(
∇~θ

)
i
φ(n̂) + εij

(
∇~θ

)
j
Ω(n̂),2 in terms of two scalar functions φ(n̂)

and Ω(n̂) on the sphere, where ~∇~θ is the angular covariant derivative on the unit sphere. In other

words, the most general vector field on a two-sphere can be written as the gradient of some scalar

field φ(n̂) plus the curl of some other field Ω(n̂). Weak gravitational lensing by density perturbations

gives rise, at linear order in the lensing potential, only to the gradient component. A curl component

can arise cosmologically from second-order terms in the deflection field or from lensing by GWs.

Systematic measurement effects may conceivably give rise to both types of deflections.

We now show that the A⊕LM
ll′ and A	LM

ll′ BiPoSH coefficients are induced, respectively, by the

2Here, the Levi-Civita symbol on the unit sphere can be defined in terms of its three-dimensional equivalent as
εij = −εijk rk. The choice of sign here can be understood as the choice to have the spherical polar coordinates (θ, φ)
form a right-handed coordinate system on the sky, since it will ensure that the basis vectors satisfy êθ × êφ = 1.
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gradient and curl components of the deflection field. The change in the temperature moments

induced by lensing is (at first order in φ and Ω),

δalm =
∫

d2n̂ Y ∗
lm(n̂)

{[
~∇~θ φ

]
·
[
~∇~θ T (n̂)

]
+
[
~∇~θ Ω(n̂)

]
×
[
~∇~θ T (n̂)

]}
=

∑
LM ; L>0

∑
l′m′

al′m′

∫
d2n̂ Y ∗

lm(n̂)
{

φLM

[
~∇~θ YLM (n̂)

]
·
[
~∇~θ Yl′m′(n̂)

]
+ ΩLM

[
~∇~θ YLM (n̂)

]
×
[
~∇~θ Yl′m′(n̂)

]}
,

where in the second line we have decomposed

φ(n̂) =
∞∑

L=1

L∑
M=−L

YLM (n̂) φLM , (5.9)

and similarly for Ω(n̂). We do not consider L = 0 modes of φ and Ω since they would not cause a

deflection. In the notation of Ref. (266),

~∇~θ Ylm =

√
l(l + 1)

2
[1Ylm m̂+ − −1Ylm m̂−] ,

where 1Ylm and −1Ylm are spin-weighted spherical harmonics, the null coordinates m̂± = (êθ ∓

iêφ)/
√

2, and the only non-trivial products of the null coordinates are m̂+·m̂− = 1, and m̂+×m̂− = i.

Thus, it is obtained that

(
~∇~θ YLM

)
·
(

~∇~θ Yl′m′

)
= −

√
L(L + 1)l′(l′ + 1)

2
[(1YLM ) (−1Yl′m′) + (−1YLM ) (1Yl′m′)] ,(

~∇~θ YLM

)
×
(

~∇~θ Yl′m′

)
= −

i
√

L(L + 1)l′(l′ + 1)
2

[(1YLM ) (−1Yl′m′)− (−1YLM ) (1Yl′m′)] .

Using the triple integral (266) of spin-weighted spherical harmonics, the δalm for the gradient and

curl terms are obtained as

δalm =
∑

LM ; L>0

∑
l′m′

(−1)M+m al′m′ GL
ll′√

(2L + 1)l(l + 1)

φLM

[
1 + (−1)l+l′+L

]
2

− iΩLM

[
1− (−1)l+l′+L

]
2

 〈l m l′, −m′|LM〉,

where

GL
ll′ ≡

√
L(L + 1)l(l + 1)l′(l′ + 1)(2l + 1)(2l′ + 1)

4π
〈l 0 l′ 1|L1〉.

Up to linear order in the deflection coefficients φLM and ΩLM , the even- and odd-parity BiPoSH

coefficients are then,

A⊕LM
ll′ =

φLM√
2L + 1

[
ClG

L
l′l√

l′(l′ + 1)
+

Cl′G
L
ll′√

l(l + 1)

]
= Q⊕L

ll′ φLM , (5.10)

A	LM
ll′ =

iΩLM√
2L + 1

[
ClG

L
l′l√

l′(l′ + 1)
− Cl′G

L
ll′√

l(l + 1)

]
= Q	L

ll′ ΩLM , (5.11)



90

where we have defined the quantities

Q⊕L
ll′ =

1√
2L + 1

[
ClG

L
l′l√

l′(l′ + 1)
+

Cl′G
L
ll′√

l(l + 1)

]
,

Q	L
ll′ =

i√
2L + 1

[
ClG

L
l′l√

l′(l′ + 1)
− Cl′G

L
ll′√

l(l + 1)

]
. (5.12)

Clearly, the gradient part contributes only to A⊕LM
ll′ and the curl part only to A	LM

ll′ . Further, it is

explicit that the gradient and curl parts of the deflection correspond, respectively, to the symmetric

and antisymmetric (in {ll′}) parts of the total ALM
ll′ .

Suppose the ALM
ll′ s have been measured using the estimators in Eq. (5.6). If we then assume that

lensing is the dominant source of BiPoSHs we can use Eqs. (5.7), (5.10), and (5.11) to construct

maximum-likelihood estimators for the gradient and curl components of the deflection field,

φ̂LM =
∑

ll′ Q
⊕L∗
ll′ Â⊕LM

ll′
/ (

W−2
l W−2

l′ Cmap
l Cmap

l′

)∑
ll′

∣∣Q⊕L
ll′

∣∣2 /
(
W−2

l W−2
l′ Cmap

l Cmap
l′

) , (5.13)

Ω̂LM =
∑

ll′ Q
	L∗
ll′ Â	LM

ll′
/ (

W−2
l W−2

l′ Cmap
l Cmap

l′

)∑
ll′

∣∣Q	L
ll′

∣∣2 /
(
W−2

l W−2
l′ Cmap

l Cmap
l′

) . (5.14)

The variance of these estimators, under the null hypothesis of no lensing, is given by

〈φ̂LM φ̂L′M ′
∗
〉 ≡ δLL′ δMM ′

(
σφ

L

)2 ≡ 2 δLL′ δMM ′

[∑
ll′

∣∣Q⊕L
ll′

∣∣2 /
(
W−2

l W−2
l′ Cmap

l Cmap
l′

)]−1

, (5.15)

〈Ω̂LM Ω̂L′M ′
∗
〉 ≡ δLL′ δMM ′

(
σΩ

L

)2 ≡ 2 δLL′ δMM ′

[∑
ll′

∣∣Q	L
ll′

∣∣2 /
(
W−2

l W−2
l′ Cmap

l Cmap
l′

)]−1

, (5.16)

where the sums in Eqs. (5.13) and (5.15) only include pairs of l, l′ for which l + l′ + L is even, while

those in Eqs. (5.14) and (5.16) only include pairs for which this quantity is odd.

5.3.2 Deflection Field from Metric Perturbations

Cosmic shear, weak gravitational lensing due to density perturbations or GWs along the line of sight

to the CMB, will produce displacements like those in Eq. (5.8). Our goal here will be to calculate the

displacement spherical-harmonic coefficients φLM and ΩLM that arise from gravitational lensing due

to density perturbations and GWs. There is a vast literature on lensing by density perturbations and

also specifically on lensing of the CMB by density perturbations (210). Our density-perturbation
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results follow most closely those of Refs. (267; 266). Lensing by GWs has been considered in

Ref. (268). We follow primarily the approach of Refs. (269; 270), who calculated ΩLM due to GWs,

but extend their results to include φLM from GWs, reproducing the results of Ref. (271). We make

use in this Section of relevant work on lensing and/or differential analysis on the celestial sphere in

Refs. (266; 267; 272; 273).

