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ABSTRACT 

The goal of my thesis work is to discover new ways to enable the use of nanoparticle 

therapeutics to treat human disease. The work presented here touches on several areas in 

medicine and is united by a common theme: engineering ways to make, use, and evaluate 

therapeutics that maximize the benefit to the patient and minimize the harm. I have 

explored three interrelated strategies to achieve my objectives: (1) the use of targeted-

nanoparticle-based therapeutics to deliver therapeutic entities to specific sites in the body, 

(2) the use of a highly specific type of therapeutic, siRNA, and (3) the evaluation of 

strategies for using extracellular microRNAs to non invasively monitor therapeutic 

activity and disease response to that activity. 

In Chapter 2, I present the first evidence of targeted-nanoparticle delivery of siRNA 

to solid tumors following systemic administration to patients. My coworkers and I 

demonstrate both dose-dependent accumulation of the siRNA nanoparticles and evidence 

of gene knockdown via the canonical RNAi mechanism.  

Chapters 3 – 5 describe the therapeutic potential of targeted nanoparticles (one 

version used in the clinic and described in Chapter 2) for: (i) targeting ribonucleotide 

reductase subunit M2 in human melanoma cell lines (Chapter 3), (ii) Herceptin-targeted 

nanoparticles containing siRNA against Her2 in Her2(+) breast cancer (Chapter 4), and 

(iii) siRNA targeting the “undruggable” protein N-Ras for N-Ras mutant melanomas 

(Chapter 5). 

Chapters 6 – 8 focus on the interaction of nanoparticles with the kidney. Chapter 6 

explores a previously unknown phenomenon of size-dependent glomerular accumulation 

of nanoparticles. In Chapter 7, a new mechanism of clearance for polycation-polymer- 



 v 

based nucleic acid delivery systems is demonstrated, based on interactions between 

polymer components in the nanoparticle and the anionic surface of the renal filtration 

barrier, explaining the rapid clearance of these siRNA nanoparticle systems. Chapter 8 

illustrates targeted-nanoparticle delivery of siRNA to the kidney.  

In Chapter 9, I test the hypothesis that analysis of tumor-secreted microRNAs within 

patient blood samples can be used as real-time markers of drug pharmacodynamics. 

Specifically, I focus on efforts to characterize microRNA expression patterns following 

pharmacologic inhibition of the oncogene BRAF in melanoma cells and their secreted 

exosomes.  
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Chapter 1: Introduction and Thesis organization 
 

1.1 Overall goal of thesis research: To develop ways to design, use, and evaluate 

nanoparticle-based therapeutics that seek to maximize the benefit to the patient 

while minimizing the harm  

The results from my PhD research, prensented in this thesis, touch on many different 

areas of medicine including cancer treatment, evaluation of circulating microRNAs, and 

kidney physiology. Although diverse, each area of research presented here shares a 

common theme: engineering ways to design, use, and evaluate nanoparticle-based 

therapeutics that seek to maximize the benefit to the patient while minimizing the harm. 

In this work, my coworkers and I have explored three interrelated strategies: (1) the use 

of targeted-nanoparticle-based therapeutics to deliver therapeutic entities to specific sites 

in the body, (2) the use of a highly selective therapeutic, siRNA, to inhibit a single gene 

target with high specificity, (3) and the evaluation of strategies for using extracellular 

microRNAs to non-invasively monitor the activity of these types of therapeutics to aide 

in their clinical validation and employment.  

1.2 Thesis organization 

This thesis is comprised of chapters that fall into the three major research areas. The 

first research area focuses on evaluating siRNA nanoparticle-based therapeutics for use 

as anti-cancer therapies (Chapters 2-5).  The second research area concentrates on 

understanding how nanoparticles behave at the kidney (Chapters 6-8). The final research 
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area (Chapter 9) focuses on evaluating the use of extracellular microRNAs as markers of 

drug response.  

This chapter (Chapter 1) provides the background and motivation for all sections of 

the thesis. The advantages and behavior of nanoparticle-based therapeutics, siRNA based 

therapeutics, and extracellular microRNA markers are discussed.   

 In Chapter 2, the clinical proof-of-principle of nanoparticle delivery of siRNA to 

patient tumors is demonstrated. Our experiences from that study provided the motivation 

for the work presented in the third research area of this thesis.  In Chapters 3, the 

therapeutic potential of the current, clinical siRNA nanoparticle formulation targeting 

ribonucleotide reductase subunit M2 (RRM2) via siRNA is examined in human 

melanoma cell lines. This example of RRM2 inhibition illustrates both the potential 

(activity over wide range of melanoma cell lines) of this target and its shortcomings (no 

induction of cell death). Chapters 4 and 5 provide examples of how siRNA based 

therapeutics can be used to overcome traditional barriers to cancer therapeutics. In 

Chapter 4 the therapeutic potential of using Herceptin targeted siRNA nanoparticles is 

demonstrated. siRNA inhibition of Her2 is also shown to achieve anti-tumor effects in 

cell lines that are resistant to Herceptin treatment. In Chapter 5 the use of siRNA 

targeting the “undruggable” protein N-Ras is explored as a possible therapeutic option for 

N-Ras mutant melanomas.   

Chapters 6-8 focus on the interaction of nanoparticles with the kidney. The 

siRNA/CDP nanoparticle that has been used in animals and humans has been shown to 

have a faster than expected clearance time from circulation through a renal route. We 
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believe that understanding how these nanoparticles behave in the kidney will provide key 

insights into how to engineer a nanoparticle with a longer circulation time and thereby 

provide increase time to deposit in tumors. Additionally, from what we have learned in 

this work, we believe that siRNA nanoparticles have potential as a therapeutic modality 

for kidney disease. 

Chapter 6 explores the general interaction of nanoparticles with the kidney and the 

discovery of previously unknown phenomenon of size dependent mesangial cell 

accumulation of nanoparticles. In Chapter 7, a new mechanism of clearance for 

polycation-polymer based nucleic acid delivery systems is demonstrated. This 

mechanism of clearance, based on interactions between polymer components in the 

nanoparticle and the anionic surface of the renal filtration barrier, explained the rapid 

clearance of the siRNA nanoparticle system and provides clues for strategies to engineer 

nanoparticles with longer circulation times. Chapter 8 explores the potential of targeted-

siRNA nanoparticles as therapeutic modalities for kidney disease.  

Chapter 9 focuses on testing the hypothesis that analysis tumor secreted microRNAs 

within patient blood samples can be used as real time markers of drug 

pharmacodynamics. Specifically, we focused on our efforts to characterize microRNA 

expression patterns following pharmacologic inhibition of the oncogene B-Raf in 

melanoma cell lines and their secreted exosomes. Chapter 9 summarizes our work to date 

in this area and discusses the challenges that must be overcome to translate these 

methodologies to the clinic.  
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1.3.  Background:  

1.3.1 Nanoparticle-based therapeutics have great potential for cancer and a 

multitude of other human ailments  

The term nanoparticle-based therapeutics describes a varied array of therapeutic 

entities that are grouped together because of they are between 1 and 1000nm in size and 

are roughly spherical in shape. This class of therapeutic entities is usually distinguished 

from macromolecular-based therapeutics, such as therapeutic antibodies, that also fall 

into the nanoparticle size range
1
. Nanoparticle-based therapeutics are typically comprised 

of a therapeutic entity including small molecule drugs, nucleic acids, or proteins that are 

packaged together with structural components (e.g., lipids or polymers) into nanoparticle-

sized objects
2
. There are also classes of nanoparticles composed of inorganic compounds 

such as gold, cadmium, or iron that are also being investigated as therapeutics and 

imaging agents
3,4

.   

1.3.1.1 Nanoparticle-based therapeutics can overcome two major barriers to 

successful drug usage and development.   

The utility of traditional small molecule-based therapeutics is often limited by 

their side effects; sufficiently high doses for optimal therapeutic activity may not be 

reached before a dose limiting toxicity. Development of small molecule-based 

therapeutics can be stalled by the need to balance drug activity (pharmacodynamics) with 

the ability to be absorbed and distributed throughout the body (pharmacokinetics).  

Nanoparticle formulation of drugs offers a solution to both these key problems in 

drug usage and development. Because of their size, nanoparticle-based therapeutics have 

restricted distributions throughout the body (biodistribution)
2
. Whereas small molecules 



 5 

can move freely across small gaps in the cells lining blood vessel walls (endothelial 

cells), nanoparticles require large spaces between endothelial cells to move from blood 

circulation into body tissues
5
. After dosing, nanoparticle-based therapeutics are trapped in 

the blood stream, except when they enter tissues with fenestrated endothelium large 

enough to allow their passage into the tissue interstitia
6
.  Endothelial barriers are 

compromised in many human pathologies such as cancer and inflammation. In these 

situations, nanoparticles can accumulate in these pathologic tissue to a high extent, while 

sparing the rest of the body from harmful side effects of their encapsulated drug.  

Some healthy tissues possess fenestrated endothelium that allows for passive 

accumulation of nanoparticles and are potential sites for nanoparticle off-target toxicity. 

These tissues are liver, spleen and kidney. A common misconception is that nanoparticles 

should be readily delivered to bone marrow. Bone marrow microvasculature has an intact 

endothelial lining that includes diaphragmed-fenestrations
7
. Therefore, nanoparticles 

without surface modifications to encourage uptake by the bone marrow endothelial cells 

themselves
8
 will not efficiently accumulate in the bone marrow.  

 The pharmacodynamic and pharmacokinetic properties of nanoparticle-based 

therapeutics can be decoupled. The structural components of nanoparticle therapeutics 

usually do not perform therapeutic actions; therefore, they can be modified and optimized 

to give the desired pharmacokinetic behavior, independent their ability to package their 

drug payload (or the biological activity of the drug). Because drug packaging into 

nanoparticles is usually mediated by hydrophobic interactions or convenient covalent 

linkages, drug design for a nanoparticle formulation need not be hindered by 

pharmacokinetic considerations. Additionally, this decoupling of pharmacodynamics and 
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pharmacokinetics means that the structural and therapeutic components of nanoparticles 

can be mixed and matched to suite the desired delivery location and therapeutic target 

without extensive re-design of any of the components.  

1.3.1.2  Nanoparticle-based therapeutics can be tuned to enables more precise drug 

delivery to desired sites of action.  

Besides overcoming traditional obstacles to drug usage and development 

nanoparticle-based therapeutic have several other desirable properties. Nanoparticles are 

highly tunable. Nanoparticle properties such as their size, surface composition (size and 

targeting-ligands), and decomposability can be tailored to specific applications. The 

behavior of nanoparticles in the body depends mostly on these three properties, 

regardless of the fundamental composition of the nanoparticle. Therefore, nanoparticles 

of any material and therapeutic payload can be rationally designed to behave in the 

desired manner in the body, provided the general characteristics (size, surface 

composition, decomposability) needed to behave in that desired manner are known.  

1.3.1.3  Size is a major determinant of the circulation time and tissue deposition of a 

nanoparticle-based therapeutic.  

The circulation time of a nanoparticle depends on three factors: renal excretion 

rate, tissue uptake rate, and nanoparticle degradation rate. The first two factors are largely 

dependent on size. Nanoparticles < 10nm are sufficiently small pass through the renal 

filtration barrier and enter the urine
1
. Nanoparticles above this size can have very long 

circulation times as they are not subject to first pass renal filtration, unless they degrade 

into components <10nm. 
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The circulation times of non-decomposable nanoparticle is determined by their 

uptake by the reticulo-endothelial system (RES)
9
. RES uptake is largely determined by 

size, provided surface charge is close to neutral. Nanoparticles from 10-200nm are 

increasingly taken up by liver Kupffer cell and splenocytes. Above 200nm (size cut off 

for the fenestrated endothelium of liver sinusoids) they primarily accumulate in the 

spleen. Examples of this phenomenon for non-targeted PEGylated gold nanoparticles are 

presented in Chapter 6 of this thesis.  

1.3.1.4  Nanoparticle surface composition can be engineered to alter tissue uptake 

and intra-tissue localization.  

The surfaces of nanoparticle-therapeutics are in direct contact with the plasma and 

tissue milieu. The nature of these interactions can influence the behavior of the 

nanoparticle in the body and with each other. For example, nanoparticles with high 

surface charges tend to be more rapidly taken up by the RES
10

. This phenomenon may be 

mediated by increased plasma protein binding to the surface of these particles or stronger 

interactions between the nanoparticles and the surface of the cells of the RES. 

Additionally, the surface of the nanoparticle can be engineered to encourage binding to 

certain plasma proteins that may facilitate their entry into non RES cell types, such as 

hepatocytes
11

. 

Using targeting ligands, the surfaces of nanoparticles can be engineered to 

encourage much more specific interactions between themselves and tissues within the 

body. Targeting ligands, including proteins, peptides, antibodies, sugars, aptamers, etc., 

are chemical moieties displayed on the surface of a nanoparticle that can engage one or 

more surface features (usually trans-membrane receptors) on a tissue of interest to 
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encourage nanoparticle binding. Most commonly, they are used to facilitate nanoparticle 

internalization by cells within target tissues. For example, the iron carrier protein 

transferrin is commonly used as a targeting ligand for cancer cells. When attached to the 

surface of a nanoparticle, transferrin can engage the transferrin receptor (often 

upregulated on the surface of cancer cells) and mediate receptor mediated endocytosis of 

the nanoparticle. Targeting ligands may also be used to bind to the surface of endothelial 

cells to localize nanoparticles to tissues without a fenestrated endothelium.  

Targeting ligands can also be therapeutic themselves (e.g., Herceptin). 

Additionally, multiple targeting ligands can be incorporated onto a nanoparticles surface 

to enable distinct desired functions (e.g., one ligand is used for trancytosis across an 

endothelial layer and another is used as an internalization signal for cells beyond that 

endothelial layer).  

1.3.1.5  Specific considerations for nanoparticle delivery to tumors.  

Nanoparticle targeting to tumors is an often misunderstood process. Because anti-

cancer nanoparticle-based therapeutics often employ targeting ligands, it is commonly 

assumed that the targeting ligand is responsible for the delivery of nanoparticles to the 

tumor. In fact, the major mechanism for nanoparticle accumulation within tumors is 

passive and ligand independent
12

. The phenomenon known as the enhanced permeability 

and retention (EPR) effect is responsible for nanoparticle “targeting” of tumors.  

 Most tumors have abnormal, dilated and tortuous vasculature, lacking in regular 

structure and possessing large inter-endothelial cell distances and fenestrations
13

. The 

spaces between endothelial cells can exceed 1μm in some tumors
13

. These vessels are 

therefore hyper-permeable and can allow the passage of nanoparticle sized objects from 
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circulation into the tumor interstitia. Tumors also have compromised lymph drainage due 

to compression of lymph vessels by the tumor. These two effects result in increased entry 

of nanoparticle sized objects into the tumor interstitia and reduced clearance and 

therefore a net accumulation of material. This phenomenon is known as the EPR effect. 

Nanoparticles and macromolecules can reach concentrations higher than plasma through 

this mechanism
14

. The primary consideration for increasing nanoparticle delivery to 

tumors is plasma circulation time.  

 Although nanoparticles of all sizes can accumulate in tumors due to the EPR 

effect, nanoparticles under 100nm are ideal for anti-tumor therapy. Once extravassated 

from circulation, nanoparticles must diffuse through the dense extracellular matrix that 

makes up the tumor interstitia to reach the tumor cells themselves. The high viscosity of 

the extracellular matrix inhibits the diffusion of larger nanoparticles through the tumor 

and they remain close to the vessels they extravesated from. Smaller nanoparticles (10-

50nm) more readily diffuse through the tumor environment away from the vessels they 

extravessated from
15

. Because many areas of the tumor are either hypovascular or have 

poor perfusion, nanoparticles that can reach tumor cells great distances away from blood 

vessels have increased therapeutic activity
16

.   

 Targeting ligands still play an important role in nanoparticle-based therapeutic 

activity in tumors. Once nanoparticles deposit in a tumor they may or may not be 

internalized by the tumor cells depending on their surface properties. The inclusion of a 

targeting ligand on the nanoparticle (e.g., transferrin) can facilitate their uptake by tumor 

cells, but not necessarily overall tumor accumulation
12

. Intracellular localization is 
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paramount for therapeutic modalities (e.g., siRNA) that can function only if delivered 

intracellular environment. 

1.3.1.6  Nanoparticle-based therapeutics have great potential for many other 

diseases besides cancer.  

The field of nanoparticle-based therapeutics is heavily focused on cancer. 

Although cancer is one of the leading causes of death in the United States, there are many 

other chronic diseases that impose a significant disease burden on society that could 

benefit from new nanoparticle-based therapeutics. Any disease that results in increased 

vascular permeability at the desired site of therapeutic action could potentially be targeted 

by a nanoparticle-based therapeutic. 

 Atherosclerosis and hypercholesterolemia: Nanoparticles also have great 

potential for both atherosclerosis and hypoercholeserolemia. A siRNA nanoparticle 

formulation targeting PCSK9, known as ALN-PCS, being developed by Alnylam 

Pharmaceuticals has been demonstrated lower plasma low density lipoprotein (LDL) 

levels in healthy patients with elevated LDL levels. Inhibition of liver PCSK9 results in 

upregulation of LDL receptors on hepatocytes and increases hepatocyte LDL uptake in a 

similar manner as statins but avoids common statin side effects (e.g., myopathy) and 

resistance. Nanoparticles have also been shown to accumulate in atherosclerotic plaques, 

due to increased vascular permeability in the small capillaries supplying the larger 

arteries and arteriols
17,18

. Direct targeting of the cells (foam cells, smooth muscles cells, 

etc.) could be another option for anti-plaque therapy. siRNA nanoparticles targeting 

monocytes have been demonstrated to reverse plaque formation (and reduce damage 

from myocardial infarctions)
19

.  
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 Renal disease: Chapters 6-9 of this thesis explore the interaction of nanoparticles 

with the kidney.  

 Autoimmune diseases/inflammation: A hallmark of inflammation is increased 

vascular permeability. Autoimmune diseases such as lupus are difficult to treat because 

of the low therapeutic indexes of the immunosuppressive drugs that are often used. 

Nanoparticle-based-therapeutics could help overcome these limitation by delivering these 

drugs only to sites of inflammation. Despite this potential and the unmet medical need, 

only a modest number of studies examining this application have appeared in the 

literature
20,21

.  

 Central nervous system disorders and the blood brain barrier: Drug delivery to 

the CNS is often stymied by the tight junctions between the endothelial cells of the CNS 

microvasculature that form the blood brain barrier (BBB). Only hydrophobic compounds 

that can cross cell membranes can access the CNS. But even then these compounds can 

be pumped out. There is much interest in development of nanoparticles that can engage 

endothelial receptors to facilitate their trancytosis across the blood brain barrier to deliver 

therapeutic entities into the CNS. Nanoparticle-based therapeutics are a particularly 

promising strategy for this indications because they can be engineered to incorporate 

multiple targeting ligands to enable both trancytosis across the BBB and internalization 

by specific CNS cells while carrying a drug payload.  

1.3.2 Small interfering RNAs (siRNAs) can be used as high potency, high specificity 

therapeutics 

Synthetic siRNAs are 21 base pair double stranded RNA oligonucleotides than can 

engage the RNA interference (RNAi) machinery to induce the degradation of target 
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mRNAs. RNAi is an endogenous cellular mechanism for the sequence-specific regulation 

of mRNA transcript levels and mRNA transcript translation in eukaryotic cells
22

. The 

RNAi machinery is guided by double stranded RNAs including siRNAs and microRNAs. 

These RNAs are endogenously transcribed  as long double stranded precursors that are 

exported from the nucleus and processed into smaller fragments of 20-30bp by the 

RNase-III-type enzyme Dicer. In the cytoplasm, these short double stranded RNAs are 

then incorporated into the RNA-induced silencing complex (RISC). RISC cleaves the 

sense strand of these RNAs and then uses the anti-sense strand to target itself to mRNA 

transcripts with complementarity to the anti-sense strand
23

.  

mRNA transcript silencing occurs via several mechanisms. Anti-sense strands with 

perfect complementarity (siRNAs) to their mRNA targets induce site specific cleavage of 

mRNA targets between the 10 and 11bp from the 5’ end of the anti-sense sequence. Anti-

sense strands with imperfect complementarity (microRNAs) to their mRNA targets, 

specifically, limited complementarity in their “seed region” (bp 2-8 on the antisense 

strand) to the 3’UTR of their mRNA targets, induce translational repression
24

.    

