
Three Essays on Microeconomic Theory

Thesis by

SangMok Lee

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended May 19, 2012)



ii

c© 2012

SangMok Lee

All Rights Reserved



iii

To my family, advisors, and friends.



iv

Abstract

This thesis considers three issues in microeconomic theory — two-sided matching, strategic

voting, and revealed preferences.

In the first chapter I discuss the strategic manipulation of stable matching mechanisms

commonly used in two-sided matching markets. Stable matching mechanisms are very

successful in practice, despite theoretical concerns that they are manipulable by participants.

The key finding is that most agents in large markets are close to being indifferent among

partners in all stable matchings. It is known that the utility gain by manipulating a stable

matching mechanism is bounded by the difference between utilities from the best and the

worst stable matching partners. Thus, the main finding implies that the proportion of agents

who may obtain a significant utility gain from manipulation vanishes in large markets. This

result reconciles the success of stable mechanisms in practice with the theoretical concerns

about strategic manipulation. Methodologically, I introduce techniques from the theory of

random bipartite graphs for the analysis of large matching markets.

In the second chapter I study the criminal court process, focusing on plea bargaining.

Plea bargains screen the types of defendants, guilty or innocent, who go to jury trial,

which affects the jurors’ voting decision and, in turn, the performance of the entire criminal

court. The equilibrium jurors’ voting behavior in the case of plea bargaining resembles

the equilibrium behavior in the classical jury model in the absence of plea bargaining. By

optimizing a plea bargain offer, a prosecutor, however, may induce jurors to act as if they

echo the prosecutor’s preferences against convicting innocent defendants and acquitting

guilty defendants. With reference to Feddersen and Pesendorfer (1998), I study different

voting rules in the trial stage and their consequences in the entire court process. Compared

to general super-majority rules, we find that a court using the unanimity rule delivers more
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expected punishment to innocent defendants and less punishment to guilty defendants.

In the third chapter I study collective choices from the revealed preference theory

viewpoint. For every product set of individual actions, joint choices are called Nash-

rationalizable if there exists a preference relation for each player such that the selected joint

actions are Nash equilibria of the corresponding game. I characterize Nash-rationalizable

joint choice behavior by zero-sum games, or games of conflicting interests. If the joint

choice behavior forms a product subset, the behavior is called interchangeable. I prove that

interchangeability is the only additional empirical condition which distinguishes zero-sum

games from general noncooperative games.
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Chapter 1

Incentive Compatibility of Large
Centralized Matching Markets

1.1 Introduction

1.1.1 Overview

In this paper, we study the most popular class of algorithms, called stable matching mech-

anisms, used in centralized matching markets, such as the National Resident Matching

Program (NRMP) and School Choice Programs in NYC and Boston. A matching is re-

garded as stable if no agent is matched with an unacceptable partner, and there is no

pair of agents on opposite sides of the market who prefer each other to their current part-

ners. A stable matching mechanism takes preference reports by participants and produces

a stable matching with respect to the submitted preferences. We ask how stable matching

mechanisms remain so successful, despite the fact that the mechanisms are easily manipula-

ble by the participants through misrepresenting their preferences. In particular, we analyze

whether large markets, i.e. ones consisting of a large number of participants, would mitigate

incentives to manipulate a stable matching mechanism.

Two-sided matching markets are markets with two kinds of agents, in which agents of

one kind match with agents of the other kind. Examples of such markets include firms and

workers in professional labor markets (Roth and Peranson, 1999), schools and students in

school choice programs (Abdulkadiroglu and Sönmez, 2003), men and women in the mar-

riage market or dating sites (Choo and Siow, 2006; Hitsch, Hortaçsu, and Ariely, 2010),



2

birth mothers and potential adoptive parents in the market for child adoption (Bernal,

Hu, Moriguchi, and Nagypal, 2007; Baccara, Collard-Wexler, Felli, and Yariv, 2010), and

cadets and branches in the military (Sönmez and Switzer, 2011). Market designers seek-

ing to achieve desirable outcomes to these matching markets have introduced centralized

clearinghouses.

In market design, the concept of “stability” has been considered of central importance.

In practice, successful mechanisms often implement a stable matching with respect to sub-

mitted preferences (Roth and Xing, 1994; Roth, 2002). The best-known market design

examples, such as the NRMP and School Choice Programs in NYC and Boston, also use

a particular stable matching mechanism, called the doctor-proposing or student-proposing

Gale-Shapley algorithm.1 Table 1.1 below lists whether each clearinghouse produces a sta-

ble matching with respect to submitted preferences, and whether these clearinghouses are

still in use or no longer operating. With few exceptions, stable matching mechanisms have

been successful for the most part whereas unstable mechanisms have mostly failed.2

Still in use No longer in use

Stable

The NRMP: over 40 specialty markets and
submarkets for first year postgraduate posi-
tions, and 15 for second year positions
Specialty matching services: over 30 sub-
specialty markets for advanced medical resi-
dencies and fellowships
School choice programs: NYC, Boston
Canadian lawyers: multiple regions
British regional medical markets:
Edinburgh (≥‘69), Cardiff
Dental residencies: 3 specialties
Other healthcare markets:
Osteopaths (≥‘94), Pharmacists, Clinical
psychologists (≥‘99)

Dental residencies:
Periodontists(<‘97), Prosthodontists (<‘00)
Canadian lawyers:
British Columbia(<‘96)

Unstable
British regional medical markets:
Cambridge, London Hospital

British regional medical markets:
Birmingham, Edinburgh (<‘67), Newcastle,
Sheffield
Other healthcare markets:
Osteopaths (<‘94)

Table 1.1: Stable and unstable (centralized) mechanisms.

1 The algorithm is customized for each application. For details of the actual algorithms applied, see
Roth and Peranson (1999); Abdulkadiroglu, Pathak, and Roth (2009); Abdulkadiroglu, Pathak, Roth, and
Sönmez (2006).

2 Table 1.1 is reorganized from tables in Roth (2002) and McKinney, Niederle, and Roth (2003). The
clearinghouse for the gastroenterology fellowship market is a rare case in which a stable matching mechanism
started to fail in 1996, was abandoned in 2000, and then was reinstated in 2006 (Niederle and Roth, 2005;
Roth, 2008).
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From a theoretical perspective, however, stable matching mechanisms have a significant

shortcoming. While the mechanisms produce stable matchings by assuming that all partic-

ipants reveal their true preferences, in fact no stable matching mechanism is strategy-proof

(Roth, 1982).3 Participants may achieve a better matching by misrepresenting their pref-

erences, either by changing the order of the preference lists or by announcing that some

acceptable agents are unacceptable. Even the NRMP and School Choice Programs in NYC

and Boston, while widely acknowledged as a model of successful matching programs, can-

not rule out such incentives for strategic misrepresentation. Indeed, the possibility of such

manipulation is mostly unavoidable. Whenever there is more than one stable matching, at

least one agent can profitably misrepresent her preferences (Roth and Sotomayor, 1990),

and the conditions under which a preference profile contains a unique stable matching seem

to be quite restrictive (Eeckhout, 2000; Clark, 2006).4 Thus, markets are likely to have

agents with an incentive to manipulate a stable matching mechanism. In addition, Pittel

(1989) shows that the number of stable matchings tends to increase as the number of partici-

pants becomes large. Accordingly, when market designers deal with large markets, concerns

regarding strategic manipulation are heightened. As stable matching mechanisms are not

incentive compatible, the mechanisms may be manipulated by participants, thereby not

implementing the intended matchings. Moreover, each participant’s decision may become

hard to make since she needs to best respond to other agents’ strategic manipulations.

We consider matching markets that each firm hires one worker, a model which is known

as a one-to-one matching. We measure incentives to manipulate a stable matching mech-

anism by assuming that each firm-worker pair receives utilities, one for the firm and the

other for the worker, which in turn determine ordinal preferences. In order to study the

likelihood of an agent having a significant incentive to manipulate, we assume that utilities

are randomly drawn from some underlying distributions. The key finding of this paper is

that the proportion of participants who can potentially achieve a significant utility gain from

manipulation vanishes as the market becomes large. This result holds both when each agent

3 In fact, strategy-proofness is incompatible not only with stability but even with weaker conditions of
Pareto efficiency and individual rationality (Alcalde and Barberà, 1994; Sönmez, 1999).

4 It is an open question to characterize the complete set of preference profiles containing a unique stable
matching.
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knows the preferences of all other agents (complete information), and when an agent may

not know the preferences of other agents (incomplete information). Given the tangible and

intangible costs of strategic behavior in real life, we believe that this result may reconcile the

success of stable matching mechanisms with the theoretical concerns about manipulability.

In addition, based on this paper’s finding, market designers may more confidently advise

participants to submit their true preferences.

1.1.2 A Motivating Example

To understand the logic behind strategic manipulation, consider a simple labor market with

three firms and three workers. We illustrate how, in such a situation, an agent can achieve

a better partner by misrepresenting her preferences. In addition, we show that the best

achievable partner from manipulation must be a partner in a stable matching under her

true preferences.

Table 1.2 lists preferences of firms over workers, and of workers over firms which are

known to all participants. For instance, firm 1 most prefers worker 3, followed by worker 1

and worker 2. Similarly, worker 1 most prefers firm 2, followed by firm 3 and firm 1. Under

these preferences, there are two stable matchings: in one stable matching (marked by 〈·〉),

f1, f2, and f3 are matched with w1, w2, and w3, respectively; in the second stable matching

(marked by [·]), f1, f2, and f3 are matched with w2, w1, and w3, respectively.

f1 : w3 � 〈w1〉 � [w2]

f2 : 〈w2〉 � [w1] � w3

f3 : 〈[w3]〉 � w1 � w2

,

w1 : [f2] � f3 � 〈f1〉

w2 : [f1] � 〈f2〉 � f3

w3 : f2 � 〈[f3]〉 � f1

Table 1.2: An example of a two-sided matching market with 3 firms and 3 workers.

Suppose that all agents submit their true preferences, and a stable matching mechanism

produces the second stable matching marked by [·]. In that case, suppose firm 1 misrepresent

her preferences and announces that workers 3 and 1 are acceptable, but not worker 2. For

the submitted preferences, there is a unique stable matching marked by 〈·〉. The stable
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matching mechanism, which produces a stable matching for submitted preferences, will

produce the matching marked by 〈·〉. Ultimately, firm 1 is better off because firm 1 is

matched with worker 1 rather than worker 2.

However, whichever preference list firm 1 submits, the firm will not be matched with

worker 3. The pair (f3, w3) would otherwise block the matching. For instance, if f1 declares

that only w3 is acceptable, then the only stable matching matches f2 with w2, and f3 with

w3, and firm 1 will remain unmatched. More broadly, whenever a stable matching mech-

anism is applied, participants cannot be matched with a partner who is strictly preferred

to all stable matching partners with respect to the initial preferences (Demange, Gale, and

Sotomayor, 1987). Since participants are guaranteed to be matched with one of their stable

matching partners, the gain from manipulation is bounded by the difference between the

most and the least preferred stable matching partners. Based on the above observation, we

mainly focus on the difference between the most and the least preferred stable matching

partners.

1.1.3 Outline of the Paper

Prior to describing the model in detail, we briefly discuss the outline of the model, our main

results, and the key idea behind the proof.

We consider a sequence of one-to-one matching markets, each of which has n firms

and n workers. Preferences of firms over workers, or of workers over firms are generated

by utilities, which are randomly drawn from some underlying distributions on R+.5 We

formulate utilities as the weighted sum of a common-value component and an independent

private-value component. That is, when a firm f is matched with a worker w, the firm

receives

Uf,w = λUow + (1− λ) ζf,w (0 ≤ λ ≤ 1),

where Uow is the intrinsic value of w, which is common to all firms, and ζf,w is w’s value as

independently evaluated by firm f . In other words, any firm that is matched with a worker

w receives the same common-value of the worker w, but receives distinct private-value of

5 The only restrictions on distributions are bounded supports and some continuity conditions.
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the worker w. We similarly define the utilities of workers.

The common-value component introduces a commonality of preferences, which is preva-

lent in real matching markets. In the entry-level labor market for doctors, for instance,

the US News and World Report’s annual rankings are often referred to as a guideline to

the best hospitals. We also consider the pure private-value model (λ = 0) for theoretical

reasons. In matching theory, commonality drives the uniqueness of stable matchings (Eeck-

hout, 2000; Clark, 2006), a situation in which no agent has an incentive to manipulate a

stable matching mechanism (Roth and Sotomayor, 1990). If a preference profile has several

stable matchings, commonality of preferences leads to smaller differences in utilities from

stable matchings (Samet, 2011), so agents have less of an incentive to manipulate a stable

matching mechanism. By including the pure private-value case in our model, we show that

commonality may be beneficial, but is not necessary for incentive compatibility of stable

matching mechanisms.

The main finding of the paper is that while agents in a large market typically have

multiple stable partners, most agents are close to being indifferent among the all stable

matching partners (Theorem 1).6 We observed in the motivating example that when a

stable matching mechanism is applied, the best an agent can achieve (by misrepresenting

her preferences) is matching with her best stable matching partner with regard to the true

preferences (Demange, Gale, and Sotomayor, 1987). As such, our main finding implies

that when a stable matching mechanism is applied and all other agents reveal their true

preferences, the expected proportion of agents who have an incentive to manipulate the

mechanism vanishes as the market becomes large.

Furthermore, we identify an ε-Nash equilibrium in which most participants report their

true preferences.7 In a large market, a small proportion of agents may still have large in-

centives to manipulate a stable matching mechanism. Under the identified equilibrium, we

6 The main theorem seems quite consistent with observations from real market applications. Pathak and
Sönmez (2008) collect the data of students’ preferences over schools in the new Boston school choice program,
and show that the real market tends to have a very small number of stable matchings. (The preference data
is reliable as truthfully revealing their preferences is a dominant strategy for students.) Both suggest that
large matching markets tend to have small cores. In our theory of one-to-one matchings, we find small
differences in utilities from stable matchings, whereas in the data from a many-to-one matching market,
there is a small number of stable matchings.

7Under an ε-Nash equilibrium, agents are approximately best responding to other agents’ strategies such
that no one can gain more than ε by switching to an alternative strategy.
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let those agents with significant incentives to manipulate do misrepresent their preferences.

Nevertheless, the rest of participants still have no incentive to respond to such manipula-

tions. More precisely, we show that for any ε > 0 with high probability a large market has

an ε-Nash equilibrium in which most participants reveal their true preferences (Corollary 2).

From a methodological standpoint, our paper is the first to introduce techniques from

random bipartite graph theory to matching models. To prove the main theorem, we basically

need to count the number of firms and workers satisfying certain conditions. The theory

of random bipartite graphs provides techniques to count the likely numbers of firms and

workers satisfying the specified conditions. More precisely, we draw a graph with a set of

firms and workers whose common-values are above certain levels. We join each firm-worker

pair by an edge if one of their independent private-values is significantly lower than the

upper bound of the support. It turns out that every firm-worker pair where both the firm

and the worker fail to achieve certain threshold levels of utility in a stable matching must

be joined by an edge. Their private-values would otherwise both be so high that they would

prefer each other to their current partners, and thus block the stable matching. For each

realized graph, we consider the bi-partitioned subset of nodes, i.e. firms and workers, such

that every pair of nodes, one from each partition, is joined by an edge. It is known that the

possibility of having a relatively large such subset of nodes ultimately becomes infinitesimal

as the initial set of nodes becomes large (Dawande, Keskinocak, Swaminathan, and Tayur,

2001). That is, in terms of the matching model, the set of firms and workers, whose common-

values are high but who fail to achieve high levels of utility, will remain relatively small as

the market becomes large.

This paper mainly focuses on the case of complete information, in which all participants

are aware of all other agents’ preferences. Nevertheless, we can extrapolate its findings

to a market with incomplete information, in which each agent is partially informed about

other agents’ preferences. Various setups are conceivable: an agent may know (i) only

her own utilities from matching with agents on the other side; (ii) her own utilities and

common-values from matching with agents on the other side; (iii) her own utilities, common-

values from matching with agents on the other side, and her own common-value to agents
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matching with her; or (iv) her own utilities and all agents’ common-values. Regardless of the

information structure, the key finding from the complete information case still holds with

incomplete information. That is, most agents are ex-ante close to being indifferent among

all stable matchings in a large market (Theorem 4). This is because with high probability

agents are close to being indifferent among realized stable matching partners, which is this

study’s key finding in the context of complete information.

However, we do not find an equilibrium corresponding to the ε-Nash equilibrium under

complete information. If some agents manipulate a stable matching mechanism based on

the expected utility gain from manipulation, they may become worse off afterwards. This

may, in turn, expand the differences between utilities generated by stable matchings to other

agents. Consequently, other agents may misrepresent their preferences as a best response

to the manipulation.

1.1.4 Related Literature

Strategic manipulability has been a major concern in market design. Hence, a number of

studies have addressed the incentives to manipulate a stable matching mechanism (Roth and

Peranson, 1999; Immorlica and Mahdian, 2005; Kojima and Pathak, 2009). These studies

consider a particular stable matching mechanism, the worker-proposing Gale-Shapley algo-

rithm, which implements a stable matching favorable to workers. As truthfully revealing

their preferences is a dominant strategy for workers in this mechanism (Roth, 1982; Dubins

and Freedman, 1981), the papers focus on firms’ incentives to misrepresent their preferences.

Unlike the current paper, these studies assume that firms will manipulate a mechanism

regardless of how much benefit the firms can obtain by so doing. In particular, a firm has

no incentive to misrepresent its preferences if and only if it has a unique stable matching

partner (Roth and Sotomayor, 1990). Thus, the primary goal is to find conditions on a

preference profile in which most firms have a unique stable matching partner. As Roth

and Peranson (1999) also point out, a crucial assumption is that agents on one side (say

workers) consider only up to a fixed number of agents on the other side acceptable, even

when the market size has become large. Under this assumption, Roth and Peranson, based
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on a computational analysis, show that the proportion of firms who have more than one

stable matching partner converges to zero as the market becomes large. This convergence

is theoretically proven by Immorlica and Mahdian and extended to the case of many-to-one

matchings by Kojima and Pathak.

The main advantage of our approach is that we obtain non-manipulability of stable

matching mechanisms as a pure property of market size, without resorting to the assumption

of limited acceptability. In fact, the assumption of limited acceptability may lead to large

market models that do not match basic features of real applications. Even with a weak

commonality of preferences, the proportion of firms who are accepted by at least some

workers may become small as the market becomes large. In this case, most firms do have a

unique stable matching partner, but quite often the unique stable matching partner is only

the firm itself: i.e. a large proportion of agents remain unmatched.

Figure 1.1 presents this phenomenon with simulations in which each worker consid-

ers only up to 30 most preferred firms acceptable. The utility of a firm is defined as

Uf,w = λUow + (1 − λ) ζf,w, and the utility of a worker is similarly defined. The value of

each component is drawn from the uniform distribution over [0, 1]. Each graph depicts the

proportion of firms (or workers) unmatched in stable matchings averaged over 10 repeti-

tions.8 Even with modest levels of commonality of preferences, the proportion of unmatched

agents in stable matchings increases as the market becomes large. It is worth noting that

these simulations are based on preferences generated, not by the previous studies’ model,

but by our own. Thus, the simulations do not directly represent features of the previous

studies. However, we observe the similar effects of the limited acceptability assumption in

simulations based on the previous studies’ model. We provide additional simulation results

in Appendix A.5.

Another strand of literature on large matching markets considers a market where a finite

number of firms are matched with a continuum of workers (Azevedo and Leshno, 2011). It

is shown that generically each market has a unique stable matching, to which the set of

stable matchings in markets with large discrete workers converges. Based on this model,

8 Given a preference profile, the set of unmatched agents is the same for all stable matchings (McVitie
and Wilson, 1970).
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Figure 1.1: Proportion of agents unmatched in stable matchings.

Azevedo (2010) studies firms’ incentives to manipulate capacities to hire workers. The paper

also compares welfare effects between situations where each firm pays its employees equally

(uniform wages) and those where each firm may pay different wages to different workers

(personalized wages). While previous studies with fixed capacities suggest that a uniform

wage may induce inefficient matching and compress workers’ wages (Bulow and Levin, 2006;

Crawford, 2008), if firms can manipulate their capacities, the uniform wage may produce

higher welfare as they cause less capacity reduction.

The large market approach is not limited to the standard matching model. Ashlagi,

Braverman, and Hassidim (2011) and Kojima, Pathak, and Roth (2010), for instance, de-

velop models of large matching markets with couples. When couples are present, notwith-

standing the concerns about strategic manipulation, a market does not necessarily have a

stable matching (Roth, 1984). These studies show that the probability that a market with

couples contains a stable matching converges to one as the market becomes large. Moreover,

when a mechanism produces a stable matching with high probability, it is an approximate

equilibrium for all participants to submit their true preferences. The results are based on

the condition that the number of couples grows slower than the market size, with some

additional regularity conditions.9

9 Ashlagi, Braverman, and Hassidim (2011) considers a market where the number of positions offered
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In the assignment problem of allocating a set of indivisible objects to agents, Kojima

and Manea (2010) study incentives in the probabilistic serial mechanism (Bogomolnaia

and Moulin, 2001). The probabilistic serial mechanism is proposed as a mechanism that

improves the ex-ante efficiency of the random priority mechanism: All agents have higher

chances of obtaining more preferred objects by using the probabilistic serial mechanism.

However, while the random priority mechanism is strategy-proof, the probabilistic serial

mechanism is not. Kojima and Manea show that for a fixed set of object types and an

agent with a given utility function, if there is a sufficiently large number of copies of each

object type, then reporting true preferences is a weakly dominant strategy for the agent.10

The rest of this paper is organized as follows. In Section 1.2, we introduce our model

– a sequence of matching markets with random utilities. In Section 1.3, we state the main

theorem informally and then formally, and find an equilibrium behavior which may reconcile

the conflicting features of stable matching mechanisms. In Section 1.4, we illustrate the

intuition of the proof using a random bipartite graph model. In Section 1.5, we study a

market with incomplete information. The conclusion of the paper is provided in Section 1.6.

All detailed proofs and simulation results are relegated to the appendix, which also includes

definitions and related theorems of asymptotic statistics. Lastly, we extend the model to

various directions in Appendix A.6.

1.2 Model

The model is based on the standard one-to-one matching model. We introduce latent

utilities, which in turn generate ordinal preferences.

by firms exceeds the number of workers. Kojima, Pathak, and Roth (2010) inherits the assumption from
Kojima and Pathak (2009) that agents on one side consider only up to a fixed number of agents on the other
side acceptable.

10 Che and Kojima (2010) show that the random assignments in the two mechanisms converge to each
other as the number of copies of each object type goes to infinity. More generally, Liu and Pycia (2011)
show that, including the two mechanisms, all sensible and asymptotically symmetric, strategy-proof, and
ordinal efficient allocation mechanisms coincide asymptotically.
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1.2.1 Standard Two-sided Matching Model (Roth and Sotomayor, 1990)

There are n firms and an equal number of workers. We denote the set of firms by F and

the set of workers by W . Each firm has a strict preference list �f such as

�f= w1, w2, w3, f, . . . , w4.

This preference list indicates that w1 is firm f ’s first choice, w2 is the second choice, and

that w3 is the least preferred worker that the firm still wants to hire. We also write w �f w′

to mean that f prefers w to w′. We call a worker w acceptable to f if w �f f , otherwise

we call the worker unacceptable. We define �w similarly for each w ∈ W , and call

�:= ((�f )f∈F , (�w)w∈W ) a preference profile.

A matching µ is a function from the set F ∪W onto itself such that (i) µ2(x) = x,

(ii) if µ(f) 6= f then µ(f) ∈ W , and (iii) if µ(w) 6= w then µ(w) ∈ F . We say a matching

µ is individually rational if each firm or worker is matched to an acceptable partner, or

otherwise remains unmatched. For a given matching µ, a pair (f, w) is called a blocking

pair if w �f µ(f) and f �w µ(w). We say a matching is stable if it is individually rational

and has no blocking pair.

For two stable matchings µ and µ′, we write µ �i µ′ if an agent i weakly prefers µ to

µ′: i.e. µ(i) �i µ′(i) or µ(i) = µ′(i). We also write µ �F µ′ if every firm weakly prefers

µ to µ′: i.e µ(f) �f µ′(f) for every f ∈ F . Similarly, we write µ �W µ′ if every worker

weakly prefers µ to µ′: i.e. µ(w) �w µ′(w) for every w ∈ W . A stable matching µF is

firm-optimal if every firm weakly prefers it to any other stable matching µ: i.e. µF �F µ.

Similarly, a stable matching µW is worker-optimal if every worker weakly prefers it to

any other stable matching µ: i.e. µW �W µ. It is known that every market instance has

a firm-optimal stable matching µF and a worker-optimal stable matching µW (Gale and

Shapley, 1962): i.e. for any stable matching µ, we have µF �F µ and µW �W µ. Moreover

if µ and µ′ are both stable matchings, then µ �F µ′ if and only if µ′ �W µ (Knuth, 1976).

Thus for any stable matching µ, it must be the case that µ �F µW and µ �W µF .

With some abuse of notation, we let µ denote a function �7−→ µ(�) from the set of
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all preference profiles to the set of all matchings. We call the function µ a matching

mechanism, and say that a mechanism µ is stable if µ(�) is a stable matching with

respect to preference profile �. We also let µF and µW denote firm-optimal and worker-

optimal stable matching mechanisms. A matching mechanism induces a game in which each

agent i ∈ F ∪W states her preference list �i. If for all �i and �−i,

µ(�∗i ,�−i) �i µ(�i,�−i),

then we call �∗i a dominant strategy for the agent i. A mechanism µ is called strategy-

proof if it is a dominant strategy for every agent to state her true preference list.

1.2.2 Random Utilities

In order to measure incentives to manipulate a stable matching mechanism, we assume that

preferences are induced by underlying utilities. Moreover, in order to measure likely incen-

tives, we assume that the utilities are drawn from some underlying probability distributions.

We represent utilities by n × n random matrices U = [Uf,w] and V = [Vf,w]. When a

firm f and a worker w match with one another, the firm f receives utility Uf,w and the

worker w receives utility Vf,w. We let u and v denote realized matrices of U and V . For

each pair (f, w), utilities are defined as

Uf,w = λ Uow + (1− λ) ζf,w and

Vf,w = λ V o
f + (1− λ) ηf,w (0 ≤ λ ≤ 1).

We call Uow and V o
f common-values, and ζf,w and ηf,w independent private-values.

Common-values are defined as random vectors

Uo := 〈Uow〉w∈W and V o := 〈V o
f 〉f∈F .

Each Uow and V o
f are drawn from distributions with positive density functions and with
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bounded supports in R+. Independent private-values are defined as n×n random matrices

ζ := [ζf,w] and η := [ηf,w].

Each ζf,w and ηf,w are randomly drawn from continuous distributions with bounded sup-

ports in R+.11 We assume that the utility of remaining unmatched is equal to 0.12

A random market is defined as a tuple 〈F,W,U, V 〉, and a market instance is denoted by

〈F,W, u, v〉. Each firm f receives distinct utilities from different workers with probability

1. Thus for each 〈F,W, u, v〉, we can derive a strict preference list �f as

�f= w,w′, . . . , w′′

if and only if

uf,w > uf,w′ > · · · > uf,w′′ .

We study properties of stable matchings in a sequence of random markets 〈Fn,Wn, Un, Vn〉∞n=1.

The index n will be omitted whenever to do so does not lead to confusion.

The model includes both cases of a commonality of preferences (λ > 0) and pure private-

values (λ = 0). The common-values introduce a commonality of preferences among firms

over workers, and among workers over firms. When λ > 0, firms with high level of common-

values tend to be ranked higher by workers, and vice versa. If λ = 0, all utilities are i.i.d,

so a firm’s ordering of workers are equally likely to be any permutation from the set of all

permutations of n workers. Similarly, a worker’s ordering of firms are equally likely to be

any permutation from the set of all permutations of n firms.

In practice, commonality of preferences is prevalent. In the NRMP, some hospitals are

considered prestigious and some doctors are considered very well-qualified. The common-

value component provides a way of taking into account such commonality of preferences,

while retaining the tractability of the model.

11 In general (λ > 0), we can relax this assumption so that each pair of ζf,w and ηf,w is jointly drawn from
a continuous joint distribution with a bounded support in R2

+. In this setup, we can introduce a correlation
between firms’ preferences over workers and workers’ preferences over firms.

12 In terms of preferences induced by utilities, this assumption implies that all workers are acceptable to
firms, and all firms are acceptable to workers.
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Although the pure private-value case (λ = 0) hardly represents any real application,

it is theoretically valuable to include it in our model. Commonality drives the uniqueness

of stable matchings (Eeckhout, 2000; Clark, 2006), a condition in which no agent has an

incentive to misrepresent her preferences in a stable matching mechanism (Roth and So-

tomayor, 1990). Samet (2011) also proposes commonality as a source establishing a small

core: the small difference between utilities from the stable matchings favorable to firms, and

to workers. By including the pure private-value case in our model, we can highlight that

non-manipulability of stable matching mechanisms is a property solely derived from market

size. Commonality may contribute to, but is not necessary for, incentive compatibility of

stable matching mechanisms.13

1.3 Main Results

We informally state the main theorem, and then restate it with formal expressions. Later,

we find an equilibrium behavior of a game induced by a stable matching mechanism in

which most agents reveal their true preferences.

1.3.1 Stable Matchings in Large Markets

We first show that, while agents in a large market typically have multiple stable matching

partners, most agents are close to being indifferent among the stable matching partners.

Theorem For every ε > 0, the expected proportion of firms (and workers) who have less

than ε differences between utilities from µF and µW , converges to one as the market becomes

large.

Corollary For any positive cost of misrepresenting preferences, if other agents truthfully

reveal their preferences, the expected proportion of agents who have no incentive to manip-

ulate a stable matching mechanism converges to one as the market becomes large.

13 When preferences have a strong commonality, a stable matching mechanism may have a higher chance
to fail by unraveling instead of strategic preference misrepresentation (Halaburda, 2010). In any case, our
model includes all degrees of commonality of preferences.
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It has been known that no stable matching mechanism is strategy-proof (Roth, 1982).

For instance, when the worker-optimal matching mechanism (e.g. worker-proposing Gale-

Shapley algorithm) is applied, although it is a dominant strategy for every worker to state

her true preference list (Roth, 1982; Dubins and Freedman, 1981), there might be a firm

which can become better off by misrepresenting its preference list. Noting that a matching

mechanism is defined over all possible preference profiles, we may expect that a stable

matching mechanism is not manipulable in most cases of preference profiles. Unfortunately,

though, it turns out that whenever there is more than one stable matching, at least one

agent can profitably misrepresent her preferences (Roth and Sotomayor, 1990), and the

condition of a preference profile containing a unique stable matching seems to be quite

restrictive (Eeckhout, 2000; Clark, 2006).