We write the metric for the perturbed spacetime as

ds2 = a2(η)
[
−dη2 + (δij + hij) dxidxj

]
,

where hij is the metric perturbation in the synchronous gauge, and η is the conformal time. Now

consider a photon that we observe to come from the direction n̂ on the sky. In the absence of

perturbations, this photon travels along a path ~x(η) = (η0 − η) n̂ as a function of conformal time

η, where η0 is the conformal time today. Metric perturbations will induce perturbations in this

trajectory, which we can calculate by integrating the geodesic equation back over the photon path

to find the direction of propagation of the photon when it was emitted at a conformal time η. To

first order in the metric perturbation h, we find the original direction of propagation of the photon

on the sky to be n̂ + ~∆, where (274)

∆i(n̂) =
Pim

η0 − η

∫ η

η0

dη′
[
hmj n̂j −

1
2
(η′ − η)n̂kn̂l∂mhkl

]
[η′, (η0−η′)n̂]

. (5.17)

Here, we have ignored the observer terms hij(η0), and we have defined the projection tensor Pim =

δim − ninm onto the space perpendicular to the unit vector n̂. The subscript indicates that the

quantities in the integral are evaluated at time and space coordinates (η, ~x) = (η′, (η0 − η′)n̂); i.e.,

they are evaluated along the unperturbed path of the photon. In our case, the source is the CMB,

and η = ηlss is the conformal time at the surface of last scatter. However, the calculation could

also be applied to the lensing of galaxies in which case the relevant conformal time would be that

corresponding to redshifts z ∼ 1.

The functions φ(n̂) and Ω(n̂) in the decomposition in Eq. (5.8) can be obtained from

∇2
~θ
φ(n̂) = ~∇~θ · ~∆(n̂), ∇2

~θ
Ω(n̂) = −~∇~θ × ~∆(n̂), (5.18)

where as before ~∇~θ is the angular covariant derivative on the unit sphere. As Ref. [25] notes, the

standard lensing convergence is κ = −(1/2)∇2
~θ

φ and the lensing rotation is ω = (1/2)∇2
~θ

Ω.

The gradient component is obtained from
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∇2
~θ

φ(n̂) =~∇~θ · ~∆ = − 1
η0 − η

{∫ η0

η

dη′(η0 − η′)(δik − n̂in̂k)
[
−∂k

(
hijn

j
)

+
1
2
(η′ − η)∂i∂k(hlmn̂ln̂m)

]
[η′, (η0−η′)n̂]

+
∫ η0

η

dη′ [3n̂in̂jhij − hii + (η′ − η) (n̂j∂ihij − 2 n̂in̂j n̂k∂khij)][η′, (η0−η′)n̂]

}
, (5.19)

where we have used the fact that ~∇~θ, which acts on the unit vector n̂, behaves as ∇i
~θ

= (η0−η′)(δik−

n̂in̂k)∂k inside the integral due to the dependence of ~x on n̂ as defined in the integrand subscript.

Let us now consider the curl component. For this calculation we must use ∇2
~θ
Ω = −~∇~θ × ~∆

and then note that, as before, ∇i
~θ

= (η0 − η′)(δik − n̂in̂k)∂k inside the integrand. Applying this to

Eq. (5.17), we have (269)

∇2
~θ
Ω(n̂) = −

∫ η0

η

dη′ (ninlεijk∂jhkl)[η′,n̂(η0−η′)]. (5.20)

5.3.3 Lensing by Density (Scalar Metric) Perturbations

Let us first consider scalar perturbations. In the conformal-Newtonian gauge in the absence of

anisotropic stresses, the metric is given by

ds2 = a2(η)
[
−(1− 2Φ)dη2 + (1 + 2Φ)δijdxidxj

]
.

Noting that a conformal transformation preserves null geodesics, our calculations of the photon path

will be unaffected if we work in a synchronous metric obtained from the conformal-Newtonian form

through multiplication by (1 + 2Φ). Assuming that Φ is small and keeping terms only to linear

order, we find the conformally related metric,

ds2 = a2(η)
[
−dη2 + (1 + 4Φ)δijdxidxj

]
.

Using this metric perturbation hij = 4Φδij in Eq. (5.19) above, we find that the first, third, and

fourth terms vanish, giving for the gradient-type lensing caused by scalar perturbations,

∇2
~θ

φsca(n̂) = − 2
η0 − η

∫ η0

η

dη′(η′ − η)
[
(δij − n̂in̂j) (η0 − η′)∂i∂jΦ− 2 n̂i ∂iΦ

]
.

For small-scale fluctuations, the second term will be negligible compared with the first, so it can be

dropped. We can rewrite the spatial derivatives in terms of ~∇~θ to find

∇2
~θ

φsca(n̂) = − 2
η0 − η

∫ η0

η

dη′
η′ − η

η0 − η′
∇2

~θ
Φ
(
η′, (η0 − η′)n̂

)
,

and we can remove the angular derivatives to obtain the usual expression for the projected potential
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φsca(n̂) = −2
∫ η0

η

dη′
η′ − η

(η0 − η)(η0 − η′)
Φ
(
η′, (η0 − η′)n̂

)
.

We can once again decompose φ(n̂) in terms of its spherical-harmonic coefficients as in Eq. (5.9).

We then find

φsca
LM ≡

∫
d2n̂ Y ∗

LM (n̂)φsca(n̂)

= −2
∫ η0

η

dη′
η′ − η

(η0 − η)(η0 − η′)

∫
d2n̂ Y ∗

LM (n̂) Φ
(
η′, (η0 − η′)n̂

)
. (5.21)

Thus, lensing by density perturbations with a given projected potential is characterized by nonzero

even bipolar spherical harmonics A⊕LM
ll′ given by Eq. (5.10) with φLM given by φsca

LM above. Scalar

perturbations cause no curl-type lensing, which we can see in several ways. For scalar perturbations,

hij ∝ Φδij , and so the left-hand side of Eq. (5.20) vanishes. Then, by taking a Laplacian of the mode

expansion ΩLM =
∫

d2n̂ Ω(n̂)Y ∗
LM (n̂), and noting that the spherical harmonics are eigenfunctions

of the Laplacian with eigenvalue L(L + 1), we can write

ΩLM =
1

L(L + 1)

∫
d2n̂Y ∗

LM (n̂)∇2
~θ
Ω(n̂). (5.22)

Thus, we find that all of the Ωsca
LM , except possibly for the unphysical L = 0 mode, vanish. Equiva-

lently, an argument can be made that scalar perturbations have no preferred direction, and so could

not generate curl-modes, which do have a preferred direction. Thus, scalar modes produce no odd

bipolar spherical harmonics A	LM
ll′ .

We can go on to find the autocorrelation power spectrum of the φsca
LM . Starting from Eq. (5.21),

we use the fact that the potential perturbations Φ(η,~k) today are related to their primordial values

ΦP (~k) by

Φ(η,~k) =
9
10

ΦP (~k) T sca(k)
D1(η)
a(η)

,

where a(η) is the scale factor, T sca(k) is the scalar transfer function that describes the evolution of

scalar modes through the epochs of horizon crossing and matter-radiation equality, and D1(η) is the

growth function that captures the scale-independent evolution of scalar modes at later times (76).

The transfer function can be approximated using the fitting form of Ref. (275),

T sca(x ≡ k/keq) =
ln(1 + 0.17 x)

0.171 x

[
1 + 0.284 x + (1.18 x)2 + (0.399 x)3 + (0.490 x)4

]−0.25
,

where keq is the wavenumber of the mode that crossed the horizon at matter-radiation equality,
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defined as keq ≡ aeq H(aeq) =
√

2 H0 a
−1/2
eq . We can write the growth function, under the

assumption of cosmological-constant dark energy, as

D1(η) =
5 Ωm

2
H(η)
H0

∫ a(η)

o

da′

(a′ H(a′) /H0)
3 .

We also write the autocorrelation of the primordial scalar fluctuations 〈ΦP (~k)Φ∗P (~k′)〉 = (2π)3 δ3
(
~k−

~k′
)
PΦ(k), where the primordial power spectrum is given by

PΦ(k) =
50 π2

9 k3

(
k

H0

)ns−1

∆2
R

(
Ωm

D1(a = 1)

)2

.