Synthetic siRNAs can be used to silence genes in cells and tissues. Exogenously 

applied siRNAs engage the RNAi machinery at the level of RISC and induce the 

cleavage of their target mRNA transcripts. Once in complex with RISC, these siRNAs 

are extremely stable and can induce gene knockdown lasting 3-7 days in rapidly dividing 

cells and over a month in non-dividing cells
25

. Dilution of the RISC/siRNA complex due 

to cell division is responsible for these observations. Nuclease stabilization through 

chemical modifications to siRNAs does not greatly alter their gene silencing kinetics in 
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vitro or in vivo
26

, although it can improve the amount of siRNA delivered to the 

cytoplasm by avoiding any prior degradation in circulation or the endosome.  

1.3.2.1 siRNA-based therapeutics overcome many barriers to traditional 

small molecule based drug development.  

Historically, many therapeutically interesting proteins have been considered 

“undruggable” (e.g., Ras) because of the extreme difficulty in developing small 

molecules that can effectively inhibit these proteins’ functions. Because all mRNA 

transcripts are susceptible to RNAi, therapeutic siRNAs can be designed to inhibit any 

desired gene target. Also, siRNA sequences can be designed to have extremely high 

selectivity and potency (IC50s in the femtomolar range).  

 Another major advantage of siRNA-based therapies is that they can facilitate the 

rapid translation of new understanding in cancer biology to new therapeutics. The 

timeline from concept to clinic for siRNA-based therapies can be <2 years
27

. 

Furthermore, it is feasible that once clinically approved delivery systems enter the 

market, this time can be even more rapid because only the siRNA sequence will require 

modification. It is possible that in the near future patients will have their whole genomes 

rapidly sequenced and tailor made siRNA against one or more disease targets could be 

ordered and delivered in a matter of weeks.  

siRNAs by themselves are also fairly benign. Although siRNAs can induce immune 

responses in animals, these responses are often sequence and delivery system 

specific
28,29

. Many types of chemical modifications have been developed to circumvent 

these off target effects
30

. siRNAs may also induce non-immunostimulatory off target 

effects through several mechanisms. siRNA may inhibit expression of unintended gene 
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targets via microRNA like mechanisms
31

. Additionally, they may saturate the RNAi 

machinery and interfere with the normal function of endogenous regulatory RNAs
28

. 

Both these problems can be circumvented by selection of high potency siRNA sequences 

and through certain chemical modifications to the siRNA itself.  

Because the activity of the siRNAs is only based on their sequence and not structure, 

siRNA delivery systems can be used to delivery several siRNAs against one or more 

targets. Multiple siRNA sequences in a delivery system should not significantly change 

the toxicity profile of the therapeutic. Additionally, different siRNAs against the same 

target can be used simultaneously or sequentially to avoid mutation based-resistance to 

therapy.   

1.3.2.2 Many challenges remain in the development of successful siRNA-based 

therapeutics.  

Cost is a significant challenge with siRNA based-therapeutics. Large scale siRNA 

synthesis is costly. However, the shortened time line to the clinic may help off-set this 

factor. Additionally, we also expect the cost of synthesis to drop as the demand increases.  

Intellectual property (IP) is a short term challenge in therapeutic development. 

Currently, the IP for RNAi-based technology is concentrated in a few companies. This 

means that many gene targets and most chemical modifications to siRNAs are off limits 

to new companies entering the market
32

. However, these problems will ultimately resolve 

when the patents expire.  

The biggest challenge to the development of siRNA-based therapeutics is delivery. 

siRNA are large, charged, and unstable. siRNAs cannot usually enter cells unaided and 

are rapidly degraded by nucleases in blood plasma and the extracellular milieu. Although 



 15 

they are relatively large molecules, siRNAs are still rapidly cleared from circulation via 

first pass renal filtration following system administration, further limiting their ability to 

reach target tissue
33

. Therefore, siRNAs require carriers to be delivered to desired sites of 

action.  

1.3.3 Cyclodextrin-containing polymer-based siRNA delivery system   

The Davis lab has spent the past decade developing a siRNA delivery system 

designed to transport siRNA to tumor tissue
27

. The delivery system consists of three 

components (Fig. 1.1): (i) a linear, cationic cyclodextrin-based polymer (CDP), (ii) a 

hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in 

biological fluids), and (iii) siRNA.  

 

Figure1.1: Components of the siRNA/CDP nanoparticle delivery system. siRNA 

nanoparticles assemble due to electrostatic interactions between the cationic cyclodextrin 

containing polymer and the anionic siRNA. PEG provides steric stabilization and is bound to the 

particles via inclusion complex formation between its terminal adamantane (AD) modification 

and the cyclodextrin cup of the CDP. Transferrin (Tf) targeting ligand is covalently linked to AD-

PEG.  

The siRNA delivery system self-assembles into polyplexes through electrostatic 

interactions between negatively charged siRNA and the positively charged CDP. The 
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CDP is a linear, water soluble polymer that consists of multiple comonomers of β-

cyclodextrin cups linked together with short spacer polymers containing two imine 

charge centers. The spacing and of these charged centers from the cyclodextrin cup and 

their composition has been optimized for interaction with nucleic acids
34,35

. The two 

terminal cyclodextrins of each polymer strand are “capped” with imidazole groups 

designed to buffer the endosomal pH following cellular internalization and facilitate 

endosomal escape
36

. A 3+/- charge ratio of CDP to siRNA was determined to be the 

optimal formulation for complete complexation between the two components
37

.  

Polyplexes of siRNA and cationic polymers are known to be unstable (will 

aggregate) in physiologic fluids such as blood. The CDP/siRNA nanoparticle is 

engineered to incorporate polyethylene glycol (PEG) steric stabilization to prevent self-

aggregation or aggregation with exogenous components. For incorporation into the 

polyplex, 5 kDa PEG is covalently linked to a small hydrophobic molecule called 

adamantane (AD) that will form an inclusion complex with β-cyclodextrin cups. PEG 

covalently linked to AD (AD-PEG) will bind to β-cyclodextrin cups on the surface of the 

polyplexes and provide steric stabilization.   

 When the components are mixed together they self-assemble into spherical 

nanoparticles between 50 and 100nm in size with a slightly positive surface charge 

(ca.10mV). Each nanoparticle has been determined to contain ~2000 siRNA molecules, 

~10,000 CDP chains, and ~4000 AD-PEG molecules
37

. 

 The nanoparticles have been engineered to incorporate targeting ligands such 

transferrin (Tf)
38

, sugars, or antibodies at the terminal ends of their PEGs that facilitate 

their uptake by target tissue. Tf targeting had been demonstrated to increase the potency 
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of siRNA knockdown, but not total tumor uptake, of siRNA nanoparticles  following 

their intravenous administration to tumor bearing mice
14

.   

 The Tf-siRNA nanoparticles delivery system was one of the first to demonstrate 

successfully therapeutic application of a polymer-based siRNA delivery system in an 

animal model. In this breakthrough study, Tf-siRNA nanoparticles containing siRNA 

targeting the breakpoint of the EWS-FLI1 gene product were used to inhibit the growth 

of disseminated Ewing’s sarcoma xenografts in a mouse model
39

. To allow for broader 

targeting of a variety of tumor types the siRNA nanoparticles were formulated to contain 

siRNA against Ribonucleotide Reductase subunit M2 (RRM2)
40

. siRNA nanoparticles 

against RRM2 were demonstrated to inhibit tumor growth in multiple xenograft cancer 

models
41

.  

 The Tf-siRNA nanoparticles have been demonstrated to have a favorable toxicity 

profile in mice and non-human primates. In mice, no abnormalities in interleukin-12 and 

IFN-A, liver and kidney function tests, complete blood counts, or pathology of major 

organs were observed following long term intravenous dosing
39

. In non-human primates, 

low (3 mg/kg) and intermediate (9 mg/kg) dosing did not results in any evidence of organ 

damage, changes in hematologic parameters, or immune stimulation. High dosing in 

primates (27mg/kg) was associated with mild kidney toxicity and slight immune 

stimulations evident from elevations in IL-6 and ING-γ
39

. Overall, no signs of clinical 

toxicity were observed at any dose.  

 This Tf-siRNA nanoparticle formulation targeting RRM2 was the first target, 

systemically applied siRNA nanoparticle to reach the clinic in 2008
39

. Chapter 2 of this 

thesis will discuss performance of the siRNA delivery system in this clinical trial.  
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1.3.3.1 Efficacy of CDP/siRNA nanoparticles is limited by poor pharmacokinetics.  

Although the CDP/siRNA nanoparticle can successfully delivery siRNA to 

tumors from an intravenous injection, there is still much room for improvement for this 

system. Specifically, the CDP/siRNA nanoparticles have been demonstrated to be 

eliminated by first-pass renal filtration and completely cleared from circulation within 30 

minutes after intravenous administration
42

. Because delivery of these nanoparticles to 

tumors is passive and depends on the concentration of nanoparticle in circulation, their 

short circulation time has likely been a major limiting factor in their efficacy.  

 To demonstrate that the efficacy of these nanoparticles is limited by amount of 

siRNA delivered rather than inherent limitations in choice of therapeutic target, the 

therapeutic effect of siRNA nanoparticle delivery of RRM2 siRNA was compared to 

endogenous expression of shRNA against RRM2 in a neuroblastoma tumor model in 

mice (Fig 1.2). With the siRNA nanoparticle system we observed only growth inhibition 

in this tumor model at high siRNA nanoparticle doses (10 mg/kg); however, induced 

expression of the shRNA resulted in complete cures in all mice over a similar time span 

of treatment. We demonstrated a similar discrepancy between CDP/siRNA nanoparticle 

treatment and induced shRNA expression targeting N-Ras in a melanoma tumor model 

described in Chapter 5. Therefore, we hypothesize that increasing the circulation time of 

the siRNA nanoparticles and thereby the amount delivered to tumor tissue will greatly 

increase the therapeutic efficacy of the CDP/siRNA nanoparticles.   

 The rapid clearance of these siRNA nanoparticles is puzzling because they are 

engineered to be above the size cutoff for single-pass clearance via renal filtration
1
. Real-

time PET biodistribution data demonstrated an unexpected level of kidney 
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accumulation
42

.  Therefore, we decided to investigate the interaction of the CDP/siRNA 

nanoparticles with the kidney. Chapters 6 and 7 of this thesis explore the behavior of 

nanoparticles in the kidney and demonstrate the mechanism of rapid renal clearance of 

the CDP/siRNA nanoparticles.  

 

Figure 1.2: Comparison of anti-tumor effects of RRM2 knockdown via (A) siRNA 

nanoparticles delivery or (B) endogenous shRNA expression in Neuro2a tumors. (A) Tumor 

bearing A/J mice received 10 mg/kg intravenous injections of siRRM2 nanoparticles or control 

(dextrose) on days 1,3,8, and 10. Data are adapted with permission from Heidel et al., (2008)
41

. 

(B) shRRM2 was induced in Neuro2a-shRRM2 cells implanted in A/J mice on day 8 with 

doxycycline (DOX).   

1.3.4 Need for biomarker integration into clinical studies and drug usage 

 In Chapter 2 of this thesis, we present work validating delivery of siRNA 

nanoparticle based therapeutics to human tumors. Although this study on patient 

materials provided us with much information, the study had many limitations. Primarily 

our analyses were restricted to a very limited number of biopsy samples from the 

patients. From these biopsies we could confirm drug mechanism of action and 

nanoparticle delivery; however, they provided little insight into overall patient response 

to treatment, kinetics of nanoparticle activity, or resistance to therapy. Our experiences in 
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this study taught us much about the limitations of biopsies and the challenges of 

validating drug response in the setting of early clinical trials. These experiences lead to 

our investigation of new avenues for rapid, multi-time point, non-invasive measures of 

drug activity and response (Chapter 9).   

1.3.4.1  Circulating microRNAs are a new class of promising biomarkers 

MicroRNA (miRNA) are ~22 nucleotide long, endogenous non-coding RNAs that 

regulate gene expression post-transcriptionally as described above. miRNAs have 

emerged as an extremely promising new class of biomarkers. Besides their unusually 

high stability in formalin fixed tissue, miRNAs have been demonstrated to be remarkably 

stable in human blood
43

.  

As blood derived biomarkers, miRNAs offer three key advantages over other 

types of biomarkers such as proteins and mRNA. First, because of their stability, 

microRNA can be quantified reproducibly from plasma samples that have been freeze 

thawed multiple times. mRNAs have not been demonstrated to have the same level of 

stability as microRNAs. Second, robust, sensitive, and accessible high throughput 

detection/quantification technologies exist for microRNA. These technologies include 

sequencing, microarrays, and PCR arrays. Finally, microRNA can be robustly and 

quantitatively pre-amplified to increase detection sensitivity for all these assays.  

Since the stability of microRNA in plasma was demonstrated by the Tewari group 

in 2008
43

, a large number of reports demonstrating their potential as biomarkers in many 

different areas of medicine have emerged. For example, circulating microRNA have been 

shown to be sensitive and specific markers of tissue injury in animals models
44,45

and in 

patients, specifically as indicators of myocardial infarction
46

. They have also been 
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demonstrated to be useful for in patients for detecting pregnancy and fetal 

complications
47,48

.   

Circulating microRNAs have also been shown to be useful biomarkers for cancer. 

Numerous literature reports have demonstrated that levels of circulating microRNA can 

be used to differentiate healthy from cancer patient blood samples
49–52

. One particularly 

promising report by Boeri et al., shown that microRNA signatures in plasma could be 

used to identify patients with a high risk of developing cancer
53

. 

Despite the abundant amount of promise for circulating microRNAs as 

biomarkers, many challenges still remain before their routine and successful application 

in the clinic. A major challenge is blood cell microRNA contamination that can confound 

interpretation of circulating microRNA data. Tewari and colleagues have recently 

demonstrated that a majority of circulating microRNA associated with many cancers 

originate from blood cells and their levels correlated with blood cell counts
54

. Another 

challenge stems from variability in sample collection and processing. The type of blood 

sample collected (serum or plasma) and the fractionation method applied to the sample 

can drastically alter the microRNA composition
55

.  One method of overcoming these 

difficulties is isolating a subset of microRNA packaged within lipid vesicles known as 

exosomes.  

1.3.4.1 Exosomal microRNA could be used track tumor specific microRNAs.  

Some circulating miRNA are believed to be shed from tumors packaged into 

small membrane bound vesicles known as exosomes (c.a. 10-100nm in diameter)
56

. This 

packaging is thought to protect the RNA from degradation in the extra-cellular 
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environment. However, some evidence for the excretion of protein associated non-

exosomal  miRNA has been identified in human plasma
57

.  

Several types of cancer are associated with increases in circulating exosome 

population including melanoma, lung, and ovarian cancer
58–60

.  In ovarian cancer the 

increases in circulating exosomes have been demonstrated to be proportional to 

increasing disease stage
58

. Exosomes can be isolated from patient blood based on their 

physical characteristics (size, density) and protein markers. Therefore, analysis of this 

population of vesicles isolated out of blood, if selected via tumor markers, may provide 

specific information about the tumor such drug response. 

The miRNA profile of tumor derived exosomes has been reported to be 

representative of the intracellular miRNA profile from the cells they are derived from
61

. 

However, several reports have demonstrated that there may be preferential enrichment or 

depletion of certain miRNAs from exosomes
62

. Advanced stage melanoma patients have 

an increased level of exosomes in their circulation
59

 and significant effort has been made 

to understand the miRNA expression alterations associated with progressive disease, 

mutational status, and survival 
63,64

.   

Thus, the goal of the work presented in Chapter 9 was to test he hypothesis that 

cell-free circulating miRNAs encapsulated in tumor derived exosomes could serve as 

useful, time-dependent biomarkers for monitoring drug activity and disease progression 

in cancer patients. Specifically, we tested the hypothesis that intracellular changes to the 

microRNA transcriptome induced by drug treatment can be measured in tumor derived 

exosomes. 
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Chapter 2: Evidence of RNAi in humans from systemically 

administered siRNA via targeted nanoparticles
1
  

 

2.1 Abstract: 
 

Therapeutics that are designed to engage RNA interference (RNAi) pathways have the 

potential to provide new, major ways of imparting therapy to patients.
1,2

 Fire et al. first 

demonstrated that long, double stranded RNAs mediate RNAi in Caenorhabditis elegans,
3
 

and Elbashir et al. opened the pathway to the use of RNAi for human therapy by showing 

that small interfering RNAs (siRNAs: ca. 21 base pair double stranded RNA) can elicit 

RNAi in mammalian cells without producing an interferon response.
4
  We are currently 

conducting the first-in-human Phase I clinical trial involving the systemic administration 

of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. 

Here we provide evidence of inducing an RNAi mechanism of action in a human from 

the delivered siRNA. Tumor biopsies from melanoma patients obtained after treatment 

reveal: (i) the presence of intracellularly-localized nanoparticles in amounts that correlate 

with dose levels of the nanoparticles administered (this is a first for systemically 

delivered nanoparticles of any kind), and (ii) reduction in both the specific mRNA (M2 

subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) when compared to 

pre-dosing tissue. Most importantly, we detect the presence of an mRNA fragment that 

demonstrates siRNA mediated mRNA cleavage occurs specifically at the site predicted 

for an RNAi mechanism from a patient who received the highest dose of the 

nanoparticles. These data when taken in total demonstrate that siRNA administered 

                                                      
1
 Reproduced with permission from: Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi 

CA, Yen Y, Heidel JD, Ribas A. “Evidence of RNAi in humans from systemically administered siRNA via 

targeted nanoparticles,” Nature 464, 1067 (2010). 
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systemically to a human can produce a specific gene inhibition (reduction in mRNA and 

protein) by an RNAi mechanism of action. 

2.2 Results and Discussion: 

 A major challenge with the use of siRNAs in mammals is their intracellular 

delivery to specific tissues and organs that express the target gene. The first 

demonstrations of siRNA-mediated gene silencing in mammals through systemic 

administration were accomplished using naked siRNA and methods of administration not 

compatible with clinical application.
5-7

 Since then, several delivery vehicles have been 

combined with siRNAs to improve their delivery in animal models.
1,2

  Soutschek et al. 

were the first to provide direct evidence for the siRNA mechanism of action by using a 

modified 5’-RACE (rapid amplification of cDNA ends) PCR technique providing 

positive identification of the specific mRNA cleavage product.
8
 Human clinical trials 

with synthetic siRNAs began in 2004, utilizing direct intraocular siRNA injections for 

patients with blinding choroidal neovascularization (CNV). Subsequently, other clinical 

trials have initiated
2
 and early clinical data are beginning to appear.

9,10
 While there are 

animal studies that do support the possibility of an RNAi mechanism of action from 

administered siRNA,
11

 other animal data from siRNAs injected into the eyes of mice for 

the treatment of CNV suggest non-RNAi mechanisms of action for CNV suppression.
12 

 

At this time, no direct evidence for an RNAi mechanism of action in humans from siRNA 

administered either locally or systemically has been reported. 
  

