THE ADAPTIVE NATURE OF PALLADIUM REACTIVITY IN SYNTHESIS

Thesis by

Daniel David Caspi

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended February 15, 2008)

© 2008

Daniel David Caspi

All Rights Reserved

To my family

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, mentor, and friend, Professor Brian Stoltz. His enthusiasm and constant support have made graduate school one of the most rewarding experiences of my life. I admire him for his dedication to his group, his strive for perfection, his insight into science, and his genuine concern for the well-being of his students. Working under his supervision has been an incredible privilege, and I have greatly appreciated his seemingly infinite curiosity about chemistry. I always remember feeling far more excited about the state of my project on the way out of his office than I did going in. I sincerely thank Brian for fostering my personal development and maturation as a scientist, and his amazing ability to balance a highly challenging work environment with good humor and compassion. I have also greatly appreciated the support of his wife Erna, and thanks to Harry, I will forever have a fellow Stoltz lab member with whom to celebrate my birthday with every year.

I would also like to extend a wholehearted thanks to the members of my thesis committee: Professors Bob Grubbs, Bill Goddard, and Peter Dervan. Professor Grubbs, the chair of my committee, has been extremely supportive, and he also was an instrumental component of my job search. I am grateful for all of the advice and input he has given me, and I am awed by his humility. I felt honored to be a part of the Caltech community's celebration when he received the Nobel prize. Professor Goddard taught me in one of my first classes at Caltech, and I have been learning from him ever since. His ability to juggle such a multitude of projects is impressive, and he has always brought insightful questions and good humor to the table. I am also indebted to Professor Dervan, who generously stepped in to be the final member of my committee. Even though he is my most recent committee member, his willingness to provide guidance and support has been outstanding. I would also like to thank Professors MacMillan and Peters for their tenure on my committee, and for helping to shape me as a scientist during the earlier portion of graduate school. Although not official members, I would also like to warmly acknowledge Professors John Bercaw, Dennis Dougherty, and Dave Tirrell, with whom I have had a number of enjoyable discussions. I greatly admire their skillful leadership and willingness to listen, and I aspire to model my future management style after theirs.

I would also like to express my gratitude to my high school chemistry teacher, Mr. Jack Coakley, who was the first person to attract my interest to this field. His enthusiasm made learning chemistry incredibly fun, which is really hard to do since *everyone* had a "terrible high school chemistry teacher." He made chemistry tangible and exciting for me, which ultimately led me to pursue it as my college major.

While at UCSD, I was introduced to organic chemistry by Professors Nat Finney and Yitzhak Tor. I am incredibly grateful to them for getting me excited about the field, as well as for discussions we had years later about graduate schools and research. I would also like to extend a warm thanks to Professors Charles Perrin and Robert Continetti, whose chemistry courses were especially memorable and who exposed me to more advanced topics. I am especially indebted to Dr. Jorge Gomez of the Medicinal Chemistry department at Metabasis Therapeutics, Inc., who took me in as a student intern during my last two years of college. He gave me the finest training I could have ever imagined, and he made continual efforts to expose me to every aspect of being a modern synthetic chemist. His patience, natural teaching ability, and intelligence made for an unforgettable experience, and my time with him at Metabasis clinched my decision to become an organic chemist. I cannot thank him enough for his support over the years. I would also like to sincerely acknowledge Drs. Serge Boyer and Max Dang, from whom I learned a great deal during that time as well.

I have also had the great pleasure and privilege of working alongside so many talented chemists over my time in the Stoltz lab. Eric Ferreira and Jeff Bagdanoff, as well as my classmates Dave Ebner and Ryan McFadden, were my teammates on the palladium(II) oxidative kinetic resolution project. Their enthusiasm and collective wisdom made for a fantastic way to start graduate school.

Shortly thereafter, I sought to apply some of our lab's palladium(II) methodology to total synthesis, and I was lucky to end up collaborating with Neil Garg on the dragmacidin F project. Neil was an outstanding role model and coworker, and joining forces with him was one of the most enjoyable experiences I have had at Caltech. I cannot thank him enough for his insightful scientific contributions and his overwhelming input of time and energy into my personal growth as an organic chemist. I have always admired his stellar ability to teach, and I have no doubt that his current students (he is now *Professor* Garg) feel the same way. Outside of the lab, I am also indebted to both Neil and his wife Lindsey for their great friendship and support.

I would like to thank Dr. Haiming Zhang for all of his hard work getting the telomestatin project off the ground, as well as his friendly emails to see how things were progressing. Tim Dong is acknowledged for making some key improvements along the early part of the synthesis, and I had a lot of fun training him over the summer; I am sure he will be very successful in graduate school. I am also indebted to J. T. Mohr, who has

graciously taken on this project, and has already made some important contributions. I have full confidence entrusting the project to him, and I am excited to see what the future directions bring. In addition to being an exceptional chemist, J. T. is one of the few people I know who is an absolute encyclopedia of information. To my surprise, he was even able to recite the third ingredient of Coke from memory! Outside of the doors of Crellin, Church, and Gates, I have also become close friends with J. T. and his wife Sarah, and I really value their friendship.

I would also like to extend an enormous thank you to all of the Stoltz Group members, both past and present. There are far too many people to list all of them individually, but I am indebted to all of them at one time or another for their advice and expertise. In particular, in addition to the names already mentioned, I would like to thank Dr. Richmond Sarpong, Eric Ashley, Raissa Trend, Uttam Tambar, and Dr. Yeeman Ramtohul for their generously dispensed help and guidance during my early days here. Richmond was an exemplary role model, and I learned a great deal just being around him. He set the bar very high, and I have always admired his dedication. I would also like to express my deep gratitude for his support during my job search. Raissa's abilities to think critically are unparalleled, and I feel grateful to have learned so much from her. I also appreciated sharing many delicious tacos and perhaps even more spirited discussions. I feel incredibly privileged to have become close friends with Uttam, who is a first-rate scientist and an even better human being. There's no way I would have made it through graduate school without his sense of humor, advice, and friendship. Yeeman always took time to help me with chemistry, and he is one of the most easy-going people I have ever met. He had a great attitude about life, and he definitely brought a calming

influence to the lab. I would like to extend a warm thanks to Eric Ashley, who was extremely knowledgeable and helpful, and always took time out of his day to be of assistance with a mechanism or a troublesome reaction. Finally, Mike Krout, who joined during my second year, has also been incredibly generous with his expertise. In addition to being a terrific scientist and a wealth of knowledge, both he and his fiancée Kristy have become close friends of mine.

I would also like to extend my gratitude to Tim Funk, Dr. Chris Douglas, and Dr. Tom Driver, who were regular attendees at our weekly Stoltz group meetings and were generous in sharing their wisdom. I benefited tremendously from interacting with them. I also want to acknowledge the generosity of the other research groups at Caltech, in particular, the Hsieh-Wilson, Dougherty, Dervan, Grubbs, Peters, MacMillan, and Bercaw groups. I have borrowed reagents, expertise, and equipment, from time to time and I have always felt like everyone went out of their way to be helpful. David Chenoweth from the Dervan lab has been very accommodating; he spent a great deal of time training me to use their analytical and preparatory instrumentation. I am also extremely grateful to the American Chemical Society, TRDRP, and Eli Lilly for funding portions of my graduate school research.

I would like to extend my sincere gratitude to my long-term baymates Jenny Roizen, Dr. Dave White, Dr. Zoli Novák, and Dr. Andy Harned. Your good humor and scientific input made for a friendly and fun work environment, and made my daily life very pleasant. I also want to show my appreciation to J. T. Mohr, Mike Krout, Jenny Roizen, John Enquist, Kevin Allan, Sandy Ma, Hosea Nelson, and Dr. Andy McClory for proofreading portions of this document. This thesis has been much improved by their meticulous corrections and contributions.