However, the gain by manipulation is bounded even when agents form a coalition and

coordinate the members’ strategic behavior. Not all firms in the coalition will prefer the

new matching outcome to the firm-optimal stable matching with respect to the true pref-

erences, and not all workers in the coalition will prefer the new matching outcome to the

worker-optimal stable matching with respect to the true preferences (Demange, Gale, and

Sotomayor, 1987). Formally, let � be a true preference profile, and let �′ differ from �

in that some coalition S of firms and workers misstate their preferences. Then, there is

no matching, stable under �′, which is strictly preferred to every stable matching under

� by all members of S. If a coalition consists of a single firm, then the best the firm can

achieve is matching with the firm-optimal stable matching partner with respect to the true

preferences. Likewise, the best a worker can achieve is matching with the worker-optimal

stable matching partner. Since every firm and worker is guaranteed to be matched with a

stable matching partner without any strategic manipulation, the gain by manipulation is

bounded by the difference between utilities from the firm-optimal and the worker-optimal

stable matching partners.

As such, the main theorem implies that agents in a large market are most likely to have

only a slight utility gain by misrepresenting their preferences, given that all other agents

reveal their true preferences. For any given cost of misrepresenting preferences, if a market
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is large, participants are most likely to find no incentive to manipulate a stable matching

mechanism.

In order to see whether a real market is large enough to mitigate incentives to manipulate

stable matching mechanisms, we simulate our model with a market size of 26,000, roughly

the same size of the NRMP in 2011.14 We generate firms’ and workers’ utilities from

common-values and independent private-values, each of which is randomly drawn from the

uniform distribution over [0, 1]. Table 1.3 presents the proportion of firms whose differences

in utilities generated by stable matchings are less than 0.05 (upper table) and 0.01 (lower

table). The results show that for reasonable degrees of commonality of preferences, the size

of the NRMP is large enough such that most agents would not have a significant incentive

to manipulate a stable matching mechanism.

λ 0.2 0.4 0.6 0.8

Result 1 97.41% 98.83% 99.39% 99.93%
Result 2 97.44% 98.79% 99.42% 99.92%
Result 3 97.43% 98.67% 99.47% 99.95%

(Differences in utilities < 0.05)

λ 0.2 0.4 0.6 0.8

Result 1 92.84% 96.64% 98.00% 99.44%
Result 2 93.04% 96.70% 98.10% 99.32%
Result 3 92.91% 96.52% 98.28% 99.48%

(Differences in utilities < 0.01)

Table 1.3: Proportions of firms with small differences in utilities (n=26,000)

Formal Statement Given a market instance 〈F,W, u, v〉 and a matching µ, we let uµ(·)

and vµ(·) denote utilities from the matching outcome: i.e. uµ(f) := uf,µ(f) and vµ(w) :=

vµ(w),w. For each f ∈ F , we define ∆(f ;u, v) as the difference between utilities from firm-

optimal and worker-optimal stable matching outcomes: i.e.

∆(f ;u, v) := uµF (f)− uµW (f).

14 In 2011, there were 30,589 active applicants and 26,158 positions offered by 4,235 programs. See
http://www.nrmp.org/data/resultsanddata2011.pdf and http://www.nrmp.org/res_match/about_res/

impact.html.

http://www.nrmp.org/data/resultsanddata2011.pdf
http://www.nrmp.org/res_match/about_res/impact.html
http://www.nrmp.org/res_match/about_res/impact.html
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Then, for every ε > 0, we have the set of firms whose utilities are within ε of one another

for all stable matchings, which is denoted by

AF (ε;u, v) := {f ∈ F | ∆(f ;u, v) < ε} .

The previous theorem is an informal statement of the following theorem. We have

similar notations and a theorem for workers, which are omitted here.

Theorem 1. For every ε > 0,

E

[∣∣AF (ε;U, V )
∣∣

n

]
→ 1, as n→∞.

1.3.2 Equilibrium Analysis

Previously, we showed that most agents have no incentive to manipulate a stable matching

mechanism as a market becomes large. However, the result requires the condition that all

other participants reveal their true preferences. This condition is problematic since a small

proportion of agents may still have large incentives to misrepresent their preferences. We

may want to derive incentive compatibility as equilibrium behavior of a game induced by a

stable matching mechanism.

In fact, the main theorem implies that with high probability a large market has a natural

equilibrium in which most agents reveal their true preferences. We first state this finding

as a corollary, and then describe appealing aspects of the equilibrium behavior and the

intuition behind the proof.

Corollary 2. For any ε, δ, θ > 0, there exists N such that with probability at least (1 − δ)

a market of size n > N has an ε-Nash equilibrium in which (1 − θ) proportion of agents

reveal their true preferences.

This corollary is based on simple equilibrium behavior. Most agents simply reveal

their true preferences. Agents misrepresenting their preferences use truncation strategies:

an agent submits a preference list of the first k (k < n) in the same order as her true

preference list. Truncations are natural strategies. Agents do not need to carefully devise
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the order of the preference list. In addition, truncation strategies are undominated, or, in

other words, have “a best response property” (Roth and Vande Vate, 1991). If a stable

matching mechanism is applied, for any given submitted preferences by other agents, an

agent always has a best response that is a truncation of her true preference list.15

For each market instance 〈F,W, u, v〉, we consider an ε-Nash equilibrium in which some

(not necessarily all) agents, who have potential gains from manipulations larger than ε,

submit truncations of their true preferences. If there exists a stable matching under the

true preferences remaining individually rational under the announced preferences, then for

all participants the difference between utilities from firm-optimal and worker-optimal stable

matchings decreases. Specifically, let � be a true preference profile and �′ differ from �

in that some coalition of firms and workers misstate their preferences using truncations. If

there exists at least one matching µ stable under � remaining individually rational under

�′, then all stable matchings for �′ are also stable under �. Thus, truncations by some

agents result in smaller differences in utilities from stable matchings for all participants.

This property follows because truncations do not create additional blocking pairs. If

a matching µ, which is stable under �, remains individually rational under �′, then µ is

indeed stable under �′ since no blocking pair has been generated by truncations. Noting

that the set of unmatched agents is the same for all stable matchings (McVitie and Wilson

(1970)), all participants are matched in stable matchings under �′.16 Then, any stable

matching µ′ with regard to �′ is also stable under �. If (f, w) is a blocking pair of µ′

with respect to �, then it would have been a blocking pair of µ′ with respect to �′, which

contradicts that µ′ is stable under �′.

For any preference profile and for any coalition of participants, there exist truncations

by members of the coalition such that at least one stable matching under true preferences

15 Furthermore, when agents do not have complete information about the preference profile, truncation
strategies require less information to manipulate a stable mechanism (Roth and Rothblum, 1999).

16 Here, we use the condition that all participants are matched in stable matchings under �. If some
agents are unmatched in stable matchings due to, for instance, unequal populations or unacceptable agents,
we need an additional condition that agents would truncate their preferences only when truncations are
strictly profitable. In particular, if an agent is unmatched in stable matchings under �, the agent will
remain unmatched when she truncates her preference list. If these unmatched agents do not truncate their
preference lists, then we obtain the same result: all stable matchings under �′ are stable under �, provided
that there exists a stable matching under � remaining individually rational under �′. The proof is easy to
derive, and thus we omit it here.
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remains individually rational, and those who truncate their preferences have no incentive to

truncate further. Then, participants who initially have smaller than ε differences in utilities

from stable matchings will have even less differences in utilities from stable matchings under

the announced preferences. Thus, these participants have no incentive to respond to others’

truncations, thereby submitting their true preferences. Lastly, Theorem 1 guarantees that

most participants are the ones revealing their true preferences.17

1.4 Intuition Behind the Proof of Theorem 1

To prove Theorem 1, we take distinct approaches for the pure common-value case (λ = 1),

the pure private-value case (λ = 0), and the general cases (0 < λ < 1).

For the pure common-value case (λ = 1), there exists a unique stable matching, so the

theorem follows immediately. A stable matching sorts firms and workers such that a firm

and a worker in the same rank will be matched with one another. Consider the firm-worker

pair with the highest common-values. The pair must be matched in a stable matching. If it

were otherwise, the firm would prefer the worker to its partner and the worker would prefer

the firm to her partner, and thus they would form a blocking pair. By sequentially applying

the same argument to pairs with the next highest common-values, we find that assortative

matching is a unique stable matching.

For the pure private-value case (λ = 0), we still derive the theorem relatively easily from

Pittel (1989). Pittel considers a model that is essentially the same as our pure private-value

model (λ = 0), and analyzes the sum of each firm’s partner’s rank number in the worker-

optimal stable matching.18 When each firm ranks workers in order of preferences (i.e. the

most preferred worker is ranked 1, the next worker is ranked 2, and so on), Pittel shows that

the sum of the rank numbers of firms’ partners in the worker-optimal stable matching is

17 We use an equivalent statement of Theorem 1. Note that |AF (ε;U, V )|/n is bounded above by 1
with probability 1. By using Theorem A.1.1 and Theorem A.1.2, we shall rewrite Theorem 1, written as
convergence in mean, as the following convergence in probability: for any ε, δ, θ > 0, there exists N such
that

P

(∣∣AF (ε;U, V )
∣∣

n
> 1− θ

)
> 1− δ, for every n > N.

18 Pittel does not consider utilities, but a model with random preference profiles. As all preference profiles
are equally likely to occur, though, the model is essentially the same as our pure private-value model (λ = 0).
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asymptotically equal to n2 log−1 n. Then, the rank number of each firm is roughly n log−1 n

on average. In turn, as we normalize the rank number by the market size n, the normalized

average rank number is roughly equal to log−1 n, converging to 0. As the private-values are

randomly drawn from distributions with bounded supports, even the worst stable matching

gives utilities asymptotically close to the upper bound. Therefore, all stable matchings yield

only slightly different utilities.

For the general cases (0 < λ < 1), however, the probability distribution over preference

profiles becomes complicated and intractable. Accordingly, we directly analyze the asymp-

totic utilities rather than referring to the corresponding preference rank numbers. Basically,

we want to count participants whose utilities from all stable matchings are slightly different

from each other. We therefore need techniques of counting for which we use the bipartite

graph theory. We interpret the set of firms and workers as a bi-partitioned set of nodes

and draw a graph based on the realized utilities. Then, since the utilities are random, the

theory of random bipartite graphs provides us with techniques to count the likely numbers

of nodes, i.e. firms and workers, meeting specified conditions. Since the theory of ran-

dom bipartite graphs has not been used before in the matching literature, we describe the

techniques in greater depth in the following subsection.

We relegate detailed proofs for the cases of λ = 0 and 0 < λ < 1 to Appendix A.2 and

Appendix A.7, respectively.

1.4.1 A Random Bipartite Graph Model

A graph G is a pair (V,E), where V is a set called nodes and E is a set of unordered

pairs (i, j) or (j, i) of i, j ∈ V called edges. The nodes i and j are called the endpoints

of (i, j). We say that a graph G = (V,E) is bipartite if its node set V can be partitioned

into two disjoint subsets V1 and V2 such that each of its edges has one endpoint in V1 and

the other in V2. A biclique of a bipartite graph G = (V1 ∪ V2, E) is a set of nodes U1 ∪ U2

such that U1 ⊂ V1, U2 ⊂ V2, and for all u1 ∈ U1 and u2 ∈ U2, (u1, u2) ∈ E. In other

words, a biclique is a complete bipartite subgraph of G. We say that a biclique is balanced

if |U1| = |U2|, and refer to a balanced biclique with the maximum number of nodes as a
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maximum balanced biclique.

Given a partitioned set V1 ∪ V2, we consider a random bipartite graph G(V1 ∪ V2, p). A

bipartite graph G = (V1 ∪ V2, E) is constructed so that each pair of nodes, one in V1 and

the other in V2, is included in E independently with probability p. We use the following

theorem in the proof.

Theorem 3 (Dawande, Keskinocak, Swaminathan, and Tayur (2001)). Consider a random

bipartite graph G(V1 ∪ V2, p), where 0 < p < 1 is a constant, |V1| = |V2| = n, and β(n) =

log n/ log 1
p . If the maximal balanced biclique of this graph has size B ×B, then

P (β(n) ≤ B ≤ 2β(n))→ 1, as n→∞.

1.4.2 Intuition of the Proof (0 < λ < 1)

Roughly stated, we observe that stable matchings become assortative-like matchings as a

market becomes large: firms with higher common-values become more likely to match with

workers with higher common-values. We illustrate this assortative-like feature of stable

matchings by introducing a 3-tier market. In a 3-tier market, firms and workers are par-

titioned into three tiers, and endowed with tier-specific common-values. Then, most firms

and workers in the same tier are matched with each other in assortative-like stable match-

ings. In this situation, the expected proportion of firms in tier-1, which fail to achieve

high levels of utility converges to 0 as the market becomes large. We demonstrate how to

use techniques from the theory of random bipartite graphs as we prove this observation

formally.

In a 3-tier market, F is partitioned into F1, F2, and F3; and W is partitioned into W1,

W2, and W3. For simplicity, we assume that all tiers are of equal size:

|Fk| = |Wk| = n/3 (k = 1, 2, 3).

If f ∈ Fk and w ∈Wl are matched with one another, then they receive utilities

Uf,w = uol + ζf,w and Vf,w = vok + ηf,w.
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Common-values are uniquely determined by tiers such that

uo1 > uo2 > uo3 and vo1 > vo2 > vo3.

Private-values, ζf,w and ηf,w, are randomly drawn from uniform distributions over [0, ū]

and [0, v̄], respectively. In other words, the firm receives tier-specific common-value corre-

sponding to the worker’s tier added to independent private-value, and the worker receives

tier-specific common-value corresponding to the firm’s tier added to independent private-

value. We, without loss of generality, ignore λ and (1−λ) by incorporating the weights into

the tier-specific common-values and the distributions of independent private-values.

We find an asymptotic lower bound on utilities that tier-1 firms receive in a stable

matching mechanism. The lower bound is defined as the level arbitrarily close to the

maximal utility that a firm can achieve by matching with tier-2 workers: i.e. uo2 + ū − ε.

That is, firms in tier-1 achieve high levels of utility by levering on the existence of tier-2

workers. Although not necessarily being matched with tier-2 workers, firms in tier-1 would

otherwise make blocking pairs with workers in tier-2. Formally, we define the set of tier-1

firms that fail to achieve the specified utility level in the worker-optimal stable matching as

F̄ := {f ∈ F1 | uµW (f) ≤ uo2 + ū− ε} ,

and show that

E

[
|F̄ |
n/3

]
→ 0, as n→∞.

Given realized private-values, we draw a bipartite graph with the set of firms in tier-1,

and workers in tiers up to 2 (i.e. tier-1 and tier-2) as a bi-partitioned set of nodes (see the

left figure in Figure 1.2). Each pair of f ∈ F1 and w ∈W1 ∪W2 is joined by an edge if and

only if one of their private-values is low:

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − (vo1 − vo2).
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We define the set of workers in tiers up to 2 matched with non tier-1 firms as

W̄ := {w ∈W1 ∪W2 | µW (w) /∈ F1} .

Then, F̄ ∪ W̄ is a biclique: i.e. every firm-worker pair from F̄ and W̄ is joined by an edge

(as illustrated by the right figure in Figure 1.2).

F W

T1

T2

T3

F W

T1

T2

T3

F̄

W̄

Figure 1.2: For each realized utility, we draw a bipartite graph with firms in tier-1 and workers in
tiers up to 2 as the partitioned set of nodes (left). Firms in tier-1 receiving low utilities (F̄ ) and
workers in tiers up to 2 matched with non tier-1 firms (W̄ ) form a biclique (right).

To see why F̄ ∪ W̄ is a biclique, suppose that f ∈ F̄ and w ∈ W̄ are not joined. Since

f ∈ F̄ ,

uµW (f) ≤ uo2 + ū− ε.

Since w ∈ W̄ , the worker is not matched with a tier-1 firm, and thus

vµW (w) ≤ vo2 + v̄.

That is, f and w mutually fail to achieve high levels of utility.

On the other hand, since they are not joined by an edge,

ζf,w > ū− ε and ηf,w > v̄ − (vo1 − vo2),
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and therefore

uf,w > uo2 + ū− ε and vf,w > vo1 + v̄ − (vo1 − vo2) = vo2 + v̄.

In other words, the firm-worker pair’s private-values are mutually so high that they would

have achieved high utilities by making a blocking pair. This contradicts that µW is a stable

matching.

This construction of a bipartite graph fits into a random bipartite graph model. Given

that the tier-structure specifies a bi-partitioned set of nodes, we draw a bipartite graph

based on the realized private-values. Since the private-values are i.i.d, each firm-worker

pair is joined by an edge independently and with an identical probability. By Theorem 3, if

the bi-partitioned set of nodes has a size on the order of n, and each pair of nodes is joined

by an edge independently with a fixed probability, then the maximum balanced biclique

has a size on the order of log(n) with a sequence of probabilities converging to 1 as n gets

large. In addition, W̄ contains at least n/3 workers, since there are 2n/3 workers in tiers

up to 2, but only n/3 firms in tier-1: i.e. W̄ has a size on the order of n. Therefore, F̄ must

have a size, at most, on the order of log(n) with a sequence of probabilities converging to

1. The biclique F̄ ∪ W̄ would otherwise contain a balanced biclique with a size bigger than

on the order of log(n), violating the Theorem 3. Lastly, E
[
|F̄ |
n/3

]
→ 0 follows immediately

from log(n)/n→ 0.

For the main theorem (without tier structure), we begin the proof by partitioning the

supports of distributions for common-values. Suppose the common-values are drawn from

the uniform distribution over [0, 1]. We partition the unit interval into K subintervals with

equal lengths. Workers and firms are, in turn, grouped into tiers where firms or workers

in the same tier have common-values in the same subinterval. Basically, we continue the

proof as if we have a model with a finite number K of tiers. The tiers, though, need to be

handled with care. This time, because the common-values are random, the tier structure is

random. Moreover, agents in adjacent tiers may have arbitrarily close common-values.

As we increase the number of partitions K, the asymptotic lower bound on the utilities

of firms in tier-k becomes close to the maximal utility achievable by matching with a worker
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in tier-k. With a similar exercise, we find an asymptotic lower bound on utilities of workers

in each tier. Then, workers in tiers significantly higher than k are most likely to match with

firms in tiers higher than k. This assortative-like feature of stable matchings induces an

asymptotic upper bound on utilities of tier-k firms. As we finely partition the supports of

the distributions of common-values, the differences in the common-values of firms or workers

in similar tiers become slightly distinct from each other. Therefore, the asymptotic upper

bound on utilities of firms in tier-k also becomes close to the maximal utility achievable by

matching with a worker in tier-k. That is, we can find an asymptotic lower bound and an

asymptotic upper bound, which are arbitrarily close to each other.

1.5 Market with Incomplete Information

We have so far considered a market with complete information. Agents are assumed to

be able to assess the exact gain by misrepresenting preferences. It is a strong assumption,

especially when we consider large markets. More realistically, we may want to consider

a market with incomplete information, where each agent is only partially informed about

the preferences of other participants. Nevertheless, we have mainly focused on the case of

complete information since we can extrapolate its findings to show that the incentive to

misrepresent preferences vanishes under incomplete information.

In relaxing the complete information assumption, we may consider various information

structures. Each agent may know only the probability distributions in addition to either (i)

her own utilities; (ii) her own utilities and the common-values of the other side; (iii) her own

utilities, the common-values of the other side, and her own common-value evaluated by the

other side; or (iv) her own utilities and all agents’ common-values. The following results

in the context of incomplete information correspond to the main theorem and its direct

corollary for the model with complete information. As before, we first state the theorem

informally, and then restate it with formal expressions.

Theorem Regardless of information structure and for every ε > 0, the expected proportion

of firms (and workers) who have less than ε expected differences between utilities from µF
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and µW , converges to one as the market becomes large.

Corollary For any positive cost of misrepresenting preferences, if other agents truthfully

reveal their preferences, the expected proportion of agents who have no incentive to manip-

ulate a stable matching mechanism converges to one as the market becomes large.

The intuition behind the theorem is clear. An expectation is a convex combination of

all realizations. The expected difference between utilities from firm-optimal and worker-

optimal stable matchings under incomplete information is simply a convex combination

of the differences between utilities from the two stable matchings in all realized market

instances. The differences between utilities are most likely to be insignificant (Theorem 1).

Therefore, the expected difference in utilities is most likely to be negligible as well. We

relegate the detailed proofs to Appendix A.4.

There are two advantages of showing the result in the context of complete information

first, and then deriving the same result in the context of incomplete information. First,

the results are robust to the information structure. The intuition of showing the results

with incomplete information by using convex combinations remains valid regardless of the

details of the information structure. Secondly, we can stress that non-manipulability of

stable matching mechanisms is a property of the two-sided matching market itself, rather

than stemming from insufficient information to manipulate the mechanism. Even when an

agent can obtain complete knowledge of a preference profile at a small cost, it is not worth

incurring that cost since the gain from manipulation will be small.

Formal Statement Let Πf denote what f knows about a preference profile, and let πf

denote its realization. Then, the various incomplete information structures are denoted by

(i) Πf = 〈Uf,w〉w∈W ; (ii) Πf = 〈Uf,w, Uow〉w∈W ; (iii) Πf = 〈Uf,w, Uow〉w∈W ∪ {V o
f }; and (iv)

Πf = 〈Uf,w, Uow〉w∈W ∪〈V o
f ′〉f ′∈F . Given a market instance 〈F,W, u, v〉, we define ∆E(f ;u, v)

as the expected difference between utilities from firm-optimal and worker-optimal stable

matchings conditioned on πf . That is,

∆E(f ;u, v) := EU,V [uµF (f)− uµW (f) | πf ] ,
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where the expectation is applied to firm-optimal and worker-optimal stable matchings. For

every ε > 0, we correspondingly have the set of firms, whose expected differences in utilities

from all stable matchings are less than ε, which is denoted by

AFE(ε;u, v) := {f ∈ F | ∆E(f ;u, v) < ε} .

The previous theorem is an informal statement of the following theorem. We have

similar notations and a theorem for workers, which are omitted here.

Theorem 4. For any given information structure and for every ε > 0,

E

[∣∣AFE(ε;U, V )
∣∣

n

]
→ 1, as n→∞.

Equilibrium Analysis Unfortunately, we do not obtain an equilibrium corresponding to

the ε-Nash equilibrium in the context of complete information by using convex combinations.

The obstacle to obtaining an equilibrium is that truncations by some agents may increase

the differences in utilities generated by stable matchings for other participants. When

preferences are known to all participants, truncations can preserve a stable matching under

true preferences as individually rational under the announced preferences. The following

example shows that this condition is necessary for truncations by some agents to decrease

the differences in utilities from stable matchings for other participants.

f1: 〈w1〉 � w2 � w3

f2: 〈w2〉 � w3 � w1

f3: w1 � w2 � 〈w3〉

f1: 〈w1〉 � [w2] � w3

f2: 〈w2〉 � w3 � [w1]

f3: w1 � w2

,

w1: f2 � 〈f1〉 � f3

w2: f1 � 〈f2〉 � f3

w3: f1 � f2 � 〈f3〉

w1: [f2] � 〈f1〉 � f3

w2: [f1] � 〈f2〉 � f3

w3: f1

Table 1.4: True preferences (upper) and their truncations (lower).



29

Table 1.4 lists true preferences of firms and workers (upper tables) and their truncations

(lower tables). In the example, there is a unique stable matching (marked by 〈·〉) under

the true preferences. When f3 and w3 truncate their preferences, however, there are two

stable matchings (marked by 〈·〉 and [·]). If some agents announce that all stable matching

partners are unacceptable, other agents may have larger differences in utilities from all

stable matchings.

Given incomplete information of a preference profile, an agent may submit a truncation

of her true preference list based on the expected utility gain by manipulation. She may then

remain unmatched afterwords depending on the realized preference profile. In this case,

truncations may expand differences in utilities from stable matchings of other participants.

Although most agents initially have small differences in utilities from stable matchings,

participants may want to misrepresent their preferences as a best response to other agents’

truncations.

1.6 Conclusions

This paper demonstrates an asymptotic similarity of stable matchings as the number of

participants becomes large. Our measure of similarity is based on utilities, by which ordinal

preferences are determined. As the utilities are drawn from some underlying probability

distributions, one can analyze the likely differences in utilities from all stable matchings. We

show that the expected proportion of firms and workers who are close to being indifferent

among all stable partners converges to one as the market becomes large.

The result also implies that the expected proportion of agents who have a significant

incentive to manipulate the mechanism vanishes in large markets. This is because the gain

from manipulation of a stable matching mechanism is bounded above by the difference be-

tween utilities from the firm-optimal and the worker-optimal stable matchings. In addition,

we show that with high probability a large market has an ε-Nash equilibrium in which most

agents reveal their true preferences. We prove our results using techniques from the theory

of random bipartite graphs, which is a new approach in the matching literature.

This paper is one of many recent studies exploring how the popularly used matching
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mechanisms really work in practice. It is essential to have a better understanding of stable

matching mechanisms as market design applications expand from the NRMP and the School

Choice Programs to many other markets, including dental residencies, various medical spe-

cialty matching programs, and labor markets for law clerks. Of particular relevance here is

the fact that market designers are hoping to investigate the desirability of a clearinghouse

in the market for economics Ph.D.s (Coles, Cawley, Levine, Niederle, Roth, and Siegfried,

2010). As such, understanding stable matching mechanisms in real applications becomes

not only a market designers’ question in theory, but is of concrete interest for economists

in general.
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Chapter 2

Plea Bargaining: On The Selection
of Jury Trials

2.1 Overview

2.1.1 Introduction

Plea bargaining is a pre-trial stage in which a defendant is allowed to plead guilty. Consid-

ering what he would receive if he was convicted after a jury trial, a defendant pleads guilty

primarily in exchange for a lesser charge.1 Plea bargaining is prevalent in U.S. criminal

court. Amongst the 89.7% convictions out of 83,391 cases in federal courts in 2004, 96%

were achieved through plea bargaining, and the rate increased from 87% in 1990 to 96% in

2004 for felony offenses.2

The fact that the vast majority of cases end in plea bargaining may lead one to suspect

that trials are not important. The current paper certifies that such a conclusion is inaccu-

rate; plea bargaining and jury trials closely interact with each other. Innocent defendants

have less incentive to plead guilty, and jurors incorporate this selection bias into their ver-

dict. Conversely, although most cases are settled before jury trials begin, participants in

plea bargains anticipate possible outcomes of jury trials in the event that they fail to reach

an agreement. In this sense, the primary role of a jury trial is to allocate bargaining power

to participants in the plea bargain.3

1 In this paper, prosecutors and defendants are all referred to as male, and jurors are all referred to as
female.

2 See Table 4.2 in Compendium of Federal Justice Statistics, 2004, U.S. Department of Justice, Bureau
of Justice Statistics, available online at: http://bjs.ojp.usdoj.gov/content/pub/pdf/cfjs04.pdf.

3 Mnookin and Kornhauser (1979) call this effect, “Bargaining in the shadow of the law.”
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The interaction between plea bargaining and a jury trial is a challenging issue for legal

scholars who want to evaluate various institutions in a criminal court system. A model

of either plea bargaining or a jury trial often fails to capture the real dynamics; when

defendants and prosecutors actively participate in pre-trial stages, the implications of a

jury trial model may not be directly applicable to the entire court process. Similarly,

a separate empirical analysis undertakes endogeneity problems. Cases in jury trials, for

instance, may tell us how the jury delivers verdicts for those cases, but they are silent on

how institutional changes in the trial affect the cases going to trial.4

The current paper, building on the standard strategic voting model, develops a model of

the criminal court process unifying plea bargaining and a jury trial. We first show that plea

bargaining influences the jurors’ (identical) belief about the proportion of guilty defendants,

and consequently jurors may vote as if they have the prosecutor’s preferences. Based on

Feddersen and Pesendorfer (1998), we also study different voting institutions in trial stage,

and find that inferiority of the unanimity rule persists with the addition of plea bargaining.

In detail, a judicial process starts with a prosecutor indicting a defendant, who is either

guilty or innocent with equal ex-ante probabilities. Given the level of just punishment for the

charge, the prosecutor initiates a plea bargain by making a take-it-or-leave-it punishment

offer to the defendant. If the defendant pleads guilty, then the case terminates with the

offered punishment; otherwise, a jury trial follows. In a jury trial, each juror receives

either a guilty or an innocent private signal during the testimonies, and votes either for

conviction or acquittal. If a super-majority of jurors vote for conviction (such as two-thirds

majority), the jury returns a verdict of guilty, and the defendant receives the original just

punishment; otherwise, the jury acquits the defendant. The prosecutor and jurors have

distinct preferences over mistakenly delivered (or undelivered) punishments to innocent

defendants (or guilty defendants).5

We first show that, by internalizing plea bargaining into their belief, jurors may vote

4 Priest and Klein (1984) first raise such challenges in the context of civil court.
5 In this paper, a prosecutor may not single-mindedly pursue convictions, ignoring possible convictions of

innocent defendants. Instead, we consider how different prosecutor’s preferences affect court performance.
This assumption is justified on realistic grounds. In practice, mismanaged cases may later become public,
and such exposure will affect a prosecutor’s future career. Even a self-interested prosecutor will be concerned
with false prosecutions.
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as if they have the prosecutor’s preferences. While the prosecutor controls the punishment

level of guilty pleas, the optimal level is ultimately determined by how it will influence

jurors’ behavior. This is because the ex-ante punishment levels (i.e. the expected punish-

ment level upon pleading guilty) are eventually determined in equilibrium by the conviction

probabilities in the jury trial.

To see the intuition, consider the following lines of reasoning. If the plea bargain offer

is acceptable for the ‘guilty’ defendants, compared to the jury trial outcome, guilty defen-

dants will plead guilty. Jurors subsequently update their belief, accounting for the lower

proportion of guilty defendants arriving at jury trials. Accordingly, conviction probabilities

are lowered, and this feeds back to plea bargaining. The previously acceptable offer will

become un-acceptable for ‘guilty’ defendants. On the other hand, if the bargain offer is

un-acceptable, the opposite story follows. ‘Guilty’ defendants will plead not guilty. As the

jurors believe that a higher proportion of defendants who come to trial are guilty, the jurors

tend to vote for conviction. When this occurs, the bargain offer, previously unacceptable,

becomes now acceptable for the ‘guilty’ defendants. Thus, in equilibrium guilty defendants

will be indifferent between receiving a guilty plea punishment or undergoing a jury trial.

