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Abstract

We exploit the combinatorial properties of surface maps into free groups to prove several new results

in the field of stable commutator length and bounded cohomology. We show that random homomor-

phisms between free groups are isometries of scl; we prove interesting properties of the scl unit ball;

we describe a transfer construction for quasimorphisms and give an infinite family of chains whose

scl it certifies; we linearize the dynamics of endomorphisms on free groups and use this to prove that

random endomorphisms can be realized by surface immersions, which provides many examples of

surface subgroups of HNN extensions of free groups; and finally, we give an algorithm to compute

scl in free products of finite or infinite cyclic groups that generalizes and improves previous work.
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Chapter 1

Introduction

1.1 Introduction

In this chapter, we give a very brief introduction to the subjects of this thesis and state our main

results. In Chapter 2, we give more detailed background material, and the subsequent chapters form

the main body.

1.2 Brief background

1.2.1 Stable commutator length

Let G be a group and let X = K(G, 1). There are homology chain groups C∗(G,Z) = C∗(X,Z), and

we denote 1-boundaries by B1(G,Z). The space B1(G,Z) is the free Z module spanned by formal

sums
∑n
i=1 gi of group elements with the property that there is a surface map f : S → X where S

has n boundary components {(∂S)i} and f((∂S)i) = γi as loops in X, and γi is a loop representing

the conjugacy class of gi.

The study of stable commutator length is motivated by the question: given a collection of loops

which bound a surface in X, what is the simplest surface that they bound? It is natural to stabilize

the definition; that is, to allow sufaces to have multiple boundary components mapping to the same

loop, and perhaps with degree greater than one. A surface map f : S → X is admissible for
∑
i gi

if the following commutative diagram holds

S
f−−−−→ Xx x∐n

i=1 γ

∂S
∂f−−−−→

∐n
i=1 S

1
i

,

where each S1
i is a copy of S1 and γi : S1

i → X represents (the conjugacy class of) gi. Furthermore,

we define n(S, f) to be the integer such that ∂f∗[∂S] = n(S, f)
[∐

i S
1
i

]
. The number n(S, f) records
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how many times the surface wraps around each loop.

We define

scl(
∑
i

gi) = inf
(S,f)

−χ−(S)

2n(S, f)
,

where χ−(S) is the Euler charateristic disregarding disk and sphere components. It extends to

B1(G;R), and we define BH1 (G) = B1(G;R)/〈xyx−1 = y, yn = ny〉. This will be our main space of

study. We call an admissible surface map extremal for a chain if it realizes the infimum.

Stable commutator length is mysterious and complicated, even in groups as simple as free groups.

1.2.2 Quasimorphisms

A function φ : G→ R is a homogeneous quasimorphism if there exists a finite real number D(φ) <∞

such that |φ(x) +φ(y)−φ(xy)| ≤ D(φ) for all x, y ∈ G, and φ(xn) = nφ(x) for all x ∈ G and n ∈ Z.

We denote the space of homogeneous quasimorphisms by Q(G). Note that Q(G) contains the space

H1(G) of real-valued homomorphisms of G.

Homogeneous quasimorphisms extend by linearity to give well-defined functions on BH1 (G).

These functions are intimately connected with scl.

Theorem (Bavard duality, Theorem 2.79 in [8], generalizing [2]). For C ∈ BH1 (G),

scl(C) = sup
φ∈Q(G)/H1(G)

φ(C)

2D(φ)
.

This theorem says that the normed vector space (Q(G)/H1(G), D(·)) is the functional dual space

of the (pseudo-) normed vector space (BH1 (G), scl). We call a quasimorphism extremal for a chain

in BH1 (G) if it realizes the supremum.

When G is a free group, scl is a genuine norm on BH1 (G).

1.3 Outline and results

The general theme of this thesis is that we can leverage the combinatorial structure of surface maps

into free groups in combination with an understanding of the geometry of surfaces to prove results

involving stable commutator length and quasimorphisms. In addition to theorems, we also give

several interesting constructions, and the final chapter gives an algorithm. These tools allow us to

gain a better understanding of the situation, and they promote further study.

Let G and H be groups. We say that a homomorphism φ : G → H is an isometry for scl if

sclH(φ(C)) = sclG(C) for all C ∈ BH1 (G). As we will see, this is a complicated condition, and it is

stronger than φ being injective.



3

Let Fk and Fl be free groups of rank k and l. We define a random homomorphism of length n

φ : Fk → F` to be a homomorphism obtained by defining φ on the generators of Fk to be words

selected uniformly at random from the ball of radius n in F`. We show that

Theorem (3.3.11; Random isometry theorem). A random homomorphism ϕ : Fk → Fl of length

n between free groups of ranks k, l is an isometry of scl with probability 1 − O(C(k, l)−n) for some

constant C(k, l) > 1.

The random isometry theorem shows that an algebraically random map preserves scl. In free

groups, it is natural to define a geometrically random surface map, and we show that these maps are

extremal, which is the natural analog of isometric. For the purposes of this introduction, it suffices

to know that a fatgraph is essentially a combinatorial description of a surface map into a free group

(Figure 2.6, for the impatient).

Theorem (3.4.11; Random fatgraph theorem). For any combinatorial fatgraph Ŷ , if Y is a random

fatgraph over Fk obtained by labeling the edges of Ŷ by words of length n, then S(Y ) is extremal for

∂S(Y ) and is certified by the extremal quasimorphism HY , with probability 1 − O(C(Ŷ , k)−n) for

some constant C(Ŷ , k) > 1.

Here HY is a quasimorphism constructed in a combinatorial way from the labeling on Y .

The previous theorems show that, in a certain sense, the generic picture of scl in free groups is well

understood (in addition, see [14]). However, a detailed picture is very complicated. A realization of a

free group as the fundamental group of a hyperbolic surface induces a natural rotation quasimorphism

via the circle action at infinity. Associated to such a rotation quasimorphism is a geometric face of

the scl norm ball in BH1 (F ). These faces are important and interesting. In Chapter 4, we explore the

space of rotation quasimorphisms and geometric faces of the scl norm ball. We show some interesting

structural properties of the set of geometric faces.

Theorem (4.3.8; Extremal rotations quasimorphisms). Let F2 be a free group of rank 2. There exist

infinitely many commutators for which the rotation quasimorphism from any surface realization is

extremal. There exist infinitely many commutators for which there is no surface realization giving

an extremal rotation quasimorphism.

A slightly less general statement is true for free groups of arbitrary rank.

Rotation quasimorphisms induced by surface realizations are very natural and have many nice

properties. However, it is trivial to see that we must search for larger classes of quasimorphisms, for

a rotation quasimorphism from a surface realization takes integer values. There are many chains C ∈

BH1 (Fk) for which scl(C) is not in 1
2Z. Therefore, we cannot hope to find an extremal quasimorphism

for most chains within the class of rotation quasimorphisms. We continue Chapter 4 with the

construction of tranfers of quasimorphisms, and in particular, transfers of rotation quasimorphisms.
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In the transfer construction, we lift a quasimorphism from a finite index subgroup to the whole group.

This provides a new class of quasimorphisms, and we show that this is nontrivial by exhibiting an

infinite family of examples for which they are extremal.

Proposition (4.4.8). Let w(n) = x2 + yn + yx−1yn+1x−2 ∈ F2 = 〈x, y〉. Then scl(w(n)) = 2n+1
2n+2 ,

and there is a family φn of transfers of rotation quasimorphisms from finite index subgroups of F2

such that φn is extremal for w(n).

In addition, we show that in certain cases, we can take limits of the transfer procedure to obtain

limiting quasimorphisms, and we give examples of chains for which these limit transfers are extremal.

Proposition (4.7.8). Let F2 be a free group of rank 2. There exist sequences φn of transfers of

rotation quasimorphisms on finite index subgroups of F2 with index n such that φn converges to a

weak-* limit φ∞, and there are chains for which φ∞ is extremal.

In Chapter 5, we study the dynamics of endomorphisms on free groups. We call an endomorphism

φ : Fk → Fk geometric if there is a realization of Fk as the fundamental group of a smooth surface

Σ and an immersion ψ : Σ → Σ such that ψ∗ = φ. A geometric automorphism must be in the

mapping class group of a surface Σ with π1(Σ) ∼= Fk, and these elements are rather rare in Out(Fk).

In contrast, we show:

Theorem (5.3.6; Geometric endomorphisms). A random endomorphism φ : Fk → Fk of length n is

geometric with probability 1− C(k)−n.

The theorem is proved by giving a simple combinatorial condition guaranteeing that an endo-

morphism is geometric.

In combination with results about scl and quasimorphisms, this produces many π1-injective maps

of surface groups into HNN extensions of free groups and gives simple conditions certifying their

injectivity.

In Chapter 6, we give an algorithm, scylla, to compute scl in free products of cyclic groups.

Here the cyclic groups can be finite or infinite, so this generalizes the scallop algorithm (on which

scylla is based) given in Chapter 4 of [8]. Furthermore, scylla is polynomial time in the length of

the input, the number of free factors, and the orders of the factors. This is in contrast to scallop,

which is exponential in the rank. The algorithm scylla is therefore especially useful for computing

scl when dealing with finite covers of free groups, which is of interest in Chapter 5.
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Chapter 2

Background

The content of this thesis comprises several results involving stable commutator length, quasimor-

phisms, and surface maps. There is a significant amount of overlap in the background material

required for the various chapters, so it is useful to collect it in one place. Therefore, in this chapter,

we present a review of stable commutator length, quasimorphisms, and surface realizations of free

groups.

2.1 Stable commutator length

2.1.1 Definition

Let G be a group and [G,G] the commutator subgroup of G. If g ∈ [G,G], then g can be written

as a product of commutators, and we define the commutator length cl(g) to be the least number of

commutators whose product is g.

Commutator length is complicated and difficult to understand, mostly because the set of com-

mutators in a general group can contain elements which do not “look” like commutators. In fact, in

a finite nonabelian simple group, every element is a commutator [27]! Changing the context from

algebra to topology gives a more intuitive picture. The commutator length of g is the least genus of

a surface with one boundary component which maps into a K(G, 1) in such a way that the image

of its boundary loop maps to a loop representing the conjugacy class of g.

Definition 2.1.1. The stable commutator length scl(g) of g is defined

scl(g) = lim
n→∞

cl(gn)

n
.

The limit exists because the map n 7→ cl(gn) is clearly subadditive (and positive). The topological

definition of cl motivates us to find a topological picture for scl. It will actually be more natural to

define scl in a more general setting.
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Let C =
∑k
i=1 gi be a formal sum of elements gi ∈ G. If [C] = 0 in H1(G;Z), in which case

C ∈ B1(G;Z), the space of boundaries, then there exists a surface map S → K(G, 1) with n

boundary components such that the images of the boundary components in π1(K(G, 1)) = G map

to the conjugacy classes of the gi. We say that a surface map f : S → K(G, 1) is admissible for the

formal sum
∑n
i=1 gi if the following commutative diagram holds:

S
f−−−−→ K(G, 1)x x∐n

i=1 γ

∂S
∂f−−−−→

∐n
i=1 S

1
i

,

where each S1
i is a copy of S1 and γi : S1

i → K(G, 1) represents (the conjugacy class of) gi.

Furthermore, we define n(S, f) to be the integer such that ∂f∗[∂S] = n(S, f)
[∐

i S
1
i

]
. Informally,

a surface map is admissible for a collection of loops if its boundary maps to some multiple of the

loops. Note that an admissible surface map may have multiple boundary components mapping to

the same copy of S1, and in fact with different degrees.

Definition 2.1.2. Let the function χ−(·) be the Euler characteristic disregarding disk and sphere

components. Then define

scl

(
k∑
i=1

gi

)
= inf

S,f

−χ−(S)

2n(S, f)
,

where the infimum is taken over all surface maps (S, f) which are admissible for
∑k
i=1 gi.

Remark 2.1.3. If g ∈ [G,G], then g ∈ B1(G;Z). It is a proposition that Definitions 2.1.1 and 2.1.2

agree for such elements of B1(G;Z). See Propositions 2.10 and 2.74 in [8]. We have omitted a more

algebraic generalization of Definition 2.1.1 because we will not need it.

Because scl has nice linearity properties (Lemmas 2.75 and 2.76 in [8]), it extends by linearity

to B1(G;Q). Furthermore, it is continuous, so it extends by continuity to B1(G;R). Henceforth, we

will supress the coefficient group in the notation and always take it to be R, so B1(G) = B1(G;R).

Definition 2.1.4. Let H(G) be the subspace of B1(G) spanned by all elements of the form hgh−1−g

and gn − ng for g, h ∈ G and n ∈ Z. We define BH1 (G) = B1(G)/H(G).

Lemma 2.1.5 (§2.6.1 in [8]). For any group G, scl gives a well-defined function on BH1 (G); that is,

scl vanishes on H(G).

It is more natural to work in BH1 (G). We have the following properties of scl, from §2.6.1 in [8]:

Homogeneity. For g ∈ G and n > 0, scl(gn) = nscl(g).

Conjugation invariance. For g, h ∈ G, scl(hgh−1) = scl(g).
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Sublinearity. For x, y ∈ BH1 ((G), scl(x+ y) ≤ scl(x) + scl(y).

In other words, scl is always a pseudo-norm on BH1 (G). It is not always a norm because it might

vanish on a nonzero element. However, if G is word hyperbolic, or in particular free, then scl is a

genuine norm [10].

2.1.2 Extremal surfaces and examples

Intuitively, scl(C) gives the most “efficient” surface which bounds loops representing C in K(G, 1).

It is not true in general that the infimum is actually realized by a surface map. For example, there

are groups for which scl takes transcendental values on certain elements (see [33]). In particular,

these values are not rational, so they cannot be realized by finite surface maps.

However, sometimes there is a surface map realizing the infimum. That is, for a chain C ∈ BH1 (G),

a surface map f : S → K(G, 1) such that scl(C) = −χ−(S)/2n(S, f). We call such surfaces extremal

for C.

Example 2.1.6. Let G be any group, and let [g, h] be a commutator. Then scl([g, h]) ≤ 1/2. To

see this, observe, that [g, h] is the boundary of a tautological once-punctured torus in a K(G, 1).

Therefore, scl([g, h]) ≤ −(−1)/2 = 1/2.

Example 2.1.7. Let G = 〈a, b〉. Then a + b + a−1b−1 ∈ BH1 (G), and scl(a + b + a−1b−1) ≤ 1/2. To

see this, observe that there is a simple thrice-punctured sphere with three boundary components

mapping to a, b, and a−1b−1. Since a thrice-punctured sphere has Euler characteristic −1, we have

scl(a+ b+ a−1b−1) ≤ −(−1)/2. In fact, this surface is extremal.

Theorem 2.1.8 (§4.1 in [8]). For any chain C ∈ BH1 (F ) for F a free group, an extremal surface

for C exists.

Figures 2.3, 2.4a, and 2.4b give some pictures of scl in free groups.

2.2 Quasimorphisms

2.2.1 Definition

Let G be a group, and let φ : G→ R be a map. If φ(g) + φ(h)− φ(gh) = 0 for all g, h ∈ G, then h

is a homomorphism. We generalize this:

Definition 2.2.1. Let φ : G → R. If there exists a finite D such that |φ(g) + φ(h) − φ(gh)| ≤ D,

then we call φ a quasimorphism. The least such number D is called the defect of φ and is denoted

by D(φ).



8

Let Q̂(G) denote the real vector space of quasimorphisms on G. If φ ∈ Q̂(G) satisfies φ(g−1) =

−φ(g), then we call φ antisymmetric. The antisymmetrization φ′ is defined φ′(x) = 1
2 (φ(x)−φ(x−1)).

Note that antisymmetrization does not increase defect. If φ(gn) = nφ(g) for all n ∈ Z, then we call

φ homogeneous. Let Q(G) denote the space of homogeneous quasimorphisms. If φ ∈ Q̂(G), then we

define the homogenization φ̄:

φ̄(g) = lim
n→∞

φ(gn)

n
.

This limit exists, and the homogenization satisfies |φ(g) − φ̄(g)| ≤ D(φ), by Lemma 2.21 in [8].

Furthermore, D(φ) ≤ D(φ̄) ≤ 2D(φ) by Corollary 2.59 in [8]. Notice that the space H1(G) of

homomorphisms on G sits inside the space of homogeneous quasimorphisms.

2.2.2 Duality with scl

Homogeneous quasimorphisms extend by linearity to give well-defined functions on BH1 (G). These

functions are intimately connected with scl.

Theorem 2.2.2 (Bavard duality, Theorem 2.79 in [8], generalizing [2]). For C ∈ BH1 (G),

scl(C) = sup
φ∈Q(G)/H1(G)

φ(C)

2D(φ)
.

This theorem says that the normed vector space (Q(G)/H1(G), 2D(·)) is the functional dual space

of the (pseudo-) normed vector space (BH1 (G), scl). If a quasimorphism realizes the supremum, then

we call it extremal for C. By the Hahn-Banach theorem, an extremal quasimorphism for C always

exists. This is in contrast to extremal surfaces for C, which might not exist.

Observe that if φ ∈ Q(G) is any quasimorphism, and f : S → K(G, 1) is any surface map

admissible for C, then
φ(C)

2D(φ)
≤ scl(C) ≤ −χ

−(S)

2n(S, f)
.

The most satisfying way to compute scl, then, is to exhibit a surface map and a homogeneous

quasimorphism which gave matching upper and lower bounds.

2.2.3 Counting quasimorphisms

In free groups, there is a very natural class of quasimorphisms: those that count subwords.

Definition 2.2.3. Let σ and w be words in a free group F . Define C ′σ(w) to be the number of

(possibly overlapping) occurrences of σ as a subword of w. Define the counting function Cσ to be

Cσ(w) = lim
n→∞

C ′σ(wn)

n
.
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The big counting quasimorphism Hσ is then

Hσ(w) = Cσ(w)− Cσ−1(w).

Big counting quasimorphisms are easy to compute. Let w denote the cyclic, and cyclically

reduced, word obtained from w by writing w around a circle and deleting any cancelling subwords

at the beginning and end of w.

Lemma 2.2.4. Cσ(w) = C ′σ(w).

Proof. Any subword of wn is a cyclic subword of w.

We can also count disjoint subwords:

Definition 2.2.5. Let c′σ(w) count the maximum number of disjoint copies of σ as a subword of

w. As above, we define c′σ(w) = limn→∞ c′σ(wn)/n. The small counting quasimorphism hσ is

hσ(w) = cσ(w)− cσ−1(w).

Both the big and small counting quasimorphisms are, as advertised, quasimorphisms, and they

are homogeneous. They were introduced by Brooks in [5] and generalized to hyperbolic groups by

Epstein-Fujiwara [19] and Fujiwara [20]. Also see [10].

Big counting quasimorphisms are easier to compute, but small counting quasimorphisms have a

uniformly bounded defect.

Lemma 2.2.6 (Corollary of Proposition 2.30, [8]). For any small counting quasimorphism hσ, we

have D(hσ) ≤ 6.

Note that there is a difference in notation in [8]; our counting quasimorphisms are already

homogenized.

Brooks counting quasimorphisms are simple linear combinations of counting functions. One

might wonder whether any other linear combinations yield quasimorphisms. The answer is no.

Lemma 2.2.7. If S is a finite set of words, and
∑
σ∈S Cσ is a homogeneous quasimorphism, then∑

σ∈S Cσ = 1
2

∑
σ∈S Hσ. The analogous statement is true for small counting quasimorphisms.

Proof. Since
∑
σ∈S Cσ is a homogeneous quasimorphism, it is its own antisymmetrization. But its

antisymmetrization is exactly the linear combination of Brooks counting quasimorphisms above.

2.2.4 Rotation quasimorphisms

In this section, we describe a class of quasimorphisms arising naturally from circle actions.
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There is a universal central extension

0→ Z→ Homeo+(S1)∼ → Homeo+(S1)→ 0.

The group Homeo+(S1)∼ can be thought of as the group of orientation preserving homeomorphisms

of R which commute with integer translation, or equivalently, the group of homeomorphisms of R

which cover homeomorphisms of S1.

There are a few different ways to define the rotation number on Homeo(S1) and Homeo+(S1)∼.

We define rot∼ : Homeo+(S1)∼ → R by

rot∼(f) = lim
n→∞

f◦n(0)

n
.

This limit is well defined, and any other point can take the place of 0; the resulting limit is the

same. This map descends to rot : Homeo+(S1) → R/Z, which is Poincaré’s rotation number. If

we let t ∈ Homeo+(S1)∼ be the generator of the center, so t is integer translation by 1, then we

observe that rot(t◦n ◦ f) = n + rot(f). The function rot∼ : Homeo+(S1)∼ → R is a homogeneous

quasimorphism with defect 1.

For any action of a group on a circle ρ : G → Homeo+(S1), there is an associated bounded

Euler class eb(ρ,Z) ∈ H2
b (G;Z). The image e(ρ;Z) in H2(G;Z) is the ordinary Euler class. The

representation lifts to ρ∼ : G→ Homeo+(S1)∼ if and only if the ordinary Euler class e(ρ,Z) vanishes.

If the representation does lift, then the different lifts are parameterized by H1(G,Z) (essentially, by

choosing a particular lift for each generator).

The Euler class determines the representation up to semiconjugacy:

Theorem 2.2.8 (Ghys [21]). Two actions ρ1, ρ2 : G→ Homeo(S1) give rise to the same eb(ρ;Z) ∈

H2
b (G;Z) if and only if ρ1 and ρ2 are semiconjugate; i.e., if and only if there is some third action

ρ and monotone maps π1, π2 : S1 → S1 such that ρiπi = πiρ for i = 1, 2.

For background on the Euler class and rotation number, see [6], [31], and [22].

We will be interested in the pullback of the rotation quasimorphism via representations, and we

therefore need to know how the defect behaves under pullback.

Proposition 2.2.9 (Thurston [31], Proposition 3.3). Let ρ : G→ Homeo+(S1) be a representation

with associated rot∼. Then either ρ is semiconjugate to a group of rigid rotations, in which case

D(rot∼) = 0, or else ρ is semiconjugate to a minimal action with centralizer of finite order n, and

D(rot∼) = 1/n.
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2.3 Free groups

2.3.1 Notation

We let Fk be a free group of rank k. Usually, our free groups will be generated by a, b, . . ., and

sometimes by a1, . . . , ak. Where convenient, we will denote the inverses of generators by capital

letters, so A = a−1. We let Xk be a K(Fk, 1). For simplicity, we will always take Xk to be a rose.

That is, Xk is a simplicial complex with a single 0-cell and k 1-cells, each thought of as a directed

edge labeled by a generator of Fk.

2.3.2 Stallings graphs

It is very convenient to think of free groups and subgroups of free groups as the fundamental groups

of graphs.

Definition 2.3.1. A Stallings graph [30] G over a free group Fk is a directed graph with edges

labeled by generators a1, . . . , ak of Fk.

A directed loop in G gives a word in Fk by reading edge labels in order as appropriate (going

across an edge with the opposite orientation reads off the inverse of the generator). Therefore, a

Stallings graph over Fk has a natural identification with a subgroup of Fk. Every subgroup H of Fk

has an associated Stallings graph: for example, take a set of generators for H, and take the Stallings

graph which is the rose on a set of loops, each labeled with a generator of H.

a

a a

b

a
a

b

Figure 2.1: A Stallings graph over 〈a, b〉 with fundamental group the subgroup 〈aa, ab〉. Folding the
two middle edges together produces a folded Stallings graph for the same subgroup (right).

A vertex v of a Stallings graph is folded if there is at most one incident incoming edge with

any label and at most one incident outgoing edge with any label. A Stallings graph is folded if

each of its vertices is folded. If a Stallings graph contains a vertex which is not folded, or unfolded,

then we can perform a local transformation of the Stallings graph which folds the offending edges

together. If there are two edges with the same label and same origin and destination, then we simply

remove one of them — we think of it as folding the edges together. If there are two incoming (resp

outgoing) edges e1 and e2 with the same direction and label, then we identify together the origin

(resp destination) vertices of e1 and e2 and remove one of e1 and e2. Repeatedly performing the

folding operation on a finite graph will eventually produce a folded graph. Observe that the folding
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operation does not change the subgroup of Fk associated with the Stallings graph. Therefore, every

subgroup of Fk is associated with a folded Stallings graph. See Figure 2.1.

2.3.3 Subgroups and covers

One of the strengths of using Stallings graphs to understand subgroups of Fk is that the finite index

subgroups of Fk are exactly the labeled covers of the Stallings graph Xk. For example, this provides

a simple proof of the following.

Lemma 2.3.2. Given a finitely generated proper subgroup H ( Fk, there is a finite index proper

subgroup N ( Fk so that H ⊆ N .

Proof. Take a Stallings graph for H and fold it. If H is a proper subgroup, the resulting graph will

not be a K(Fk, 1). The only reason it is not a cover is that it is missing some edges. Add edges

(and a vertex, if necessary) so that (1) there is more than one vertex and (2) every vertex has an

incoming and outgoing edge labeled with each generator. The result is a finite cover of Xk whose

fundamental group is therefore a finite index subgroup N containing H.

Of course, this is also consequence of the more powerful (and harder to prove) fact that finitely

generated subgroups of a free group are separable (free groups are LERF) (see [23]).

2.3.4 The scl norm ball

In a free group Fk, scl is a norm on BH1 (Fk) (see [10]). It is natural to wonder what the scl norm ball

looks like, since this is a generalization of wondering what the scl spectrum looks like. In fact, the

scl norm ball in a free group is an infinite dimensional polyhedron, in the sense that its intersection

with any finite-dimensional subspace of BH1 (Fk) is a polyhedron. This is a consequence of Calegari’s

scallop algorithm to compute scl in free groups; see [7], §4.1.

While they are polyhedra, these finite-dimensional slices of the norm ball can be quite compli-

cated. In the large scale, however, scl looks like an L1 norm; see [14].

2.3.5 Pictures of scl in free groups

It is motivating to observe the complexity of scl through experiments. Pictures of scl tend to be

simple at a large scale and complex at a small scale, and this is formalized in [11] and [14].

Figure 2.2a show a histogram of the scl values of many random words of length 40 in F2. Observe

that the histogram looks moderately Gaussian, except for the large spike at 1.5. Comparing a cumu-

lative histogram to the appropriate Gaussian cumulative distribution function in Figure 2.2b shows

the marked similarity, again except for the jump at 1.5. We remark that while certain convergence

results are known ([11] and [14] again), it is not known whether this apparent convergence is true.
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1.2 1.6 2
(a) A histogram of scl values for many words of length
40.

1.2 1.6 2
(b) Cumulative sums for the histogram compared to a
Gaussian CDF.

Figure 2.2: Comparing a histogram of scl values to its cumulative distribution function.

We also remark that experimental data can be misleading: [14] proves a convergence result which

occurs so slowly that we cannot hope to observe it with our current experimental capabilities.

Compare Figures 2.2a and 2.2b to a histogram of the same data with very small bins, as shown

in Figure 2.3. Note the obvious complexity and self-similarily. This is discussed in more detail in

[9]. See also [13].