There are so many talented staff at Caltech, and I have been repeatedly astonished by how much care and personal attention they have given me. I am grateful to Drs. Scott Ross and Chris Brandow for their hard work in the NMR laboratory, and for their help with advanced experiments. I am tremendously indebted to Tom Dunn for his MacGyverlike ability to repair just about anything. He has always been so easy to count on, especially with regards to the NMR facility. Dr. Mona Shahgholi and Naseem Torian are acknowledged for their assistance obtaining numerous mass spectra. I would like to extend my gratitude to Drs. Larry Henling and Mike Day for solving a crystal structure on the telomestatin project, Rick Gerhart for being a master of glass and an expert on Hawaii, and Joe Drew, Moises Renteria, and Terry James, for many lively conversations and general assistance. Lynne Martinez is incredibly sweet, and somehow manages to do a great job handling our ever-growing group. And, the latest departmental addition, Dr. Scott Virgil, has already become one my favorite people with whom to discuss chemistry problems. His expert suggestions his contributions on the telomestatin project have had, and I'm sure will continue to have, a large impact. I am extremely grateful to Chris Smith, who played a key role in my job search and was a tremendous resource. Anne Penney has always been good to me, and Dian Buchness is one of the primary reasons I am at Caltech today. If it weren't for her persistent emails, I probably would never have visited. Laura Howe seems to be doing a terrific job in her place, and has been incredibly helpful while I have been finishing up.

In the tradition of Uttam Tambar, I'd also like to acknowledge the staff at Amigos, and the staff at the newer and trendier Magnolia Lounge. Their refreshing beverages have helped to commemorate many a good time, and have helped to rejuvenate dampened spirits as well. I would be completely lost without my friends Lori Lee and Mel Pribisko, who have always been there for me. I appreciate all of the deep conversations and savory foods that we have shared. I will really miss having you around. Sarah Threlfall, you are a lifesaver. You have always been there for me, over and above what I ever expected, and have helped me in more ways than I can count. I owe you big time.

To my extended family in Los Angeles—Betty and Grant Hyun; Vicki, Glenn, Ari, and Jaime Ziegel; and Henry, Wendy, Matt, and Josh David—your support has been truly invaluable. I have always felt surrounded by your love and kindness. I would also like to thank Marlena Chang, who has been a shining beam of light in my life and an invaluable source of support for me. Her love helped to renew my strength on more than one occasion, and I am indebted to her for that. I hope to be as much of an ally to her on our new adventure together in Chicago. Last, but certainly not least, I would also like to thank my mom, my dad, and my sister, Sara. Your love and support over the years has enabled me to cross the finish line.

ABSTRACT

Both Pd(0) and Pd(II) have had, and continue to have, far-reaching impacts on organic synthesis. The versatile nature of palladium, in conjunction with the mechanistic understanding and predictive models that have been elucidated, has permitted a wealth of exploration into the seemingly endless potential of this metal. The utility of palladium is described in the context of the syntheses of the pharmaceutical agents Prozac[®] and Singulair[®], as well as the natural products dragmacidin F and telomestatin.

First, the palladium-catalyzed aerobic oxidative kinetic resolution for the enantioselective preparation of a variety of pharmaceutical substances, including Prozac[®] and Singulair[®], is described. In this regard, the versatility of this resolution is further demonstrated by the diversity of the substrates chosen for this study, and for the first time this work extends the utility of the resolution to include amino alcohol derivatives and highly functionalized benzylic alcohols.

Secondly, an enantiodivergent strategy for the total chemical synthesis of both (+)- and (–)-dragmacidin F from a single enantiomer of quinic acid has been developed and successfully implemented. Although unique, the synthetic routes to these antipodes share a number of key features, including novel Pd(0) reductive isomerization reactions, Pd(II)-mediated oxidative carbocyclization reactions, halogen-selective Suzuki couplings, and high-yielding late-stage Neber rearrangements.

Finally, progress toward the total synthesis of the potent telomerase inhibitor telomestatin is described. Palladium-mediated cross-coupling reactions are employed to assemble oligooxazole intermediates from oxazole building blocks. Additionally, this strategy utilizes a minimum number of protecting groups, and proposes a unique aryl–aryl macrocyclization as the last step of the synthesis. In addition to the biological relevance of the desired target, a successful total synthesis of telomestatin would also enable rapid access to the preparation of telomestatin analogs. This would allow for the investigation of key interactions between telomestatin and the G-quadruplex.

TABLE OF CONTENTS

Dedication
Acknowledgementsiv
Abstractxi
Table of Contents xii
List of Figures xvii
List of Schemes
List of Tables xxxi
List of Abbreviations
CHAPTER ONE: Palladium in Organic Synthesis1
1.1 Background1
1.1.1 Introduction1
1.2 Delle dinm (0) and Delle dinm (II)
1.2 Panadium(0) and Panadium(II)
1.2.1 Oxidation States of Palladium
1.2.2 General Reactivity
1.2.3 Palladium(0) Reactivity
1.2.4 Palladium(II) Reactivity
1.3 Conclusion
1.4 Notes and References
CHAPTER TWO: The Resolution of Important Pharmaceutical Building Blocks by

Palladium-Catalyzed Aerobic Oxidation of Secondary Alcohols......14

2.1 Background	14	ŀ
----------------	----	---

2.1.1 Introduction
2.1.2 Mechanism of the Pd-Catalyzed Oxidative Kinetic Resolution17
2.2 The Oxidative Kinetic Resolution of Pharmaceutical Building Blocks
2.2.1 Pharmaceutical Targets
2.2.2 Resolution of Pharmaceutical Intermediates
2.3 Conclusion
2.4 Experimental Section24
2.4.1 Materials and Methods24
2.4.2 Methods of Determination for Enantiomeric Excess and % Conversion25
2.4.3 Optical Rotations of New Compounds
2.4.4 Representative Procedures for Oxidative Kinetic Resolution27
2.4.5 Representative Procedure for Ketone Recycling
2.4.6 Preparative Procedures
2.5 Notes and References
APPENDIX ONE: Spectra Relevant to Chapter Two45
CHAPTER THREE: The Total Syntheses of (+)- and (-)-Dragmacidin F62
3.1 Background62
3.1.1 Introduction
3.1.2 Biosynthesis
3.1.3 Previous Synthetic Studies
3.1.4 Isolation and Bioactivity of Dragmacidin F65
3.1.5 Retrosynthetic Analysis of Dragmacidin F

xiv
3.2 The Total Synthesis of (+)-Dragmacidin F67
3.2.1 Synthesis of Cyclization Substrates67
3.2.2 Intramolecular Heck Cyclization70
3.2.3 Intramolecular Oxidative Cyclization71
3.2.4 Assembling the Carbon Skeleton of Dragmacidin F79
3.2.5 End-Game: Total Synthesis of (+)-Dragmacidin F80
3.4 The Total Synthesis of (–)-Dragmacidin F85
3.4.1 An Enantiodivergent Strategy for the Preparation of (-)-Dragmacidin F85
3.4.2 The Development of a Reductive Isomerization Reaction
3.4.3 The Scope and Mechanism of the Reductive Isomerization Reaction90
3.4.4 Constructing the [3.3.1] Bicycle En Route to (–)-Dragmacidin F96
3.4.5 End-Game: Total Synthesis of (–)-Dragmacidin F
3.5 Conclusion100
3.6 Experimental Section102
3.6.1 Materials and Methods102
3.6.2 Preparative Procedures
3.7 Notes and References178
APPENDIX TWO: Synthetic Summary for (+)- and (-)-Dragmacidin F194
APPENDIX THREE: Spectra Relevant to Chapter Three