 We are currently conducting the first siRNA clinical trial that utilizes a targeted 

nanoparticle delivery system (clinical trial registration number NCT00689065).
13 

Patients 

with solid cancers refractory to standard-of-care therapies are administered doses of 
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targeted, nanoparticles on days 1, 3, 8 and 10 of a 21-day cycle via a 30-minute i.v. 

infusion. The nanoparticles consist of a synthetic delivery system containing (Fig. 2.1a): 

(i) a linear, cyclodextrin-based polymer (CDP), (ii) a human transferrin protein (hTf) 

targeting ligand displayed on the exterior of the nanoparticle to engage Tf receptors 

(hTfR) on the surface of the cancer cells, (iii) a hydrophilic polymer (polyethylene glycol 

(PEG) used to promote nanoparticle stability in biological fluids), and (iv) siRNA 

designed to reduce the expression of the M2 subunit of ribonucleotide reductase (RRM2: 

sequence used in the clinic was previously denoted siR2B+5).
14

 The TfR has long been 

known to be up-regulated in malignant cells,
15

 and RRM2 is an established anti-cancer 

target.
16

 These nanoparticles (clinical version denoted as CALAA-01) have been shown 

to be well tolerated in multi-dosing studies in non-human primates.
17

 While a single 

patient with chronic myeloid leukemia has been administered siRNA via liposomal 

delivery,
18

 our clinical trial is the initial human trial to systemically deliver siRNA with a 

targeted delivery system and to treat patients with solid cancer.
13

 

 In order to ascertain whether the targeted delivery system can provide effective 

delivery of functional siRNA to human tumors, we investigated biopsies from three 

patients from three different dosing cohorts; patients A, B and C, all of whom had 

metastatic melanoma and received doses of CALAA-01 of 18, 24 and 30 mg-siRNA/m
2
, 

respectively. Given the highly experimental nature of this protocol, the regulatory process 

at both the local and federal levels explicitly precluded a provision for mandatory 

biopsies in all patients. Therefore, biopsies were obtained on a voluntary basis. Biopsies 

in these three patients were collected after the final dose of cycle 1 (denoted Apost, Bpost 

and C1post) and compared to archived tissue (denoted Apre, Bpre and C1pre). Patient C 
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continued on therapy beyond one cycle and provided another set of biopsy materials 

(C2pre that was obtained approximately one month after the final dose of cycle 1 and 

C2post that was collected on the day of the final dose of cycle 2). Because of limited 

sample amount, only immunohistochemistry (IHC) and staining for the nanoparticles 

could be performed on the C1pre and C1post samples, and protein (for Western blot 

analyses) was only available from the C2pre and C2post samples. Details of this clinical 

trial will be reported elsewhere when completed.  

The targeted nanoparticles (ca. 70 nm diameter) were administered i.v., as they 

are designed to circulate and then to accumulate and permeate in solid tumors.
13

 Within 

the tumor, the hTf targeting ligand assists in directing the nanoparticles into tumor cells 

overexpressing hTfR.
19

 To detect the nanoparticles in tumor cells, sections of the tumor 

tissue were stained for the presence of the nanoparticles using a 5 nm gold particle that is 

capped with thiolated PEG containing adamantane (AD) at the end distal to the thiol 

(AD-PEG-Au) to allow for multivalent binding to the cyclodextrins (Appendix Fig. A1). 

The function of the stain has been previously confirmed using other cyclodextrin-

containing particles,
20 

and is demonstrated here for the targeted nanoparticles carrying 

siRNA in vitro (Appendix Fig. A2) and in vivo (Appendix Fig. A3).  Transmission 

electron microscopy (TEM) images of the nanoparticles confirm that in mice, the 

nanoparticles are intracellular (Appendix Fig. A4).  Samples A, B and C1, analyzed in a 

blinded fashion, demonstrated a heterogeneous distribution of nanoparticles only in post-

dosing tumor tissue (Fig. 2.1 for post-dosing and Supplementary Fig. 4 for pre-dosing). 

The nanoparticles can localize intracellularly in tumor tissue and are not found in the 

adjacent epidermis (Fig. 2.1). In these biopsies TEM images were dominated by 
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melanosomes
21

 inhibiting the identification of the nanoparticles (data not shown). 

Samples C1post  and C2post reveal the highest number and intensity of stained regions, 

Bpost exhibits a decreased amount of staining relative to samples C1post and C2post (Fig. 

2.1b), Apost does not reveal the presence of the stain (Fig. 2.1b), and all the pre-dosing 

samples are completely negative for the stain (Supplementary Fig. 4).  This is the first 

example of a dose-dependent accumulation of targeted nanoparticles in tumors of humans 

from systemic injections for nanoparticles of any type. 
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Figure 2.1. Detection of targeted nanoparticles in human tumors. (a). Schematic 

representation of the targeted nanoparticles. The polyethyleneglycol (PEG) molecules are 

terminated with adamantane (AD) that form inclusion complexes with surface cyclodextrins in 

order to decorate the surface of the nanoparticle with PEG for steric stabilization and PEG-hTf 

for targeting. (b). Confocal images of post-treatment biopsy sections from patients A, B and C: 

Au-PEG-AD stain (left), DAPI stain (middle), merged images of the left and right panels with the 

bright field (right). Image labels: epi = epidermis, t = tumor side, s = skin side, m = melanophage. 

 

Tumor RRM2 mRNA levels were measured by quantitative real time polymerase 

chain reaction (qRT-PCR)  and were performed in a blinded fashion.
22

 Reduction in 

RRM2 mRNA is observed in the post-treatment samples (Fig. 2.2). Since samples Apre 

and Bpre are from tissues collected many months before the initiation of siRNA treatment, 
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the fraction of the overall reduction in mRNA observed in Apost and Bpost attributable to 

the nanoparticle treatment cannot be directly ascertained. Unfortunately, we were not 

able to perform PCR on the C1 samples. However, the PCR data from the C2pre vs. C2post 

samples (collected 10 days apart) provide direct evidence for RRM2 mRNA reduction via 

the treatment of the patient with the nanoparticles.  

 

Figure 2.2. RRM2 mRNA and protein expression in tumor tissue. (a). qRT-PCR analysis of 

RRM2 mRNA levels in samples from patients A and B before and after dosing. RRM2 mRNA 

levels are normalized to TBP mRNA levels. Results are presented as percentage of the pre-dosing 

RRM2/TBP mRNA levels for each patient. (b). qRT-PCR and Western blot analysis of RRM2 

protein expression from patient samples C2pre and C2post. Bar graph is average volume of Western 

blot bands from two independent experiments; one representative blot is pictured. Archived 

samples are indicated by (*); samples obtained during the trial are indicated by (¶). 

 

To ascertain whether the RRM2 protein level is reduced in the tumor because of 

the siRNA treatment, IHC and Western blotting were employed as previously described 

in mice.
23 

Since RRM2 protein expression is largely restricted to the late G1/early S 

phase of cell cycle, not all of the tumor cells will be expressing RRM2. Figure 2.3 shows 

IHC data for RRM2 and TfR proteins in C1pre and C1post samples (IHC analyses were 

performed in a blinded fashion and 10 random regions of each sample were analyzed). 
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Significant reduction in RRM2 is observed (mean scoring of RRM2 from the 10 sections 

was reduced 5-fold) after treatment while TfR levels are somewhat elevated (mean 

scoring of TfR from the 10 sections was increased 1.2-fold) in the C1pre and C1post 

samples. The low level of RRM2 that is observed by IHC in the C1post sample is 

maintained in the C2pre and C2post samples (by IHC).  

 

Figure 2.3. Ribonucleotide reductase (RRM2) and tranferrin receptor (TfR) protein 

expression in C1pre and C1post samples. Photomicrographs of malignant melanoma belonging to 

a, b, c, pre-treatment and d, e, f post-treatment samples. Protein expression is represented as 

brick-red (Nova Red) chromagen staining in immunohistochemically-treated slides (a, d: RRM2; 

b, e:TfR). c, f, The same tissues are stained with Hematoxylin and Eosin (H&E). d, e, f, Brown, 

diffuse, finely granular color seen in these images is the endogenous pigment of this lightly 

melanized tumor. Photomicrographs were captured using a 40X objective. 

  

Western blot analyses of the C2pre and C2post samples reveal a reduction in the 

level of the RRM2 protein that is due to the siRNA treatment (RRM2 mRNA reductions 

exceeded the reduction levels obtained from protein but this could be due to post-

transcriptional mechanisms that have been observed previously
24

). The decreases in the 

RRM2 mRNA and protein observed after treatment (Fig. 2.2b) suggest the siRNA 
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treatment remains effective after several cycles of dosing. The IHC data from patient A 

do not reveal changes in RRM2 expression after dosing, while results from patient B are 

indicative of reductions in maximal RRM2 expression (IHC scoring of the regions of 

maximal expression showed a 1.5-fold decrease) but the overall mean expression levels 

remained relatively constant (IHC scoring of the 10 sections).     

To demonstrate that the siRNA delivered via the targeted nanoparticles can 

engage the RNAi machinery, the mRNA cleavage products were characterized using a 

modified 5’-RNA ligand-mediated rapid amplification of cDNA ends (5’-RLM-RACE) 

PCR technique (Fig. 2.4). A RRM2 mRNA fragment, whose 5’ end matches the 

predicted cleavage site (10 base pairs from the 5’ end of the antisense strand), was 

detected in the C2pre and C2post samples, but not from Bpost, and Apost or their 

corresponding pre-treatment samples. RACE does not provide a quantitative measure of 

the amount of the fragments so the intensities of the bands cannot be correlated with 

amounts in the tissue samples. The presence of this RRM2 mRNA fragment from patient 

C indicates siRNA delivered via targeted nanoparticles can engage the RNAi machinery 

in a solid tumor of a human and induce the desired mRNA cleavage. Furthermore, this 

result suggests that at least a portion of the RRM2 mRNA and protein reductions 

observed from the C2 samples are due to a bona fide RNAi mechanism. The presence of 

the RRM2 mRNA fragment in the C2pre sample suggests that siRNA can provide an 

RNAi mechanism for several weeks (mRNA cleavage in the C2pre sample must originate 

from cycle one dosing) as the RRM2 protein levels remained relatively constant when 

compared to the C1post sample (IHC). We have shown that the length of the RNAi effects 

of delivered siRNA in both cells and animals (mice) is dependent on the doubling time of 
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the cells being analyzed (longer inhibition times with longer cell doubling times).
25

 Gene 

silencing by siRNA can occur on the timescale observed here, ca. one month, provided 

the cell doubling times are long.
25

 Patient C had stable disease between these biopsies, 

and these mostly quiescent tumors have very slow growth kinetics that would be suitable 

to experience lengthy RNAi effects.
25

 Additionally, we do not know how long the 

nanoparticles reside within the cells and release siRNA. Since the nanoparticles are 

observed in the sample C1post and not the sample C2pre, they must disassemble within one 

month. Thus, the pharmacodynamics of the RNAi effects could be due to the 

combination of the nanoparticle disassembly time and the time that the siRNA resides 

within the RNAi machinery.  

 

Figure 2.4. 5’-RLM-RACE detection of siRNA induced mRNA cleavage fragment.  (a) 

Schematic depicting the location of the predicted anti-RRM2 siRNA cleavage site and the 

primers used for PCR amplification of the cleavage fragment. (b) Agarose gel of 5’-RLM-RACE 

PCR amplification products from post treatment samples (A post, B post, C2post) and in vitro positive 

control (cell culture). (c) The RRM2 mRNA sequence and siRNA antisense strand are illustrated 

to show where the cleavage occurs with an RNAi mechanism. The sequence chromatographs 
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obtained from an in vitro cell culture experiment with HT-144 melanoma cells and the patient 

C2post sample are illustrated. 

The data presented here when taken together provide the first mechanistic 

evidence of RNAi in a human from an administered siRNA. Moreover, these data 

demonstrate the first example of dose dependent accumulation of targeted nanoparticles 

in human tumors. The reduction of the RRM2 mRNA and protein by the RRM2-specific 

siRNA is observed, and the results from 5’-RLM-RACE analyses reveal that the 

delivered siRNA engages the RNAi machinery. These data demonstrate that RNAi can 

occur in a human from a systemically delivered siRNA, and that siRNA can be used as a 

gene-specific therapeutic.  
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2.4 Methods 

Detection of targeted nanoparticles in biopsy samples: Snap-frozen patient biopsy samples were 

embedded in Tissue-Tek O.C.T. compound (Sakura) to generate 6 µm-thick cryosections. Upon 

immersion in PBS at 37 ºC for 1 h to remove any surface O.C.T., and in acetone at −20 °C for 20 
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min to permeabilize the cell membrane, sections received staining of PEGylated, adamantane-

modified gold nanoparticles (Au-PEG-AD; see Supplementary Information for their preparation) 

in the dark for 2 h. Brief rinses with PBS were used to remove any nonspecifically bound Au-

PEG-AD before mounting with ProLong Gold antifade reagent and staining with DAPI 

(Invitrogen, Carlsbad, CA). A Zeiss LSM 510 confocal scanning microscope (with a Plan-

Neofluar 40X/0.75 objective and up to 2X digital zoom) was used to collect the images (DAPI-

excitation: 740 nm (two-photon laser), emission filter: 390-490 nm; Au-PEG-AD-excitation: 488 

nm (argon laser), emission filter: BP 500-550 nm IR). The measured resolution at which images 

were acquired is 512 x 512 pixels, and the image bit-depth is 8-bit. The Zeiss LSM Image 

Browser Software allows the extraction of images.  

RNA Extraction: Patient samples preserved in RNALater (Ambion, Austin, TX) were suspended 

in TRIzol reagent (Invitrogen) and homogenized in a FastPrep-24 Tissue Homogenizer (MP 

Biomedicals, Solon, OH). Total RNA was purified from the aqueous phase of TRIzol extract 

using the PureLink RNA Mini Kit (Invitrogen) following manufacturer recommendations. RNA 

was extracted from archived patient samples using RecoverAll total nucleic acid isolation kit 

(Ambion) following manufacturer instructions.  

5’ RNA ligand mediated-RACE: 5-RLM-RACE was performed according to the Invitrogen 

GeneRacer manual with modifications. 2-8 μg of total RNA was ligated directly to 250ng 

GeneRacer RNA adaptor (5’-

CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA-3’) using T4 RNA 

ligase (5 units) for 1 h at 37⁰C. Following phenol extraction and ethanol precipitation the purified 

ligation products were reverse transcribed using SuperScriptIII (Invitrogen) and a RRM2 gene 

specific reverse transcription primer (5’-CTCTCTCCTCCGATGGTTTG-3’) at 55⁰C for 45 min 

followed by inactivation at 70⁰C. 5’RLM-RACE-PCR was performed using the GeneRacer 5’ 

primer (5’-CGACTGGAGCACGAGGACACTGA-3’) and a RRM2 gene specific reverse primer 
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(5’-GGCCAGGCATCAGTCCTCGTTTCTTG-3’). PCR was performed using a Bio-Rad MJ 

Mini personal thermocycler using PCR conditions of 95⁰C for 3 min (1 cycle), 95⁰C for 30 s, 

60⁰C for 30 s, 72⁰C for 1 min (40 cycles), 72⁰C for 10 min (1 cycle). A second round of nested 

PCR was then performed using the GeneRacer 5’ nested primer (5-

GGACACTGACATGGACTGAAGGAGTA-3’) and a RRM2 gene-specific nested primer (5’-

GGCCCAGTCTGCCTTCTTCTTGAC-3’). PCR products were run on a 2% agarose gel and 

stained with 1μg/μl ethidium bromide. PCR products were excised from gel and sequenced 

directly to confirm RACE band identities. For the cell culture RACE experiments, 500,000 HT-

144 melanoma cells were transfected with 20 nM RRM2 siRNA using Lipofectamine RNAiMax 

(Invitrogen). RNA was extracted for the RLM-RACE as describe above 48 h after transfection. 

qRT-PCR:  Patient RNA samples were reversed transcribed using SuperScriptIII reverse 

transcriptase. 0.4-200ng of white blood cell (WBC) cDNA was used as PCR template for 

standard curves of RRM2 and Tata Binding Protein (TBP). 2 μl of prepared sample 

cDNA/standard cDNA was used for triplicate Taqman Real time-PCR as described elsewhere.
25

 

Concentrations of RRM2 and TBP in samples were calculated from the WBC cDNA standard 

curve, and RRM2 levels were normalized to TBP levels within the same sample.  

Western blots:  Total protein was recovered from the phenol/chloroform phase of TRIzol 

extraction (see description of the RNA extraction above). Samples were diluted to equivalent 

protein concentration and denatured via addition of beta-mercaptoethanol-containing Laimmli 

sample buffer. The primary antibodies were goat polyclonal anti-RRM2 antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA), mouse polyclonal anti-actin antibody (BD Biosciences, San 

Jose, CA). The secondary antibodies were horseradish peroxidase-conjugated donkey anti-goat 

antibody and rabbit anti-mouse antibody (Santa Cruz Biotechnology). Development was done 

using SuperSignal West Dura Extended Duration Substrate (Thermo-Fisher, Waltham, MA). Blot 

images were captured using a Molecular Imager VersaDoc 3000 system (Bio-Rad, Hercules, 
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CA). Band quantification was performed using Image-Quant TL software (GE/Amersham 

Biosciences, Piscataway, NJ).  

Tissues and immunohistochemical assay: Formalin-fixed, paraffin-embedded (FFPE) human 

tissue samples from patient–matched pre- and post-treatment cases were obtained under UCLA 

IRB approval. Immunohistochemical (IHC) assays were performed using a Dako Autostainer 

Plus (Dako, Carpinteria, CA) with fresh sections of pre- and post-treatment cases stained at the 

same time. Tissue sections 4 μm thick were deparaffinized in xylene and rehydrated in graded 

alcohols. The sections were then placed in a pressure cooker (17.5 PSI, 122 ⁰C; Biocare 

Decloaking Chamber, Biocare Medical LLC., Concord, CA) in 0.01M sodium citrate buffer (pH 

6.0) or 0.1M Tris-HCl buffer (pH 9.0) for 10 min for heat antigen retrieval of RRM2 and TfR 

antigens, respectively. Endogenous peroxidase was quenched with 3% hydrogen peroxide at 

room temperature. Primary goat anti-human R2 polyclonal antibody, (catalog # sc-10846; Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA), was applied for 30 min at room temperature at a final 

concentration of 1.0 µg/ml (1:200). Mouse anti-human TfR monoclonal IgG1 antibody (clone 

H68.4, catalog number 13-6800; Invitrogen, Camarillo, CA) was applied for 30 min at room 

temperature at a final concentration of 0.5 µg/ml (1:1000). Antigen detection was accomplished 

using the Vectastain ABC Elite Goat HRP kit (catalog number PK-6105, Vector Labs, 

Burlingame, CA, USA) or the Dako Envision goat anti-mouse IgG secondary antibody with 

attached HRP-labeled dextran polymer (catalog number K4001; Dako, Carpinteria, CA), for 

RRM2 and TfR, respectively. All tissues were either amelanotic or only lightly melanized, 

therefore bleaching was not performed and Nova Red (catalog number SK-4800; Vector Labs, 

Burlingame, CA) was used as the chromagen to easily discern staining from any endogenous 

pigment. The sections were then counterstained with Meyer’s hematoxylin, followed by 

dehydration in graded alcohols, xylene, and cover-slipping. Human tonsil and colon cancer 

served as positive assay controls. Negative controls consisted of duplicate tissue sections stained 
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with either non-immune pooled goat IgG (catalog number I-5000, Vector Labs, Burlingame, CA) 

or monoclonal mouse IgG1 (catalog number 02-6100; Invitrogen, Camarillo, CA) applied at 

identical final concentrations as used for RRM2 and TfR primary antibodies, respectively. For 

each sample, 10 random tumor regions were scored for maximal expression and mean expression.  

2.5 References 

 

1 Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D.W.Y. RNAi therapeutics: 

a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711-719 

(2006). 

2. Castanotto, D. & Rossi, J.J. The promises and pitfalls of RNA-interference-based 

therapeutics. Nature 457, 426-433 (2009). 

3. Fire, A., et al. Potent and specific genetic interference by double-stranded RNA in 

Caenorhabditis elegans. Nature 391, 806-811 (1998). 

4. Elbashir, S.M., et al. Duplexes of 21-nucleotide RNAs mediate RNA interference 

in cultured mammalian cells. Nature 411, 494-498 (2001). 

5. McCaffrey, A.P., et al. RNA interference in adult mice. Nature 418, 38-39 

(2002). 

6. Lewis, D.L., Hagstrom, J.E., Loomis, A.G., Wolff, J.A. & Herweijer, H. Efficient 

delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 

32, 107-108 (2002). 

7. Song, E., et al. RNA interference targeting Fas protects mice from fulminant 

hepatitis. Nat. Med. 9, 347-351 (2003). 

8. Soutschek, J., et al. Therapeutic silencing of an endogenous gene by systemic 

administration of modified siRNAs. Nature 432, 173-178 (2004). 

9. DeVincenzo, J., et al. Evaluation of the safety, tolerability and pharmacokinetics 

of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory 

syncytial virus (RSV). Antivir. Res. 77, 225-231 (2008). 

10. Leachman, S.A. et al. First-in-human mutation-targeted siRNA phase Ib trial of 

an inherited skin disorder. Mol. Ther. 18, 442-446 (2010).  