With these ingredients, and after using the partial-wave decomposition,

eik(η0−η′) cos θ =
∞∑

L=0

iL(2L + 1)jL (k(η0 − η′))PL(cos θ), (5.23)

we find the autocorrelation power spectrum to be

Cφφ sca
L =

2
π

[
9

5 (η − η0)

]2 ∫
dk k2 PΦ(k) T sca(k)2

{∫ η0

η

dη′
(η′ − η)
(η0 − η′)

D1(η′)
a(η′)

jL [(η0 − η′) k]
}2

.

(5.24)

To calculate the magnitude and shape of this autocorrelation function, we employ the WMAP

7-year cosmological parameters of Ref. (276). We plot the result of our calculation in green squares

in Figure 5.1.

5.3.4 Lensing by GWs (Tensor Metric Perturbations)

If the metric perturbation hij is caused by GWs, we can decompose it into plane waves,

hij(~x, η) =
∫

d3k

(2π)3
ei~k·~x T (k, η)

∑
α=+,×

hα(~k) εα
ij(~k), (5.25)

where we sum over the two GW polarizations + and ×, the plane-wave amplitudes are hα(~k), and

εα
ij are the polarization tensors, which are transverse, traceless matrices. Here, T (k, η) is the GW

transfer function, which gives the conformal-time evolution of the mode; Ref. (269) notes that it is

well approximated by T (k, η) = 3j1(kη)/(kη).

Now consider a single GW mode propagating in the ẑ direction with wavenumber k and +

polarization. In this case the polarization tensor is
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Figure 5.1: Here we plot the autocorrelation power spectrum Cφφ
L of the gradient-type φ modes of

cosmic shear. In green squares we show the autocorrelation of the φ modes from lensing by scalar
perturbations, and in blue circles that of the φ modes induced by tensor perturbations. We use
the WMAP-7 cosmological parameters, and assume the maximum allowable tensor-to-scalar ratio
r = 0.24 from the WMAP-7 data combined with BAO and the H0 measurement (276), to calculate
the tensor contribution. The error with which these power spectra could be measured using the
parameters of the Planck satellite is shown as red +s.

ε+ij(kẑ) =


1 0 0

0 −1 0

0 0 0

 .

The only nonzero metric-perturbation components are then hxx = −hyy = h+(~k) eikz T (k, η). The

unit vector n̂ = (sin θ cos ϕ, sin θ sinϕ, cos θ). The curl component of lensing of the CMB by tensor

perturbations is then

∇2
~θ

Ωten(n̂) = ikh+(~k) sin2 θ sin 2ϕ

∫ η0

η

dη′ T (k, η′)eik(η0−η′) cos θ. (5.26)

A GW with the × polarization is the same as that with the + polarization, but rotated by 45◦ to

the right. The Ωten(n̂) pattern is therefore the same, but with sin 2ϕ replaced by − cos 2ϕ. We thus

see that lensing by GWs will give rise to nonvanishing A	LM
ll′ .
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Figure 5.2: Here we plot the autocorrelation power spectrum CΩΩ
L of the curl-type Ω modes of the

weak lensing of the CMB temperature field. These modes can only be induced by tensor perturba-
tions. We show the signal in blue circles and the error with which they could be measured using the
parameters of the Planck satellite as red +s.

The gradient component of cosmic shear due to tensor perturbations is a bit more complicated;

it is

∇2
~θ

φten(n̂) = − h+(~k)
η0 − η

sin2 θ cos 2ϕ

∫ η0

η

dη′ T (k, η′)
{

3− 2ik(η′ − η) cos θ

+ (η0 − η′)
[
ik cos θ − k2

2
(η′ − η) sin2 θ

]}
eik(η0−η′) cos θ.

(5.27)

This can be further simplified by noting that

− ik cos θeik(η0−η′) cos θ =
∂

∂η′
eik(η0−η′) cos θ,
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which then leads to

∇2
~θ

φten(n̂) = − h+(~k)
η0 − η

sin2 θ cos 2ϕ

∫ η0

η

dη′ T (k, η′)
{

3 + 2 (η′ − η)
∂

∂η′

− (η0 − η′)
[

∂

∂η′
+

(η′ − η)
2

(
k2 +

∂2

∂η′2

)]}
eik(η0−η′) cos θ.

(5.28)

For the × polarization, we replace cos 2ϕ by sin 2ϕ.

Note that the expressions for ∇2
~θ

φten and ∇2
~θ

Ωten differ only in two ways: (1) The curl mode

has a sin 2ϕ dependence on the azimuthal angle ϕ, while the scalar mode has a cos 2ϕ dependence

(for the + polarization). (2) The η′ dependences of the two integrands differ.

We now find the spherical-harmonic coefficients φten
LM =

∫
d2n̂ φten(n̂)Y ∗

LM (n̂) and Ωten
LM =∫

d2n̂ Ωten(n̂)Y ∗
LM (n̂). Taking the angular derivatives of this decomposition of the curl compo-

nent, we find the result Eq. (5.22). We also expand these coefficients in terms of their polarization

and ~k modes,

Ωten
LM =

∫
d3k

(2π)3
∑

α=+,×
Ωten α

LM (~k). (5.29)

If we consider just one mode, with α = + and ~k = kẑ, and use Eq. (5.26), its amplitude simplifies

into an angular and a conformal time integral:

Ωten +
LM (kẑ) = − ik h+(~k)

L(L + 1)

∫ η0

η

dη′ T (k, η′)
∫

d2n̂ Y ∗
LM (n̂) sin2θ sin(2φ) eik(η0−η′) cos θ.

The azimuthal integral is easily taken once the spherical harmonic is decomposed as

Y ∗
LM (n̂) =

√
2L + 1

4π

(L−M)!
(L + M)!

e−iMφ PLM (cos θ),

and yields the result that only M = ±2 modes remain. The polar integral can then be taken by

using the partial-wave decomposition Eq. (5.23) and by converting associated Legendre polynomials

into regular Legendre polynomials and using their orthogonality. The final result that we obtain for

the spherical-harmonic coefficients of the curl mode is

Ωten +
LM (kẑ) = iLh+(~k) (δM,2 − δM,−2)

√
2L + 1

2
FΩ

L (k), (5.30)

where

FΩ
L (k) =

√
2π(L + 2)!
(L− 2)!

1
L(L + 1)

∫ kη0

kη

dw T (w)
jL(kη0 − w)
(kη0 − w)2

(5.31)
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is a transfer function for Ω. Note that in writing Eq. (5.31) we have assumed that T (k, η) = T (kη),

and that for the × polarization the sin 2ϕ dependence of Ω(n̂) is replaced by − cos 2ϕ, so that the

factor (δM,2 − δM,−2) is replaced by −i(δM,2 + δM,−2).

Likewise, noting the similarities between Eqs. (5.26) and (5.28), and decomposing φten
LM into

modes as in Eq. (5.29)

φten
LM =

∫
d3k

(2π)3
∑

α=+,×
φten α

LM (~k), (5.32)

the result for the amplitude of the gradient mode with α = + and ~k = kẑ is

φten +
LM (kẑ) = iLh+(~k)(δM,2 + δM,−2)

√
2L + 1

2
Fφ

L (k), (5.33)

where

Fφ
L (k) = −

√
2π(L + 2)!
(L− 2)!

1
L(L + 1)

∫ kη0

kη

dw
kη0 − w

k(η0 − η)
T (w)

[
∂

∂w
+

1
2
(w − kη)

(
1 +

∂2

∂w2

)]
jL(kη0 − w)
(kη0 − w)2

.

(5.34)

Again, the factor (δM,2 + δM,−2) is replaced by −i(δM,2 − δM,−2) for the × polarization.