1.4 1.5 1.6 1.7 1.8

Figure 2.3: A histogram of scl values for many words of length 40 in F2. Some of the vertical bars
are not to scale.

Figure 2.4a shows the scl unit ball in the 2-dimensional subspace of BH1 (F2) spanned by the

chains ABabbAbaBB and AABBabbb+Ba. For example, the starred vertex of the polygon, which

is located at (6/5, 4/5), indicates that

scl(6ABabbAbaBB + 4AABBabbb+ 4Ba) = 5.

Even with these relatively short chains, there is evident complexity in the unit ball. Figure 2.4b

shows the unit ball in the 2-dimensional subspace spanned by baaaaaBBABBBAAbAbbAb and

bbAbaaBAAABabaaBBBAb. The similarity to an L1 norm is starting to appear in the overall

diamond shape, but the small scale complexity is enormous.
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1

1 ∗

C1

C2

(a) The unit ball in the subspace spanned by the
chains C1 = ABabbAbaBB and C2 = AABBabbb+
Ba.

1

1

C1

C2

(b) The unit ball in a subspace spanned by two random
word of length 20.

Figure 2.4: Unit balls in the scl norm.

2.4 Fatgraphs

2.4.1 Fatgraphs

Definition 2.4.1. A fatgraph, also known as a ribbon graph, is a graph with a specified cyclic order

on the edges at each vertex.

Figure 2.5: Two fatgraphs differing only in their cyclic orders, and their fattenings to a once-
punctured torus and a trice-punctured sphere.

They are so called because a fatgraph Y can be “fattened” to a surface, which we will denote by

S(Y ); the cyclic order at each vertex ensures that the surface obtained is well-defined. See Figure 2.5.

Definition 2.4.2. A fatgraph over Fk, or a labeled fatgraph, is a fatgraph with its edges labeled on

both sides by generators of Fk, subject to the condition that if an edge has the label w on one side,

then the other side of the edge is labeled by w−1.

A labeled fatgraph Y determines in a surface map from S(Y ) to Xk: map each edge according to

the labels. The labeling also shows the (conjugacy class of) the images of the boundary components

of S(Y ): read off the labels around each boundary component. See Figure 2.6.
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B

b

a
A

B

b
A

a

B

b

Figure 2.6: A labeled fatgraph; the induced surface map takes the boundary to the conjugacy class
of the commutator [abAB,BaBA] = abABBaBAbb.

Conversely,

Lemma 2.4.3 ([18], Theorem 1.4). Let S be a surface with boundary, and let g : S → Xk be an

incompressible map. Then g is carried by a labeled fatgraph map. That is, there exists a labeled

fatgraph Y over Fk so that g = i ◦ h, where h : S → S(Y ) is a homeomorphism, and i : S(Y )→ Xk

is the map induced by the labeling of Y .

Since it is the heart of many of our computational arguments, we record the following corollary

of Lemma 2.4.3 as another lemma.

Lemma 2.4.4. Let C ∈ BH1 (Fk) be a chain, and let f : S → Xk be an admissible map. Then

there is a labeled fatgraph Y with induced surface map i : S(Y )→ Xk such that −χ(S(Y )) ≤ S and

i∗(∂S(Y )) = f∗(∂S).

In other words, after possible compressions and homotopy, any admissible map is carried by a

labeled fatgraph.

2.4.2 Stallings fatgraphs

Recall that a Stallings graph is folded if there is at most one outgoing edge and one incoming edge

labeled by a generator at each vertex. We define a labeled fatgraph to be folded if its boundary

words are reduced. Note that this is equivalent to saying that for every vertex, there are no cyclically

adjacent edges with the same direction and label. Here adjacent is well-defined because of the cyclic

order.

It is not the case that we may obtain a folded labeled fatgraph from an unfolded one by folding.

The process of doing local folds can result in losing the fatgraph structure.

It is also not the case that a folded fatgraph is Stallings folded as an abstract graph, since

non-ajacent edges at the same vertex might have the same label.
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2.5 Surface realizations

2.5.1 Surface realizations

Definition 2.5.1. A surface realization of a free group Fk is a pair (Σ, f), where Σ is a smooth

surface with boundary, and f is a homotopy equivalence f : Xk → Σ.

We consider the set of surface realization modulo the following equivalence relation. Two surface

realizations (Σ1, f1) and (Σ2, f2) are equivalent if there is a diffeomorphism φ : Σ1 → Σ2 such that

φ ◦ f1 is homotopic to f2.

Because we have identified Fk ∼= π1(Xk), a surface realization induces an isomorphism f∗ : Fk →

π1(Σ) up to inner automorphisms of Fk.

Definition 2.5.2. A hyperbolic surface realization of Fk is a pair (Σ, f), where Σ is a hyperbolic

surface with geodesic boundary, and f : Xk → Σ is a homotopy equivalence. Two hyperbolic surface

realizations (Σ1, f1) and (Σ2, f2) are equivalent if there is an isometry φ : Σ1 → Σ2 such that φ ◦ f1

is homotopic to f2.

Definition 2.5.3 (Alternate definition). A hyperbolic surface realization of Fk is a discrete faith-

ful representation ρ : Fk → PSL(2,R). Two hyperbolic surface realizations are equivalent if the

representations are conjugate. In the above notation, we let (Σρ, fρ) denote the hyperbolic surface

realization given by ρ.

Given a hyperbolic surface realization, we can forget the hyperbolic structure to obtain a surface

realization. We can therefore think of the set of surface realizations as π0 of the space of hyper-

bolic surface realizations. Conversely, a surface realization can be stiffened to a hyperbolic surface

realization by choosing a hyperbolic structure on Σ.

Given a free group Fk, there is a finite set of topological types of surfaces Σ with boundary such

that π1(Σ) ∼= Fk. Therefore, the space of hyperbolic surface realizations decomposes as a union

of Teichmüller spaces, with one component for each topological type of surface Σ and (because we

mod out by the equivalence relation above) coset of the mapping class group of Σ in the outer

automorphisms Out(Fk).

2.5.2 Rotation quasimorphisms from realizations

The action of PSL(2,R) on H2 induces an action on the ideal boundary ∂H2 = S1 by homeomor-

phisms, giving rise to an inclusion PSL(2,R)→ Homeo+(S1).

Any representation ρ : Fk → PSL(2,R) → Homeo+(S1) lifts to ρ∼ : Fk → Homeo+(S1)∼

because H2(Fk;Z) = 0. We denote by rotρ the associated class of rot∼ in Q(Fk)/H1(Fk). Note that

the rotation quasimorphism rot∼ depends on the particular lift of the representation, but the class

rotρ = [rot∼] ∈ Q(Fk)/H1(Fk) is well defined. Also note [rot∼] ∈ Q(Fk)/H1(Fk;Z) is well defined.
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If ρ is a discrete, faithful representation associated with a hyperbolic surface realization, the quasi-

morphism rotρ takes integer values. Because rot is a continuous function (on the space Homeo+(S1))

and the Teichmüller component containing ρ is connected, it follows that rotρ is constant over the

entire component. In other words,

Lemma 2.5.4. Let Σρ1
and Σρ2

be two hyperbolic surface realizations in the same component. Then

rotρ1
= rotρ2

.

If (Σ, f) is a surface realization of F , we will denote the associated rotation quasimorphism by

rot(Σ,f), or just rotΣ if f is understood.

If (Σ, f) is a hyperbolic surface realization, each Γ in B1 has a canonical representative Γ :∐
i S

1
i → Σ (at least up to reparameterization), namely the geodesic representative. We say that Γ

virtually bounds an immersed surface if there is some immersion g : S → Σ which is admissible for

a geodesic representative Γ. This is equivalent to saying that we can find a hyperbolic structure on

S with geodesic boundary for which g : S → Σ is a local isometry.

The following theorem indicates a deep relationship between the geometry and combinatorics of

BH1 (Fk) and the set of surface realizations of Fk.

Theorem 2.5.5 (Calegari [7], Theorems A and B). Let (Σ, f) be a surface realization of Fk, and

let ∂Σ ∈ BH1 (Fk) be the associated chain.

1. There is a codimension 1 face πΣ of the unit ball of the scl norm, and the chain ∂Σ projectively

intersects its interior.

2. A chain Γ projectively intersects πΣ if and only if, for any hyperbolic surface realization stiffen-

ing (Σ, f), the geodesic representative of Γ virtually bounds an immersed surface. Additionally,

a surface admissible for Γ is extremal for Γ if and only if it is homotopic to an immersion with

geodesic boundary.

3. rotΣ is the unique (class of) quasimorphism in Q(Fk)/H1(Fk) with defect 1 which is extremal

for elements projectively intersecting the interior of πΣ.

Theorem 2.5.5 implies the following ridigity result for the interaction of extremal surfaces and

extremal quasimorphisms, valid for any group:

Corollary 2.5.6. Let G be any group. Let C ∈ BH1 (G), and let f : S → K(G, 1) be an extremal

surface for C. Then any quasimorphism φ ∈ Q(G) with defect 1 which is extremal for C restricts to

the tautological representation rotS on π1(S), up to an element of H1(S;R).

Proof. We have f : S → X admissible for C After replacing (S, f) by a finite cover if necessary, we

may assume that n(S) = 1. Hence f takes ∂S to C, and therefore f∗φ is an element of Q(π1(S))
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extremal for ∂S. Note that D(f∗φ) = 1, certified by its value on ∂S. By Theorem 2.5.5, this implies

that f∗φ = rotS up to an element of H1(S;R).

In the preceeding corollary, it is important to note that the pullback of any extremal quasimor-

phism to any extremal surface gives the rotation number up to an element of H1(S;R), not H1(S;Z)

or H1(G;R). This is a source of potential confusion.

A surface realization induces the rotation quasimorphism rotΣ, and Theorem 2.5.5 shows that

there is a strong relationship between geometry and the scl norm ball. The theorem associates a

codimension one face of the scl norm ball with a surface realization.

Definition 2.5.7. We will call these codimension one faces geometric faces of the scl norm ball.

2.5.3 Cyclic orders and basic surface realizations

Definition 2.5.8. A cyclic order on a set S is a choice of total ordering <p on S \ p for each p ∈ S,

subject to the condition that if p, q ∈ S, then the total orders <p and <q differ by a cut. That is, if

x <p y, then x <q y unless x <p q <p y, in which case y <q x.

The intuition for a cyclic order is, naturally, that a cyclic order on a set S arranges the elements

of S cyclically, so while we cannot say if x < y, we can say whether any triple (x, y, z) is clockwise

or counterclockwise. We will call a triple which is a counterclockwise positive. It is sometimes useful

to think of a cyclic order as a map O : S3 → {−1, 0,+1} which assigns ±1 or 0 to a triple depending

on whether it is counterclockwise, clockwise, or degenerate.

We will denote explicit cyclic orders by square brackets, so [x, y, z, w] gives a cyclic order on the

set {x, y, z, w}. It is the same cyclic order as, for example, [y, z, w, x], but not the same as [x, y, w, z].

Cyclic orders and fatgraphs give a simple combinatorial way to describe surface realizations. Let

S = {a1, a
−1
1 , . . . , ak, a

−1
k } be a set of semigroup generators for Fk. Given a cyclic order O on S,

build a labeled fatgraph over Fk as follows. First create a single vertex v. Then attach 2k half-edges

to v in such a way that the outgoing labels on each half-edge are arranged according to the cyclic

order O on S. Then glue the unattached ends of the half edges together, producing a fatgraph with a

single vertex and k edges. Call this labeled fatgraph ΣO. There is a tautological map fO : Xk → ΣO

obtained from following the labels.

Definition 2.5.9. The surface realization (fO,ΣO) as constructed above is the basic fatgraph real-

ization induced by O.

See Figure 2.7 for an example.
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a

b

c

Xk

fO

ΣO

a
A

b

B

c
C

Figure 2.7: The basic fatgraph realization of F3 = 〈a, b, c〉 induced by the cyclic order [a, b, A,B, c, C].
The surface ΣO has two boundary components, given by the conjugacy classes of the words C and
aBAbc.

2.5.4 A formula for rotation number

For a basic fatgraph realization, there is a simple combinatorial formula for the associated rotation

number rotΣO
, which for simplicity we will denote by rotO. The formula is given by Theorem 4.76

in [8].

If S is a set with a cyclic order O, and x, y, z ∈ S, we define the distance between x and y

avoiding z to be the number dz(x, y) such that x and y have dz(x, y) − 1 elements between them

when arranged according to the total order <z on S. Then the translation from x to y avoiding z is

tz(x, y) =

 dz(x, y) if x <z y

−dz(x, y) if y <z x
.

Theorem 2.5.10 (Theorem 4.76 in [8]).

rotO =
1

|S|
∑
x 6=y±1

ty−1(x, y)Cyx

While the formula may seem slightly arbitrary, this theorem is completely intuitive given the

discussion in [8], §4.2.

Remark 2.5.11 (Important technical note). Theorem 2.5.10 gives the rotation quasimorphism in-

duced by a cyclic order as a sum of counting functions. There is a difference in convention here

which results in possible confusion: counting functions read subwords of the input word from left

to right, but the circle action at infinity by Fk coming from the PSL(2,R) representation is a left

action. In order to correctly compute the rotation quasimorphism, therefore, we find the counting

function Cyx, rather than Cxy. The other option is to read the input word backwards.
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Chapter 3

Isometric endomorphisms of free
groups

3.1 Introduction

Definition 3.1.1. Given a homomorphism φ : G→ H between groups, we say that φ is an isometry

for scl if sclH(φ(C)) = sclG(C) for all C ∈ BH1 (G).

It is natural to ask what conditions are sufficient to show that a homomorphism is an isometry.

In this chapter, we show that a random homomorphism between free groups is an isometry, and we

show that a random map of a fatgraph into a free group is extremal for its boundary. This chapter

contains essentially the same material as [17].

More specifically, we prove

Theorem (3.3.11; Random isometry theorem). A random homomorphism ϕ : Fk → Fl of length

n between free groups of ranks k, l is an isometry of scl with probability 1 − O(C(k, l)−n) for some

constant C(k, l) > 1.

By this theorem, the scl unit ball of a given free group is the same as infinitely many different

subballs of itself.

We also prove

Theorem (3.4.11; Random fatgraph theorem). For any combinatorial fatgraph Ŷ , if Y is a random

fatgraph over Fk obtained by labeling the edges of Ŷ by words of length n, then S(Y ) is extremal for

∂S(Y ) and is certified by the extremal quasimorphism HY , with probability 1 − O(C(Ŷ , k)−n) for

some constant C(Ŷ , k) > 1.

Here the random labeling of a combinatorial fatgraph gives a “random” surface map, so this

theorem says that a random surface is extremal.
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3.2 Isometries and non-isometries of scl

Let φ : G → H be a homomorphism between groups. Then since the image of a commutator

is a commutator, sclH(φ(C)) ≤ sclG(C) for any C ∈ BH1 (G). This inequality also holds for the

commutator length of any element g ∈ [G,G]: we have cl(φ(g)) ≤ cl(g). A natural question is

whether a homomorphism is an isometry for scl; that is, whether sclG(φ(C)) = sclF (C) for all

C ∈ BH1 (G). Analogously, we might ask if a homomorphism preserves commutator length. The

latter implies the former, but not the other way around.

Example 3.2.1. An automorphism is an isometry.

Let us now specialize to free groups. A necessary condition for a homomorphism to be an isometry

is that it is injective. However, this is not sufficient, as the following examples show.

Example 3.2.2. Let H be a genus 3 handlebody with boundary S = ∂S. Decompose S into two

surfaces S1 and S2 of genus 1 and 2, respectively, separated by a curve γ = ∂S1 = ∂S2. Denote the

inclusion i : S2 → S.

Let T be the subcomplex of the complex of curves in S containing all the curves which bound

disks in H. By [24], Theorem 2.7, there is a pseudo-Anosov homeomorphism φ of the boundary

∂S such that d(φ(γ), T ) ≥ 2. Since φ(γ) is disjoint (i.e., distance 1 in the curve complex) from all

the curves in φ(S2) representing elements of π1(S2), this implies that (φ ◦ i)∗ : π1(S2) → π1(H)

is injective. Now sclπ1(S2)(∂S2) = 1, since a surface is extremal in its own surface group for its

boundary component. However, by construction, ∂(φ(S2)) = φ(γ) = ∂(φ(S1)), so φ(γ) bounds a

torus, so sclπ1(H)(∂φ(S2)) ≤ 1/2. Therefore, while (φ ◦ i)∗ is injective, it is not an scl-isometry.

In fact, this construction gives an example of an injective map of free groups that does not

preserve commutator length. This gives a negative answer to a question of Bardakov [1], who asked

whether an injection of free groups must preserve commutator length.

Example 3.2.3 (Nongeometric covers). Let H ⊆ Fk be a subgroup of finite index. If (Σ, f) is a

surface realization of Fk, then there is a cover p : (Σ′, f ′) → (Σ, f ′) so that (Σ′, f ′) is a realization

of H. We call this a geometric cover. However, it is not the case that every surface realization of

H arises in this way. If (Σ, f) is a realization of H which does not cover a realization of Fk, then

we say that this is a nongeometric cover. The inclusion map p : H → Fk is injective, but we claim

that sclFk
(∂Σ) < sclH(∂Σ) for any nongeometric cover Σ realizing H. Thus the inclusion map of

any finite index subgroup is not an scl-isometry.

The proof of the claim relies on background developed more fully in [8], §4.2, but the essential

ingredient is Theorem 2.5.5, and we give a sketch. If Σ is a nongeometric cover, then the conjugation

action of Fk/H on H contains elements of Out(H) which are not in the mapping class group of Σ.

Let φ be the action of such an element of Fk/H. Applying Theorem 2.5.5, we see that ∂Σ lies in

the interior of a codimension one face of the scl norma ball of H, and φ∂Σ cannot lie in the same
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face (projectively). Therefore,

sclH(∂Σ + φ∂Σ) < sclH(∂Σ) + sclF (φ∂Σ).

Now we can compute sclFk
(∂Σ) using the formula from Corollary 2.81 in [8]. This formula, together

with the above strict inequality, implies that sclFk
(∂Σ) < sclH(∂Σ).

This holds for any nongeometric cover, so for any finite index subgroup, there are infinitely many

elements of BH1 (H) whose scl strictly decreases under the (injective) inclusion map.

1
2

3
4

5
6 1

Figure 3.1: A histogram of sclF2(i∗∂Σ) for 7500 random surface realizations of an index 2 subgroup.

Figure 3.1 shows a histogram of scl(i∗∂Σ) for many realizations Σ of an index 2 subgroup G ⊆ F2,

where Σ is a four-punctured sphere. For all these realizations, we have sclG(∂Σ) = 1, but under the

inclusion map i : G→ F2 the scl must strictly decrease for nongeometric covers. The large spike at

1 is all the geometric covers.

3.3 Random homomorphisms are usually isometries

3.3.1 Bounds on scl

Let Fk be freely generated by x1, . . . , xk; if Γ ∈ BH1 (Fk), we denote by |Γ|i the number of times that

xi and x−1
i appear in Γ.

Proposition 3.3.1. With notation as above, we have an inequality

scl(Γ) ≤ |Γ| −maxi |Γ|i
4

for any Γ ∈ BH1 (Fk).

Proof. Without loss of generality, we may assume that maxi |Γ|i = |Γ|n. Given an extremal surface
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for Γ, we may assume it has a fatgraph structure by Lemma 2.4.4. Now cut out all rectangles

corresponding to matched pairs of x1 and x−1
1 . Note that this actually means cutting out at most

|Γ|1/2 thrice-punctured spheres, What is left is an immersed subsurface S′ of S, and because we

cut out thrice-punctured spheres, −χ(S) ≤ −χ(S′) + |Γ|i/2. An essential immersed subsurface

of an extremal surface is also extremal, by [7] (essentially, Theorem 2.5.5). Consequently S′ is

extremal for its boundary Γ′, which lies in BH1 (〈x2, . . . , xn〉). We therefore have the inequality

scl(Γ) ≤ scl(Γ′) + |Γ|1/4. Repeating this argument n− 1 times yields

scl(Γ) ≤ scl(Γ′′) + |Γ|1/4 + · · ·+ |Γ|n−1/4

where scl(Γ′′) = 0, since Γ′′ ∈ BH1 (〈xn〉). The proof follows.

Example 3.3.2. The bound in Proposition 3.3.1 is sharp, which we show by a family of examples. We

first recall the free product formula ([8], §2.7), which says that if G1 and G2 are arbitrary groups,

and gi ∈ G′i have infinite order, then sclG1∗G2
(g1g2) = sclG1

(g1) + sclG2
(g2) + 1/2.

Now, let Fk be freely generated by x1, . . . , xk as above, and define

wk = [x1, x2][x3, x4] · · · [xk−1, xk]

if k is even, and

wk = [x1, x2][x3, x4] · · · [xk−4, xk−3]xk−2xk−1xkx
−1
k−1xkx

−1
k−2x

−2
k

if k is odd.

For each i, we have scl([xi, xi+1]) = 1/2. Moreover, using scallop ([15]) one can check that

scl(xk−2xk−1xkx
−1
k−1xkx

−1
k−2x

−2
k ) = 1.

The free product formula then shows that scl(wk) = (k − 1)/2, so Proposition 3.3.1 is sharp for all

k.

3.3.2 A small cancellation condition

Definition 3.3.3. Let A be a set, and let F (A) be the free group on A. Let U be a subset of F (A)

with U ∩ U−1 = ∅, and let S denote the set U ∪ U−1. We say that U satisfies condition (SA) if the

following is true:

(SA1) if x, y ∈ S and y is not equal to x−1, then xy is reduced; and
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(SA2) if x, y ∈ S and y is not equal to x or x−1, then any common subword s of x and y has length

strictly less than |x|/12; and

(SA3) if x ∈ S and a subword s appears in at least two different positions in x (possibly overlapping)

then the length of s is strictly less than |x|/12.

Let B be a set, and ϕ : B → U a bijection. Extend ϕ to a homomorphism ϕ : F (B) → F (A). We

say ϕ satisfies condition (SA) if U satisfies condition (SA).

Note that except for condition (SA1), this is the small cancellation condition C ′(1/12). We will

show the following:

Proposition 3.3.4. Let ϕ : F (B)→ F (A) be a homomorphism satisfying condition (SA). Then ϕ

is an isometry of scl.

Condition (SA1) for ϕ means that if g is a cyclically reduced word in F (B), then the word in F (A)

obtained by replacing each letter of g by its image under ϕ is also cyclically reduced. This condition

is quite restrictive — in particular it implies that |A| ≥ |B|, and even under these conditions it is

not “generic” — but we will show how to dispense with it in §3.3.3. However, its inclusion simplifies

the arguments in this section.

Example 3.3.5. The set {aa, bb} satisfies (SA1). The set {ab, ba} satisfies (SA1).

Suppose ϕ : F (B) → F (A) satisfies condition (SA), and let Y be a fatgraph with ∂S(Y ) in the

image of ϕ, i.e., such that ∂S(Y ) is a collection of cyclically reduced words of the form ϕ(g). By

condition (SA1), each ϕ(g) is obtained by concatenating words of the form ϕ(x±) for x ∈ B. We call

these subwords segments of ∂S(Y ), as distinct from the decomposition into arcs associated with the

fatgraph structure. An arc is a pair of subwords of ∂S(Y ) which are glued together in the fatgraph

structure.

Definition 3.3.6. A perfect match in Y is a pair of segments ϕ(x), ϕ(x−1) contained in a pair of arcs

of ∂S(Y ) that are matched by the pairing. A partial match in Y is a pair of segments ϕ(x), ϕ(x−1)

containing subsegments s, s−1 in “corresponding” locations in ϕ(x) and ϕ(x−1) that are matched

by the pairing.

The existence of a perfect match will let us replace Y with a “simpler” fatgraph. This is the key

to an inductive proof of Proposition 3.3.4. The next lemma shows how to modify a fatgraph Y to

promote a partial match to a perfect match.

Lemma 3.3.7. Suppose Y contains a partial match. Then there is Y ′ containing a perfect match

with S(Y ′) homotopic to S(Y ) and ∂S(Y ) = ∂S(Y ′).
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xX

x X

X x

x X

slide−−−→

Figure 3.2: A local move to replace a partial match with a perfect match.

Proof. The fatgraph Y can be modified by a certain local move, illustrated in Figure 3.2.

This move increases the length of the paired subsegments by 1. Perform the move repeatedly to

obtain a perfect match.

Each vertex v of Y of valence |v| contributes (|v| − 2)/2 to −χ(Y ), in the sense that −χ(Y ) =∑
v(|v| − 2)/2. Since each vertex v of Y is in the image of |v| vertices in ∂S, we assign a weight of

(|v| − 2)/2|v| to each vertex of ∂S.

Lemma 3.3.8. Let Y be a fatgraph with ∂S(Y ) = ϕ(Γ) and suppose that ϕ satisfies (SA). Then

either Y contains a partial match, or −χ(Y ) > |Γ|.

Proof. Observe that ∂S(Y ) decomposes into |Γ| segments, corresponding to the letters of Γ. Suppose

Y does not contain a partial match. Then since each vertex contributes (|v| − 2)/2|v| to −χ(Y ), it

suffices to show that each segment of ∂Y contains at least six vertices in its interior.

Suppose not. Then some segment ϕ(x) of ∂Y contains a subsegment s of length at least |ϕ(x)|/6

that does not contain a vertex in its interior. Either s contains a possibly smaller subsegment s′

which is paired with some entire segment ϕ(y), or at least half of s is paired with some s−1 in some

ϕ(y). In either case, since s is not a partial match by hypothesis, we contradict either (SA2) or

(SA3).

Thus each segment contributes at least 7 × ((3 − 2)/2 · 3) = 7/6 to −χ(Y ), and the lemma is

proved.

We now give the proof of Proposition 3.3.4.

Proof of Proposition 3.3.4. Suppose ϕ : F (B)→ F (A) satisfies (SA) but is not isometric.

Let Y be a fatgraph with ∂S(Y ) = ϕ(Γ) so that scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 < scl(Γ) (the existence

of such a Y follows from Lemma 2.4.3; for instance, we could take Y to be extremal). We will

construct a new Y ′ with ∂S(Y ′) = ϕ(Γ′) satisfying scl(ϕ(Γ′)) ≤ −χ(S(Y ′))/2 < scl(Γ′), and such

that Y ′ is shorter than Y . By induction on the size of Y we will obtain a contradiction.

By Proposition 3.3.1 and Lemma 3.3.8, Y contains a partial match, and by Lemma 3.3.7 we can

modify Y without affecting ∂S(Y ) or χ(Y ) so that it contains a perfect match. A perfect match
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cobounds a rectangle in S = S(Y ) that can be cut out, replacing S with a “simpler” surface S′ for

which ∂S′ is also in the image of ϕ. By Lemma 2.4.3, there is some surface S′′ with −χ(S′′) ≤ −χ(S′)

and ∂S′′ = ∂S′, anda fatgraph Y ′ with S(Y ′) = S′′.