11. Alvarez, R. et al. RNAi-mediated silencing of the respiratory syncytial virus 

nucleocapsid defines a potent anti-viral strategy. Antimicrob. Agents Chemother. 

53, 3952-3962 (2009). 

12. Kleinman, M.E., et al. Sequence- and target-independent angiogenesis 

suppression by siRNA via TLR3. Nature 452, 591-597 (2008). 



 44 

13. Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, 

cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6, 

659-668 (2009). 

14. Heidel, J.D., et al. Potent siRNA inhibitors of ribonucleotide reductase subunit 

RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res. 13, 2207-

2215 (2007). 

15. Gatter, K.C., Brown, G., Strowbridge, I.S., Wollston, R.E. & Mason, D.Y 

Transferrin receptors in human tissues: their distribution and possible clinical 

relevance. J. Clin. Pathol. 36, 539-545 (1983). 

16. Cerqueira, N.M.F.S.A., Pereira, S. Fernandes, P.A. & Ramos, M.J. Overview of 

ribonucleotide reductase inhibitors: an appealing target in anti-tumor therapy. 

Curr. Med. Chem. 12, 1283-1294 (2005). 

17. Heidel, J.D., et al. Administration in non-human primates of escalating 

intravenous doses of targeted nanoparticles containing ribonucleotide reductase 

subunit M2 siRNA.  Proc. Nat. Acad. Sci. USA 104, 5715-5721 (2007). 

18. Koldehoff, M., Steckel, N.K., Beelen, D.W. & Elmaagacli, A.H. Therapeutic 

application of small interfering RNA directed against bcr-abl transcripts to a 

patient with imatinib-resistant chronic myeloid leukaemia. Clin. Exp. Med. 7, 47-

55 (2007). 

19. Bartlett, D.W., Su, H., Hildebrandt, I.J., Weber, W.A. & Davis, M.E. Impact of 

tumor-specific targeting on the biodistribution and efficacy of siRNA 

nanoparticles measured by multimodality in vivo imaging. Proc. Nat. Acad. Sci. 

USA 104, 15549-15554 (2007). 

20. Schluep, T., et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-

101 from PET imaging and tumor histological measurements. Proc. Nat. Acad. 

Sci. USA 106, 11394-11399 (2009). 

21. Rudiger, R., Schartl, M. & Kollinger, G. Comparative studies on the ultrastructure 

of malignant melanoma in fish and human by freeze-etching and transmission 

electron microscropy. J. Cancer Res. Clin. Oncol. 107, 21-31 (1984). 

22. Juhasz, A., Vassilakos, A., Chew, H.K., Gandara, D. & Yen,Y. Analysis of 

ribonucleotide reductase M2 mRNA levels in patient samples after GTI-2040 

antisense drug treatment. Oncol. Rep. 15, 1299-1304 (2006).  

23. Bartlett, D.W. & Davis, M.E. Impact of tumor-specific targeting and dosing 

schedule on tumor growth inhibition after intravenous administration of siRNA-

containing nanoparticles. Biotechnol. Bioeng. 99, 975-985 (2008). 

24. McClarty, G.A., Chan, A.K., Engstrom, Y, Wright, J.A. & Thelander, L. Elevated 

expression of M1 and M2 components and drug-induced posttranscriptional 



 45 

modulation of ribonucleotide reductase in a hydroxyurea-resistant mouse cell line. 

Biochemistry 26, 8004-8011 (1987), 

25.  Bartlett, D.W. & Davis, M.E. Insights into the kinetics of siRNA-mediated gene 

silencing from live-cell and live-animal bioluminescent imaging. Nucl. Acids Res. 

34, 322-333 (2006) 

 

2.6 Supplementary Information for Chapter 2 
 

Part I. Creation of stain for CALAA-01 

Materials 

Methoxy-PEG-thiol (MW 1000 g/mol) was purchased from Laysan Bio (Arab, AL). 

SPDP-dPEG
TM

12-NHS (MW 912.08 g/mol) ester was purchased from Quanta Biodesign 

(Powell, OH). 5 nm spherical gold nanoparticles were obtained from Nanopartz (Salt 

Lake City, UT). 

Methods 

Preparation of SPDP-dPEG
TM

12-AD (see Scheme SI 1) 

To a solution of SPDP-dPEG
TM

12-NHS (100 mg, 0.11 mmol) in 3 mL of anhydrous 

dichloromethane was added adamantanemethylamine (0.11 mmol, 21 µL). The solution 

was stirred for 16 hours at room temperature, after which the solvent was removed and 

the product dried under vacuuo. (MALDI-TOF) [M+Na]
+
 984.08, [M+K]

+
 1000.16 
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Scheme SI 1: Synthesis of SPDP-dPEG
TM

12-AD 
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PEGylation of 5 nm gold nanoparticles with SPDP-dPEG
TM

12-AD (Au-PEG-AD) 

To a pre-sonicated 1 mL solution of 5 nm gold nanoparticles (10
13

 particles per mL) was 

added mPEG-thiol (14 µg, 14 nmol) and SPDP-dPEG
TM

12-AD (16 µg, 14 nmol). The 

solution was vortexed for 30 minutes and diluted to 4 mL with deionized water. The 

resulting 4 mL solution was diafiltered twice with a 10 kDa membrane (Millipore) and 

finally resuspended to 1 mL.  

PEGylation of 5 nm gold nanoparticles with methoxy-PEG-thiol (Au-PEG) 

To a pre-sonicated 1 mL solution of 5 nm gold nanoparticles (10
13

 particles per mL) was 

added methoxy-PEG-thiol (28 µg, 28 nmol). The solution was vortexed for 30 minutes 

and diluted to 4 mL with deionized water. The resulting 4 mL solution was diafiltered 

twice with a 10 kDa membrane (Millipore) and finally resuspended to 1 mL.  

Part II: Principle of staining  

A schematic representation of the interactions between the Au-PEG-AD particles and 

CALAA-01 is shown in Schematic SI 2. 

Key 

 

 

 

 

PEGylated
Au-PEG-AD
nanoparticle

CALAA-01
(containing
Cy3-labeled
siRNA)

CALAA-01 stained with
PEGylated Au-PEG-AD

nanoparticles

 

 

Scheme SI 2: Representation of the staining process of CALAA-01 by Au-PEG-AD particles. 
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Part III: In vitro validation of binding of Au-PEG-AD to the siRNA-containing 

nanoparticles  

A sandwich ELISA assay was developed to test for the binding of the gold stain (Au-

PEG-AD) onto the siRNA-containing nanoparticles.  

Materials 

 Coating buffer: 10 μg/mL mouse IgG against human transferrin (Bethyl 

Laboratories, Montgomery, TX) in 50 mM carbonate-bicarbonate buffer (pH = 

9.6) 

 Wash buffer: 50 mM Tris, 140 mM NaCl, 0.05 % Tween 20, pH = 8  

 Blocking buffer: 50 mM Tris, 140 mM NaCl, 1 % bovine serum albumin (BSA), 

pH = 8  

 Targeted particle solution: Transferrin-targeted particles containing siRNA (0.5 

mol % AD-PEG-Tf ) in 150 mM phosphate buffered saline (PBS) 

 Staining solution: Au-PEG-AD or Au-PEG particles in 150 mM PBS   

Method 

The entire ELISA procedure was conducted at room temperature with mild shaking on a 

plate shaker. Into each well of a 96-well ELISA plate was coated with 0.1 mL of coating 

buffer that contains the primary antibody, IgG against human transferrin for 1 hour. 

Three rinses with 0.1 mL of wash buffer followed to remove unbound antibodies. Next, 

blocking with BSA by adding 0.2 mL of blocking buffer into each well took place for 1 

hour, followed by three brief rinses with 0.1 mL of wash buffer. After that, each well was 

added with 0.1 mL of either targeted particle solution or 150 mM PBS as a negative 

control and incubated for 2 hours. After five rinses with 0.1 mL of wash buffer to remove 

unbound targeted particles, each well was loaded with 0.1 mL of staining solution 

containing either Au-PEG-AD or Au-PEG at different concentrations and incubated for 2 

hours. Upon five rinses with 0.1 mL of wash buffer to remove unbound targeted particles, 

each well was loaded with 0.1 mL of 150 mM PBS for absorbance measurement at 520 

nm (surface plasmonic peak for 5 nm Au-PEG particles) using a Safire
2

 Microplate 

Reader (Tecan, Salzburg, Austria). Reported values are mean absorbance from duplicates 

of experiments.  

 

Results 

The binding of Au-PEG-AD to the siRNA-containing nanoparticles relies upon the 

interaction between ADs and the cyclodextrin (CD) in a dose dependent fashion. 
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Figure S1: (A) The ELISA plate captures the red color due to binding of Au-PEG-AD onto 

targeted siRNA particles via specific CD-AD interactions. Legend: - A: no targeted nanoparticles 

+ gold particles (10
12

 #/mL); B: targeted nanoparticles + gold particles (10
12

 #/mL); C: targeted 

nanoparticles + gold particles (3x10
12

 #/mL); D: targeted nanoparticles + gold particles (10
13

 

#/mL); E: targeted nanoparticles + gold particles (3x10
13

 #/mL). (B) This graph demonstrates a 

dose-dependent binding of Au-PEG-AD onto siRNA-containing, CDP targeted nanoparticles 

(rows B to E in Figure S1A). As the negative control, the wells not loaded with any targeted 

nanoparticles do not show detectable gold absorbance (row A in Figure S1A). 

 

Part IV: In vivo validation of binding of Au-PEG-AD to siRNA-containing nanoparticles 

in murine models 

 

The use of imaging techniques serves to ascertain whether Au-PEG-AD can recognize 

intravenously injected targeted, siRNA-containing nanoparticles in a mouse tumor tissue.  

 

Methods 

 

Tumor Formation and Systemic Delivery of siRNA-containing Nanoparticles 

All animal experiments were performed with sterile techniques and complied with the 

NIH Guidelines for Animal Care and as approved by the Caltech Institutional Animal 

Care and Use Committee. Neuro2A (mouse neuroblastoma) cells were cultured in 

complete growth medium (DMEM supplemented with 10 % fetal bovine serum (FBS), 
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100 units/mL penicillin, and 100 units/mL streptomycin). In the right hind flank, four 

immunodeficient (NOD.CB17-Prkdcscid/J) mice (The Jackson Laboratory, Bar Harbor, 

ME) received subcutaneous implantation of N2A cells (at 10
6
 cells per mouse per 0.1 mL 

of DMEM). Before injection, tumors reached 100-200 mm
3
 in size, as determined by 

caliper measurements (0.5 x l x w
2
). Two mice received intravenous administration of 

siRNA-containing, cyclodextrin-based, targeted nanoparticles at a dose level of 10 mg 

siRNA/kg animal via the tail-vein. Formulated in 0.1 mL of 5 % glucose in water (D5W), 

the injected dose contained targeted nanoparticles carrying Cy3-labeled siRNA (20% of 

the total siRNA in the nanoparticles). As controls, two other mice received intravenous 

injections of 0.1 mL of D5W. Animal sacrifice by CO2 overdose took place 24 hours 

after injection, followed by tumor extraction and immersion fixation in 4 % 

paraformaldehyde (PFA).   

Transmission Electron Microscopy  

PFA-fixed blocks (~ 1 mm
3
 in volume) of mouse tumor samples received fixation with 

2.5 % glutaraldehyde (in 100 mM sodium cacodylate, pH = 7.4) for 2 hours, post-stain by 

1 % OsO4 at 4 °C for 2 hours, and 0.9 % OsO4 and 3 % K3Fe(CN)6 at 4 °C for 2 hours. 

Subsequent dehydration with an ethanol gradient and propylene oxide enabled the 

embedding tissue blocks polymerized from Epon 812 resins (EMS; Electron Microscopy 

Sciences, Hatfield, PA). 80 nm thick sections were deposited on carbon and formvar-

coated, 200-mesh, nickel grids (EMS) and later stained with 3 % uranyl acetate (SPI 

Supplies, West Chester, PA) and Reynolds lead citrate for visualization under a 120 kV 

BioTwin CM120 TEM (Philips). All electron micrographs are from randomly chosen 

facets of the tissue block.  

Results 

Transmission electron microscopy confirms the existence of siRNA containing, targeted 

nanoparticles inside a mouse subcutaneous tumor.  
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Figure S2: Transmission electron micrographs showed intracellular localization of siRNA-

containing, cyclodextrin-based, targeted nanoparticles (dark round objects – the siRNA within the 

nanoparticle is stained by the presence of the uranyl ions that bind to the nucleic acid) inside N2A 

cells of the tumor subcutaneously implanted in mice (same tumor tissue used for confocal 

fluorescence imaging in Figure 1). (Left) The proximity of targeted nanoparticles to the nucleus 

shows their intracellular localization. (Right) Expanded view of nanoparticles shown in left panel 

(Scale bar = 500 nm). Solid arrows point to the nanoparticles.  Labeling is as follows, Nu: 

nucleus, rib: ribosome, ER: endoplasmic reticulum, V: vesicle. 
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Upon the confirmation of the presence of targeted particles inside the tumor following 

their systemic injection, confocal microscopy can validate the utility of Au-PEG-AD as a 

stain for the targeted nanoparticles in the same tumor tissues extracted from the same 

mice.   

 

Methods 

 

Fluorescence Microscopy with Au-PEG-AD  

After immersion fixation in 4 % PFA in PBS for 3 days, ~2 cm
3
 mouse tumor tissue 

blocks passed through an increasing sucrose gradient up to 30 % sucrose, and were later 

embedded in 9 % gelatin in PBS. The gradual freezing of gelatin tissue blocks to -80 °C 

allowed the generation of 10 µm-thick cryosections. After brief rinsing with PBS to 

remove any surface gelatin as well as fixation with acetone at -20 °C to permeabilize the 

cell membrane, tissue sections underwent staining of PEGylated, adamantane-modified 

gold nanoparticles (Au-PEG-AD) in the dark for 2 hours. Rinsing with PBS removed any 

non-specifically bound gold particles, before the mounting of Au-PEG-AD stained tumor 

sections with 16.7 % (w/v) Mowiol 4-88 and 33 % (v/v) glycerol in PBS. A Zeiss LSM 

510 confocal scanning microscope served to reveal the in vivo tumor biodistribution of 

the Cy3-siRNA containing targeted nanoparticles (excitation: 555 nm; emission: 570 

nm), whose presence was further confirmed by its colocalization with Au-PEG-AD 

(excitation: 488 nm; emission: 507 nm).  

Results 

    Cy3        Au-PEG-AD               Merge 
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Figure S3: (Top) Tumor tissue collected from mice receiving intravenous (tail vein) injections of 

Cy3-siRNA containing, targeted nanoparticles. Au-PEG-AD particles (green: middle; emission: 

507 nm) specifically bind to the Cy3-siRNA (orange: left; emission: 570 nm) containing, 

cyclodextrin-based targeted nanoparticles, whose localization was strictly intracellular, as seen 

from the merged bright-field image (right). (Bottom) As a negative control, tumor tissues were 

collected from mice that received intravenous injections of D5W. Au-PEG-AD particles failed to 

stain the tumor tissue in the absence of targeted nanoparticles. (Scale bar = 20 µm) 

 

Part V: Staining of biopsy samples with Au-PEG-AD (Patient Pre-treatment samples) 

 

      Au-PEG-AD                    DAPI    Merge 
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Figure S4: Au-PEG-AD staining of CALAA-01 nanoparticles in tumor biopsy samples using Au-

PEG-AD and DAPI nuclear counter-stain. All pre-treatment samples, including Apre (top row), B-

pre (second row), C1pre (third row), and C2pre (bottom row), reveal undetectable gold staining. 

(Scale bar = 20 microns) Legend: M = melanophage (black objects inside the melanoma tissue). 

.  
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Chapter 3: siRNA knockdown of ribonucleotide reducatase inhibits 

melanoma cell line proliferation alone or synergistically with 

temozolomide
2
 

3.1 Abstract: 
 

 Systemically delivered small interfering RNA (siRNA) therapies for cancer have 

begun clinical development. The effects of siRNA-mediated knockdown of 

ribonucleotide reductase subunit 2 (RRM2), a rate limiting enzyme in cell replication, 

were investigated in malignant melanoma, a cancer with a paucity of effective treatment 

options. A panel of human melanoma cell lines was transfected with siRNA to induce the 

knockdown of RRM2. Sequence-specific, siRNA-mediated inhibition of RRM2 

effectively blocked cell proliferation and induced G1/S phase cell cycle arrest. This effect 

was independent of the activating oncogenic mutations in the tested cell lines. Synergistic 

inhibition of melanoma cell proliferation was achieved using the combination of siRNA 

targeting RRM2 and temozolomide, an analogue of the current standard of care for 

melanoma chemotherapy. The level of transferrin on melanoma cell lines was also 

evaluated. In conclusion, siRNA-mediated RRM2 knockdown significantly inhibits 

proliferation of melanoma cell lines with different oncogenic mutations with synergistic 

enhancement in combination with temozolomide.  

3.2 Introduction 

 

                                                      
2
 Reproduced with permission from: J. E. Zuckerman, T. Hsueh, R. C. Koya, M. E. Davis and A. Ribas, 

"Small interfering RNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation 

alone or synergistically with temozolomide," J. Invest. Dermatol. 131, 453 (2011). 
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 The incidence of malignant melanoma is rising faster than any other cancer. The 

treatment outcomes of metastatic melanoma remain dismal (Miller and Mihm, 2006; 

Tsao et al., 2004).  Only 10 to 15 percent of patients with disseminated disease respond 

to standard of care therapy with dacarbazine (DTIC) (Augustine et al., 2009). 

Temozolomide is a second generation alkylating agent, whose active metabolite5-(3-

methyltriazen-1-yl)imidazole-4-carboximide has a mechanism of action  analogous to 

DTIC, with the added benefit of crossing the blood-brain barrier, an important feature 

since metastatic melanoma frequently metastasizes to the brain (Augustine et al., 2009; 

Tsao et al., 2004). 

 The first experimental therapeutic to provide targeted delivery of synthetic, small 

interfering RNA (siRNA) in humans, CALAA-01, is currently being tested in a phase 1 

clinical trial (Davis, 2009). This targeted, nanoparticle formulation of siRNA consists of 

a cyclodextrin-containing polymer (CDP) utilizing human transferrin as a targeting ligand 

for binding to transferrin receptors that are typically upregulated on cancer cells. The 

siRNA component of CALAA-01, called siR2B+5, was designed to target ribonucleotide 

reductase subunit 2 (RRM2) and had been characterized for potency, efficacy, and 

specificity (Davis, 2009; Heidel et al., 2007a). 

 Ribonucleotide reductase (RR) catalyzes the rate limiting step in the production of 

2’-deoxyribonucleoside 5’-triphosphates needed for DNA replication. Conversion of 

ribonucleoside 5’-diphosphates to 2’deoxyribonucleotides by human RR requires 

expression of both its subunits, RRM1 and RRM2 (Engstrom et al., 1985). The subunits 

are differentially expressed during the cell cycle. Whereas RRM1 expression remains 

constant throughout the cell cycle, the RRM2 subunit is only expressed in the late 
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G1/early S phase of the cell cycle (Engstrom et al., 1985).  RRM2 is therefore an 

attractive therapeutic target since it is primarily expressed in proliferating cells, such as 

cancer cells.  

 RRM2 has been a validated target for cancer therapy.  Several small molecule 

agents such as hydroxyurea, alkoxyphenols, and cytarabine inhibit RRM2 activity; 

however, they are also associated with dose limiting toxicities due to adverse effects on 

non-malignant cells, e.g.,  bone marrow suppression (Shao et al., 2006). Antisense-RNA 

based therapeutics targeting RRM2 have also shown some promise in the clinic, but are 

also associated with severe dose limiting toxicities (hepatotoxicity) and the need to be 

administered via continuous infusion (Desai et al., 2005). Cancer therapy using targeted 

nanoparticles formulated with siRNA targeting RRM2 may be able to  bypass some of 

the undesirable non-specific effects caused by traditional small molecule-based 

therapeutics, since the specific targeting properties of the nanoparticle systems allows for  

a more selective delivery to tumor tissue (Davis, 2009). CALAA-01-like-nanoparticles 

have been shown to have very little non-specific toxicity. Importantly, no hematopoietic 

toxicity was observed following administration of high doses to cynomolgus monkeys 

(Heidel et al., 2007b).  