	XV
4.1 Background	
4.1.1 Telomeres and Telomerase	
4.1.2 Isolation and Biological Activity	
4.1.3 Biosynthesis	
4.1.4 Previous Synthetic Studies	
4.1.5 Retrosynthetic Analysis of Telomestatin	
4.2 Progress Toward The Total Synthesis of Telomestatin	345
4.2.1 Synthesis of Left-hand Trisoxazole Iodo Acid	
4.2.2 Synthesis of Right-hand Tetrakisoxazole Amino Alcohol	
4.2.3 Late-Stage and Proposed Endgame	349
4.3 Conclusion	
4.4 Experimental Section	352
4.4.1 Materials and Methods	352
4.4.2 Preparative Procedures	354
4.5 Notes and References	
APPENDIX FOUR: Spectra Relevant to Chapter Four	
APPENDIX FIVE: X-Ray Crystallography Reports Relevant to Chapter Four	418
APPENDIX SIX: Notebook Cross-Reference	434
Comprehensive Bibliography	440
Index	472

	xvi
About the Author	481

LIST OF FIGURES

CHAPTER ONE

Figure 1.2.1	Types of Pd(0)- and Pd(II)-mediated transformations
Figure 1.2.2	Generalized Pd(0) and Pd(II) reactivity cycle4

CHAPTER TWO

Figure 2.2.1	Pharmaceutical substances	19
--------------	---------------------------	----

APPENDIX ONE

Figure A1.1	¹ H NMR (300 MHz, CDCl ₃) of compound 67	46
Figure A1.2	Infrared spectrum (thin film/NaCl) of compound 67	47
Figure A1.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 67	47
Figure A1.4	¹ H NMR (300 MHz, CDCl ₃) of compound 68	48
Figure A1.5	Infrared spectrum (thin film/NaCl) of compound 68	49
Figure A1.6	¹³ C NMR (75 MHz, CDCl ₃) of compound 68	49
Figure A1.7	¹ H NMR (300 MHz, CDCl ₃) of compound 69	50
Figure A1.8	Infrared spectrum (thin film/NaCl) of compound 69	51
Figure A1.9	¹³ C NMR (75 MHz, CDCl ₃) of compound 69	51
Figure A1.10	¹ H NMR (300 MHz, CDCl ₃) of compound 70	52
Figure A1.11	Infrared spectrum (thin film/NaCl) of compound 70	53
Figure A1.12	¹³ C NMR (75 MHz, CDCl ₃) of compound 70	53
Figure A1.13	¹ H NMR (300 MHz, CDCl ₃) of compound 73	54
Figure A1.14	Infrared spectrum (thin film/NaCl) of compound 73	55
Figure A1.15	¹³ C NMR (75 MHz, CDCl ₃) of compound 73	55
Figure A1.16	¹ H NMR (300 MHz, C_6D_6) of compound 75	56
Figure A1.17	Infrared spectrum (thin film/NaCl) of compound 75	57
Figure A1.18	13 C NMR (75 MHz, C ₆ D ₆) of compound 75	57
Figure A1.19	¹ H NMR (300 MHz, C ₆ D ₆) of compound 77	58

		xviii
Figure A1.20	Infrared spectrum (thin film/NaCl) of compound 77	59
Figure A1.21	13 C NMR (75 MHz, C ₆ D ₆) of compound 77	59
Figure A1.22	¹ H NMR (300 MHz, C_6D_6) of compound 78	60
Figure A1.23	Infrared spectrum (thin film/NaCl) of compound 78	61
Figure A1.24	13 C NMR (75 MHz, C ₆ D ₆) of compound 78	61

CHAPTER THREE

Figure 3.1.1	The pyrazinone-containing dragmacidins	63
Figure 3.3.1	Absolute stereochemistry of dragmacidins D-F (82-84)	85
Figure 3.4.1	Rational design of reductive isomerization substrate 131	89
Figure 3.4.2	Model for reductive isomerization reactivity	96

APPENDIX THREE

Figure A3.1	¹ H NMR (300 MHz, CDCl ₃) of compound 165	
Figure A3.2	Infrared spectrum (thin film/NaCl) of compound 165	
Figure A3.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 165	
Figure A3.4	¹ H NMR (300 MHz, CD ₃ OD) of compound 166	201
Figure A3.5	Infrared spectrum (KBr pellet) of compound 166	
Figure A3.6	¹³ C NMR (75 MHz, CD ₃ OD) of compound 166	
Figure A3.7	¹ H NMR (300 MHz, CDCl ₃) of compound 95	
Figure A3.8	Infrared spectrum (thin film/NaCl) of compound 95	204
Figure A3.9	¹³ C NMR (75 MHz, CDCl ₃) of compound 95	204
Figure A3.10	¹ H NMR (300 MHz, CDCl ₃) of compound 97	205
Figure A3.11	Infrared spectrum (thin film/NaCl) of compound 97	
Figure A3.12	¹³ C NMR (75 MHz, CDCl ₃) of compound 97	
Figure A3.13	¹ H NMR (300 MHz, CDCl ₃) of compound 98	207
Figure A3.14	Infrared spectrum (thin film/NaCl) of compound 98	208
Figure A3.15	¹³ C NMR (75 MHz, CDCl ₃) of compound 98	208
Figure A3.16	¹ H NMR (300 MHz, $CDCl_3$) of compound 96	209
Figure A3.17	Infrared spectrum (thin film/NaCl) of compound 96	

Figure A3.18	13 C NMR (75 MHz, CDCl ₃) of compound 96	210
Figure A3.19	¹ H NMR (300 MHz, CDCl ₃) of compound 101	211
Figure A3.20	Infrared spectrum (thin film/NaCl) of compound 101	212
Figure A3.21	13 C NMR (75 MHz, CDCl ₃) of compound 101	212
Figure A3.22	¹ H NMR (300 MHz, $CDCl_3$) of compound 170	213
Figure A3.23	Infrared spectrum (thin film/NaCl) of compound 170	214
Figure A3.24	13 C NMR (75 MHz, CDCl ₃) of compound 170	214
Figure A3.25	¹ H NMR (300 MHz, CDCl ₃) of compound 91	215
Figure A3.26	Infrared spectrum (thin film/NaCl) of compound 91	216
Figure A3.27	¹³ C NMR (75 MHz, CDCl ₃) of compound 91	216
Figure A3.28	¹ H NMR (300 MHz, CDCl ₃) of compound 172	217
Figure A3.29	Infrared spectrum (thin film/NaCl) of compound 172	218
Figure A3.30	¹³ C NMR (75 MHz, CDCl ₃) of compound 172	218
Figure A3.31	¹ H NMR (300 MHz, CDCl ₃) of compound 92	219
Figure A3.32	Infrared spectrum (thin film/NaCl) of compound 92	
Figure A3.33	¹³ C NMR (75 MHz, CDCl ₃) of compound 92	
Figure A3.34	¹ H NMR (300 MHz, CDCl ₃) of compound 90	221
Figure A3.35	¹ H NMR (300 MHz, C_6D_6) of compound 90	222
Figure A3.36	Infrared spectrum (thin film/NaCl) of compound 90	
Figure A3.37	13 C NMR (75 MHz, C ₆ D ₆) of compound 90	
Figure A3.38	¹ H NMR (300 MHz, C_6D_6) of compound 102	224
Figure A3.39	¹ H NMR (300 MHz, CDCl ₃) of compound 102	225
Figure A3.40	Infrared spectrum (thin film/NaCl) of compound 102	226
Figure A3.41	¹³ C NMR (75 MHz, CDCl ₃) of compound 102	
Figure A3.42	¹ H NMR (300 MHz, C_6D_6) of compound 107	227
Figure A3.43	Infrared spectrum (thin film/NaCl) of compound 107	228
Figure A3.44	13 C NMR (75 MHz, C ₆ D ₆) of compound 107	228
Figure A3.45	¹ H NMR (300 MHz, C_6D_6) of compound 108	229
Figure A3.46	Infrared spectrum (thin film/NaCl) of compound 108	230
Figure A3.47	13 C NMR (75 MHz, C ₆ D ₆) of compound 108	230
Figure A3.48	¹ H NMR (300 MHz, C_6D_6) of compound 109	231