As a result, the ex-ante punishment for ‘guilty’ defendants will be equal to the expected

punishment in a jury trial. Meanwhile, ‘innocent’ defendants are less likely to be convicted

in trial than guilty defendants. When guilty defendants are indifferent between pleading

guilty and not guilty, ‘innocent’ defendants are better off pleading not guilty and going to

trial. Consequently, the ex-ante punishment for innocent defendants is also determined by

the conviction probabilities in the jury trial.

The prosecutor chooses a plea offer such that its effects on jurors’ beliefs render the ideal

levels of conviction probabilities. The prosecutor cannot force a particular voting behavior

on jurors, who will be best responding. Instead, the jurors’ voting behavior that is ideal

for the prosecutor will be induced when the jurors’ preference combined with the altered

belief coincide with the prosecutor’s preference. For instance, suppose the prosecutor cares

more than the jurors about mistakenly delivering punishment to innocent defendants. As

the prosecutor lowers guilty plea charges, a higher proportion of guilty defendants plead
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guilty, and a defendant in a jury trial is more likely to be innocent. Consequently, jurors

are more careful when voting to avoid mistakes of convicting innocent defendants, and the

influenced jurors’ behavior follows the prosecutor’s preference.

However, such influence is possible only in one direction: leading jurors to vote more

frequently for acquittal. Because guilty defendants are more likely to take the bargain offer,

plea bargaining can only decrease the proportion of guilty defendants in trial. When the

prosecutor cares less about convicting innocent defendants, and is more averse to acquitting

guilty defendants, plea bargaining is of no use to the prosecutor.

The combined model of plea bargaining and a jury trial allows us to re-examine some

of the implications derived from the classical strategic voting literature. In particular,

we revisit the comparison of two voting mechanisms, the unanimity rule and arbitrary

super-majority rules, which are studied in Feddersen and Pesendorfer (1998). Feddersen

and Pesendorfer find that the unanimity rule is inferior in terms of the probabilities of

convicting innocent defendants and acquitting guilty defendants. If the rule is unanimous,

the probabilities do not vanish as the number of jurors grows, whereas the probabilities

vanish under any non-unanimous rule. The results in our paper suggest that jurors’ voting

behavior resembles the voting behavior in the separate jury model, though it may reflect

the prosecutor’s preference. Therefore, from the viewpoint of expected punishments either

by plea bargaining or a jury trial, inferiority of the unanimity rule persists with the addition

of plea bargaining.

Note that the game proposed in this paper is effectively that of signaling. While previous

literature mainly views plea bargaining as an instrument to save trial costs (see Grossman

and Katz (1983); Reinganum (1988)), we intentionally ignore all costs in order to highlight

the signaling effect.6 A defendant, as a sender, signals his type by pleading either guilty

or not guilty. Afterwards the jurors, as receivers, update their belief on the sender’s type

and determine conviction probabilities. From the prosecutor’s viewpoint, plea bargaining

allows the court to screen out some guilty defendants before going to a jury trial. Since the

accused know whether they are guilty, plea bargaining serves as a self-selection mechanism.

6 Not only are explicit costs such as time and effort excluded, we also assume that prosecutors and
defendants are risk neutral. They bear no cost of uncertainty from a jury verdict.
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As such, plea bargaining may contribute to the accuracy of the jury trial, on which the

entire court process hinges.

2.1.2 Related Literature

Priest and Klein (1984) is one of the studies closest to our paper, as they clarify the relation-

ship between litigation behavior and jurors’ behavior in the jury trial. The set of disputes

settled and the set litigated are not necessarily the same. Their important assumption is

that the potential litigants produce rational estimates of the likely decision by affecting

the belief of the jurors. As in our paper, Priest and Klein consider interactions between

the pre-trial process and the jury trial. However, while Priest and Klein informally model

how biased jurors’ belief affects the jury decision, we explicitly capture the dynamic by

employing a strategic voting model.

Collective decision-making under uncertainty is first studied in Condorcet (1785). As-

suming two possible true states, Condorcet models a situation in which a group of people,

each of whom is imperfectly and privately informed, makes a decision by voting for one alter-

native. Condorcet shows that the group can more efficiently aggregate private information

with simple majority rule than if each member acts as a dictator.

The Condorcet theorem assumes that each juror votes by following her private informa-

tion. However, a juror’s vote affects a group decision only when that juror is pivotal. A

strategic juror incorporates this fact in her voting decision, and in some cases her pivotality

convinces her to follow other jurors’ votes against her private information (see Austen-Smith

and Banks (1996); Feddersen and Pesendorfer (1996)). Feddersen and Pesendorfer (1998)

apply the strategic voting behavior to jury trials, and find inferiority of the unanimity

rule. The current research departs from Feddersen and Pesendorfer (1998) by including

plea bargaining.7

Much of the literature on plea bargaining approaches the process via a ‘bargaining’ model

7 Although we adopt Feddersen and Pesendorfer (1998) as a benchmark, different voting institutions can
be applied in the jury trial stage. Some examples from the literature include Coughlan (2000); Austen-Smith
and Feddersen (2005, 2006), and Gerardi and Yariv (2007) studying jury deliberation. Accordingly, as the
model of jury trial process changes, the results on the voting rule comparison in our model may change. For
experimental tests on jury deliberation, see Guarnaschelli, McKelvey, and Palfrey (2000) and Goeree and
Yariv (Forthcoming).
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(for a brief summary, see, e.g., Cooter and Rubinfeld (1989)). A jury trial contains explicit

costs, time, and effort; if participants in a plea bargain do not want to bear additional risks,

uncertainty regarding trial outcomes is an additional cost. Given such costs, participants in

the plea bargain phase can share a surplus if they reach an agreement. This surplus division

is a ‘bargaining’ problem. A typical model allows either a prosecutor, a defendant, or both

to make bargaining offers. Prosecutors know the deliverable punishments of the crime in

trial, while the defendant knows whether he is guilty. It is undeniable that plea bargaining

initially becomes popular as a way of avoiding jury trial costs.8 However, what we focus on

in this paper are the welfare effects of plea bargaining due to factors other than trial costs,

a subject that has received less attention.

Grossman and Katz (1983) show that plea bargaining serves as an insurance and a

screening device. As insurance, plea bargaining protects innocent defendants and society

against cases where a trial produces incorrect findings and delivers severe punishments.

Although innocent defendants may falsely plead guilty due to the threat of conviction, the

sentence will be lenient in such cases. As a screening device, plea bargains sort guilty

and innocent defendants like a self-selection mechanism. Since the mechanism ensures that

violators of the law are indeed punished, it may contribute to the accuracy of the legal

system. The first role is irrelevant to our model, since we assume that prosecutors and

defendants are risk neutral, and consequently need no insurance. The second role shares

the same motivation as ours. In contrast to the current paper, Grossman and Katz (1983)

does not consider interactions between plea bargaining and the jury trial. They assume

that plea bargaining is a screening device affecting, but never affected by, the jury trial.

2.2 The Model

There are three types of agents in a criminal court process: a prosecutor, a defendant, and

jurors. The process begins with a prosecutor indicting a suspect on a charge. We normalize

the potential punishment to be equal to 1 and assume that the defendant is either guilty (G)

or innocent (I) with equal probabilities. We consider the following timed process, composed

8 For the historical background of plea bargaining, see, e.g., Rabe and Champion (2002, p. 306 - 308).
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of two phases:

At t=1, a plea bargain occurs.

The prosecutor makes a take-it-or-leave-it plea bargain offer, θ ∈ [0, 1] level of punish-

ment. The defendant pleads either guilty or not guilty. If the defendant pleads guilty,

the case terminates and the punishment θ is delivered. Otherwise, the plea bargain is

withdrawn, and the case proceeds to the second phase described below.

At t=2, a jury trial occurs.

A jury consists of n (n > 1) jurors and a voting rule k̂ (1 ≤ k̂ ≤ n). Each juror

receives a private signal g or i, which is positively correlated with the true states G

or I, as given by

Pr[g|G] = Pr[i|I] = p, Pr[i|G] = Pr[g|I] = 1− p (2.1)

where p ∈ (.5, 1); a juror has a probability p of receiving a correct signal, and a

probability 1− p of receiving an incorrect signal.9

The jury reaches a decision by casting votes simultaneously. Each juror votes for

either conviction or acquittal. If the number of conviction votes is larger than or

equal to the voting rule k̂, the defendant is convicted (C). Otherwise, the defendant

is acquitted (A). We call a rule requiring k̂ = n votes for conviction the unanimity

rule, and others general super-majority rules.

Each type of agents has a utility function defined as follows:

• A defendant:

Utility changes negatively by the amount of punishment: −1 if he is convicted, 0 if he

is acquitted, and −θ if he pleads guilty. A defendant is assumed to be risk neutral.10

9 During the testimonies by the witnesses, each juror may have a different interpretation due to her
personal background. The private signal (g or i) captures such interpretation.

10 If a defendant perceives that he will be convicted with probability s, then the ex-ante utility of going
to trial is −s · 1− (1− s) · 0.
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• Jurors:

We normalize the utility of correct judicial decisions such that u[C|G] = u[A|I] = 0.

Given this normalization, convicting innocent defendants or acquitting guilty defen-

dants incur utility losses, u[C|I] = −q and u[A|G] = −(1−q), respectively. We assume

that q ∈ [.5, 1), and term q as “the threshold level of reasonable doubt.” 11, 12

• A prosecutor:

The prosecutor has a preference defined on [0, 1] × {G, I}. Much like the jurors’

utilities, when a punishment h ∈ [0, 1] is delivered to a defendant, the prosecutor’s

utility is given by

v[h|I] = −q′ h , v[h|G] = −(1− q′)(1− h)

where q′ ∈ [0, 1]. The prosecutor loses utility if punishments are delivered to innocent

defendants, or guilty defendants avoid their just punishments.

Figure 2.1 summarizes the timing of the model: (i) A prosecutor offers θ in a plea bargain

and a defendant pleads either guilty or not guilty. (ii) If the defendant pleads guilty, a judge

respects the bargain and pronounces sentence θ, and the case terminates. If the defendant

pleads not guilty, the case goes to a jury trial. (iii) The jury determines whether to convict

or acquit.

We denote by φG the probability that a guilty defendant pleads guilty; φI is defined

similarly for an innocent defendant. Jurors have an identical belief π that the defendant is

guilty conditional on the case proceeding to a jury trial. For each level of belief π, a pair

(σjg, σ
j
i ) in [0, 1] × [0, 1] represents a strategy of juror j. Juror j votes for conviction with

probability σjg when she receives a signal g, and she votes for conviction with probability

11 Feddersen and Pesendorfer (1998) term q as “the threshold level of reasonable doubt,” from the following
motivation. Suppose a juror believes that the defendant is guilty with probability q̃. The expected utility
from a guilty verdict, −q(1 − q̃), is greater than or equal to the expected utility of an innocent verdict,
−(1− q)q̃, if and only if q̃ ≥ q. Therefore, when jurors vote for conviction, they use q as the threshold level
of belief that the defendant is guilty.

12 We can easily allow q < 0.5, and the analysis in this paper is qualitatively intact. However, we focus
on the case of q ≥ 0.5 for simplicity, since q < 0.5 requires additional assumptions to ensure that jurors are
more likely to vote for conviction when they receive signal g.
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Figure 2.1: A criminal court process.

σji if the signal is i. Apparently, a defendant’s strategy (φG and φI) is a function defined

on θ, and jurors’ strategies (σjg, σ
j
i ) are functions defined on π. We omit the arguments of

strategies where no confusion arises.

We find a Perfect Bayesian Equilibrium with additional refinements: one in jurors’ voting

behavior and the other in jurors’ belief. For jury trials, we consider symmetric equilibrium

voting behavior in which all jurors adopt the same strategy. Accordingly, a symmetric

strategy profile is denoted as (σg, σi), without specifying a particular juror.13 We then find

a symmetric voting behavior which gives all jurors the highest expected payoff. Since all

jurors have the same preference over judicial decisions, this is a natural way of refining

the symmetric voting behavior. We call this refined behavior the most efficient symmetric

equilibrium voting behavior, or succinctly the efficient equilibrium voting behavior.14 When

13 Since the jury trial is modeled as a symmetric game, there exists at least one symmetric equilibrium
voting behavior. The existence of symmetric equilibrium voting behavior follows very much like the result
that a symmetric finite normal form game has a symmetric Nash equilibrium. We formally show the existence
in Appendix B.1.

14 In Appendix B.3, we show that other notions of equilibrium refinement motivated by trembling hand
perfection in Austen-Smith and Feddersen (2005) or weakly undominated strategies in Gerardi and Yariv



40

no defendant goes to trial, we will refine jurors’ belief that a defendant coming to the trial

must be innocent. Such refinement is equivalent to imposing D1 by Cho and Kreps (1987)

over the signaling game, which is induced by assuming that the jurors follow the most

efficient symmetric equilibrium.

In the spirit of backward induction, we first study jury trials and find jurors’ efficient

equilibrium voting behavior, and then study equilibrium behaviors of a prosecutor and a

defendant in plea bargaining. The following section on jury trial is a part of the backward

induction, but at the same time the results also serve as a baseline of comparison about the

effects of plea bargaining on jury trials.

2.3 A Jury Trial

Jurors’ behavior in any jury trial that does take place hinges on the outcome of plea bargain-

ing. Recall that π denotes the jurors’ (identical) belief about a defendant’s type conditional

on the case going to trial. We assume that a guilty defendant is less likely to go to trial

than an innocent defendant (π ≤ .5). This assumption turns out to be innocuous, as guilty

defendants are more likely to generate guilty signals g, each juror is more likely to vote for

conviction when she receives a signal g, and thus, guilty defendants have a higher chance

of being convicted.15 As defendants anticipate such jury behavior, guilty defendants tend

to plead guilty, and are therefore less likely to go to trial, relative to innocent defendants.

As is standard in strategic voting models, a juror understands that her vote affects the

verdict only when she is pivotal. Thus, in addition to her private signal (g or i), the juror

takes into account in her voting decision that she is pivotal (piv) and the defendant in the

trial could have pleaded guilty (belief π).

Let P [G|piv, g, π] denote the posterior probability that the defendant is guilty, condi-

tional on receiving signal g, belief π, and being pivotal:

Pr[G|piv, g, π] :=
π · p · Pr[piv|G]

π · p · Pr[piv|G] + (1− π) · (1− p) · Pr[piv|I]

(2007) are insufficient to get a well-behaving equilibrium voting behavior, satisfying properties in Proposition
2.3.2.

15 We formally prove this reasoning in Proposition 2.3.2.
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Convicting the defendant changes her expected utility by −q · Pr[I|piv, g, π], and ac-

quitting changes her utility by −(1− q) ·Pr[G|piv, g, π]. The expected utility from a guilty

verdict is greater than or equal to the expected utility of an innocent verdict if and only if

Pr[G|piv, g, π] ≥ q. In other words, given all the information available, Pr[G|piv, g, π] ≥ q

indicates that evidence of guilt is clear enough to exceed the level of reasonable doubt (q).

In such a case, the optimal outcome from the juror’s viewpoint is to convict. Whereas,

Pr[G|piv, g, π] ≤ q indicates that the optimal outcome for the juror is to acquit. When

these terms are equal, jurors are indifferent between conviction and acquittal.

Thus, jurors’ best response is voting for conviction (or acquittal) if and only if

Pr[G | piv, g, π ]

Pr[ I | piv, g, π ]
≥ (or ≤)

q

1− q
if the signal is g.

When they are equal, the juror will use a mixed strategy.

By expanding the above expression, we obtain the following voting criterion that a juror

will vote for conviction (or acquittal) if and only if

Pr[ piv |G]

Pr[ piv |I]

p

1− p
π

1− π
≥ (or ≤)

q

1− q
if the signal is g. (2.2)

A similar argument is applied to a juror receiving signal i, and we obtain

Pr[ piv |G]

Pr[ piv |I]

1− p
p

π

1− π
≥ (or ≤)

q

1− q
if the signal is i. (2.3)

The left hand side (LHS) is the likelihood ratio of guilty to innocent given that a juror

is pivotal, multiplied by the likelihood ratio inferred from private information (g or i),

times the ratio of beliefs on the defendant’s type; the right hand side (RHS) is the ratio of

reasonable doubts.

To state the probabilities of being pivotal precisely, let rG denote the probability of

voting for conviction when the defendant is guilty, and rI be the same probability when the

defendant is, instead, innocent. Since a guilty defendant and an innocent defendant send

the signal g with probability p and 1− p, respectively, we obtain
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rG = pσg + (1− p)σi, rI = (1− p)σg + pσi. (2.4)

When a voting rule requires k̂ (1 ≤ k̂ ≤ n) number of conviction votes for a guilty

verdict, a juror becomes pivotal when k̂−1 other jurors vote for conviction. Assuming that

0 < rI < 1, we obtain from (2.2) that a juror votes for conviction (or acquittal) if and only

if

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

p

1− p
π

1− π
≥ (or ≤)

q

1− q
if the signal is g, (2.5)

and we obtain from (2.3) that a juror votes for conviction (or acquittal) if and only if

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

1− p
p

π

1− π
≥ (or ≤)

q

1− q
if the signal is i.16 (2.6)

These expressions show the main restrictions of jurors’ equilibrium behavior in the jury

trial.

To understand how jurors’ belief affects the equilibrium voting behavior, it is convenient

to introduce a function π̄ defined as

π̄(l ; p, q) :=
1

1−q
q

( p
1−p
)l

+ 1
, ∀l ∈ N

In order to see the motivation behind the definition of π̄, we rearrange and obtain

(
p

1− p

)l π̄(l)

1− π̄(l)
=

q

1− q
. (2.7)

π̄ maps a number of guilty signals (l) to the level of belief (π), which gives the minimum

amount of evidence for a conviction vote. In other words, if a juror becomes a dictator,

π̄(l) is the threshold level of the juror’s belief, such that once the juror gathers l number of

guilty signals, the juror votes for conviction.

16 When rI = 0 or rI = 1, (2.5) and (2.6) are not defined. When we find the most efficient equilibrium
voting behavior in Appendix B.2, we treat these cases separately.
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We state the equilibrium voting behavior in Proposition 2.3.1, and relegate details of

computing the equilibrium behavior to Appendix B.2. A voting behavior is called responsive

if the conviction probability with signal g is strictly higher than the probability with signal

i.

Proposition 2.3.1. (Equilibrium voting behavior) If π > π̄(k̂), the most efficient symmet-

ric equilibrium voting behavior is responsive. Otherwise, if π ≤ π̄(k̂), the most efficient

symmetric equilibrium involves an equilibrium in which no juror votes for conviction.

In all, Proposition 2.3.1 states that, if the belief is above a certain threshold level, there

exists a responsive equilibrium voting behavior. Moreover, if there exists an equilibrium

voting behavior which is responsive, it must be more efficient than the equilibrium in which

jurors vote either always for conviction or always for acquittal. This is quite intuitive,

since jurors use the private signals for their voting decisions in a responsive equilibrium

voting behavior. The only special case is that, when π = π̄(k̂) under the unanimity rule

(k̂ = n), efficient equilibrium involves both responsive equilibrium voting behavior and

non-responsive equilibrium voting behavior, in which no juror votes for conviction.

Equilibrium voting behavior is mainly derived from voting criteria (2.5) and (2.6). Note

that LHS of (2.5) is strictly larger than the LHS of (2.6). Unless the denominators are equal

to zero, a juror receiving signal g has a greater probability of voting for conviction than a

juror receiving a signal i (σg > σi). Suppose jurors vote for conviction with probabilities

rI and rG, where 0 < rI < rG < 1. That is, jurors do not always vote for acquittal

(0 < rI < rG) and do not always vote for conviction (rI < rG < 1). Since σg > σi,

three classes of strategies are consistent with such jury behavior: (0 < σg < 1, σi = 0),

(σg = 1, 0 < σi < 1), and (σg = 1, σi = 0).

For instance, under a voting rule requiring k̂ (k̂ > n
2 ) conviction votes, (σg = 1, σi = 0)

is not an equilibrium behavior for π < π̄(2k̂− n). To see this, suppose that a juror receives

signal g and she turns out to be pivotal; k̂ − 1 other jurors vote for conviction and n − k̂

jurors vote for acquittal. Considering that other jurors act (σg = 1, σi = 0), k̂−1 conviction

votes indicate the same number of guilty signals, and n− k̂ acquittal votes indicate the same

number of innocent signals. Thus, being pivotal is equivalent to observing 2k̂−n− 1 guilty
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signals, which results in 2k̂ − n guilty signals combining the juror’s own guilty signal.17

When π < π̄(2k̂ − n), 2k̂ − n guilty signals provide insufficient evidence of guilt. Thus,

σg = 1 is not a best response, and (σg = 1, σi = 0) must not be an equilibrium voting

behavior.

When jurors receiving signal g use a mixed strategy (0 < σg < 1, σi = 0), they are

necessarily indifferent between conviction and acquittal. In such an instance, the voting

criterion (2.5) holds with equality, from which we obtain an expression for σg and the

consistent range of π. When a juror receiving signal i uses a mixed strategy (σg = 1, 0 <

σi < 1), we obtain σi and the range of π from the equality of voting criterion (2.6). If jurors

receiving a signal g vote for conviction and with signal i vote for acquittal (σg = 1, σi = 0),

the juror receiving a guilty signal has enough evidence to vote for conviction; whereas, a juror

receiving an innocent signal lacks evidence, and thus votes for acquittal. The corresponding

inequalities of voting criteria (2.5) and (2.6) allow us to find the range of π consistent with

such a strategy profile.

We denote conviction probability of a guilty defendant and an innocent defendant by

PG and PI , respectively. For a pair of conviction voting probabilities, rG and rI ,

PG =

n∑
k=k̂

(
n

k

)
rkG (1− rG)n−k , PI =

n∑
k=k̂

(
n

k

)
rkI (1− rI)n−k . (2.8)

For each level of belief π, when jurors follow the efficient equilibrium voting behavior, we

denote the pair of corresponding conviction probabilities of guilty defendants or innocent

defendants as {(PG, PI)|π}. We also define fG(π) = {P ′G| ∃P ′I , (P ′G, P
′
I) ∈ {(PG, PI)|π}}

and fI(π) = {P ′I | ∃P ′G, (P ′G, P
′
I) ∈ {(PG, PI)|π}}: correspondences of the conviction proba-

bilities of guilty defendants and innocent defendants, respectively. Remember that efficient

equilibrium voting behavior is almost always unique except when the voting rule is unani-

mous and π = π̄(n).18 Therefore, fG(.) and fI(.) are almost always single valued.

Proposition 2.3.2. (Properties of the efficient equilibrium voting behavior)

1. Convicting the guilty is more likely than convicting the innocent: PG ≥ PI for all π.

17 We use the fact that signals have a symmetric structure: P [g|G] and P [i|I] are equal.
18This observation was discussed after Proposition 2.3.1.
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2. Efficient equilibrium voting behavior (σg, σi) is non-decreasing in π and k̂.

3. Conviction probabilities are non-decreasing in π : for all π < π′, fG(π) ≤ fG(π′) and

fI(π) ≤ fI(π′). 19

The above properties are intuitively derived from voting criteria (2.5) and (2.6). First,

the LHS of (2.5) is larger than the LHS of (2.6); a juror receiving a guilty signal is more

likely to vote for conviction (σg ≥ σi). Since guilty defendants tend to send guilty signals,

jurors are more likely to vote for conviction when the defendant is guilty: i.e. rG ≥ rI .

Thus, guilty defendants have a higher chance of being convicted (PG ≥ PI). Second, for

every level of rG and rI (i.e. for every given other jurors’ voting behavior), the value of

LHS of both criteria are increasing in belief π and voting rule k̂. Thus, a juror has more

incentive to vote for conviction when belief π is higher and voting rule k̂ is larger. Lastly,

the conviction probabilities are strictly increasing functions of σg and σi, which are in turn

increasing correspondences of π. Thus the conviction probabilities, PG and PI are increasing

correspondences of π. However, it is worth noting that the conviction probabilities, PG and

PI , may not be increasing correspondences of k̂. Considering (2.8), depending on the level

of rG and rI , the conviction probabilities may decrease as k̂ gets larger.

Figure 2.2 depicts the efficient equilibrium voting behavior under a general super-

majority rule (1 ≤ k̂ < n) and the unanimity rule (k̂ = n). Solid lines represent the

probability of voting for conviction with signal g; dashed lines represent the probability of

voting for conviction with signal i. Mostly, we have a unique equilibrium voting behavior,

except when π = π(k̂) under unanimity rule. The corresponding conviction probabilities are

described in Figure 2.3. Solid lines show the conviction probabilities if the defendant is truly

guilty; dashed lines show the conviction probabilities of innocent defendants. Again, we cer-

tify that conviction probabilities inherit the properties of conviction voting probabilities;

guilty defendants have a higher chance of being convicted and the conviction probabilities

are non-decreasing in π.

19 Suppose A and B are sets in R. If a ≥ b for every a ∈ A and b ∈ B, we denote A ≥ B.
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Figure 2.2: Efficient symmetric voting behavior with n = 12, p = 6
10 , and q = 1
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2.4 Plea Bargaining

A prosecutor offers the defendant an opportunity to plead guilty and undergo the penalty θ ∈

[0, 1]. A guilty defendant compares θ with the conviction probability of guilty defendants PG;

an innocent defendant compares θ with the conviction probability of innocent defendants

PI . If θ is larger than PG, no guilty defendant pleads guilty; similarly, no innocent defendant

pleads guilty when θ is larger than PI .
20

Recall that π denotes the jurors’ belief that the defendant is guilty conditional on a case

proceeding to a trial. When some cases reach jury trials (φG < 1 or φI < 1), jurors update

their belief π by

π =
1− φG

(1− φG) + (1− φI)
. (2.9)

If all defendants plead guilty, φG = φI = 1, we assume that the jurors update their belief

by setting it equal to 0.21

The relationship between the pleading decisions, φG and φI , and the conviction proba-

bilities, PG and PI , captures the main interaction between plea bargaining and jury trials.

One direction, how pleading decisions affect jury behavior, is explicit. The pleading de-

cisions lead jurors to update their belief about the guilt of the defendant (updating π).

As we have shown in the previous section, this belief is taken as part of the evidence of

guilt in the jury’s behavior, {(PC , PI)|π}. The converse direction, how jury behavior affects

the pleading decisions, is implicit. The conviction probabilities are taken into account in

pleading decisions through the defendants’ anticipation: comparing θ and PG, or θ and PI .

Equilibrium behavior ensures that these interactions must be consistent with each other;

20 Such pleading decisions presume that defendants know the conviction probabilities of guilty or innocent
defendants. In practice, defendants get advice from defense attorneys, who are aware of whether their
previous clients were truly guilty and who can recall the corresponding judicial decisions. It has been also
observed that participants in plea bargaining foresee the outcomes of jury trials, and consequently, previous
trial outcomes significantly influence the parties’ bargaining power. Among others, see, e.g., Bibas (2004)
and Stuntz (2004).

21 This assumption is equivalent to applying an equilibrium refinement, D1 by Cho and Kreps (1987),
to the signaling game, induced by assuming that the jurors follow the most efficient symmetric equilibrium
behavior. When jurors follow such equilibrium behavior, guilty defendants are more likely to be convicted
for every jurors’ belief π. Especially, if π > π̄(k̂), guilty defendants are strictly more likely to be convicted.
Therefore, given an equilibrium outcome with φG = φI = 1 and for any level of θ > 0, whenever guilty
defendants are weakly better off by going to trials, innocent defendants are strictly better off by going to
trials. Hence it should be accorded by jurors that a deviator from φG = φI = 1 is more likely to be innocent.
In such a case, D1 refines jurors belief π equal to 0.
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the belief π is consistent with pleading decisions φG and φI , and the anticipated conviction

probabilities are consistent with π: (PG, PI) ∈ {(P ′C , P ′I)|π}. Proposition 2.4.1 summa-

rizes this equilibrium restriction of the pleading decisions and jurors’ voting behavior. We

relegate the proof to Appendix B.5.

Proposition 2.4.1. (Pleading decisions and voting behavior)

Suppose the jury follows the efficient equilibrium voting behavior. For each prosecutor’s

offer θ, one, and only one, of the following holds.

1. Some guilty pleas: Guilty defendants are indifferent between pleading guilty and

undergoing a jury trial (PG = θ); innocent defendants prefer to plead not guilty (PI ≤

θ). θ = PG ∈ fG(π) for every equilibrium belief π.22, 23

2. No guilty plea: PG, and necessarily PI , are no more than θ. All defendants plead

not guilty (φG = φI = 0). Thus, π = .5 and PG ∈ fG(.5).

In general, guilty defendants are indifferent between pleading guilty and pleading not

guilty (θ = PG), and innocent defendants prefer to go to trial (PI ≤ θ). To see why this

holds, suppose we have θ < PG. Guilty defendants will plead guilty, and depending on

θ and PI , only innocent defendants may go to trial. These pleading decisions will lead

jurors to believe that all defendants in trials are innocent, and they will vote for acquittal:

{(PG, PI)|π} = {(0, 0)}. Therefore, θ < PG must not be an equilibrium outcome. On the

other hand, θ > PG can be an equilibrium outcome only when the prosecutor offers a high

level of punishment for guilty pleas. In that event, all defendants will go to trial, the induced

conviction probabilities (PG and PI) are still lower than θ, and such pleading decisions will

turn out to be the best response.

The prosecutor wants to offer punishment θ for a guilty plea that yields his highest ex-

pected equilibrium payoff. Using the equilibrium restrictions on pleading decisions and jury

22 The equilibrium belief π may not be unique. For instance, suppose that θ is equal to the conviction
probability of a guilty defendant under σg = 1 and σi = 0. Any π inducing σg = 1 and σi = 0 as equilibrium
voting behavior can be an equilibrium π. However, all fG(π) contains θ = PG, and lead to the same level of
equilibrium punishment.

23 Lemma B.5.1 in Appendix B.4 shows that fG(π) is an upper hemicontinuous correspondence with non-
empty convex values. Thus for any θ in [0, sup fG(π = .5)], by Intermediate Value Theorem, there exists π
such that θ = PG ∈ fG(π).
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behavior, the prosecutor’s problem is summarized by the following optimization problem.

max
θ∈[0,1]

−1

2
q′
(
φIθ + (1− φI)PI

)
− 1

2
(1− q′)

(
φG(1− θ) + (1− φG)(1− PG)

)
(2.10)

s.t.

(a.1) φG ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PG

(a.2) φI ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PI

(b) π =

 0 if φG = φI = 1

1−φG
(1−φG)+(1−φI) otherwise.

(c) (PG, PI) ∈ {(P ′G, P ′I)|π}.

The objective function is the prosecutor’s expected utility. The prosecutor’s utility is

decreasing with q′ if innocent defendants are mistakenly punished. The mistake is either

as a result of a guilty plea, with probability φI and punishment θ, or of conviction in jury

trial, with probability (1 − φI)PI with punishment 1. When guilty defendants go without

being fully punished, the prosecutor’s utility is decreased by (1− q′). Such a case is either

as a result of a guilty plea, with probability φG and undelivered punishment (1− θ), or of

acquittal in a jury trial, with probability (1− φG)(1− PG) and undelivered punishment 1.