CALAA-01 has been administered to 15 patients with solid refractory cancers 

within an open-label, dose-escalation trial. Biopsies in 2 patients with metastatic 

melanoma demonstrated tumor targeting with the presence of particles within tumors 

(Davis et al.) . At the highest dose tested (30 mg/m
2
) there was evidence of RRM2 

knockdown when analyzed both at the mRNA and protein levels. Furthermore, specific 

confirmation of triggering the RNAi mechanism was obtained by the demonstration of 
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the presence of the specific cleavage sequence of siRNA targeting RRM2 in tumor 

samples by 5’-RNA ligand-mediated rapid amplification of cDNA ends (5’-RLM-RACE) 

PCR technique (Davis et al.).  

The evidence of RRM2 silencing in vivo with CALAA-01 provided motivation to 

study the mechanism and range of effects of siR2B+5 siRNA induced RRM2 knockdown 

in vitro against a previously characterized panel of melanoma cell lines(Jonas N. 

Søndergaard, 2010) . Therefore, in this study we sought to elucidate the efficacy of 

siR2B+5 siRNA induced RRM2 knockdown to inhibit melanoma cell proliferation, to 

determine the mechanism of anti-proliferative effects, and to indentify the range of 

sensitivities of different melanoma cell lines with defined oncogenic alterations to this 

new therapeutic approach, which may indicate patient populations that may most benefit 

from this therapeutic approach. The level of transferrin receptor on melanoma cell lines 

was also evaluated to confirm that a Tf targeted nanoparticle approach would be 

reasonable. Additionally, synergy studies involving siR2B+5 siRNA and temozolomide 

were carried out.  

 3.3 Results 

3.3.1 RRM2 silencing in HT-144 melanoma cells by siR2B+5 siRNA via RNAi 

mechanism 

 We first demonstrated that the siR2B+5 siRNA sequence previously characterized 

by Heidel et al. (Heidel et al., 2007a) successfully knocked down RRM2 expression in 

melanoma cells. We transfected HT-144 cells with either 5 nmole/L siR2B+5 siRNA or a 

non-targeting control (siCON) siRNA and measured the RRM2 mRNA and protein 

expression by quantitative real time reverse transcription polymerase chain reaction 
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(qRT-PCR) and Western blot respectively (Figure 3.1a,b). We observed greater than 80% 

reduction in RRM2 mRNA and 90% RRM2 protein knockdown following siR2B+5 

treatment when compared to siCON treatment (Figure 3.1a,b). We were able to obtain 

similar levels of RRM2 protein knockdown (60-90%) with siR2B+5 treatments in all 

other cell lines tested for RRM2 expression (data not shown).  

In order to confirm that siR2B+5 does in fact engage the canonical RNAi machinery, 

RNA from  HT-144 cells transfected with siR2B+5 and siCON using 

LipofectamineRNAiMax or targeted CPD/siRNA nanoparticles (similar to CALAA-01) 

were subjected to 5’ RNA ligand mediated rapid amplification of cDNA ends (5’-RLM-

RACE) analysis  (Figure 3.1c,d).  RRM2 mRNA fragments, whose 5’ ends matched the 

predicted siRNA induced cleavage site (10 base pairs from the 5’ end of the antisense 

strand) were detected only in those samples treated with the siR2B+5 siRNA using either 

LipofectamineRNAiMax or targeted CDP/siRNA nanoparticles (Figure 3.1c,d,e).  

LipofectamineRNAiMax was used for all subsequent transfections as it has much higher 

transfeciton efficiency than the targeted CDP/siRNA nanoparticles in vitro (data not 

shown). Several non-specific bands were also observed in the siCON treated samples; 

however, none of these bands matched the size or sequence of the correct RACE product 

obtained in the siR2B+5 samples. 
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Figure 3.1: Knockdown of RRM2 mRNA and protein expression by short interfering RNA 

(siRNA) siR2B+5 in melanoma cells. (a) qRT-PCR analysis of RRM2 mRNA levels in HT-144 

cells 48 hours after transfection with 5 nmol/L of RRM2 targeted siRNA (siR2B+5) or a non-

targeting control (siCON) siRNA (Error bars, n=3). (b) Quantification of RRM2 protein 

expression by Western blot band densitometry analysis, average of three independent 

experiments; one blot is pictured (Error bars, n=3). 5’-RLM-RACE detection of siRNA induced 

mRNA cleavage fragment HT-144 cells transfected using either (c) 

 

3.3.2 siR2B+5 treatment inhibits cell proliferation in a panel of melanoma cell lines 

in vitro  

We hypothesize that RRM2 is required for melanoma cell proliferation and knockdown 

of its expression in melanoma cell lines would result in growth inhibition. In order to test 

this hypothesis, 13 human melanoma cell lines with prior detailed oncogenic 

characterization (Jonas N. Søndergaard, 2010) as well as 3 non-melanoma cell lines (2 

breast cancer: MDA-MB-231 and MCF-7 and a normal fibroblast cell line 3T3) were 

treated with either 5 nmole/L siR2B+5 or siCON siRNA and their viability levels 
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compared to untreated control samples (Figure 3.2a). We observed up to 20% non-

specific decrease in cell viability following treatment with the negative control siCON 

siRNA. Therefore, we considered that a cell line was sensitive to siR2B+5 siRNA 

treatment if cell viability was less than 80% of the untreated control following siR2B+5 

siRNA treatment (dashed line). We found that 10 out of the 13 cell lines tested were 

sensitive to siR2B+5 siRNA treatment. Among those sensitive cell lines we observed a 

wide range of siR2B+5 siRNA induced proliferation inhibition, with the most sensitive 

cell lines (e.g., PTM, M238) demonstrating an approximate 65% decrease in viability 

following treatment, while the least sensitive cell lines (e.g., M207, M229) demonstrate 

approximately 30% decrease in viability. It is notable that 2 out of the 3 cell lines (M243, 

M245) which did not show anti-proliferative effects after siR2B+5 siRNA treatment at 72 

hours, ultimately showed decreased proliferation at later time points (data not shown). 

Melanoma has frequent activating mutations in the MAPK pathway, with mutually 

exclusive activating mutations in NRAS and BRAF (Gray-Schopfer et al., 2007). 

However, the differences in sensitivity appear to be independent of the activated 

oncogene present in each cell, as anti-proliferative effects were equivalent in cell lines 

that had been previously characterized as having NRAS
Q61L

 or BRAF
V600E

 activating 

mutations (Jonas N. Søndergaard, 2010). As expected siR2B+5 treatment in 3T3 cells 

lead to significant decrease in cell viability. Surprisingly, we observed no anti-

proliferative effects of RRM2 knockdown in the two human breast cancer cell lines tested 

at 72 hours. The MDA-MB-231 cell line, but not MCF-7 cell line does show decreased 
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proliferation at later time point (data not shown). 

 

Figure 3.2: In vitro anti-proliferative effects of RRM2 knockdown by siR2B+5 siRNA in a 

panel of melanoma cell lines.  (a) Bioluminescent-based viability assay on a panel of cell lines 

72 hours after transfection with 5 nmol/L siRNAs, siR2B+5 (black columns) or siCON (white 

columns). Cell line oncogenic mutations are indicated by (*) NRAS codon 61 mutation, (+) 

BRAF V600E mutation, or (¶) NRAS/BRAF wild type.  (b) MTS viability assay of M202 

melanoma cells transfected with a range of siR2B+5 concentrations from 0.005 to 50 nmole/L 

(black circles), or siCON 0.5-50 nmole/L (white circles) performed at 48, 72, 96, and 120 hours 

following transfection (only the 120 hour siCON time points are displayed). All cell viability data 

are normalized to untreated control samples (error bars, n=3). 

 

The dose and time dependence of siR2B+5 siRNA was investigated in order to 

better understand the amount of siR2B+5 siRNA necessary to induce sustained anti-

proliferative effects. We transfected M202 cells with a range of siR2B+5 siRNA 

concentrations (0.005-50 nmole/L) and measured cell viability at 48, 72, 96, and 120 

hours after transfection (Figure 3.2b).  We observed a clear dose and time dependent 

sensitivity to siR2B+5 siRNA. Anti-proliferative effects at less than 0.1 nmole/L 
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siR2B+5 siRNA were observed and reached a plateau at 3 nmole/L. We observed 

increasing anti-proliferative effects with each time point up to 120 hours where these 

effects stabilized. We also observed some amount of dose dependent toxicity following 

siCON treatment, with levels about 10 nmole/L showing significant decrease in cell 

viability; however, these effects were not time dependent and did not change significantly 

from 48 to 120 hours (only 120 hour data pictured).  

3.3.3 siR2B+5 treatment induced G1/S-phase cell cycle arrest in multiple cell lines  

 We hypothesize that RRM2 knockdown depletes the pool of available dNTPs for 

DNA synthesis. Therefore, cells treated with siR2B+5 siRNA should not be able to 

replicate their genomes and arrest early in the cell cycle. These molecular events may 

lead to the observed anti-proliferative effects following RRM2 knockdown. In order to 

test this hypothesis, we analyzed the cell cycle distribution of HT-144 melanoma cells, a 

cell line sensitive to siR2B+5 siRNA treatment, using propidium iodide staining after 

treatment with either 5 nmole/L siR2B+5 or siCON siRNA (Figure 3.3a).  Significant 

changes to cell cycle distribution in siR2B+5 siRNA treated cells compared to siCON 

siRNA treated samples were observed. Compared to siCON siRNA treated samples, 

siR2B+5 siRNA treated samples had a marked increase in G1 and S phase populations, 

and near disappearance of the G2/M phase population, consistent with G1/S phase cell 

cycle arrest.   

 We analyzed whether RRM2 knockdown following siR2B+5 treatment leads to 

apoptosis in addition to cell cycle arrest. In order to examine for this possibility, we 

stained siR2B+5 siRNA treated HT-144 cells with Annexin-V-FITC and propidium 

iodide to identify live, apoptotic, and dead cellular populations by flow cytometry (Figure 
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3.3b). Untreated samples had a baseline 

 

Figure 3.3: G1/S-phase cell cycle arrest, but little apoptosis is induced by siR2B+5 siRNA 

RRM2 knockdown. (a) Propidium idodide cell cycle analysis of HT-144 melanoma cells 48 

hours after treatment with 5 nmol/L siR2B+5 or siCON; histograms are representative of at least 

3 independent experiments. (b) AnnexinV-FITC/propidium iodide apoptosis analysis of HT-144 

cells 72 hours after treatment with 2.5 or 5 nmol/L of siR2B+5, siCON, or staurosporin (SSP, 

positive control). 

 

population made up of approximately 7% of cells with spontaneous apoptotsis detected as 

Annexin-V positive cells, with or without being propidium iodine positive (Figure 3.3b). 

Treatment with 2.5 or 5 nmole/L siCON siRNA caused an increase in this population 

over 10%. Samples treated with 2.5 or 5 nmole/L siR2B+5 siRNA demonstrated an 

additional 3-5% increase in apoptotic cell populations. There were minimal non-apoptotic 

dead cells in any sample. Overall, siR2B+5 siRNA treatment, compared to untreated and 
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siCON siRNA treated samples, resulted in marked cell cycle arrest but only a marginal 

increase in apoptotic cell death at the conditions and timing tested by us. 

 

Figure 3.4: Cell cycle arrest profiles vary between different melanoma cell lines despite 

similar level of siR2B+5 siRNA knockdown of RRM2 expression. (a,b) Propidium iodide cell 

cycle analysis of (a) M202 or (b) M207 melanoma cell lines 48 hours after treatment with 5 

nmole/L siR2B+5 or siCON siRNA.  (c,d)  Western blot analysis of (c) M202 or (d) M207 cells 

48 hours after transfection with 5 nmol/L siR2B+5 siRNA in the presence of 

lipofectamineRNAiMax. 

 We further hypothesized that the differences in sensitivity among cell lines to 

siR2B+5 siRNA in terms of growth inhibition may be based upon the completeness of 

cell cycle arrest achieved following RRM2 knockdown in each cell line. We compared 

cell cycle analysis profiles of M202 (a good responder by cell viability assays) and M207 

(a cell line with minimal response) following treatment with siR2B+5 or siCON siRNA 

(Figures. 3.4a,b).  As shown above, M202 cell proliferation is greatly inhibited following 

RRM2 knockdown, whereas M207 cell proliferation is more weakly inhibited. Inspection 
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of the cell cycle analysis data for both cell lines after treatment with siR2B+5 siRNA 

demonstrate enrichment of G1 phase cell populations and diminishment of S phase 

populations in both cell lines; however, the G2/M phase population of M202 cells nearly 

disappears after RRM2 knockdown, whereas this population of M207 cells only 

decreases by half, suggesting that some M207 cells were still cycling, despite a similar 

level of RRM2 knockdown (Figures. 3.4c,d).  

We also sought to rule out the possibility that a single transfection or siR2B+5 is 

not sufficient to induce cell death. To determine if prolonged RRM2 knockdown could 

result in cell death we engineered the M202 melanoma cell lines to induciblely express an 

shRNA version of the siR2B+5 sequence in the presence of doxycycline (Figure 3.5). 

Prolonged inhibition (7 days) of RRM2 expression following DOX addition caused only 

cell growth arrest and no apparent cell death as assessed by real time cell growth assay.  

 

Figure 3.5: Inducible inhibition of RRM2 via shRNA resulted in cell growth arrest but not 

cell death. Western blot analysis revealed potent RRM2 inhibition in the presence of 

doxycycline. Real-time cell growth assays demonstrated that DOX addition resulted only in cell 

growth arrest and not cell death. 
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3.3.4 Combination of temozolomide and RRM2 knockdown is synergistic for 

inhibition of cell proliferation  

 We tested if RRM2 knockdown in melanoma cell lines may sensitize melanoma 

cells to temozolomide treatment which is an agent frequently used as standard of care in 

the treatment of patients with metastatic melanoma. Given the relatively high 

concentrations required of temozolomide (and DMSO vehicle control) for these 

experiments, we solubilized temozolomide using a solution of 2-hydroxypropyl-β-

cyclodextrin, in order to avoid any confounding of results due to toxicities from high 

concentrations of DMSO.  We did not observe any cytotoxic effects of 2-hydroxypropyl-

β-cyclodextrin alone in our cell lines (data not shown). The initial studies focused on 

lower doses of temozolomide; however, no cytotoxic effects were observed for 

temozolomide alone at these doses. Additionally, no additional anti-proliferative activity 

was observed following temozolomide addition to siR2B+5 siRNA treatment at these low 

doses (data not shown). Therefore, we increased the dose of temozolomide to a range 

where a cytotoxic effect of temozolomide alone could be observed.  

In these high concentration synergy studies, M202 or HT-144 melanoma cell lines 

were treated with increasing doses of siR2B+5 (0-20.2 nmole/L) followed by 

temozolomide treatment (24 hours later), with viability readings taken 48 hours after the 

temozolomide treatment (Figures 3.6 a,b). Samples treated with only temozolomide 

demonstrated minimal decrease in 
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Figure 3.6: Synergy between siR2B+5 and temozolomide treatment. (a,b) Bioluminescence-

based cell viability analysis of M202 cells (a) or HT-144 cells (b) 72 hours after treatment  with 

increasing doses of siR2B+5 (nmole/L) (triangular boxes),  temozolomide-sol (mmole/L) 

(circular boxes), or co-treatment with both agents (square boxes). Data are normalized to an 

untreated sample. (c,d) Synergy analysis of M202 (c) and HT-144 (d) cell viability data following 

co-treatment with siR2B+5 siRNA and temozolomide using the combination index (CI) method. 

CI values <1 indicate synergy. 

 

viability except at the highest dose. siR2B+5 siRNA treatment produced similarly potent 

anti-proliferative effects as observed in previous experiments.  The combination of 

temozolomide and siR2B+5 siRNA produced anti-proliferative effects greater than either 

individual agent alone. Synergy was determined by combination index (CI) methods, 

based on Chou-Talalay equations (Figures 3.5 c,d).  We observed that all combination 

doses in M202 cells showed synergistic effects, with combination indexes (CI) <1, and 
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all but the lowest dose of the combination therapy in HT-144 cells demonstrating 

synergistic effects.  

3.3.5 Melanoma cell lines express the Transferrin receptor (TfR) and uptake 

fluorescently labeled transferrin 

 Because the CALAA-01 delivery vehicle is transferrin targeted, we desired to 

confirm that melanoma cells do express the TfR and uptake transferrin like other cancer 

cell lines. We examined the ability of 4 melanoma cells to uptake fluorescently labeled 

transferrin (Alexafluor 488 labeled). All melanoma cell lines were found to readily 

uptake transferrin with affinities similar to two cell lines previously characterized to 

uptake transferrin and transferrin targeted nanoparticles (Figure 3.7a). The presence of 

the TfR on melanoma cell lines was also confirmed by western blotting (Figure 3.7b).  

HT-144 melanoma cells were found to have a similar amount of TfR as other cancer cell 

lines.  

3.4 Discussion 

 

In this report, we demonstrate the therapeutic potential of siRNA targeting RRM2 

in melanoma cell lines.  siR2B+5 siRNA efficiently knocks down RRM2 expression via 

the canonical RNAi mechanism in melanoma cell lines and leads to a significant decrease 

in proliferative capacity in the majority of melanoma cell lines tested. Moreover, we 

demonstrate, by 5’-RLM-RACE, that siRNA delivered via targeted CDP/siRNA 

nanoparticles can engage the RNAi machinery in vitro.  Additionally, we find that the 

therapeutic response was durable, lasting greater than 120 hours post transfection, and 

potent, demonstrated by therapeutic doses less than 1 nmole/L.  
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Figure 3.7: Melanoma cell lines express transferrin receptor and uptake transferrin. a) Dose 

dependence of AF-488 labeled transferrin in 4 human melanoma cell lines (M257, M202, M229, 

M207) and 2 positive control cell lines (HeLa-human cervical cancer, Neuro2A-mouse 

neuroblastoma). b) Western blot analysis of TfR expression in melanoma cell lines (HT-144, 

M202, M207) and a panel of other cancer cell lines (Breast cancer: BT-474, SKBR3, MCF7, 

MDA-MB-231; Lymphoma: Daudi). 

 

These results are consistent with previous data obtained by Heidel et al. that 

demonstrated siR2B+5 siRNA induced growth inhibition of a variety of cancer cell lines 

in vitro and in vivo (Heidel et al., 2007a). Avolio et al. have also reported that siRNA 

targeting RRM2 decreased tumor growth rates in vivo (Avolio et al., 2007).  Lee et al. 

demonstrated that targeting RR using antisense RNA molecules can inhibit proliferation 

of melanoma cell lines in vitro and in vivo (Lee et al., 2003). Additionally, these authors 
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showed significant inhibition of lung tumor colonies following tail vein injections of 

A2508 melanoma cells into mice after 5-7 weeks of daily treatment with GTI-2040, a 20-

nucleotide phosphorothioate oligodeoxyribunucleotide that has been reported to inhibit 

the production of RRM2 in vitro (Lee et al., 2003).  

Intriguingly, several reports, most notably from Doxubury et al., demonstrated 

that RRM2 knockdown alone in certain cancer models (pancreatic adenocarcinoma cell 

lines) did not decrease cell viability (Duxbury et al., 2004). However, Reid et al., have 

demonstrated that RRM2 knockdown in A549 melanoma cell lines inhibits growth in 

vitro and in vivo (Reid et al., 2009). The variety of responses to RRM2 knockdown 

among melanoma cell lines used here emphasizes the importance of screening a panel of 

cancer cell lines when evaluating siRNA therapeutics. Additionally, the lack of any 

robust anti-proliferative effect in the breast cancer cell lines tested suggests that 

melanoma, in general, may be more sensitive to siR2B+5 therapy than other cancer types.  