In the degenerate case that S′′ is a disk, necessarily S is an annulus, and both boundary com-

ponents of S consist entirely of perfect matches; hence Γ = g + g−1 and scl(Γ) = scl(ϕ(Γ)) = 0

in this case, contrary to hypothesis. Otherwise ∂S′′ = ∂S′ = ϕ(Γ′) for some Γ′, and satisfies

−χ(S(Y ′)) ≤ −χ(S′) = −χ(S(Y ))− 1.

On the other hand, Γ can be obtained from Γ′ by gluing on a pair of pants; hence scl(Γ) ≤

scl(Γ′) + 1/2. We have the “diagram of inequalities” shown in Figure 3.3, from which we deduce

scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 < scl(Γ)

scl(ϕ(Γ′)) + 1/2 ≤ −χ(S(Y ′))/2 + 1/2 scl(Γ′) + 1/2

≤ ≥

Figure 3.3: Diagram of inequalities for the proof of Proposition 3.3.4

scl(ϕ(Γ′)) ≤ −χ(S(Y ′))/2 < scl(Γ′) as claimed. Since each reduction step reduces the length of

∂S(Y ), we obtain a contradiction.

3.3.3 A generic small cancellation condition

In this section, we weaken condition (SA) by allowing partial cancellation of adjacent words ϕ(x)

and ϕ(y). Providing we quantify and control the amount of this cancellation, we obtain a new

condition (A) (defined below) which holds with high probability, and which implies isometry.

If two successive letters x, y in a fatgraph do not cancel, but some suffix of ϕ(x) cancels some

prefix of ϕ(y), we encode this pictorially by adding a tag to our fatgraph. A tag is an edge, one

vertex of which is 1-valent. The two sides of the tag are then labeled by the maximal canceling

segments in ϕ(x) and ϕ(y). If Γ is a chain, and Y is a fatgraph with ∂S(Y ) equal to the cyclically

reduced representative of ϕ(Γ), then we can add tags to Y to produce a fatgraph Y ′ so that ∂S(Y ′)

is equal to the(possibly unreduced) chain ϕ(Γ).

Definition 3.3.9. Let A be a set, and let F (A) be the free group on A. Let U be a subset of F (A)

with U ∩U−1 = ∅, and let Σ denote the set U ∪U−1. We say that U satisfies condition (A) if there

is some non-negative real number T such that the following is true:

(A1) the maximal length of a tag is T ; and

(A2) if x, y ∈ Σ and y is not equal to x or x−1, then any common subword s of x and y has length

strictly less than (|x| − 2T )/12; and

(A3) if x ∈ Σ and a subword s appears in at least two different positions in x (possibly overlapping)

then the length of s is strictly less than (|x| − 2T )/12.



27

Let B be a set, and ϕ : B → U a bijection. Extend ϕ to a homomorphism ϕ : F (B) → F (A). We

say ϕ satisfies condition (A) if U satisfies condition (A).

Notice that condition (SA) is a special case of condition (A) when T = 0.

Proposition 3.3.10. Let ϕ : F (B)→ F (A) be an homomorphism between free groups satisfying con-

dition (A). Then ϕ is an isometry of scl. That is, scl(Γ) = scl(ϕ(Γ)) for all chains Γ ∈ BH1 (F (B)).

In particular, scl(g) = scl(ϕ(g)) for all g ∈ [F (B), F (B)].

Proof. The proof is essentially the same as that of Proposition 3.3.4, except that we need to be

slightly more careful computing χ(Y ). We call the edges in a tag ghost edges, and define the valence

of a vertex v to be the number of non-ghost edges incident to it. Then −χ(Y ) =
∑
v(|v| − 2)/2

where the sum is taken over all “interior” vertices v — i.e., those which are not the endpoint of a

tag.

The proof of Lemma 3.3.8 goes through exactly as before, showing that either Y contains a

partial match, or −χ(Y ) > |Γ|. To see this, simply repeat the proof of Lemma 3.3.8 applied to Y

with the tags “cut off”. Partial matches can be improved to perfect matches as in Lemma 3.3.7.

Note that this move might unfold a tag.

If Y is a fatgraph with ∂S(Y ) = ϕ(Γ) and scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 < scl(Γ), we can find a

perfect match and cut out a rectangle, and the induction argument proceeds exactly as in the proof

of Proposition 3.3.4.

3.3.4 Random homomorphisms are usually isometries

Fix k, l integers ≥ 2. We now explain the sense in which a random homomorphism from Fk to F`

will satisfy condition (A). Fix an integer n, and let F`(≤ n) denote the set of reduced words in F`

(in a fixed free generating set) of length at most n. Define a random homomorphism of length ≤ n

to be the homomorphism ϕ : Fk → Fl sending a (fixed) free generating set for Fk to k randomly

chosen elements of F`(≤ n) (with the uniform distribution).

Theorem 3.3.11 (Random Isometry Theorem). A random homomorphism ϕ : Fk → Fl of length

n between free groups of ranks k, l is an isometry of scl with probability 1 − O(C(k, l)−n) for some

constant C(k, l) > 1.

Proof. By Proposition 3.3.10 it suffices to show that a random homomorphism satisfies condition

(A) with sufficiently high probability.

Let u1, . . . , uk be the images of a fixed free generating set for Fk, thought of as random reduced

words of length ≤ n in a fixed free generating set and their inverses for Fl. First of all, for any

ε > 0, we can assume with probability at least 1 − O(C−n) for some C that the length of every ui

is between n and (1 − ε)n. Secondly, the number of reduced words of length εn is (approximately)
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(2l − 1)εn, so the chance that the maximal length of a tag is more than εn is at least 1 − O(C−n).

So we restrict attention to the ϕ for which both of these condition hold.

If (A2) fails, there are indices i and j and a subword s of ui of length at least n(1−3ε)/12 ≥ n/13

(for large n) so that either s or s−1 is a subword of uj . The copies of s± are located at one of at most

n different places in ui and in uj ; the chance of such a match at one specific location is approximately

(2l − 1)−n/13, so the chance that (A2) fails is at most k2n2(2l − 1)−n/13 = O(C−n) for suitable C.

Finally, if (A3) fails, there is an index i and a subword s of ui of length at least n/13 that

appears in at least two different locations. It is possible that s overlaps itself, but in any case there

is a subword of length at least |s|/3 that is disjoint from some translate. If we examine two specific

disjoint subsegments of length n/39, the chance that they match is approximately (2l − 1)−n/39.

Hence the chance that (A3) fails is at most kn2(2l− 1)−n/39 = O(C−n) for suitable C. Evidently C

depends only on k and l. The lemma follows.

Corollary 3.3.12. Let k, l ≥ 2 be integers. There are (many) isometric homomorphisms ϕ : Fk →

Fl.

Lemma 3.3.13. Let F be a finitely generated free group. The following holds:

1. if there are integral chains Γ1,Γ2 in BH1 (F ) such that scl(Γi) = ti, then there is an integral

chain Γ in BH1 (F ) with scl(Γ) = t1 + t2; and

2. if there are elements g1, g2 in F ′ such that scl(gi) = ti, then there is an element g ∈ F ′ with

scl(g) = t1 + t2 + 1/2.

Proof. Let F1, F2 be copies of F , and let σi : F → Fi be an isomorphism. Then in case (1) the chain

σ1(Γ1) + σ2(Γ2) in F1 ∗ F2 has scl equal to t1 + t2, and in case (2) the element σ1(g1)σ2(g2) has scl

equal to t1 + t2 + 1/2; see [8], §2.7. Now choose an isometric homomorphism from F1 ∗ F2 to F ,

which exists by Corollary 3.3.12.

Corollary 3.3.14. Let F be a countable nonabelian free group. The image of F ′ under scl contains

elements congruent to every element of Q mod Z. Moreover, the image of F ′ under scl contains a

well-ordered sequence of values with ordinal type ωω.

Proof. These facts follow from Lemma 3.3.13 plus the Denominator Theorem and Limit Theorem

from [9].

3.3.5 Isometry conjecture

Conjecture 3.3.15 (Isometry conjecture). Let ϕ : F2 → Fk be any injective homomorphism from

a free group of rank 2 to a free group Fk. Then ϕ is isometric.
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Remark 3.3.16. Since free groups are Hopfian by Malcev [28], any homomorphism from F2 to a free

group Fk is either injective, or factors through a cyclic group. Furthermore, since F2 is not proper

of finite index in any other free group, no counterexample to the conjecture can be constructed by

the method of Example 3.2.3.

Since any free group admits an injective homomorphism into F2, and since scl is monotone

nonincreasing under any homomorphism between groups, to prove Conjecture 3.3.15 it suffices to

prove it for endomorphisms ϕ : F2 → F2.

Remark 3.3.17. In view of Example 3.2.3, rank 2 cannot be replaced with rank 3 in Conjecture 3.3.15.

Conjecture 3.3.15 has been tested experimentally on all cyclically reduced homologically trivial

words of length 11 in F2, and all endomorphisms F2 → F2 sending a→ a and b to a word of length

4 or 5. It has also been tested on thousands of “random” longer words and homomorphisms. The

experiments were carried out with the program scallop ([15]).

3.4 Random fatgraph labelings are usually extremal

3.4.1 Labeling fatgraphs

We have been (and are) typically interested in labeled fatgraphs. However, in this section, we need

the distinction between a fatgraph and a labeling of it to be very explicit. We use the notation Ŷ

for an abstract (unlabeled) fatgraph, and Y for a labeling of Ŷ by words in F ; i.e., a fatgraph over

F . We recall here Definitions 2.4.1 and 2.4.2. A labeling of length n is a reduced labeling for which

every edge of Y is a word of length n.

By our convention, boundary words in ∂S(Y ) must be cyclically reduced. For a labeling in which

boundary words are not reduced, one can perform Stallings fatgraph folding as in §2.4.2.

3.4.2 The vertex quasimorphism construction

In this section, we construct a (counting) quasimorphism on F from a fatgraph Y over F . We will

call this the vertex quasimorphism of Y . We will see that this vertex quasimorphism is typically

extremal for ∂S(Y ).

Remark 3.4.1. This remark is actually a warning. In our notation, we take big and small counting

quasimorphisms to be already homogenized. This differs from [17], on which this chapter is based.

Define a set σY on a labeled fatgraph Y over F as follows: every boundary component of S(Y )

decomposes into a union of arcs, and each arc is labeled by an element of F . Between each pair

of arcs is a vertex of ∂S(Y ) (associated to a vertex of Y ). For each vertex of Y and each pair of

incident arcs with labels u and v (u comes into the vertex; v leaves it), decompose u and v into

u = u1u2, v = v1v2, where usually we expect u1 and u2 to each be approximately half the length of



30

u, and similarly for v1, v2, v, and add the word u2v1 to the set σY . There is some flexibility here in

the phrase “about half the length” which will not affect our later arguments; in fact this flexibility

indicates possible other constructions, in which the pieces have different sizes, bounded length, etc.

Definition 3.4.2. Recall the definition of small counting quasimorphisms (Defintion 2.2.5). A

vertex quasimorphism for Y is a small counting quasimorphism of the form hσY
. See Figure 3.4 for

an example. In this figure, σY is the set

σY = {bbAb, aBAA, aaaa, AbAA, AbaB, BBaB}.

Note that we have not broken the edges exactly in half, or even in the same place on either side.

a

B B

a
A

b b

A

b A b A

B a B a

A

A A

b
a

a a

B

Figure 3.4: The vertex quasimorphism construction on a thrice-punctured sphere.

Lemma 3.4.3. If no element of σ−1
Y appears in the boundary ∂S(Y ), then there is an inequality

hσY
(∂S(Y )) ≥

∑
v |v|, where the sum is taken over all vertices v, and |v| is the valence of the vertex

v.

Proof. Since no element of σ−1
Y appears in ∂S(Y ), we have cσ−1

Y
(∂S(Y )) = 0, so hσY

(∂S(Y )) =

cσY
(∂S(Y )). For every vertex of Y and for each incident edge, we have a word in σY . By construc-

tion, these words do not overlap in the boundary chain ∂S(Y ), so the value of cσY
(∂S(Y )) is at least

as big as
∑
v |v|.

Remark 3.4.4. Note that it is possible for a strict inequality in Lemma 3.4.3, since there may be

many different ways to put disjoint copies of elements of σY in ∂S(Y ). However, if Y is trivalent

and σY satisfies the hypotheses of the lemma, then there is an equality hσY
(∂S(Y )) is equal to three

times the number of vertices of Y .
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3.4.3 Trivalent fatgraphs are usually extremal

We say that a fatgraph Y over F satisfies condition (SB) if there is a choice of σY as above so that

no element of σ−1
Y appears in ∂S(Y ).

Lemma 3.4.5. If a trivalent labeled fatgraph Y satisfies condition (SB), then both S(Y ) and hσY

are extremal for the boundary ∂S(Y ) and certify each other.

Proof. For a trivalent graph, hσY
(∂S(Y )) ≥ 3V , where V is the number of vertices, by Lemma 3.4.3.

By Bavard duality, and Lemma 2.2.6 there is an inequality

scl(∂S(Y )) ≥ 3V

2D(hσY
)
≥ V

4
.

On the other hand, since Y is trivalent, the number of edges is 3V/2, so χ(S(Y )) = −V/2. Hence

we get a chain of inequalities

scl(∂S(Y )) ≥ 3V

2D(hσY
)
≥ V

4
=
−χ(S(Y ))

2
≥ scl(∂S(Y )).

Hence each of these inequalities is actually an equality, and the lemma follows.

We now show that condition (SB) is generic in a strong sense. Given Ŷ , we are interested in the

set of Y with ∂S(Y ) reduced obtained by labeling the edges of Ŷ by words of length at most n. For

each n, this is a finite set, and we give it the uniform distribution.

Proposition 3.4.6. For any combinatorial trivalent fatgraph Ŷ , if Y is a random fatgraph over Fk

obtained by labeling the edges of Ŷ by words of length n, then S(Y ) is extremal for ∂S(Y ) and is

certified by some extremal quasimorphism hσY
, with probability 1−O(C(Ŷ , k)−n) for some constant

C(Ŷ , k) > 1.

Proof. The constant C(Ŷ , k) depends only on the number of vertices of Ŷ . We make use of some

elementary facts about random reduced strings in free groups.

If we label the edges of Ŷ with random reduced words of length n, it is true that there may

be some small amount of folding necessary in order to obtain a fatgraph with ∂S(Y ) cyclically

reduced. However, the expected amount of letters to be folded is a constant independent of n, which

is asymptotically insignificant, and may be safely disregarded here and elsewhere for simplicity.

Now consider some element w of σY under some random labeling. The fatgraph Y over Fk

will satisfy condition (SB) with the desired probability if the probability that w−1 appears (as a

subword) in ∂S(Y ) is C−n, because the number of elements of σY is fixed (note that we are using the

elementary but useful fact in probability theory that extremely rare events are almost independent).

If w−1 appears in ∂S(Y ), then at least half of it must appear as a subword of one of the edges

of Y , so the probability that w−1 appears in ∂S(Y ) is certainly smaller than the probability that
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the prefix or suffix of w of length n/2 appears as a subword of an edge of Y . Let E denote the

number of edges of Ŷ . The probability that a subword of length n/2 appears in a word of length n

is approximately (n/2)(2k)−n/2, so, as we must consider each edge and its inverse, the probability

that w−1 appears is smaller than 2E(n/2)(2k)−n/2. By replacing k by a slightly smaller constant,

we may disregard the (n/2) multiplier, and the lemma is proved.

3.4.4 Higher valence fatgraphs

For fatgraphs with higher valence vertices, the construction of a candidate extremal quasimorphism is

significantly more delicate. We still take a linear combination of counting functions, but we require

big counting quasimorphisms, and for a higher-valence vertex, we need to involve the counting

functions which count words which cross the vertex but are not necessarily along the boundary. The

same warning about the homogenization notation differing from [17] still applies.

For m ≥ 3 let Km be the complete graph on m vertices. Label the vertices 0, 1, 2, . . . ,m − 1.

Define a weight wm on directed edges (i, j) of Km by the formula wm(i, i+ `) = 3− (6`/m) where

indices are taken mod m.

Lemma 3.4.7. The function wm(i, i+ `) := 3− (6`/m) is the unique function on directed edges of

Km with the following properties:

1. It is antisymmetric: wm(i, j) = −wm(j, i).

2. It satisfies the inequality |wm(i, j)| ≤ 3− 6/m for all distinct i, j.

3. For every distinct triple i, j, `, there is an equality wm(i, j) + wm(j, `) + wm(`, i) = ±3 where

the sign is positive if the natural cyclic order on i, j, ` is positive, and negative otherwise.

4. It satisfies wm(i, i+ 1) = 3− 6/m for all i.

Proof. Only uniqueness is not obvious. If we think of wm as a simplicial 1-cochain on the underlying

simplicial structure on the regular m − 1 simplex then condition (3) determines the coboundary

δwm, so wm is unique up to the coboundary of a function on vertices. But condition (4) says this

coboundary is zero.

For x a reduced word in F , parameterize x proportional to arclength as the interval [−1, 1], and

let x[−t, t] denote the smallest subword containing the interval from x(−t) to x(t). Fix some small

ε > 0 and define the stack function Sx to be the following integral of big counting functions:

Sx =
1

1− ε

∫ 1

ε

Cx[−t,t]dt.

The ε correction term ensures that the length of the shortest word in the support of S is at least

ε|x|. If x is quite long, this word will also be quite long, and ensure that there are no “accidents” in
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what follows. The constant ε we need is of order 1/(maxv |v|); we leave it implicit in what follows,

and in practice ignore it.

Remark 3.4.8. The function Sx is actually a finite rational sum of ordinary big counting functions,

since x[−t, t] takes on only finitely many values. We can make it into a genuine integral by first

applying the (isometric) endomorphism ϕm to F which takes every generator to its mth power, and

then taking limm→∞ ϕ∗mSϕm(x) in place of Sx. However, this is superfluous for our purposes here.

We are now in a position to define the quasimorphism HY .

Definition 3.4.9. Let Y be a fatgraph over Fk, and suppose that every edge has length ≥ 2n. For

each vertex v, denote the set of oriented subarcs in ∂Y of length n ending at v by xi(v), where the

index i runs from 0 to |v| − 1 and the cyclic order of indices agrees with the cyclic order of edges at

v. Denote the inverse of xi(v) by Xi(v).

Then define

HY =
∑
v

∑
i,i+`%|v|

(3− (6`/|v|))(Sxi(v)Xi+`(v) − Sxi+`(v)Xi(v))

(note that the factor 3− (6`/|v|) is w|v|(i, i+ `) from Lemma 3.4.7).

Let σ denote a word of the form xi(v)Xj(v) or its inverse. In other words, the σ are the words

in the support of HY . Now say that Y satisfies condition (B) if, whenever some σ[a, b] appears as a

subword of some other σ′, or some σ[a, b] or its inverse appears twice in σ, then (b − a) is not too

big — explicitly, (b− a) < 6/4(maxv |v|). Hereafter we denote δ := 6/4(maxv |v|).

Lemma 3.4.10. Suppose Y satisfies condition (B). Then D(HY ) ≤ 6.

Proof. Recall that HY is a homogeneous quasimorphism. In order to prove the lemma, it suffices to

show that the defect of the un-homogenized quasimorphism is at most 3. This reduces to showing

that the value of this quasimorphism on a tripod is at most 3. Condition (B) says that if two distinct

σ, σ′ overlap a junction on one side of a tripod, then Sσ, Sσ′ each contributes at most δ to the defect.

So we can assume that on at least one side, there is a unique σ = xi(v)Xj(v) with a subword of

definite size that overlaps a junction. Again, without loss of generality, we can assume that the

junction is at σ(t) where t ∈ [−1 + δ, 1− δ]. By condition (B), if σ′ on another side has a subword

of definite size that overlaps the junction, it either contributes at most δ, or else we must have

σ′ = x`(v)Xi(v) or σ′ = xj(v)X`(v). So the only case to consider is when the three incoming directed

edges at the junction are suffixes of xi(v), xj(v), x`(v) of length 1 ≥ s ≥ t ≥ u ≥ 0 respectively. But

in this case the total contribution to the defect is u(w|v|(i, j)+w|v|(j, `)+w|v|(`, i))+(t−u)w|v|(i, j).

Since |w|v|(i, j) + w|v|(j, `) + w|v|(`, i)| = 3 and |w|v|(i, j)| < 3, this defect is ≤ 3, as claimed.
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Theorem 3.4.11 (Random fatgraph theorem). For any combinatorial fatgraph Ŷ , if Y is a random

fatgraph over Fk obtained by labeling the edges of Ŷ by words of length n, then S(Y ) is extremal for

∂S(Y ) and is certified by the extremal quasimorphism HY , with probability 1 − O(C(Ŷ , k)−n) for

some constant C(Ŷ , k) > 1.

Proof. The argument is a minor variation on the arguments above, so we just give a sketch of the

idea.

It suffices to show that a random Y satisfies condition (B) with probability 1−O(C−n) for some

C. But this is obvious, since the xi(v) are independent, and for any constant κ > 0, two random

words in F of length n do not have overlapping segments of length bigger than κn, and a random

word of length n does not have a segment of length bigger than κn that appears twice, in either case

with probability 1−O(C−n).

Remark 3.4.12. Since χ(S(Y )) ∈ Z, the boundary ∂S(Y ) satisfies scl(∂S(Y )) ∈ 1
2Z. On the other

hand, Theorem 3.4.11 does not imply anything about the structure of scl for generic chains of a

particular length. A random homologically trivial word (or chain) in a hyperbolic group of length n

has scl of size O(n/ log n) (see [11]), so a random homologically trivial word of length n conditioned

to have genus bounded by some constant, will be very unusual.

In fact, computer experiments suggest that the expected denominator of scl(w) is a proper

function of the length of a (random) word w.

There are only finitely many distinct combinatorial fatgraphs with a given Euler characteristic, so

if we specialize Ŷ to have a single boundary component (recall this depends only on the combinatorics

of Ŷ and not on any particular immersion), then then we see that for any integer m there is a constant

C depending on m so that a random word of length n conditioned to have commutator length at

most m has commutator length exactly m and scl = m− 1/2, with probability 1−O(C−n).

3.4.5 Experimental data

Our main purpose in this section is to give experimental confirmation of our results and to estimate

the constants C(Ŷ , k). However, it is worth mentioning that vertex quasimorphisms provide quickly

verifiable rigorous (lower) bounds on scl.

3.4.5.1 Fast rigorous lower bounds on scl

Although not every chain admits an extremal surface which is certified by a vertex quasimorphism,

it happens much more frequently that a vertex quasimorphism certifies good lower bounds on scl.

For example, if Y is not trivalent, a quasimorphism of the form hσY
will never be extremal; but if

the average valence of Y is close to 3, the lower bound one obtains might be quite good.
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Because verifying condition (B) requires only checking the (non)-existence of certain words as

subwords of the boundary ∂S(Y ), plus a small cancellation condition, it is possible to verify the

defect of a vertex quasimorphism in polynomial time. This compares favorably to the problem of

computing the defect of an arbitrary linear combination of big counting quasimorphisms (or even a

single big counting quasimorphism) for which the best known algorithms are exponential.

Example 3.4.13. It is rare for (short) words or chains to admit extremal trivalent fatgraphs. A

cyclic word is alternating if it contains no a±2 or b±2 substring; for example, baBABAbaBabA is

alternating, with scl = 5/6. An extremal fatgraph for an alternating word necessarily has all vertices

of even valence, since the edge labels at each vertex must alternate between one of a± and one of

b±.

3.4.5.2 Experimental calculation of constants C(Ŷ , k)

While certifying a vertex quasimorphism is easy, finding one is much harder. To verify our asymp-

totic results, we can be content with breaking the edges of the fatgraph into uniform pieces and

checking whether condition (B) is satisfied. However, for a given fatgraph, it might be the case

(and usually is) that while a naive assignment of words for HY fails, a more careful choice succeeds.

To check whether there is any vertex quasimorphism is (naively) exponential, and this makes large

experiments difficult.

However for trivalent fatgraphs, condition (SB) on σY is much simpler. In particular, whether

or not a collection of words satisfies (SB) depends only on the (local) no-overlap condition, plus the

“constant” condition of certain words not appearing in ∂S(Y ). This makes this a priori infeasible

problem of checking whether there is any vertex quasimorphism for a particular fatgraph possible

with the use of a “meet-in-the-middle” time-space trade-off.

Using this method, we can experimentally estimate the best possible constants C(Ŷ , k), at least

in the case of trivalent Ŷ . Figure 3.5 shows some data on the likelihood that a random label-

ing of a trivalent fatgraph with four vertices admits a vertex quasimorphism. The linear depen-

dence of − log(P (fail)) on label length is evident. We can calculate a best fit slope and y-intercept

for these lines, which gives a best fit line of 1.47336n − 1.42772, or equivalently, P (success) =

1 − 4.16918(4.36387)−n. Note that the lower right graph is the least likely to admit a vertex

quasimorphism; this is heuristically reasonable, since self-loops at vertices handicap the graph

by forcing a shorter length on some words in σY . A best fit for this line yields P (success) ≥

1− 82.3971(3.19827)−n.

3.4.5.3 Using homomorphisms to improve success rate

When a particular labeling Y does not admit a vertex quasimorphism, it might still be possible

to find an extremal quasimorphism by applying a homomorphism φ to Y . If (the folded fatgraph)
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4 11

1

12

− log(P (fail))

label length

Figure 3.5: A plot of − log of the failure rate for random labelings of lengths between 4 and 11,
plotted for each trivalent fatgraph with four vertices. Each dot represents 500, 000 trials. The
fatgraphs themselves are arranged left to right, top to bottom in decreasing order of − log of failure
at length 11, so the tripod in the lower right is the “hardest” to find vertex quasimorphisms for.
The pictures were created using wallop [32].

φ(Y ) admits an extremal vertex quasimorphism Hφ(Y ), and folding does not change the Euler

characteristic of the fatgraph, then the quasimorphism φ∗Hφ(Y ) is extremal for ∂S(Y ).

Because the edges of φ(Y ) are no longer random (and in particular, distinct edge labels will

necessarily share long common subwords), it is not clear that applying a homomorphism will affect

our success rate. In fact, it turns out to help significantly, especially for shorter labelings. Figure 3.6

shows − log of the failure rate for a particular fatgraph compared with − log of the failure rate after

applying many random homomorphisms. We decrease the probability of failure by a factor of about

5. Interestingly, changing the length of the homomorphism or the number of homomorphisms that

we try does not seem to significantly alter our success with this procedure.
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4 11

1

12

− log(P (fail))

label length

Figure 3.6: A plot of − log of the failure rate for labelings of the fatgraph (circles), and − log of the
failure rate after acting by many random homomorphisms (squares).
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Chapter 4

Cyclic orders and quasimorphisms

In this chapter, we look more closely at the set of surface realizations of a free group. Using

fatgraphs and cyclic orders, we give simple combinatorial conditions which certify when rotation

quasimorphisms are extremal. This produces many interesting examples. We also give a construction

of a new kind of quasimorphism, the transfer, and we show that in certain cases, we can take limits

to produce yet more quasimorphisms.

The material in this chapter is a subset of the material from the upcoming [12].