The defendants will best respond in pleading decisions and the jurors will follow the equi-

librium voting behavior. Such equilibrium behavior restricts the prosecutor’s optimization:

(a.1) and (a.2) represent that guilty and innocent defendants plead in order to minimize

their expected punishment, respectively; (b) captures that jurors rationally update their

belief π following the defendants’ pleading decisions; (c) states that jurors will follow the

efficient equilibrium voting behavior. The following proposition presents the prosecutor’s

optimal behavior, and the consequent jurors’ voting behavior. In the proposition, some

guilty pleas and no guilty plea refers to the two classes of equilibrium outcomes in Proposi-

tion 2.4.1 the prosecutor can induce. We leave the proof to Appendix B.6.1.

Proposition 2.4.2. (Equilibrium outcomes of plea bargaining and jury trials)

1. If q′ > q, the prosecutor induces some guilty pleas. Induced jury behavior resembles

the behavior in the jury model without plea bargaining. But, jurors act as if they have
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the prosecutor’s preference parameter, q′.

2. If q′ ≤ q, the prosecutor induces no guilty plea. The jury behavior is the same as

the behavior in the jury model without plea bargaining.

The motivation behind the prosecutor’s optimal level of θ is quite intuitive. To illustrate

the main idea, we first show that the prosecutor is primarily concerned with how plea

bargaining affects jurors’ belief π.

To begin with, the prosecutor only needs to focus on equilibrium outcomes with some

guilty pleas in Proposition 2.4.1. Suppose that an equilibrium outcome has no guilty plea.

That is, the punishment following a guilty plea is so high that all defendants proceed to jury

trials. The prosecutor can achieve the utility corresponding to the no guilty plea equilibrium

outcome by offering θ = θ̄ where θ̄ := sup fG(.5). Although some guilty defendants may

change their mind to pleading guilty, the prosecutor achieves the same utility gain or loss,

regardless of whether the guilty defendants plead guilty or not guilty.

Without loss of generality, we simplify the prosecutor’s objective function in (2.10)

using the case of some guilty pleas in Proposition 2.4.1. In general, we have θ > 0, and thus

θ = PG > 0.24 The equilibrium voting behavior becomes responsive (PG > PI), and all

innocent defendants go to trial (φI = 0). Then the prosecutor’s objective function becomes

− 1

2
q′PI −

1

2
(1− q′)(1− PG). (2.11)

We now see that the prosecutor’s main concern is to influence jurors’ belief π, thereby

leading jurors’ best responding behavior to be most preferable to the prosecutor. One thing

to note here is that the prosecutor is not allowed to ‘force’ jurors to take a certain voting

strategy. That is, he can at best lead them to one of the most efficient equilibrium voting

behaviors.

To see how the prosecutor should influence the jurors’ belief π, we revisit the jurors’

voting criteria. By modifying (2.5) and (2.6), we obtain

24 We will also obtain (2.11) when θ = 0; nevertheless, we treat the case separately in Appendix B.6.1,
because the voting criteria (2.5) and (2.6) will not be well-defined.
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Pr[ piv |G]

Pr[ piv |I]

p

1− p
.5

1− .5
≥ (or ≤)

q

1− q
1− π
π

if the signal is g,

and

Pr[ piv |G]

Pr[ piv |I]

1− p
p

.5

1− .5
≥ (or ≤)

q

1− q
1− π
π

if the signal is i.

The voting criteria above lead to the same voting behavior as the voting criteria (2.5)

and (2.6); jurors receiving signal g or i vote for conviction if confronted with the former pair

of criteria if and only if the jurors receiving signal g or i vote for conviction if confronted

with the latter pair of criteria. That is, the jury behavior with a belief π and the ratio of

reasonable doubts q
1−q is equal to the jury behavior with belief .5 and the ratio of reasonable

doubts equal to q
1−q

1−π
π . As a result, we can reinterpret the prosecutor’s effort to influence

the jurors’ belief as an effort to change the level of the jurors’ reasonable doubts, while

fixing the belief at the prior π0 = .5. The question, “How to influence the jurors’ belief?”

is then the same as, “Which level of the jurors’ influenced reasonable doubt is the most

preferable to the prosecutor?”

Intuitively, the prosecutor prefers to have the jurors’ induced reasonable doubt to per-

fectly coincide with his weights on mistakenly delivered or undelivered punishments: i.e.,

q′

1−q′ = q
1−q

1−π
π . However, the prosecutor can affect the jurors’ reasonable doubt in only one

direction; he can only increase the reasonable doubt by inducing π ≤ .5. When the jurors,

rather than the prosecutor, care more about punishing innocent defendants (q > q′), the

prosecutor has no incentive to use plea bargaining, and so he induces π = .5 by offering

θ ≥ sup fG(.5).

Figure 2.4 illustrates prosecutor’s optimal offer of guilty plea punishment, for each level

of prosecutor’s parameter q′ and under various voting rules k̂. As Proposition 2.4.2 states,

the optimal offer is divided into two classes. Compared to jurors, when the prosecutor is

less cautious about punishing innocent defendants (q′ ≤ q = 1
2), the prosecutor offers a high

level of punishment and induces no guilty plea. Otherwise, the prosecutor offers a lower

level of punishment and induces some guilty pleas. As the guilty plea punishment becomes

more lenient, the number of guilty defendants pleading guilty increases. Such pleading
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Figure 2.4: Optimal offer of guilty plea punishment given n = 12, p = 6
10 , and q = 1

2

decisions yield a lower level of belief π and consequently lower chances of convicting innocent

defendants. Therefore, the optimal offer θ is a decreasing function of prosecutor’s utility

parameter q′. The optimal plea bargain offer is not a monotone function of the voting rule

k̂. This is because conviction probabilities are not monotone functions of k̂, as mentioned

in the discussion of Section 2.3.

2.5 Comparison of Alternative Voting Rules

As a direct application of Proposition 2.4.2, we re-examine a previous finding of the standard

jury model (without plea bargaining).

Feddersen and Pesendorfer (1998) find that the unanimity rule is inferior to general

super-majority rules. As the number of jurors gets large, the chance of convicting innocent

defendants and the chance of acquitting guilty defendants do not converge to zero under

the unanimity rule; whereas, both converge to zero if the voting rule is non-unanimous.25

Assuming that the jury trial employs either the unanimity rule or a super-majority rule, we

confirm that the previous results are robust to the addition of plea bargaining. We relegate

25 These are asymptotic properties, rather than results with a finite number of jurors; for example, jury
size 12 is common in the U.S. criminal court. In spite of that, when p is not close to 1

2
, the asymptotic

properties closely approximate the properties with a finite number of jurors. For instance, when p = 2
3
,

q = 1
2
, and π = 12, the limit of conviction probabilities for a guilty or an innocent defendant is 1 or 0 under

any non-unanimous rule, and 0.5 or 0.25 under the unanimity rule, respectively. On the other hand, a jury
with 12 jurors convicts a guilty or an innocent defendant with probability 0.90 or 0.03 under a non-unanimous
rule k̂ = 8, and 0.57 or 0.17 under the unanimity rule, respectively. Moreover, asymptotic properties are
also mathematically more tractable.
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the proof to Appendix B.6.4.

Corollary 5. (Comparing Voting Rules)

1. If a jury trial uses the unanimity rule, the expected punishment of guilty defendants

converges to 1 −
(

(1−q̃)(1−p)
q̃p

) 1−p
2p−1

as n → ∞, where q̃ = max{q, q′}; for innocent

defendants, it converges to
(

(1−q̃)(1−p)
q̃p

) p
2p−1

.

2. If the jury trial uses a non-unanimous rule, the expected punishment for guilty defen-

dants converges to one; the expected punishment for innocent defendants converges to

zero.

Corollary 5 is from Proposition 2.4.2 and asymptotic properties of the jury’s behavior

in Feddersen and Pesendorfer (1998).26 Proposition 2.4.2 states that the induced jury

behavior in a court with plea bargaining is similar to the equilibrium behavior in the jury

model without plea bargaining. If q ≤ q′, we can mimic the jury behavior using a jury model

without plea bargaining by assuming that jurors echo the prosecutor’s preference. If q > q′,

the behaviors are exactly the same. Concerning jury behavior under the unanimity rule and

general super-majority rules, plea bargaining does not change the qualitative findings, but

only affects the quantitative analyses: i.e. the probability limits. Therefore, the inferiority

result in Feddersen and Pesendorfer (1998) is robust to the addition of plea bargaining.

However, it is worth stressing that while the previous literature considers jury trial

outcomes, or conviction probabilities, we treat the outcomes of the entire judicial process:

punishment by guilty pleas as well as conviction probabilities. Therefore, Corollary 5 com-

pares expected punishments, rather than conviction probabilities, under either unanimity

rule or super-majority rules.

2.6 Discussion

Plea bargaining is the most common method of resolving cases in U.S. criminal court, though

studies on collective decision making have largely ignored plea bargaining. Whereas, jury

26 Propositions 2 and 3 in Feddersen and Pesendorfer (1998) state the asymptotic properties of the jury’s
behavior under the unanimity rule and general super-majority rules.
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trials have been rigorously studied, while in practice only a small portion of criminal cases

reach jury trial. The current paper bridges such a gap between the practice and the theory

by studying a combined model of plea bargaining and a jury trial. We highlight that plea

bargaining and jury trials interact with one another during a criminal court process. By

influencing the jurors’ belief, plea bargaining may induce the jury’s behavior to reflect the

prosecutor’s preference rather than the jurors’.

The results in this paper raise an important issue, especially for empirical analysis

of criminal court process and of its effects on society. Most of our practical knowledge

on jury trials is essentially based on the cases handled in trials. Yet, such knowledge

lacks fundamental understandings and tells little about the potential effects of institutional

changes on society. As jury trials are chosen through plea bargaining, the cases in jury trials

do not represent the entire population of criminal cases. Moreover, institutional changes

will alter the characteristics of the cases coming to trials. As such, it is appropriate to

employ a structural model, combining both plea bargaining and jury trials, rather than

studying each of them separately.
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Chapter 3

The Testable Implications of
Zero-sum Games

1

3.1 Introduction

Suppose two players choose joint actions from a finite set of alternatives. As outside ob-

servers, we witness the joint choice behavior, but we may not know the exact payoffs leading

the players to such group choices. By only observing joint choice behavior, we may ask

whether people play Nash equilibrium, and, if they do, what type of games they play.

This paper derives falsifiable conditions of joint choice behavior from equilibrium play of

a zero-sum game, or a game of conflicting interests. That is, we study additional behavioral

implications of a game being zero-sum, in addition to the hypothesis of Nash equilibrium

play. Instead of assuming a specific pattern of joint behavior, this study requires only weak

rationality axioms: complete and transitive preferences at the individual level, and Nash

equilibrium play at the collective level.

The main motivation of this exercise is that we want to be able to refute the notion that

two agents are in “direct competition,” and detect whether or not there could be “gains

from cooperation,” without knowing the exact payoffs. However, its applications are not

limited to cases where we only observe joint choice behavior. Even when we observe the

exact monetary returns (e.g., a laboratory experiment), the observed monetary returns may

1This chapter is published as a research paper in Journal of Mathematical Economics, Volume 48, Issue
1, January 2012, Pages 39-46.
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differ from utility payoffs which players perceive. For example, if each subject cares about

her monetary return relative to her opponent’s return, the joint behavior may follow Nash

equilibrium behavior of a zero-sum game rather than the original game. This is because a

two-person game with symmetric monetary returns becomes a symmetric zero-sum game

with respect to relative monetary returns.2 Based on the observed joint choice behavior,

we can test whether subjects play the original game or the zero-sum game induced by their

relative monetary returns.

Sprumont (2000) assumes that econometricians are given a choice correspondence de-

fined on product sets of individual actions. The question is when the observed joint behavior

is consistent with Nash equilibrium play, assuming players are rational and they play games

simultaneously. Sprumont proves that the observed joint behavior is Nash rationalizable if

and only if it satisfies Persistent under Restriction and Persistent under Expansion axioms,

which are similar to classical axioms of choice theory (see, e.g., Moulin (1985)). We retain

Sprumont’s basic abstract setup and ask, “Is the choice correspondence Nash-rationalizable

with a certain game category, specifically, zero-sum games?”

As an introductory example, Figure 1 shows how Nash-rationalizable choice behavior

may not be rationalizable by a zero-sum game. In this example, player 1 conceivably choose

either U or D and player 2 may choose L or R. Following classical choice theory, we may

observe how players choose when choice sets are restricted. Figure 3.1 shows all the possible

product subsets of {U,D} × {L,R} from which two players choose their joint actions. For

each product subset, (∗) is the action profile chosen by the players. We can verify that the

joint choice behavior exhibited in Figure 1 is consistent with Nash equilibrium behavior of

a coordination game in which coordinating to (U,L) or (D,R) gives a higher payoff to both

players.

This choice correspondence, however, does not follow Nash equilibrium behavior for any

zero-sum game. We observe that (U,L) is chosen from {(U,L), (D,L)} and (D,R) is chosen

from {(D,L), (D,R)}. Assuming that the choices are Nash equilibria of a zero-sum game,

these choices imply that for player 1, (U,L) is preferred to (D,L); for player 2, (D,R) is

preferred to (D,L), which indicates player 1 prefers (D,L) to (D,R). On the other hand,

2See, e.g., Duersch, Oechssler, and Schipper (2011).
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Figure 3.1: Nash-rationalizable but not by zero-sum games

(D,R) is chosen from {(D,R), (U,R)} and (U,L) is chosen from {(U,L), (U,R)}. For player

1, (D,R) is preferred to (U,R); for player 2, (U,L) is preferred to (U,R), which implies

player 1 prefers (U,R) to (U,L). As a result, the preference of player 1 forms a cycle, which

implies that all possible joint actions are indeed indifferent for player 1 (and thus for player

2 by the fact that the game is zero-sum). Therefore, we would expect to see all strategy

profiles chosen.

This example shows that once we have two choices on the diagonal in a table of joint

actions, the other two pairs of actions must also be chosen in order for the joint choices

to follow Nash equilibrium behavior for a zero-sum game. When choice behavior forms

a product subset for each game table, we say that the choice behavior is interchangeable.

Although it is easy to identify that interchangeability is necessary, whether the condition is

sufficient is not as straightforward.

Our main theorem shows that this interchangeability of joint choice behavior is indeed

the only additional condition that distinguishes the testable implications of zero-sum games

from those of general non-cooperative games. It is worth pointing out two assumptions be-

hind the theorem. First, we restrict Nash rationalizability to pure strategy Nash equilibria.

Second, we assume complete observations, where choices are observed from all product sets

of individual actions.

This paper follows a broad range of revealed preference theory. Since Samuelson (1938),

there have been numerous papers on revealed preference theory in various settings. In the

context of collective choice, Wilson (1970) and Plott (1974) study cooperative games and

find that the Weak Axiom implies the solution concept proposed by von Neumann and Mor-

genstern. More recently, Echenique and Ivanov (2011) and Chambers and Echenique (2011)



58

study the testable implications of collective decision making such as household behavior and

bargaining over money.

The testable implications of game theoretic models have grown only recently relative to

the history and popularity of game theory. Peleg and Tijs (1996) and Sprumont (2000) find

conditions of joint choice behaviors being consistent with Nash equilibria, as the correspond-

ing games are reduced or expanded. Galambos (2009) weakens the complete observation

assumption, and Demuynck and Lauwers (2009) study joint choices over lotteries. The two

approaches adopt Richter (1971)’s congruence axiom, and find that the modified versions

of the congruence axiom are necessary and sufficient conditions for Nash rationalizability.

Ray and Zhou (2001), and Ray and Snyder (2003) consider extensive form games, and find

conditions such that sequential choices are rationalizable by a subgame perfect Nash equi-

librium. Xu and Zhou (2007) characterize conditions under which choices are rationalizable

by game trees when the choice process is not observable.

In the context of more concrete games, Forges and Minelli (2009) apply their main result

to market games, in which each player’s budget constraint depends on other players’ actions.

For the model of Cournot competition, Carvajal, Deb, Fenske, and Quah (2010) consider

the case of observing a finite set of prices and quantities, and Cherchye, Demuynck, and

De Rock (2011) consider the case of observing price and quantity functions defined over

exogenous variables. Both studies characterize conditions under which their observed data

are consistent with the model of Cournot competition.

3.2 Model and Main Theorem

There are two players, 1 and 2. Let A1 and A2 be finite sets of actions that players 1 and

2 may conceivably choose. A := A1 × A2 is the set of all possible joint actions. Following

the classical revealed preference approach, suppose we observe choices from B := B1 × B2

in which B1 ⊂ A1 and B2 ⊂ A2 are the sets of available actions for player 1 and 2. In this

model, all choices from each B ⊂ A can be summarized as a choice correspondence.

Definition 1. Let A := {B = B1 ×B2|∅ 6= B ⊂ A} be the set of all nonempty product sets

included in A. A joint choice correspondence f assigns to each B ∈ A a nonempty set
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f(B) ⊂ B.

In the case where at most one player has more than one available action in B, we say

that B is a line. Depending on the player, the line is either in a column or a row - the

former when player 1 has choices, the latter when player 2 has choices. In addition, we call

a product subset B ∈ A a feasible set. For any B
′′ ⊂ B and B

′′ ∈ A, we call B
′′

a feasible

subset of B. For any B,B
′ ∈ A, define B∨B′ as the set of all possible pairs of actions from

Bi and B
′
i (i = 1, 2). That is,

B ∨B′ :=
∏
i=1,2

(Bi ∪B
′
i)

Suppose we wish to test whether a choice correspondence is rational or not. First, we

shall assume that each player is individually rational. That is, each player has a preference

relation over joint actions, and these relations are complete and transitive.3 We call such

relations weak orders. In addition, we wish to test if the players are collectively rational.

In terms of collectively rationality, we assume that players play a Nash equilibrium. The

following definition is our notion of rationalizability of collective choice behavior.

Definition 2. A joint choice correspondence f is Nash-rationalizable if there are two

weak orders �1,�2 on A such that for each B ∈ A, f(B) coincides with the set of all Nash

equilibria of the game (B,�1,�2).4

Sprumont (2000) introduces the following conditions for Nash-rationalizability. These

conditions are extended versions of Sen’s α, β, and γ in individual choice theory (see, e.g.,

Moulin (1985)).5 When a feasible set is restricted to a line, the first condition coincides

with Sen’s α and β, and the second condition coincides with Sen’s γ.

Definition 3. A joint choice correspondence over A is:

• Persistent under Contraction (PC):

3 A relation � is called complete if for all joint choices a, b ∈ A, it follows that a � b or b � a, and is
called transitive if for all a, b, c ∈ A for which a � b and b � c, it follows that a � c.

4 In other words, if (b1, b2) ∈ f(B), then (b1, b2) �1 (b′1, b2) and (b1, b2) �2 (b1, b
′
2) for every (b′1, b2) ∈ B

and (b1, b
′
2) ∈ B.

5Although Moulin (1985) calls these conditions Chernoff and Expansion, Sen’s α, β, and γ are more
conventional terminologies in individual choice theory. See, for example, Austen-Smith and Banks (1994).
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(PC1) : For all B,B
′ ∈ A with B

′ ⊂ B, f(B) ∩B′ ⊂ f(B
′
).

(PC2) : Moreover, if B is a line, B′ ⊂ B and f(B) ∩B′ 6= ∅ implies f(B
′
) ⊂ f(B).

• Persistent under Expansion (PE): For all B,B
′ ∈ A, f(B)∩ f(B

′
) ⊂ f(B ∨B′).

With these two conditions, Sprumont (2000) establishes the following theorem.

Theorem 3.2.1. A joint choice correspondence f is Nash-rationalizable if and only if it

satisfies (PC) and (PE).

Using this model of Nash-rationalizability, we restrict the set of available rationalizing

games from the set of all non-cooperative games to include only zero-sum games, or games

of conflicting interests. Under the conditions of zero-sum games, the preferences of two

players are opposed. Therefore, while a general non-cooperative game consists of two weak

orders, zero-sum games require only a single weak order.

Definition 4. Let � be a weak order over A, and � is the inverse relation of �.6 The

game defined by (A,�,�) is called a two-person zero-sum game. We say that a joint

choice correspondence f is Nash-rationalizable by a zero-sum game if there is a weak

order � on A such that for each B ∈ A, f(B) coincides with the set of all Nash equilibria

of the game (B,�,�).

As demonstrated in Example 1, not all Nash-rationalizable joint choice correspondences

are Nash-rationalizable by a zero-sum game. In the example, we needed one additional

condition to fill the gap in the product space of the two distinct choices. We formally state

this condition in the following definition.

Definition 5 (Interchangeability (INT)). A joint choice correspondence f over A is in-

terchangeable if for all B ∈ A and all b, b
′ ∈ f(B), {b} ∨ {b′} ⊂ f(B).

It is well-known that any pair of equilibrium strategies of a zero-sum game, one for each

player, is an equilibrium strategy profile (see, e.g., Luce and Raiffa (1989)). Provided that

6 Let � be a binary relation over A. We define the inverse relation � as

for all a, b ∈ A for which a � b, b � a.

The inverse relation of a weak order is also a weak order. The proof is immediate by definition.
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players face a zero-sum game, and observed joint actions follow the Nash-equilibria of the

corresponding games, the choice correspondence must be interchangeable. Our contribution

is showing that interchangeability is indeed the only additional behavioral implication which

distinguishes zero-sum games from general non-cooperative games. We summarize this

result as the following main theorem.

Theorem 3.2.2. A joint choice correspondence is Nash-rationalizable by a zero-sum game

if and only if it satisfies (PC), (PE), and (INT).

3.3 Discussion

Our model assumes the existence of a joint choice for all B ∈ A. Accordingly, verify-

ing whether a joint choice correspondence is Nash-rationalizable means assuming that all

feasible sets have a pure strategy Nash equilibrium. Although a small literature provides

conditions of zero-sum games having pure strategy Nash equilibria (Shapley, 1964; Radzik,

1991; Duersch, Oechssler, and Schipper, forthcoming), the characterization of conditions

that are both necessary and sufficient remains an open question. We may avoid this exis-

tence issue by investigating either mixed strategies or correlated strategies. However, these

strategies introduce other difficulties since observed joint choices do not directly represent

underlying preferences.

Our model also requires observed choices from all feasible sets. We may weaken this

requirement by assuming incomplete observations, where a choice correspondence is defined

on A′ ⊂ A. In classical choice theory, Richter (1971) shows that a choice correspondence

with incomplete observations is rationalizable by a weak order if and only if it is congruent.

Galambos (2009) generalizes Richter’s congruence condition, and shows that the generalized

congruence condition is necessary and sufficient for Nash-rationalizability with incomplete

observations.

Unfortunately, interchangeability together with individual-level congruent choices is not

sufficient for Nash-rationalizability by a zero-sum game. For example, suppose A′ is the set

of B := {U,M} × {L,C,R}, B′ := {U,M,D} × {C,R}, and all lines in B and B′. Suppose

f(B) = {(M,R)} and f(B′) = {(U,C)}, and assume that choices in each line satisfy (PE)
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and (PC). The choices are congruent in terms of Galambos (2009), and therefore, Nash-

rationalizable. However, the choices are not Nash-rationalizable by a zero-sum game. From

{U,M}×{C,R}, (U,C) and (M,R) are the only choices consistent with the choices in each

line, but this observation violates interchangeability.7

7 Alternatively, we may consider a congruent joint choice correspondence f : A′ ⇒ A, where A′ ⊂ A is a
set of observed games. We define a binary relation � on A by: for a = (a1, a2), b = (b1, b2) ∈ A,

a � b if and only if there exists B ∈ A′ such that a, b ∈ B, and

either a2 = b2 and a ∈ f(B), or a1 = b1 and b ∈ f(B).

If there is a finite sequence c, d, . . . , e such that a � c � d · · · � e � b, then we write aT� b. We say that a
joint choice correspondence f is congruent, if for all a, b ∈ A and all B ∈ A′,

aT� b, a ∈ B, and b ∈ f(B) =⇒ a ∈ f(B).

Assuming that a joint choice correspondence is congruent is, however, almost the same as assuming its
Nash-rationalizability by a zero-sum game. In particular, when A′ = A, the assumption implies that the
relation � is consistent (see Definition 6). Most of the proof in this paper is devoted to showing that � is
consistent (see Section C.1).
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Appendix A

Appendix to Chapter 1: Large
Matching

First in Appendix A.1, we summarize definitions and related theorems of asymptotic statis-

tics. We prove Theorem 1 for the case of λ = 0 in Appendix A.2, and for the case of

0 < λ < 1 in Appendix A.7. The proof of Theorem 4 is given in Appendix A.4. Lastly in

Appendix A.5, we provide additional simulation results of effects of limited acceptability

assumption on the proportion of unmatched agents.

A.1 Asymptotic Statistics (Serfling, 1980)

Let X1, X2, . . . and X be random variables on a probability space (Ω,A, P ). We say that

Xn converges in probability to X if

lim
n→∞

P (|Xn −X| < ε) = 1, every ε > 0.

This is written Xn
p−→ X.

For r > 0, we say that Xn converges in the rth mean (or in the Lr-norm) to X if

lim
n→∞

E (|Xn −X|r) = 0.

This is written Xn
Lr−→ X.

Theorem A.1.1. If Xn
Lr−→ X, then Xn

p−→ X.
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Theorem A.1.2. Suppose that Xn
p−→ X, |Xn| ≤ |Y | with probability 1 (for all n), and

E (|Y |r) <∞. Then, Xn
Lr−→ X.

Remark 1. In this paper, most random variables represent proportions, which are bounded

above by 1 with probability 1. As such, convergence in probability and convergence in the

rth mean are equivalent.

Theorem A.1.3. Let X1,X2, . . . , and X be random k-vectors defined on a probability

space, and let g be a vector-valued Borel function defined on Rk. If g is continuous with

PX-probability 1, then

Xn
p−→ X =⇒ g(Xn)

p−→ g(X).

In particular, if Xn
p−→ X and Yn

p−→ Y , then Xn + Yn
p−→ X + Y and XnYn

p−→ XY .

Given a univariate distribution function F and 0 < q < 1, we define qth quantile ξq as

ξq := inf{x : F (x) ≥ q}.

Consider an i.i.d sequence 〈Xi〉 with distribution function F . For each sample of size n,

{X1, X2, . . . , Xn}, a corresponding empirical distribution function Fn is constructed as

Fn(x) :=
1

n

n∑
i=1

1 {Xi ≤ x} , −∞ < x <∞.

The empirical qth quantile ξ̂q:n is defined as the qth quantile of the empirical distri-

bution function. That is

ξ̂q:n := inf{x : Fn(x) ≥ q}.

For each x, Fn(x) is a random variable, and therefore, ξ̂q:n is also a random variable.

Theorem A.1.4. Suppose that qth quantile ξq is the unique solution x of F (x−) ≤ q ≤

F (x). Then, for every 0 < q < 1 and ε > 0,

P
(∣∣∣ξ̂q:n − ξq∣∣∣ > ε

)
≤ 2e−2nλ2

ε

for all n, where λ1,ε = F (ξq + ε)− q, λ2,ε = q − F (ξq − ε), and λε = min{λ1,ε, λ2,ε}.



65

For each sample of size n, {X1, X2, . . . , Xn}, the ordered sample values

X1:n ≤ X2:n ≤ · · · ≤ Xn:n

are called the order statistics.

In view of

Xk:n = ξ̂k/n:n, 1 ≤ k ≤ n, (A.1)

we will carry out proofs in terms of empirical quantiles, even when variables are defined as

order statistics.

A.2 Proof of Theorem 1 (λ = 0)

Let ζ = [ζf,w] be an i.i.d sample from a continuous distribution ΓW with support [0, ū], and

η = [ηf,w] be an i.i.d sample from a continuous distribution ΓF with support [0, v̄].1

For ε > 0 and for each 〈F,W, u, v〉, we define

BF (ε;u, v) := F\AF (ε;u, v) = {f ∈ F | ∆(f ;u, v) ≥ ε} ,

and prove that

E

[∣∣BF (ε;U, V )
∣∣

n

]
→ 0, as n→∞. (A.2)

We define the set of firms whose utilities from the worst stable matching are significantly

below the upper bound ū, which we shall write as

B̄(ε;u, v) := {f ∈ F |uµW (f) ≤ ū− ε} .

Note from uµF (f) ≤ ū that

uµF (f)− uµW (f) ≤ ū− uµW (f),

1 We use ΓW , instead of ΓF , to represent the distribution of utilities of firms, interpreting it as the
distribution of private-values of workers. This notation will be consistent with the additional notation GW

representing the distribution of workers’ common-values. By the same reason, we use ΓF to denote the
distribution of utilities of workers, or private-values of firms.
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and thus

BF (ε;u, v) ⊂ B̄(ε;u, v).

Therefore, (A.2) follows immediately from the following proposition.

Proposition A.2.1. For every ε > 0,

E

[∣∣B̄(ε;U, V )
∣∣

n

]
→ 0 as n→∞.

We divide the proof of Proposition A.2.1 into two lemmas. For every market instance

〈F,W, u, v〉, we let RµW (f) be the rank number of firm f ’s worker-optimal stable matching

partner: e.g. RµW (f) = 1 if f matches with its most preferred worker. We first observe

that for most firms, the rank number of worker-optimal matching partner normalized by n

converges to 0. The second lemma shows that the corresponding utility level must become

close to the upper bound ū as the market becomes large.

Lemma A.2.2. For γ > 0, let

B̄q(γ;u, v) :=

{
f ∈ F | RµW (f)

n
≥ γ

}
=

{
f ∈ F | 1− RµW (f)

n
≤ 1− γ

}
.

Then, for every sequence 〈γn〉 such that γn → 0 and (log n) · γn →∞,

E

[∣∣B̄q(γn;U, V )
∣∣

n

]
→ 0 as n→∞.

Proof. For every instance 〈F,W, u, v〉 and for every sequence 〈γn〉 satisfying the conditions,

1

n
γn
∣∣B̄q(γn;u, v)

∣∣ ≤ 1

n

∑
f∈B̄q(γn;u,v)

RµW (f)

n

≤ 1

n

∑
f∈Fn

RµW (f)

n
.

We use Theorem 2 in Pittel (1989) showing that

∑
f∈Fn RµW (f)

n2 log−1 n

p−→ 1. (A.3)
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Applying (A.3), we shall write

∣∣B̄q(γn;U, V )
∣∣

n
≤
∑

f∈Fn RµW (f)

n2

1

γn

=

∑
f∈Fn RµW (f)

n2 log−1 n

1

log n · γn
p−→ 0 as n→∞.