Our data suggest that growth inhibition following siR2B+5 siRNA treatment is 

due mostly to G1/S phase cell cycle arrest, with some limited contribution from apoptotic 

events. Cell cycle arrest following RRM2 knockdown has been observed in renal cell 

carcinoma cell lines; however, unlike the melanoma cell lines in this report, RRM2 

knockdown caused S phase arrest with no particular enrichment of the G1 phase 

population of cells (Avolio et al., 2007). Conversely, in colon cancer cell lines, no 

perturbations to the cell cycle were observed following RRM2 knockdown (Lin et al., 

2004). 
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We observed a limited amount of apoptosis in HT-144 melanoma cells following 

RRM2 knockdown. However, the increase in apoptotic population in siR2B+5 siRNA 

treated cells compared to those treated with siCON siRNA is not of sufficient magnitude 

to explain the large difference in growth inhibition observed between HT-144 cells 

treated with siR2B+5 and siCON siRNA. Therefore, it is likely that RRM2 knockdown 

with siR2B+5 siRNA primarily has cytostatic effects, as opposed to cytotoxic cell killing, 

in melanoma cell lines. It is also possible that continuous siRNA treatment for long 

periods of time in vivo through repeated dosing with targeted nanoparticles may lead to 

eventual melanoma cell death. However, the conditions for continued exposure to 

siR2B+5 siRNA are difficult to test experimentally in vitro due to the toxicity of repeated 

exposure to the transfection reagents. 

We found that the magnitude of growth inhibition following siR2B+5 siRNA 

treatment correlated with the completeness of the observed cell cycle arrest. We found 

that in two similar melanoma cell lines, both with activating N-Ras
Q61L

 mutations (M202 

and M207 cell lines), siR2B+5 siRNA treatment caused varying levels of cell cycle arrest 

despite comparable levels of RRM2 knockdown. We observed complete cell cycle arrest 

in the M202 cell line and partial arrest in the M207 cell line. Correspondingly, M202 cell 

proliferation was more strongly inhibited by RRM2 knockdown than the proliferation of 

M207 cells.  

Temozolomide at high concentrations has been demonstrated to induce G2 cell 

cycle arrest, but not apoptosis, in melanoma cell lines in vitro (Mhaidat et al., 2007). 

However, at more “clinically relevant” concentrations no appreciable effect on cell cycle, 

proliferation, or temozolomide induced DNA damage has been observed following 
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temozolomide treatment in human melanoma cell lines (Chen et al., 2009), which may 

not be surprising since this agent has a low response rate in the clinic (Rietschel et al., 

2008). Several studies have suggested that methyl-guanine methyl transferase (MGMT) 

as well as RR may be involved in the temozolomide resistance mechanism in cancer 

(Aghi et al., 2006; Augustine et al., 2009). Our results suggest that RR may play a role in 

temozolomide resistance. We observed that co-treatment with siR2B+5 siRNA and 

temozolomide synergistically inhibited melanoma cell growth.  Therefore, there may be 

an advantage to combination therapy with siR2B+5 and temozolomide and further in vivo 

studies are warranted to fully elucidate the therapeutic potential of this combination.  

Our observations of TfR expression in melanoma tumors are consistent with the 

literature. There is a large body of self-consistent evidence demonstrating TfR expression 

in melanoma tissue and cells.  Overall, a meta-analysis available, peer reviewed, reports 

of TfR expression in melanoma revealed that 65% of primary melanomas, 92% of 

metastatic melanomas, and 92% of the unspecified primary or metastatic melanoma 

samples express TfR (1017 samples in total).  These data are also well confirmed at the 

cell lines level.  

The findings in this report suggest that RRM2 knockdown via transferrin targeted 

siRNA nanoparticles may be an effective strategy for treatment of advanced stage 

melanoma. However, the lack of any robust cell death after RRM2 inhibition in 

melanoma suggests that this therapeutic strategy may be most advantageous in 

combination with other therapuerics such as TMZ.  

3.5 Materials and Methods 
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Cell lines and culture 

Melanoma cell lines M202, M207, M229, M233, M238, M245, M249, M255,  M257, 

and M263 cell lines were established from patient’s biopsies under UCLA IRB approval 

#02-08-067 and have been previously characterized (Jonas N. Søndergaard, 2010). PTM 

was provided by Bijay Mukherji (University of Connecticut, Farmington, CN). The HT-

144, MDA-MB-231, MCF-7, and 3T3 cell lines were obtained from American Type 

Culture Collection (ATCC, Rockville, MD). All cell lines were cultured in complete 

serum media containing RPMI 160 with L-glutamine (Mediatech Inc., Manassas, VA) 

with 10% (all percentages represent v/v)  fetal bovine serum (FBS, Omega Scientific, 

Tarzana, CA), 1% penicillin, streptomycin, and amphotericin (Omega Scientific) at 37°C 

with 5% CO2 in filter-top flasks. 

siRNAs duplexes 

 Both unmodified RNA duplexes were gifts from Calando Pharmaceuticals 

(Pasadena, CA).  siCON was bioinformatically designed to minimize potential for 

targeting any human gene (Dharmacon, Lafayette,CO). 

siR2B+5: 5’-GAUUUAGCCAAGAAGUUCAGA-3’ 

siCON: 5’-UAGCGACUAAACACAUCAAUU-3’ 

In vitro transfection 

 A reverse transfection protocol was followed for siRNA delivery. siRNA was 

complexed with LipofectamineRNAiMax (Invitrogen, Carlsbad, CA) according to 

manufacturer’s instructions. 0.030 -300 nmole/L siRNA with 0.2% 
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LipofectamineRNAiMax was applied to each well in a total volume of 20 µl (96 well 

plate) or 500 µl (6 well plate) of Opti-MEM (Invitrogen).  5 x 10
^3

 cells/well (96 well 

plates) or 2.4 x 10
^5

 (6 well plates) were plated into wells containing the siRNA 

formulations, for a final siRNA concentration of 0.005-50 nmole/L. Targeted 

CDP/siRNA nanoparticle delivery of siR2B+5 was performed as described elsewhere 

(Bartlett and Davis, 2007) at a final concentration of 300 nmole/L siRNA.  

Temozolomide preparation 

 Temozolomide (10 mg/ml) was prepared by dissolving 0.5 g of temozolomide 

(LKT laboratories, St. Paul, MN) into 30% (w/v) of 2-hydroxypropyl-beta-cyclodextrin 

(2-HP-beta-CD, Sigma-Aldrich, St. Louis, MO), at 37° C in a water-bath by stirring at 

800 rpm for 60 minutes.  

Cell viability assays  

Cells were transfected as described above and cell viability was determined using 

the CellTiterGlo Assay (Promega, Madison, WI) by following the manufacturer’s 

instructions. Luminescence was measured on a DTX 880 multimode detector (Beckman 

Coulter, Fullerton, CA).  

qRT-PCR:  

Total RNA from HT-144 cells was extracted using the RNeasy kit (Qiagen). Total RNA 

samples were reversed transcribed using SuperScriptIII reverse transcriptase. 2 μl of 

prepared sample cDNA was used for triplicate Real time-PCR as described elsewhere 
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(Juhasz et al., 2006). RRM2 levels were normalized to GAPDH levels within the same 

sample. 

Detection of hRRM2 protein levels by western blot 

 48 hours after transfection, cells were lysed in RIPA Buffer (Thermo Fisher 

Scientific Inc., Waltham, MA). Lysates were diluted to equivalent protein concentration 

in beta-mercaptoethanol-containing Laimmli sample buffer (Thermo-Fisher) and 

incubated at 95
o
C for 5 minutes. Antibodies: goat polyclonal anti-R2 antibody, 

horseradish peroxidase-conjugated donkey anti-goat immunoglobulin G (sc-10846; Santa 

Cruz Biotechnology, Santa Cruz, CA). Development was done using SuperSignal West 

Dura Extended Duration Substrate (Thermo-Fisher). Band quantification was done using 

Image-Quant TL software (GE/Amersham Biosciences, Piscataway, NJ). hRRM2 

expression was normalized to either Actin ( BD Biosciences, San Jose, CA ) or SID1B, a 

high molecular weight putative RNA transport protein, using a SID1B antibody 

(GeneScript, Piscataway, NJ).  

5’ RNA ligand mediated-RACE:  

5’-RLM-RACE was performed as described previously (Davis et al.). Briefly, 3 μg or 

total RNA was ligated directly to 250ng GeneRacer RNA adapotor (Invitrogen) using T4 

RNA ligase. Ligation products were reverse transcribed using SuperScriptIII (Invitrogen) 

and a RRM2 gene specific reverse transcription primer. Two rounds of  PCR were 

performed using a Bio-Rad MJ Mini personal thermocycler and PCR conditions 

described previously (Davis et al.). PCR products were run on a 2% agarose gel and 
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stained with 1μg/μl ethidium bromide. PCR products were excised from gel and 

sequenced directly to confirm RACE band identities. 

Cell Cycle analysis 

Cells were trypsinized and washed twice with PBS. Ice cold 70% ethanol was added drop 

wise while vortexing and allowed to incubate at 4
o
C for 30 minutes. Samples were then 

centrifuged at 1,300 rpm for 10 minutes and the ethanol decanted. The samples were then 

stained with 5 μg/ml propidium iodide at room temperature for 30 min. Cells were then 

analyzed by flow cytometery on a FACScan (BD Biosciences) flow cytometer and data 

analyzed using FlowJo version 8.7 (Tree Star, Inc., Ashland, OR).  

Apoptosis analysis 

 Individual cell culture supernatants were collected. The remaining adherent cells 

were trypsinized and combined with the previously collected supernatant. The samples 

were then washed with PBS and re-suspended in 50 l binding buffer (BD Biosciences).  

Samples were treated with 20 l of annexinV-FITC at 4
o
C for 30 minutes. 400 l of 

additional binding buffer was then added. 5 l of propidium iodide was added 2 minutes 

before cells were analyzed by flow cytometery on a FACSCalibur (BD Biosciences). 

Data analysis was performed using FACS Express (De Novo Software, Los Angeles, 

CA).  

Combination studies and synergy data analysis 

 HT-144 cells were transfected with a range of siR2B+5 siRNA concentrations and 

incubated for 24 hours. Samples were then treated with a dose range (0-2.636 mmole/L) 
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of temozolomide solution (cyclodextrin concentration was held constant over all samples) 

in fresh culture media and were incubated for 72 hours and cell viability assays 

performed. Analysis of combined agent effects were determined by combination index 

(CI) methods, based on Chou-Talalay equations (Chou, 2006) using Calcusyn dose effect 

analyzer software (Biosoft, Cambridge, UK). This software analysis takes into account 

the potency of each individual agent and the combination thereof, as well as the shape of 

the each dose response curve to determine how much the observed response of the 

combination treatment differs from the predicted additive response of the each individual 

agent. CI values can then be generated for each dose level which indicate additive effects 

(CI=1), antagonistic effects (CI>1), or synergistic effects (CI<1). 

Alexafluor488-Transferrin uptake studies 

Human transferrin (Sigma) was labeled with AF488 using the X kit. Cells were grown in 

24 well plates and washed twice with PBS. Opti-MEM (Invitrogen) containing the 

indicated concentration of labeled transferrin was added to the cells and incubated for 60 

minutes at 37°C. The Opti-MEM was then removed and the cells washed twice with 

PBS. Fluorescence measurements of the cells were performed using a plate reader 

(Tecan).  
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Chapter 4:  Herceptin-targeted siRNA nanoparticles containing siRNA 

against Her2 inhibit growth of Her2 (+) tumors in vitro and in vivo.  

4.1 Abstract: 
 

We have recently demonstrated the feasibility of using targeted, polymer-based 

siRNA nanoparticles in the clinic. This delivery system involved the use of the human 

protein transferrin (Tf) that is displayed on the surface of the nanoparticles to engage 

cancer cell surface, transferrin receptors (TfR). Here, we demonstrate the modular nature 

of this siRNA delivery system by tailoring both the targeting agent and siRNA 

component of the nanoparticle to Her2 positive breast cancers. Specifically, we show that 

the siRNA nanoparticle delivery system can be modified to include an antibody targeting 

agent (Herceptin) without any significant alteration to size, charge, or stability. We also 

show that in vivo treatment of Her2 positive breast cancer tumor xenografts with 

Herceptin-targeted nanoparticles containing siRNA against Her2 results in a more robust 

anti-tumor response than either Herceptin alone or Herceptin-targeted nanoparticles 

containing control siRNA. These data demonstrate how nanoparticles containing the 

combination of antibodies and siRNA can be used to achieve enhanced therapeutic 

treatment against clinically validated cancer targets. 

4.2 Introduction 
 

 The anti-Her2/neu humanized monoclonal antibody Herceptin (trastuzumab) is 

used alone or in combination as a first line therapeutic in the treatment of HER2 positive 

(HER2(+)) breast cancers
1
. Despite its success in the clinic, Herceptin can also cause 

adverse effects in non-tumor tissue and acquired resistance is common
2
.  Additionally, 

not all Her2 positive patients respond to Herceptin
3
. Therefore, new therapeutic 
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modalities that can limit off-target effects of Herceptin, overcome resistance and still take 

advantage of Her2 positive status are needed.  

 Nanoparticle-based therapeutics have restricted distribution profiles in the body 

owing to their relatively large size compared to traditional small molecule drugs and 

therapeutic antibodies
4
. Adverse effects of therapeutic antibodies result from the binding 

of antibodies to their targets within normal tissue. Attachment of antibodies (such as 

Herceptin) to nanoparticles can help overcome these off-target effects because antibodies 

will only be able to access the restricted profile of tissues where the nanoparticles 

accumulate.  

 In many instances, Herceptin resistant tumors remain dependent on Her2
3
. We 

hypothesize that resistance to anti-Her2 therapy can be overcome by RNAi induced 

silencing of Her2. Furthermore, because Her2 is still present on the surface Herceptin of 

resistant cells, we hypothesize the Herceptin would be a useful targeting ligand to direct 

siRNA nanoparticles into Herceptin resistant tumor cells in vivo. 

We hypothesized that RNAi induced silencing of Her2 would also recapitulate the 

synergistic activities of Herceptin/ lapatanib and Herceptin/pertuzumab drug 

combinations.  One mechanism of Herceptin function is dissociation of ligand 

independent Her2/Her3 dimerization and subsequent phosphatidylinositol 3-kinase 

(PI3K) pathway down regulation
5
. Combination therapy with another Her2 binding 

antibody (pertuzumab) that prevents ligand dependent Her2/Her3 dimerization has been 

demonstrated to be more effective than either antibody alone suggesting that Herceptin 

mono-therapy is inadequate to down regulate Her2/3 induced PI3K pathway completely
3
. 

Additionally, Herceptin treatment does not efficiently block Her2 activation of the 
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MAPK pathway
6
. The kinase inhibitor lapatanib in combination with Herceptin has been 

shown to be more effective than either agent administered alone
6
. The synergy stems 

from enhanced inhibition of PI3K pathway and additional inhibition of the MAPK 

pathway. We hypothesized that effective removal of Her2 from the cell (via RNAi 

knockdown) would recapitulate the activity of both these combination therapies 

simultaneously. 

Small interfering RNAs (siRNAs) are particular promising forms of RNAi based 

therapeutics because they engage the RNAi pathway at the level of the RNA induced 

silencing complex (RISC). This means that only cytosolic delivery is required for siRNA 

function
7
. Because of their high charge and instability, siRNAs require carriers, such as 

nanoparticles, to facilitate their transport through circulation and uptake at desired sites of 

actions. Many such siRNA/carrier systems have entered clinical trials. We have 

developed a polymer-based targeted-nanoparticle formulation of siRNA (clinical version 

denoted CALAA-01) that was shown to accumulate in human tumors and deliver 

functional siRNA from a systemic, intravenous (i.v.) infusion 
8
. This first-in-human study 

demonstrated the clinical potential for cationic polymer-based siRNA delivery systems.  

The siRNA nanoparticles consist of a synthetic delivery system containing: (i) a 

linear, cyclodextrin-based polymer (CDP), (ii) a hydrophilic polymer (polyethylene 

glycol (PEG) used to promote nanoparticle stability in biological fluids), and (iii) 

siRNA
9
. The nanoparticles have been engineered to incorporate targeting ligands such 

transferrin (Tf)
10

, sugars, or antibodies at the terminal ends of their PEGs that facilitate 

their uptake by target tissue.   
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Here, we demonstrated that siRNA silencing is an effective therapeutic option for 

Her2(+) breast cancers, both sensitive and resistance to Herceptin therapy. We showed 

that Herceptin could be incorporated into our siRNA nanoparticle delivery system to 

facilitate delivery to and uptake by tumor cells in vivo. Furthermore, we demonstrated 

that Herceptin-targeted siHer2 nanoparticle resulted in a more durable response in vivo 

than Herceptin administration alone.  

4.3 Results: 

4.3.1  siRNA knockdown of Her2 causes cell death only in Her2(+) cell lines.   
 

We examined the effects of siRNA induced Her2 knockdown in two breast cancer cell 

lines BT-474 (Her2 positive) and MCF7 (Her2 negative). siHer2 was found to facilitate 

Her2 knockdown at pico-molar levels (Fig. 4.1A). Treatment of BT-474 cells with siHer2 

resulted in potent anti-proliferative effects and resulted in complete cell death by 12 days 

post treatment (Fig. 4.1B). Treatment of MCF7 cells with siHER2 did not inhibit cell 

growth (Fig. 4.1C). After Her2 inhibition, some change in the interaction between the 

MCF7 cells and its growth media surface was observed, indicated by the increased cell 

index; however, no indication of toxicity was noted on visual inspection of the cells. 

Overall, these data suggested that the anti-proliferative effects observed following siHer2 

treatment in the BT-474 cell line were a result of Her2 knockdown and not off-target 

effects of the siRNA sequence itself.  
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Figure 4.1: siHer2 knockdown inhibits cell growth of Her2 (+) cell line only in vitro. (A) 

Western blot analysis demonstrated potent Her2 inhibition following treatment with as little as 

0.1nM siHer2 in BT-474 cells. (B,C) Real-time cell growth analysis of cells in the presence of 

5nM siHer2 or siEGFP ( BT-474 Her2(+); MCF-7 Her2(-)). Cell index is proportional to cell 

number. 

 

4.3.2  siRNA knockdown of Her2 induces apoptosis of BT-474 cells, whereas 

Herceptin treatment does not.  

We hypothesized that knockdown of Her2 would result in different down-stream effects 

than Her2 inhibition via Herceptin. To test this hypothesis we examined for apoptosis 

(indicated by presence of PARP cleavage fragments) and levels of phosphorylated-AKT 

(Fig. 4.2). We found that even at low doses cleaved PARP was clearly detectable in the 

siHER2 treated BT-474 cells. Herceptin treatment resulted in the appearance of very faint 

bands corresponding to cleaved PARP. siHER2 treatment also resulted in a robust 

decrease is P-AKT levels. Herceptin treatment also reduced P-AKT levels, but to a lesser 

extent.  
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Figure 4.2: Her2 knockdown via siHER2 but not Herceptin treatment resulted in apoptosis 

induction, indicated by presence of cleaved PARP. Western blot analysis of HER2, PARP, 

cleaved PARP, and phosphorylated AKT (P-AKT), on protein extracted form BT-474 cells  that 

received no treatment (UT), 10nM control siRNA (siEGP), or the indicated concentration (nM) of 

siHER2 in the presence (+) or absence (-) of Herceptin.  

Combined treatment with both siHER2 and Herceptin resulted in at least additive 

if not synergistic effects. Herceptin treatment combined with low dose (0.1nM) siHER2 

resulted in a clear increase in cleaved PARP compared to low dose siHER2 alone. P-

AKT levels were also noticeably decreased at low dose siHER2 using this combination. 

The benefit of combination treatment at higher doses of siHER2 was unclear due to the 

already high amount of cleaved PARP and low levels of P-AKT induced by higher doses 

of siHER2.  

4.3.3 Covalent attachment of PEG to Herceptin does not significantly alter 

Herceptin efficacy.  

We covalently linked Herceptin to AD-PEG to enable its association with the siRNA 

nanoparticles. Covalent conjugation of Herceptin to a large PEG molecule could have 

interfered with its anti-tumor activity. To rule out this possibility we compared the anti-

proliferative effects of Herceptin and AD-PEG conjugated Herceptin in BT-474 and 

MCF7 cells. As expected, Herceptin treatment resulted in potent anti-proliferative effects 
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only in the Her2(+) BT-474 cell line. AD-PEG-Herceptin treatment also resulted in 

potent anti-proliferative effects on only BT-474 cells; however, the IC50 of the drug was 

shifted to above 1ug/mL and its maximal potency appeared marginally reduced (Fig. 4.3). 