Figure A3.49	Infrared spectrum (thin film/NaCl) of compound 109	232
Figure A3.50	13 C NMR (75 MHz, C ₆ D ₆) of compound 109	232
Figure A3.51	¹ H NMR (300 MHz, C_6D_6) of compound 110	
Figure A3.52	Infrared spectrum (thin film/NaCl) of compound 110	234
Figure A3.53	¹³ C NMR (75 MHz, C ₆ D ₆) of compound 110	
Figure A3.54	¹ H NMR (300 MHz, C_6D_6) of compound 111	
Figure A3.55	Infrared spectrum (thin film/NaCl) of compound 111	
Figure A3.56	13 C NMR (75 MHz, C ₆ D ₆) of compound 111	
Figure A3.57	¹ H NMR (300 MHz, C_6D_6) of compound 173	237
Figure A3.58	Infrared spectrum (thin film/NaCl) of compound 173	
Figure A3.59	13 C NMR (75 MHz, C ₆ D ₆) of compound 173	
Figure A3.60	¹ H NMR (300 MHz, C_6D_6) of compound 112	
Figure A3.61	Infrared spectrum (thin film/NaCl) of compound 112	
Figure A3.62	13 C NMR (75 MHz, C ₆ D ₆) of compound 112	
Figure A3.63	¹ H NMR (300 MHz, C_6D_6) of compound 113	241
Figure A3.64	Infrared spectrum (thin film/NaCl) of compound 113	
Figure A3.65	13 C NMR (75 MHz, C ₆ D ₆) of compound 113	
Figure A3.66	¹ H NMR (300 MHz, C_6D_6) of compound 114	
Figure A3.67	Infrared spectrum (thin film/NaCl) of compound 114	
Figure A3.68	13 C NMR (75 MHz, C ₆ D ₆) of compound 114	
Figure A3.69	¹ H NMR (300 MHz, C_6D_6) of compound 176	
Figure A3.70	Infrared spectrum (thin film/NaCl) of compound 176	
Figure A3.71	¹³ C NMR (75 MHz, CDCl ₃) of compound 176	
Figure A3.72	¹ H NMR (300 MHz, C ₆ D ₆) of compound 115	247
Figure A3.73	Infrared spectrum (thin film/NaCl) of compound 115	
Figure A3.74	13 C NMR (75 MHz, C ₆ D ₆) of compound 115	
Figure A3.75	¹ H NMR (300 MHz, C_6D_6) of compound 177	
Figure A3.76	Infrared spectrum (thin film/NaCl) of compound 177	
Figure A3.77	13 C NMR (75 MHz, C ₆ D ₆) of compound 177	
Figure A3.78	¹ H NMR (300 MHz, C_6D_6) of compound 89	251
Figure A3.79	Infrared spectrum (thin film/NaCl) of compound 89	

Figure A3.80	13 C NMR (75 MHz, C ₆ D ₆) of compound 89	252
Figure A3.81	¹ H NMR (300 MHz, CDCl ₃) of compound 118	253
Figure A3.82	Infrared spectrum (thin film/NaCl) of compound 118	254
Figure A3.83	¹³ C NMR (75 MHz, CDCl ₃) of compound 118	254
Figure A3.84	¹ H NMR (300 MHz, CDCl ₃) of compound 119	255
Figure A3.85	Infrared spectrum (thin film/NaCl) of compound 119	256
Figure A3.86	¹³ C NMR (75 MHz, CDCl ₃) of compound 119	256
Figure A3.87	¹ H NMR (300 MHz, CDCl ₃) of compound 120	257
Figure A3.88	Infrared spectrum (thin film/NaCl) of compound 120	258
Figure A3.89	¹³ C NMR (75 MHz, CDCl ₃) of compound 120	258
Figure A3.90	¹ H NMR (600 MHz, CD ₃ OD) of compound 124	259
Figure A3.91	¹ H NMR (300 MHz, CD ₃ OD) of compound 121	260
Figure A3.92	Infrared spectrum (thin film/NaCl) of compound 121	261
Figure A3.93	¹³ C NMR (75 MHz, CD ₃ OD) of compound 121	261
Figure A3.94	¹ H NMR (300 MHz, CD ₃ OD) of compound 125	262
Figure A3.95	Infrared spectrum (thin film/NaCl) of compound 125	263
Figure A3.96	¹³ C NMR (75 MHz, CD ₃ OD) of compound 125	263
Figure A3.97	¹ H NMR (600 MHz, CD ₃ OD) of (+)-dragmacidin F (84)	264
Figure A3.98	Infrared spectrum (thin film/NaCl) of (+)-dragmacidin F (84).	265
Figure A3.99	¹³ C NMR (125 MHz, CD ₃ OD) of (+)-dragmacidin F (84)	265
Figure A3.100	¹ H NMR (300 MHz, CDCl ₃) of compound 129	266
Figure A3.101	Infrared spectrum (thin film/NaCl) of compound 129	267
Figure A3.102	¹³ C NMR (75 MHz, CDCl ₃) of compound 129	267
Figure A3.103	¹ H NMR (300 MHz, C_6D_6) of compound 180	268
Figure A3.104	Infrared spectrum (thin film/NaCl) of compound 180	269
Figure A3.105	13 C NMR (75 MHz, C ₆ D ₆) of compound 180	269
Figure A3.106	¹ H NMR (300 MHz, C_6D_6) of compound 132	270
Figure A3.107	Infrared spectrum (thin film/NaCl) of compound 132	271
Figure A3.108	13 C NMR (75 MHz, C ₆ D ₆) of compound 132	271
Figure A3.109	¹ H NMR (300 MHz, C_6D_6) of compound 133	272
Figure A3.110	Infrared spectrum (thin film/NaCl) of compound 133	273