We obtain Lemma A.2.2 since
|B̄q(γn;U,V )|

n is bounded above by 1 with probability 1 for

all n so that convergence in probability implies convergence in mean (Theorem A.1.2).

Lemma A.2.3. For any γ > 0, let

B̄′(ε, 1− γ;u, v) :=
{
f ∈ F | ξ̂f1−γ;n ≤ ū− ε

}
,

where ξ̂f1−γ;n is the realized value of the empirical (1− γ)th quantile of Uf = 〈Uf,w〉w∈Wn.

Then, for every ε > 0 and sequence 〈γn〉 such that γn → 0 and (log n) · γn →∞,

E

[∣∣B̄′(ε, 1− γn;U, V )
∣∣

n

]
→ 0 as n→∞.

Proof. For each n, let fn ∈ Fn and consider the resulting sequence 〈fn〉∞n=1. Note that

E

[
|B̄′(ε, 1− γn;U, V )|

n

]
=

1

n

∑
f∈Fn

E
[
1
{
ξ̂f1−γn;n ≤ ū− ε

}]
= E

[
1
{
ξ̂fn1−γn;n ≤ ū− ε

}]
= P

(
ξ̂fn1−γn;n ≤ ū− ε

)
.

Thus, it is enough to show that

P
(
ξ̂fn1−γn;n ≤ ū− ε

)
→ 0, as n→∞.

Take any q from the interval
(
ΓW (ū− ε), 1

)
such that qth quantile ξq is the unique
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solution x of ΓW (x−) ≤ q ≤ ΓW (x).2 For any large n, we have 1− γn > q, and thus

ξ̂fn1−γn;n ≥ ξ̂
fn
q;n.

Therefore, we shall write

P
(
ξ̂fn1−γn;n ≤ ū− ε

)
≤ P

(
ξ̂fnq;n ≤ ū− ε

)
= P

(∣∣∣ξ̂fnq;n − ξq∣∣∣ ≥ ξq − (ū− ε)
)
,

which converges to 0 by Theorem A.1.4.

We complete the proof of Proposition A.2.1 using the following observation. For each

〈F,W, u, v〉 and for every sequence 〈γn〉 such that γn → 0 and (log n) · γn →∞,

B̄(ε;u, v) =
(
B̄(ε;u, v) ∩ B̄q(γn;u, v)

)
∪
(
B̄(ε;u, v) ∩ (F\B̄q(γn;u, v))

)
⊂ B̄q(γn;u, v) ∪

(
B̄(ε;u, v) ∩ (F\B̄q(γn;u, v)

)
.

Each f in F\B̄q(γn;u, v) matches in µW with a worker of a normalized rank less than

γn. Nevertheless if f obtains utility less than ū − ε in µW (i.e. f ∈ B̄(ε;u, v)), then the

realized empirical (1− γn)th quantile of his utilities is below ū− ε.

That is,

B̄(ε;u, v) ∩ F\B̄q(γn;u, v) ⊂ B̄′(ε, 1− γn;u, v),

and therefore

B̄(ε;u, v) ⊂ B̄q(γn;u, v) ∪ B̄′(ε, 1− γn;u, v).

We proved in Lemma A.2.2 and A.2.3 that both
|B̄q(γn;U,V )|

n and |B̄
′(ε,1−γn;U,V )|

n converge

to 0 in mean, which completes the proof.

2 There exists such a q. For every q in
(
ΓW (ū− ε), 1

)
, we have xq in (ū − ε, ū) such that ΓW (xq) = q

by Intermediate Value Theorem. Suppose toward contradiction that every q has two distinct xq and x̄q in

(ū− ε, ū) such that ΓW (xq) = ΓW (x̄q) = q. Since ΓW (·) is a distribution, every q then has a closed interval

[xq, x̄q] such that ΓW (x) = q for all x ∈ [xq, x̄q]. Moreover, if q 6= q′, then [xq, x̄q] and [xq′ , x̄q′ ] are disjoint.

There are uncountable number of elements in
(
ΓW (ū− ε), 1

)
, whereas there are at most countable number

of closed disjoint intervals in (ū− ε, ū).
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A.3 Proof of Theorem 1 (0 < λ < 1).

To simplify notations, we compress λ and 1− λ, and consider utilities defined as

Uf,w = Uow + ζf,w and Vf,w = V o
f + ηf,w.

We do not lose generality since we can regard common-values and private-values as the ones

already multiplied by λ and 1− λ, respectively.

Let Uon and V o
n be i.i.d samples of size n from distributions GW and GF , respectively.

GW and GF have strictly positive density functions on supports in R+. ζ = [ζf,w] is an

i.i.d sample from a continuous distribution ΓW with support [0, ū], and η = [ηf,w] is an i.i.d

sample from a continuous distribution ΓF with support [0, v̄].3

We define

BF (ε;u, v) := F\AF (ε;u, v) = {f ∈ F | ∆(f ;u, v) ≥ ε}

and prove that |B
F (ε;U,V )|
n converges to 0 in probability, which is equivalent to proving

convergence to 0 in mean (Theorem A.1.2). That is, we fix ε > 0 and K ∈ N, and prove

that

P

(
|BF (ε;U, V )|

n
>

9

K

)
→ 0, as n→∞.

First, we partition the supports of the common-value distributions into K intervals.

Then for each market instance, in particular for each realized profile of common-values, we

group firms and workers into two versions of a finite number of tiers, where agents in the

same tier have similar common-values. We first find that tier-k firms are most likely to

achieve a utility level higher than an arbitrary ε less than the maximal utility achievable

from workers in tier-(k + 3) (Proposition A.7.1).4 For the proof, we use techniques from a

3 When λ > 0, we can relax this assumption such that each pair of ζf,w and ηf,w is an i.i.d sample from
a continuous joint distribution with a bounded support in R2

+.
4 In Section 1.4, we showed with a market with tiers that firms in tier-t are most likely to achieve a utility

level higher than an arbitrary ε less than the maximal utility from a worker in tier-(k+1). In the model with
tiers, each tier has a distinct tier-specific common-value, so there is a clear-cut distinction between tier-k
and tier-(k + 1) specific values. In the general model (without tiers), however, there is no such distinction
in common-values between adjacent tiers. The highest common-value of workers in tier-(k + 1) can be
arbitrarily close to the lowest common-value of workers in tier-k. This leads us to use the maximal utility
from a worker in tier-(k+3) rather than tier-(k+1) as an asymptotic lower bound on utilities of tier-k firms.
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theory of random bipartite graphs.

Once we find an asymptotic lower bound on utilities of firms in each tier, we find an

asymptotic upper bound on utilities of firms in a tier, say k, by referencing to the asymptotic

lower bounds on utilities of workers in tiers higher than k (Proposition A.7.2). As workers

in higher tiers achieve high utilities, they are most likely to match with firms in high tiers,

rather than firms in tier-k. Accordingly, the utilities of tier-k firms are asymptotically

bounded above by the maximal utility that they can achieve by matching with workers in

tiers near k.

As we finely partition the supports of the common-value distributions, the differences

in common-values between adjacent tiers become small. Then, the asymptotic lower bound

on utilities of tier-k firms will become close to the maximal utility achievable from workers

in tier-k. In addition, the asymptotic upper bound also becomes close to the same level,

since the maximal utility achievable from workers in tiers near k will also become close to

the maximal utility achievable from workers in tier-k.

We divide the proof into three subsections. First, in Subsection A.7.2, we construct two

tier structures from each profile of realized common-values. Then in Subsection A.7.3, we

define three events related to the tier structures, and show that the all three events occur

with a probability converging to 1 as the market becomes large. The real proof begins in

subsection A.7.4. During the proof, we shall focus on the market instances where realized

firms’ or workers’ common-values are all distinct. GF and GW are continuous, ensuring

that realized common-values are all distinct with probability 1.

A.3.1 Tier-Grouping

We use the following notations.

1. ξFq and ξWq : qth quantile of GF and GW .

2. ξ̂Fq;n and ξ̂Wq;n: empirical qth quantile of samples of size n from distributions GF and

GW , respectively. We also use ξ̂Fq;n and ξ̂Wq;n to denote their realizations.

Since realized common-values uon = 〈uow〉w∈Wn and von = 〈vof 〉f∈Fn are all distinct with

probability 1, we index firms and workers from i = 1 to n in the order of their common-
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values: i.e.

vofi > vofj and uowi > uowj , if i < j.

Then, Uowi;n and V o
fi;n

represent ith highest values of n order statistics from GW and GF .

Note that Uowi;n = ξ̂W
(1− i−1

n
);n

by the relationship between order statistics and empirical

quantiles (see Equation (A.1)).

We partition the support of GW into

IW1 := (ξW
1− 1

K

,∞]

IW2 := (ξW
1− 2

K

, ξW
1− 1

K

]

...

IWk := (ξW
1− k

K

, ξW
1− k−1

K

]

...

IWK := [0, ξW1
K

].

We define the set of workers in tier-k (with respect to workers’ common-values) as

Wk(u) :=
{
w | uow ∈ IWk

}
for k = 1, 2, . . . ,K,

and define the set of firms in tier-k (with respect to workers’ common-values) as

Fk(u) := {fi ∈ Fn | wi ∈Wk(u)}.

We will use the following notations.

1. lk(u) := |Fk(u)| = |Wk(u)|: The size of tier-k (with respect to workers’ common-

values).

2. uok := ξW
1− k

K

: The threshold level of tier-k and tier-(k + 1) workers’ common-values.

Note, w ∈Wk(u) if and only if uok < uow ≤ uok−1.

Remark 2. The set of tier-k workers is defined with respect to workers’ common-values,

which is a random sample. Therefore, Wk(U) is random, and so is Fk(U). In particular,
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the size of tier-k, lk(U), is random; whereas, uok is a constant.

In parallel, we partition the support of GF into

IF1 := (ξF
1− 1

K

,∞]

IF2 := (ξF
1− 2

K

, ξF
1− 1

K

]

...

IFk := (ξF
1− k

K

, ξF
1− k−1

K

]

...

IFK := [0, ξF1
K

].

We define the set of firms in tier-k (with respect to firms’ common-values) as

Fk(v) :=
{
f | vof ∈ IFk

}
for k = 1, 2, . . . ,K,

and define the set of workers in tier-k (with respect to firms’ common-values) as

Wk(v) := {wi ∈Wn | fi ∈ Fk(v)}.

Accordingly, we use the following notations.

1. lk(v) := |Fk(v)| = |Wk(v)|: The size of tier-k (with respect to firms’ common-values).

2. vok := ξF
1− k

K

: The threshold level of tier-k and tier-(k+1) firms’ common-values. Note,

f ∈ Fk(u) if and only if vok < vof ≤ vok−1.

Remark 3. Tiers with respect to workers’ common-values are in general not the same

as tiers with respect to firms’ common-values. In particular, we are most likely to have

lk(u) 6= lk(v).

Throughout the proof, we mainly use tiers defined with respect to workers’ common-

values. However, we need both tier structures in the last part of the proof. We simply write

“tier-k” to denote tier-k with respect to workers’ common-values, and use “(w.r.t firm)

tier-k” to denote tier-k with respect to firms’ common-values.
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A.3.2 High-Probability Events

We introduce three events and show that the events occur with probabilities converging to

1 as the market becomes large. We provide proofs for completeness, but the main ideas

are simply from the (weak) law of large numbers. In the next section, we will leave the

probability that the following events do not occur as a remainder term converging to zero,

and focus on the probabilities conditioned that the following events all occur.

A.3.2.1 No vanishing tiers

Event 1 (E1). Let K̄ > K. For all k = 1, 2, . . . ,K,

lk(U)

n
>

1

K̄
.

Proof. By definition,

lk(U)

n
:=

1

n

∑
w∈Wn

1{Uow ∈ IWk },

which converges to 1
K in probability by the (weak) law of large numbers.

A.3.2.2 Distinct common-values of the firms in non-adjacent tiers.

Let ε̃ > 0 be such that for any v, v′ ∈ [0, ξF1−1/K ] and |v − v′| ≤ ε̃,

|GF (v)−GF (v′)| < 1

3K
.

There exists such an ε̃ since GF is uniformly continuous on [0, ξF1−1/K ].

Event 2 (E2). For every k = 1, 2, . . . ,K − 2,

min
f∈Fk(U)

f ′∈Fk+2(U)

|V o
f − V o

f ′ | > ε̃.

Proof. Fix k ∈ 1, 2, . . . ,K − 2 and realized u. For every wi ∈Wk(u) and wj ∈Wk+2(u),

uowi > uok = ξW
1− k

K

, and uowj ≤ u
o
k+1 = ξW

1− k+1
K

. (A.4)
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For any q ∈ (0, 1), ξ̂Wq;n
p−→ ξWq (Theorem A.1.4), from which the following inequalities

hold with probability converging to 1 as n→∞.

ξW
1− k

K

> ξ̂W
1− k

K
− 1

4K

and ξW
1− k+1

K

< ξ̂W
1− k+1

K
+ 1

4K

. (A.5)

Considering (A.21) and the relation between order statistics and empirical quantiles

(Equation (A.1)), if (A.22) holds, we have

1− k

K
− 1

4K
< min

wi∈Wk(u)

(
1− i− 1

n

)
= min

fi∈Fk(u)

(
1− i− 1

n

)

and

1− k + 1

K
+

1

4K
> max

wj∈Wk+2(u)

(
1− j − 1

n

)
= max

fj∈Fk+2(u)

(
1− j − 1

n

)
.

Then for every fi ∈ Fk(u) and fj ∈ Fk+2(u),

vofi > ξ̂F
1− k

K
− 1

4K

and vofj < ξ̂F
1− k+1

K
+ 1

4K

.

Therefore,

P
(

inf
fi∈Fk(U)
fj∈Fk+2(U)

∣∣∣V o
fi
− V o

fj

∣∣∣ ≤ ε̃) ≤ P
(∣∣∣ξ̂F

1− k
K
− 1

4K

− ξ̂F
1− k+1

K
+ 1

4K

∣∣∣ ≤ ε̃)+Rn

≤ P

(∣∣∣GF (ξ̂F
1− k

K
− 1

4K

)−GF (ξ̂F
1− k+1

K
+ 1

4K

)
∣∣∣ < 1

3K

)
+Rn,(A.6)

where Rn corresponds to the probability that (A.22) is violated: i.e. Rn → 0. The last

inequality is by the definition of ε̃.

Note that

GF (ξ̂F
1− k

K
− 1

4K

)−GF (ξ̂F
1− k+1

K
+ 1

4K

)
p−→ 1

2K

by Theorem A.1.4 and continuity of GF (Theorem A.1.3). As a result, the right hand side

of (A.23) converges to 0.
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A.3.2.3 Similarity between tiers w.r.t workers’ common-values and tiers w.r.t

firms’ common-values

The following event is the case that all firms in tier-k with respect to workers’ common-

values are in a tier near k with respect to firms’ common-values, and vice versa.

Event 3 (E3). For every k = 1, 2, 3, . . . ,K,

Fk(U) ⊂
k+1⋃

k′=k−1

Fk′(V ) and Wk(V ) ⊂
k+1⋃

k′=k−1

Wk′(U).5

Proof. We prove the first part and omit the proof of the second part.

For each realized (u, v), we have

{uow|w ∈Wk(u)} ⊂
(
uok, u

o
k−1

]
=
(
ξW

1− k
K

, ξW
1− k−1

K

]
. (A.7)

Suppose (
ξW

1− k
K

, ξW
1− k−1

K

]
⊂
(
ξ̂W

1− k
K
− 1

2K

, ξ̂W
1− k−1

K
+ 1

2K

]
, (A.8)

and (
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
⊂
(
ξF

1− k+1
K

, ξF
1− k−2

K

]
. (A.9)

If (A.25) hold, then (A.24) implies that for every tier-k worker wi, we have

uowi ∈
(
ξ̂W

1− k
K
− 1

2K

, ξ̂W
1− k−1

K
+ 1

2K

]
,

and thus,

1− i− 1

n
∈
(

1− k

K
− 1

2K
, 1− k − 1

K
+

1

2K

]
.

Then for any tier-k firm fi, we have

vofi ∈
(
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
,

5 We simply assume that F0(V ), F0(V ), WK+1(U), and WK+1(U) are empty sets.
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which implies that {
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
.

Consequently if both (A.25) and (A.26) hold, then

{
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
⊂
(
ξF

1− k+1
K

, ξF
1− k−2

K

]
=

k+1⋃
k′=k−1

IFk′ .

In other words,

Fk(u) ⊂
k+1⋃

k′=k−1

Fk′(v).

(A.25) and (A.26) occur with probability converging to 1 (Theorem A.1.4), and thus

the event E3 also occurs with probability converging to 1.

A.3.3 Proof of the Theorem 1

We choose K large enough that

max
1≤k≤K−1

∣∣uok − uok+1

∣∣ ≡ max
1≤k≤K−1

∣∣∣ξW
1− k

K

− ξW
1− k+1

K

∣∣∣ < ε

9
.6 (A.10)

We divide the proof into two propositions. The first proposition finds an asymptotic

lower bound on utilities of firms in each tier, using techniques from the theory of random

bipartite graphs. Similarly, we have a proposition for an asymptotic lower bound on utilities

of workers in each tier. The second proposition derives an asymptotic upper bound on

utilities of firms in each tier, by referencing the lower bounds on utilities of workers in

higher tiers. The Theorem 1 follows from the fact that the lower bound and the upper

bound are close to each other.

6 We can always satisfy the condition since GW has a strictly positive density function.
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Proposition A.3.1. For each instance 〈F,W, u, v〉 and for each k̄ = 1, 2, . . . ,K− 2, define

B̂F
k̄ (ε;u, v) :=

{
f ∈ Fk̄(u) : uµW (f) ≤ uok̄+2 + ū− ε

}
.7

Then for any ε > 0,
|B̂F

k̄
(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. For each instance 〈F,W, u, v〉 and for each k = 1, 2, . . . ,K, let F≤k(u) :=
⋃
k′≤k Fk′(u)

and F<k(u) :=
⋃
k′<k Fk′(u). Similarly, we define W≤k(u) and W<k(u).

Take any k̄ from {1, 2, . . . ,K−2}. We construct a bipartite graph with Fk̄(u)∪W≤k̄+2(u)

as a partitioned set of nodes. (see Section 3 for the related definitions.) Two vertices

f ∈ Fk̄(u) and w ∈W≤k̄+2(u) are joined by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃,

where ε̃ is the value taken before, while defining E2.

Let W̄≤k̄+2(u, v) be the set of workers in tiers up to k̄ + 2 who are not matched with

firms in tiers up to k̄ + 1 in µW . That is,

W̄≤k̄+2(u, v) :=
{
w ∈W≤k̄+2(u) |µW (w) /∈ F≤k̄+1(u)

}
.

We now show that if E2 holds, then

B̂F
k̄ (ε;u, v) ∪ W̄≤k̄+2(u, v)

is a biclique.

Suppose, towards a contradiction, that a pair of f ∈ B̂F
k̄

(ε;u, v) and w ∈ W̄≤k̄+2(u, v) is

not joined by an edge: i.e.

ζf,w > ū− ε and ηf,w > v̄ − ε̃.
7 Note that uok̄+2 + ū is the maximal utility level a firm can achieve by matching with a worker in

tier-(k̄ + 3).
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Then, we first have

uf,w = uow + ζf,w > uok̄+2 + ζf,w > uok̄+2 + ū− ε, (A.11)

and also have

vf,w = vof + ηf,w ≥ min
f ′∈Fk̄(u)

vof ′ + ηf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ − ε̃.8

Conditioned on E2, we can proceed further and obtain

vf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ −

(
min

f ′∈Fk̄(u)
vof ′ − max

f ′′∈Fk̄+2(u)
vof ′′

)
= max

f ′′∈Fk̄+2(u)
vof ′′ + v̄. (A.12)

On the other hand, f ∈ B̂F
k̄

(ε;u, v) implies that

uµW (f) ≤ uok̄+2 + ū− ε,

and w ∈ W̄≤k̄+2(u, v) implies that

vµW (w) ≤ max
f ′′∈Fk̄+2(u)

vof ′′ + v̄,

since a worker can obtain utility higher than maxf ′′∈Fk̄+2(u) v
o
f ′′ + v̄ only by matching with

a firm in F≤k̄+1(u).

Then, (A.28) and (A.29) implies that (f, w) would have blocked µW , contradicting that

µW is stable. Therefore,

B̂F
k̄ (ε;u, v) ∪ W̄≤k̄+2(u, v).

is a biclique, which is not necessarily balanced.

We now control the size of B̂F
k̄

(ε;U, V ) by referencing Theorem 3. Let uo and vo be

realized common-values such that events E1 and E2 hold. Then, the remaining randomness

8 We should not replace minf ′∈Fk̄(u) v
o
f ′ with vok̄. Fk̄(u) is defined with respect to workers’ common-values,

rather than firms’ common-values.
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of U and V is from ζ and η. Consider a random bipartite graph with Fk̄(U) ∪W≤k̄+2(U)

as a bi-partitioned set of nodes, where each pair of f ∈ Fk̄(U) and w ∈W≤k̄+2(U) is joined

by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃.

In other words, every pair is joined by an edge independently with probability

p(ε) = 1−
(
1− ΓW (ū− ε)

)
·
(
1− ΓF (v̄ − ε̃)

)
.

We write β(n) := 2 · log(l≤k̄+2(U))/ log 1
p(ε) , and show that

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)
→ 1 as n→∞.9

First, observe that W̄≤k̄+2(U, V ) is the size of at least lk̄+2(U). Among l≤k̄+2(U) workers

in tiers up to k̄+2 at most l≤k̄+1(U) are matched with firms in tiers up to k̄+1. In addition,

lk̄+2(U) > β(n) with large n, since E1 holds. Therefore, with large n, we shall write

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)

= P
(

min
{
|B̂F

k̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|
}
≤ β(n)

)
. (A.13)

Let α(U, V )× α(U, V ) be the size of a maximum balance biclique of the random graph

G
(
Fk̄(U) ∪W≤k̄+2(U) , p(ε)

)
.

Since every realized B̂F
k̄

(ε;u, v)∪W̄≤k̄+2(u, v) is a biclique, it contains a balanced biclique

of the size equals to

min
{
|B̂F

k̄ (ε;u, v)| , |W̄≤k̄+2(u, v)|
}
.

Therefore,

P
(

min
{
|B̂F

k̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|
}
≤ β(n)

)
≥ P (α(U, V ) ≤ β(n)) . (A.14)

9 Note that we fixed common-values as a realization uo and vo such that the events E1 and E2 occur.
Thus for now, the tier-structure is deterministic, and β(n) is, in turn, a deterministic sequence.
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Applying Theorem 3 to (A.14) and using (A.13),

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)
≥ P (α(U, V ) ≤ β(n))→ 1. (A.15)

Lastly, we consider random utilities U and V , in which common-values are yet realized.

For every ε′ > 0,

P

(
|B̂F

k̄
(ε;U, V )|
n

> ε′

)
= P

(
|B̂F

k̄ (ε;U, V )| > ε′ · n
)

≤ P
(
|B̂F

k̄ (ε;U, V )| > β(n) | E1, E2

)
+Rn, with large n,

where Rn is the probability that either E1 or E2 does not hold: i.e. Rn → 0. The inequality is

from the fact that ε′ ·n > β(n) with large n. We complete the proof by applying (A.15).

We also obtain the counterpart proposition of Proposition A.7.1 in terms of tiers defined

with respect to firms’ common-values.

Proposition A.7.1∗ For each k̄ = 1, 2, . . . ,K − 2, define

B̂W
k̄ (ε;u, v) :=

{
w ∈Wk̄(v)|vµF (w) ≤ vok̄+2 + v̄ − ε

}
.

Then for any ε > 0,
|B̂W

k̄
(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. We omit the proof since it is analogous to the proof of Proposition A.7.1.

For each instance 〈F,W, u, v〉 and for each k̄ = 1, 2, . . . ,K, we define

BF
k̄ (ε;u, v) := {f ∈ Fk̄(u)|∆(f ;u, v) ≥ ε}.

Proposition A.3.2. If k̄ = 7, 8, . . . ,K − 2, then for any ε > 0,

|BF
k̄

(ε;U, V )|
n

p−→ 0 as n→∞.
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Proof. In Proposition A.7.1∗ with k = 1, 2, . . . ,K − 3, we replace ε with

εk := vok+2 − vok+3,

and write

B̂W
k (εk;u, v) =

{
w ∈Wk(v)|vµF (w) ≤ vok+3 + v̄

}
.10

Then,

|B̂W
k (εk;U, V )|

n

p−→ 0 as n→∞. (A.16)

Note that a worker receives utility higher than vok+3 + v̄ only by matching with a firm

in (w.r.t firm) tiers up to k + 3.11 Thus for k = 5, 6, . . . ,K,

{w ∈W≤k−4(V ) : µ(w) ∈ Fk(V )} ⊂
k−4⋃
k′=1

B̂W
k′ (εk′ ;U, V ). (A.17)

If event E3 holds, we can translate (A.34) into an expression with tiers w.r.t workers’

common-values. That is, for k = 7, 8, . . . ,K,

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k+1⋃

k′=k−1

{w ∈W≤k−6(U) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k−5(V ) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k′−4(V ) : µF (w) ∈ Fk′(V )}

where the first and second inequalities are from E3.

By applying (A.34), we obtain

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k−3⋃
k′=1

B̂W
k′ (εk′ ;U, V ).

10 Recall that vok is a constant, defined as vok := ξF
1− k

K
.

11 Recall that f ∈ Fk(v) if and only if vok < vof ≤ vok−1. Thus, if f ∈ F>k+3(v) then vof ≤ vok+3.
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It follows that

|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|
n

p−→ 0, (A.18)

because for every ε > 0,

P

(
|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|

n
> ε

)
≤ P

(
k−3∑
k′=1

|B̂W
k′ (εk′ ;U, V )|

n
> ε

)
+Rn,

where Rn is the probability that E3 does not hold: i.e. Rn → 0. The right hand side

converges to 0 by (A.33).

We complete the proof of Proposition A.7.2 by proving the following claim. Proposi-

tion A.7.1 and (A.35) show that the normalized sizes of two sets on the right hand side of

(A.36) converge to 0 in probability.

Claim A.3.1. For k̄ = 7, 8, . . . ,K − 2 and each instance 〈F,W, u, v〉,

BF
k̄ (ε;u, v) ⊂ B̂F

k̄ (ε/9;u, v) ∪
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
. (A.19)

Proof of Claim A.7.1. If a firm f ∈ Fk̄(u) is not in B̂F
k̄

(ε/9;u, v), then

uµW (f) > uok̄+2 + ū− ε/9,

and if the firm f is not in
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
, then

uµF (f) ≤ uok̄−6 + ū.

Therefore, using (A.27) we obtain

uµF (f)− uµW (f) ≤ uok̄−6 − u
o
k̄+2 + ε/9 < ε,

and thus f is not in BF
k̄

(ε;u, v).
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Lastly, we complete the proof of Theorem 1 by the following inequalities.

P

(
|BF (ε;U, V )|

n
>

9

K

)
= P

 ∑
1≤k≤K

|BF
k (ε;U, V )|

n
>

9

K


< P

 ∑
7≤k≤K−2

|BF
k (ε;U, V )|

n
+

∑
k=1,...,6,K−1,K

lk(U)

n
>

9

K

 .

The last probability converges to 0. For each k = 7, . . . ,K − 2, the proportion
|BFk (ε;U,V )|

n

converges to 0 in probability (Proposition A.7.2). For each k = 1, . . . , 6,K − 1,K, the

proportion lk(U)
n converges to 1

K in probability by the (weak) law of large numbers.

A.4 Proof of Theorem 4

For each ε > 0, we first define

BF
E (ε;u, v) := F\AFE(ε;u, v) = {f ∈ F | ∆E(f ;u, v) ≥ ε} ,

and show that

E

[∣∣BF
E (ε;U, V )

∣∣
n

]
→ 0 as n→∞.

For each n, let fn ∈ Fn and consider the resulting sequence 〈fn〉∞n=1. For any ε > 0,

E

[
|BF

E (ε;U, V )|
n

]
= E

[
1{fn ∈ BF

E (ε;U, V )}
]

= P (∆E(fn;U, V ) ≥ ε) .

Thus if ∆E(fn;U, V )
p−→ 0, then for every ε,

|BFE (ε,U,V )|
n converges to zero in mean,

thereby completing the proof.

Claim A.4.1.

∆E(fn;U, V )
p−→ 0, as n→∞.
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Proof. For every ε > 0,

P (∆(fn;U, V ) ≥ ε) = E [1{∆(fn;U, V ) ≥ ε}]

= E

[
|F\AF (ε;U, V )|

n

]
.

The last term converges to 0 by Theorem 1, and thus ∆(fn;U, V )
p−→ 0.

Let ūo and ū be upper bounds of common-value distribution and private-value distribu-

tion of workers, respectively. Then, ∆(fn;U, V ) is bounded above by λ ūo + (1 − λ)ū with

probability 1. We obtain by Theorem A.1.2 that

lim
n→∞

E[∆E(fn;U, V )] = lim
n→∞

E [E [∆(fn;U, V )|Πfn ]] = lim
n→∞

E [∆(fn;U, V )] = 0.

The Claim A.4.1 follows by Theorem A.1.1.

A.5 Additional Simulations on the Proportion of Unmatched

Agents

The simulation results in Section 1.1.4 show that the short preference condition assumed

in Roth and Peranson (1999), Immorlica and Mahdian (2005), and Kojima and Pathak

(2009) may leave most agents in a large market unmatched in stable matchings. It is worth

noting that random preferences in the previous simulations were generated by the setup of

our model, rather than the previous studies’ model. That is, the previous simulations do

not directly represent features of previous models. In this section, we show the increasing

proportions of unmatched agents with simulations based on the previous studies’ model.

Let L be the maximum number of firms that each worker considers acceptable. We gen-

erate random preferences following the previous model, in particular Immorlica and Mah-

dian (2005). Immorlica and Mahdian studied one-to-one matching markets with generally

distributed random preferences. For each market size n, a market is given two underlying

distributions, one for firms and the other for workers, called popularity distributions.12 A

12 Immorlica and Mahdian (2005) construct random preferences only for workers: firms’ preferences are
arbitrarily given. In our simulation, we also generate firms’ preferences randomly, rather than assuming
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worker’s preference list is constructed by sequentially sampling L firms from the popularity

distribution without replacement. The firm chosen first is the most preferred, and the next

chosen firm becomes the second most preferred. We similarly construct firms’ preferences,

except that firms’ preferences are of length n: i.e., all workers are acceptable.

We use two classes of popularity distributions.