Overall, these data indicated that covalent attachment of AD-PEG to Herceptin had only 

a mild antagonistic effect on the therapeutic activity of Herceptin.  

 

Figure 4.3: Covalent linkage to PEG results in slight decrease in therapeutic efficacy of 

Herceptin. Data are from MTS cell viability assays 48 hours after treatment initiation. 

4.3.4  Incorporation of AD-PEG-Herceptin into siRNA nanoparticle formulation 

did not alter nanoparticle size, charge, or stability.  

We examined the physical properties of siRNA nanoparticle formulated with 0.25 mol% 

AD-PEG-Herceptin. Based on previous work with the transferrin targeted nanoparticles
10

 

we estimated that this formulation would result in ~20 antibodies per particle. Cryo-TEM 

and dynamic light scattering measurements revealed that the siRNA nanoparticles with 

Herceptin were similar in size and charge to their untargeted counterparts (Fig. 4.4A, B). 

The Herceptin nanoparticles were also stable in physiologic salt conditions, as they did 

not aggregate in the presence of 1xPBS (Fig. 4.4C). These data suggest that AD-PEG-
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Herceptin containing nanoparticles would behave in a similar fashion as transferrin or 

untargeted siRNA nanoparticles in the body.  

 

 

Figure 4.4: Characterization of siRNA nanoparticles formulated with 0.25 mole% AD-PEG-

Herceptin. (A) Cyro-TEM images of siRNA nanoparticles formulated with and without AD-

PEG-Herceptin. (B) Dynamic light scattering (DLS) measurements of size and charge of siRNA 

nanoparticles formulated with or without AD-PEG or AD-PEG-Herceptin. (C) DLS based salt 

stability analysis. Sample is brought to 1XPBS at 5 minutes and monitored for aggregation, 

indicated by increases to nanoparticle size.  

4.3.5 Herceptin-siRNA nanoparticles accumulated to a greater extend in tumors 

than transferrin-siRNA nanoparticles.  

We examined the tumor accumulation of siRNA nanoparticles using laser-scanning 

confocal microscopy (Fig. 4.5). We injected BT-474 tumor bearing mice with siRNA 

nanoparticles containing siRNA and polymer components labeled with Cy3 and 

Alexafluor350 fluorophores respectively. We also probed tumor sections from these mice 

with a fluorescently labeled anti-human secondary antibody to localize Herceptin.   
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Detection of siRNA nanoparticle components was weak. Fluorescent signal of the 

non-targeted siRNA nanoparticle components (siRNA and CDP) in tumor sections was 

nearly indistinguishable from background. Fluorescence signal of nanoparticles 

components in tumor sections from mice dosed with Herceptin-targeted siRNA 

nanoparticles was distinguishable from background; however, the signal was still weak.  

Herceptin was only detected in tumor sections from mice receiving either 

Herceptin-targeted nanoparticles or Herceptin alone. In tumor sections from mice 

receiving only Herceptin, we observed Herceptin signal throughout the tumor, localizing 

in circular patterns around cells, suggesting plasma membrane localization. A similar 

pattern of fluorescence signal was observed in tumor sections from mice receiving the 

Herceptin-targeted nanoparticles. The overall intensity of the signal in the tumor was less 

than the Herceptin only case and the strongest areas of fluorescence were distributed in a 

punctate fashion throughout the tumor section rather than encircling cells. These punctate 

Herceptin fluorescence signals co-localized with the nanoparticles components. These 

data suggested that these punctate structures are intact nanoparticles deposited within the 

tumor.  
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Figure 5: Herceptin targeted nanoparticles accumulate in BT-474 tumor xenografts in mice 

following intravenous administration. Laser scanning confocal microscopy images of tumor 

sections from mice receiving the indicated treatment. Scale bars are 50µm.  

4.3.6 Herceptin targeted siRNA nanoparticles with siRNA against Her2 resulted in 

a more robust anti-tumor response than either Herceptin alone or Herceptin-

targeted nanoparticles containing control siRNA.  

We examined the ability of Herceptin-targeted siRNA nanoparticles to inhibit tumor 

growth of BT-474 xenograft tumors in mice (Fig. 4.6). For this experiment, the mice 

were divided into 6 treatment groups: i) 5% dextrose (D5W) ii) non-targeted siRNA 

nanoparticles with siHER2 iii) Transferrin-targeted siRNA nanoparticles with siHER2 iv) 

Herceptin-targeted nanoparticles with siEGFP (control siRNA) v) Herceptin only vi) 

Herceptin-targeted nanoparticles with siHER2 siRNA. The mice received 3 weeks of 



 91 

treatments (twice per week) and tumor growth was followed for several weeks after this 

cycle of therapy.  

Tumors in mice receiving non-targeted siHER2 containing nanoparticles or Tf-

siHER2 containing nanoparticles had similar growth kinetics as mice receiving D5W. 

Some growth delay, compared to the D5W treated group, was observed in tumors from 

mice receiving Herceptin-targeted siEGFP nanoparticles, although this was not 

statistically significant. Significant growth inhibition was observed in both the Herceptin 

only and Herceptin siHER2 nanoparticles treatment groups compared to D5W. The 

Herceptin-siHER2 nanoparticles, but not Herceptin alone showed significant growth 

inhibition compared to the Herceptin-siEGFP nanoparticles.  

After cessation of treatment, the tumors from the Herceptin only treated animals 

began to regrow. The tumors from the Herceptin-siHER2 nanoparticle treated mice 

remained stable after treatment cessation and only showed increases in size at day 62 of 

the experiment. The tumors from the Herceptin-siHER2 nanoparticle treated mice did not 

achieve statistically significant size differences from the tumors of the Herceptin only 

treated mice. Survival benefit of Herceptin only versus Herceptin-siHER2 nanoparticle 

treatment could not be assessed because several animals in both groups were euthanized 

due to side effects of prolonged estrogen exposure rather than tumor size, leading to 

termination of the experiment. 
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Figure 4.6. Herceptin targeted nanoparticle delivery of siHer2 resulted in more persistent 

anti-tumor response compared to Herceptin alone and Herceptin targeted siEGFP 

nanoparticles. BT-474 tumor bearing mice received either 5% dextrose (D5W), 5mg/kg 

Untargeted-siRNA nanoparticles with siHER2 (NP-HER2-siRNA), 5mg/kg 0.25 mole% 

Transferrin targeted siRNA nanoparticles with siHER2 (TF-NP-Her2siRNA), 5mg/kg 0.25 

mole%  Herceptin targeted nanoparticles with siEGFP (H-NP-GFPsiRNA), 8.8 mg/kg Herceptin, 

or 5mg/kg 0.25 mole%  Herceptin targeted nanoparticles with siHER2 (H-NP-HER2siRNA). 

Doses were bi-weekly for three weeks (arrows). Error bars are S.E.M, n=6.  

4.3.7 siRNA knockdown of Her2 causes cell death only in Her2(+) cell lines with 

acquired resistance to Herceptin.  

Her2(+) breast tumors often become resistant to Herceptin; however, they are often still 

dependent on Her2. Therefore, we hypothesized that Herceptin resistant breast cancer 

cells would be sensitive to siHER2 treatment. We tested this hypothesis by treating a cell 

line with acquired resistance to Herceptin (BT474 HR6) with siHER2. siHER2 

knockdown expression of Her2 in this cell line and resulted in potent growth 

inhibition(Fig. 4.7A, B). The growth inhibition following siHER2 treatment was similar 

to the level of growth inhibition observed in the parental BT-474 Herceptin-sensitive cell 
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line. Herceptin treatment facilitated rather than hindered growth of this cell lines (Fig. 

4.7C). 

 

Figure 4.7. siHer2 but not Herceptin can inhibit the growth of Herceptin resistant cell line 

BT-474 HR6. (A) Western blot of Her2 expression following siHER2 treatment. (B) MTS cell 

viability assay of Herceptin sensitive (BT-474, BT-474 M1) and Herceptin resistant cell line (BT-

474 HR6). (C) MTS cell viability assay of BT-474 HR6 in the presence or absence of 10ug/mL 

Herceptin. 

 

We also examined the ability of siHER2 to induce apoptosis in this cell line. 

siHER2 treatment resulted in the appearance of cleaved PARP in this cell lines, 

suggesting induction of apoptosis (Fig 4.8). Surprisingly, we also observed a potentiation 

of apoptosis induction of low dose siHER2 in the presence of Herceptin. We were unable 

to perform in vivo studies with these cell lines as they lost their Herceptin resistance 

when implanted into mice.  
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Figure 4.8: Her2 knockdown results in apoptosis induction in BT-474 HR6 cells. Western 

blot analysis of PARP cleavage following treatment with either 10nM siEGFP or the indicated 

concentration (nM) of siHER2 in the presence(+) or absence(-) of Herceptin.  

 
4.4  Discussion 

 In this study, we have developed a Herceptin-targeted siRNA nanoparticle that 

delivery siRNA against Her2 to Her2(+) breast cancer tumors and inhibits their growth.  

 We first demonstrated the therapeutic efficacy of siRNA induced Her2 

knockdown in vitro. The Her2 siRNA sequence (siHER2) was found to silence Her2 at 

pico-molar concentrations, sufficient for use in in vivo studies. Treatment of the Her2(+) 

cell line BT-474 with siHER2 resulted in cell death. Additionally, we demonstrated that 

siHER2 treatment in a Her2(-) cell line (MCF-7) did not result in anti-proliferative 

effects. These data suggested that the therapeutic effects observed in the BT-474 cell line 

resulted from RNAi induced Her2 silencing and not off-target effects of the siRNA 

sequence itself.  

 We had hypothesized that siHER2 would result in a more robust therapeutic 

activity than Herceptin alone. We examined downstream indicators of PIK3 pathway 

activation and apoptosis and found that siHER2 induced a marked increase in cleaved 

PARP (an apoptotic indicator) and decreased phosphor-AKT levels compared to 

Herceptin. These data suggest that RNAi induced Her2 knockdown resulted in a more 



 95 

robust inhibition of Her2 signaling than Herceptin. We speculated that this increased 

efficacy resulted from the simultaneous inhibition of multiple Her2 signaling mechanisms 

by effectively removing Her2 from the cell. This increased therapeutic efficacy likely 

recapitulated the dual targeting of Her2 with Herceptin and other agents such as the 

kinase inhibitor lapatanib or the antibody pertuzumab that have been demonstrated to be 

superior to any of these agents individually
3
.  

 Therapeutic siRNA nanoparticles containing siRNA against the receptors 

facilitating nanoparticle uptake may have an additional benefit. We speculate the in a 

multi-dose treatment regimen, siRNA nanoparticles in the later doses will be biased 

towards tumor cells that did not internalize nanoparticles in early doses. Tumor cells that 

internalized the siRNA nanoparticles during early doses will have fewer receptors on 

their surface than cells that did not internalize nanoparticle, due to the effect of the 

siRNA payload itself.  The cells that did not internalize siRNA nanoparticle following 

earlier doses would have the highest surface receptor density and therefore would 

preferentially uptake the siRNA nanoparticles during later doses. Ultimately, this 

phenomenon would lead to a larger number of cells internalizing nanoparticles 

throughout the treatment regimen. Furthermore, each dose of nanoparticles will be 

targeted to the cells we would most desire to receive the nanoparticles.  

 Acquired and de novo resistance to Herceptin is common
11

. Many times these 

resistant tumors are still dependent on Her2 signaling, despite the lack of response to 

Herceptin. We demonstrated here that siRNA inhibition of Her2 resulted in cell death in a 

cell lines with acquired Herceptin resistance. These observations demonstrated the 
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feasibility of using siRNA inhibition of Her2 as a therapeutic in cases of acquired 

Herceptin resistance.  

 There are currently no FDA approved siRNA-based drugs for cancer. Developing 

new siRNA-based therapeutics against well validated oncogenes may help facilitate 

approval and further development of these types of therapeutics. There are many 

challenges to the development of siRNA-based therapeutics. Currently, siRNA 

therapeutics in clinical trials explore both new delivery systems for siRNA and new gene 

targets. Simultaneous exploration of two new concepts in the clinic is difficult and failure 

may results from many variables relating both to the delivery system and choice of gene 

target. We speculate that validating siRNA-based therapeutic against well validated 

clinical targets will reduce variables related to poor choices of therapeutic targets and 

focus clinical trials on making safe and effective siRNA-based delivery systems that, 

once approved, can be modified for therapeutic targets only druggable via RNAi.   

 

4.5 Materials and Methods 

 

Cell lines and culture: BT-474 and MCF-7cell lines were obtained from American Type 

Culture Collection (ATCC, Rockville, MD). BT-474 HR6 cells were a gift from Carlos 

Arteaga.  All cell lines were cultured in complete serum media containing RPMI 160 

with L-glutamine (Mediatech Inc., Manassas, VA) with 10% (all percentages represent 

v/v)  fetal bovine serum (FBS, Omega Scientific, Tarzana, CA), 1% penicillin, 

streptomycin, and amphotericin (Omega Scientific) at 37°C with 5% CO2 in filter-top 

flasks. 

Synthesis of AD-PEG-Herceptin: Herceptin (Genentech) was reacted with a 10 molar 

excess of SATP and followed by addition of 50mM Hydroxylamine after a buffer 
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exchange to form thiols at sites of primary amines. Following purification of the 

Herceptin fraction of the reaction mixture a 50 molar excess of AD-PEG-malamide was 

added and after 1 hr the reaction was brought to 10mM of Iodoacetamide to cap any 

remaining free thiols. The mono-PEGylated fraction of Herceptin was purified via HPLC.  

Nanoparticle formulation and siRNA duplexes: siRNA nanoparticles were formed by 

using cyclodextrin-containing polycations (CDP) and AD-PEG as described previously 

described
10

 (pre-complexation). Nanoparticles were formed in 5 % glucose in deionized 

water (D5W) at a charge ratio of 3 +/- and a siRNA concentration of 2 mg/ml unless 

otherwise indicated. 21 base pair unmodified and Cy3 labeled siRNA was purchased 

from Qiagen.  

siHER2: 5’- GGUGCUUCAUCUGGCGCUUU -3’ 

siEGFP
12

: 5’-GGCUACGUCCAGGAGCGCACC-3’ 

In vitro transfection: A reverse transfection protocol was followed for siRNA delivery. 

siRNA was complexed with LipofectamineRNAiMax (Invitrogen, Carlsbad, CA) 

according to manufacturer’s instructions. Cells were transfected as described above and 

cell viability was determined using the Aqueous MTS Assay (Promega, Madison, WI) by 

following the manufacturer’s instructions.  

Western blots: 48 hours after transfection, cells were lysed in RIPA Buffer (Thermo 

Fisher Scientific Inc., Waltham, MA). Lysates were diluted to equivalent protein 

concentration in beta-mercaptoethanol-containing Laimmli sample buffer (Thermo-

Fisher) and incubated at 95
o
C for 5 minutes. Antibodies:  PARP/cleaved PARP antibody, 

Her2 antibody, Actin, and Phopho-AKT, horseradish peroxidase-conjugated secondary 
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antibodies were purchased from Santa Cruz Biotechnology. Development was done using 

SuperSignal West Dura Extended Duration Substrate (Thermo-Fisher).  

Animal Studies: All animals were treated according to the NIH Guidelines for Animal 

Care and Use as approved by the Caltech Institutional Animal Care and Use Committee. 

6 to 9-week old, female nude mice (Charles River).  For anti-tumor experiments, 5 

million BT-474 cells were implanted into the front flanks of nude mice bearing esterdiol 

pellets implanted one day prior tumor inoculation. Treatments were initiated when tumors 

reached ~250mm
3
.  

Confocal microscopy: Formalin-fixed organs were dehydrated and embedded in molten 

paraffin to generate sections of 4-μm in thickness. Sections were deparrafinized with 

xylene, rehydrated, and mounted with ProLong Gold antifade reagent (Invitrogen) for 

viewing under a Zeiss LSM 510 inverted confocal scanning microscope (with a Plan 

Neofluar ×40/0.75 objective). The excitation wavelengths of Cy3-siRNAs was 543 nm 

(HeNe laser) and the corresponding emission filter was 560-610 nm. The measured 

resolution at which images were acquired is 512×512 pixels, and the image bit-depth is 8-

bit. 10 sections from each organ were inspected. Typically, 5 glomeruli from each tissue 

section were inspected. The Zeiss LSM Image Browser Software allows the extraction of 

images.  

Cryo-electron microscopy: Samples were vitrified using an automated climate-

controlled plunge-freezer (Vitrobot, FEI). Briefly, glow discharged Quantifoil holey 

carbon grids (SPI Supplies) were loaded into the chamber of the Vitrobot and 5ul of 

samples were applied. Grids were blotted for 1s and drained for 1s before being plunged 

into the center of a Vitrobot cup filled with liquid ethane, they were then quickly 
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transferred into the outer ring of the cup containing liquid nitrogen. The grids were stored 

under liquid nitrogen for later analysis.  Samples were visualized in Techni T12 Cryo-

electron microscope (FEI) equipped with a cryo-specimen holder. Acceleration voltage 

was set at 120kV. 
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Chapter 5: RNAi induced knockdown of N-Ras inhibits the growth of 

N-Ras mutant melanoma cell lines in vitro and in vivo 
 

5.1 Abstract:  

Pharmacologic inhibition of mutant B-Raf in melanoma with B-Raf mutations has had a 

profound impact on the treatment of this deadly disease. There is now hope for the 60% 

of melanoma patients possessing this mutation. However, no new treatment options have 

emerged for the 15% of melanoma patients with activating N-Ras mutations. Ras proteins 

have historically been considered undruggable. Here, we demonstrate that RNAi 

inhibition of N-Ras results in anti-proliferative effects in N-Ras mutant melanomas in 

vitro and in vivo. Despite these promising results, N-Ras inhibition did not induce 

significant tumor regressions in mice models, and therefore may have limited clinical 

utility as a monotherapy.  

5.2 Introduction:   

Melanomas have three mutually-exclusive driver oncogenic events, c-kit, B-Raf, and 

N-Ras
1
. c-kit is mutated in 3% of melanomas, B-Raf in 60%, and N-Ras in 15%

2
.  

Emerging clinical experiences provide clear evidence that inhibitors to c-kit or B-Raf 

induce objective responses in patients with metastatic melanoma
3,4

. The c-kit inhibitor 

imatinib can induce objective responses in metastatic melanomas with c-kit mutations
4
. 

Several agents in clinical development directly inhibit B-Raf or the downstream kinase 

Mek, and these agents selectively kill B-Raf V600E-mutated cancers but not N-Ras 

mutated cancers
3
. Specifically, the small molecule inhibitor specific for B-Raf, 

vemurafenib, has demonstrated objective tumor responses and prolonged survival in the 

great majority of patients with B-RAF V600E mutated melanoma
3
, thereby providing a 
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compelling proof-of-concept that targeting oncogenic mutations in the MAPK pathway is 

a valid therapeutic strategy for metastatic melanoma. 

N-Ras cannot be targeted with any drug in clinical development, and generally is 

considered undruggable. However, oncogenic mutations in Ras were the first driver 

oncogenes characterized by Barbacid and collaborators back in 1982
5
, and are prevalent 

mutations in many cancers. 

 Melanomas with N-Ras mutations do not harbor either a c-kit mutation or a B-Raf 

mutation, suggesting that a mutation in one of these three contiguous signaling molecules 

is a dominant oncogenic event in this cancer. Based on these observations, we 

hypothesized that inhibition of N-Ras might have similar therapeutic potency to 

inhibition of B-Raf or c-Kit.  

Here we demonstrated the validation of a potent siRNA sequence targeting N-Ras 

that specifically inhibits the growth of melanoma cells lines with activating N-Ras 

mutations in vitro and in vivo. However, we also demonstrate that targeting of N-Ras 

does not have the same therapeutic potency as analogous B-Raf inhibition in B-Raf 

mutant melanoma cell lines. Additionally, we found that although shRNA induced N-Ras 

inhibition delays tumor growth in vivo, siRNA delivery of N-Ras targeting siRNA did 

not. 