	X	xii
Figure A3.111	13 C NMR (75 MHz, C ₆ D ₆) of compound 133	3
Figure A3.112	¹ H NMR (300 MHz, C_6D_6) of compound 131	1
Figure A3.113	Infrared spectrum (thin film/NaCl) of compound 131275	5
Figure A3.114	13 C NMR (75 MHz, C ₆ D ₆) of compound 131 275	5
Figure A3.115	¹ H NMR (300 MHz, C_6D_6) of compound 127	5
Figure A3.116	Infrared spectrum (thin film/NaCl) of compound 127 277	7
Figure A3.117	13 C NMR (75 MHz, C ₆ D ₆) of compound 127 277	7
Figure A3.118	¹ H NMR (300 MHz, C_6D_6) of compound 135	3
Figure A3.119	Infrared spectrum (thin film/NaCl) of compound 135279)
Figure A3.120	13 C NMR (75 MHz, C ₆ D ₆) of compound 135)
Figure A3.121	¹ H NMR (300 MHz, C_6D_6) of compound 138)
Figure A3.122	Infrared spectrum (thin film/NaCl) of compound 138281	1
Figure A3.123	13 C NMR (75 MHz, C ₆ D ₆) of compound 138	1
Figure A3.124	¹ H NMR (300 MHz, CDCl ₃) of compound 137	2
Figure A3.125	Infrared spectrum (thin film/NaCl) of compound 137283	3
Figure A3.126	¹³ C NMR (75 MHz, CDCl ₃) of compound 137	3
Figure A3.127	¹ H NMR (300 MHz, CD ₃ OD) of compound 181 284	1
Figure A3.128	¹ H NMR (300 MHz, CDCl ₃) of compound 140	5
Figure A3.129	Infrared spectrum (thin film/NaCl) of compound 140286	5
Figure A3.130	¹³ C NMR (75 MHz, CDCl ₃) of compound 140	5
Figure A3.131	¹ H NMR (300 MHz, CDCl ₃) of compound 141	7
Figure A3.132	Infrared spectrum (thin film/NaCl) of compound 141288	3
Figure A3.133	¹³ C NMR (125 MHz, CDCl ₃) of compound 141 288	3
Figure A3.134	¹ H NMR (300 MHz, CDCl ₃) of compound 142)
Figure A3.135	Infrared spectrum (thin film/NaCl) of compound 142290)
Figure A3.136	¹³ C NMR (75 MHz, CDCl ₃) of compound 142)
Figure A3.137	¹ H NMR (300 MHz, CDCl ₃) of compound 143	1
Figure A3.138	Infrared spectrum (thin film/NaCl) of compound 143292	2
Figure A3.139	13 C NMR (75 MHz, CDCl ₃) of compound 143	2
Figure A3.140	¹ H NMR (300 MHz, CDCl ₃) of compound 144	3
Figure A3.141	Infrared spectrum (thin film/NaCl) of compound 144294	1

Figure A3.142 ¹⁵ C NMR (75 MHz, CDCl ₃) of compound 144 294 Figure A3.143 ¹⁴ H NMR (300 MHz, CDCl ₃) of compound 145 295 Figure A3.144 Infrared spectrum (thin film/NaCl) of compound 145 296 Figure A3.145 ¹⁵ C NMR (75 MHz, CDCl ₃) of compound 145 296 Figure A3.146 ¹⁴ H NMR (300 MHz, C ₆ D ₆) of compound 146 297 Figure A3.147 Infrared spectrum (thin film/NaCl) of compound 146 298 Figure A3.148 ¹⁵ C NMR (75 MHz, C ₆ D ₆) of compound 146 298 Figure A3.149 ¹⁴ H NMR (300 MHz, C ₆ D ₆) of compound 147 300 Figure A3.151 ¹⁵ C NMR (75 MHz, C ₆ D ₆) of compound 147 300 Figure A3.151 ¹⁵ C NMR (75 MHz, C ₆ D ₆) of compound 148 301 Figure A3.152 ¹⁴ H NMR (300 MHz, C ₆ D ₆) of compound 148 302 Figure A3.153 Infrared spectrum (thin film/NaCl) of compound 148 302 Figure A3.154 ¹⁵ C NMR (75 MHz, C ₆ D ₆) of compound 149 303 Figure A3.155 ¹⁴ H NMR (300 MHz, C ₆ D ₆) of compound 149 304 Figure A3.154 ¹⁵ C NMR (75 MHz, C ₆ D ₆) of compound 149 304 Figure A3.155 ¹⁶ H NMR (300 MHz, C ₆ D ₆) of compound 150 <td< th=""><th></th><th>xxiii</th></td<>		xxiii
Figure A3.143 ¹ H NMR (300 MHz, CDCl ₃) of compound 145	Figure A3.142	¹³ C NMR (75 MHz, CDCl ₃) of compound 144
Figure A3.144 Infrared spectrum (thin film/NaCl) of compound 145	Figure A3.143	¹ H NMR (300 MHz, CDCl ₃) of compound 145
Figure A3.145 ¹² C NMR (75 MHz, CDCl ₃) of compound 145	Figure A3.144	Infrared spectrum (thin film/NaCl) of compound 145296
Figure A3.146 ¹ H NMR (300 MHz, $C_6 D_6$) of compound 146	Figure A3.145	¹³ C NMR (75 MHz, CDCl ₃) of compound 145
Figure A3.147 Infrared spectrum (thin film/NaCl) of compound 146	Figure A3.146	¹ H NMR (300 MHz, C_6D_6) of compound 146
Figure A3.148 ¹³ C NMR (75 MHz, C_6D_6) of compound 146	Figure A3.147	Infrared spectrum (thin film/NaCl) of compound 146298
Figure A3.149 ¹ H NMR (300 MHz, C_6D_6) of compound 147	Figure A3.148	13 C NMR (75 MHz, C ₆ D ₆) of compound 146
Figure A3.150 Infrared spectrum (thin film/NaCl) of compound 147	Figure A3.149	¹ H NMR (300 MHz, C_6D_6) of compound 147
Figure A3.151 ¹³ C NMR (75 MHz, C_6D_6) of compound 147	Figure A3.150	Infrared spectrum (thin film/NaCl) of compound 147300
Figure A3.152 ¹ H NMR (300 MHz, C_6D_6) of compound 148	Figure A3.151	13 C NMR (75 MHz, C ₆ D ₆) of compound 147
Figure A3.153 Infrared spectrum (thin film/NaCl) of compound 148	Figure A3.152	¹ H NMR (300 MHz, $C_6 D_6$) of compound 148
Figure A3.154 13 C NMR (75 MHz, C ₆ D ₆) of compound 148	Figure A3.153	Infrared spectrum (thin film/NaCl) of compound 148302
Figure A3.155 ¹ H NMR (300 MHz, C_6D_6) of compound 149303Figure A3.156Infrared spectrum (thin film/NaCl) of compound 149304Figure A3.157 ¹³ C NMR (75 MHz, C_6D_6) of compound 149304Figure A3.158 ¹ H NMR (300 MHz, C_6D_6) of compound 150305Figure A3.159Infrared spectrum (thin film/NaCl) of compound 150306Figure A3.160 ¹³ C NMR (75 MHz, C_6D_6) of compound 150306Figure A3.161 ¹ H NMR (300 MHz, C_6D_6) of compound 151307Figure A3.162Infrared spectrum (thin film/NaCl) of compound 151308Figure A3.163 ¹³ C NMR (75 MHz, C_6D_6) of compound 151308Figure A3.164 ¹ H NMR (300 MHz, C_6D_6) of compound 152309Figure A3.165Infrared spectrum (thin film/NaCl) of compound 152309Figure A3.166 ¹³ C NMR (75 MHz, CDCl ₃) of compound 152310Figure A3.166 ¹⁴ NMR (300 MHz, CDCl ₃) of compound 153311Figure A3.167 ¹⁴ NMR (300 MHz, Cdcl ₃) of compound 153312Figure A3.168 ¹⁴ NMR (300 MHz, Cdcl ₃) of compound 153312Figure A3.169Infrared spectrum (thin film/NaCl) of compound 153313Figure A3.169 ¹⁴ NMR (300 MHz, C ₆ D ₆) of compound 153313Figure A3.170 ¹³ C NMR (75 MHz, Cdcl ₆) of compound 153313Figure A3.171 ¹⁴ NMR (300 MHz, Cdcl ₆) of compound 153313Figure A3.171 ¹⁴ NMR (300 MHz, Cdcl ₆) of compound 153313Figure A3.171 ¹⁴ NMR (300 MHz, Cdcl ₆) of compound 153314	Figure A3.154	13 C NMR (75 MHz, C ₆ D ₆) of compound 148
Figure A3.156Infrared spectrum (thin film/NaCl) of compound 149	Figure A3.155	¹ H NMR (300 MHz, $C_6 D_6$) of compound 149
Figure A3.157 13 C NMR (75 MHz, C6D6) of compound 149	Figure A3.156	Infrared spectrum (thin film/NaCl) of compound 149
Figure A3.158 ¹ H NMR (300 MHz, C_6D_6) of compound 150	Figure A3.157	13 C NMR (75 MHz, C ₆ D ₆) of compound 149
Figure A3.159Infrared spectrum (thin film/NaCl) of compound 150	Figure A3.158	¹ H NMR (300 MHz, C ₆ D ₆) of compound 150
Figure A3.160 13 C NMR (75 MHz, C6D6) of compound 150	Figure A3.159	Infrared spectrum (thin film/NaCl) of compound 150
Figure A3.161 ¹ H NMR (300 MHz, C_6D_6) of compound 151	Figure A3.160	¹³ C NMR (75 MHz, C ₆ D ₆) of compound 150
Figure A3.162Infrared spectrum (thin film/NaCl) of compound 151308Figure A3.163 13 C NMR (75 MHz, C_6D_6) of compound 151308Figure A3.164 14 NMR (300 MHz, CDCl ₃) of compound 152309Figure A3.165Infrared spectrum (thin film/NaCl) of compound 152310Figure A3.166 13 C NMR (75 MHz, CDCl ₃) of compound 152310Figure A3.167 14 NMR (300 MHz, CDCl ₃) of compound 153311Figure A3.168 14 NMR (300 MHz, CDCl ₃) of compound 153312Figure A3.169Infrared spectrum (thin film/NaCl) of compound 153313Figure A3.170 13 C NMR (75 MHz, C ₆ D ₆) of compound 153313Figure A3.171 14 NMR (300 MHz, C ₆ D ₆) of compound 153313Figure A3.170 13 C NMR (75 MHz, C ₆ D ₆) of compound 153313Figure A3.171 14 NMR (300 MHz, C ₆ D ₆) of compound 153313Figure A3.171 14 NMR (300 MHz, C ₆ D ₆) of compound 153313Figure A3.171 14 NMR (300 MHz, C ₆ D ₆) of compound 128314Figure A3.172Infrared spectrum (thin film/NaCl) of compound 128315	Figure A3.161	¹ H NMR (300 MHz, $C_6 D_6$) of compound 151
Figure A3.163 13 C NMR (75 MHz, C ₆ D ₆) of compound 151	Figure A3.162	Infrared spectrum (thin film/NaCl) of compound 151
Figure A3.164 1 H NMR (300 MHz, CDCl ₃) of compound 152	Figure A3.163	13 C NMR (75 MHz, C ₆ D ₆) of compound 151
Figure A3.165Infrared spectrum (thin film/NaCl) of compound 152310Figure A3.166 13 C NMR (75 MHz, CDCl ₃) of compound 152310Figure A3.167 14 NMR (300 MHz, CDCl ₃) of compound 153311Figure A3.168 14 NMR (300 MHz, C ₆ D ₆) of compound 153312Figure A3.169Infrared spectrum (thin film/NaCl) of compound 153313Figure A3.170 13 C NMR (75 MHz, C ₆ D ₆) of compound 153313Figure A3.171 14 NMR (300 MHz, C ₆ D ₆) of compound 153313Figure A3.172 14 NMR (300 MHz, C ₆ D ₆) of compound 128314Figure A3.172Infrared spectrum (thin film/NaCl) of compound 128315	Figure A3.164	¹ H NMR (300 MHz, CDCl ₃) of compound 152
Figure A3.166 ¹³ C NMR (75 MHz, CDCl ₃) of compound 152 310 Figure A3.167 ¹ H NMR (300 MHz, CDCl ₃) of compound 153 311 Figure A3.168 ¹ H NMR (300 MHz, C ₆ D ₆) of compound 153 312 Figure A3.169 Infrared spectrum (thin film/NaCl) of compound 153 313 Figure A3.170 ¹³ C NMR (75 MHz, C ₆ D ₆) of compound 153 313 Figure A3.171 ¹⁴ NMR (300 MHz, C ₆ D ₆) of compound 153 313 Figure A3.171 ¹⁴ NMR (300 MHz, C ₆ D ₆) of compound 128 314 Figure A3.172 Infrared spectrum (thin film/NaCl) of compound 128 315	Figure A3.165	Infrared spectrum (thin film/NaCl) of compound 152
Figure A3.167 ¹ H NMR (300 MHz, CDCl ₃) of compound 153	Figure A3.166	¹³ C NMR (75 MHz, CDCl ₃) of compound 152
Figure A3.168 ¹ H NMR (300 MHz, C ₆ D ₆) of compound 153	Figure A3.167	¹ H NMR (300 MHz, CDCl ₃) of compound 153
Figure A3.169 Infrared spectrum (thin film/NaCl) of compound 153	Figure A3.168	¹ H NMR (300 MHz, C_6D_6) of compound 153
Figure A3.170 ¹³ C NMR (75 MHz, C ₆ D ₆) of compound 153	Figure A3.169	Infrared spectrum (thin film/NaCl) of compound 153
Figure A3.171 ¹ H NMR (300 MHz, C ₆ D ₆) of compound 128	Figure A3.170	13 C NMR (75 MHz, C ₆ D ₆) of compound 153
Figure A3.172 Infrared spectrum (thin film/NaCl) of compound 128 315	Figure A3.171	¹ H NMR (300 MHz, C_6D_6) of compound 128
	Figure A3.172	Infrared spectrum (thin film/NaCl) of compound 128 315