1. Normalized geometric distribution

For each market size n, we define the normalized geometric distribution as:

PDF : pk =
(1− q)k∑n
k′=1(1− q)k′

, (0 ≤ q < 1, k = 1, 2, . . . , n).

Consider a pair of firms, fk1 and fk2 (k1 < k2 ≤ n). For each worker, the probability

of choosing fk1 before fk2 , conditioned on at least one of the firms chosen, equals to

(1− q)k1

(1− q)k1 + (1− q)k2
=

1

1 + (1− q)k2−k1
.

which is independent of the market size n. If q = 0, we have the uniform popular-

ity distribution over firms, so all firms have an equal chance of being chosen before

another. As q becomes close to 1, more popular firms have higher chances of be-

ing chosen before other firms, which generates a commonality of preferences among

workers.

2. Normalized log-normal distribution

Let F ( · ;µ, σ) be the cumulative distribution function of a log-normal distribution.

For each market size n, we define the normalized log-normal distribution as:

PDF : pk =
F ( k ;µ, σ)− F ( k − 1 ;µ, σ)

F (n ;µ, σ)
, (µ, σ ∈ R, k = 1, 2, . . . , n).

For each µ, as σ increases, firms have similar probabilities to be chosen. This generates

a weaker commonality of preferences among workers.

particular preferences. Accordingly, we can measure the general likely proportions of unmatched agents.
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(a) Normalized geometric distribution
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(b) Normalized log-normal distribution

Figure A.1: Proportions of unmatched agents in stable matchings.

Figure A.1 shows that the proportion of unmatched agents in stable matchings increases

as a market becomes large. Each graph represents the proportion of unmatched agents,

when workers consider 30 most preferred firms acceptable. The proportions are averaged

over 10 repetitions.

A.6 An Extended Model

We extend the model to allow that (i) the number of firms may differ from the number

workers and (ii) some workers (or firms) may not be acceptable to some firms (or workers).

Accordingly, firms (or workers) may remain unmatched in a stable matching. Moreover, we
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allow that (iii) private values for each pair of a firm and a worker are possibly correlated.

Theorem 1 in the main paper holds in this extended model as well.

Let F be the set of n firms and W be the set of m workers. Utilities are represented by

n×m random matrices U = [Uf,w] and V = [Vf,w]. When a firm f and a worker w match

with one another, the firm f receives utility Uf,w and the worker w receives utility Vf,w.

For each pair (f, w), utilities are defined as

Uf,w = λ Uow + (1− λ) ζf,w and

Vf,w = λ V o
f + (1− λ) ηf,w (0 < λ ≤ 1).

We call Uow and V o
f common-values, and ζf,w and ηf,w private-values.13

Common-values are defined as random vectors

Uo := 〈Uow〉w∈W and V o := 〈V o
f 〉f∈F .

〈Uow〉w∈W is an i.i.d sample of size m from a distribution with a positive density function

on a bounded support in R. 〈V o
f 〉f∈F is defined similarly.

Independent private-values are defined as two n×m random matrices

ζ := [ζf,w] and η := [ηf,w].

Each pair (ζf,w, ηf,w) is randomly drawn from a joint distribution on a bounded support

in R2. We normalize utilities such that firms and workers remaining unmatched receive 0

utility.

A random market is defined as a tuple 〈F,W,U, V 〉. We denote realized matrices of U

and V by u and v. A market instance is then denoted by 〈F,W, u, v〉. With probability 1,

the market has all distinct utilities, none of which equals to 0. As such, for each 〈F,W, u, v〉,

we can derive a strict preference list �f as

�f= w,w′, . . . , f, . . . , w′′

13Note that we exclude the pure private value case (λ = 0).
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if and only if

uf,w > uf,w′ > · · · > 0 > · · · > uf,w′′ .

Take any α ∈ (0,∞), and consider a sequence mn such that mn
n converges to α. We study

properties of stable matchings in the sequence of random markets 〈Fn,Wmn , Un×mn , Vn×mn〉∞n=1.

We often omit the indexes n and mn, or simply write n and m.

Given a market instance 〈F,W, u, v〉 and a matching µ, we let uµ(·) and vµ(·) denote

utilities from the matching: i.e. uµ(f) := uf,µ(f) and vµ(w) := vµ(w),w. For each f ∈ F , we

define ∆(f ;u, v) as the difference between utilities from firm-optimal and worker-optimal

stable matchings: i.e.

∆(f ;u, v) := uµF (f)− uµW (f).

For every ε > 0, we have the set of firms whose utilities are within ε of one another for all

stable matchings, which is denoted by

AF (ε;u, v) := {f ∈ F | ∆(f ;u, v) < ε} .

Theorem A.6.1. For every ε > 0,

E

[∣∣AF (ε;U, V )
∣∣

n

]
→ 1, as n→∞.

We have similar notations and a theorem for workers, which are omitted here.

The intuition of Theorem A.6.1 is from the fact that the set of unmatched firms and

workers is the same for all stable matchings (McVitie and Wilson (1970)). Firms and

workers who remain unmatched have no difference in utilities from all stable matchings.

Firms and workers who are matched in stable matchings have small differences in utilities

by Theorem 1 in the main paper.

A.7 Proof of Theorem A.6.1

We prove the theorem when 0 < λ < 1. If λ = 1, assortative matching forms a unique

stable matching, and Theorem 1 follows immediately.
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We first simplify the notations by compressing λ and 1 − λ and considering utilities

defined as

Uf,w = Uow + ζf,w and Vf,w = V o
f + ηf,w.

We do not lose generality since we can regard common-values and private-values as the ones

already multiplied by λ and 1− λ, respectively.

Let Uo := 〈Uow〉w∈W be an i.i.d sample of size m from a distribution GW , and V o :=

〈V o
f 〉f∈F be an i.i.d sample of size n from a distribution GF . GW and GF have strictly

positive density functions on R. Each pair (ζf,w, ηf,w) is randomly drawn from a joint

distribution Γ with a support bounded above by (ū, v̄).

We define

BF (ε;u, v) := F\AF (ε;u, v) = {f ∈ F | ∆(f ;u, v) ≥ ε}

and prove that |B
F (ε;U,V )|
n converges to 0 in probability, which is equivalent to proving

convergence to 0 in the mean (Theorem A.1.2). That is, we fix ε > 0 and K ∈ N, and prove

that

P

(
|BF (ε;U, V )|

n
>

14

K

)
→ 0, as n→∞.

A.7.1 Preliminary Notations

1. ξFq (or ξWq ) : qth quantile of GF (or GW ).

2. ξ̂Fq;n: empirical qth quantile of a sample of size n from GF . We also use ξ̂Fq;n to denote

its realization.

3. ξ̂Wq;m: empirical qth quantile of a sample of size m from GW . We also use ξ̂Wq;m to denote

its realization.

Since common-values are all distinct with probability 1, we index firms and workers in

the order of their common-values: i.e.

vofi > vofj and uowi > uowj , if i < j.

Then, Uowi;m (or V o
fi;n

) represents the ith highest value of m (or n) order statistics from GW
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(or GF ). Note that Uowi;m = ξ̂W
(1− i−1

m );m
and V o

fi;n
= ξ̂F

(1− i−1
n );n

by the relationship between

order statistics and empirical quantiles (see Appendix A.1).

Some firms may remain unmatched in stable matchings due to unequal populations of

firms and workers, or because some firms (or workers) are not acceptable to some workers

(or firms). Especially if a firm has a common value less than ū, all workers consider the

firm unacceptable. Roughly, GW (−ū) is the proportion of workers who are not acceptable

to any firm, and GF (−v̄) is the proportion of firms which are not acceptable to any worker.

Accordingly, we denote an asymptotic upper bound of the proportion of firms matched in

stable matchings by

β := min{α(1−GW (−ū)), 1−GF (−v̄)}.

A.7.2 Tier-Grouping

We partition R into

IW1 := (ξW
1− 1

αK

,∞)

IW2 := (ξW
1− 2

αK

, ξW
1− 1

αK

]

. . .

IWk := (ξW
1− k

αK

, ξW
1− k−1

αK

]

. . .

IWK′ := (ξW
1− K′

αK

, ξW
1−K′−1

αK

]

IWK′+1 := (−∞, ξW
1− K′

αK

],

where K ′ = dβKe.14

For each 〈F,W, u, v〉, we define the set of workers in tier-k (with respect to workers’

14 K′ is the smallest integer which is greater than or equal to βK. If 1− K′

αK
≤ 0, we let ξW

1− K′
αK

equals to

the infimum of the support of GW .
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common-values) as

Wk(u) :=
{
w | uow ∈ IWk

}
for k = 1, 2, . . . ,K ′ + 1

and define the set of firms in tier-k (with respect to workers’ common-values) as

Fk(u) := {fi ∈ F | wi ∈Wk(u)} for k = 1, 2, . . . ,K ′, and

FK′+1(u) := F\
K′⋃
k=1

Fk(u).

Note that FK′+1(u) may include firms with indexes larger than the number of workers.

Similarly, we partition R into

IF1 := (ξF
1− 1

K

,∞)

IF2 := (ξF
1− 2

K

, ξF
1− 1

K

]

. . .

IFk := (ξF
1− k

K

, ξF
1− k−1

K

]

. . .

IFK′ := (ξF
1−K′

K

, ξF
1−K′−1

K

]

IFK′+1 := (−∞, ξF
1−K′

K

].

where K ′ = dβKe.

We define the set of firms in tier-k (with respect to firms’ common-values) as

Fk(v) :=
{
f | vof ∈ IFk

}
for k = 1, 2, . . . ,K ′,K ′ + 1

and define the set of workers in tier-k (with respect to firms’ common-values) as

Wk(v) := {wi ∈W | fi ∈ Fk(v)} for k = 1, 2, . . . ,K ′, and

WK′+1(v) := W\
K′⋃
k=1

Wk(v).
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Note that WK′+1(v) may include workers with indexes larger than the number of firms.

We use the following notations.

1. uok := ξW
1− k

αK

for k = 1, 2, . . . ,K ′: The threshold level of tier-k and tier-(k+1) workers’

common-values. That is, w ∈Wk(u) if and only if uok < uow ≤ uok−1.

2. vok := ξF
1− k

K

for k = 1, 2, . . . ,K ′: The threshold level of tier-k and tier-(k + 1) firms’

common-values. That is, f ∈ Fk(v) if and only if vok < vof ≤ vok−1.

Remark 4. 1. The set of tier-k workers (with respect to workers’ common-values) is

defined with a random sample. Therefore, Wk(U) is random, and so is Fk(U); whereas,

uok is a constant. Similarly, Fk(V ) and Wk(V ) are random; whereas, vok is a constant.

2. Tiers with respect to workers’ common-values are in general not the same as tiers with

respect to firms’ common-values. In particular, we are most likely to have |Fk(U)| 6=

|Fk(V )|.

Throughout the proof, we mainly use tiers defined with respect to workers’ common-

values. However, we need both tier structures in the last part of the proof. We simply write

“tier-k” to denote tier-k with respect to workers’ common-values, and use “(w.r.t firm)

tier-k” to denote tier-k with respect to firms’ common-values.

A.7.3 High-Probability Events

We introduce three events and show that the events occur with probabilities converging to

1 as the market becomes large. We provide proofs for completeness, but the main ideas

are simply from the (weak) law of large numbers. In the next section, we will leave the

probability that the following events do not occur as a remainder term converging to zero,

and focus on the cases where the following events all occur.

A.7.3.1 No vanishing tier and an equal number of firms and workers in each

tier.

Event 4 (E1). 1. For k = 1, 2, . . . ,K ′, the sets Fk(U), Wk(U), Fk(V ), and Wk(V ) are

all non empty.
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2. For k = 1, 2, . . . ,K ′ − 1,

|Fk(U)| = |Wk(U)| and |Fk(V )| = |Wk(V )|.

Proof. The second part immediately follows from the first part. For instance, FK′(U) 6= ∅

implies that the total number of firms is larger than the number of workers in tier up to

K ′ − 1. By definition of tiers with respect to workers’ common-values, we have |Fk(U)| =

|Wk(U)| for all k = 1, 2, . . . ,K ′ − 1.

We only prove that FK′(U) and WK′(U) are non empty with probability converging to

one as the market becomes large. Proofs for k = 1, 2, . . . ,K ′ − 1 are almost analogous, and

we omit here.

Note that

1− K ′ − 1

αK
> 1− βK

αK
≥ 0,

which implies that for each w ∈W ,

P
(
uow ∈ IWK′

)
= GW

(
ξW

1−K′−1
αK

)
−GW

(
ξW

1− K′
αK

)
> 0.

As such, WK′(U) = ∅ occurs with probability converging to 0 as the market becomes large.

When WK′(U) is not empty, FK′(U) remains empty only if the total number of firms is

no more than the number of workers in tiers up to K ′ − 1. That is,

1 ≤ 1

n

K′−1∑
k=1

|Wk(U)|. (A.20)

Note that

1

n

K′−1∑
k=1

|Wk(U)| = m

n
· 1

m

m∑
k=1

1{Uow ≥ uoK′−1}

p−→ α · K
′ − 1

αK
=
dβKe
K

− 1

K
≤ 1− 1

K
.

The convergence in probability is by the (weak) law of large numbers and Theorem A.1.3.

Therefore, the inequality (A.20) holds with probability converging to zero, and thus FK′(U)



94

is not empty with probability converging to 1.

A.7.3.2 Distinct common-values of the agents in non-adjacent tiers.

Let ε̃ > 0 be such that for any v, v′ ∈ R,

|v − v′| ≤ ε̃ =⇒ |GF (v)−GF (v′)| < 1

3K
,

and for any u, u′ ∈ R,

|u− u′| ≤ ε̃ =⇒ |GW (u)−GW (u′)| < 1

3αK
.

There exists such an ε̃ since GF and GW are continuous on their bounded supports, so

uniformly continuous.

Event 5 (E2). For every k = 1, 2, . . . ,K ′ − 2,

min
f∈Fk(U)

f ′∈Fk+2(U)

|V o
f − V o

f ′ | > ε̃ and min
w∈Wk(V )

w′∈Wk+2(V )

|Uow − Uow′ | > ε̃.

Proof. We prove only the first part. Fix a realized matrix u such that E1 holds. For any

k ∈ 1, 2, . . . ,K ′ − 2 and for any wi ∈Wk(u) and wj ∈Wk+2(u),

uowi > uok = ξW
1− k

αK

and uowj ≤ u
o
k+1 = ξW

1− k+1
αK

. (A.21)

For any q ∈ (0, 1), ξ̂Wq;m
p−→ ξWq (Theorem A.1.4), from which the following inequalities

hold with probability converging to 1.

ξW
1− k

αK

> ξ̂W
1− k

αK
− 1

8αK

and ξW
1− k+1

αK

< ξ̂W
1− k+1

αK
+ 1

8αK

. (A.22)

Considering (A.21) and the relation between order statistics and empirical quantiles (see

Appendix A.1), if (A.22) holds, we have

1− k

αK
− 1

8αK
< min

wi∈Wk(u)

(
1− i− 1

m

)
= min

fi∈Fk(u)

(
1− i− 1

m

)
,
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which implies that

1− k

K
− 1

8K
< min

fi∈Fk(u)

(
1− α(i− 1)

m

)
< min

fi∈Fk(u)

(
1− i− 1

n
+

1

8K

)
with large n.

In addition, we have

1− k + 1

K
+

1

8K
> max

wj∈Wk+2(u)

(
1− α(j − 1)

m

)
= max

fj∈Fk+2(u)

(
1− α(j − 1)

m

)
,

which implies that

1− k + 1

K
+

1

4K
> max

fj∈Fk+2(u)

(
1− j − 1

n

)
with large n.

As such for every fi ∈ Fk(u) and fj ∈ Fk+2(u),

vofi > ξ̂F
1− k

K
− 1

4K

and vofj < ξ̂F
1− k+1

K
+ 1

4K

.

Therefore,

P
(

inf
fi∈Fk(U)
fj∈Fk+2(U)

∣∣V o
fi
− V o

fj

∣∣ ≤ ε̃) ≤ P
(∣∣ξ̂F

1− k
K
− 1

4K

− ξ̂F
1− k+1

K
+ 1

4K

∣∣ ≤ ε̃)+Rn

≤ P

(∣∣GF (ξ̂F
1− k

K
− 1

4K

)−GF (ξ̂F
1− k+1

K
+ 1

4K

)
∣∣ < 1

3K

)
+Rn,(A.23)

where Rn corresponds to the probability that either E1 does not hold or (A.22) is violated:

i.e. Rn → 0. The last inequality is by the definition of ε̃.

Note that

GF (ξ̂F
1− k

K
− 1

4K

)−GF (ξ̂F
1− k+1

K
+ 1

4K

)
p−→ 1

2K

by Theorem A.1.4 and continuity of GF (Theorem A.1.3). As a result, the right hand side

of (A.23) converges to 0.
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A.7.3.3 Similarity between tiers w.r.t workers’ common-values and tiers w.r.t

firms’ common-values

Event 6 (E3). For every k = 1, 2, 3, . . . ,K ′ + 1,

Fk(U) ⊂
k+1⋃

k′=k−1

Fk′(V ) and Wk(V ) ⊂
k+1⋃

k′=k−1

Wk′(U).15

Proof. We prove the first part for k = 1, . . . ,K ′ under the condition that E1 holds.16

For each realized (u, v), we have

{uow|w ∈Wk(u)} ⊂
(
uok, u

o
k−1

]
=
(
ξW

1− k
αK

, ξW
1− k−1

αK

]
. (A.24)

Suppose (
ξW

1− k
αK

, ξW
1− k−1

αK

]
⊂
(
ξ̂W

1− k
αK
− 1

3αK

, ξ̂W
1− k−1

αK
+ 1

3αK

]
, (A.25)

and (
ξ̂F

1− k
K
− 2

3K

, ξ̂F
1− k−1

K
+ 2

3K

]
⊂
(
ξF

1− k+1
K

, ξF
1− k−2

K

]
. (A.26)

If (A.25) hold, then (A.24) implies that for every tier-k worker wi, we have

uowi ∈
(
ξ̂W

1− k
αK
− 1

3αK

, ξ̂W
1− k−1

αK
+ 1

3αK

]
,

and thus,

1− i− 1

m
∈
(

1− k

αK
− 1

3αK
, 1− k − 1

αK
+

1

3αK

]
,

which implies that

1− i− 1

n
∈
(

1− k

K
− 2

3K
, 1− k − 1

K
+

2

3K

]
with large n.

15 We define F0(V ), W0(V ), WK′+2(U), and WK′+2(U) as empty sets.
16 For k = 1, 2, we need to modify the proof by replacing the intervals such as (ξW

1− k
αK

, ξW
1− k−1

αK

] with

(ξW
1− k

αK
,∞) and (ξF

1− k+1
K

, ξF
1− k−2

K

] with (ξF
1− k+1

K

,∞). We omit the modifications since they are trivial and

tedious.
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Then for any tier-k firm fi, we have

vofi ∈
(
ξ̂F

1− k
K
− 2

3K

, ξ̂F
1− k−1

K
+ 2

3K

]
,

which implies that {
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F

1− k
K
− 2

3K

, ξ̂F
1− k−1

K
+ 2

3K

]
.

Consequently if both (A.25) and (A.26) hold, then

{
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F

1− k
K
− 2

3K

, ξ̂F
1− k−1

K
+ 2

3K

]
⊂
(
ξF

1− k+1
K

, ξF
1− k−2

K

]
=

k+1⋃
k′=k−1

IFk′ .

In other words,

Fk(u) ⊂
k+1⋃

k′=k−1

Fk′(v).

Inequalities (A.25) and (A.26), and E1 occur with probability converging to 1 (Theo-

rem A.1.4), and thus the event E3 for k = 1, 2, . . . ,K ′ also occurs with probability converging

to 1.

Lastly for k = K ′ + 1,

FK′+1(U) ⊂ FK′(V ) ∪ FK′+1(V )

occurs with probability converging to 1, since the event occurs whenever

Fk(V ) ⊂
k+1⋃

k′=k−1

Fk′(U) for all k = 1, 2, . . . ,K ′ − 1

holds.
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A.7.4 Proof of Theorem 1

We choose K large enough that

max
1≤k≤K′−2

∣∣uok − uok+1

∣∣ ≡ max
1≤k≤K′−2

∣∣∣ξW
1− k

αK

− ξW
1− k+1

αK

∣∣∣ < ε

9
.17 (A.27)

The proof of Theorem 1 is completed by the following inequalities.

P

(
|BF (ε;U, V )|

n
>

14

K

)
= P

 ∑
1≤k≤K′+1

|BF
k (ε;U, V )|

n
>

14

K



< P

 ∑
7≤k≤K′−3

|BF
k (ε;U, V )|

n
+

∑
k=1,...,6,

K′−2,K′−1,K′

Fk(U)

n
+
|BF

K′+1(ε;U, V )|
n

>
14

K

 .

We show that the last term converges to 0. We first prove that for each k = 7, . . . ,K ′−3, the

proportion
|BFk (ε;U,V )|

n converges to 0 in probability (Proposition A.7.2). The proof identifies

asymptotic upper and lower bounds of utilities from all stable matchings and shows that

the two bounds are close to each other. We then prove that
|BF
K′+1

(ε;U,V )|
n is asymptotically

bounded above by 4
K (Proposition A.7.3). The proof shows that most tier-K ′ + 1 firms

remain unmatched in stable matchings, and thus have no difference in utilities. Lastly,

for each k = 1, . . . , 6,K ′ − 2,K ′ − 1,K ′, the proportion Fk(U)
n converges to at most 1

K in

probability by the (weak) law of large numbers.

A.7.4.1 For k = 7, . . . ,K ′ − 3,
|BFk (ε;U,V )|

n

p−→ 0.

We first identify an asymptotic lower bound on utilities of firms in each tier, using tech-

niques from the theory of random bipartite graphs (Proposition A.7.1). Similarly, we find

an asymptotic lower bound on utilities of workers in each tier (Proposition A.7.1∗). The

asymptotic lower bound on utilities of workers induces an asymptotic upper bound on util-

ities of firms in each tier. Lastly, we complete the proof by showing that the asymptotic

lower and upper bounds are close to each other (Proposition A.7.2).

17 We can always satisfy the condition since GW has a strictly positive density function on a bounded
support.
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Proposition A.7.1. For each instance 〈F,W, u, v〉 and for each k̄ = 1, 2, . . . ,K ′−3, define

B̂F
k̄ (ε;u, v) :=

{
f ∈ Fk̄(u) : uµW (f) ≤ uok̄+2 + ū− ε

}
.18

Then for any ε > 0,
|B̂F

k̄
(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. For each instance 〈F,W, u, v〉 and for each k = 1, 2, . . . ,K ′ + 1, let F≤k(u) :=⋃
k′≤k Fk′(u) and F<k(u) :=

⋃
k′<k Fk′(u). We similarly define W≤k(u) and W<k(u).

Take any k̄ from {1, 2, . . . ,K ′−3}. We construct a bipartite graph with Fk̄(u)∪W≤k̄+2(u)

as a bi-partitioned set of nodes. Two vertices f ∈ Fk̄(u) and w ∈ W≤k̄+2(u) are joined by

an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃,

where ε̃ is the value taken before, while defining E2.

Let W̄≤k̄+2(u, v) be the set of workers in tiers up to k̄ + 2 who are not matched with

firms in tiers up to k̄ + 1 in µW . That is,

W̄≤k̄+2(u, v) :=
{
w ∈W≤k̄+2(u) |µW (w) /∈ F≤k̄+1(u)

}
.

We now show that if E2 holds, then

B̂F
k̄ (ε;u, v) ∪ W̄≤k̄+2(u, v)

is a biclique.

Suppose, towards a contradiction, that a pair of f ∈ B̂F
k̄

(ε;u, v) and w ∈ W̄≤k̄+2(u, v) is

not joined by an edge: i.e.

ζf,w > ū− ε and ηf,w > v̄ − ε̃.
18 Note that uok̄+2 + ū is the maximal utility that a firm can achieve by being matched with a worker in

tier-(k̄ + 3).
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Then, we have

uf,w = uow + ζf,w > uok̄+2 + ζf,w > uok̄+2 + ū− ε, (A.28)

and

vf,w = vof + ηf,w ≥ min
f ′∈Fk̄(u)

vof ′ + ηf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ − ε̃.19

Conditioned on E2, we can proceed further and obtain

vf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ −

(
min

f ′∈Fk̄(u)
vof ′ − max

f ′′∈Fk̄+2(u)
vof ′′

)
= max

f ′′∈Fk̄+2(u)
vof ′′ + v̄. (A.29)

On the other hand, f ∈ B̂F
k̄

(ε;u, v) implies that

uµW (f) ≤ uok̄+2 + ū− ε,

and w ∈ W̄≤k̄+2(u, v) implies that

vµW (w) ≤ max
f ′′∈Fk̄+2(u)

vof ′′ + v̄,

since a worker can obtain utility higher than maxf ′′∈Fk̄+2(u) v
o
f ′′ + v̄ only by matching with

a firm in F≤k̄+1(u).

Equations (A.28) and (A.29) imply that (f, w) would have blocked µW , contradicting

that µW is stable. Therefore,

B̂F
k̄ (ε;u, v) ∪ W̄≤k̄+2(u, v).

is a biclique, which is not necessarily balanced.

We now control the size of B̂F
k̄

(ε;U, V ) by referencing Theorem 3. Let uo and vo be

realized common-values such that events E1 and E2 hold. Then, the remaining randomness

19 We should not replace minf ′∈Fk̄(u) v
o
f ′ with vok̄. Fk̄(u) is defined with respect to workers’ common-values,

rather than firms’ common-values.
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of U and V is from ζ and η. Consider a random bipartite graph with Fk̄(U) ∪W≤k̄+2(U)

as a bi-partitioned set of nodes, where each pair of f ∈ Fk̄(U) and w ∈W≤k̄+2(U) is joined

by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃.

In other words, every pair is joined by an edge independently with probability p(ε) =

1− Γ(ū− ε, v̄ − ε̃).

We write β(n) := 2 · log(|W≤k̄+2(U)|)/ log 1
p(ε) and show that

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)
→ 1 as n→∞. (A.30)

Consider that

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)
≥ P

(
min{|B̂F

k̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|} ≤ β(n)
)
−P

(
|W̄≤k̄+2(U, V )| ≤ β(n)

)
.

We show that the two terms on the right hand side converge respectively to 1 and 0 in

probability.

Let α(U, V )× α(U, V ) be the size of a maximum balance biclique of the random graph

G
(
Fk̄(U) ∪W≤k̄+2(U) , p(ε)

)
.

Since every realized B̂F
k̄

(ε;u, v)∪W̄≤k̄+2(u, v) is a biclique, it contains a balanced biclique

of the size equals to

min
{
|B̂F

k̄ (ε;u, v)| , |W̄≤k̄+2(u, v)|
}
.

Therefore,

P
(

min
{
|B̂F

k̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|
}
≤ β(n)

)
≥ P (α(U, V ) ≤ β(n))→ 1, (A.31)

where the convergence is from Theorem 3.

On the other hand, observe that W̄≤k̄+2(U, V ) is the size of at least |Wk̄+2(U)|. Among

workers in tiers up to k̄+ 2 at most |W≤k̄+1(U)| are matched with firms in tiers up to k̄+ 1.
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In addition,
|Wk̄+2(U)|

n converges to 1
K by the (weak) law of large numbers. Therefore,

P
(
|W̄≤k̄+2(U, V )| ≤ β(n)

)
→ 0. (A.32)

Equations (A.31) and (A.32) imply that (A.30) holds.

Lastly, we consider random utilities U and V , in which common-values are yet realized.

For every ε′ > 0,

P

(
|B̂F

k̄
(ε;U, V )|
n

> ε′

)
= P

(
|B̂F

k̄ (ε;U, V )| > ε′ · n
)

≤ P
(
|B̂F

k̄ (ε;U, V )| > β(n) | E1, E2, β(n) ≤ ε′n
)

+Rn, with large n,

where Rn is the probability that either E1 or E2 does not hold, or β(n) ≤ ε′n is violated:

i.e. Rn → 0. We complete the proof by applying (A.30).

We also obtain the counterpart proposition of Proposition A.7.1 in terms of tiers defined

with respect to firms’ common-values.

Proposition A.7.1∗ For each k̄ = 1, 2, . . . ,K ′ − 3, define

B̂W
k̄ (ε;u, v) :=

{
w ∈Wk̄(v)|vµF (w) ≤ vok̄+2 + v̄ − ε

}
.

Then for any ε > 0,
|B̂W

k̄
(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. We omit the proof since it is analogous to the proof of Proposition A.7.1.

For each instance 〈F,W, u, v〉, we define

BF
k̄ (ε;u, v) := {f ∈ Fk̄(u)|∆(f ;u, v) ≥ ε} for k̄ = 1, 2, . . . ,K ′ + 1.
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Proposition A.7.2. If k̄ = 7, 8, . . . ,K ′ − 3, then for any ε > 0,

|BF
k̄

(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. In Proposition A.7.1∗, for k = 1, 2, . . . ,K ′ − 3, let

εk := vok+2 − vok+3,

and write

B̂W
k (εk;u, v) =

{
w ∈Wk(v)|vµF (w) ≤ vok+3 + v̄

}
.20

By Proposition A.7.1∗,

|B̂W
k (εk;U, V )|

n

p−→ 0 as n→∞. (A.33)

Note that a worker receives utility higher than vok+3 + v̄ only by matching with a firm

in (w.r.t firm) tiers up to k + 3.21 Thus for k = 5, 6, . . . ,K ′ + 1,

{w ∈W≤k−4(V ) : µ(w) ∈ Fk(V )} ⊂
k−4⋃
k′=1

B̂W
k′ (εk′ ;U, V ). (A.34)

If event E3 holds, we can translate (A.34) into an expression with tiers w.r.t workers’

common-values. That is, for k = 7, 8, . . . ,K ′ + 1,

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k+1⋃

k′=k−1

{w ∈W≤k−6(U) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k−5(V ) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k′−4(V ) : µF (w) ∈ Fk′(V )}

where the first and second inequalities are from E3.

20 Recall that vok is a constant, defined as vok := ξF
1− k

K
.

21 Recall that f ∈ Fk(v) if and only if vok < vof ≤ vok−1. Thus, if f ∈ F>k+3(v) then vof ≤ vok+3.
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By applying (A.34), we obtain

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k−3⋃
k′=1

B̂W
k′ (εk′ ;U, V ).

It follows that

|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|
n

p−→ 0, (A.35)

because for every ε > 0,

P

(
|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|

n
> ε

)
≤ P

(
k−3∑
k′=1

|B̂W
k′ (εk′ ;U, V )|

n
> ε

)
+Rn,

where Rn is the probability that E3 does not hold: i.e. Rn → 0. The right hand side

converges to 0 by (A.33).