4.1 Cyclic orders and compatibility

Recall the definition of a cyclic order (Definition 2.5.8). Also recall that from a cyclic order O on

a set of semigroup generators of Fk, we get the basic fatgraph realization (ΣO, fO). An example

is shown in Figure 2.7. We will be looking more closely at cyclic orders, and we need some new

terminology.

Suppose A is a set with a cyclic order O, and B ⊆ A is a subset of A with its own cyclic order

O′. Then O is positively compatible with O′ if O′ is the restriction of O to B, and O is negatively

compatible with O′ if O′ is the negative of the restriction of O to B. It is compatible if it is either

negatively or positively compatible. If {bi}ni=1 ⊆ A is a finite subset of A with its own cyclic order

O′ given by the cyclic tuple [b1, . . . , bk], where we have relabeled the bi without loss of generality,

then it is simple to check whether O′ is compatible with O. It is sufficient to check that O(bi, bj , bk)

is either always 1 or always −1 for all (i, j, k) which are positively ordered in the natural cyclic order

on [1, · · · , k].

Example 4.1.1. Take the natural cyclic order O given by [1, . . . , 5]. Then O(1, 2, 3) = 1, O(5, 2, 3) =

1, and O(2, 5, 4) = −1. Also, the cyclic order [1, 2, 3, 4] is positively compatible with O and [4, 2, 1, 5]

is negatively compatible. The cyclic order [1, 2, 5, 4] is not compatible with O.

A cyclic order on the semigroup generators of Fk induces a cyclic order on all of Fk in the

following way: given three distinct words g1, g2, g3 in Fk, remove any common initial word, and
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embed the remaining ends in the Cayley graph starting from a given point. There will be a unique

tripod contained in the union of the embeddings, and if the tuple (g1, g2, g3) is cyclically ordered

in the same way as the generators labeling the tripod, then the tuple is positively ordered. See

Example 4.1.2.

1 2

3

b

aA a

bb

aA
B

Figure 4.1: Determining if a tuple of words is cyclically in order by using a cyclic order on the gener-
ators. The bold circle indicates the basepoint, and the arrow indicates the tripod which determines
the cyclic order. See Example 4.1.2.

Example 4.1.2. Give the standard generating set of F2 the cyclic order [a, b, A,B], and consider

the tuple (bAB, bab, baa). Figure 4.1 shows the embeddings and the tripod which remains after

removing the common initial segment b. The counterclockwise order of the words around this tripod

is (1, 3, 2). Thus, we say that the tuple (bAB, bab, baa) is negatively cyclically ordered in the cyclic

order on F2 determined by [a, b, A,B].

4.2 Realizations and immersions

4.2.1 Fatgraph realizations

For a free group Fk of rank k, there are (2k− 1)! basic fatgraph realizations, because there are that

many distinct cyclic orders on the semigroup generators.

By precomposing with an automorphism of Fk, we can give a fatgraph structure to any surface

realization of Fk: suppose (ΣO, fO) is a basic fatgraph realization. Then acting by the automorphism

φ ∈ Out(F2) gives the surface realization (ΣO, fO ◦ φ−1), which we will call a fatgraph realization.

Again, every surface realization can be represented as a fatgraph realization by choosing a fatgraph

structure.

Unfortunately, we need a bit of notation. We will denote by (φ,O) the fatgraph realization of Fk

obtained by acting by φ on the basic fatgraph realization induced by the order O on the semigroup

generators of Fk. We denote the rotation quasimorphism obtained on Fk by this surface realization

by rot(φ,O).
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4.2.2 Surface maps into fatgraph realizations

Recall Xk is our standard K(Fk, 1). Suppose that g : S → Xk is an incompressible surface map, and

(φ,O) is a fatgraph realization (φ might be the identity). Then φ−1 ◦ g : S → Xk has a fatgraph

representative, which by abuse of notation we also denote by S. Note there are two fatgraphs in the

picture: the target fatgraph surface realization of Fk, and the fatgraph representative of the surface

map φ−1 ◦ g. Now S is a labeled fatgraph over Fk, and as such it has a cyclic order on the edges

at each vertex. In addition, the order O induces another cyclic order on the edges at each vertex

of S by simply applying O to the labels on the edges. We will call this cyclic order on each vertex

the pullback of O. Note this cyclic order might not be well-defined if the labels are not all distinct

around a vertex.

a

A

B

b

b

B

g fO

a

b

b

a

Figure 4.2: Comparing the cyclic orders at each vertex on the edges of the fatgraph coming from the
fatgraph structure and from the ordering on labels from the pullback of the order O on semigroup
generators of F2. See Example 4.2.1.

Example 4.2.1. Figure 4.2 illustrates the different cyclic orders on vertices coming from both the

intrinsic fatgraph order and the order induced by the labels. Here the fatgraph realization of F2

is (id, [b, a,B,A]), as shown by the map fO. The surface map g : S → Xk induces a fatgraph

structure on the surface S (in the picture, the surface map is implicit from the labeling), and this

fatgraph structure includes the cyclic orders on the vertices, which are indicated here by the planar

embedding.

The fatgraph realization gives the cyclic order [b, A,B,A] on semigroup generators for F2, and

this induces cyclic orders on the vertices of S. In this case, the vertex on the left has outgoing

edges (b, a,B), which is positive in both the S order and the pullback of O. However, the vertex on

the right has outgoing edges (B, b,A), which is positive in the fatgraph order but negative in the

pullback of O.

Theorem 4.2.2. Let g : S → Xk be a surface map. Let (φ,O) be a fatgraph realization of Fk.

Give S a labeled fatgraph structure induced by the map φ−1 ◦ g : S → Xk. Then the following are

equivalent.

1. The intrinsic fatgraph orders on all vertices in S are compatible (all positively or all negatively)
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with the orders given by the pullback of O.

2. The induced quasimorphism rot(φ,O) is extremal for ∂S.

3. The map fO ◦ φ−1 ◦ g : S → ΣO is homotopic to an immersion with geodesic boundary.

Proof. That (2) and (3) are equivalent is the content of Theorem 2.5.5. The equivalence of (1)

can be seen intuitively in Figure 4.3. However, the quickest way to see this is to appeal to the

fact that the rotation quasimorphism induced by a realization has the area form (divided by −2π)

on the hyperbolic surface ΣO as its coboundary (see [7]). Decompose each vertex of the fatgraph

into tripods. There is a pleated representative of S which has one ideal triangle for each tripod.

The rotation quasimorphism applied to ∂S will therefore compute the sum of ±1/2 over these

triangles, depending on whether they are positive or negative. Since −χ(S) is 1/2 times the number

of triangles, we have that rot(φ,O)(∂S) = −χ(S) if and only if all tripods are correctly cyclically

ordered around all vertices.

Condition (1) in Theorem 4.2.2 is a simple combinatorial check, provided that we have a fatgraph

representative of φ−1 ◦ g : S → Xk. However, in practice, the map g : S → Xk is given as a

labeled fatgraph, and if φ is not the identity, it appears tricky to obtain a fatgraph representative of

φ−1 ◦ g : S → Xk, which is the fatgraph of interest in Theorem 4.2.2. In fact, it is possible to push a

fatgraph map forward under φ−1 with a minimum of effort: simply relabel the edges by applying φ−1

and fold (in the sense of Stallings fatgraph folding) the resulting fatgraph. See Figure 4.3, (A)–(C).

In addition, if g : S → Xk is a surface map and (φ,O) a fatgraph realization of F , it is possible to

check condition (1) of Theorem 4.2.2 “all at once,” rather than on each vertex seperately. Consider

S as a labelled fatgraph obtained from φ−1 ◦ g : S → Xk. Take a maximal subgraph T of S —

the remaining edges of S determine a set of generators {gi}ki=1 for π1(S). Since π1(S) ⊆ Fk, the

cyclic order O determines a cyclic order on the gi. Furthermore, the cyclic order on each vertex of

S determines a planar embedding of T and thus a cyclic order O′ on the gi. Then clearly

Corollary 4.2.3. Condition (1) of Theorem 4.2.2 is is satisfied if and only if O′ is compatible with

O, in the above notation.

This idea will be pursued in detail in Section 4.6.

4.3 Examples and consequences

Theorem 4.2.2 gives an explicit condition by which to check the extremality of a particular fatgraph

realization on a chain C, given an extremal surface for C. This condition of compatible cyclic orders

is simple to check for any particular example, but we are particularly interested in conditions which

say something about the extremality of families of realizations.



42

The complication is that it is difficult to know when there is (or is not) an automorphism which

acts on a fatgraph in such a way that after folding, we are left with a new fatgraph whose vertices

are all compatible with a cyclic order, as in the following example.

Example 4.3.1. See Figure 4.3. The tautological torus (A) bounding [BaBA, bb] does not bound an

immersed surface with geodesic boundary in any basic fatgraph realization (for example, it is evident

in the realization [a,A,B, b], shown in (D), that we cannot remove the twist without introducing

others). However, if we act by the automorphism a 7→ A, b 7→ ba (so we push forward by its

B
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Figure 4.3: See Example 4.3.1. Corresponding vertices in the fatgraphs and immersions are indicated
with numbers.

inverse, but this automorphism has order two, so it is its own inverse), then we get the fatgraph (B),

and after folding to (C), the resulting fatgraph does bound an immersed surface (F) in the basic

realization corresponding to the order [a,A,B, b] (which is shown in (E)). Therefore, the commutator

[BaBA, bb] bounds an immersed surface in the fatgraph realization ({a 7→ A, b 7→ ba}, [a,A,B, b]),

and the associated rotation quasimorphism is extremal.

This example illustrates how acting by automorphisms can cause certain surfaces to become

immersed, but it should also be clear that complicated combinatorial processes are at work. Con-

sequently, while Theorem 4.2.2 gives a sufficient condition for a fatgraph realization to be extremal

for a chain, it gives no indication as to how to produce such a realization or how to show that none

exist.
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We can, however, make some general statements, which rely on combinatorial facts about au-

tomorphisms of free groups. Sources for these types of techniques include [3], [26] and [25]. We

will be concerned in this section exclusively with cyclic words in a free group, which means that we

will consider only conjugacy classes of words, or equivalently baseless loops in Xk = K(Fk, 1). A

subword of a cyclic word, however, can be non-cyclically reduced.

Because we only will look at cyclic words, we will only be interested in Out(Fk), so we will remove

any conjugation from automorphisms. Let φ ∈ Out(Fk) be such an automorphism, and suppose that

w is a cyclic word which we write as a product of subwords w = gh, where there is no cancellation

in the product gh. To compute φ(w), we can compute the (cyclic) product φ(w) = φ(g)φ(h). There

might be some cancellation in the product φ(g)φ(h). In fact, φ(g) might completely disappear. For

example, set φ(a) = a, φ(b) = Ab, g = a, and h = b. Then w = ab, and φ(w) = φ(a)φ(b) = aAb = b.

Note that the remaining letter comes from φ(h). However, we generally expect some of φ(g) to

remain.

Definition 4.3.2. We call a (non-cyclic) word g blocking for φ if for all h so that the cyclic product

gh is reduced, we have that some of φ(g) remains in the product φ(g)φ(h).

Lemma 4.3.3. Let Fk be a free group and φ ∈ Out(Fk) be irreducible. Then there exists a word

g ∈ Fk which is blocking for φn for all n ≥ 0.

Proof. The best way to see this is through train track maps; we need to recall the standard termi-

nology which can be found in any of the above named sources. The key is that φ can be represented

as a train track map with uniformly expanding dynamics: say that the length of the image of any

edge is multiplied by λ > 1. In addition, for any irreducible automorphism φ, there is a bounded

cancellation constant Cφ; see [25] §3. This means that if g and h are such that the product is

reduced, then the length of the segment which cancels (on either side in the cyclic multiplication) in

φ(g)φ(h) is less than Cφ. Choose a loop g with length |g| such that λ|g| − 2Cφ > |g|. After applying

φ to gh, we must therefore find a segment from φ(g) of length at least |g|, so g is blocking for φ, and

the length of what remains of φ is at least |g|; we may repeat this argument as many times as we

like, so g is blocking for φn for all n.

Lemma 4.3.4. The word [a, b]3 is blocking for all φ ∈ Out(F2).

Proof. The case of F2 is special because [a, b] is invariant (up to conjugation) under Out(F2). This

is a consequence of the fact that the mapping class group of the once-punctured torus is equal to

the outer automorphism group of its fundamental group. Note that higher rank free groups do not

have Out(F2)- invariant words.

Therefore, let g = [a, b]3, and suppose that we have the cyclic word gh and φ ∈ Out(F2) such

that φ(g) is completely cancelled by φ(h). Then φ(h) must begin or end with [a, b]−1, so h must

begin or end with [a, b]−1, which contradicts gh being reduced.
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Attempting to produce words which are blocking for all φ ∈ Out(Fk) for higher rank free groups

Fk is surprisingly slippery. However,

Conjecture 4.3.5. There exists g ∈ F , where F is any rank free group, such that g is blocking for

all φ ∈ Out(F ).

A reasonable approach here is to generalize the results in [4] to (un)stable laminations for au-

tomorphisms of free groups, then to pick a word which does not align with the lamination for any

automorphism. The case of finite-order (and non-irreducible) automorphisms would have to be

considered separately.

Construction 4.3.6. The point of these blocking words is the following construction. Let g be a

blocking word for φ ∈ Out(Fk). Consider the fatgraphs shown in Figure 4.4. Everything is assumed

to be reduced. These fatgraphs have four key features:

1. The surface map induced by the labels is extremal (because it bounds a commutator).

2. The outgoing edge labels at the vertices are the same.

3. The fatgraph (A) is positively or negatively immersed in any basic fatgraph realization. The

fatgraph (B) is not immersed in any basic fatgraph realization.

4. The same is true for the fatgraph realization (φ,O), for any order O.

The last two require a little explanation. For (3), if the cyclic orders on the vertices coming from

the fatgraph structure are the same (as in (A)), then no matter what cyclic order induces the

basic fatgraph realization of Fk, it will be positively or negatively compatible with the order in (A).

However, if the cyclic orders are different (as in (B)), then no matter what the cyclic order associated

with the fatgraph realization is, it cannot be compatible with both vertices.

The most important is (4): since g is blocking for φ, we can apply φ to the fatgraphs (A) and

(B), and we know that the folding process cannot cross any of the blocking words g (and g−1), so

the fatgraph must fold identically around each vertex. Therefore, whatever the folded fatgraphs are,

they still have two vertices with the same outgoing labels and the same (A) or different (B) cyclic

orders induced by the fatgraph structure.

Lemma 4.3.7. Let Fk be a free group. For every basic fatgraph realization O and irreducible auto-

morphism φ ∈ Out(Fk), there exist infinitely many commutators C such that rot(φn,O) is extremal

for C for all n and infinitely many commutators C ′ such that there is no n so that rot(φn,O) is

extremal for C ′.

Proof. This is simply Figure 4.4 (A) (for the first case) and (B) (for the second case), using the block-

ing word g provided by Lemma 4.3.3. Note that it might be the case that rot(φn,O)(C)/2 = −scl(C);
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Figure 4.4: Blocked fatgraphs bounding commutators; in (A), the vertices have the same cyclic
orders, while in (B), they differ. The outgoing edge labels are indicated below each vertex. For
clarity, capital letters denote inverses of words, and the inverse labels on the middle segments hi are
not shown.

recall that our definition of extremal includes this. We get infinitely many of these commutators

because it does not matter what the words hi in the middle are, as long as everything is reduced.

Using Lemma 4.3.4, we can do better in a free group of rank 2. This is a fairly simple consequence

of our context, but we elevate it to the status of a theorem because it is interesting and it is one of

our main results.

Theorem 4.3.8. Let F2 be a free group of rank 2. There exist infinitely many commutators C for

which rot(φ,O) is extremal for C for all fatgraph realizations (φ,O) (and thus all surface realizations).

There exist infinitely many commutators C ′ for which there is no extremal surface realization.

Proof. Again, this is simply Figure 4.4 (A) and (B), but this time we may use the blocking word

provided by Lemma 4.3.4 to obtain the stronger conclusion.

Recall now the definition of a geometric face from Definition 2.5.7. These lemmas allow us to

draw some interesting conclusions about geometric faces of the scl norm ball. One technicality is

that while we say that a realization is extremal for C if |rot(C)|/2 = scl(C), in terms of the scl norm

ball, this means that C is contained in the closure of either the face dual to rot or the face dual

to −rot. Let T denote (the closure of) a geometric face. The scl ball is invariant under reflection

through the origin because scl(C) = scl(C−1); denote the matching inverse face of T by −T .

Corollary 4.3.9. Let T be a geometric face of the scl norm ball in BH1 (Fk) for a free group Fk, and

let φ ∈ Out(Fk) be irreducible. Then either T or −T has a common intersection point with infinitely

many geometric faces obtained by acting by φn.
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Proof. A chain is in the face φ ·T if and only if φ(C) is contained in T . Thus, repeat Figure 4.4 (A)

with a blocking word for φ to obtain a commutator C. After acting by any power of φ, either C or

C−1 is contained in T , and the lemma follows.

Remark 4.3.10. By using different commutators, we can obtain different patterns of intersection.

Corollary 4.3.11. There are infinitely many commutators C in BH1 (F2) so that each one partitions

the set T of geometric faces into two sets; T0, those that contain C, and T0, those that contain

C−1 = −C.

Proof. This is the same argument, now using Lemma 4.3.4.

4.4 Transfer

Discrete, faithful representations Fk → PSL(2,R) consist only of hyperbolic and parabolic elements,

and since everything fixes a point, the induced rotation quasimorphism can take only integer values.

Therefore, rotation quasimorphisms induced by discrete, faithful representations can be extremal

only for chains with scl in 1
2Z.

Since many chains have scl with larger denominators (in fact, the scl spectrum is dense in Q/Z,

by Corollary 3.3.14), we need to consider a wider class to have a hope of finding extremal quasimor-

phisms for general chains. The idea of transfer provides very natural candidate quasimorphisms.

4.4.1 Transfer of quasimorphisms

In this section, we will supress the subscript in the notation Fk, because it simplifies the notation.

Let G be a finite index subgroup of a free group F of rank k. There is a finite cover K(G, 1)→ Xk

which is just a graph covering of the rose. Let γ ∈ Xk be a loop. We may lift γ to its total preimage

in K(G, 1), which is typically a collection of loops. This map extends by linearity to BH1 (F ), and

we denote it by TGF , so TGF : BH1 (F ) → BH1 (G). Technically, we must prove that it is well-defined

and has the image claimed.

Lemma 4.4.1. The image of TGF is contained in BH1 (G), and TGF is a (well-defined) homomorphism.

Proof. That the image of TGF is contained in BH1 (G) is a consequence of [8], Proposition 2.80. Briefly,

the problem is to lift a surface S bounding Γ ∈ BH1 (F ) to one bounding TGF (Γ). Since there is a

finite index normal subgroup K contained in G, we may take the (finite) cover of S corresponding

to the kernel of π1(S)→ F/K; this surface then lifts to K(G, 1)

To show TGF is well-defined, we merely observe that the total lifting procedure commutes with

taking powers and conjugation.
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Remark 4.4.2. There is an inclusion I : BH1 (G) → BH1 (F ); note that I ◦ TGF is multiplication by

[F : G].

The stable commutator length of the transfer of a chain is determined by the stable commutator

length of the chain:

Lemma 4.4.3 ([8], Proposition 2.80). For all Γ ∈ BH1 (F ),

sclF (Γ) =
1

[F : G]
sclG(TGF (C)).

There is a natural map induced on quasimorphisms by TGF : define ∗TGF : Q(G)→ Q(F ) by

∗TGF (φ)(Γ) =
1

[F : G]
φ(TGF (Γ)).

For convenience, we denote ∗TGF (φ) by φGF .

Lemma 4.4.4.

D(φGF ) ≤ D(φ),

where the defect of φ is over G and the defect of φGF is over F .

Proof. First, φGF is homogeneous because TGF and φ are. Therefore, its defect is the supremum of

its value over all thrice-punctured spheres. Let C ∈ BH1 (F ) be a thrice-punctured sphere, and let

n = [F : G]. By Lemma 4.4.3,

1

2
≥ sclF (C) =

1

n
sclG(TGF (C)).

Therefore,
1

2
≥ 1

n

φ(TGF (C))

2D(φ)
=
φGF (C)

2D(φ)
,

so D(φ) ≥ φGF (C). Since this holds for all thrice-punctured spheres C, D(φ) ≥ D(φGF ).

4.4.2 Transfer of rotation quasimorphisms

LetG be a finite index subgroup of F , and let ρ : G→ PSL(2,R) be a discrete, faithful representation.

By the above, (rotρ)
G
F is a homogeneous quasimorphism on F of defect at most 1, and it takes values

in 1
[F :G]Z. We record the following observation as a lemma.

Lemma 4.4.5. Let C be a chain in BH1 (F ) represented by the collection of loops Γ, where F , G,

and ρ as as above. Then (rotρ)
G
F is extremal for C if and only if the total preimage of Γ bounds an

immersed surface in the realization of G corresponding to ρ.
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Naturally, we are most interested in the case where Γ does not bound an immersed surface in

any realization of F .

In anticipation of the fact that there exist nontrivial examples of it, we define a vimersion to

be a chain Γ ∈ BH1 (F ), together with a finite index subgroup G ⊆ F and a discrete, faithful

representation ρ : F → PSL(2,R) such that (rotρ)
G
F is extremal for Γ, or equivalently, that TGF (Γ)

bounds an immersed surface in the realization of G corresponding to ρ.

4.4.3 Example

In this section we describe an explicit infinite family of vimersions.

Definition 4.4.6. For each positive integer n, let wn denote the chain in F = 〈x, y〉 defined by the

formula

wn = x2 + yn + yXY n+1X.

We will see that scl(wn) = (2n+ 1)/(2n+ 2).

For each n, let Gn denote the normal subgroup of F of index (n+ 1) which is the kernel of the

homomorphism F → Z/(n+ 1)Z sending x→ 0 and y → 1. In terms of generators, we have

Gn = 〈x, yxY, y2xY 2, . . . , ynxY n, yn+1〉.

Denote yixY i by ai for i = 0, · · · , n, and denote yn+1 by b.

In terms of these generators, the transfer w′n of wn has the form

w′n = a2
0 + a2

1 + · · ·+ a2
n + bn +A1BA1A2BA2 · · ·AnBAnbA0BA0.

A realization of Gn, and therefore also a rotation quasimorphism on Gn, is given implicitly by a

cyclic ordering on the generators of Gn and their inverses, as in [8], Theorem 4.76. This particular

realization has underlying surface Σ0,n+3 a sphere with n+3 holes, and the associated cyclic ordering

is

B, b,An, an, . . . , A1, a1, A0, a0.

We denote the associated rotation quasimorphism by rot0,n+3.

By the rotation quasimorphism formula, Theorem 2.5.10, we compute

(rot0,n+3)GF (wn) =
1

n+ 1
rot0,n+3(w′n) =

(2n+ 4)(2n+ 1)

(n+ 1)(2n+ 4)
=

2n+ 1

n+ 1
.

The defect of rotGF is (at most) 1, so we obtain a lower bound scl(wn) ≥ (2n + 1)/(2n + 2). To see

that this lower bound is an equality, we will show that the geodesic representatives of the chains w′n
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virtually bound immersed surfaces in the realizations Σ0,n+3. We show this by induction.

Note that it suffices to show that representatives of the homotopy class of the w′n which are

minimal with respect to Reidemeister moves (efficient) virtually bound immersed surfaces. Consider

the case n = 1, and for simplicity denote a0, a1, b by a, b, c. In this notation, w′1 = a2 + b2 + c +

ACABCBc. The surface Σ0,4 is a disk with three holes, corresponding to the conjugacy classes of

a, b and c. Figure 4.5 indicates an efficient representative of the chain ACABCBc. From the figure,

it is clear that w′1 bounds an immersed 5-holed sphere.

Remark 4.4.7. The immersed sphere is more easily seen if one takes a double cover of D2 “branched”

over the puncture corresponding to the loop a. The loop ACABCBc has two preimages in this cover,

each of which bounds a (visually obvious) 5-holed sphere.

b
a

c

Figure 4.5: The loop in Σ0,4 associated with the conjugacy class ACABCBc (generators for π1 are
indicated to the right).

The immersed surfaces bounding the chains w′n may all be constructed by induction. We illustrate

the case n = 2; the other cases are all essentially the same. For simplicity, if we denote a0, a1, a2, b

by a, b, c, d the “interesting” (non-boundary parallel) loop in w′2 corresponds to the conjugacy class

ADABDBCDCd. As in Figure 4.6, take a 2-fold branched cover over the puncture corresponding

to the loop a. In this cover, ADABDBCDCd lifts to two loops as indicated in the figure, and after

filling in four punctures, and pushing across a bigon, one gets a curve isotopic to the “interesting”

component of w′1. Hence w′2 bounds an immersed 7-holed sphere.

← →

Figure 4.6: A preimage of ADABDBCDCd in a double cover can be pushed over two punctures to
become a copy of ACABCBc.
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This picture carries over to higher n: the “interesting” component of w′n lifts to two loops in a

2-fold cover of Σ0,n+3 “branched” over the puncture corresponding to a0. After filling in half the

punctures in this cover together with the puncture corresponding to a0, one copy can be pushed

across a bigon to get a curve isotopic to the “interesting” component of w′n−1, which, together with

suitable boundary parallel loops, bounds an immersed surface by the induction hypothesis.

We therefore obtain a proof of the following:

Proposition 4.4.8. For each n ≥ 1, the chain wn ∈ F2 as above satisfies scl(wn) = (2n+ 1)/(2n+

2). Moreover, the transfer of wn bounds an immersed surface in (gives a vimersion with) Gn →

π1(Σ0,n+3) where Gn is the subgroup of index n+ 1 in F2, also as above.

4.5 Symplectic rotation number

Regular SL(2,R) representations and transfer are special cases of pulling back symplectic rotation

number from symplectic representations. The symplectic rotation number is a class function rot :

Sp(2n,R)→ S1. Restricted to U(n), it is simply det; more generally, to compute rot(A), we find the

2-dimensional subspaces of R2n which are fixed and rotated by A (called eigenplanes, even though

they are not just dialated), and rot is the sum of the angles of these rotations. This computation

can also be expressed in terms of the Jordan blocks of A over R.

The function rot lifts to the universal central extension S̃p(2n,R), and it is a quasimorphism

with defect (at most) n. A representation Fk → Sp(2n,R) lifts, and we pull back to obtain a

quasimorphism on Fk. That is,

F
ρ̃−−−−→ S̃p(2n,R)

r̃ot−−−−→ Ry y
Sp(2n,R)

rot−−−−→ S1

.

Clearly, SL(2,R) representations are the special case n = 1. Transfer is the special case in which we

produce an Sp(2n,R) representation by taking the direct sum of the n different SL(2,R) represen-

tations on the subgroup obtained by acting by conjugation in the larger group. See [8] §5.2.3.

Unfortunately, representations of free groups into symplectic groups are far less amenable to

computation, and geometric intuition is more difficult to come by.