	xxiv
Figure A3.173	13 C NMR (75 MHz, C ₆ D ₆) of compound 128
Figure A3.174	¹ H NMR (300 MHz, C ₆ D ₆) of compound 156
Figure A3.175	Infrared spectrum (thin film/NaCl) of compound 156
Figure A3.176	13 C NMR (75 MHz, C ₆ D ₆) of compound 156
Figure A3.177	¹ H NMR (300 MHz, C ₆ D ₆) of compound 157
Figure A3.178	Infrared spectrum (thin film/NaCl) of compound 157
Figure A3.179	13 C NMR (75 MHz, C ₆ D ₆) of compound 157
Figure A3.180	¹ H NMR (300 MHz, C_6D_6) of compound 158
Figure A3.181	Infrared spectrum (thin film/NaCl) of compound 158
Figure A3.182	¹³ C NMR (75 MHz, C ₆ D ₆) of compound 158
Figure A3.183	¹ H NMR (300 MHz, C ₆ D ₆) of compound 159
Figure A3.184	Infrared spectrum (thin film/NaCl) of compound 159 323
Figure A3.185	13 C NMR (75 MHz, C ₆ D ₆) of compound 159
Figure A3.186	¹ H NMR (300 MHz, C_6D_6) of compound 160
Figure A3.187	Infrared spectrum (thin film/NaCl) of compound 160
Figure A3.188	13 C NMR (125 MHz, C ₆ D ₆) of compound 160
Figure A3.189	¹ H NMR (300 MHz, C ₆ D ₆) of compound 161
Figure A3.190	Infrared spectrum (thin film/NaCl) of compound 161
Figure A3.191	¹³ C NMR (125 MHz, C ₆ D ₆) of compound 161
Figure A3.192	¹ H NMR (300 MHz, C ₆ D ₆) of compound 187
Figure A3.193	Infrared spectrum (thin film/NaCl) of compound 187
Figure A3.194	13 C NMR (75 MHz, C ₆ D ₆) of compound 187
Figure A3.195	¹ H NMR (300 MHz, C_6D_6) of compound 162
Figure A3.196	Infrared spectrum (thin film/NaCl) of compound 162
Figure A3.197	13 C NMR (125 MHz, C ₆ D ₆) of compound 162
Figure A3.198	¹ H NMR (300 MHz, C_6D_6) of compound 163
Figure A3.199	Infrared spectrum (thin film/NaCl) of compound 163
Figure A3.200	13 C NMR (125 MHz, C ₆ D ₆) of compound 163
Figure A3.201	¹ H NMR (600 MHz, CD ₃ OD) of (–)-dragmacidin F (84)

