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ABSTRACT

Both Pd(0) and Pd(II) have had, and continue to have, far-reaching impacts on

organic synthesis. The versatile nature of palladium, in conjunction with the mechanistic

understanding and predictive models that have been elucidated, has permitted a wealth of

exploration into the seemingly endless potential of this metal. The utility of palladium is

described in the context of the syntheses of the pharmaceutical agents Prozac® and

Singulair®, as well as the natural products dragmacidin F and telomestatin.

First, the palladium-catalyzed aerobic oxidative kinetic resolution for the

enantioselective preparation of a variety of pharmaceutical substances, including Prozac®

and Singulair®, is described. In this regard, the versatility of this resolution is further

demonstrated by the diversity of the substrates chosen for this study, and for the first time

this work extends the utility of the resolution to include amino alcohol derivatives and

highly functionalized benzylic alcohols.

Secondly, an enantiodivergent strategy for the total chemical synthesis of both

(+)- and (–)-dragmacidin F from a single enantiomer of quinic acid has been developed

and successfully implemented. Although unique, the synthetic routes to these antipodes

share a number of key features, including novel Pd(0) reductive isomerization reactions,

Pd(II)-mediated oxidative carbocyclization reactions, halogen-selective Suzuki couplings,

and high-yielding late-stage Neber rearrangements.

Finally, progress toward the total synthesis of the potent telomerase inhibitor

telomestatin is described. Palladium-mediated cross-coupling reactions are employed to

assemble oligooxazole intermediates from oxazole building blocks. Additionally, this

strategy utilizes a minimum number of protecting groups, and proposes a unique

aryl–aryl macrocyclization as the last step of the synthesis. In addition to the biological

relevance of the desired target, a successful total synthesis of telomestatin would also

enable rapid access to the preparation of telomestatin analogs. This would allow for the

investigation of key interactions between telomestatin and the G-quadruplex.
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