4.6 Ends

In this section, we combine the ideas of the preceeding sections to provide another perspective and

to define a new class of quasimorphisms called limit transfers.
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4.6.1 Cyclic orders and the extremality of transfer

4.6.1.1 Notation

For the following material, it is useful to compare a K(F, 1) for a free group to a K(G, 1) for a

subgroup G ⊆ F . Therefore, we add some redundant notation: KF = Xk = K(Fk, 1).

4.6.1.2 Transfer of fatgraphs

Recall the transfer function from Section 4.4, that is, TGF : BH1 (F ) → BH1 (G), where G ⊆ F has

finite index, and TGF (C) is the total preimage of (loops representing) C in the covering space (graph)

of KF = K(F, 1) corresponding to G; note this covering space KG is a K(G, 1). Suppose that

f : S → KF is an admissible surface for C. Now f has a fatgraph representative, and that is how

we will think of S. From this perspective, it is obvious that we obtain a new surface f ′ : S′ → KG

by taking the total preimage of the fatgraph S, and the image of S′ bounds TFG (C). We have the

following commutative diagram, in which the vertical maps are covers of degree [F : G].

S′
f ′−−−−→ KGy y

S
f−−−−→ KF

Because S′ covers S with degree [F : G] and bounds TGF (C), Lemma 4.4.3 implies that S′ is extremal

for TGF (C) if and only if S is extremal for C.

Now suppose that we have a surface realization of G, which we realize as the fatgraph realization

(φ,O), so fO ◦ φ−1 : KG → ΣO is the surface realization. As discussed in Section 4.4, we are

interested in the case that the surface realization (fO,ΣO) does not cover a surface realization of F .

That is, we have the following commutative diagram, which Lemma 4.6.1 references.

S′
f ′−−−−→ KG

fO◦φ−1

−−−−−→ ΣOy y
S

f−−−−→ KF

Lemma 4.6.1. The hypothesis of Theorem 4.2.2 applies to the fatgraph S′ and surface realization

(φ,O) of G (in the above commutative diagram) if and only if (rot(φ,O))
G
F is extremal for C.

Proof. This is the combination of Theorem 4.2.2 and the above observations, including Lemma 4.4.3.

Lemma 4.6.1 says that we can detect whether the transfer of rot for a realization of G is extremal

for for a chain C ∈ BH1 (F ) by checking a combinatorial condition on the transfer of an extremal
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fatgraph for C; that is, that the cyclic order on each vertex of the fatgraph representative of φ−1◦f ′ :

S′ → KG is compatible with the cyclic order given by applying the order O to the labels at each

vertex. Unfortunately, while it is simple to take the total preimage of the fatgraph S, it is not so

easy to combinatorially produce the set of vertices and labels after applying the automorphism φ−1.

The purpose of this section is to describe another way to check this combinatorial condition which

is more feasible.

4.6.1.3 Ends

If K1 ⊆ K2 ⊆ · · · are compact sets whose union covers a space X, then an end of X is a sequence

of sets U1 ⊇ U2 ⊇ · · · , where Ui is a connected component of X \Ki. Essentially, the ends are the

connected components of X “at infinity.” The ends of a group are the ends of its Cayley graph,

and the ends of a free group can be identified, after picking a basepoint, with right-infinite words in

the generating set; this is a Cantor set, and we give it that topology, so automorphisms of the free

group extend to continuous maps on the ends. In addition, a cyclic order (φ,O) on the free group F

extends to a cyclic order on the ends: apply the automorphism φ−1 and then the basic cyclic order

O.

If S → KF is a fatgraph map, then we lift to a map on the universal covers S̃ → K̃F , which

identifies the ends of S̃ with a subset of the ends of F . Choose a basepoint and a fundamental

domain T (note T is a tree) in S̃ such that T contains a neighborhood of every vertex in it, so the

leaves of T are all partial edges. For each leaf of this tree, pick some end of S̃ from the basepoint

which exits T through the leaf. We call a collection E of ends of S̃ exhausting if it has this property;

that is, if for each leaf of T , there is exactly one end in E which exits T at that leaf. Note that an

exhausting set of ends gets an induced cyclic order from S.

Suppose that we have a basic fatgraph realization (id, O) of F . Checking the hypothesis of

Theorem 4.2.2 for S and O requires checking each vertex of S to see whether its cyclic order is

compatible with the one induced by O. However, this is equivalent to checking whether the intrinsic

cyclic order on an exhausting set of ends E is compatible with the order that O gives E. This is

essentially the same approach as Corollary 4.2.3.

The point of this approach is that while vertices and labels behave badly under automorphisms,

the condition of being exhausting is invariant:

Lemma 4.6.2. If E is an exhausting collection of ends for a fatgraph map f : S → KF , then φ ·E

is an exhausting collection of of ends for φ ◦ f : S → KF .

Proof. The automorphism φ acts on the Cayley graph of F , and this action restricts to its action

on S̃, which covers its action on S. Thus, φ takes a fundamental domain of S̃ to one of φ · S̃, so for

each leaf of φ · S̃, there is exactly one end in φ · E which exits that leaf.
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Remark 4.6.3. Given a fatgraph, we can produce an exhausting collection of ends, and we know

where those ends exit the fundamental domain for the universal cover of the fatgraph. Even though

we know that acting by an automorphism preserves the property of being exhausting, we do not a

priori know where exactly the acted-on ends exit the fundamental domain for the acted-on fatgraph.

This is an unimportant inconvenience which allows Lemma 4.6.2 to work.

Lemma 4.6.4. Let f : S → KF be a fatgraph map and E an exhausting collection of ends for S.

Then Theorem 4.2.2 applies to S and the realization (φ,O) if and only if the intrinsic cyclic order

on φ−1 · E is compatible with the order given by O.

Proof. To check whether S satisfies Theorem 4.2.2 for (id, O), we need only check whether the

intrinsic cyclic order on E is compatible with the one given by O. Thus, to check for S after acting

by φ, it suffices to check this condition on an exhausting collection of ends of φ−1 ◦ f : S → KF , and

φ−1 · E is such a collection, by Lemma 4.6.2.

Remark 4.6.5. The group Out(F ) acts on the left on fatgraph realizations by precomposition by

inverses. However, Out(F ) acts on the left on tuples of ends by applying the automorphism itself.

Therefore, it is not the case that Out(F ) acts on pairs of a surface realization together with a

fatgraph map into it. There is no contradiction here; only possible confusion.

4.6.1.4 Ends of subgroups

If G is finite index in F , then elements of G form a net in the Cayley graph of F . Equivalently,

there are only finitely many (left) cosets of G in F , so for any word w ∈ F , there is a word v of

(uniformly) bounded length so that wv ∈ G. Therefore, any right-infinite word in F may be written

as a right-infinite word in G. In other words, while a priori the ends of G are a subset of the ends

of F , actually the ends of G are the ends of F .

Therefore, an automorphism of G induces a continuous map on the ends of F , and a cyclic order

on G induces a cyclic order on the ends of F .

4.6.1.5 Transfer of ends

We now return to transfer of fatgraphs, and we show how to determine the extremality of a particular

transfer rotation quasimorphism on a chain. Let G be a finite index subgroup of F ; by passing to a

subgroup, we may assume that G is normal. Let n = [F : G], and let C ∈ BH1 (F ) be a chain with

extremal fatgraph surface map f : S → KF . Let E be an exhausting set of ends for S, and recall

that E is also a set of ends of G. Let (φ,O) be a surface realization of G.

Proposition 4.6.6. In the above notation, (rot(φ,O))
G
F is extremal for C if and only if the cyclic

order determined by (φ,O) on the ends of G is compatible with the intrinsic cyclic order on ψi · E,

for all ψ1, . . . , ψn ∈ F/G, where · is the conjugation action.
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Proof. First, let us consider another way to obtain the fatgraph representative of the total preimage

f ′ : S′ → KG. Let C(F ) be the Cayley graph of F ; this is the universal cover of KF . The total

preimage S̃ of the fatgraph S in KF is a collection of infinite trees. Let T be a fundamental domain

for S̃ under the action of F , and let T1, . . . , Tn be the translates of T under the conjugation action of

F/G. Then, as S̃ also covers S′ under the action of G, the union of the Ti is a fundamental domain

for S̃ under G. By Lemma 4.6.2, each collection ψi · E is exhausting for Ti, and by Theorem 4.2.2

and Lemma 4.6.4, the compatibility of the order (φ,O) on each ψi · E with the intrinsic order is

equivalent to each Ti (and thus the union S′) immersing in KG. Lemma 4.6.1 gives the equivalence

of this with (rot(φ,O))
G
F being extremal for C.

4.6.2 Examples

In this section, we consider two examples, one which gives a comprehensible picture of Proposi-

tion 4.6.6 in action, and another which reviews the examples of Section 4.4.3 from this new per-

spective. We also show some pictures describing the set of three-tuples of ends which are invariant

under some finite-order automorphisms induced by conjugation in a larger group.

Example 4.6.7. Let F = 〈x, y〉 and let C = xyy+Y Y Y +XY . Let G = 〈xx, xy, yy〉, where we denote

the generators by a, b, and c, respectively. Then F/G = 〈[x]〉, and F/G acts on G by conjugation

by x, which, in terms of generators for G, gives

[x] :

a

b

c

7→
a

acB

bcB

.

Figure 4.7 shows an extremal fatgraph S for C and how to take the total preimage S′ of this fatgraph

in the cover corresponding to G. The total preimage is shown twice, on the left for clarity, and on

the right to indicate how to lift from the K(F, 1) to the K(G, 1) (the bold section indicates one of

the preimages, which is half of S′).

Next, we rewrite the fatgraph S′ with labels in G, as shown in Figure 4.8. This is most easily

accomplished in the following way: first, decide which vertex to map to the basepoint. Here, we

choose the lower right; note this means the upper right will also map to the basepoint, since they

differ by the path yy, which is in G. Next, drag the vertices of the fatgraph by pulling apart the

edges, so all vertices now map to the basepoint. Here we have pulled apart the top and bottom

edges. All the loops in what is left over must be in G, so we label them appropriately, and fold,

obtaining the total preimage, labeled in G, on the right.

Now let us see how this corresponds to the ends of S. Figure 4.9 shows a maximal tree in S, at

bottom. The square vertex gives the basepoint, so this tree indicates the following exhausting set of
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Figure 4.7: Taking the total preimage of a fatgraph S in a cover corresponding to the subgroup
〈xx, xy, yy〉. The vertical maps are covers, and most of the labels on S′ in the middle are omitted
for clarity. See Example 4.6.7.
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Figure 4.8: Rewriting labels on a fatgraph as generators in G, and folding. For example, for the
outside boundary, yyxyyx = (yy)(xy)(yy)(Y X)(xx) = cbcBa, and on the inside, xY = (xy)(Y Y ) =
bC.

ends for S (starting going up and proceeding counterclockwise):

[(xY ), (yX), (y), (Y )],

where parentheses denote infinite power, so x(y) = x(y)∞. If we rewrite these ends in G, we get

E = [(bC), (cB), (c), (C)].

And acting by [x] ∈ F/G,

[x] · E = [(acBbCB), (bcBbCA), (bcB), (bCB)] = [(aB), (bA), b(c), b(C)].

The ends E and [x] · E together contain vertices with the same labelings as all the vertices of S′,

so checking the compatibility of the intrinsic orders with an order on G will determine whether S′

immerses in the surface realization. It is not quite true that we can lift the maximal tree in S to
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Figure 4.9: A maximal tree, which gives ends of S (bottom), and two trees containing all the vertices
in S′, as obtained from E and [x] · E as ends in G. These trees are almost obtained by lifting the
tree in S and acting by [x].

one in S′ and “act by [x]” to get two trees; this is not exactly well-defined, since it is unclear what

to do with the half-edges, and folding can rearrange things. However, after rewriting the ends of S

to obtain E and [x] ·E, we can use these ends to give two trees in S′ which together contain all the

vertices, as shown. As is evident, we are “almost” just lifting the tree and acting by [x].

In this case, the order [c, C, b, B, a,A] is compatible with both E and [x] · E, so S′ immerses

in this surface realization, and the transfer of the rotation quasimorphism will be extremal for C.

For this example, though, transfer is more pedagogical than necessary, since by checking the orders

on the vertices of S, we see that it immerses in the basic fatgraph realization given by the order

[X,x, y, Y ]!

Example 4.6.8. Here we consider one of the infinite family of vimersions in Section 4.4.3 from the

perspective of Proposition 4.6.6.

Let F = 〈x, y〉, and G = 〈x, yxY, y2〉, where we denote a = x, b = yxY , and c = y2. Note that

F/G = Z/2Z ∼= 〈[y]〉, and F/G acts on G by conjugation by y. In generators,

[y] :

a

b

c

7→
b

caC

c

.

Let C = x2 + y + yXY 2X. An extremal fatgraph for C is shown in Figure 4.10.

Figure 4.10 shows a maximal tree in an extremal fatgraph for C, which lifts to a fundamental

domain in the universal cover for the action of F . Let the square indicate the basepoint in the

universal cover; then a set of ends of the fatgraph which exits the leaves gives an exhausting set of

ends for the fatgraph. Such a set of ends is given by generators of the fundamental group of the
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Figure 4.10: An extremal fatgraph for C = x2 + y + yXY 2X and a maximal tree.

fatgraph (starting going down from the basepoint, and proceeding counterclockwise):

E = [(xxxY ), (xY Y X), (xyyX), (yXY XY ), (yXXX), (yxxx), (yxyxY ),

(yxY xy), (Y XyXY ), (Y XXy), (Y xxY ), (XY Y x), (Xyyx), (XXXY )],

where the parentheses, as before, denote infinite powers, so x(Y ) = x(Y )∞.

As ends of G, we have

E = [(aaaCbbb), a(C), a(c), B(AACBB), (BBBcAAA),

(bbbcaaa), bc(aabbc), (bacaCbc), (CBcACAB), C(B),

(Cbb), A(C), A(c), (AAACBBB)],

and acting by F/G gives

[y] · E = [(bbbaaaC), b(C), b(c), cAC(BBAAC), (cAAABBB),

(caaabbb), ca(bbcaa), (caCbcba), (ABCBcAC), (A),

(aaC), B(C), B(c), (BBBAAAC)].

Note that both of these are positively cyclically ordered in the order on G given by [C, c,A, a,B, b].

Observant readers will note that this order is the inverse of the reverse of the cyclic order from

Section 4.4.3; this is due to an inversion of conventions.
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Example 4.6.9. Lemma 4.6.1 shows that in order to determine if a transfer of F to a finite index

subgroup G with surface realization (φ,O) is extremal for a chain C with extremal fatgraph S, it

suffices to find an exhausting set of ends E for S, write E as ends in G, and compare the cyclic

order given by (φ,O) with the intrinsic cyclic orders on ψi · E for all ψi ∈ F/G. If they all agree,

then (rot(φ,O))
G
F is extremal for C.

If L is any cyclically ordered set [x1, . . . , xk], then the entire cyclic list of elements is not necessary

in order to specify the cyclic order: it suffices to give enough ordered triples to reconstruct the order.

For example, the ordered triples

{ [x1, x2, x3], [x1, x3, x4], . . . , [x1, xk−1, xk] }

determine the order on L.

Therefore, breaking E into a similar set of ordered triples, we observe that it suffices for all the

triples to be invariantly ordered after acting by all ψi ∈ F/G, so one way to find an invariantly

ordered set of ends is to build it out of invariantly ordered triples. From this perspective, it is

clearly useful to understand the set of all invariantly ordered triples of ends (for a given finite index

subgroup and cyclic order), and in fact we can produce pictures of these sets.

A basic cyclic order on a free group F gives a planar embedding of the Cayley graph in a disk,

say by making all the angles equal and all edges the same length in the Poincaré disk model of H2.

Thus, a right-infinite word gives a sequence of points in the interior of the disk which converge to

a point on the boundary S1. This maps the Cantor set of ends of F continuously into S1; denote

this map I : ∂F → S1. The map I is not injective; in fact it is two-to-one on a countable number

of points, but it certainly suffices to draw pictures. After acting on the basic cyclic order by an

automorphism of F , this gives a way to draw ∂F in S1 using any cyclic order. Figure 4.6.9 (A)

illustrates the map I with the order [a, b, A,B]. Plotted are I((ab)∞), a point, and I(bA∗), where

bA∗ denotes the set of all ends which start with bA; this is a cylinder set of the Cantor set, and it

maps to an interval in S1, as shown.

Now let G be a finite index subgroup of F , and suppose we have a cyclic order (φ,O) on G.

Then the map

I × I × I : ∂G× ∂G× ∂G→ S1 × S1 × S1

sends triples of ends of G into the 3-torus T3. In practice, of course, we cannot draw T3, but we

can identify S1 with the unit interval [0, 1] and draw [0, 1]3, which gives T3 when opposite faces are

identified.

Let EG(φ,O) be the set of triples of ends of G which are invariantly ordered by (φ,O) under all of

F/G. The group G acts on EG(φ,O) on the left by conjugation (really, by pre-pending), so in order to

find a set of coset representatives of EG(φ,O) under this action, we may assume that the first letters
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of a given triple are distinct.

Because F/G acts continuously on ∂G, a prefix of an end determines a prefix of its image. This

means we can determine the cyclic order on the image of a triple using only a triple of finite prefixes

of the ends. The lengths of the prefixes necessary to determine the cyclic order depends on the triple

and on the action of F/G, but this can all be determined.

Therefore, to obtain a set of coset representatives for EG(φ,O) under the action of F/G, it suffices

to do the following:

1. List all triples of distinct generators of G, each of which gives a product of three cylinder sets

of ends. From now on, we will write “cylinder set” to mean a product of three cylinder sets,

i.e., a basic open set in the product of three Cantor sets.

2. For each triple, subdivide the cylinder set into smaller cylinder sets (append all possible com-

binations of letters to the generators to obtain many more triples) until the cyclic order on

each one is determined, even after acting by F/G.

3. For each triple, check whether its order in (φ,O) in invariant under the action of F/G.

4. Each invariant triple gives a cylinder set, which after acting by I gives a solid box in T3 of

invariantly ordered triples.

Figure 4.11 shows examples of these methods. In all cases, “the invariant triples” means coset

representatives for the set EG(φ,O) of all invariant triples, as described above. In (A), we see how to

map ∂F to S1 using the cyclic order [x, y,X, Y ]. As illustrated, the end (ab)∞ maps to the point

0.44, and the cylinder set given by the prefix maps to the interval [0, 3]. In (B), we show the triples

of ends of G = 〈xx, xy, yy〉 = 〈a, b, c〉 invariant in the order [c, C, b, B, a,A] under the conjugation

action of F/G = 〈[x]〉, as in Example 4.6.7. Axes are shown in the background for reference. Recall

that this is a picture of T3, so all opposite faces of the cube [0, 1]3 are identified.

Recall the definition of G3 = 〈x, yxY, y2xY 2, y3xY 3, y4〉, where we denote the generators by

a, b, c, d, e, respectively, and we give it the cyclic order determined by the order

O = [E, e,D, d, C, c,B, b, A, a].

This subgroup and order makes an appearance in the vimersion example in Section 4.4.3 and (at

a lower degree) Example 4.6.7, though note we have taken the inverse reverse of it again because

it makes the picture slightly nicer. Figure 4.11 (C) shows the triples in G3 invariant in the order

under the conjugation action of [y]. In this case, we have removed one-third of the triples so that it

is possible to see inside.

We can also reinterpret this as a picture in F : each invariant cylinder set in G determines a

cylinder set in F by simply applying the inclusion map. Using the order [Y, y,X, x] on F , we plot
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Figure 4.11: Mapping the Cayley graph of F into S1, and pictures of invariant triples of ends, as
described in Example 4.6.9.

these cylinder sets in (D) as sets in (∂F )3 (mapped to T3). This gives a picture of the triples of

ends of F which, as ends in G, are invariantly ordered under F/G. For this picture, we have not

removed the one-third of the triples that we did for (C). In addition, each cylinder set has been

given a slightly different random grayscale value, so it it possible to see the entire set of invariant

triples as a union of cylinder sets.

Example 4.6.10. Example 4.6.9 shows that we can create very explicit pictures showing which 3-

tuples of ends are invariant under the action of F/G for finite-index G. However, a more interesting

question is that of invariant 4-tuples. For, suppose that we have a tuple T of four cylinder sets of

ends for which there is a finite index G ⊆ F and a fatgraph realization (φ,O) of G such that for

any four tuple of ends t ∈ T , the cyclic order on ψ · t is compatible with that given by (φ,O). Now

pick some t ∈ T so that t is made of infinite powers. Then t gives an exhausting set of ends for a

commutator or a thrice-punctured sphere, and Proposition 4.6.6 shows that (rot(φ,O))
G
F is extremal

for this commutator or thrice-punctured sphere.

In a sense, a picture of 4-tuples invariant as above gives a picture of all the commutators and
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thrice-punctured spheres for which the transfer of rot is extremal(!). Of course, we cannot make

(a) (b)

Figure 4.12: Invariant 4-tuples of ends, as described in Example 4.6.10.

4-dimensional pictures. It will have to suffice to take 3-dimensional slices of the set of all invariant

4-tuples. Figure 4.12 shows two examples of this. Let G1 = 〈x, yxY, yy〉 and G2 = 〈xx, yy, xy〉. The

picture on the left shows all 3-tuples (t0, t1, t2) such that there is some basic fatgraph realization

(id, O) ofG1 such that (x∞, t0, t1, t2) and its translate under the action of F/G1 are correctly ordered.

Thus, this picture shows all commutators and thrice-punctured spheres (with one end close to x∞)

for which there is some basic fatgraph realization of G1 which induces an extremal transfer rotation

quasimorphism. The picture on the right is the same, except that the subgroup G1 is replaced with

G2.

4.7 Limit transfers

Section 4.6.1 shows that if we have a chain C and an extremal fatgraph S for C with exhausting set

of ends E, then if we can find a finite index subgroup G and a cyclic order on G so that the action

of F/G on E leaves the cyclic order on E invariant, then we obtain an extremal quasimorphism for

C. Though we have given some examples which show this process in action, it is a priori rather

difficult to come up with the subgroup G and cyclic order on G. In this section, we show that if

we are given C, where C is in a large class of commutators and thrice-punctured spheres, we can

find a family of finite index subgroups Gi and basic cyclic orders Oi on the Gi so that (rot(id,Oi))
Gi

F

is almost extremal for C, and while there is no well-defined limit of the Gi, there is a well defined

limit of the (rot(id,Oi))
Gi

F , and this quasimorphism is extremal for C.
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4.7.1 λ-orders

Let S = {s0, s1, . . . , sk} be a finte set, and let λ be a real number which is rationally independent

from π. The λ-order on S is the cyclic order obtained by the injection S → S1 defined by si 7→

λi(mod2π).

Lemma 4.7.1. Let S = {s0, s1, . . . , sk} be a finte set, and let n < i < j < m be four indices such

that i− n 6= m− j. Then for any cyclic order O on S′ = {sn, si, sj , sm}, there is a λ such that the

λ-order on S restricts to O.

Proof. Note that the cyclic order given by a λ-order to a tuple is independent under shifting all the

indices by the same amount. Thus we may assume without loss of generality that n = 0. We need

to show that there is a λ which realizes each of the 6 cyclic orders on S′:

[s0, si, sj , sm] [s0, sm, sj , si]

[s0, sm, si, sj ] [s0, sj , si, sm] .

[s0, si, sm, sj ] [s0, sj , sm, si]

Each row gives a cyclic order and its reverse. If a λ-order restricts to one of the cyclic orders above

on S′, then the order for −λ restricts to the reverse, so it suffices for us to exhibit a λ which gives

one of the orders in each row. It is best to imagine the four points 0, i, j,m in S1 being dialated by

changing λ; each of m, j, and i wraps around as they pass 2π. Starting with λ small, we get the

first row; as m passes 2π the first time, we get the second row; finally, either m passes i, or j wraps

around 2π, and we obtain the third order. We now give the precise values of λ.

Choose any λ such that 0 < λ < 2π/m. Then note λm < 2π, so this λ gives the first row.

Next, choose any λ so that 2π/m < λ < min(2π/j, 2π/(m − i)). Then we identify S′ with the

four (cyclically ordered) points in [0, λm− 2π, λi, λj], and this λ gives the second row.

Finally, the third row. There are two possibilities. If m− i > j, then 2π
j > 2π

m−i , so it is possible

to select λ ∈
(

2π
m−i , min( 2π

j ,
2π
m−j )

)
, which gives the cyclic order [s0, si, sm, sn] and the third row.

If m − i < j, then 2π
j < 2π

m−i , and we can select λ ∈
(

2π
j , min( 2π

i ,
2π
m−i )

)
, giving the cyclic order

[s0, sj , sm, si] and the third row. By the assumption in the lemma that i−n 6= m− j (recall n = 0),

we needn’t consider the case that m− i = j.

Remark 4.7.2. The assumption that i − n 6= m − j is necessary: if we have equality, there is no

λ-order which restricts to either of the orders in the third row.
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4.7.2 Limit transfers

Let Gn = 〈x, yxY, y2xY 2, . . . , ynxY n, yn+1〉, as in Section 4.4.3, and as before, denote yixY i by

ai and yn+1 by b. Then F/Gn ∼= Z/(n + 1)Z acts on Gn by conjugation by powers of y, and F/G

is generated by φ, where φ(g) = ygY . In the new generators, we have φ(ai) = ai+1 if i < n,

φ(an) = ba0B, and φ(b) = b.

If λ ∈ R is rationally independent from 2π, and ε = ±1, then a (λ, ε)-order, a variation of a λ-

order, on Gn is given as a basic cyclic order on semigroup generators by sending ai 7→ λi(mod2π) ∈

S1 (and b 7→ λ(n+ 1)(mod2π)). The inverse Ai is placed in the cyclic order immediately after a0 if

ε = 1, and immediately preceding if ε = −1, and similarly for B.

Proposition 4.7.3. Let {Gn}n>0 be as above, and let λ rationally independent from 2π and ε ∈

{±1} be fixed. Give Gn the (λ, ε)-order, and let rotn be the sequence of rotation quasimorphisms

on the Gn given by these orders. The sequence of transfers (rotn)GF then converges in the weak-*

topology on Q(F ) to a quasimorphism of defect 1.

The proof consists of some technical lemmas. In the following, let C ∈ BH1 (F ), and let S be an

extremal surface for C, thought of as a fatgraph. Let T be a set of triples of ends which determine

the cyclic order on a maximal tree in S (see Example 4.6.9). Let On be the (λ, ε) order on Gn as

described in Proposition 4.7.3.

Lemma 4.7.4.

(rotn)GF (C) =
1

2(n+ 1)

∑
t∈T

∑
φ∈F/Gn

On(φ · t)

Proof. Give the surface realization of Gn corresponding to On a hyperbolic structure. The area form

here is then the coboundary of the rotation quasimorphism rotn (see [8],§4.2 or [7]). Let S′ be the

total preimage of an extremal surface for C, and give S′ the structure of a pleated surface. Then

(rotn)GF (C) =
1

n+ 1

area(S′)

2π
,

where the area of S′ is the signed area computed as a pleated surface. Therefore, it suffices to show

that
area(S′)

2π
=

1

2

∑
t∈T

∑
φ∈F/G

On(φ · t).