CHAPTER FOUR

Figure 4.1.1	The two-stage M1/M2 model of senescence	
Figure 4.1.2	Telomestatin, G-quartet, and G-quadruplex structures	

APPENDIX FOUR

Figure A4.1	¹ H NMR (300 MHz, CDCl ₃) of compound 219	
Figure A4.2	Infrared spectrum (thin film/NaCl) of compound 219	
Figure A4.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 219	
Figure A4.4	¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) of compound 220	
Figure A4.5	Infrared spectrum (KBr pellet) of compound 220	
Figure A4.6	¹³ C NMR (75 MHz, DMSO- d_6) of compound 220	
Figure A4.7	¹ H NMR (300 MHz, CDCl ₃) of compound 214	
Figure A4.8	Infrared spectrum (thin film/NaCl) of compound 214	
Figure A4.9	¹³ C NMR (75 MHz, CDCl ₃) of compound 214	
Figure A4.10	¹ H NMR (300 MHz, DMSO- d_6) of compound 247	
Figure A4.11	Infrared spectrum (KBr pellet) of compound 247	
Figure A4.12	¹³ C NMR (75 MHz, DMSO- <i>d</i> ₆) of compound 247	
Figure A4.13	¹ H NMR (300 MHz, DMSO- d_6) of compound 224	
Figure A4.14	Infrared spectrum (thin film/NaCl) of compound 224	
Figure A4.15	¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) of compound 224	
Figure A4.16	¹ H NMR (300 MHz, DMSO- d_6) of compound 225	
Figure A4.17	Infrared spectrum (thin film/NaCl) of compound 225	
Figure A4.18	¹³ C NMR (75 MHz, DMSO- d_6) of compound 225	
Figure A4.19	¹ H NMR (300 MHz, CDCl ₃) of compound 226	
Figure A4.20	Infrared spectrum (thin film/NaCl) of compound 226	
Figure A4.21	¹³ C NMR (75 MHz, CDCl ₃) of compound 226	
Figure A4.22	¹ H NMR (300 MHz, CDCl ₃) of compound 227	400
Figure A4.23	Infrared spectrum (thin film/NaCl) of compound 227	401
Figure A4.24	¹³ C NMR (75 MHz, CDCl ₃) of compound 227	401
Figure A4.25	¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) of compound 228	

Figure A4.26	Infrared spectrum (KBr pellet) of compound 228	403
Figure A4.27	¹³ C NMR (75 MHz, DMSO- <i>d</i> ₆) of compound 228	403
Figure A4.28	¹ H NMR (300 MHz, DMSO- <i>d</i> ₆) of compound 230	404
Figure A4.29	Infrared spectrum (thin film/NaCl) of compound 230	405
Figure A4.30	¹³ C NMR (75 MHz, DMSO- <i>d</i> ₆) of compound 230	405
Figure A4.31	¹ H NMR (300 MHz, CDCl ₃) of compound 232	406
Figure A4.32	Infrared spectrum (thin film/NaCl) of compound 232	407
Figure A4.33	¹³ C NMR (75 MHz, CDCl ₃) of compound 232	407
Figure A4.34	¹ H NMR (300 MHz, CDCl ₃) of compound 233	408
Figure A4.35	Infrared spectrum (thin film/NaCl) of compound 233	409
Figure A4.36	¹³ C NMR (75 MHz, CDCl ₃) of compound 233	409
Figure A4.37	¹ H NMR (500 MHz, C ₆ D ₆ , 70 °C) of compound 235	410
Figure A4.38	Infrared spectrum (thin film/NaCl) of compound 235	411
Figure A4.39	¹³ C NMR (125 MHz, CDCl ₃) of compound 235	411
Figure A4.40	¹ H NMR (500 MHz, CDCl ₃ , 50 °C) of compound 236	412
Figure A4.41	Infrared spectrum (thin film/NaCl) of compound 236	413
Figure A4.42	¹³ C NMR (125 MHz, CDCl ₃) of compound 236	413
Figure A4.43	¹ H NMR (500 MHz, CDCl ₃ , 50 °C) of compound 238	414
Figure A4.44	Infrared spectrum (thin film/NaCl) of compound 238	415
Figure A4.45	¹³ C NMR (75 MHz, CDCl ₃) of compound 238	415
Figure A4.46	¹ H NMR (500 MHz, CDCl ₃) of compound 215	416
Figure A4.47	Infrared spectrum (thin film/NaCl) of compound 215	417
Figure A4.48	¹³ C NMR (75 MHz, CDCl ₃) of compound 215	417

APPENDIX FIVE

Figure A5.1.1	Iodobisoxazole triflate 226 with 50% probability ellipsoids	419
Figure A5.1.2	Molecule A	422
Figure A5.1.3	Molecule B	422
Figure A5.1.4	Overlap of molecule A and B emphasizing the torsion angle	
	around the C(6)-O(3) bond	423

Figure A5.1.5	Overlap of molecule A and B emphasizing the torsion angle	
	around the O(3)-S bond	424
Figure A5.1.6	Packing in the unit cell with the I(1)-N(1B) interaction	
	emphasized	425
Figure A5.1.7	Stereo view of the packing in the unit cell with the	
	I(1)-N(1B) interaction emphasized	425

LIST OF SCHEMES

CHAPTER ONE

Scheme 1.1.1	Examples of well-known Pd-mediated transformations	2
Scheme 1.2.1	Representative Pd(0) catalytic cycle	5
Scheme 1.2.2	Pd(0) catalysis in Fukuyama's synthesis of (-)-strychnine	6
Scheme 1.2.3	Representative Pd(II) catalytic cycle	8
Scheme 1.2.4	Pd(II) catalysis in Tietze's synthesis of vitamin E	9

CHAPTER TWO

Scheme 2.1.1	Oxidative kinetic resolution of racemic secondary alcohols	15
Scheme 2.1.2	Pd-catalyzed aerobic heterocyclizations and carbocyclizations	15
Scheme 2.1.3	Mechanism of the Pd-catalyzed oxidative kinetic resolution	18
Scheme 2.2.1	Recycling and functionalization in the Prozac [®] series	21
Scheme 2.2.2	Recycling and functionalization in the Singulair [®] series	22

CHAPTER THREE

Scheme 3.1.1	Dragmacidin D (82) as the proposed biosynthetic	
	precursor to dragmacidins E and F (83 and 84)	64
Scheme 3.1.2	Synthetic summary for dragmacidin D (82)	65
Scheme 3.1.3	Retrosynthetic analysis of dragmacidin F (84)	67
Scheme 3.2.1	Functionalization of quinic acid and π -allyl reduction studies	69
Scheme 3.2.2	Reductive isomerization of lactone 95	70
Scheme 3.2.3	Synthesis of cyclization substrates 91 and 92	70
Scheme 3.2.4	Intramolecular Heck reaction of 91	71
Scheme 3.2.5	Related precedent for the Pd(II) oxidative carbocyclization	
	strategy to form 90	72
Scheme 3.2.6	Comparison between DMSO and ethyl nicotinate	
	conditions in the indole cyclization	75