The contributions from this Fourier mode to the φten and Ωten power spectra are Cφφ ten
L (kẑ)+ =∑

M

〈
|φten

LM |2
〉
/(2L + 1) and CΩΩ ten

L (kẑ)+ =
∑

M

〈
|Ωten

LM |2
〉
/(2L + 1). Note that it is only the

M = ±2 modes that contribute. By rotational invariance, the contribution from the × polarization

is the same, as is the contribution from any other mode with the same wavenumber k but pointing

in a different direction. If the gravitational waves have power spectrum PT (k), defined by

〈
hi

~k
(hj

~k′
)∗
〉

= (2π)3δD(~k − ~k′)δijPT (k), (5.35)

(with {i, j} = {×,+}), then the φ and Ω power spectra are

CXX ten
L = 2

∫
d3k

(2π)3
PT (k)

[
FX

L (k)
]2

(5.36)

for X = {φ,Ω}. In this chapter, we will assume a scale-invariant power spectrum

PT (k) =
π2

2k3
∆2

R r, (5.37)

where we have neglected the spectral tilt and adopt the parameters of WMAP7 (276).

We calculate the variance in the measurement of these autocorrelation functions from an observed

CMB temperature map, under the null hypothesis of no GWs, and obtain an expression in terms of

the variance of the φ and Ω estimators, Eqs. (5.15) and (5.16)
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∆Cφφ
L =

√
2

2L + 1

(
σφ 2

L + Cφφ sca
L

)
, (5.38)

∆CΩΩ
L =

√
2

2L + 1
σΩ 2

L . (5.39)

Here, σφ 2
L and σΩ 2

L are the variances of our estimators for φLM and ΩLM as found in Eqs. (5.15) and

(5.16). Note that under the null hypothesis of no GWs, there is no expected cosmological curl-type

lensing signal, so this term is absent in Eq. (5.39).

To calculate these autocorrelation functions and their variances, we use the WMAP 7-year cos-

mological parameters of Ref. (276). We plot the results of our calculations in Figs. 5.1 and 5.2,

where lensing from scalar perturbations is plotted in green squares (absent for CΩΩ
L since there

are no scalar contributions to the curl modes), lensing from tensor perturbations is plotted in blue

circles, and the variance of these measurements is shown in red +s. We use the parameters of the

Planck satellite, NET = 62µK s1/2, tobs = 2yr, θFWHM = 2.0635× 10−3 rad, and fsky ≈ 1. We can

see that the scalar φ signal is several orders of magnitude greater than the tensor signal, and that

the variance with which the φ-φ power spectrum could be measured with Planck is higher than the

scalar signal for low multipoles. The corresponding variance with which the Ω-Ω power spectrum

could be measured is also significantly larger than the signal. In both of these cases, therefore, the

signal to noise of measuring the lensing from tensors using all multipoles with Planck is negligible,

and remains negligible even in the case of the ideal CMB experiment with zero noise.

Thus, a stochastic background of GWs with power spectrum PT (k) predicts a spectrum of nonzero

even and odd BiPoSHs given by Eqs. (5.10) and (5.11), with values of φLM and ΩLM selected from

Gaussian distributions with the variances Cφφ ten
L and CΩΩ ten

L given by Eq. (5.36).

5.3.5 Non-Cosmological Odd-Parity BiPoSH

As well as the intrinsic sources of odd-parity BiPoSH considered above, there are many possible

non-cosmological sources. For example, artifacts from incomplete sky coverage, such as removing

foreground contaminants like the galaxy or bright point sources, introduce both even- and odd-parity

BiPoSH modes.

Similarly, errors due to the pixellation of the sky introduce BiPoSH modes of both parities. The

effect of pixellation is to average the temperature over the entire pixel, and then assign that value

to the location of the pixel center. Clearly, this process will introduce both curl- and gradient-type

deflections of the CMB temperature field, and as such induces both even- and odd-parity BiPoSH

modes.

Finally, we consider odd-parity BiPoSH modes induced by pointing errors. A telescope pointing

error can be described as a process that causes the positions of points on the sky to be mislabeled.



100

This then causes an effective deflection of the points on the sky n̂obs = n̂ + ~∆(n̂), where n̂obs is the

direction that the telescope believes it is pointed in and n̂ is its actual pointing direction. As we

saw in Section 5.3.1, we can decompose this deflection field ~∆(n̂) into gradient and curl components,

which source even- and odd-parity BiPoSHs, respectively. Thus, from Eq. (5.18) we can see that

any pointing error that has a nonzero curl component ~∇~θ × ~∆(n̂) will excite odd-parity BiPoSHs.

Imagine, for example, that a satellite such as Planck misestimates the rate with which it is

precessing. Since it is this precession that builds up observations of subsequent rings of the sky,

such a misestimation would cause a shearing of each ring relative to its neighbors. This type of a

deflection has a nonzero curl component, and thus would excite odd-parity BiPoSHs. Measurement

of these BiPoSHs, and in particular the odd-parity BiPoSHs, can therefore provide a useful check

for such pointing errors.

5.4 BiPoSHs as Probes of Parity Violation

5.4.1 Correlation of Opposite-Parity Lensing Components

Since the A⊕LM
ll′ and A	LM

ll′ have opposite parity for the same L and M , a cross-correlation between

the two can arise only if there is some parity-breaking in the physics responsible for producing the

departures from SI/Gaussianity. Here we mention, by way of example, chiral GWs as a mechanism

to produce such a parity-violating correlation (277; 278; 279).

The contribution to the cross-correlation power spectrum from a single Fourier mode in the

ẑ direction with + polarization is CφΩ
L (kẑ) =

∑
m 〈φLM Ω∗LM 〉 /(2L + 1) = 0; it vanishes as the

contribution from M = 2 is canceled by that from M = −2. And if this is true, then by rotational

invariance it is true for any other linearly polarized GW. We thus conclude that a stochastic GW

background predicts CφΩ
L = 0. In other words, there is no cross-correlation between φ and Ω, and

thus no cross-correlation between the even and odd BiPoSHs, A⊕LM
ll′ and A	LM

ll′ .

Following Ref. (277), however, consider a right-circularly polarized GW: hR = h+ + ih× (i.e., we

sum a + polarization wave with a × polarization wave out of phase by 90◦). The azimuthal-angle

dependence for the wave is then e2iϕ, and ΩLM and φLM have contributions only from M = 2.

There is thus a nonzero cross-correlation between φ and Ω. Similarly for a left-circularly polarized

GW hL = h+ − ih×, the ϕ dependence is e−2iϕ, and only M = −2 modes are excited. There is

again a cross-correlation between φ and Ω, but this time with the opposite sign.

In the standard inflationary scenario, there are equal numbers of right- and left-circularly polar-

ized GWs, and the cross-correlation between φ and Ω therefore vanishes. But if for some reason there

is an asymmetry between the number of right- and left-circularly polarized GWs (277; 278; 279; 280),

a manifestation of parity breaking, then there may be a parity-violating cross-correlation between φ

and Ω, and thus between A⊕LM
ll′ and A	LM

ll′ .
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The chirality of the GW background can be parametrized by an amplitude A which can take

values between −1 and 1, where A = +1 denotes that all of the GWs are right-circularly polarized,

and A = −1 denotes that they are all left-circularly polarized. But we have seen that a right-handed

GW contributes only to M = 2 modes, while a left-handed one contributes only to M = −2. We can

denote this by weighting M = 2 components by (A+1)/2 and M = −2 components by (A−1)/2, so

that our version of Eq. (5.30), for example, that is appropriate to the case of a chiral GW background

will be

Ωten +
LM (kẑ) = iLh+(~k)

[
(1 + A)

2
δM,2 −

(1−A)
2

δM,−2

]√
2L + 1

2
FΩ

L (k), (5.40)

and similarly for Eq. (5.33). In this way a fully right circularly-polarized GW background will

have only contributions from M = 2, a fully left-circularly polarized background will have only

contributions from M = −2, and if the amount of left and right-circularly polarized waves is equal,

that is if the GW background is non-chiral, the contributions from M = 2 and M = −2 cancel. The

φ-Ω cross-correlation power spectrum is given by

CφΩ
L = A

∫
d3k

(2π)3
PT (k)Fφ

L (k)FΩ
L (k). (5.41)

Refs. (269; 271; 242) have shown that the amplitude of the stochastic gravitational-wave back-

ground is probably too small, even with the most optimistic assumptions, to produce a detectable

gravitational-lensing signal in the CMB. The example of a chiral gravitational-wave background as a

possible source of a detectable parity-breaking BiPoSH correlation is principally of academic interest.