Consider the decomposition of S′ as a pleated surface. Build the graph G dual to the triangles; we

observe this graph is a deformation retraction of S′, and it has the same topological type and ends

as the (fat)graph which is the total preimage of the extremal surface fatgraph for C. There is one

vertex of valence three in G for each triangle, and whether the triangle is positive or negative in the

pleated surface depends on the cyclic order given by On to this vertex. Note that the cyclic orders
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on these vertices are exactly given by the cyclic orders on the conjugates of the triples in T , so the

sum on the right gives a signed count of the triangles in the pleated surface S′. The triangles are

ideal, and ideal triangles have area π, so we have proved the claim and the lemma.

Lemma 4.7.5. Let T = (t1, t2, t3) be a triple of ends in F . Let G be any finite index normal

subgroup of F , and O a cyclic order on G determining a surface realization. Then for any w ∈ F ,

1

[F : G]

∑
φ∈F/G

O(φ · (t1, t2, t3)) =
1

[F : G]

∑
φ∈F/G

O(φ · (wt1, wt2, wt3)).

Proof. Since F acts by conjugation on F/G, the two sums are the same except re-indexed by

multiplying everything in F/G by the element wG ∈ F/G.

Lemma 4.7.6. For all (t1, t2, t3) ∈ T , the limit

lim
n→∞

1

n+ 1

∑
φ∈F/Gn

On(φ · (t1, t2, t3))

exists.

Proof. There are a few cases. In the first, case, assume that none of t1, t2, t3 are y±∞. By

Lemma 4.7.5, we may assume that the ends begin with distinct generators in Gn — say these

generators are ai, aj , and ak. Let K = max(i, j, k) − min(i, j, k). In this case, acting by F/Gn is

just a rigid rotation by λ, which clearly preserves order, except for possibly K elements of F/Gn.

Let e ∈ {±1} denote this dominant order. The limit is then e
[
1− K

n+1

]
→ e.

Now suppose that one of t1, t2, t3 is y±∞, say t1 = y∞. Again we may assume that the other

ends begin with distinct generators ai and aj , and without loss of generality, j > i. Then acting by

F/Gn shifts t1 relative to ai and aj by a shift of λ. Since λ is rationally independent from 2π, this

action is ergodic, and the limit is then ±λ(j − i)(mod2π), with the ± depending on the intrinsic

order (t1, t2, t3).

If two of the ends are ±y±∞, then the shift action of F/Gn keeps the other end always to the

same side, and the limit is ±1.

Lemma 4.7.7. For all n > 0, (rotn)GF (x) = (rotn)GF (y) = 0.

Proof. The total preimage of x is
∑n
i=0 an, and the total preimage of y is (n+ 1)b. In both cases, all

the words in the total preimage are simply powers of generators, on which rotn is zero. For example,

we may apply the formula in [8] §4.2.

Proof of Proposition 4.7.3. First observe that combining Lemma 4.7.4 and Lemma 4.7.6 implies that

limn→∞(rotn)GF (C) converges for all C ∈ BH1 (F ).
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Now, given w ∈ F , there are k, l ∈ Z so that w + xk + yl ∈ BH1 (F ). Then by Lemma 4.7.7,

lim
n→∞

(rotn)GF (w) = lim
n→∞

(rotn)GF (w + xk + xl),

and the limit on the right exists. The weak-* limit quasimorphism must have defect 1 because

(rotn)GF does, for all n.

We denote by rot
(λ,ε)
∞ the weak-* limit of (rotn)GF when Gn is given the (λ, ε) order.

Proposition 4.7.8. Let C be a chain of the form:

[yix±1w1x
±1yj , ykx±1w2x

±1yl],

or

g1 + g2 + g−1
1 g−1

2 ,

where

g1 = yix±1w1x
±1yk, and g2 = ylx±1w2x

±1yj ,

and w1 and w2 are any words such that the above are locally reduced around the wi, and i, j, k,

and l are such that any cancellation above does not remove any x±1. Furthermore, subject to the

condition in both cases that if we order i, j, k, and l and denote them by m1 < · · · < m4, then

m4 −m3 6= m2 −m1.

Then there exists λ and ε such that rot
(λ,ε)
∞ is extremal for C.

Proof. The rather contrived hypotheses are best explained by a schematic of a fatgraph which bounds

C, which is shown in Figure 4.13, on the left. To get a commutator, we glue 1 to 3 and 2 to 4, and

w1 = h1h
−1
3 , and to get a chain of the second type, we glue 1 to 2 and 3 to 4 and w1 = h2h

−1
1 . The

yi
yk

yj

yl

x±
x±

x±

x±

h1

h2

h3

h4 action of [y]

12

3 4

12

3 4

y

x

X

Figure 4.13: Illustrating a fatgraph bounding C and the action of F/Gn for the proof of Proposi-
tion 4.7.8.

hypotheses of the lemma serve to guarantee that a set of four exhausting ends for the fatgraph has

the form shown on the right — when drawn in the Cayley graph of F , the core of the four ends (the

common middle segment) is contained in the axis corresponding to translation by y. The action of
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[y] ∈ F/Gn serves to shift everything to the right. In the picture, the ends in the order [3, 4, 1, 2] have

first letters [a−1
0 , a−1

9 , a13, a2] In general, the assumed structure of the chains guarantees that a set

of exhausting ends (computed in Gn for n sufficiently large) is [ai . . . , aj . . . , ak . . . , al . . .], perhaps

after a permutation. By Lemma 4.7.1, there exists λ such that the four ends are correctly oriented.

Furthermore, λ does not depend on n for n sufficiently large, and the action of F/Gn is simply a

rigid rotation and does not change the given order, except for a fixed finite number of elements. As

there are 2 triples in T (as defined above) for C,

lim
n→∞

1

2(n+ 1)

∑
t∈T

∑
φ∈F/Gn

On(φ · t) = 1,

So we compute (rotn)GF (C) using Lemma 4.7.4, then, to see that

rot(λ,ε)
∞ (C) = lim

n→∞
(rotn)GF (C) = 1.

Since the thrice-punctured sphere or once-punctured torus which bounds C has Euler characteristic

−1, which gives scl(C) ≤ 1/2, the surface and the quasimorphism rot
(λ,ε)
∞ certify each other on C,

and both are extremal.

The hypothesis of Proposition 4.7.8 can be slightly weakened, at the cost of the cleanliness of

λ-orders.

Lemma 4.7.9. In Proposition 4.7.8, the hypothesis that m4 − m3 6= m2 − m1 is not necessary,

provided that the ends of the fatgraph bounding C are in configuration (A) or (B), as shown below

(not (C)).

(A) (B) (C)

Proof. The idea is to replace the (λ, ε) order with two different λ orders, one for the generators ai,

and another for their inverses a−1
i . The two orders use the same λ value, so the action of F/Gn still

acts as a shift, and we still get the weak-* convergence of Proposition 4.7.3; however, we shift the λ

order for the inverses. In this way, it is trivial to obtain any ordering for the configuration (B). The

configuration (A) is slightly harder, but it suffices to observe that we can shift the two downward

pointing ends freely such that they overlap in three different ways: if the ends are labeled 1, 2, 3, 4

clockwise from top left, then these shifts obtain orders [1, 3, 4, 2], [1, 3, 2, 4], and [1, 2, 3, 4]. Together

with their negatives, this gives all 6 orders.

This technique fails for configuration (C) because the intervals we shift are the same size; here

only 4 orders are possible with shifted λ orders. It is still possible in this case to select orders on Gn

so that (rotn)GF (C)→ 1. Create an identification of the generators and inverses with points in S1 as
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we shift: observe that as we shift the four ends, there are always two new generators, whose position

in S1 we may choose freely. However, the weak-* convergence of (rotn)GF in this case is much more

difficult.

5 15 25 35
0

1

covering degree

(rotn)GF (C)

Figure 4.14: Exhibiting that the weak-* limit of (rotn)GF is extremal for C. (See Example 4.7.10).

Example 4.7.10. Let C = [yxxyXY xY 3, y4xyXyxY 5]. Then Proposition 4.7.8 applies to C with

i = 1, j = 3, k = 4, l = 5, w1 = [x, y], and w2 = yXy. We need to find a (λ, ε) order on Gn

(for n > 5) such that [a1, a5, a3, a4] is correctly ordered. We consult Lemma 4.7.1 to see that we

may choose any λ with π/2 < λ < 2π/3 and λ rationally independent from π to achieve this. For

example, λ = 2. The ε parameter does not matter because we do not have both a generator ai and

its inverse, so pick ε = 1.

Figure 4.14 shows (rotn)GF (C) for the range of covering degrees (n + 1) = 5, . . . , 35 for (λ, ε) =

(2, 1). Evidently, the weak-* limit rot
(2,1)
∞ is extremal for the given C, as guaranteed by Proposi-

tion 4.7.8.
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Chapter 5

Dynamics and endomorphisms

The topologically minimal surfaces produced by scl hold the promise of producing surface groups.

It is straightforward, given the fact that scl-extremal surfaces exist in free groups, that if G =

Fk ∗<w> F`, and < w > is cyclic, and H2(G,Z) is nontrivial, then G has a surface subgroup. We

would like to extend this result to graphs of free groups. In particular, we would like to produce

examples of surface subgroups of HNN extensions of free groups.

In this chapter, we study the dynamics of endomorphisms of free groups, and we use this to give

conditions guaranteeing the existence of surface subgroups of HNN extensions by these endomor-

phisms.

Throughout this chapter, the ranks of our free groups are not particularly important, so we

supress the subscript notation Fk in favor of the generic F . We will specify the rank if necessary.

This chapter contains material from the upcoming [16].

5.1 Traintracks

In this section, we provide some background on traintracks in free groups. This brief sketch is

extracted from [16].

One of the problems when studying the dynamics of endomorphisms is that chains tend to

get extremely large upon repeated application of an endomorphism. Therefore, it is completely

intractible to experimentally compute scl for scl(φk(C)) for a chain C and endomorphism φ when k

is larger than, say, 4. The issue is that the dimension of the vector space parameterizing surfaces

bounding C grows. Another, related, issue is studying the value of a counting quasimorphism f on

the images of a chain; that is, f(φk(C)). In both of these situations, we can make the problem finite

and bounded if we focus on subwords of a bounded length in C. This proves very useful.

Let F be a free group generated by the symmetric generating set S. Let A` be the set of reduced

words in the generators of length `. Let R[A`] be the R-vector space spanned by the set A`. We

define h : R[A`]→ H1(F ) on generators by taking h(w) to be the (homology class of) the first letter
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of w. We define s : R[A`] → R[A`−1] and t : R[A`] → R[A`−1] (the source and target maps) on

generators by setting s(w) to be the subword of w which is the first ` − 1 letters and setting t(w)

to be the subword of w which is the last ` − 1 letters. Then we define ∂ : R[A`] → R[A`−1] by

∂(x) = s(x)− t(x).

Definition 5.1.1. The verbal traintrack T` is the directed graph with vertices A`−1 and edges A`,

where the source and target maps (note they are well-defined on A`) give the source and target of

every edge.

Definition 5.1.2. Now define the weight space W` to be the kernel W` = ker [∂ ⊕ h]. This is the

space of homologically trivial weights on the verbal traintrack for F .

Recall B1(F ) is the space of boundaries in the group homology of F , or more explicitly, the space

of formal sums of words which are homology trivially. There is a natural map Ψ` : B1(F ) → W`

defined by taking a chain to the sum of its subwords of length `. It is necessary to cyclically reduce

the words first.

Example 5.1.3. Let C = abABAbaB. Then

Ψ2(C) = 1(ab) + 1(bA) + 1(AB) + 1(Ab) + 1(ba) + 1(aB) + 1(Ba),

where we have written the weight which is 1 on w and 0 elsewhere as (w). Now set C ′ = abAB+AbaB.

Notice that Ψ2(C) = Ψ2(C ′); that is, they have the same subwords of length 2. However, Ψ3(C) 6=

Ψ3(C ′).

The space W` is the natural space in which to work if we want to study the dynamics of an

endomorphism on a certain length scale. See Lemma 5.2.2, which says that the action of an endo-

morphism can be linearized to act on W` under the hypothesis that the endomorphism is expanding.

It is also useful to work in the space W` when we want to compute scl, but we only care about

the local properties of the chain, not the chain itself.

In all of these cases, we are interested in the space of positive weights, those weights which have

nonnegative coefficients on every word. We will denote the space of positive weights by W+
` . One

of the main results of [16], §3 is the following.

Definition 5.1.4. Define scl on W+
` by

scl(x) = inf{scl(C) |C ∈ B1(F ), Ψ`(C) = x}.

Theorem 5.1.5 (Theorem 3.23 in [16] (paraphrased)). For x ∈ W+
` , the computation of scl(x)

reduces to a linear programming problem. Furthermore, the infimum is achieved, and there is an

extremal surface map S → K(F, 1) with Ψ`(∂S) = x and scl(∂S) realizing the infimum.
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5.2 Endomorphisms and HNN extensions

In this section, we study the dynamics of certain endomorphisms through their action on traintracks.

This discussion is analogous to, and motivated by, the similar technology for free and surface group

automorphisms. The general idea is that an endomorphism which is expanding (defined precisely

below) gives an action on W`; this action reveals properties of the endomorphism.

5.2.1 Endomorphism actions on traintracks

Let F is a free group with symmetric generating set S. We denote the word length of w ∈ F with

respect to S by |w|S . If x, y, z are words in F such that xyz is reduced, and φ : F → F is an

endomorphism, we will denote the letters in φ(xyz) which originate in φ(y) by φ(y;xyz).

Definition 5.2.1. An endomorphism φ : F → F is expanding (with respect to S) at length scale

K > 0 with dilation C > 1 if for all words s, w, t with |w|S ≥ K and swt reduced, we have

|φ(w; swt)|S ≥ C|w|S .

An endomorphism φ : F → F is virtually expanding if there is some power n such that φn is

expanding.

We remark that while being expanding depends on the generating set, being virtually expanding

does not. Recall that if S′ is another generating set, there exists λ so that if swt is reduced, then

(1/λ)|w|S′ ≤ |w|S ≤ λ|w|S′ , where |w|S′ refers to the length of the section of swt written in the

basis S′ corresponding to w. Suppose that φn is expanding with respect to the generating set S at

scale K > 0 with dilation C > 1. Then if swt is reduced and |w|S′ ≥ Kλ, we have |w|S ≥ K, so if

|φnm(w; swt)|S′ ≥
1

λ
|φnm(w; swt)|S ≥

Cm

λ
|w|S ≥

Cm

λ2
|w|S′

Choosing m large enough makes Cm/λ2 > 1.

Lemma 5.2.2. If φ is expanding with respect to the generating set S with factor C > 2 at scale

K > 0, then for ` sufficiently large, that is, ` > C(K − 2)/(C − 2), φ gives a well-defined action φ∗

on W` which commutes with any forgetful map W` →W`−k (for `− k large enough).

Proof. Let w be a weight in W` which is 1 on a single edge and 0 elsewhere. We will think of w as the

word of length ` labeling the edge, and we define the image φ∗(w) as follows. Write w = w0w1w2,

where |w1|S = K and |w0|S , |w1|S ≥ (` − K − 1)/2; that is, w1 is the middle K letters. Define

φ∗(w) to be (the weight representing) the collection of words of length ` which begin in the image

φ(w1;w0w1w2). We need to show that this is well-defined; in other words, we must show that

regardless of s and t, if swt is reduced, then the set of subwords of φ(w; swt) originating in the

middle K letters of w remains the same.
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Since ` > C(K − 2)/(C − 2), we have 2`/(`− k − 2) < C. Now define m by setting ` = mK, so

2mK/(k(m − 1) − 2) < C. Because φ is expanding, the length of φ(w2;w0w1w2) which cannot be

cancelled on the right is at least

⌊
m− 1

2
K

⌋
C >

(
m− 1

2
K − 1

)
C >

(
m− 1

2
K − 1

)
2mK

K(m− 1)− 2
= mK = `.

Remark 5.2.3. Recall that the verbal traintrack T` of length ` can be thought of as a simplicial

complex. A reduced word in F gives a simplicial path in T`, and φ acts on such paths, although the

action is not simplicial, because we must tighten the result of applying φ before it gives a path in

T`. The condition of being expanding essentially guarantees that the average derivative of φ on any

given path is bounded below (and is larger than 1). Choosing a large enough scale means that the

action of φ is locally well-defined.

Remark 5.2.4. We could also ask that an endomorphism be expanding for certain words. We

remark that an irreducible automorphism is expanding at a sufficiently large scale for subwords of

its invariant lamination.

5.2.2 Norm-realizing surfaces in HNN extensions

If φ : F → F is an endomorphism, the HNN extension of F by φ is the group 〈F, t | txt−1 = φ(x)〉.

We will denote this group by Fφ. Note that we obtain a K(Fφ, 1) by the quotient

Xφ = K(Fφ, 1) = X × [0, 1]/{(x, 0) = (φ(x), 1)},

Where X = K(F, 1) (we have supressed the subscript in Xk), and where here φ denotes the self-map

of X induced by the endomorphism φ.

The homology of an HNN extension of F is given by the homology of F and the action of φ on

it. In particular,

Lemma 5.2.5.

H2(Fφ) = H2(Xφ,R) ∼= {[C] ∈ H1(F ) | [C − φ(C)] = 0},

further, the isomorphism is induced by the inclusion map on X × {0}.

Proof. By Mayer-Vietoris.

There is a norm (The Gromov-Thurston norm) on H2(Fφ), given by

‖α‖ = inf
[Σ]=nα

−χ(Σ)/n(Σ),
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where the infimum is taken over all surfaces representing nα. We will call a surface Σ with [Σ] = α

norm-realizing if −χ(Σ)/n(Σ) = ‖α‖. Note that there may not be a norm-realizing surface for a

given homology class.

Lemma 5.2.6. Let α ∈ H2(Fφ) be represented by the chain C − φ(C) ∈ B1(F ). Then

‖α‖ = lim
k→∞

2

k
scl
(
C − φk(C)

)
.

Proof. First observe that the limit exists because the expression is (non-strictly) monotone decreasing

and bounded below. We claim that if C ′ is another chain with [C] = [C ′], then

lim
k→∞

2

k
scl
(
C − φk(C)

)
= lim
k→∞

2

k
scl
(
C ′ − φk(C ′)

)
.

Since [C − C ′] = 0, we can compute s := scl(C − C ′). Note that scl(φk(C − C ′)) ≤ s for all k ≥ 0

because we can simply push forward any surface bounding C − C ′. Therefore,

2

k
scl
(
C − φk(C)

)
=

2

k
scl
(
C − C ′ + C ′ − φk(C) + φk(C ′)− φk(C ′)

)
≤ 2

k

[
s+ scl

(
C ′ − φk(C ′)

)
+ s
]
.

Taking k →∞ gives one inequality, and the other is obtained by exchanging the roles of C and C ′.

Now we prove the claim in the lemma. By the equality above, we may assume that C consists of a

single word. Take some surface Σ admissible for C−φk(C) with
∣∣−χ(Σ)/2n(Σ)− scl(C − φk(C))

∣∣ <
ε. We may assume for simplicity that Σ has exactly two boundary components, one mapping to

nC and the other to nφk(C) (see [8] Chapter 2). By gluing these two boundaries together, which

is possible in Fφ, we obtain a closed surface Σ̄, and χ(Σ̄) = χ(Σ). Note that the cylinder which we

glue in to attach the boundaries of Σ will wrap k times around the mapping torus of φ; that is, it

crosses X × {0} a total of k times. By Lemma 5.2.5, then, we see that [Σ̄] = n(Σ)kα ∈ H2(Fφ), so

‖α‖ ≤ −χ(Σ̄)

n(Σ̄)k
≤ 2

k
scl
(
C − φk(C)

)
+

2ε

k
.

Since ε is arbitrary for each k, taking k →∞ gives one inequality.

To prove the other direction, observe that the Mayer-Vietoris sequence from Lemma 5.2.5 says

that every representative of α in H2(Fφ) arises as the gluing of some surface bounding C ′−φ(C ′) with

[C] = [C ′]. Let us be given some surface Σ with |−χ(Σ)/n(Σ)− ‖α‖| < ε, and take the associated
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chain C ′; note n(Σ) = 1. Then

2

k
scl
(
C ′ − φk(C ′)

)
≤ 2scl (C ′ − φ(C ′)) ≤ −χ(Σ) ≤ ‖α‖+ ε.

The expression on the left is monotone decreasing, and ε is arbitrary; this proves the inequality in

the other direction and concludes the proof of the lemma.

Lemma 5.2.7. Let α ∈ H2(Fφ) be fixed by the action of the endomorphism φ : F → F . Then

‖α‖ = inf
[C]=α

2scl(C − φ(C)),

where the infimum is taken over all C ∈ BH1 (F ).

Proof. The proof is very similar to Lemma 5.2.6. To prove the inequality in one direction (that the

norm is larger), we take some surface Σ so that |−χ(Σ)/n(Σ)− ‖α‖| < ε. Then by Mayer-Vietoris,

Σ is obtained from a surface bounding C − φ(C) with [C] = n(Σ)α. Therefore,

scl

(
1

n(Σ)
(C − φ(C))

)
≤ −χ(Σ)

2n(Σ)
.

This holds for all ε, so the infimum on the right must be at most the norm 1
2‖α‖.

The other direction is essentially the reverse procedure: take some surface Σ which is very close

to realizing the infimum of scl. Gluing Σ along its boundary C − φ(C) with [C] = α shows that the

norm ‖α‖ must be less than −χ(Σ), and thus is at most the infimum.

Lemma 5.2.8. Let C ∈ B+ with [C] = α ∈ H2(Fφ), such that φ∗(α) = α. Then

‖α‖ ≥ 2 inf
[C]=α

scl(Φ`(C)− Φ`(φ(C))),

where the scl is the traintrack scl.

Proof. This is essentially a corollary of Lemma 5.2.7; we merely recall that scl(Φ`(C)−Φ`(φ(C))) ≤

scl(C − φ(C)).

Lemma 5.2.9. If f : Σ → K(Fφ, 1) is a norm-realizing surface map, then f∗ : π1(Σ) → Fφ is

injective.

Proof. Suppose that f∗ is not injective, so there is an immersed loop γ in Σ whose image is nulho-

motopic. Because surface groups are LERF ([29]), there is a finite cover Σ̃ of Σ so that a lift γ̃ of γ

is embedded. Compress Σ̃ along γ̃ to obtain a surface with smaller genus representing a multiple of

α. But this is a contradiction, since a finite cover of a norm-realizing surface is norm-realizing.
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We can use Lemma 5.2.8 to certify a norm-realizing surface, for if φ gives a well-defined action on

W`, then the infimum on the right is a finite-dimensional problem, and in fact can be computed using

a variation on the algorithm from Theorem 5.1.5. It is not necessarily the case that an extremal

surface Σ for scl(Φ`(C) − Φ`(φ(C))) will have boundary which is of the form C − φ(C). However,

it might, and if it satisfies −χ(Σ)/2n(Σ) = inf [C]=α scl(Φ`(C)− Φ`(φ(C))), then we know that Σ is

norm-realizing (and injective).

5.3 Geometric endomorphisms

In this section, we describe geometric endomorphisms, which can be realized as surface map im-

mersions. This property, which turns out to be generic, introduces structure we can exploit in the

search for norm-realizing and injective surfaces. Much of the discussion benefits from the context of

traintracks.

5.3.1 Tripods and cyclic orders

A tripod is a cyclic triple of generators, written with square brackets to emphasize the invariance

under cyclic permutation, e.g., [a, b, B]. The reverse or negative of a tripod is the negative of the

cyclic order; reverses will be denoted by minus signs, e.g., −[a, b, B] = [a,B, b].

Lemma 5.3.1. Let φ be an expanding endomorphism of F at scale K = 1. Then φ induces a

well-defined map on tripods which commutes with negation.

Proof. Given a tripod T = [x, y, z], apply φ to T by applying φ to each of x, y, z and Stallings

folding the resulting labeled tripod. The generator labels at the junction of the three legs then give

the tripod φ(T ). The expanding condition guarantees that this junction exists because the folding

cannot pass the midpoint of each leg.

That this map commutes with negation is obvious from the definition.

Tripods are the building blocks of cyclic orders. Recall that if S is a set and A,B ⊆ S, then

cyclic orders on A and B are said to be compatible if they are simultaneously induced by a cyclic

order on S.

Lemma 5.3.2 ([6], Lemma 2.37). Let S be a set. A cyclic order on all triples of distinct elements

on S is compatible if and only if for every subset Q ⊆ S with four elements, the cyclic order on

triples of distinct elements of Q is compatible. In this case, these circular orderings are uniquely

compatible, and determine a circular ordering on S.

As a consequence, in order to define a cyclic order on a set S, it suffices to define a cyclic order on

all tripods in S which is compatible on all sets of four elements. Such a cyclic order can be encoded

by a map O from the set of tripods of S to {±1} which records the orientation sign of each tripod.
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5.3.2 Geometric endomorphisms

If φ : F → F is an endomorphism and (Σ, f) is a hyperbolic surface realization of F , then φ induces

a homotopy class of map φ∗ = f ◦ φ ◦ f−1 : Σ→ Σ, where f−1 denotes the homotopy inverse of f .

Definition 5.3.3. An endomorphism φ : F → F is geometric with respect to the hyperbolic surface

realization (Σ, f) if φ∗ is homotopic to an immersion with geodesic boundary.

An endomorphism is virtually geometric if some power of it is geometric.

Recall the definition of the basic surface realization (ΣO, fO) induced by the cyclic order O on

semigroup generators of F (Definition 2.5.9).

Proposition 5.3.4. Let F have rank r, and let φ : F → F be expanding at scale K = 1 with dilation

C > 1. Then there is some n ∈ Z and a cyclic order O on the elements of S so that 1 ≤ n ≤ 4
(

2r
3

)
and φn is geometric with respect to the basic realization (ΣO, fO).

In preparation for the proof, we need some discussion. Consider an ordered tuple (x1, x2, x3, x4)

of four distinct generators of F . We will call such a thing a quadpod1. Though we will be interested in

unordered sets of four generators, it is necessary to introduce an order for the purposes of exposition.

A quadpod can be visualized as a graph vertex with four outgoing incident labeled edges. The

first element of the tuple is defined to be the label for the edge outgoing to the right. As long as φ is

expanding at scale K = 1, We can apply φ to a quadpod by applying it to each edge and Stallings

folding. Of course φ need not preserve the order. In fact, the image of a quadpod under φ need not

be a quadpod. See Figure 5.1.
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x3

x4

1 2

3

4

(A)

1
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3

4
(B)

a1
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b3

1

3

4

2

(C)

a1

a2

a3

b1
b2

b3

1

2

3

4

(D)

a1

a2

a3

b1
b2

b3

Figure 5.1: The possible results (right) of applying the endomorphism φ expanding at scale K = 1
to a quadpod (left). The numbers indicate how the edges fold. The letters xi, ai, and bi indicate
generators of F labeling the outgoing edges incident the vertices. The cyclic orders induced on the
right by drawing the figures in the plane are meaningless.