We complete the proof of Proposition A.7.2 by proving the following claim. Proposi-

tion A.7.1 and (A.35) show that the normalized sizes of two sets on the right hand side of

(A.36) converge to 0 in probability.

Claim A.7.1. For k̄ = 7, 8, . . . ,K ′ − 3 and each instance 〈F,W, u, v〉,

BF
k̄ (ε;u, v) ⊂ B̂F

k̄ (ε/9;u, v) ∪
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
. (A.36)

Proof of Claim A.7.1. If a firm f ∈ Fk̄(u) is not in B̂F
k̄

(ε/9;u, v), then

uµW (f) > uok̄+2 + ū− ε/9,

and if the firm f is not in
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
, then

uµF (f) ≤ uok̄−6 + ū.

Therefore, using (A.27) we obtain

uµF (f)− uµW (f) ≤ uok̄−6 − u
o
k̄+2 + ε/9 < ε,
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and thus f is not in BF
k̄

(ε;u, v).

A.7.4.2 Firms in tier K ′ + 1

We show that most firms in tier-(K ′+1) remain unmatched in stable matchings. Unmatched

firms’ utilities from µF and µW are clearly less than ε difference from each other.

Proposition A.7.3.

P

(
|BF

K′+1(ε;U, V )|
n

>
4

K

)
→ 0 as n→∞.

Proof. We divide the proof into two cases.

Case 1. β = 1−GF (−v̄): only a small proportion of firms in tier K ′+ 1 are acceptable to

workers.

For each 〈F,W, u, v〉, if E3 holds,

FK′+1(u) ⊂ FK′(v) ∪ FK′+1(v).

If f ∈ FK′+1(v),

vof ≤ ξF1−K′
K

= ξF
1− dβKe

K

≤ ξF1−β = −v̄.22

That is, if there is a firm in tier-K ′+1, the firm is unacceptable to all workers regard-

less of the firm’s private values to the workers. The firm remains unmatched in all

stable matchings and have no difference in utilities from stable matchings. Therefore,

conditioned on E3,
|BF

K′+1(ε;U, V )|
n

≤ |FK
′(V )|
n

.

Proposition A.7.3 holds from the following convergence result.

|FK′(V )|
n

p−→ βK − (dβKe − 1)

K
as n→∞.

22 Note that f ∈ FK′+1(v) implies 1− K′

K
> 0 and GF (−v̄) > 0, which we used to derive the inequalities.
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Case 2. β = α(1−GW (−ū)): firms in tier-(K ′+1) see only a small proportion of acceptable

workers available.

For each market 〈F,W, u, v〉, if w ∈WK′+1(u),

uow ≤ ξW1− dβKe
αK

≤ ξW
1− β

α

= −ū.23

That is, workers in WK′+1(u) are unacceptable to all firms. Therefore, the total

number of matched workers in stable matchings is no more than the total number of

workers in tiers up to K ′: i.e.

|{w ∈W |µW (w) ∈ F}| ≤
K′∑
k=1

|Wk(U)|,

which implies that

|{f ∈ F |µW (f) ∈W}| ≤
K′∑
k=1

|Wk(U)|.

As such, we have

|{f ∈ FK′+1(U)|µW (f) ∈W}| = |{f ∈ F |µW (f) ∈W}| −
K′∑
k=1

|{f ∈ Fk(U)|µW (f) ∈W}|

≤
K′∑
k=1

|Wk(U)| −
K′∑
k=1

|{f ∈ Fk(U)|µW (f) ∈W}|.

Conditioned on E1,

|{f ∈ FK′+1(U)|µW (f) ∈W}| ≤
K′−3∑
k=1

(|Fk(U)| − |{f ∈ Fk(U)|µW (f) ∈W}|) +

K′∑
k=K′−2

|Wk(U)|

=
K′−3∑
k=1

|{f ∈ Fk(U)|µW (f) /∈W}|+
K′∑

k=K′−2

|Wk(U)|.

23 Note that w ∈WK′+1(u) implies 1− K′

K
> 0 and GW (−ū) > 0, which we used to derive the inequalities.
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With a small ε′ > 0,

|BF
K′+1(ε;U, V )|

n
≤ |{f ∈ FK

′+1(U)|µW (f) ∈W}|
n

≤
K′−3∑
k=1

|B̂F
k (ε′;U, V )|

n
+

K′∑
k=K′−2

|Wk(U)|
n

p−→ 0 +
3 + (βK − dβKe)

K
,

where the convergence in probability is from Proposition A.7.1 and the (weak) law of

large numbers.
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Appendix B

Appendix to Chapter 2: Plea
Bargaining

B.1 Existence of a Symmetric Voting Equilibrium.

Let S := {c, a}×{c, a} be the set of pure strategies; ‘c’ represents voting for conviction and

‘a’ for acquittal. A generic strategy s ∈ S is a pair (sg, si) consisting of voting decisions with

signal g and i. Let Σ := ∆({c, a}) ×∆({c, a}). A generic mixed strategy σ = (σg, σi) ∈ Σ

consists of probabilities of conviction voting with signal g and i. Define continuous functions

ug(σ
′
g, σ) or ui(σ

′
i, σ) as a juror’s expected utility when she receives signal g or i respectively

and uses strategy σ′, while all other jurors use strategy σ. Clearly, ug and ui are continuous

in σ′ and σ in our model.

We proceed similarly to the existence proof of Nash equilibrium in Nash (1951). For

each pure strategy s ∈ S, define a continuous function h as

hs(σ) = (hs1(σ), hs2(σ)) :=
(

max{ 0 , ug(sg, σ)− ug(σg, σ)} , max{ 0 , ui(si, σ)− ui(σi, σ)}
)
.

For each s ∈ S, define a continuous function as

ys(σ) :=

(
σg:sg + hs1(σ)

1 +
∑

t∈{c,a} h
t
1(σ)

,
σg:si + hs2(σ)

1 +
∑

t∈{c,a} h
t
2(σ)

)

where σg:sg and σg:si are the probabilities that the mixed strategy σ = (σg, σi) assigns to

each pure strategy sg and si.
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The set of functions ys(·) for all s ∈ S defines a mapping y(·) from the set of mixed

strategy to itself. Similar to the existence proof of Nash equilibrium, a fixed point of y(·) is

a symmetric Bayesian Nash Equilibrium (a symmetric equilibrium voting behavior). Since

the set of mixed strategies is compact and convex, y(·) has a fixed point by the Brouwer

fixed point theorem.

B.2 Proof of Proposition 2.3.1

For each level of belief π, we first find all symmetric equilibrium voting behaviors. Then we

compare the jurors’ expected payoffs and take the most efficient symmetric voting behavior.

B.2.1 Finding All Symmetric Equilibrium Voting Behaviors.

Non-responsive equilibrium voting behavior (σg = 1, σi = 1) is an equilibrium

voting behavior for any 1 ≤ k̂ < n. given that other jurors always vote for conviction,

a juror is never pivotal. (Her vote never changes the judicial decisions.) In such a case,

no juror has an incentive to change her voting strategy from (σg = 1, σi = 1). Similarly,

(σg = 0, σi = 0) is an equilibrium voting behavior when 1 < k̂ ≤ n.

(σg = 1, σi = 1) is not an equilibrium when k̂ = n. Given that other jurors always vote

for conviction, being pivotal does not give any additional information. Each juror then fully

relies on her own private signal. If a juror receives an innocent signal, then she votes for

conviction (or acquittal) if and only if

1− p
p

π

1− π
≥ (or ≤)

q

1− q
.

Note that the evidence innately supports innocent defendants (1−p
p < 1 and π

1−π ≤ 1),

and reasonable doubt is in favor of acquittal ( q
1−q ≥ 1). A juror receiving an innocent

signal does not have enough evidence to vote for conviction; σi = 1 is not a best response

to (σg = 1, σi = 1).

In a similar fashion, when k̂ = 1, (σg = 0, σi = 0) is an equilibrium voting behavior only

if π ≤ π̄(1). Being pivotal does not provide any additional evidence, and a juror compares
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her private signal (g or i), belief (π), and reasonable doubt (q). If the belief π is low, even

a guilty signal gives insufficient evidence for conviction voting.

Responsive equilibrium voting behavior A responsive voting behavior has 0 < σg

and σi < 1; otherwise, σg = σi, and it is not responsive. We define rG and rI as conviction

probabilities of guilty and innocent defendants, computed as

rG = pσg + (1− p)σi, rI = (1− p)σg + pσi

When the jury follows responsive voting behavior, it does not always convict nor acquit

defendants (0 < rG, rI < 1). In such a case, voting criteria (2.5) and (2.6), are well defined.

We consider each strategy case and find necessary levels of belief π consistent with the

strategy as an equilibrium voting behavior. We explicitly compute the equilibria to use

later for selecting the most efficient one.

Case 1 : (0 < σg < 1, σi = 0)

Conviction and acquittal must be indifferent to a juror receiving signal g. That is

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

p

1− p
π

1− π
=

q

1− q
.

Substituting in rG = p σg and rI = (1− p)σg, we obtain

(
1− pσg

1− (1− p)σg

)n−k̂( p

1− p

)k̂ π

1− π
=

q

1− q
. (B.1)

Under the unanimity rule (k̂ = n), the first term in LHS is equal to 1, and the

equality holds when π = π̄(k̂). Then, any σg ∈ (0, 1) with σi = 0 is an equilibrium

voting behavior.

Consider a general super-majority rule k̂ (1 ≤ k̂ < n). Since
1−pσg

1−(1−p)σg is strictly

decreasing in σg, by plugging σg = 0 and σg = 1 in (B.1), we can verify that π̄(k̂) <

π < π̄(2k̂ − n) is necessary for (0 < σg < 1, σi = 0) to be an equilibrium voting
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behavior. Moreover, at most one value of σg satisfies the equality. By algebraic

manipulation of (B.1), we find (σg, σi = 0) is an equilibrium voting strategy with

σg(π) =
ψ1 − 1

(1− p)ψ1 − p
where ψ1 =

(
1− p
p

) k̂

n−k̂
(

q

1− q
1− π
π

) 1

n−k̂
(B.2)

Case 2 : (σg = 1, σi = 0)

A juror receiving signal g prefers conviction, whereas a juror receiving signal i prefers

acquittal. Substituting in rG = p and rI = 1− p to voting criteria (2.5) and (2.6), we

obtain

(
p

1− p

)2(k̂−1)−n
≤ q

1− q
1− π
π
≤
(

p

1− p

)2k̂−n
(B.3)

The first inequality is from the criterion with signal i, and the second inequality is

from the criterion with signal g. The above inequality is equivalent to π̄(2k̂ − n) ≤

π ≤ π̄(2(k̂−1)−n). When π is between π̄(2k̂−n) and π̄(2(k̂−1)−n), (σg = 1, σi = 0)

is an equilibrium voting behavior; every juror follows her own signal.

Case 3 : (σg = 1, 0 < σi < 1)

Jurors receiving signal i treat conviction and acquittal equally. That is

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

1− p
p

π

1− π
=

q

1− q

Substituting in rG = p+ (1− p)σi and rI = (1− p) + pσi, we get

(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(1− p
p

)n−k̂+1 1− π
π

=
q

1− q
(B.4)

Note that p+(1−p)σi
(1−p)+pσi is strictly decreasing in σi. By plugging in σi = 0 and σi = 1, we

can verify that π̄(2(k̂ − 1) − n) < π ≤ .5 is necessary if σg = 1 and 0 < σi < 1 is an

equilibrium voting behavior.

For each level of belief π such that π̄(2(k̂ − 1)− n) < π < .5, at most one σi satisfies
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General super-majority rules (1 ≤ k̂ < n) The unanimity rule (k̂ = n)
Non-responsive voting

∀ π ∈ [0, .5] (σg = σi = 1) ∀ π ∈ [0, .5] (σg = σi = 0)

π ∈ [0, .5](k̂ > 1), π ∈ [0, π̄(1)](k̂ = 1) (σg = σi = 0)
Responsive voting

π̄(k̂) < π < π̄(2k̂ − n) (0 < σg < 1, σi = 0) π = π̄(n) (0 < σg < 1, σi = 0)

π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n) (σg = 1, σi = 0) π̄(n) ≤ π ≤ π̄(n− 2) (σg = 1, σi = 0)

π̄(2(k̂ − 1)− n) < π ≤ .5 (σg = 1, 0 < σi < 1) π̄(2n− 2) < π ≤ .5 (σg = 1, 0 < σi < 1)

Table B.1: Symmetric voting equilibrium behavior in jury trial.
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(a) A super-majority rule (k̂ = 8).
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(b) The unanimity rule (k̂ = 12).

Figure B.1: Symmetric equilibrium voting behavior with n = 12, p = 6
10 , and q = 6

10

the equality. This σi combined with σg = 1 forms a symmetric equilibrium voting

behavior, and σi is determined as

σi(π) =
p− ψ2(1− p)
pψ2 − (1− p)

where ψ2 =

(
p

1− p

)n−k̂+1

k̂−1
(

q

1− q
1− π
π

) 1

k̂−1

(B.5)

Table B.1 summarizes all symmetric equilibrium voting behavior. Figure B.1 illustrates

equilibrium voting behaviors with n = 12, p = 6
10 , and q = 6

10 , when voting rules are k̂ = 8

and k̂ = 12. We used solid lines for σg and dashed lines for σi. For each π, the pair of

σg and σi forming a strategy profile (σg, σi) share the same thickness. In this example,

we observe all three equilibrium cases, but we may not observe some cases under other

parameter values. For instance, π̄(2(k̂ − 1) − n), one of the threshold levels of belief, may

not be defined or may be larger than .5. In such a case, (σg = 1, σi = 0) is not an equilibrium

voting behavior for any π ∈ [0, .5].
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B.2.2 Finding an Efficient Equilibrium Voting Behavior.

For each belief π, there may be several symmetric equilibrium voting behaviors. If a re-

sponsive equilibrium voting behavior exists, intuitively it must be more efficient than non-

responsive equilibrium voting behavior, because jurors essentially use private signals to form

judgements. We confirm this intuition by comparing responsive equilibrium voting outcomes

with non-responsive equilibrium voting outcomes. If there is no responsive equilibrium vot-

ing behavior for a belief π, then one of the non-responsive equilibria, (σg = 1, σi = 1) or

(σg = 0, σi = 0), is an efficient equilibrium voting behavior.

Given a belief π, conviction probabilities, (PG, PI), change the jurors’ expected payoff

by

−q · (1− π) · PI − (1− q) · π · (1− PG).

The first term corresponds to mistakenly convicting innocent defendants, and the second

term corresponds to mistakenly acquitting guilty defendants.

Between two non-responsive equilibrium voting behaviors, (σg = σi = 0) and (σg = σi =

1), the former gives a higher jurors’ expected utility than the latter, because q (1 − π) is

larger than (1− q)π.

When π > π̄(k̂), there is a responsive equilibrium voting behavior, and responsive voting

is more efficient than (σg = σi = 0) if and only if the conviction probabilities (PG, PI) of

responsive voting satisfy

−q (1− π) PI − (1− q) π (1− PG) > −(1− q) π

which we can rewrite as

PG
PI

=

∑n
j=k̂

(
n
j

)
rjG(1− rG)n−j∑n

j=k̂

(
n
j

)
rjI(1− rI)n−j

>
q

1− q
1− π
π

. (B.6)

If the above inequality holds as an equality, then responsive voting behavior and (σg =

0, σi = 0) are both equally efficient.

We proceed separately with general super-majority rules and the unanimity rule.



114

General super-majority rules (k̂ < n) In order to verify (B.6), first note that k′ > k

and rG > rI > 0 implies

rk
′
G (1− rG)n−k

′

rk
′
I (1− rI)n−k′

>
rkG(1− rG)n−k

rkI (1− rI)n−k
. (B.7)

Also note that

if x, x′ > 0 and y, y′ > 0,
x′

y′
>
x

y
implies

x+ x′

y + y′
>
x

y
. (B.8)

Sequentially applying (B.7) and using (B.8), we obtain

∑n
k=k̂

(
n
k

)
rkG(1− rG)n−k∑n

k=k̂

(
n
k

)
rkI (1− rI)n−k

>
rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
.

Therefore, to prove (B.6), it is enough to show

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
≥ q

1− q
1− π
π

. (B.9)

We proceed with each case of responsive equilibrium voting behavior.

Case 1 : (0 < σg < 1, σi = 0), where π̄(k̂) < π < π̄(2k̂ − n).

By substituting in rG = pσg and rI = (1− p)σg, the LHS of (B.9) becomes

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
=

(
1− pσg

1− (1− p)σg

)n−k̂( p

1− p

)k̂
.

The equilibrium restriction (B.1) implies that the RHS of the above expression is

equal to the RHS of (B.9). Thus (B.9) holds under equality.

Case 2 : (σg = 1, σi = 0), where π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n).

Since rG = p and rI = 1− p, the LHS of (B.9) is

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
=

(
p

1− p

)2k̂−n
.

From (B.3), equation (B.9) must be true.
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Case 3 : (σg = 1, 0 < σi < 1), where π̄(2(k̂ − 1)− n) < π ≤ .5.

Note that (B.4) is a necessary equilibrium restriction. Since π ≤ .5 and p > .5,

(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(1− p
p

)n−k̂+1

=
q

1− q
1− π
π

By substituting in rG = p+ (1− p)σi, rI = (1− p) + p σi, we obtain

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
=

(
p+ (1− p)σi
(1− p) + pσi

)k̂(1− p
p

)n−k̂
≥
(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(1− p
p

)n−k̂+1

Inequality (B.9) is derived from the above two inequalities.

The unanimity rule (k̂ = n) If the voting rule follows the unanimity rule, then (B.6)

becomes

PG
PI

=

(
rG
rI

)n
>

q

1− q
1− π
π

. (B.10)

If the above inequality holds, responsive voting is more efficient than (σg = 0, σi = 0);

if LHS and RHS are equal, both responsive equilibrium voting and (σg = 0, σi = 0) are

equally efficient.

Case 1: (0 < σg < 1, σi = 0), where π = π̄(n).

By substituting in rG = pσg and rI = (1− p)σg, the LHS of (B.10) becomes

(
rG
rI

)n
=

(
p

1− p

)n
.

By definition of π̄(·) and π = π̄(n), (B.10) holds as an equality. Thus, both (0 < σg <

1, σi = 0) and (σg = 0, σi = 0) are equally efficient.

Case 2: (σg = 1, σi = 0), where π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n).

Since rG = p and rI = 1− p, the LHS of (B.10) is

(
rG
rI

)n
=

(
p

1− p

)n
.
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By definition of π̄(·), (B.10) holds as an equality when π = π̄(2k̂−n) = π̄(n); otherwise

if π̄(n) < π ≤ π̄(2(k̂ − 1)− n) then (B.10) holds with a strict inequality. Thus, when

π = π̄(n), both (σg = 1, σi = 0) and (σg = 0, σi = 0) are equally efficient; when

π̄(n) < π ≤ π̄(2(k̂ − 1) − n), responsive equilibrium voting (σg = 1, σi = 0) is more

efficient than (σg = σi = 0).

Case 3: (σg = 1, 0 < σi < 1), where π̄(2(k̂ − 1)− n) < π ≤ .5.

By substituting in rG = p+ (1− p)σi, rI = (1− p) + p σi, we obtain

(
rG
rI

)n
=

(
p+ (1− p)σi
(1− p) + pσi

)n
>

(
p+ (1− p)σi
(1− p) + pσi

)n−1 p

1− p
=

q

1− q
1− π
π

where the last equality is from the voting criterion (B.4). Responsive equilibrium

voting is the most efficient equilibrium voting behavior.

B.3 Other Notions of Equilibrium Refinements.

We use the most efficient equilibrium as an equilibrium refinement, but it is a theoretically

interesting question whether other previously studied refinement concepts are also applica-

ble. It turns out that equilibrium refinement using trembling hand perfection by Austen-

Smith and Feddersen (2005) or weakly un-dominated strategies by Gerardi and Yariv (2007)

does not generate equilibrium voting behavior satisfying natural properties in Proposition

2.3.2. We prove this by showing that, when the voting rule is a super-majority and π is

small, both σg = σi = 0 and σg = σi = 1 are weakly undominated strategies, and none of

them passes trembling hand perfection.

First, we show that both σg = σi = 0 and σg = σi = 1 are weakly undominated

strategies. Assume that 1 ≤ k̂ < n and π = π̄(k̂)−ε. We showed in the proof of Proposition

2.3.1 that only σg = σi = 1 and σg = σi = 0 are symmetric equilibria. The level of belief is

low enough that k̂ number of guilty signals give a single dictating juror insufficient evidence

to convict the defendant. However, with slightly more evidence, the juror will have enough

incentive to convict the defendant.

We first consider σg = σi = 0. Suppose that all other jurors except juror j play (σ′g, σ
′
i)



117

in which σ′g = 1 and 1
2 < σ′i < 1. Being pivotal implies that k̂ − 1 other jurors vote for

conviction. Such an event combined with juror j’s guilty signal provides less incentive to

vote for conviction than the event that juror j herself observes k̂ number of guilty signals,

because some other jurors’ conviction votes may come from i signals. The best response for

juror j with signal g is to vote for acquittal. Clearly, the best response when the signal is i

is also to vote for acquittal. Therefore, σg = σi = 0 is not a weakly dominated strategy.

We next consider σg = σi = 1. Suppose that all other jurors except juror j play (σ′′g , σ
′′
i )

in which 0 < σ′′g <
1
2 and σ′′i = 0. Being pivotal implies that k̂ − 1 other jurors vote for

conviction. Such an event gives more incentive to vote for conviction than the event that

juror j herself observes k̂ number of guilty signals, because some other jurors’ acquittal

votes may come from g signals. The best response for juror j is to vote for conviction

regardless of her own signal. Since σg = σi = 1 is the best response, it is not a weakly

dominated strategy.

On the other hand, neither σg = σi = 0 nor σg = σi = 1 passes trembling hand perfec-

tion. Trembling hand perfection modified to our Bayesian game requires us to construct a

sequence of perturbed games. In each perturbation, players assign strictly positive proba-

bilities to both pure strategies: (σng = εn1 , σ
n
i = εn2 ) and (σng = 1 − εn3 , σni = εn4 ). Trembling

hand perfection requires that the strategy must constitute a Bayesian Nash equilibrium of

a corresponding sequence of perturbed games, and the sequence of equilibria must converge

to the Bayesian Nash equilibrium of the original game, (σg = σi = 0) and (σg = σi = 1),

respectively. However, since guilty signal g gives a strictly higher incentive to vote for con-

viction than a signal i, such a sequence of perturbed games does not exist. In no case is a

juror indifferent between voting for conviction and voting for acquittal with both signals, g

and i. Therefore, neither σg = σi = 0 nor σg = σi = 1 passes trembling hand perfection.

B.4 Proof of Proposition 2.3.2.

The conviction probabilities of guilty defendants and innocent defendants, {(PG, PI)|π}, are

determined by
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PG =
n∑
k=k̂

(
n

k

)
rkG(1− rG)n−k

PI =
n∑
k=k̂

(
n

k

)
rkI (1− rI)n−k

where rG = pσg+(1−p)σi and rI = (1−p)σg+pσi, where (σg, σi) is the efficient equilibrium

voting behavior.

When the efficient equilibrium voting behavior is (σg = 0, σi = 0), PG ≥ PI clearly

holds, because the conviction probabilities are all equal to zero. If the efficient equilibrium

voting behavior is responsive, we showed that (B.6) holds and q
1−q

1−π
π ≥ 1. Thus, PG ≥ PI

(Item 1).

From the closed form solutions of responsive equilibrium voting behavior, we observed

that σg and σi are constant on [0, π̄(k̂)] and [π̄(2k̂−n), π̄(2(k̂−1)−n)], and non-decreasing

in π on both intervals (π̄(k̂), π̄(2k̂− n)) and (π̄(2k̂− n), .5]. By comparing across intervals,

we can check that σg and σi are non-decreasing in π over [0, .5]. From the closed form

solutions of efficient equilibrium voting behavior, it is also easy to see that σg and σi are

increasing in k̂ (Item 2).

Lastly, fG(π) and fI(π) are non-decreasing in π, because the conviction probabilities

are strictly increasing in σg and σi, and σg and σi are non-decreasing in π (Item 3).

B.5 Proof of Proposition 2.4.1

We first prove the following lemma.1

Lemma B.5.1. Conviction probability of guilty defendants fG(π) is an upper hemicontin-

uous correspondence in π with non-empty convex values.

Proof. Note that the efficient equilibrium voting behavior σg and σi are unique for every

π, except when π = π̄(n) and the rule is unanimous, in which efficient equilibrium voting

behavior is any pair of (σi = 0, 0 ≤ σg ≤ 1). Since
∑n

k′=k̂

(
n
k′

)
rk
′
G (1− rG)n−k

′
is a continuous

1The lemma holds also for fI(π), but we do not need this observation in proving Proposition 2.4.1.
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function of σg and σi, fG(π) is convex valued for all π (Intermediate Value Theorem).

In addition, closed form solutions of efficient equilibrium voting behavior (σg and σi) are

upper hemicontinuous in π. Since fG is continuous in σg and σi, fG(π) inherits upper

hemicontinuity in π.

Now, suppose θ ≤ PG. It is necessary that θ ∈ [0, θ̄] where θ̄ := sup fG(.5). There exists

a π such that θ ∈ fG(π), because fG(π) is upper hemicontinuous in π with non-empty convex

values (Intermediate Value Theorem). Suppose by contradiction that θ < PG. Every guilty

defendant pleads guilty, and only innocent defendants may or may not go to trial. In such

a case, jurors reasonably believe that all defendants in trials are innocent (π = 0), which

consequently leads conviction probability to equal zero. This contradicts θ < PG. θ = PG

must be true (Item 1).

Otherwise, we have θ > PG as a part of an equilibrium outcome. No defendant pleads

guilty, and the jurors’ reasonable beliefs π will be equal to .5. The conviction probabilities

(PG, PI) must be in {(P ′G, P ′I)|.5} (Item 2).

B.6 Proof of Proposition 2.4.2

B.6.1 Simplifying the prosecutor’s problem

The prosecutor’s problem is described below.

max
θ∈[0,1]

−1

2
q′
(
φIθ + (1− φI)PI

)
− 1

2
(1− q′)

(
φG(1− θ) + (1− φG)(1− PG)

)
(B.11)

such that

(a.1) φG ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PG

(a.2) φI ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PI

(b) π =

 0 if φG = φI = 1

1−φG
(1−φG)+(1−φI) otherwise.

(c) (PG, PI) ∈ {(P ′C , P ′I)|π}.

Using Proposition 2.4.1, we simplify the above expressions. To begin with, we can
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restrict without loss of generality that a prosecutor can offer θ ∈ [0, θ̄], because he can

obtain any utility level from offering θ > θ̄ by offering θ = θ̄; all players perceive the same

ex-ante punishments in both cases. In the former case (offering θ > θ̄), all defendants plead

not guilty and receive (PG, PI) ∈ {(P ′G, P ′I)|.5} conviction probabilities. In the latter case,

some guilty defendants may plead guilty, but the punishment for a guilty plea is equal to

the conviction probability: i.e. the expected punishment from a jury trial. As far as the

ex-ante punishments are the same, the prosecutor and the defendant are indifferent between

pleading guilty and pleading not guilty.

Once the prosecutor offers θ ∈ [0, θ̄], Proposition 2.4.1 ensures that θ = PG ≥ PI .

Pleading decisions of guilty defendants are straightforward; guilty defendants are indifferent

toward pleading guilty or pleading not guilty, thus any φG ∈ [0, 1] is a best response.

Pleading decisions of innocent defendants depend on whether θ = PI or θ > pI . PG = PI

holds only when θ = PG = PI = 0; otherwise, θ = PG > PI . In the former case, any pleading

decision behavior incurs the same expected prosecutor’s utility, −1
2(1− q′) including when

φI = 1 (no punishment). In the latter case, φI = 1 must be true, since only pleading not

guilty is the best response. In all, when the prosecutor offers θ ∈ [0, θ̄], it is innocuous for

the prosecutor to assume that φI = 1. By applying these observations, we simplify the

prosecutor’s decision as

max
θ∈[0,θ̄]

−1

2
q′PI −

1

2
(1− q′)(1− θ)

such that

(a) φG ∈ [0, 1]

(b) π =

 0 if φG = 1

1−φG
2−φG otherwise.

(c) (θ, PI) ∈ {(P ′G, P ′I)|π}.

It is convenient to define a function P̃I : [0, θ̄]→ [0, 1] as follows.

P̃I(θ) = pI , where ∃ π, (θ, pI) ∈ {(P ′G, P ′I)|π}.
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Referencing the proof of Proposition 2.3.1, we can verify that the function P̃I is well-

defined; For every θ ∈ [0, θ̄], the value of P̃I(θ) exists and is unique. There are four cases: (1)

θ = 0, (2) θ ∈ (0, p̂G), (3) θ = p̂G, or (4) θ ∈ (p̂G, θ̄], in which p̂G is the conviction probability

of guilty defendants when jurors vote by following their own signals (σg = 1, σi = 0).

If θ = 0, pI must be 0. If θ = p̂G, pI is unique and the value is derived from the voting

strategy (σg = 1, σi = 0). For other cases, recall that the conviction probabilities are defined

as

PG =

n∑
k=k̂

(
n

k

)
rkG
(
1− rG

)n−k
, PI =

n∑
k=k̂

(
n

k

)
rkI
(
1− rI

)n−k
where rG = pσg + (1−p)σi and rI = (1−p)σg +pσi. When θ ∈ (0, p̂G), σi = 0 and both PG

and PI are strictly increasing in σg. Since PG is continuous in rG which is also continuous

in σg, for any θ ∈ (0, p̂G), there exists a unique σg inducing PG = θ. Such a σg combined

with σi = 0 gives a unique pI such that (θ, pI) ∈ {(P ′G, P ′I)|π}. A similar procedure applies

when θ ∈ (p̂G, θ̄].

Through the above argument, the function P̃I is not only well-defined, but strictly

increasing and continuous on [0, θ̄], and differentiable on (0, p̂G) and (p̂G, θ̄). Using P̃I , the

prosecutor’s problem becomes

max
θ∈[0,θ̄]

U(θ) := −1

2
q′P̃I(θ)−

1

2
(1− q′)(1− θ). (B.12)

We show that the objective function above is strictly concave. Thus, the First Order

Condition (FOC) will be the necessary and sufficient condition of the maximizer θ∗. We

later use the FOC to prove Proposition 2.4.2.

B.6.2 U(θ) is strictly concave in θ.