Still, Ref. (270) has recently argued that weak lensing of the CMB by GWs may be detectable in its

cross-correlation with the CMB-polarization pattern induced by these GWs (272; 273; 281; 282; 283).

We thus surmise that a chiral gravitational-wave background may still be able produce a detectable

parity-breaking signal in BiPoSHs in cross-correlation with the CMB polarization, an idea we explore

in the next section.

5.4.2 Large-Angle CMB Polarization Spectra

We follow the work of Ref. (270), finding the multipole moments of the CMB E- and B-type po-

larization spectra for large angular scales by considering only those modes that are produced after

reionization. The spherical-harmonic coefficients of B-type polarization modes can be decomposed

as

Blm =
∫

d3k

(2π)3
∑

α=+,×
Bα

lm(~k), (5.42)

where Bα
lm(~k) is the amplitude of polarization B modes multipole moment lm in the direction ~k. The
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general form of this amplitude is quite complicated, but we can simplify it if, as in Section 5.3.4,

we consider only a single, +-polarized GW traveling in the ẑ direction with wavenumber k. In this

case, the B-mode amplitude can be written

B+
lm(kẑ) = il hα(~k) (δm,2 − δm,−2)

√
2l + 1

2
FB

l (k), (5.43)

FB
l (k) =

1
2l + 1

√
9π

2

∫ η0

ηre

dη τ̇(η) {(l + 2)jl−1[k(η0 − η)]− (l − 1)jl+1[k(η0 − η)]}
∫ kη

kηlss

dx
−3 j2(x)

x

j2(kη − x)
(kη − x)2

,

(5.44)

where the hα(~k) are the amplitudes of GW modes as defined in Eq. (5.25), τ̇(η) is the scattering rate

τ̇(η) = ne(η) σT a(η), with ne the electron density, σT the Thompson scattering cross section, and

a the scale factor, and ηre and η0 are the conformal times at reionization and today, respectively.

Since we are only interested in small scales, we find the approximation ηlss = 0 is sufficient for our

purposes, making the last integral significantly faster to evaluate. The result above agrees with the

results of Ref. (270), whose method we followed in its derivation, up to a factor of i.

We find that the corresponding E-type polarization multipoles from tensor perturbations take

the same form as Blm above, except for the opposite sign in front of δm,−2 and a different fac-

tor in the curly brackets in Eq. (5.44). From Ref. (283) we find this alternative form to be

(2l + 1)/2
{
−jl(x) + j′′l (x) + 2jl(x)/x2 + 4j′l(x)/x

}
, where here x = [k(η0 − η)], and derivatives

are with respect to x. Employing spherical Bessel function identities, we can then write the E-type

polarization multipoles as

Elm =
∫

d3k

(2π)3
∑

α=+,×
Eα

lm(~k), (5.45)

E+
lm(kẑ) =il hα(~k) (δm,2 + δm,−2)

√
2l + 1

2
FE

l (k), (5.46)

FE
l (k) =

1
2l + 1

√
9π

2

∫ η0

ηre

dη τ̇(η)
{

(2l + 1)
[k(η0 − η)]2

jl[k(η0 − η)]− (2l + 1)(3l2 + 3l − 4)
(2l − 1)(2l + 3)

jl[k(η0 − η)]

+
l(l + 3)

2(2l − 1)
jl−2[k(η0 − η)] +

(l + 1)(l − 2)
2(2l + 3)

jl+1[k(η0 − η)]
}∫ kη

kηlss

dx
−3 j2(x)

x

j2(kη − x)
(kη − x)2

,

(5.47)

where the terms are defined as they were above for the Blm amplitudes.
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Figure 5.3: Here we plot the cross-correlation CφB
L between the gradient φ modes of the weak

lensing of cosmic shear with the curl-type B modes of the CMB polarization in blue circles, and the
noise on this measurement due to cosmic variance and Planck satellite instrumental noise in red +s.
Since these quantities are of opposite parity, in the absence of parity-breaking physics we expect
this cross-correlation to vanish. However, if we assume, for example, that the entire allowable GW
background is right-circularly polarized, such a cross-correlation could occur. The cross-correlation
is linearly proportional to the chirality parameter A, defined such that A = 1 denotes a completely
right-circularly polarized GW background, A = −1 denotes completely left-circularly polarized, and
A = 0 denotes an unpolarized background. Here we assume the maximum allowable tensor-to-scalar
ratio r = 0.24, the limit from WMAP-7 data combined with BAO and the H0 measurement (276).
Cusps in the absolute value of the correlation function correspond to sign changes of the correlation
function.

5.4.3 Parity-Violating Correlations from Chiral GWs

We now want to calculate the expected cross-correlation between CMB-polarization multipole coef-

ficients and weak-lensing-induced BiPoSHs of opposite parity. Note that these cross-correlations are

directly related to the parity-odd three-point correlations discussed in Ref. (284). As we mentioned

above, if there is no parity-violating physics, then in the cross-correlation of a parity-even and a

parity-odd observable, M = 2 terms and M = −2 terms will cancel each other, giving a net zero

cross-correlation. However, if for example the GW background is chiral, then parity is broken and we

can get a nonzero cross-correlation between opposite parity observables. As we saw in Section 5.4.1,

a right-handed GW contributes only to M = 2 modes, while a left-handed one contributes only to
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Figure 5.4: Here we plot the cross-correlation CΩE
L between the curl-type Ω modes of cosmic shear

with the gradient-type E-modes of the CMB polarization in blue circles, and the noise on this
measurement due to cosmic variance and Planck satellite instrumental noise in red +s. As with
the φ−B correlation, we assume a completely right-circularly polarized GW background, with the
maximum currently permitted tensor-to-scalar ratio.

M = −2. If we carry out a similar procedure for Eqs. (5.43), and (5.46) as we did in Eq. (5.40),

weighting M = 2 components by (A+1)/2 and M = −2 components by (A−1)/2, we can calculate

parity-violating correlations between polarization and lensing components while accounting for the

amplitude and handedness of a chiral GW background.

First considering the cross-correlation between B-modes of the CMB polarization and gradient-

type modes of cosmic shear, we write

CφB
L =

1
2L + 1

∑
M

〈φLMB∗
LM 〉.

As before, by rotational invariance we know that both + and × polarizations will contribute equally

to CφB
L , as will modes with any wavenumber ~k whose magnitude k is the same. We can see that

only φten
LM will contribute to this correlation, and not φsca

LM , as the scalar perturbation field is not

correlated, on average, with the tensor perturbation field. Then using Eqs. (5.32), (5.33), (5.35),

(5.42) and (5.43), we can write this cross-correlation as
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CφB
L = A

∫
d3k

(2π)3
PT (k) Fφ

L (k) FB
L (k). (5.48)

Similarly, we can write the cross-correlation between E-type polarization modes and curl-type

modes of cosmic shear, using Eqs. (5.29), (5.30), (5.35), (5.45), and (5.46), as

CΩE
L = A

∫
d3k

(2π)3
PT (k) FΩ

L (k) FE
L (k), (5.49)

where the GW power spectrum is given by

PT (k) =
π2 r ∆2

R(k0)
2 k3

.