We need some functions to record pieces of quadpods. Denote the set of all quadpods by Q,

and let q = (x1, x2, x3, x4) ∈ Q. Recall that x1 is outgoing to the right. We define R,U,L,D all

functions from Q to T , the set of tripods, by

R(q) = [x4, x1, x2], U(q) = [x1, x2, x3], L(q) = [x2, x3, x4], D(q) = [x3, x4, x1].

1The better-sounding tetrapod unfortunately shares its first letter with tripod.
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Note these are the right, top (up), left, and bottom (down) tripods in the quadpod q.

Lemma 5.3.5. Let q ∈ Q be a quadpod and let the endomorphism φ : F → F be expanding at scale

K = 1. If φ(q) is not a quadpod (as in Figure 5.1, (B), (C), and (D)), then one of the following

holds:

1. φ(R(q)) = φ(D(q)) and φ(L(q)) = φ(U(q))

2. φ(R(q)) = φ(U(q)) and φ(L(q)) = φ(D(q))

3. φ(R(q)) = −φ(L(q)) and φ(U(q)) = −φ(D(q))

Proof. The proof is basically by Figure 5.1. Because φ(q) is not a quadpod, there must be folding,

so the result must look like (B), (C), or (D) in Figure 5.1. It is important to note that there is no

“correct” or “positive” orientation given on the triples {a1, a2, a3} and {b1, b2, b3}, even though it is

necessary to draw them in the plane.

Consider case (B) from Figure 5.1, in which edge 1 folds with edge 4. In this case, we have

φ(R(q)) = ε[a1, a2, a3], φ(U(q)) = δ[b1, b2, b3],

φ(L(q)) = δ[b1, b2, b3], φ(D(q)) = ε[a1, a2, a3]

where ε, δ = ±1. No matter what the orientation on the triples is (we do not know it), we do know

that φ(R(q)) and φ(D(q)) are equal and given the same orientation, and similarly with φ(U(q)) and

φ(L(q)). This gives case (1) of the lemma.

Now case (C). Here, we have

φ(R(q)) = ε[a3, a2, a1], φ(U(q)) = δ[b1, b3, b2],

φ(L(q)) = ε[a1, a2, a3], φ(D(q)) = δ[b2, b3, b1].

Being careful to remember the signs on the tripods, we see this is case (3) of the lemma.

And case (D). Here,

φ(R(q)) = ε[b3, b1, b2], φ(U(q)) = ε[b1, b2, b3],

φ(L(q)) = δ[a2, a3, a1], φ(D(q)) = δ[a3, a1, a2],

which gives case (2) of the lemma.

Proof of Proposition 5.3.4. Let S be the set of symmetric generators of F . Let T be the set of all

tripods for rank r (i.e., tripods of elements of S) and Q the set of all quadpods. The endomorphism

φ acts on T by Lemma 5.3.1. We let Lφ ⊆ T be the limit set of φ, which is the set of tripods in the
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image of φn for all n. Note that φ acts as a permutation on Lφ. Similarly, we define Qφ to be the

set of quadpods in the image of φn for all n.

Because φ acts as a permutation on Qφ and Lφ, it is possible to choose n ≤ 4
(

2r
3

)
such that

φn acts as the identity on Lφ and Qφ and φn(t) ∈ Lφ for all t. This will be the n such that φn is

geometric.

Now choose any cyclic order on S by defining O : T → {±1} such that O is compatible on all

sets of four elements of S. The order O is arbitrary, and φn will almost certainly not preserve it.

Now define Ô : T → {±1} by

Ô(t) = O(φn(t)).

The function Ô is preserved by φn, since by the definition of n,

Ô(φn(t)) = O(φn(φn(t))) = O(φn(t)) = Ô(t).

In addition, Ô commutes with tripod negation because φn does. However, it is not a priori clear

that Ô defines a cyclic order on S. By Lemma 5.3.2, it suffices to check that Ô is compatible on all

sets of four elements of S.

To this end, let us be given some set Q ⊆ S with four elements. Give these elements an arbitrary

order and put them in the quadpod q = (x1, x2, x3, x4). There are two general cases:

If φn(q) is a quadpod, then by construction, φn fixes q. In particular, it fixes all of the constituent

tripods in q, so all of these tripods are in Lφ. But the order O, and thus Ô, is compatible on these

tripods, so there is an order on Q which induces all the orders of the tripods.

If φn(q) is not a quadpod, then we apply Lemma 5.3.5 with the endomorphism φn, as follows.

Now we case out what happens. For example, suppose that condition (1) holds with Ô(R(q)) = +1

and Ô(L(q)) = −1. Then Ô(D(q)) = +1 and Ô(U(q)) = −1. It is simple to check that the order

[x1, x3, x2, x4] restricts to the orders on all these tripods. Now do this for all cases. In the interest of

completeness, we list them all, including the ones with duplicate signs, in Figure 5.2. We omit exact

negatives for conciseness (and sanity), so it suffices to show only those cases for which Ô(R(q)) = +1.

Case Ô(R(q)) Ô(L(q)) Ô(D(q)) Ô(U(q)) compatible order
(1) 1 1 1 1 [x1, x2, x3, x4]
(1) 1 -1 1 -1 [x1, x3, x2, x4]
(2) 1 1 1 1 [x1, x2, x3, x4]
(2) 1 -1 -1 1 [x1, x2, x4, x3]
(3) 1 -1 1 -1 [x1, x3, x2, x4]
(3) 1 -1 -1 1 [x1, x2, x4, x3]

Figure 5.2: All possibilities for the values of Ô on the constituent tripods of q, and the orders on Q
which induce these values of Ô.
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In all cases, there is a cyclic order on Q which induces the required signs on all the tripods. By

Lemma 5.3.2, then, Ô is compatible on all tripods and gives a cyclic order on S. Recall that by

construction, φn preserves Ô. Therefore, φn is geometric with respect to the the basic hyerbolic

surface realization (ΣÔ, fÔ).

Theorem 5.3.6. A random endomorphism φ : Fk → Fk of length n is virtually geometric with

probability 1− C(k)−n.

Proof. By Proposition 5.3.4, it suffices to check that a random endomorphism of length n is ex-

panding at scale K = 1. Notice, however, that expanding at scale K = 1 immediately follows if the

targets of the generators have bounded cancellation. In particular, condition (A) from §3.3.3 on the

set of words obtained by applying φ to the generators guarantees that φ is expanding. By the proof

of Theorem 3.3.11, we see that condition (A) will be satisfied with probability 1 − C(k)−n, so the

theorem follows.

5.3.3 Equivariant rotation quasimorphisms

We recall the rigidity theorem, Theorem 2.5.5, relating rotation quasimorphisms and surface re-

alizations. If (Σ, f) is a hyperbolic surface realization, recall we denote the associated rotation

quasimorphism by rotΣ.

Lemma 5.3.7. Let F be a free group and φ : F → F geometric with respect to (Σ, f). Then

rotΣ = rotΣ ◦ φ as elements of Q/H1. In particular, rotΣ(C) = rotΣ(φ(C)) for C ∈ BH1 (F ).

Proof (smooth). The area form on Σ is the coboundary of [rotΣ] ∈ Q/H1. Let g : Σ′ → Σ be a

pleated surface. Because φ is homotopic to an immersion, φ ◦ g : Σ′ → Σ is homotopic to a pleated

surface with the same signs on each triangle. Therefore, δ[rotΣ] = δ[rotΣ ◦ φ] in H2
b (F ), so rotΣ and

rotΣ ◦ φ differ by a homomorphism; the claim follows.

Proof (combinatorial). Let C ∈ BH1 , and take any fatgraph S′ bounding C. The value of rotΣ is

obtained by counting the signs on the tripods on Σ′. By definition, φ preserves all these signs, so

rotΣ(C) = rotΣ(φ(C)).

Lemma 5.3.8. Let F be a free group and φ geometric with respect to (Σ, f). If C ∈ C1(F ) and

C−φ(C) ∈ B1(F ), then if rotΣ(C−φ(C)) = 2scl(C−φ(C)), then rotΣ(C−φn(C)) = 2scl(C−φn(C))

for all n ≥ 1.

Proof. If rotΣ(C − φ(C)) = 2scl(C − φ(C)), then C − φ(C) bounds an immersed surface Σ′ in Σ.

Since φ is homotopic to an immersion, we can glue Σ′ to φ(Σ′) along the boundary φ(C) to obtain

an immersed surface bounding C−φ(C)+φ(C−φ(C)) = C−φ2(C). Therefore, rotΣ(C−φ2(C)) =

2scl(C − φ2(C)). Iterating this construction proves the lemma.
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Lemma 5.3.9. Let C,C ′ ∈ C1(F ) be chains representing the same homology class, and let φ : F → F

fix this homology class. Let φ be geometric with respect to (Σ, f). Then rotΣ(C−φ(C)) = rotΣ(C ′−

φ(C ′)).

Proof. Since [C] = [C ′], we have C − C ′ ∈ B1(F ). Using the invariance of rotΣ under φ, we see

rotΣ(C − φ(C)− C ′ + φ(C ′)) = rotΣ(C − C ′)− rotΣ(φ(C − C ′)) = 0.

5.4 Norm-realizing surfaces in geometric HNN extensions

5.4.1 Geometric HNN extensions

Recall that if φ : F → F is an endomorphism, the HNN extensions of F by φ is the group

〈F, t | txt−1 = φ(x)〉. We will denote this group by Fφ. Recall that we obtain a K(Fφ, 1) by

the quotient

Xφ = K(Fφ, 1) = X × [0, 1]/{(x, 0) = (φ(x), 1)},

where here φ denotes the self-map of X induced by the endomorphism φ.

Definition 5.4.1. An HNN extension Fφ is geometric if φ is geometric.

Corollary 5.4.2 (Corollary of Proposition 5.3.4). Let F have rank r, and let φ : F → F be expanding

at scale K = 1 with dilation C > 1. Then there is some n ∈ Z so that 1 ≤ n ≤ 4
(

2r
3

)
and Fφn is

geometric.

5.4.2 Norm-realizing surfaces in geometric HNN extensions

Proposition 5.4.3. Let φ : F → F be geometric with respect to the surface realization (Σ, f).

Suppose that φ fixes the homology class of the chain C ∈ C1(F ). If rotΣ(C−φ(C)) = 2scl(C−φ(C)),

i.e. if rotΣ is extremal for C − φ(C), then the surface map obtained by gluing the boundaries of any

extremal surface for C − φ(C) is norm-realizing.

Proof. Let α ∈ H2(Fφ) denote the homology class in Fφ associated with C − φ(C). By assumption,

rotΣ(C − φ(C)) = 2scl(C − φ(C)). By Lemmas 5.3.8 and 5.3.7, we have

krotΣ(C − φ(C)) = rotΣ(C − φk(C)) = 2scl(C − φk(C)).

Therefore, by Lemma 5.2.6

‖α‖ = lim
k→∞

2

k
scl
(
C − φk(C)

)
= rotΣ(C − φ(C)).
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Now take any surface map g : S → Xφ which is extremal for C − φ(C) in X. By taking covers, we

may assume that the boundaries of S map with the same degrees to C and −φ(C), so that we may

glue it together to form a closed surface map ḡ : S̄ → Xφ representing a multiple of the homology

class α. Since S is extremal, we have

‖α‖ = rotΣ(C − φ(C)) =
−χ(S)

n(S)
=
−χ(S̄)

n(S̄)
.

That is, S̄ is norm-realizing.

Lemma 5.2.8 can certify norm-realizing surfaces, but the combination of Propositions 5.3.4 and

5.4.3 provides a nice geometric interpretation, for it implies that most endomorphisms (and certainly

almost all random endomorphisms) are geometric, and finding a norm-realizing surface reduces to

checking a single equality (the extremality of rotΣ). This produces a large number of positive

examples of norm-realizing, and thus injective, surfaces in HNN extensions, and we provide a few

below.

Example 5.4.4. Let F = 〈a, b〉 and φ(a) = aBaB, φ(b) = bbABa. Then φ([b]) = [b]. Let (Σ, f) be the

basic surface realization given by the cyclic order abAB. Checking the set of tripods shows that φ is

geometric with respect to (Σ, f). Another way to show this is to simply check that rotΣ(φ([b, a])) = 1,

since [b, a] is the boundary of this realization, and this shows the image surface is immersed. Finally,

we check that rotΣ(b− bbABa) = 1 and scl(b− bbABa) = 1/2. By Proposition 5.4.3, any extremal

surface for b−bbABa then gives a norm-realizing surface. Using scallop [15] (made easier by wallop

[32]), we can find a particular example: a genus 1 surface with boundary bb + AbaBBAbaBB. A

set of generators for this surface group is {bb, Abba,AAba, t}, where recall Fφ = 〈a, b, t | tat−1 =

φ(a), tbt−1 = φ(b)〉

Example 5.4.5. Let F = 〈a, b, c〉, and let φ : F → F be defined

a 7→ BCABc, b 7→ CCAca, c 7→ aBAcA.

Then φ is geometric with respect to the realization Σ given by the cyclic order acCbAB, and

φ([a] + [CC]) = [a] + [CC]. We also have scl(a+ CC −BCABc+ (aBAcA)2) = 3/2, and rotΣ(a+

CC − BCABc + (aBAcA)2) = 3. Therefore, any extremal surface for this chain gives a norm-

realization surface. For example, there is a genus zero surface (punctured sphere) with 8 boundaries

which bounds twice the chain. Gluing this surface produces a closed genus 4 norm-realizing surface

in Fφ.
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Chapter 6

Scylla

This chapter gives a generalization of Calegari’s scallop. The scallop algorithm is described in

detail in [8] §4, and an implementation is available [15]. The current distribution of scallop also

includes an implementation of scylla.

6.1 Overview

The scallop algorithm computes the scl of elements of BH1 (Fk) by expressing it as the solution to

a linear programming problem in the following way. Recall Definition 2.1.2, so for Γ ∈ BH1 (Fk), we

have scl(Γ) as an infimum over all admissible surfaces maps. Calegari observes that it is enough

to consider labeled fatgraph maps, e.g., by Lemma 2.4.4. Such structures are parameterized by a

polyhedron in a linear space V , and the Euler characteristic expression to be minimized is a linear

function on this space. Doing linear programming on this parameterizing space, then, computes

scl(Γ).

The dimension of the parameterizing space V is O(|Γ|2r), where r is the rank of F . Therefore,

scallop is polynomial in the chain length |Γ| and exponential in the rank. Note that the space

complexity is also polynomial in |Γ| and exponential in r. In practice, depending on the particular

problem instance, either time or space might be a limiting factor.

The scylla algorithm comprises two improvements to scallop. First, we give a combinatorial

structure on surface maps into a free group consisting of smaller pieces; this gives a linear pro-

gramming problem with O(|Γ|3) columns which computes scl(Γ). Note this is independent of rank.

Second, we extend the algorithm to compute scl in free products of infinite or finite cyclic groups.

Let G = Z∗k ∗ Z/o1Z ∗ · · · ∗ Z/omZ, and let K =
∑m
i=1 oi. Then for Γ ∈ BH1 (G), scylla computes

scl(Γ) with a linear programming problem with O((K + 1)|Γ|3) columns and O((K + 1)|Γ|2) rows.
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6.2 Improving the combinatorial structure in scallop

Recall that scylla contains two improvements to scallop: it is uniformly polynomial in the chain

length, irrespective of rank, and it computes in free products of infinite and finite cyclic groups.

Since these improvements are somewhat disjoint, we discuss them separately. First, we show how

to remove the exponential dependence on rank.

Let Fk be a free group of rank k and Γ ∈ BH1 (Fk). We will write Γ =
∑
i wi, expressing Γ as a

formal sum of words. Note that while BH1 (Fk) is a vector space over R, it suffices to compute scl

over Q by continuity and over Z by clearing denominators and using homogeneity. We use the term

generator to mean a generator of Fk. The formal sum of words
∑
i wi in these generators represents

Γ, and we will call a particular letter in a particular location in one of these words a letter. It is

important to distinguish between a generator and a particular occurrence of that generator in the

chain Γ (i.e., a letter). Two letters are inverse if the generators they denote are inverse. We use Γi,j

to denote letter j of word i of Γ, with indices starting at 0. If a chain is written out, we will use

similar subscripts to reference letters, so if Γ = abAABB + ab, then a0,0 denotes the a at index 0 of

word 0, and B0,4 denotes the B at index 4 in the word 0.

It is important in what follows to be mindful of the fact that the tedious notation is important

only for bookkeeping reasons — the idea of the algorithm is quite straightforward and is contained

in the figures.

Let f : S → K(Fk, 1) be an admissible map for Γ. By compressing S (which can only reduce

−χ(S)), we may assume that f is given by a fatgraph structure on S. This is the content of

Lemma 2.4.4. See Figure 6.1 for an example of an admissible fatgraph map. By abuse of notation,

we refer to the fatgraph by S, and we think of it as already fattened. Each edge of S is a rectangle,

and the two long edges of each rectangle are labeled by a letters in Γ which are inverses.

On each rectangle in S, we find two letters, say x and y, which must be inverses, and we denote

the rectangle with these long edges labeled by x and y by [x, y]. The rectangle [x, y] is the same

as [y, x]. The short edges of rectangle R = [x, y] are called rectangle interface edges, and they are

classified by which letters in Γ label the adjacent long edges. If an interface edge lies between long

edges labeled by x and y, we denote it by ri(x, y). The interface edge ri(x, y) is not the same as

ri(y, x). The ri stands for “rectangle interface”.

Thus, in the rectangle [x, y], there are four edges (in order, reading counterclockwise): the edge

labeled by x, the interface edge ri(x, y), the edge labeled by y, and the interface edge ri(y, x). See

Figure 6.2.

Each vertex in the fatgraph can be thought of as a polygon whose sides are polygon interface

edges. Each polygon interface edge is associated with a unique rectangle interface edge, in the

following way. At each side of the polygon, there is an incident rectangle whose long edges are
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Figure 6.1: A fatgraph structure on an extremal (in particular, admissible) surface for the chain
abAABB + ab, and the same fatgraph split into rectangles and polygons.

a1,0

A0,2

ri(a1,0, A0,2)

ri(A0,2, a1,0)

pi(A0,2, a1,0)

pi(a1,0, A0,2)

Figure 6.2: The rectangle [a1,0, A0,2] for the chain abAABB + ab, pictured as an enlarged piece of
Figure 6.1, as found towards the lower right of Figure 6.1, with sides and interface edges labeled.

labeled by an outgoing letter, say x, and an incoming letter, say y. Such a polygon side will be

denoted by pi(x, y), for “polygon interface”. Notice that if the rectangle [x, y] is attached to a

polygon along the short edge ri(x, y), the corresponding edge on the polygon is pi(y, x). Also note

that while there is only a single possible rectangle containing any given rectangle interface edge, the

same polygon interface edge may be part of many different polygons.

Every polygon satisfies the constraint that pi(x,Γi,j) is followed counterclockwise by pi(Γi,j+1, y),

for some letters x and y, and where we take indices in word i modulo the length of word i. See

Figure 6.3.

The set of all possible polygons is infinite because there is no a priori bound on the number of

sides they may have. The scallop algorithm handles this by assuming that the polygons have at

most 2r sides. This is not rigorous, but it is generically correct, and it can be made rigorous by

applying it to the chain obtained from Γ by applying the map which takes each generator g to g3.

See [8], §4.1.
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pi(A0,2, a1,0)

ri(a0,1, A0,2)

a0,1

A0,2

pi(b1,1, B0,4)

ri(B0,4, b1,1)

B0,4

b1,1

pi(B0,5, b0,1)

ri(b0,1, B0,5)

b0,1

B0,5

Figure 6.3: A polygon and incident rectangles, with rectangle sides and interface edges labeled. This
example is the lower-right hand triangle in Figure 6.1.

The scylla algorithm breaks the polygons into smaller pieces of uniformly bounded size; we

then observe that there can be only finitely many types of these pieces. Any polygon can be cut

(possibly in multiple ways) into finitely many polygon pieces so that each piece has at most 3 sides.

See Figure 6.4.

Figure 6.4: Cutting a polygon (left, shown with rectangles attached) into polygon pieces (right) with
at most 4 sides.

The polygon pieces have two kinds of edges: polygon interface edges inherited from the polygons

we cut and central edges which are newly created by the cutting procedure. Central edges are

denoted by a pair c(x, y), where x and y are letters in Γ, as follows. Each central edge starts at

some vertex v1 of a polygon and ends at some vertex v2. Because each polygon piece is oriented,

“start” and “end” are induced from the orientation. There are labeled rectangle sides incoming to

and outgoing from both v1 and v2. The central edge in question is given the label c(x, y), where x

is the label incoming to vertex v1 and y is the label outgoing from v2.
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Under this scheme, a central edge of a polygon piece which lies between interface edges pi(x, y)

and pi(z, w) will be labeled c(y, z). Further, if two central edges c(x, y) and c(z, w) are adjacent

(with c(z, w) following c(x, y)), then, somewhat counterintuitively, the letter y follows z cyclically

in Γ.

Note that cutting a polygon into two polygon pieces will generate the central edge c(Γi,j ,Γk,l)

on one polygon piece and c(Γk,l−1,Γi,j+1) on the other. See Figure 6.5.

a0,0

A0,3

ri(A0,3, a0,0)

pi(a0,0, A0,3)

B0,4

b1,1

ri(b1,1, B0,4)

pi(B0,4, b1,1)

a1,0

A0,2

pi(A0,2, a1,0)

ri(a1,0, A0,2)

A0,3

a1,0
ri(a1,0, A0,3)

b1,1

B0,5

ri(B0,5, b1,1)(C)
(D)

(E)

(F )

(G)

(H)

(C) : c(A0,2, B0,4)

(D) : c(A0,3, A0,3)

(E) : c(A0,2, a0,0)

(F ) : c(B0,5, A0,3)

(G) : pi(A0,3, a1,0)

(H) : pi(b1,1, B0,5)

Figure 6.5: Labeling the central and interface edges of the polygon pieces for a hypothetical collection
of polygon pieces and rectangles for the chain abAABB + ab. For clarity, some of the labels have
been moved off to the right, as indicated.

Note that while if pi(x, y) is an interface edge, then x and y must be inverses, there is no such

requirement for central edges.

Thus, given a fatgraph map f : S → K(Fk, 1), we may cut it into rectangles and polygons, and

we may cut the polygons further into polygon pieces. Each polygon piece has at most 3 sides, and

each side is labeled by a pair of letters in Γ. Since the letters on either side of a corner of a polygon

piece determine each other, we see that there are at most |Γ|3 labeled polygon pieces.

Given Γ ∈ BH1 (Fk), let VΓ be the vector space over Q spanned by all possible labeled polygon

pieces and rectangles for Γ. If (S, f) is a fatgraph map for Γ, then the discussion above shows how to

cut S into polygon pieces and rectangles. The cutting vector for this decomposition is the vector in

VΓ which records how many of each rectangle and polygon piece are present in S. Since there might

be many ways to cut the polygons into polygon pieces, there might be many cutting vectors for a

single fatgraph map. Similarly, if an admissible surface admits a fatgraph structure, it might admit

many fatgraph structures, so for a single admissible surface, there might be many cutting vectors.

For each pair of letters (x, y) in Γ such that x and y are inverses, we define an interface linear

functional I(x,y). It suffices to define I(x,y) on a basis for VΓ, that is, on rectangles and polygon
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pieces. On the rectangle [x, y], I(x,y) takes the value 1. It is zero for all other rectangles. On a

polygon piece p, I(x,y) takes the value which is negative the number of times that pi(y, x) appears

as a side of p.

For each pair of letters of Γ, we define a central linear functional C(x,y), as follows. These

functionals take the value 0 on all rectangles. On a polygon piece p, C(Γi,j ,Γk,l) gives the number

of times that c(Γi,j ,Γk,l) appears as a side of p, minus the number of times that c(Γk,l−1,Γi,j+1)

appears.

Note that C(Γi,j ,Γk,l) = −C(Γk,l−1,Γi,j+1). Therefore, it is only necessary to use half of these linear

functions. The pairing is slightly awkward to express, so we will ignore this technicality in our

discussion.

Given a fatgraph map (S, f) and a cutting vector v(S,f) ∈ VΓ, we observe that

1. v(S,f) is nonnegative.

2. I(x,y)(v(S,f)) = 0 for all x = y−1 letters in Γ.

3. C(x,y)(v(S,f)) = 0 for all x, y letters in Γ.

We would like to use the converse; that any vector satisfying these constraints can be used to

build a fatgraph. This is not quite true. Any suitable collection of poylgons pieces and rectangles

can be used to build an admissible surface, but it might not be a fatgraph. We will see, however,

that any extremal (as defined later) collection does yield a fatgraph.

Further, it is possible to determine the Euler characteristic of an admissible fatgraph surface from

any cutting vector. We define a linear function χ on VΓ by defining it on our basis of rectangles and

polygon pieces. On rectangles, χ is zero. On a polygon piece p with n sides, we set χ(p) = (2−n)/2.

Lemma 6.2.1. Let Γ ∈ BH1 (F ) and v ∈ VΓ be any cutting vector for a fatgraph map (S, f) for Γ.

Then χ(S) = χ(v).

Proof. The fatgraph (S, f) is homotopy equivalent to a graph whose vertices are the polygons and

whose edges are the rectangles. This graph, in turn, is homotopy equivalent to a graph G whose

vertices are polygon pieces and rectangles, and two vertices are joined by an edge exactly when the

corresponding polygon pieces or rectangles share an interface or central edge.

Let V = {vi}i and E be the vertices and edges of G. We compute χ(S) = χ(G) as |V |− |E|. Let

|vi| denote the valence of vertex vi. Then |E| =
∑
i |vi|/2. Therefore,

χ(S) =
∑
i

1− |vi|
2

=
∑
i

2− |vi|
2

,

and the expression on the right coincides with χ(v).
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Finally, we define a collection of linear functions which compute the image in homology of a

surface map. Recall we have written Γ ∈ BH1 (Fk) as the formal sum of words

Γ = w0 + · · ·+ wk−1.

For each 0 ≤ i < k, we define a linear function Ni which is zero on polygon pieces. On the rectangle

[x, y], Ni is 1 if x or y is the first letter of wi and 0 otherwise.

Lemma 6.2.2. Let Γ be as above and γi be a loop in a K(Fk, 1) representing the word wi. Let

〈[γi]〉 denote the span of the vector [γi] in BH1 (Fk). Let (S, f) be an admissible fatgraph, and let

v ∈ VΓ be any cutting vector. There is an induced map ∂f∗,i : H1(∂S)→ 〈[γi]〉 ∼= R, and Ni(v)[γi] =

∂f∗,i([∂S]).