Scheme 3.2.7	Catalysis in the Pd(II) oxidative cyclization of acetate 107 76
Scheme 3.2.8	Comparison between oxidative and classical Heck cyclizations
	in the preparation of 90
Scheme 3.2.9	Synthesis of the carbon scaffold of dragmacidin F (84)80
Scheme 3.2.10	Synthesis of ketone 11981
Scheme 3.2.11	Neber rearrangement to prepare amino ketone 121 82
Scheme 3.2.12	Detailed mechanism of Neber rearrangement
Scheme 3.2.13	Completion of the total synthesis of (+)-dragmacidin F (84)84
Scheme 3.4.1	An enantiodivergent strategy from quinic acid (93) to access
	(+)- and (-)-dragmacidin F (84)86
Scheme 3.4.2	Critical results from reductive isomerization studies
Scheme 3.4.3	Synthesis and reductive isomerization of carbonate 13190
Scheme 3.4.4	Mechanism of reductive isomerization:
	Deuterium-labeling studies
Scheme 3.4.5	Mechanism of reductive isomerization:
	Tandem hydrogenation/elimination studies91
Scheme 3.4.6	Mechanism of reductive isomerization:
	π-allyl studies92
Scheme 3.4.7	Mechanism of reductive isomerization:
	Single electron transfer studies
Scheme 3.4.8	Pd(II) oxidative cyclization of 127 97
Scheme 3.4.9	Completion of the total synthesis of (-)-dragmacidin F (84)100

APPENDIX TWO

Scheme A2.1	The synthesis of boronic ester 89	195
Scheme A2.2	The synthesis of (+)-dragmacidin F (84)	196
Scheme A2.3	The synthesis of (–)-dragmacidin F (84)	197

Scheme 4.1.1	Proposed biosynthesis of telomestatin (189)	339
Scheme 4.1.2	Peptide-bond formation-cyclization-oxidation sequence	
Scheme 4.1.3	Taiho Pharmaceutical total synthesis of telomestatin (189)	341
Scheme 4.1.4	Doi and Takahashi total synthesis of telomestatin (189)	342
Scheme 4.1.5	Retrosynthetic analysis of telomestatin (189)	344
Scheme 4.2.1	Synthesis of left-hand trisoxazole iodo acid 211	345
Scheme 4.2.2	Synthesis and X-ray characterization of 222	346
Scheme 4.2.3	Synthesis of methylbisoxazole ester 233	347
Scheme 4.2.4	Synthesis of methyloxazole triflate 240	
Scheme 4.2.5	Synthesis of right-hand tetrakisoxazole amino alcohol 212	349
Scheme 4.2.6	Late stage and proposed endgame	350

LIST OF TABLES

CHAPTER TWO

Table 2.1.1	Original Pd-catalyzed oxidative kinetic resolution	.16
Table 2.1.2	Rate-accelerated Pd-catalyzed oxidative kinetic resolution	.17
Table 2.2.1	Chloroform-based Pd-catalyzed oxidation kinetic resolution	.21
Table 2.4.1	Methods for determination of enantiomeric excess	.25
Table 2.4.2	Methods for determination of % conversion	.25
Table 2.4.3	Optical rotations of oxidative kinetic resolution substrates	.26

CHAPTER THREE

Table 3.2.1	Optimization of Pd(II) oxidative carbocyclization	.73
Table 3.2.2	Pd(II) oxidative carbocyclization substrate scope	.77
Table 3.4.1	Reductive isomerization of allylic lactones and carbonates	.94
Table 3.4.2	Pd(II) oxidative carbocyclization substrate scope in the	
	(-)- <i>nat</i> -dragmacidin F series	.98

APPENDIX FIVE

Table A5.1.1	Crystal data and structure refinement for 226 (CCDC 282586)420
Table A5.1.2	Atomic coordinates (x 10^4) and equivalent isotropic displacement
	parameters (Å ² x 10 ³) for 226 (CCDC 282586)426
Table A5.1.3	Bond lengths [Å] and angles [°] for 226 (CCDC 282586)427
Table A5.1.4	Anisotropic displacement parameters $(Å^2 x \ 10^4)$ for
	226 (CCDC 282586)
Table A5.1.5	Hydrogen coordinates (x 10^4) and isotropic displacement
	parameters (Å ² x 10 ³) for 226 (CCDC 282586)431
Table A5.1.6	Torsion angles [°] for 226 (CCDC 282586)432
Table A5.1.7	CH N hydrogen bonds for 226 (CCDC 282586) [Å and °]433

Table A6.1	Compounds	appearing in Chapter 243	35
Table A6.2	Compounds	appearing in Chapter 343	36
Table A6.3	Compounds	appearing in Chapter 443	39

LIST OF ABBREVIATIONS

Å	Ångstrom
$[\alpha]_{D}$	specific rotation at wavelength of sodium D line
Ac	acetyl, acetate
app.	apparent
aq.	aqueous
Ar	aryl
atm	atmosphere
Bn	benzyl
Boc	<i>tert</i> -butyloxycarbonyl
BOXAX	2,2'-Bis(oxazolyl)-1,1'-binaphthyl
bp	boiling point
BQ	benzoquinone
br	broad
Bu	butyl
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -Butyl
С	concentration for specific rotation measurements
°C	degrees Celsius
calc'd	calculated
cat.	catalytic
Cbz	carbobenzyloxy
CCDC	Cambridge Crystallographic Data Centre
CDI	1,1'-carbonyldiimidazole
CI	chemical ionization

comp.	complex
Су	cyclohexyl
d	doublet
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	dichloroethane
dba	dibenzylideneacetone
dec.	decomposition
dppb	1,4-bis(diphenylphosphino)butane
dppf	1,1'-bis(diphenylphosphino)ferrocene
DMA	N,N-dimethylacetamide
DMAP	4-dimethylaminopyridine
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
DNA	(deoxy)ribonucleic acid
dr	diastereomeric ratio
EC ₅₀	median effective concentration (50%)
EDC	N-(3-dimethylaminopropyl)- N' -ethylcarbodiimide
ee	enantiomeric excess
EI	electron impact
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
FAB	fast atom bombardment
g	gram(s)
GC	gas chromatography
gCOSY	gradient-selected correlation spectroscopy
h	hour(s)

HIV	human immunodeficiency virus
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HOBt	1-hydroxybenzotriazole
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
HSV	herpes simplex virus
h v	light
Hz	hertz
IC ₅₀	median inhibition concentration (50%)
IR	infrared (spectroscopy)
J	coupling constant
λ	wavelength
L	liter
m	multiplet or milli
m	meta
m/z	mass to charge ratio
μ	micro
Μ	metal or molar
Me	methyl
MHz	megahertz
min	minute(s)
mol	mole(s)
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves
n	nano
Ν	normal

nbd	norbornadiene
NBS	N-bromosuccinimide
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser enhancement spectroscopy
Nu	nucleophile
[O]	oxidation
0	ortho
р	para
PDC	pyridinium dichromate
Pin	pinacolato
Ph	phenyl
рН	hydrogen ion concentration in aqueous solution
PhH	benzene
ppm	parts per million
PPTs	pyridinium <i>p</i> -toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl
Ру	pyridine
q	quartet
ref	reference
\mathbf{R}_{f}	retention factor
rt	room temperature
S	singlet or strong or selectivity factor
sat.	saturated
SEM	(trimethylsilyl)ethoxymethyl

SET	single electron transfer
sp	species or (-)-sparteine
t	triplet
TBAF	tetrabutylammonium fluoride
TBHP	tert-butyl hydroperoxide
TBS	tert-butyldimethylsilyl
TCNE	tetracyanoethylene
Tf	trifluoromethanesulfonyl (trifyl)
TFA	trifluoroacetic acid
TFE	2,2,2-trifluoroethanol
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin-layer chromatography
TMS	trimethylsilyl
TON	turnover number
Tr	trityl
Ts	<i>p</i> -toluenesulfonyl (tosyl)
UV	ultraviolet
w	weak
w/v	weight to volume
<i>v</i> / <i>v</i>	volume to volume
Х	anionic ligand or halide