We want to calculate the magnitude and shape of such correlations, to determine whether such a

signal is observable. We use the WMAP 7-year cosmological parameters and assume the maximum

allowable level of GWs from early universe physics, with a tensor-to-scalar ratio r = 0.24, the limit

from the WMAP-7 data combined with BAO and the H0 measurement (276). We also assume that

the GW background is entirely right-circularly polarized. As a first estimate, we calculate the level

of such correlations while making several assumptions. We use the approximate form of the GW

transfer function T (k, η) ' 3j1(kη)/(kη), assume that reionization happened instantaneously so that

the electron density ne is equal to a step function, and neglect contributions to the polarization modes

that came from last scattering. The two last assumptions affect mostly the higher-L multipoles,

which in this cross-correlation are suppressed since we see that φten
LM and Ωten

LM fall off very fast with

L.

With these assumptions, we have calculated the correlation functions CφB
L and CΩE

L , and show

them as the blue circles in Figs. 5.3 and 5.4. Note that the absolute value of the correlation

functions are plotted, and that the cusps in the profiles result from sign changes. Note also that both

correlation functions are linearly proportional to the chirality parameter A, so that they would flip

in sign if the GW background were left instead of right-circularly polarized. We are only interested

in low multipoles, since our assumptions break down for larger L, and such multipoles are strongly

suppressed in correlation with the weak-lensing modes.

5.4.4 Variance of φ-B and Ω-E Correlations

It is useful to know the variance with which we could measure such parity-violating cross-correlations.

From Ref. (272) we see that the variance with which we could measure the cross-correlation CXY
L

of two distinct Gaussian random variables X and Y is given by

(
∆CXY

L

)2 ≡ 〈(ĈXY
L − CXY

L

)2
〉

,
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where ĈXY
L = 1/(2L + 1)

∑
M XLMY ∗

LM is the estimator for the cross-correlation, and CXY
L is its

theoretical value under the null hypothesis. Ref. (272) then evaluates this variance, assuming distinct

X and Y , to be

(
∆CXY

L

)2
=

1
2L + 1

[(
CXY

L

)2
+ CXX map

L CY Y map
L

]
, (5.50)

where, as before, CXX map
L = W 2

LCL +NXX
L , with WL the window function defined in Section 5.2.3,

and NXX
L the noise in the measurement of CXX

L .

In our case, the null hypothesis is that there is a GW background with the maximal tensor-

to-scalar ratio, but it contains equal numbers of right- and left-circularly polarized GWs, i.e., it is

not chiral. In this case, the theoretical value of parity-violating cross-correlations is zero, so that

the first term in Eq. (5.50) vanishes. Then, assuming that φ̂LM and Ω̂LM are Gaussian random

variables, a reasonable assumption since many uncorrelated noise processes are likely to contribute

to this measured value, we find for the variances,

(
∆CφB

L

)2

=
1

2L + 1
Cφφ map

L CBB map
L (5.51)(

∆CΩE
L

)2

=
1

2L + 1
CΩΩ map

L CEE map
L . (5.52)

To calculate these errors, we know that the instrumental errors on the polarization power spectra

are given by

NEE
L = NBB

L =
8π(NET)2

tobs

√
fsky

.

We use the Planck-satellite parameters, as in Section 5.3.4. We also use the CMB anisotropy

calculator CAMB to calculate the temperature and polarization power spectra including effects at

the surface of last scatter (285). The resulting errors are shown as red +s in Figs. 5.3 and 5.4. This

noise, which combines instrumental and cosmic-variance sources, is at least an order of magnitude

above the corresponding maximum signal level at low multipoles, and drops less rapidly with l so

that the low multipoles yield the highest signal-to-noise.

5.4.5 Signal-to-Noise Ratio of Chiral GW Background Detection

We finally wish to calculate the achievable signal-to-noise of a measurement of the magnitude of

such cross-correlations given our calculations of their shapes and variances. Such a measurement

would tell us about the presence or absence of a chiral GW background, or of parity violation in

the processes that caused departures from Gaussianity/SI in general. We can phrase the aim of this
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calculation as finding the error with which we could measure the chirality parameter A, which sets

the amplitude of the cross-correlations relative to their maximum values in the case of a completely

circularly polarized GW background, as in Eqs. (5.48) and (5.49). Let us calculate this for the case

of the φ-B cross-correlation; the Ω-E case will be similar.

We define a new quantity CφB
L max, defined such that

CφB
L = A CφB

L max.

If we assume that the instrumental noise on CφB
L is Gaussian, so that ĈφB

L ≡ W−2
L CφB

L is a random

variable drawn from a Gaussian probability distribution with variance
(
∆CφB

L

)2

and mean ACφB
L max,

we can find the maximum-likelihood estimator for A to be

Â =

∑
L ĈφB

L CφB
L max

(
∆CφB

L

)−2

∑
L

(
CφB

L max

)2 (
∆CφB

L

)−2 .

Then, assuming that the instrumental noise is uncorrelated between different multipoles, the variance

of this estimator is given by

〈
Â2
〉

=

[∑
L

(
CφB

L max

)2 (
∆CφB

L

)−2
]−1

.

The maximum signal-to-noise with which we can measure this amplitude is given by

(
S

N

)φB

max

=
Âmax√〈

Â2
〉 =

[∑
L

(
CφB

L max

)2 (
∆CφB

L

)−2
]1/2

. (5.53)

The same method can be used to calculate the obtainable signal-to-noise from the Ω-E cross corre-

lation, giving

(
S

N

)ΩE

max

=

[∑
L

(
C ΩE

L max

)2 (
∆C ΩE

L

)−2

]1/2

. (5.54)

Using the values of the cross-correlations and their errors calculated above, we find that the

obtainable signal-to-noise from measurement of these cross-correlations is 0.002 for CΩE
L and 0.01

for CφB
L . These numbers are too small for us to have any reasonable expectation of detection using

the Planck satellite. Recalculating the above errors assuming an ideal CMB experiment, with no

instrumental noise and infinite resolution, the values of the signal-to-noise only change by a factor

of two, indicating that this method is not likely to be a promising way to detect a chiral GW

background.
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5.5 Lensing of 21 cm Fluctuations by Primordial Gravita-

tional Waves

In this section, we apply the mechanics of BiPoSH decomposition described above to a new system:

intensity maps of the 21 cm radiation. Our work resembles in spirit that in Ref. (286) which

argued that the huge number of Fourier modes available in 21 cm maps of the dark-age hydrogen

distribution would provide considerable statistical significance in detecting the IGW distortion to

matter fluctuations. However, they consider the intrinsic distortion to matter fluctuations by IGWs.

On the other hand, we consider the distortion to the images of the matter distribution by lensing

by IGWs. Our work is related to that of Ref. (287), who considered reconstruction of the lensing

field due to density perturbations with 21 cm fluctuations.

As before, we consider the curl component of lensing induced by GWs, as given in Eqs. (5.30),

(5.31) and (5.36). The angular power spectra for the lensing of sources at several redshifts are shown

in Figure 5.5; for L . 6, the source-redshift dependence is weak for a scale-invariant gravitational-

wave background.

Once again, we can write the minimum-variance estimator for the spherical-harmonic coefficients

for the curl component of lensing is

Ω̂LM =
∑

ll′ Q
	L∗
ll′ Â	LM

ll′
/

(Cmap
l Cmap

l′ )∑
ll′

∣∣Q	L
ll′

∣∣2 / (Cmap
l Cmap

l′ )
, (5.55)

where Cmap
l = Cl + Cn

l is the angular power spectrum of the map with Cl now the power spectrum

of the 21 cm intensity and Cn
l the noise power spectrum, and the sums are only over l+ l′+L =odd.