Proof. By the construction of the vector space VΓ, any surface for which v is a cutting vector will

have boundary components whose images in π1(K(Fk, 1)) = Fk are conjugates of powers of the wi,

so in BH1 (Fk), the image of [∂S] is in the subspace spanned by the collection of all [γj ]. Projecting to

the ith component, which we denote by ∂f∗,i, ignores all loops except γi, so the image of ∂f∗,i[∂S]

in BH1 (Fk) lies in the subspace spanned by [γi]. To find ∂f∗,i[∂S] as a multiple of [γi], we just need

to count the number of times that the word wi appears in the labeled boundaries of ∂S. Therefore,

we simply need to count the number of times that the first letter of wi appears, which is Ni(v).

We are now ready to construct the linear programming problem. Let Γ = w0 + · · · + wk−1 ∈

BH1 (Fk), and define PΓ ⊆ VΓ to be the set of vectors v such that

1. v is nonnegative.

2. I(x,y)(v) = 0 for all x = y−1 letters in Γ.

3. C(x,y)(v) = 0 for all x, y letters in Γ.

4. Ni(v) = 1 for 0 ≤ i < k.

We call PΓ the admissible polyhedron. Note that PΓ is, in fact, a polyhedron.

Lemma 6.2.3. Let (S, f) be a fatgraph map for Γ. For any cutting vector v for (S, f), there is

some scalar k ∈ Q so that kv ∈ PΓ. Further,

−χ(kv)

2
=
−χ(S)

2n(S, f)
.

Proof. If v is a cutting vector for a fatgraph map (S, f), then v satisfies conditions (1) through

(3) in the definition of the admissible polyhedron, and any scalar multiple of v does too. Write
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Γ =
∑
i wi as above. Because (S, f) bounds Γ in BH1 (Fk), all of the Ni(v) are equal to some integer

K. Therefore, (1/K)v lies in the admissible polyhedron, as desired.

Because all of the Ni(v) are equal, N1(v) = n(S, f), so since χ and N1 are linear,

−χ(S)

2n(S, f)
=
−χ(v)

2N1(v)
=
−χ(kv)

2N1(kv)
=
−χ(kv)

2
.

Lemma 6.2.4. Let Γ ∈ BH1 (Fk) and v ∈ PΓ (not necessarily integral) so that −χ is minimized over

PΓ at v. Then there exists a scalar k ∈ Q and (possibly many) admissible fatgraphs (S, f) for Γ such

that kv is a cutting vector for (S, f). Furthermore,

−χ(v)

2
=
−χ(S)

2n(S, f)
.

Proof. Because v is a rational vector, there is some scalar k ∈ Q so that kv is integral.

The integer vector kv ∈ VΓ corresponds to a collection of rectangles and polygon pieces. The fact

that the linear functionals C(x,y) vanish ensures that amongst all sides of all polygon pieces, there

are exactly the same number of central edge c(Γi,j ,Γk,l) as there are of the matching central edge

c(Γk,l−1,Γi,j+1). For every pair of central edges, glue the collection of sides of polygon pieces with

those edges arbitrarily. In a similar way, the vanishing of all the linear functionals I(x,y) ensures that

amongst all rectangles and polygon pieces, there are exactly the same number of rectangle interface

edge ri(x, y) as there are of polygon interface edge pi(y, x). For each interface edge pair, then, glue

the collection arbitrarily. By sending all polygons to the basepoint of K(Fk, 1) and all the rectangles

appropriately around the 1-cells, we obtain a surface and map (S, f). By construction of the polygon

pieces and rectangles, this surface bounds some multiple of Γ.

By the same argument as Lemma 6.2.1, χ(kv) = χ(S), and by the same argument as Lemma 6.2.3,

−χ(v)/2 = −χ(S)/2n(S, f).

The result of this gluing a priori might not be a fatgraph. There are two bad things that could

happen: (1) a sequence of polygon pieces with two central edges could be glued in a loop, yielding a

polygon with a puncture, and (2) a sequence of poylgon pieces could be glued so that the resulting

object is a loop, not a simply connected polygon.

In the case (1), we get a puncture in the surface which maps to the basepoint. We can therefore

fill in this puncture, reducing −χ, to get a new admissible surface map (S′, f ′). Apply Lemma 2.4.4

to get an admissible fatgraph and a cutting vector v′. Applying Lemma 6.2.3, find k′ so that

k′v′ ∈ PΓ. Then

−χ(v)/2 = −χ(S)/2n(S, f) > −χ(S′)/2n(S′, f ′) = −χ(k′v′)/2.
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Since v minimizes −χ over PΓ, this is a contradiction. Thus, (1) cannot happen.

In the case (2), we get a compressible loop in the glued up surface. in this case, too, we compress

along it to get a new surface with smaller −χ, yielding another contradiction.

Therefore, the result of this gluing is a labeled fatgraph (together with its induced map). By

construction, it can be cut into the polygon pieces and rectangles that we started with, so kv is a

cutting vector for (S, f).

6.3 The scylla algorithm for free groups

Proposition 6.3.1. Let Γ ∈ BH1 (Fk). Then

scl(Γ) = inf
v∈PΓ

−χ(v)

2
.

Proof. Given any admissible surface (S, f), we may apply Lemma 2.4.4 followed by Lemma 6.2.3 to

obtain some vector v ∈ PΓ so that −χ(v)/2 ≤ −χ(S)/2n(S, f). Thus,

inf
v∈PΓ

−χ(v)

2
≤ inf

(S,f)

−χ(S)

2n(S, f)
.

The reverse inequality is immediately implied by Lemma 6.2.4, so we have

inf
v∈PΓ

−χ(v)

2
= inf

(S,f)

−χ(S)

2n(S, f)
= scl(Γ),

Observe that this expresses the computation of scl(Γ) as a linear programming problem, since

PΓ is a polyhedron and −χ is a linear function. Furthermore, the complexity is independent of rank,

because the rank does not affect the construction of the rectangles or polygon pieces.

6.4 Generalizing to finite cyclic free factors

We now describe the complete scylla algorithm, which computes scl in free products of cyclic

groups with finite cyclic free factors allowed. The approach is very similar to the free group case,

but the rectangles are replaced by more general objects.

It should be noted that free products of finite cyclic groups are virtually free. Using Corollary 2.81

in [8] and scallop, it is theoretically possible to compute scl in free products of finite cyclic groups.

However, the rank of the free group in which the computation is done is essentially the product of

the orders of the finite cyclic groups. Given scallop’s exponential dependence on rank, this method

is not feasible. Even using the first improvement in scylla to remove the exponential dependence
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on rank does not fix the problem, for the size of the computation still grows too quickly. Therefore,

it is necessary to compute directly in the finite cyclic groups.

Recall that a fatgraph map (necessarily into a free group) can be described by a collection

of labeled rectangles and polygon pieces, appropriately glued together along interface and central

edges. Let G = Z∗k ∗ Z/o1Z ∗ · · ·Z/omZ and let Γ ∈ BH1 (G). A cyclic fatgraph bounding Γ is given

by a collection of the following objects, glued along interface and central edges: central polygon

pieces (previously called polygon pieces); rectangles, whose side labels are letters in Γ representing

generators in the factor Z∗k; and group polygons. A group polygon is associated with a finite free

factor Z/oiZ, and it has two kinds of sides, which alternate: group polygon interface edges, which

are glued to polygon interface edges, and labeled sides, each labeled by a letter in Γ representing the

generator of Z/oiZ. We will denote by gi(x, y) the group polygon interface edge between two sides

labeled with letters x and y. If y immediately (cyclically) follows x in Γ, then the group polygon

interface edge gi(x, y) is a dummy edge, and it is not allowed to be glued to a polygon. A group

polygon in factor Z/oiZ contains exactly oi interface edges and oi labeled sides. See Figure 6.6.

a0,1

a0,3

a0,4a0,1

a0,4

Figure 6.6: A group polygon in Z/5Z generated by a. Here the group polygon is in a hypothetical
cyclic fatgraph bounding the chain aabaaaB in Z/5Z ∗ Z.

Note that for the definition of a cyclic fatgraph, we have done away with the polygons, and we

are only using polygon pieces. This makes the technicalities of Lemma 6.2.4 easier. Note that we

are able to give surfaces with punctures and compressible loops cyclic fatgraph structures. This is

fine, because these surface maps will never be extremal.

We need to observe the following, but it does not quite deserve to be elevated to the status of a

lemma.

Remark 6.4.1. A cyclic fatgraph bounding Γ, as defined above, induces a surface map f : S →

K(G, 1) which bounds Γ in BH1 (G). All that we need to check is that the obvious map on polygon

pieces (to the basepoint) and rectangles (around infinite free factors, as before) extends to group

polygons. But the group polygons in factor Z/oiZ all have oi sides, so their boundaries do bound

disks in a K(G, 1).

In light of Remark 6.4.1, we will conflate a cyclic fatgraph bounding Γ and the (admissible)
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surface map it induces.

Much more interesting is the converse. Note that this lemma is intuitively quite clear. A glance

at Figure 6.9 is highly recommended before reading the proof.

Lemma 6.4.2. Let G = Z∗k ∗ Z/o1Z ∗ · · ·Z/omZ and Γ ∈ BH1 (G). Let (S, f) be an admissble

surface for Γ. There is a cyclic fatgraph (S′, f ′) with the same boundary image in BH1 (G) such that

−χ(S′) ≤ −χ(S).

Proof. First, we take a form for Γ which includes only positive powers of the generators of the finite

factors. To understand the set of possible surface maps into a K(G, 1), it suffices to consider the

2-skeleton, which we construct now. Take a single vertex, and k+m 1-cells, which forms a free group

of rank k + m. Now glue on m 2-cells {Ti}mi=1 by gluing cell i to the (k + i)th 1-cell (which forms

a copy of S1) via a map on the boundary of degree oi. Denote this CW -complex by X. Clearly

π1(X) ∼= G, and since we may take any map between CW -complexes to be cellular, any surface map

into a K(G, 1) is homotopy equivalent to a map to X.

Now, Γ ∈ BH1 (G), and let (S, f) be an admissible map for Γ. After possibly homotoping f , we

may assume that f is cellular, and we may assume that the boundary components of S are wrapped

around the generators of the finite factors only in a positive direction. Suppose that a cell C in S

maps via f to the cell Ti in X. By the homotopy extension property, C is a branched cover of Ti.

Since f takes ∂C to the (k+ i)th 1-cell while factoring through ∂Ti, the map of C into X must be a

map whose degree on the boundary is a multiple of the order oi. Further, after homotopy, we may

assume that any branch point in C maps to a given point in Ti, say pi.

Now excise a small neighborhood Pi of pi in each cell Ti to obtain the space X ′, and remove the

preimage of each Pi from S to obtain a surface map f ′ : S′ → X ′. This gives

S
f−−−−→ Xx x

S′
f ′−−−−→ X ′

,

where the vertical arrows are inclusions, and S and X are obtained from S′ and X ′ by gluing in

some disks. Since π1(X ′) is a free group with the same generators as π1(X) ∼= G, we may find a

fatgraph map (S′′, f ′′) obtained from (S′, f ′) through homotopy and compressions. Note the image

of ∂S′′ and ∂S are the same in BH1 (G).

The fatgraph S′′ has some special boundary components which bound powers of the generators

of the finite factors; these correspond to the components of S′ to which we glue disks in order to

obtain S. Note that any two of these boundary components cannot run across both sides of the

same rectangle in S′′. One would have to contain the generator of a finite factor and the other

its inverse, but by construction these boundary components can contain only the inverse of the
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generator (because the boundary of S contains only positive powers of these generators).

a0,1

a0,3

a0,4a0,1

a0,4

Figure 6.7: Creating a group polygon by gluing a disk to a boundary component of S′. The small
squares on the right are central polygons. Note the dummy edge created when a central polygon
with two sides (a vertex of the fatgraph S′′ with only two incident rectangles) lies along a boundary
component to which we glue a disk. As an example, we provide possible labels for a group polygon
bounding aabaaaB in Z/5Z ∗ Z.

We replace these boundary components with group polygons as in Figure 6.7, obtaining a cyclic

fatgraph bounding Γ in BH1 (G) and its induced map (S′′′, f ′′′), where S′′′ is the cyclic fatgraph

bounding Γ. Suppose that we remove K disks from S (and glue K disks to −χ(S′′)). Then

−χ(S′′′)−K = −χ(S′′) ≤ −χ(S′) = −χ(S)−K

as desired.

A

B

A

B

Figure 6.8: Pinching off oi of the Moi sides of a group polygon with too many sides (left) to create
a real group polygon with oi sides, two central polygon pieces, and a smaller bad “group polygon”.
Here oi = 3 and the new central polygon is darkened. All the interface edges might be dummy edges
or be glued to polygons, but we emphasize what happens around the interface edges by labels A
and B for clarity.

Observant readers will note that, in fact, the “group polygons” that we just created for each

factor Z/oiZ might not have exactly oi labeled sides — they might have Moi labeled sides, where
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M ≥ 1 is any integer. To resolve this and produce an honest cyclic fatgraph structure, we perform

the move indicated in Figure 6.8, which replaces a “group polygon” with Moi sides with: an honest

group polygon with oi sides, two central polygon pieces, and a “group polygon” with (M − 1)oi

sides. Repeated applications of this move produce a cyclic fatgraph obviously homotopy equivalent

to (S′′′, f ′′′). This is the cyclic fatgraph of the lemma, and this completes the proof.

Example 6.4.3. Let G = Z/3Z ∗ Z/2Z generated by a and b, respectively. The chains ab and aabab

are both contained in BH1 (G), because (ab)6 and (aabab)6 are homologically trivial. We show cyclic

fatgraphs bounding these chains in Figure 6.9. Group polygons are shown darkened, and the central

polygons (bigons) lie between the group polygons. Note the dummy group polygon interface edges

in the surface on the right. Also note that the objects which look like rectangles are actually group

polygons with 2 interface sides.

a0,0

a0,0

a0,0

a0,0a0,0

a0,0

b0,1

b0,1

b0,1

b0,1

b0,1

b0,1

a0,0 a0,1

a0,0 a0,1

a0,3

a0,3

b0,2

b0,2

b0,4
b0,4

Figure 6.9: See Example 6.4.3. Cyclic fatgraphs bounding the chains ab and aabab in the group
G = Z/3Z ∗ Z/2Z. These exhibit sclG(ab) ≤ 1/12 and sclG(aabab) = 0. In fact, they are both
extremal.

We review the current context. We have shown that every admissible surface can be given

a cyclic fatgraph structure (after possibly compressing, etc.). In a similar way as the fatgraph

structure does for free groups, this allows us to parameterize the space of all admissible surfaces

and do linear programming to compute scl. We simply cut the cyclic fatgraphs into central polygon

pieces, rectangles, and group polygons, show that we can compute Euler characteristic from these

pieces, and then show how to build a polyhedron in an appropriate vector space.

However, the complexity of such an algorithm is prohibitive, since the number of possible labeled

group polygons in a factor Z/oiZ can be O(|Γ|oi). Therefore, we must break our surfaces into even

smaller pieces. We do this by building the group polygons themselves out of smaller group teeth.

Consider a group polygon g in free factor i with oi sides. Pick any labeled side, which will be

labeled with some letter x, and call g a group polygon based at x. For any given group polygon,

there are multiple representions as a based group polygon, but certainly any group polygon can be

represented in this way. Now set the chosen labeled side to have index 0, and index the remaining

sides counterclockwise from 0. Also index the interface sides from 0. Thus, interface side i lies
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between labeled sides i and i+1, indices taken modulo oi. A group tooth is a single labeled interface

side at a particular index in a group polygon based at a particular letter x. We will denote it by

gt(y, z, i, x), where the interface edge gi(y, z) is at index i in a group polygon based at x. Note

that y = x if i = 0, and z = x if i = oi − 1. See Figure 6.10. The nomenclature comes from the

resemblance of the group teeth to the teeth in a bicycle sprocket.

0

1

23

4

a0,1

a0,3

a0,4
a0,1

a0,4

gt(a0,1, a0,3, 0, a0,1)

gt(a0,3, a0,4, 1, a0,1)

gt(a0,4, a0,1, 2, a0,1)

gt(a0,1, a0,4, 3, a0,1)

gt(a0,4, a0,1, 4, a0,1)

Figure 6.10: Cutting the group polygon from Figure 6.6 into group teeth. The bottom labeled side
is arbitrarily chosen as the base.

We are finally ready to build the linear programming problem. Given G = Z∗k∗Z/o1Z∗· · ·Z/omZ

and Γ ∈ BH1 (G), let the VΓ be the vector space over Q spanned by all labeled rectangles, polygon

pieces, and group teeth. Define linear functionals I(x,y) and C(x,y) as before, where I(x,y) is 1 on

a group tooth exactly when the group tooth is of the form gt(x, y, ·, ·), and all C(x,y) vanish on all

group teeth. Note that the I(x,y) are defined for x 6= y−1 for the finite free factors (and for x = y−1

for the infinite free factors, as before).

Define a new set of linear functionals Ti,y,x, where x and y are letters in Γ in free factor j, and

0 ≤ i ≤ oj − 1. The functional Ti,y,x is 1 on a group tooth of the form gt(·, y, i− 1, x) and −1 on a

group tooth of the form gt(y, ·, i, x) and 0 on all other group teeth, rectangles, and polygon pieces.

The vanishing of all these linear functionals ensures that the group teeth can be glued together to

obtain group polygons.

Observe that any cyclic fatgraph bounding Γ can be cut into central polygon pieces, rectangles,

and group teeth. An integer vector v in VΓ then records how many of each piece we have. We

will call such v a cutting vector for the cyclic fatgraph. Note that there may be many different

cyclic fatgraph structures on the same admissible surface. Also note that a cyclic fatgraph consists

of central polygon pieces, rectangles, and group polygons, but the vector space VΓ records central

poylgon pieces, rectangles, and group teeth.

Lemma 6.4.4. Let Γ ∈ BH1 (G) and v ∈ VΓ an integer vector such that

1. v is nonnegative.
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2. I(x,y)(v) = 0 for all x, y letters in Γ in the same free factor.

3. C(x,y)(v) = 0 for all x, y letters in Γ.

4. Ti,y,x(v) = 0 for all x, y letters in the same free factor j, and 0 ≤ i ≤ oj − 1.

Then there is a cyclic fatgraph map (S, f) admissible for Γ such that v is a cutting vector for (S, f).

Proof. Because v is an integer vector, it corresponds to a collection of central polygons, rectangles,

and group teeth. As with the proof of Lemma 6.2.4, we simply need to show that we can glue

everything up in some way to construct a surface. Unlike this lemma, though, we do not care that

some boundary components might map with degree zero. First, consider the group teeth. Fix some

letter x in Γ in factor j and index i = 1. The fact that T1,y,x(v) = 0 for all y in Γ means that there

are the same number of group teeth at position 0 based at x whose second letter is y as there are

group teeth at position 1 based at x whose first letter is y. We choose some bijection between these

teeth and glue them. Then proceed to the next letter y in Γ. After gluing all the group teeth at

indices 1 and 2 based at x, similarly glue all the group teeth at indices i and i+ 1, etc. Proceeding

around the indices, we arrive at indices oj − 1 and 0. Each group tooth at 0 is glued to one at 1,

which is glued to one at 2, etc., all the way to oj−1. That is, each group tooth at 0 is glued, through

a succesion of teeth counterclockwise, to a group tooth at oj − 1. Because group teeth are “based”,

a group tooth at 0 always starts with letter x, and a group tooth at oj − 1 always ends with letter

x, so we may glue up these matched group teeth. This creates a collection of group polygons with

the correct number (oj) of sides.

By constructing these group polygons, we have not changed the numbers of any of the interface

sides, so conditions (1) through (3) still hold. At this point, we simply proceed to glue up the

interface and central edges: at each interface edge, we have the same number of central polygon

interface edges as we do rectangle and group polygon interface edges — choose some bijection, and

glue. Similarly glue the central polygon edges to obtain a cyclic fatgraph. By construction, this

cyclic fatgraph bounds some multiple of Γ in BH1 (G), and it gives an induced surface map admissible

for Γ. Since we built it out of the pieces specified by v, we can obviously cut it into pieces to give

v, as desired.

Again, we reiterate that we might obtain a surface with punctures or compressible loops. This

is fine.

The definition of χ becomes slightly more complicated. On rectangles, χ is zero. On a polygon

piece p with n sides, we set χ(p) = (2− n)/2. On a group tooth gt(y, z, i, x) in free factor j,

χ(gt(y, z, i, x)) =

 1
oj

if z cyclically follows y in Γ,

1
oj
− 1

2 otherwise.
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Lemma 6.4.5. Let Γ ∈ BH1 (F ) and (S, f) be an cyclic fatgraph map with a cutting vector v ∈ VΓ.

Then χ(S) = χ(v).

Proof. A cyclic fatgraph is homotopy equivalent to a graph G whose vertices are polygon pieces,

rectangles, and group polygons, and where two vertices are joined by an edge exactly when the

corresponding pieces are glued along an interface or central edge. We have

χ(G) =
∑
w

1− |w|
2
,

where the sum is taken over all vertices w ∈ G. Observe that for the rectangles and polygon pieces,

as before, χ applied to that basis vector computes the appropriate expression 1− |w|/2. Note that

just from the group teeth recorded in v, we do not know how many or what types of group polygons

appear in the cyclic fatgraph S. However, we can still compute the expression
∑
w(1−|w|/2), where

the sum is taken over all group polygons assembled in any way from the group teeth. For each

group polygon, we know how many group teeth it contains, so we know how many group polygons

there must be, and we know, by observing how many dummy interface edges there are, how many

of the interface sides are actually connected. Therefore, we know the total valence of all the group

polygons. This computation is exactly carried out by the linear functional χ defined above.

Next, the homology linear functionals. Write Γ ∈ BH1 (G) as the formal sum of words

Γ = w0 + · · ·+ wk−1.

For each 0 ≤ i < k, we define a linear function Ni which is zero on polygon pieces. On the rectangle

[x, y], Ni is 1 if x or y is the first letter of wi and 0 otherwise. On a group tooth gt(y, z, i, x), Ni is 1

or 0 depending on whether or not y is the first letter of wi. Lemma 6.2.2 holds with the same proof;

we record it here. Recall that possible punctures (boundary components with degree zero) do not

affect this computation.

Lemma 6.4.6. Let Γ be as above and γi be a loop in a K(G, 1) representing the word wi. Let

〈[γi]〉 denote the span of the vector [γi] in BH1 (G). Let (S, f) be an admissible cyclic fatgraph, and

let v ∈ VΓ be any cutting vector. There is an induced map ∂f∗,i : H1(∂S) → 〈[γi]〉 ∼= R, and

Ni(v)[γi] = ∂f∗,i([∂S]).

We are now ready to construct the linear programming problem. Let Γ = w0 + · · · + wk−1 ∈

BH1 (G), and define PΓ ⊆ VΓ to be the set of vectors v such that

1. v is nonnegative.

2. I(x,y)(v) = 0 for all x, y letters in Γ in the same free factor of G.
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3. C(x,y)(v) = 0 for all x, y letters in Γ.

4. Ti,y,x(v) = 0 for all x, y letters in the same free factor j, and 0 ≤ i ≤ oj − 1.

5. Ni(v) = 1 for 0 ≤ i < k.

We call PΓ the admissible polyhedron. Note that PΓ is, in fact, a polyhedron.

By combining Lemmas 6.4.4 and the same proofs as Lemmas 6.2.3 and 6.2.4, we get the following

analogous statements.

Lemma 6.4.7. Let (S, f) be a cyclic fatgraph bounding Γ. For any cutting vector v for (S, f), there

is some scalar k ∈ Q so that kv ∈ PΓ. Further,

−χ(kv)

2
=
−χ(S)

2n(S, f)
.

Lemma 6.4.8. Let Γ ∈ BH1 (G) and v ∈ PΓ (not necessarily integral). Then there exists a scalar

k ∈ Q and (possibly many) cyclic fatgraphs (S, f) bounding Γ such that kv is a cutting vector for

(S, f). Furthermore,
−χ(v)

2
=
−χ(S)

2n(S, f)
.

6.5 The complete scylla algorithm

Proposition 6.5.1. Let Γ ∈ BH1 (G). Then

scl(Γ) = inf
v∈PΓ

−χ(v)

2
.

Proof. Given any admissible surface (S, f), we may apply Lemma 6.4.2 followed by Lemma 6.4.7 to

obtain some vector v ∈ PΓ so that −χ(v)/2 ≤ −χ(S)/2n(S, f). Thus,

inf
v∈PΓ

−χ(v)

2
≤ inf

(S,f)

−χ(S)

2n(S, f)
.

The reverse inequality is immediately implied by Lemma 6.4.8, so we have

inf
v∈PΓ

−χ(v)

2
= inf

(S,f)

−χ(S)

2n(S, f)
= scl(Γ).
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6.6 Complexity and comparison with scallop

The complete scylla algorithm computes scl(Γ) in Z∗k ∗Z/o1Z ∗ · · ·Z/omZ with a linear program-

ming problem with O((K + 1)|Γ|3) columns and O((K + 1)|Γ|2) rows, where K =
∑m
i=1 oi. This

follows from simply observing that there are fewer than K|Γ|3 labeled group teeth, fewer than |Γ|3

polygon pieces, and fewer than (K + 1)|Γ|2 constraints. The 1 is added so the statement remains

true if K = 0.

The scallop algorithm computes scl (in free groups) with a linear program with O(|Γ|2r) columns

and O(|Γ|2) rows. This is non-rigorous (it is rigorous for alternating words), but quite accurate in

general; on moderately sized chains of length up through 30, scallop was found to have a success

rate of about 97%. A slight modification to the scallop algorithm in rank 2, which we will call

m5, makes the number of columns O(|Γ|5) and makes the algorithm far more accurate. Completely

rigorous scallop has O((3|Γ|)2r) columns. For small rank, especially rank 2, the complexity for

scallop is competitive with scylla. We provide the following chart, which indicates the algorithm

which generally performs better with reasonably sized chains under reasonable conditions.

scallop scylla

rank 2 (nonrigorous) *

rank 2 (m5 nonrigorous) *

rank 2 rigorous *

higher rank *

finite free factors basically N/A *

It is interesting to note that if we fix word length and increase the rank, the running time of scylla

actually improves. This is because it has far fewer rectangles to consider.

Let us now do a more detailed study. It is not difficult to see that in a random word v of length

n in a rank r free group, we expect the following (we have disregarded some lower-order terms):

scallop scylla

Interface edges (and rectangles) n2

4r
n2

2r

Central edges n2

2

Polygons n2

(2r)2(2r−1)

(
n
2r

)2r−2 n3

2r + n3

(2r)2 + n3

(2r)2(2r−1)

Nonzeros per polygon 2r 3

Let us compare problem sizes by comparing the total number of matrix entries (other reasonable

measures include number of nonzero entries and a weighted product of the rows and columns). For

ranks 3 and higher, scylla quickly produces a smaller problem: in rank 3, the problem becomes

smaller when n > 72. However, in rank 2, we must wait until n > 1472. Of course it is slightly
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unfair to compare scallop and scylla since scylla is rigorous, and we can mimic the behavior of

scallop by considering only polygon pieces with a single central edge. This reduces the number of

polygon pieces that scylla must consider, and causes scylla to generate a smaller (non-rigorous)

linear program when n > 320.
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