Since P̃I is continuous in θ, the objective function is, too. Moreover, P̃I is differentiable

on (0, p̂G) and (p̂G, θ̄), and U(θ) is a linear combination of θ and P̃I . Thus, U(θ) is also

differentiable with respect to θ on (0, p̂G) and (p̂G, θ̄). If we show that the derivative of P̃I

is decreasing on (0, p̂G) and (p̂G, θ̄), and the left derivate is greater than the right at p̂G,
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then the concavity of P̃I follows. Since U(θ) is a linear combination of θ and P̃I , concavity

of the objective function directly follows from the concavity of P̃I .

When θ ∈ (0, p̂G), PG and PI are differentiable with respect to σg. The derivative of PG

is

∂PG
∂σg

=
∂

∂σg

n∑
k=k̂

(
n

k

)
(rG)k(1− rG)n−k

=
n−1∑
k=k̂

(
n!

k!(n− k)!
krk−1
G (1− rG)n−kr′G

− n!

k!(n− k − 1)!
rkG(n− k)(1− rG)n−k−1r′G

)
+ nrn−1

G r′G

= n r′G

(
n− 1

k̂ − 1

)
rk̂−1
G (1− rG)n−k̂ (B.13)

Using a similar operation, we obtain

∂PI
∂σg

= n r′I

(
n− 1

k̂ − 1

)
rk̂−1
I (1− rI)n−k̂ (B.14)

Therefore,

∂P̃I(θ)

∂θ
=
∂PI/∂σg
∂PG/∂σg

=
r′I r

k̂−1
I (1− rI)n−k̂

r′G r
k̂−1
G (1− rG)n−k̂

. (B.15)

Since rG = pσg and rI = (1− p)σg, (B.15) becomes

(
1− p
p

)k̂(1− (1− p)σg
1− pσg

)n−k̂
. (B.16)

As θ increases in (0, p̂G), the corresponding σg increases, and the above derivative strictly

decreases. Therefore, ∂P̃I(θ)
∂θ is decreasing in θ ∈ (0, p̂G).

When θ ∈ (p̂G, θ̄), σg is fixed equal to 1 and only σi varies. Similar to (B.13) and (B.14),

we obtain

∂P̃I(θ)

∂θ
=
∂PI/∂σi
∂PG/∂σi

=
r′I r

k̂−1
I (1− rI)n−k̂

r′G r
k̂−1
G (1− rG)n−k̂

. (B.17)

By substituting in rG = p+ (1− p)σi and rI = (1− p) + pσi, we obtain
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(
(1− p) + pσi
p+ (1− p)σi

)k̂−1( p

1− p

)n−k̂+1

. (B.18)

Again, as θ increases in (p̂G, θ̄), the corresponding σi increases, and the above derivative

decreases. Therefore, ∂P̃I(θ)
∂θ is decreasing in θ ∈ (p̂G, θ̄)

Lastly, at θ = p̂G, the left derivative is greater than the right derivative, because the

limit of (B.16) as σg goes to 1 is greater than the limit of (B.18) as σi goes to 0. This

concludes that P̃I is strictly concave in θ, and thus the objective function in (B.12) is also

strictly concave in θ.

B.6.3 First Order Condition

Since the prosecutor’s objective function is strictly concave in θ, the FOC gives the necessary

and sufficient condition of optimizer θ∗. Instead of finding the closed form solution, we use

the FOC and prove Proposition 2.4.2. We proceed for each case of the optimizer θ∗.

Interior Solutions

(0 < θ∗ < p̂G) : Using (B.16), FOC of (B.12) becomes

(
p

1− p

)k̂( 1− pσg
1− (1− p)σg

)n−k̂
=

q′

1− q′
.

Recall that a juror receiving a guilty signal uses a mixed strategy at this level of

conviction probability for guilty defendants. (Equation (B.2) holds.) We obtain

q

1− q
1− π
π

=
q′

1− q′

(p̂G < θ∗ < θ̄) : Using (B.18), FOC of (B.12) becomes

(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(1− p
p

)n−k̂+1

=
q′

1− q′
.

Recall that a juror receiving an innocent signal uses a mixed strategy at this level of

conviction probability for guilty defendants. (Equation (B.5) holds.) We obtain
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q

1− q
1− π
π

=
q′

1− q′

Boundary Solutions

(θ∗ = p̂G) : The prosecutor offers this punishment for a guilty plea, when

lim
θ↓p̂G

∂U(θ)

∂θ
≤ 0 ≤ lim

θ↑p̂G

∂U(θ)

∂θ

Replacing (B.16) and (B.18) for ∂P̃I(θ)
∂θ , we can rewrite the above inequalities as

(
(1− p) + pσi
p+ (1− p)σi

)k̂−1( p

1− p

)n−k̂+1

≤ 1− q′

q′
≤
(

1− p
p

)k̂(1− (1− p)σg
1− pσg

)n−k̂
,

or (
p

1− p

)2(k̂−1)−n
≤ q′

1− q′
≤
(

p

1− p

)2k̂−n

Compared with (B.3), when the prosecutor chooses θ∗ = p̂G, the jurors’ voting be-

havior with π and q is exactly the same as the voting behavior when jurors’ belief is

equal to .5 and reasonable doubt is equal to q′.

(θ∗ = 0) : The right derivative at θ = 0 must be less than or equal to 0. By applying (B.16)

to the derivative of the objective function in (B.12) and taking σg → 0, we obtain

(
p

1− p

)k̂
≤ q′

1− q′
.

Note that θ∗ induces the equilibrium voting behavior σg = σi = 0. This strategy

profile becomes an efficient equilibrium voting behavior when the RHS of (B.1) is

greater than or equal to the LHS, which implies

(
p

1− p

)k̂
≤ q

1− q
1− π
π

.
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By comparing the above two inequalities, we observe that the equilibrium voting

behavior is the same as the voting behavior when jurors’ beliefs are equal to .5 and

reasonable doubt is equal to q′.

(θ∗ = θ̄) : The left derivative at θ = θ̄ must be non-negative. Applying (B.18) to the

derivative of U(θ), we must obtain

lim
θ↑θ̄

∂U(θ)

∂θ
≥ 0

or (
p+ (1− p)σ̄i
(1− p) + pσ̄i

)k̂−1(1− p
p

)n−k̂+1

≥ q′

1− q′

where σ̄i with σg = 1 is an equilibrium voting behavior with the belief π = .5.

Note that in this situation, a juror receiving an innocent signal is indifferent between

conviction and acquittal. Thus (B.4) becomes

(
p+ (1− p)σ̄i
(1− p) + pσ̄i

)k̂−1(1− p
p

)n−k̂+1

=
q

1− q
.

Thus, q
1−q ≥

q′

1−q′ , or q ≥ q′.

When q ≥ q′, the prosecutor offers θ∗ = θ̄, and all defendants plead not guilty (π = .5).

Jurors vote with threshold q
1−q , which is the same as the threshold in the jury model

without plea bargaining. Although we have restricted the prosecutor’s strategy space

to [0, θ̄], any θ∗ higher than θ̄ induces the same prosecutor’s equilibrium expected

utility as θ∗ = θ̄.

Proposition 2.4.2 summarizes these results of FOC.

B.6.4 Proof of Corollary 5

First, note that efficient equilibrium voting behavior is responsive if π > π̄(k̂). Since π̄(l)

is strictly decreasing in l, the efficient equilibrium voting behaviors are responsive for all

π > 0 as n→∞.
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Given π, p, and a voting rule (k̂ = n), efficient equilibrium voting leads the con-

viction probabilities to converge to 1 −
(

(1−q)(1−p)π
qp(1−π)

) 1−p
2p−1

for guilty defendants, and to(
(1−q)(1−p)π
qp(1−π)

) p
2p−1

for innocent defendants. These convergence results directly follow Propo-

sition 2 in Feddersen and Pesendorfer (1998). (Our parameter values satisfy all conditions

assumed in their Propositions.)

For general super-majority rules, regardless of the jury size n, we have π
1−π = 1 (if

q > q′) or 1−q
q

π
1−π = 1−q′

q′ (if q ≤ q′). As we replace 1−q
q

π
1−π = 1−q̃

q̃ where q̃ = max{q, q′},

the conviction probabilities for guilty defendants and innocent defendants directly follow

Proposition 3 in Feddersen and Pesendorfer (1998); the conviction probability for guilty

defendants converges to 1 and for innocent defendants converges to 0.

Lastly from Proposition 2.4.1 in this paper, we can relate the ex-ante punishments, one

for guilty defendants and another for innocent defendants, to the conviction probabilities

in jury trials.
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Appendix C

Appendix to Chapter 3: Zero-sum
Games

We prove the main theorem.

The necessity of (PC), (PE), and (INT) Suppose a joint choice correspondence f

is Nash-rationalizable by a zero-sum game (A,�,�). The necessity of (PC) and (PE)

is obvious from the definition of Nash equilibrium. To show the necessity of (INT), let

B = B1 × B2 ∈ A and b = (b1, b2), b′ = (b′1, b
′
2) ∈ f(B). Note that b1, b

′
1 ∈ B1 and

b2, b
′
2 ∈ B2, which implies that (b1, b

′
2) and (b′1, b2) are also in B.

Since (b1, b2) is a Nash equilibrium of the game (B,�,�),

i) player 1 prefers (b1, b2) to (b′1, b2): i.e. (b1, b2) � (b′1, b2), and

ii) player 2 prefers (b1, b2) to (b1, b
′
2): i.e. (b1, b2) � (b1, b

′
2), or equivalently (b1, b

′
2) �

(b1, b2).

In addition, since (b′1, b
′
2) is a Nash equilibrium of the game (B,�,�),

iii) player 1 prefers (b′1, b
′
2) to (b1, b

′
2): i.e. (b′1, b

′
2) � (b1, b

′
2), and

iv) player 2 prefers (b′1, b
′
2) to (b′1, b2): i.e. (b′1, b

′
2) � (b′1, b2), or equivalently (b′1, b2) �

(b′1, b
′
2).

By transitivity of �, from (i) and (iv) we obtain (b1, b2) � (b′1, b2) � (b′1, b
′
2), and from

(ii) and (iii) we obtain (b′1, b
′
2) � (b1, b

′
2) � (b1, b2). Therefore, (b1, b2), (b′1, b2), (b1, b

′
2), and

(b′1, b
′
2) are all indifferent for player 1 and player 2.
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In this situation, (b′1, b2) is a Nash equilibrium of the game (B,�,�): for any b′′1 ∈ B1,

since (b1, b2) is a Nash equilibrium, we have (b1, b2) � (b′′1, b2), and thus (b′1, b2) � (b′′1, b2);

from player 2’s viewpoint, for any b′′2 ∈ B2, since (b′1, b
′
2) is a Nash equilibrium, we have

(b′1, b
′
2) � (b′1, b

′′
2), and thus (b′1, b2) � (b′1, b

′′
2). Similarly, (b1, b

′
2) is also a Nash equilibrium

of the game (B,�,�). In all, {b}∨{b′} is a subset of the set of Nash equilibria of the game

(B,�,�), and therefore a subset of f(B).

The sufficiency of (PC), (PE), and (INT) To prove sufficiency, we construct a pref-

erence � over A, with which for all B ∈ A, f(B) coincides with the set of all Nash equilibria

of (B,�,�).

In individual choice theory, given a finite alternative set X and a choice correspondence

g, Sen (1971) defines base relation R∗ as

xR∗y if and only if x ∈ g({x, y}).

Similarly, we define two relations �∗ and �∗∗ as follows: for any a = (a1, a2), b =

(b1, b2) ∈ A,

a �∗ b if and only if a2 = b2 and a ∈ f({a1, b1} × {a2}),

a �∗∗ b if and only if a1 = b1 and b ∈ f({a1} × {a2, b2})

Note that �∗ and �∗∗ are disjoint, and �∗∗ is defined “inversely” from the convention

of individual choice theory. Finally, let � be the union of �∗ and �∗∗. We arrange player

1’s conceivable actions in a column and player 2’s actions in a row, thereby constructing a

table of joint actions. Then, in each line (PC) is equivalent to Sen’s α and β, and �∗ and

�∗∗ are defined as analogous with the base relation. �∗ represents the base relation in each

column, and �∗∗ represents the base relation in each row, except �∗∗ is defined inversely. In

such case, Sen (1971) shows that �∗ is a weak order in each column, and �∗∗ is an inverse

relation of a weak order in each row; therefore, the union � is a weak order in both columns

and rows. Note that � is not yet defined on any pair of joint actions across the lines. In
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order to construct a complete relation over A, we need some preliminary definitions.

Definition 6 (Consistency). Let R be a relation over X = {x1, x2, . . . , xl, . . . } and P be the

strict counterpart of R. A sequence x1Rx2R · · ·RxlPx1 is called a PR-cycle (or a cycle).

If a relation does not have any cycle, we say that it is consistent.

Definition 7 (Extension). Given any arbitrary binary relation R over X, if a binary rela-

tion R′ over X is such that

xRy implies xR
′
y

xPy implies xP
′
y

then R
′

is called an extension of R.

In the following proof, we show using interchangeability that � is consistent (Sec-

tion C.1). Then, we show using (PE) and (PC) that any weak order extension of �

Nash-rationalizes the joint choice correspondence by a zero-sum game (Section C.2).

C.1 � is consistent.

By means of contradiction, suppose that there exists {a1, · · · , aN} ⊂ A such that a1 � a2 �

· · · � aN � a1. Since � is the union of two disjoint sets, �∗ and �∗∗, � is either �∗ or �∗∗

depending on whether {ai, aj} is in a column or a row.

Hereafter, we restrict our attention to cycles of an even length of at least 4 where

the links in the cycle alternate between �∗∗ and �∗. This restriction does not lead to a

loss of generality. First, we only need to consider cycles that alternate because any cycle

containing consecutive �∗ or �∗∗ can be reduced by means of transitivity to a shorter cycle

without consecutive �∗ or �∗∗. In addition, there is no cycle with a length of 2 such as

a1 �∗ a2 �∗∗ a1. By definition of �∗, a1
2 = a2

2, and by definition of �∗∗, a1
1 = a2

1, which

together imply that a1 = a2. Then, we have a1 �∗∗ a1. We can also rule out cycles of odd

lengths, since we can shorten any cycle of a odd length by transitivity to a cycle of an even

length. For instance, the cycle a �∗∗ b �∗ c �∗∗ d �∗ e �∗∗ a of length 5 can be reduced to

the cycle b �∗ c �∗∗ d �∗ e �∗∗ b of length 4. We also restrict attention to the case where
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the cycle begins with �∗∗. The case where the cycle begins with �∗ is omitted, but can be

proved in a similar way.

First, we prove that there is no cycle of length 4. Suppose a �∗∗ b �∗ c �∗∗ d �∗ a. By

definition, we have a1 = b1, b2 = c2, c1 = d1 and d2 = a2. Then {a, b, c, d} makes feasible

sets as depicted in Figure C.1. In part (i) of the figure, each dashed arrow corresponds to

either �∗ or �∗∗ and the solid arrow corresponds to d �∗ a. The tail of each arrow is the

element from the left hand side of the preference relation.

(i) (ii) (iii)

a b

cd

a b*

c

a

cd*

Figure C.1: A cycle of length 4

Parts (ii) and (iii) of Figure C.1 illustrate the choice correspondence generating �∗ and

�∗∗ for each feasible set. Note that b ∈ f({a, b}) ∩ f({b, c}), and d ∈ f({a, d}) ∩ f({c, d}).1

Then (PE) implies that b ∈ f({a, b, c, d}) and d ∈ f({a, b, c, d}). Since f is interchangeable,

and since a1 = b1 and a2 = d2, a = (b1, d2) must also be chosen; i.e., a ∈ f({a, b, c, d}).

Likewise, c = (d1, b2) implies c ∈ f({a, b, c, d}). Finally, (PC) implies that a ∈ f({a, d}),

which contradicts d �∗ a. So, there cannot be any cycle with length 4.

Now, let us make the induction hypothesis that there is no cycle of length 2(n−1) where

n ≥ 3. Given this hypothesis, we prove that there is no cycle of length 2n.

By reordering the list of individual actions for player 1 and for player 2 from a cycle

a1 � a2 � · · · a2n � a1, we can generate the table of joint actions in Figure C.2. Here, the

dashed arrows and the solid arrow represent the links in the cycle as in Figure C.1.

The proof by induction argument requires the following steps. Step 1 to 3 gives prefer-

ences shown in Figure C.7, and Step 4 shows other preferences as reflected in Figure C.9-(ii).

Step 5 shows the contradiction of these preferences identified in Step 1 to 3 and Step 4.

1Again for player 2, �∗∗ is defined inversely from the convention of base relation. Accordingly, arrows in
the figures inversely represent player 2’s revealed preference.
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a1

e

        

               a2n-4         c1

           d        a2n-3      a2n-2

a2n          ...            b2   b1      a2n-1

.

.

.

.
.

.

Figure C.2: A cycle of length 2n (n ≥ 3)

Step 1: Consider the feasible set {a2n−3, a2n−2, a2n−1, b1}. In addition to the known

preferences from the cycle, we can verify f({a2n−3, b1}) and f({b1, a2n−1}). The four cases

in Figure C.3 below contain all possible cases of f({a2n−3, b1}) and f({b1, a2n−1}). In

these two feasible sets, it must not be the case that either a2n−3 ∈ f({a2n−3, b1}) and

a2n−1 ∈ f({b1, a2n−1}) (fig (i)), or b1 ∈ f({a2n−3, b1}) and b1 ∈ f({b1, a2n−1}) (fig (ii)).

(i.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(ii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(iv.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

Figure C.3: A part of the cycle with length 2n

In case (i), a2n−4 �∗ b1 by transitivity of �∗ in the left column, and b1 �∗∗ a2n

by transitivity of �∗∗ in the bottom row. These two preferences induce the cycle a1 �
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· · · � a2n−4 � b1 � a2n � a1 which has length 2(n − 1), a contradiction. In case (ii),

b1 ∈ f({a2n−3, b1}) ∩ f({b1, a2n−1}) and a2n−2 ∈ f({a2n−3, a2n−2}) ∩ f({a2n−2, a2n−1}).

(PE) induces that a2n−2 and b1 are in f({a2n−3, a2n−2, a2n−1, b1}); interchangeability of f

implies that all four joint actions are in f({a2n−3, a2n−2, a2n−1, b1}). Therefore, we have an

indifference relation ∼ in {a2n−3, b1} and {b1, a2n−1}, which gives a special case of (i).

Excluding case (i) and (ii), either (iii) or (iv) must be true. We will prove that the

induction step is true in case (iii). The proof in case (iv) is omitted here as it can be shown

with exactly the same approach as that taken in case (iii).

(i.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(ii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(iv.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

Figure C.4: Verifying more preferences

Step 2: Figure C.4 contains every possible case of f({a2n−4, c1}) and f({c1, a2n−2}). Us-

ing the same argument used for the case (i) and (ii) of f({a2n−3, b1}) and f({b1, a2n−1})

in Step 1, we can rule out the cases of (i) and (ii) in Figure C.4. In addition, case (iii),

{a2n−4} = f({a2n−4, c1}) and {c1} = f({c1, a2n−2}), is not possible either. This can be

shown first by observing b1 �∗ a2n−4. If it is not the case, completeness of �∗ in the left

column gives a2n−4 �∗ b1 which, combined with b1 �∗∗ a2n by transitivity of �∗∗ in the

bottom row, induces the cycle a1 �∗∗ · · · �∗∗ a2n−4 �∗ b1 �∗∗ a2n �∗ a1 whose length is
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2(n− 1).

Once (iii) and b1 �∗ a2n−4 are obtained (see Figure C.5), we consider the set of joint

actions {a2n−4, c1, b1, a2n−1}. Any choice from this feasible set violates the (PC) in one

feasible subset of {a2n−4, c1, b1, a2n−1}. Suppose c1 ∈ f({a2n−4, c1, b1, a2n−1}), then c /∈

f({a2n−4, c1}) violates (PC). Likewise any joint action in {a2n−4, c1, b1, a2n−1} is not a

choice. Thus case (iv), {c1} = f({a2n−4, c1}) and {a2n−2} = f({c1, a2n−2}), must be true.

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c1

Figure C.5: Ruling out the case (iii)

Step 3: Considering f({a2n−5, d}) and f({d, a2n−3}), we can rule out the cases of either

a2n−5 ∈ f({a2n−5, d}) and a2n−3 ∈ f({d, a2n−3}), or d ∈ f({a2n−5, d}) and d ∈ f({d, a2n−3})

by the same argument used for f({a2n−3, b1}) & f({b1, a2n−1}) and f({a2n−4, c}) & f({c, a2n−2})

in the previous steps. Accordingly, we only have cases of either {a2n−5} = f({a2n−5, d})

and {d} = f({d, a2n−3}), or {d} = f({a2n−5, d}) and {a2n−3} = f({d, a2n−3}); case (i) or

case (ii) in Figure C.6, respectively. Case (i) is ruled out because once we have a2n−5 �∗ d,

it must be that a2n−2 �∗∗ d. If this is not true, then d �∗∗ a2n−2, which induces one of the

following cases.

1. If the cycle has length 6 (a2n−5 is a1 and there is no # in fig(i)), b2 is equal to a2n.

Thus we have a2n−1 �∗∗ b2 and b2 �∗ d by transitivity of �∗. As a result, d �∗∗ a2n−2

makes a cycle with length 4, d �∗∗ a2n−2 �∗ a2n−1 �∗∗ b2 �∗ d, which contradicts the

induction hypothesis.

2. If the cycle has length 8 or more (there is a2n−6 , ‘#’ in the fig (i), which is not a1),

a2n−6 �∗ d �∗∗ a2n−2 by transitivity of �∗ and �∗∗ in the left column and the middle
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a2n-5       a2n-4 c1

  d       a2n-3      a2n-2

  b2           b1            a2n-1 

#

a2n-5       a2n-4 c1

  d       a2n-3      a2n-2

  b2           b1            a2n-1 

(i.) (ii.)

Figure C.6: Verifying more preferences.

row. These preferences shorten the cycle, which contradicts the induction hypothesis.

Therefore, a2n−2 �∗∗ dmust be true in case (i). Regardless of what is in f({a2n−5, d, c1, a2n−2}),

it violates (PC). For instance, if d ∈ f({a2n−5, d, c1, a2n−2}) then it must be d ∈ f({a2n−5, d}),

which violates a2n−5 �∗ d. Consequently, case (ii) in Figure C.6 must be the option.

By applying Step 2 and 3 sequentially, we can verify more preferences. Figure C.7

summarizes the result of this process. In the following proof, Step 4 is necessary only for

a cycle whose length is at least 8. For a cycle with length 6, we already know all the

preferences that we will verify in Step 4.

a1

e

        

               a2n-4         c1

           d        a2n-3      a2n-2

a2n          ...       b3           b2   b1      a2n-1

.

.

.

.
.

.
c2

Figure C.7: Preferences verified in Step 2 and 3

Step 4: Denote the joint action (a2n−1
1 , a2(n−k)−1) as bm and the joint action (a

2(n−m−1)
1 , a

2(n−m)
2 )

as cm, where k = 1, 2, . . . , n−2. Figure C.7 shows where bm and cm (1 ≤ m ≤ n−2) are lo-



135

cated. Let τ be a function from {b1, b2, . . . , bn−2} to A such that τ(bm) = (a
2n−(2m+1)
1 , bm2 ).

Figures C.8, C.9, and C.10 show how the function values are located in the feasible set

table. (τ(bm) takes its place on the stairway of which bm is at the bottom.) We prove the

following claim.

Claim C.1.1. For any bm (1 ≤ m ≤ n− 2), bm � τ(bm) and bm � a2n−1

Proof. We prove by induction. Note that we already proved in Step 2 that this claim holds

for b1.

Induction 1: The claim holds for b2. That is, b2 �∗ τ(b2) (or a2n−5) and b2 �∗∗ a2n−1.

(i.)

(ii.) (iii.)

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

Figure C.8: Verifying more preferences involving b2

Proof. Considering feasible sets, {τ(b2), b2} and {b2, a2n−1} (see Figure C.8), it is not

the case that τ(b2) ∈ f({τ(b2), b2}) and a2n−1 ∈ f({b2, a2n−5}) (case (i)). Otherwise,

it shortens the cycle with a2n−5 = τ(b2) �∗ b2 �∗∗ a2n. (We used transitivity in

the bottom row.) Therefore, by completeness in each line, we should have either

a2n−1 �∗∗ b2 or b2 �∗ τ(b2). In the former case, in order not to have a cycle of

length 6, which includes {τ(b2), a2n−4, a2n−3, a2n−2, a2n−1, b2}, f must give τ(b2) �∗ b2

(fig (ii)). In the latter case, in order not to have a cycle of length 6, f must give

b2 �∗∗ a2n−1 (fig (iii)). However, case (ii) is ruled out by considering the feasible
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set, {τ(b2), c1, b2, a2n−1}. To demonstrate this, note that a2n−1 �∗ c1. Otherwise,

τ(b2) �∗∗ c1 �∗ a2n−1 shortens the cycle. If case (ii) is true, then any choice from

{τ(b2), c1, b2, a2n−1} violates (PC). For example, if τ(b2) ∈ f({τ(b2), c1, b2, a2n−1}),

then it must be true that τ(b2) ∈ f({τ(b2), c1}). This contradicts τ(b2) �∗∗ c1. (Note

again that �∗∗ is defined inversely.) Therefore, (iii) must be the case in Figure C.8.

Induction 2: If the claim holds for bm−2, it also holds for bm (3 ≤ m ≤ n− 2).

Proof. With the same approach as Induction 1, f should not give τ(bm) �∗ bm and

bm �∗∗ a2n−1; otherwise, we have a shorter cycle including τ(bm) �∗ bm �∗∗ a2n.

Thus, it must be either a2n−1 �∗∗ bm or bm �∗ τ(bm). In the former case, not to have

a cycle, bm �∗ τ(bm) �∗∗ · · · �∗ a2n−1 �∗∗ bm which has length 2m + 2 ≤ 2(n − 1),

it must be true that τ(bm) �∗ bm (case (i) in Figure C.9).2 In the latter case,

not to have a cycle, τ(bm) �∗∗ · · · �∗ a2n−1 �∗ bm �∗ τ(bm) which has length

2m + 2 ≤ 2(n − 1), it must be true that bm �∗∗ a2n−1. (case (ii) in Figure C.9.)

However, case (i) is ruled out. First, observe that bm−2 �∗ cm−1 must be true;

otherwise τ(bm) �∗∗ cm−1 �∗ bm−2 �∗∗ a2n leads to a shorter cycle. In addition,

transitivity of �∗∗ in the bottom row gives bm−2 �∗∗ bm. Then, in the feasible set,

{τ(bm), bm, bm−2, cm−1}, any choice violates (PC). Therefore, (ii) must be the case in

f({τ(bm), bm}) and f({bm, a2n−1}).

By induction, bm � τ(bm) and bm � a2n−1 for m = 1, . . . , n− 2. Claim C.1.1 holds.

Step 5: Results from Steps 2 and 3, and results from Step 4 contradict each other.

2 Although we explicitly write the proof only for the case of cycle beginning with �∗∗, every single
step so far could have been reproduced for cases where cycles begin with �∗. Here, we used the induction
hypothesis, “there is no cycle with a length of 2(n− 1),” from the counterpart proof of cycles begining with
�∗.
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τ(bm)     cm-1

    ...

 bm   bm-1     bm-2               a2n-1

(i.)

τ(bm)     cm-1

    ...

 bm   bm-1     bm-2               a2n-1

(ii.)

Figure C.9: Verifying preferences involving bm

Proof. If we denote the joint action (τ(bn−2)1, a
1
2) as e (see Figure C.10), then Step 2 and

3 gives e �∗ a1 and e �∗∗ τ(bn−2). We showed in Step 4 that bn−2 �∗ τ(bn−2) and

bn−2 �∗∗ a2n−1. Moreover, it must be true that e �∗ a2n, since otherwise, a2n �∗ e �∗∗ a4

shortens the cycle. On the other hand, bn−2 �∗∗ a2n by transitivity of �∗∗ in the bottom

row. We can observe that any choice from the feasible set, {e, τ(bn−2), a2n, bn−2}, violates

(PC). This contradiction completes the proof of Step 5, thereby completing the proof of

consistency of �.

  a1

  a2n      bn-2  ...       a2n-1

  e   τ(bn-2)    a4

.

.

.

.
.
.

Figure C.10: A contradiction
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C.2 Characterizing a rationalizing preference relation.

Claim C.2.1. For all B ∈ A, f(B) coincides with the set of all Nash equilibria of the game

(B,�,�).

Proof. Take any B = B1 × B2 ∈ A, and let NE(B) be the set of all Nash equilibria of the

game (B,�,�). First, to show f(B) ⊂ NE(B), we take any b∗ = (b∗1, b
∗
2) ∈ f(B). Since f

satisfies (PC), b∗ ∈ f(B
′
) for all B

′ ∈ A and B
′ ⊂ B. Therefore, for any {b∗, (b1, b∗2)} ⊂ B,

b∗ ∈ f({b∗, (b1, b∗2)}). By the definition of �∗, we have b∗ �∗ (b1, b
∗
2), which is equal to

b∗ � (b1, b
∗
2). Similarly, for any {b∗, (b∗1, b2)} ⊂ B, b∗ ∈ f({b∗, (b∗1, b2)}). The definition of

�∗∗ gives (b∗1, b2) �∗∗ b∗, which is equal to (b∗1, b2) � b∗, or b∗ � (b∗1, b2). Since b∗ � (b1, b
∗
2)

and b∗ � (b∗1, b2), for all (b1, b
∗
2) ∈ B and (b∗1, b2) ∈ B, b∗ is a Nash equilibrium of the game

(B,�,�).

Conversely, if b∗ ∈ NE(B), for any (b1, b
∗
2) ∈ B, b∗ � (b1, b

∗
2). Since, only �∗, and

not �∗∗, is defined in columns, we have b∗ �∗ (b1, b
∗
2). The definition of �∗ gives b∗ ∈

f({b∗, (b1, b∗2)}), and (PE) implies b∗ ∈ f(B1 × {b∗2}) (#). b∗ ∈ NE(B) implies b∗ � (b∗1, b2)

for all (b∗1, b2) ∈ B (or (b∗1, b2) � b∗). Because we defined only �∗∗, and not �∗, in rows,

we have (b∗1, b2) �∗∗ b∗. The definition of �∗∗ gives b∗ ∈ f({b∗, (b∗1, b2)}) and (PE) induces

b∗ ∈ f({b∗1} ×B2) (##). Lastly, (#), (##), and (PE) imply that b∗ ∈ f(B).

We have shown that � is consistent and f(B) coincides with NE(B) for all B ∈ A.

Suzumura (1976) shows that a consistent relation has a weak order extension. Since the

extension generates additional preferences only between two joint choices which are not in a

line, this extension does not affect the result of Claim C.2.1. Therefore, Claim C.2.1 is still

valid with the weak order extension of �. This completes the proof of the main theorem.
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