We use lower-case l for 21 cm fluctuations and upper-case L for the lensing-deflection field. Here,

Q	L
ll′ is given by Eq. (5.12), and the estimator for the BiPoSH coefficients is given by Eq. (5.6). As

before, the estimator for the power spectrum of the curl component of the deflection field is then

ĈΩ
L =

∑
m |Ω̂LM |2/(2L + 1). The variance of Ω̂LM under the null hypothesis is given by

(
σΩ

L

)2 ≡ 〈|Ω̂LM |2
〉

= 2

[∑
ll′

∣∣QL	
ll′

∣∣2 / (Cmap
l Cmap

l′ )

]−1

. (5.56)

This noise power spectrum is plotted in Figure 5.5 using the 21 cm power spectra from Ref. (222)

and taking the noise power spectrum Cn
l = 0 for l < lmax and Cn

l = ∞ for l > lmax. We show

results for several lmax which are, roughly speaking, the maximum value of l with which the 21

cm power spectrum can be measured with high signal-to-noise. The signal-to-noise (squared) with
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Figure 5.5: The power spectrum for the deflection-field curl component for lensing of sources at
various redshifts by a scale-invariant spectrum of IGWs of the largest amplitude (r = 0.2) consistent
with current measurements. We also superimpose noise power spectra for lensing reconstruction
carried out to various values of lmax. Also shown is the noise power spectrum we estimate from
co-adding the signals from all possible redshifts, assuming an lmax = 106.
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which IGWs can be detected is then

(S/N)2 =
∑
L

(L + 1/2)
(
C Ω

L

)2
/(σΩ

L)4. (5.57)

Before reviewing the numerical results, it is instructive to consider an analytic estimate of the

noise power spectrum
(
σΩ

L

)2. To do so, we use the flat-sky approximation (242),

(
σΩ

L

)−2
=
∫

d2l

(2π)2
(~L×~l)2(Cl − C|~L−~l|)

2

2Cmap
l Cmap

|~L−~l|
. (5.58)

For L � l we approximate |~L−~l| ' l−L cos α, where cos α ≡ L̂·l̂, and C|~L−~l| ' Cl−L(cos α)(∂Cl/∂l).

If Cl ∝ ln, then

(
σΩ

L

)−2
=

∫
l dl

4π2

∫ 2π

0

dα
1
2
L4 sin2 α cos2 α

(
∂ lnCl

∂ ln l

)2

' L4n2l2max/(64π). (5.59)

The flat-sky calculation is accurate for L & 20 and overestimates the noise by up to 30% at smaller

L. As shown in Figure 2 in Ref. (222), the 21 cm power spectrum extends without suppression out

to l & 106, and values of lmax ∼ 107 are perhaps achievable with a bit more effort. However, given

the rapid suppression of the 21 cm power spectrum at higher l, the return on the investment of noise

reduction in terms of higher lmax will probably be small above lmax ' 107.

We now approximate the Ω power spectrum (for r = 0.2) as CΩ
L ' 10−11 (L/2)−6. Although

this approximation differs from the numerical results for different redshifts z at L ' 30, it is quite

accurate for all 30 . z . 200 for the smallest L where most of the signal arises. From Eq. (5.57),

the signal-to-noise with which the gravitational-wave background can be detected is

(S/N) ' 4.5
(
lmax/106

)2
(n/2)2 (Lmin/2)−1

, (5.60)

where Lmin is the minimum L that can be measured.

There are several things to note about this result: (1) The signal-to-noise obtained with the

adopted fiducial values for lmax, L, and n is significant. (2) The scaling of the signal-to-noise with

lmax is very rapid, and greater than what might have been expected (∝ lmax) naively. The origin

of this rapid scaling is similar to that for detection of the local-model trispectrum (288) (as the

signal we are measuring here is, strictly speaking, an intensity trispectrum). Thus, the sensitivity

to a gravitational-wave background increases very rapidly as the angular resolution of the map is

improved. (3) The sensitivity decreases as Lmin is increased, so good sky coverage is important for

gravitational-wave detection.
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Figure 5.6: Shown are the integrands of the curl-mode transfer function Eq. (5.31) for three values of
the angular scale of the lensing field. These curves qualitatively show the redshift distribution of the
GWs which lens the background 21 cm field on the observed scale of the lensing distribution. The
curves are normalized such that the area under each is unity. It is clear that, for the lowest multipoles
of the lensing field, all of the lensing is occuring very near to the observer, so the assumption that
the lensing field is the same for all 21 cm redshifts is justified.
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While a signal-to-noise of 4.5 is respectable, and could be improved with even larger lmax, we

can go much further: By changing the frequency at which the 21 cm map is made, we look at

spherical shells of atomic hydrogen at different redshifts. Suppose, then, that we have 21 cm maps

at two different frequencies that correspond to spherical shells separated along the line of sight by a

comoving distance δR. Those two maps are statistically independent at the highest l (where the vast

majority of the signal-to-noise for IGW detection arises) if (δR/R) & l−1. If ∆R is the separation

in comoving radius corresponding to the entire frequency range covered by the observations (say,

redshifts z ' 30−200), then the total number of statistically independent maps that can be obtained

is Nz ' (∆R/δR) ' l(∆R/R) ' 0.15 l. If so, then each map contributes an independent upper limit

to the GW background amplitude, and the signal-to-noise from these redshift ranges can be added

in quadrature, increasing the total signal-to-noise by a factor N
1/2
z . But there may be room for

even more improvement: If most of the lensing occurs at redshifts z . 30, then the lensing pattern

is the same for all redshift shells in which case every redshift shell contributes coherently to an

estimator for ΩLM . In this case, (σΩ
L)2 is decreased by factor N−1

z , and the signal-to-noise increased

by a factor Nz relative to the single-z estimate. In Figure 5.6, we show the redshift dependence

of the integrand of the curl-mode transfer function Eq. (5.31) for three values of the lensing field

multipole moment. This quantity directly shows the redshifts of the GWs that are contributing to

this multipole of the lensing field, and the figure clearly shows that for low multipole moment, all of

the lensing is occurring very close to the observer at z = 0. While these curves have been normalized

for comparison, we know that almost all of the signal comes from the lowest multipole moments. In

this case, then, the assumption that the lensing field for each redshift slice of 21 cm radiation is the

same is justified.

Using that most of the signal comes from the lowest L, we estimate that the signal-to-noise for

IGW detection obtained by coadding redshift shells will be

(S/N)tot ' 6.8× 105
(
lmax/106

)3
(n/2)2 (Lmin/2)−1

, (5.61)

assuming (as above) the largest currently allowed IGW amplitude r ' 0.2. Put another way, the

smallest tensor-to-scalar ratio that can be detected at the 3σ level is

r ' 10−6 (Lmin/2)
(
lmax/106

)−3
(n/2)−2

. (5.62)

Note that the dependence on lmax is very steep, and including all the information to lmax = 107 could

yield a detection threshold of r ' 10−9. Note also that a more-sophisticated analysis, including the

full structure of cross-correlations between redshift maps, may be able to improve upon the N
1/2
z

scaling even in the case where the lensing signal is incoherent at different redshifts. The full-sky

calculation, including a more-realistic shape of Cl, yields a result consistent with this estimate
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(Figure 5.5).

To put this result in perspective, we note that the current upper bound r . 0.22 comes from

WMAP measurements of temperature-polarization correlations, although not from B-mode null

searches. The forthcoming generation of sub-orbital B-mode experiments are targeting r . 0.1, and

a dedicated CMB-polarization satellite might then get to r ∼ 10−2 (289).

Measurement of gravitational-wave amplitudes r . 0.01 with CMB polarization will have to

contend with the additional contribution to B-mode polarization from gravitational lensing (by

density perturbations) of primordial E modes (290). The two contributions (IGW and lensing) to

B modes can be distinguished if the lensing deflection angle can be reconstructed with small-scale

CMB fluctuations (291; 292). This may allow values r ∼ 10−3 to be probed, although it requires a

far more sophisticated CMB experiment (with far better angular resolution) than simple detection

of B modes would require.

Further progress in separation of lensing and IGW contributions to B modes can be obtained with

21 cm measurements (287) of precisely the type we discuss here but of the curl-free lensing component

(due to density perturbations) rather than the curl component from IGWs. Such measurements,

when combined with a precise CMB polarization experiment, can in principle get to IGW amplitudes

comparable to those we have discussed here. Measurement of the 21 cm curl component may

therefore ultimately be competitive for the most sensitive probe of IGWs, even if a sensitive CMB-

polarization experiment is done. Furthermore, if both 21 cm observations and a CMB-polarization

map are available, then measurement of the 21 cm curl component can be used as a cross-check and

to complement a measurement from the combination of B-mode polarization with 21 cm lensing

subtraction.

While we have focussed here on the dark ages, similar measurements can be performed with 21

cm fluctuations from the epoch of reionization and with galaxy surveys; the critical issue will be how

high lmax can get. While the 21 cm curl component induced by lensing by density perturbations

at second order is too small to be an issue (242), a curl component may conceivably arise since

the atomic-hydrogen distribution is not perfectly Gaussian due to non-linear gravitational collapse

and baryonic effects. We speculate that this curl component will be small for the small-L modes at

which the IGW signal peaks. We also imagine that the information from multiple redshifts may be

combined to separate the IGW and any bias-induced signal.

To close, we note that the measurements we describe will be challenging and are very futuristic

compared to what current and next-generation experiments will accomplish. Still, 21 cm cosmology

is an exciting and rapidly developing experimental arena, for a good number of scientific reasons

(219), and we hope that the idea presented here provides one additional motivation to carry such

work forward.
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5.6 Conclusions

BiPoSHs are a formalism to describe correlations between two different spherical-harmonic coeffi-

cients of the CMB temperature field, which can occur if the CMB temperature field is not exactly

Gaussian or statistically isotropic. This chapter introduces odd-parity BiPoSHs, a set of BiPoSHs

that has not yet been studied, and details how they can be estimated from knowledge of the CMB

temperature fluctuations.

We calculate the even- and odd-parity BiPoSHs that are sourced by gradient- and curl-type

deflections of the CMB, respectively, and from this we obtain estimators for these deflections in terms

of the BiPoSH coefficients. We show that lensing by scalar metric perturbations causes only gradient-

type deflections, and thus only sources even-parity BiPoSHs. However, lensing by GWs produces

both gradient- and curl-type deflections and thus sources both even- and odd-parity BiPoSHs. We

calculate the expected power spectra of deflections due to scalar and tensor perturbations and their

errors, and conclude that a reasonable signal-to-noise measurement of the amplitude of the GW

background cannot be obtained from these autocorrelations even with the ideal CMB experiment,

and thus from autocorrelations of the BiPoSH coefficients.

Although lensing by GWs produces both even- and odd-parity BiPoSHs, their opposite parity

implies that they could not be correlated. However, in the presence of parity-violating physics, such

as a chiral GW background, this parity argument breaks down and we might expect a correlation.

We consider such a cross-correlation, and encourage its measurement even though the likelihood of

observing a cosmological signal is low.

A GW background also produces signals in the E- and B-type CMB polarization spectra, which

are of even and odd parity, respectively. We consider the possibility that a chiral GW background

would produce cross-correlations between opposite-parity components of lensing and polarization,

and calculate the expected magnitude and errors of such cross-correlations. Although we find that

the likelihood of observing a cosmological signal is low, we encourage the measurement of these

cross-correlations since such a detection would provide evidence of important systematic errors or

even new parity-breaking physics.

We also apply the BiPoSH decomposition formalism to the 21 cm radiation, and in particular

consider the detection of a GW background using the induced curl modes of lensing. We find

that, with a futuristic 21 cm map at several redshifts, we can obtain very strong constraints on

the amplitude of the GW background. We note that, to obtain comparable constraints, missions

probing the B-modes of the CMB polarization will need to have a very precise knowledge of the

scalar lensing field to remove contamination from lensed E-modes. This type of knowledge can be

obtained from exactly the type of 21 cm experiment that we describe here, implying that these two

methods may eventually be comparable, complementary tests of the GW background.
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We note that the BiPoSH formalism can also be generalized to include the polarization as well. It

may be that inclusion of the polarization improves the sensitivity to these parity-breaking, and other,

signals. Finally, we note that weak-lensing distortions of distant galaxies can also be decomposed

into curl and gradient components (267; 293). Similar tests for parity violation can thus also be

carried out with weak lensing of galaxies.
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Appendix A

Accretion Shock Calculation

The accretion shock model of (88) upon which we base our implementation makes several assump-

tions. The cluster is assumed to be spherically symmetric and in hydrodynamic equilibrium, with

an effective equation of state P (r) ∝ [ρ(r)]γeff , where γeff = 1.2, and with the actual equation of

state of a free monatomic gas, P = K(s)ρ5/3, where K is a function of the specific entropy. The

cluster potential is assumed to be of the NFW (294) type, and the post-shock velocity of the gas is

assumed to be negligible.

With these assumptions, they obtain the following hydrostatic model of the gas within the

accretion shock:

T (x) = T∆g(x) (A.1)

ρ(x) = ρg[g(x)]1/(γeff−1) (A.2)

P (x) =
T∆ρg

µmp
[g(x)]γeff/(γeff−1) (A.3)

g(x) = g0(x) + g1 (A.4)

g0(x) =
2(γeff − 1)

γeff

ln(1 + cx)
ln(1 + c)− c(1 + c)−1

1
x

. (A.5)

Here, x ≡ r/rvir is the ratio of the cluster-centric radius to the virial radius, ρg and g1 are

constants of integration, which can be specified by the constraint that the baryonic mass inside the

shock radius is equal to the total baryonic mass of the halo fb M and the shock jump condition

relating post-shock temperature to the incoming velocity, respectively.

In our implementation of this model we relax two particularly unjustified assumptions, that the
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accretion shock is always strong, and that the constant g1 in Eq. (A.4) is negligible. To relax these

assumptions we apply the further (better-founded) assumption that the gas accreting onto the halo

is compressed and heated adiabatically as it makes its way to the shock radius from the mean density

IGM. Using this assumption, and also assuming that the temperature of the mean IGM is 3000 K,

we can calculate the temperature just outside the shock, from which we can obtain the Mach number

of the shock M.

With this prescription for finding the strength of the shock M, where M → ∞ is the strong-

shock limit initially imposed by (88), we use the shock relations of (295) to obtain an equation for

g1:

g1 =
((2γM2 − (γ − 1))((γ − 1)M2 + 2)

γ(M2 − 1)2
ξ

xac
− 2(γeff − 1)

γeff

ln(1 + cxac)
ln(1 + c)− c(1 + c)−1

1
xac

. (A.6)

Here, the ratio of the accretion shock radius to the virial radius is shown as xac. We finally find

that the equation for the accretion shock, Eq. (A12) in (88), is modified to

[
3C
4

ρ̃I(xac, g1, γeff , c)
]2

x3
ac + xac − 2 = 0, (A.7)

where C is the shock compression factor, the ratio of the densities internal and external to the

accretion shock,

C ≡ ρ2

ρ1
=

(γ + 1)M2

(γ − 1)M2 + 2
, (A.8)

I is the integral

I(xac, g1, γeff , c) ≡ 1
x3

ac

∫ xac

0

[
g0(x) + g1

g(xac)

]1/(γ−1)

x2dx, (A.9)

and we use the variable ρ̃ which is defined in (88) to be

ρ̃ ≡ 4
3

2
∆

1/2

(Ht)−1 d lnM

d ln t
. (A.10)

There is a further subtlety in the calculation of the mass accretion rate onto halos, which has

a strong effect on the final accretion shock radius through its appearance in Eq. (A.10). We have

explored several possibilities, but in this work we adopt a spherically symmetrized model averaged

over the dynamical time of the halo. More specifically, we calculate the average mass accretion rate

over the past one dynamical time of the halo, including all of the mass added to the most massive

progenitor of the current halo through mergers or accretion. Since we use this mass as an estimate

of the spherically accreted mass of the halo, we are making the assumption that all of this added
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mass, even that which was added through mergers, will distribute itself and cause accretion shocks

much as the same mass of spherically symmetric accretion would.
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