5.3 Results:  

5.3.1 siRNA induced N-Ras silencing in melanoma cell lines via RNAi mechanism. 

We first demonstrated that a siRNA targeting N-Ras (siNRAS) induced silencing of N-

Ras in multiple melanoma cell lines. The siNRAS sequence induced potent N-Ras 
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knockdown in all cell lines at doses as low as 0.5nM (Fig. 5.1).  These data indicated that 

this siRNA sequence had sufficient potency for future in vivo studies. 

We next confirmed that the siNRAS sequence inhibited N-Ras expression via the 

canonical RNAi mechanism. We used a 5’ RNA ligand mediated rapid amplification of 

cDNA ends (5’-RLM-RACE) analysis for this purpose. N-Ras mRNA cleavage 

fragments that corresponded to the 10bp position of the 5’ anti-sense strand of siNRAS 

were detected in RNA extracts from siNRAS treated cells but not from cells treated with 

control siRNA (siCON). These data confirmed that siRNAS can silence N-Ras via the 

canonical siRNA silencing mechanism. 

 

 

Figure 5.2: siRNA induced silencing of N-Ras in melanoma cell lines. (A) Western blot 

analysis of N-Ras expression following siNRAS treatment in melanoma cell lines. UT=no 

treatment, siCON=control siRNA, siNRASA=siRNA against N-Ras. (B) 5’-RLM-RACE analysis 

following siNRAS treatment of M202 melanoma cells. Gel analysis demonstrated predicted 

amplicons only in siNRAS treated samples and sequencing confirmed correct band identification.  
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5.3.2  siRNA silencing of N-Ras inhibited the growth of N-Ras mutant melanoma 

cell lines, but not N-Ras wild type cell lines in vitro.  

We hypothesized that N-Ras mutant melanoma cell lines require active N-Ras signaling 

for growth and survival and that silencing of N-Ras would result in growth inhibition and 

cell death. We tested this hypothesis by treating a panel of melanoma cell lines with 

siNRAS (Fig. 5.2). We observed that siNRAS treatment resulted in decreased cell 

viability in all N-Ras mutant cell lines, but not in N-Ras wild type cell lines.  

There was a high variability in the level of response to N-Ras knockdown. 

siNRAS treatment of  M202, PTM, and M243 cell lines resulted in strong growth 

inhibition, whereas siNRAS treatment of M207, M244, and M245 resulted in less 

pronounced growth inhibition.  

 

Figure 5.3: siNRAS inhibits the growth of a panel of N-Ras mutant melanoma cell lines. (A) 

MTS cell viability assays 96 hours after treatment with 5nM siNRAS (s55U=siNRASA) or 

siCON. (B) MTS cell viability assay dose titration of siNRAS (s55U) in M202 melanoma cells at 

varying time points post transfection. Non-specific toxicity of siCON was variable depending on 

time point and over different experiments in the same cell line. siNRAS effects on viability were 

consistent over different experiments in the same cell line. 
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We also examined the dose dependence of siNRAS treatment in M202 cells. We 

observed significant growth suppression even at pico-molar doses, although doses >5nM 

where required for maximal response (Fig. 5.2B).  

 N-Ras mutant melanoma cell lines treated with siNRAS did not appear to reduce 

in cell number, suggesting that N-Ras knockdown resulted in cell cycle arrest but not cell 

death. We confirmed that N-Ras knockdown resulted in strong G1/S cell cycle arrest 

(Fig. 3A). Using an electronic cell sensing assay we observed that once cell growth was 

arrested the total number of cells did not decrease (Fig. 5.3B). These data confirmed our 

observations that siNRAS treatment did not induce cell death.  

5.3.3 Downstream pathway analysis suggested possible explanations for variability 

in response to siNRAS treatment.  

We examined the phosphorylation levels of two downstream targets of N-Ras, ERK1/2 

and AKT in two N-Ras mutant melanoma cell lines M202 (good responder) and M207 

(poor responder). siNRAS treatment resulted in decreased levels of phospho-ERK only in 

the M202 cell line (Fig. 5.4). siNRAS treatment did results in decreased phospho-AKT 

levels in M207 cells; however, phospho-AKT levels in M202 cells were constitutively 

low. These data suggested that N-Ras knockdown may not inhibition ERK signaling in 

some N-Ras mutant melanoma cell lines, possibly due to constitutive increased AKT 

activity.  
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Figure 5.4: N-Ras knockdown induces potent cell cycle arrest but does not result in cell 

death. (A) Flow cytometry based cell cycle analysis following treatment with siCON or siNRAS 

in an N-Ras mutant and wild type melanoma cell line. (B) Real-time cell sensing assays of M202 

melanoma cells treated with control siRNA (siGL3) or siNRAS. Cell index is proportional to cell 

number.  

5.3.4 Inducible shRNA construct suppressed growth of an N-Ras mutant 

melanoma cell line in vivo.  

Because the siNRAS treatment resulted in only modest growth inhibition in our in vitro 

study, we wanted to confirm that RNAi inhibition of N-Ras would result in measurable 

growth inhibition in vivo, prior to performing any studies the siRNA nanoparticle system. 

Therefore, we engineered N-Ras mutant melanoma cell lines that would inducibly 

express shRNA against N-Ras (shNRAS). As a comparison we also engineered B-RAF 

mutant melanoma cell lines that would inducibly express shRNA against B-RAF. 
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Figure 5.5: Western blot analyses of downstream targets of N-Ras signaling.  

 

shRNA against N-Ras was found to induce a similar anti-proliferative effect as 

siRNAS treatment in M202 melanoma cells in vitro (Fig. 5.5A). No apparent decrease in 

cell number was observed, even after prolonged (weeks) of shRNA induction. shRNA 

against B-RAF, alternatively, strongly suppressed growth of a B-Raf mutant melanoma 

cell lines M249 to a similar extend to that of pharmacologic inhibition of B-Raf with 

PLX4720 (PLX) (Fig. 5.5B).  

We then examined how shRNA inductions would affect the growth of M202 

shNRAS and M249 shBRAF tumor xenografts in mice (Fig. 5.6A) Induction of shNRAS 

in the M202 cells results in ~50% reduction in tumor size within a week of induction. 

This growth reduction was followed by 3 weeks of stasis. The tumors began increasing in 

size about 4 weeks after shNRAS induction. Induction of shBRAF in M249 melanoma 

cells resulted in rapid reduction in tumor size over 2 weeks until tumors were no longer 

visible. When shBRAF induction was stopped several tumors grew back; however, 
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several did not. Overall, these data clearly demonstrated that B-Raf inhibition resulted in 

much more potent anti-tumor effects than N-Ras inhibition.   

We investigated the nature of the apparent resistance to shNRAS treatment in 

M202 tumors. Tumors were extracted from the mice and N-Ras expression was examined 

by western blot (Fig 5.6B). shNRAS tumors were found to have higher levels of N-Ras 

expression to control tumors. Cell lines were established from these tumors and 

continually grown in the presence of the shRNA induction reagent doxycycline (DOX) 

and selection reagent (puromycin) for the shRNA cassette. The tumors grew despite the 

presence of DOX and puromycin, suggesting resistance to shNRAS expression (Fig. 

5.6C).  

 

Figure 5.6: In vitro characterization of inducible shRNA systems targeting N-Ras and B-

Raf. (A) Western blot and real time cell sensing analyses of M202 shNRAS in the presence or 

absence of shRNA inducing reagent doxycycline (DOX). M202-NRAS-LUC cells have been 

engineered to express an extra copy of wild type N-Ras with a 2A sequence on it that appears as a 
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slightly higher molecular weight band than the endogenous mutant N-Ras. (B) Western blot and 

MTS assays on M249 shBRAF cells. PLX=PLX4720.  

We hypothesized that these cells were resistant to N-Ras knockdown. However, 

siNRAS treatment resulted in growth inhibition for these cells (data not shown). These 

data demonstrated that N-Ras was still sensitive to RNAi knockdown and the cells were 

still dependent on N-Ras signaling for growth. Therefore, we concluded that the 

continued growth of the tumors in the presence of DOX was due to partial loss of 

shNRAS expression cassettes and upregulation of N-Ras expression.  

5.3.5 siRNA nanoparticles targeting N-Ras did not inhibit tumor growth in vivo. 

 Inhibition of M202 tumor growth via inducible shRNA knockdown of N-Ras indicated 

that RNAi inhibition of N-Ras is a viable strategy for treatment of these tumors. 

Additionally, no true resistance to N-Ras knockdown emerged. We therefore examined 

the ability of siRNA nanoparticles carrying siNRAS to inhibit the growth of M202 

xenograft tumors.  

 First, we confirmed that transferrin could facilitate nanoparticle uptake by these 

cells. siRNA nanoparticles containing no targeting ligand or 0.25 mole% AD-PEG-Tf 

were incubated with M202 cells for 1 hour. Compared to the non-targeted nanoparticles, 

the Tf targeted nanoparticles were more readily internalized by the M202 cells (Fig. 5.7).  
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Figure 5.7: In vivo characterization of inducible shRNA against N-Ras and B-Raf. (A) 

Tumor growth experiments for M202 shNRAS and M249 shBRAF tumors in the presence of 

absence of shRNA inducing reagent doxycycline (DOX). Error bars=S.D., n=6, p-values are from 

two-tailed t-tests. (B) Western blot analysis of N-Ras levels in protein extracts from M202 

shNRAS tumors collected at the end of the growth experiment. (C) Images of an M202 shRNAS 

cell line isolated from the DOX tumors and their parental M202 cell line.  

 We next examined the growth M202 xenografts in groups of mice that received 

one of three different treatment strategies: (i) 5% dextrose, (ii) 5mg/kg Tf-siEGFP 

nanoparticles, or (iii) 5mg/kg Tf-siNRAS-nanoparticles. The mice were treated twice a 

week for 3 weeks. No differences between the three treatment groups were observed (Fig. 

8).  
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5.4 Discussion 

 Here we have demonstrated that RNAi mediated silencing of N-Ras holds some 

promise as a therapeutic option for melanoma patients with activating N-Ras mutations. 

In vitro, N-Ras knockdown resulted in variable anti-proliferative effects over a panel of 

mutant N-Ras melanoma cell lines, but not in N-Ras wild type cell lines. N-Ras 

knockdown was found to induce cell cycle arrest; however, no evidence for cell death 

even after prolonged N-Ras knockdown was observed. We confirmed that N-Ras 

knockdown via inducible shRNA could result in some tumor regression; however, this 

effect was short lived.   

 

Figure 5.8: M202 melanoma cells internalized Transferrin (Tf) targeted siRNA 

nanoparticles more readily than untargeted siRNA nanoparticles in vitro. (A) Florescence 

micrographs of M202 cells following incubation with the indicated Cy3-labeled siRNA 

nanoparticle formulation. (B) Flow cytometry quantification of Cy3-siRNA uptake in M202 cells. 

Samples were incubated with 200nM siRNA nanoparticle formulations with 20% Cy3-labeled 

siRNA. 0.25 mole% Tf was used for targeted nanoparticles.  
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 We found that RNAi silencing of B-Raf in vitro induced far more potent anti-

proliferative effects that N-Ras silencing. Silencing of B-Raf via RNAi had effects 

similar in magnitude to pharmacologic B-Raf inhibition with PLX4720. Silencing of B-

Raf in vivo resulted in rapid tumor regression and some complete cures.  

 RNAi silencing of N-Ras has been demonstrated by others to inhibit melanoma 

cell growth and in one case induce some cell death in vitro
6–8

. However, in vivo, more 

modest results than we observed (with no evidence of any tumor regression) have been 

reported following induction of anti-N-Ras shRNA in xenograft tumors
6
.  

 Taken together with our results, these data suggest that inhibition of N-Ras as a 

monotherapy will have limited clinical utility. We speculate that N-Ras knockdown may 

result in compensatory upregulation of other cellular pathways (e.g., EGFR). This 

phenomenon is observed for many other targeted therapeutics including Herceptin
9
, 

vemurafenib
10

, Erlotinib
11

, etc.. Silencing of K-Ras in lung cancer cell lines has been 

demonstrated to have a similar modest therapeutic effects in vitro and in vivo
12

.  In that 

report, compensatory increases in phosphorylated STAT3 and EGFR were demonstrated 

to mediate the partial resistance to anti-k-Ras therapy. Surprisingly, this phopho-EGFR 

upregulation sensitized these cells to EGFR inhibition. A similar phenomenon of P-AKT 

upregulation following loss of feedback inhibition following shRNA silencing of k-Ras 

has been observed in k-Ras mutated colorectal cancer cell lines
13

. Combinatorial strategy 

should be further explored to improve the therapeutic efficacy of RNAi-based N-Ras 

targeting.  
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Figure 5.9: siRNA nanoparticles targeting N-Ras do not inhibit tumor growth. NOD-SCID 

gamma mice bearing subcutaneous M202 xenograft tumors received intravenous doses of 5mg/kg 

siRNA nanoparticles with controls siEGFP or siNRAS or 5% dextrose (D5W) control twice 

weekly (arrows) for three weeks. Error bars are S.E.M, n=7.  

 Although we observed tumor growth inhibition in our inducible shRNA tumor 

model, siRNA nanoparticles targeting N-Ras did not have therapeutic effects in vivo. 

Together, these data suggest that an insufficient amount of siRNA was delivered to the 

tumors to result in growth inhibition. We believe that the only way to overcome this 

limitation is to improve the pharmacokinetics and thereby tumor delivery of the siRNA 

nanoparticles delivery system.  

5.5 Materials and Methods: 

Cell lines and culture: Melanoma cell lines M202, M207, M229, M244, M245, M249, 

M255,  and M257 cell lines were established from patient’s biopsies under UCLA IRB 

approval #02-08-067 and have been previously characterized
14

. PTM was provided by 



 114 

Bijay Mukherji (University of Connecticut, Farmington, CN). All cell lines were cultured 

in complete serum media containing RPMI 160 with L-glutamine (Mediatech Inc., 

Manassas, VA) with 10% (all percentages represent v/v)  fetal bovine serum (FBS, 

Omega Scientific, Tarzana, CA), 1% penicillin, streptomycin, and amphotericin (Omega 

Scientific) at 37°C with 5% CO2 in filter-top flasks. 

Nanoparticle formulation and siRNA duplexes: siRNA nanoparticles were formed by 

using cyclodextrin-containing polycations (CDP) and AD-PEG as described previously 

described
15

 (pre-complexation). Nanoparticles were formed in 5 % glucose in deionized 

water (D5W) at a charge ratio of 3 +/- and a siRNA concentration of 2 mg/ml unless 

otherwise indicated. 21 base pair unmodified and Cy3 labeled siRNA was purchased 

from Qiagen.  

siNRASA: 5’-CCACCAUAGAGGAUUCUUACA -3’ 

siCON: 5’-UAGCGACUAAACACAUCAAUU-3’ 

siEGFP: 5’-GGCUACGUCCAGGAGCGCACC-3’ 

In vitro transfection: A reverse transfection protocol was followed for siRNA delivery. 

siRNA was complexed with LipofectamineRNAiMax (Invitrogen, Carlsbad, CA) 

according to manufacturer’s instructions. Cell viability was determined using the 

Aqueous MTS Assay (Promega, Madison, WI) by following the manufacturer’s 

instructions.  

Western blots: 48 hours after transfection, cells were lysed in RIPA Buffer (Thermo 

Fisher Scientific Inc., Waltham, MA). Lysates were diluted to equivalent protein 

concentration in beta-mercaptoethanol-containing Laimmli sample buffer (Thermo-

Fisher) and incubated at 95
o
C for 5 minutes. Antibodies:  N-Ras, GAPDH, horseradish 
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peroxidase-conjugated secondary antibodies  were purchased from Santa Cruz 

Biotechnology, (P)-ERK1/2, (P)-AKT, and B-Raf antibodies were purchased from Cell 

Signaling Technologies . Development was done using SuperSignal West Dura Extended 

Duration Substrate (Thermo-Fisher).  

5’ RNA ligand mediated-RACE: was performed as described previously
16

. Briefly, 3 

μg or total RNA was ligated directly to 250ng GeneRacer RNA adapotor (Invitrogen) 

using T4 RNA ligase. Ligation products were reverse transcribed using SuperScriptIII 

(Invitrogen) and an N-Ras gene specific reverse transcription primer. Two rounds of  

PCR were performed using a Bio-Rad MJ Mini personal thermocycler and PCR 

conditions described previously
16

. PCR products were run on a 2% agarose gel and 

stained with 1μg/μl ethidium bromide. PCR products were excised from gel and 

sequenced directly to confirm RACE band identities. 

Flow cytometery: Cell Cycle analysis: Cells were trypsinized and washed twice with 

PBS. Ice cold 70% ethanol was added drop wise while vortexing and allowed to incubate 

at 4
o
C for 30 minutes. Samples were then centrifuged at 1,300 rpm for 10 minutes and the 

ethanol decanted. The samples were then stained with 5 μg/ml propidium iodide at room 

temperature for 30 min. Cy3 uptake studies: Cells were incubated with 200nM Cy3-

siRNA nanoparticles for 60 minutes. Cells were washed with detergent buffer to remove 

unbound complexes and scrapped into tubes for analysis. For both experiments cells were 

analyzed by flow cytometery on a FACScan (BD Biosciences) flow cytometer and data 

analyzed using FlowJo version 8.7 (Tree Star, Inc., Ashland, OR).  

Animal Studies: All animals were treated according to the NIH Guidelines for Animal 

Care and Use as approved by the Caltech Institutional Animal Care and Use Committee. 
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Anti-tumor experiments, 5 million melanoma cells (M202 or M249) were implanted into 

the front flanks of 4 week old NOD/SCID gamma mice (Jackson Laboratory). Treatments 

were initiated when tumors reached ~200mm
3
.  
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Chapter 6: Targeting kidney mesangium by nanoparticles of defined 

size
†
  

6.1 Abstract  

Nanoparticles are being investigated for numerous medical applications, and are showing 

potential as an emerging class of carriers for drug delivery
1, 2

. Investigations on how the 

physicochemical properties (e.g., size, surface charge, shape, and density of targeting 

ligands) of nanoparticles enable their ability to overcome biological barriers and reach 

designated cellular destinations in sufficient amounts to elicit biological efficacy are of 

interest. Despite proven success in nanoparticle accumulation at cellular locations and 

occurrence of downstream therapeutic effects (e.g., target gene inhibition) in a selected 

few organs such as tumor
3
 and liver

4
, reports on effective delivery of engineered 

nanoparticles to other organs still remain scarce. Here, we show that nanoparticles of ca. 

75 +/- 25 nm diameters target the mesangium of the kidney. These data are the first to 

show the effects of particle diameter on targeting the mesangium of the kidney. Since 

many diseases originate from this area of the kidney, our findings establish design criteria 

for constructing nanoparticle-based therapeutics for targeting diseases that involve the 

mesangium of the kidney.  

6.2 Introduction  

Constructing nanoparticles for drug delivery requires knowledge in colloidal science and 

biology, where biological constraints generally dictate the design of nanoparticle 

therapeutics and imaging agents. A celebrated design criterion is the notion of “renal 

clearance”
5, 6

.  That is, nanoparticles will experience rapid clearance by the kidney if they 

                                                      
†
 Reproduced with permission from: C. H. J. Choi, J. E. Zuckerman, P. Webster and M. E. Davis, 

"Targeting kidney mesangium by nanoparticles of defined size," Proc. Nat. Acad. Sci. USA 108, 6656 

(2011). 
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are smaller than ca. 10 nm in diameter. Such clearance originates from the innate function 

of the kidney as a blood filter.  

The structural and functional unit of the kidney, the nephron, consists of the renal 

corpuscle and tubule system. The renal corpuscle contains a tuft of blood capillaries and 

support tissue (the mesangium – Fig. S1) called the glomerulus. A fraction of blood 

plasma entering the glomerulus will pass through the “glomerular filtration apparatus” to 

produce an ultrafiltrate, which will be collected by the tubule system and ultimately be 

processed into urine. The first component is the glomerular endothelium with pores that 

have been reported to be in the range of 80 – 100 nm in diameter
7
. Next, the glomerular 

basement membrane (GBM), a 300 – 350 nm thick basal lamina rich in heparan sulfate
8
 

and charged proteoglycans with an average pore size of 3 nm
9
, filters small molecules by 

size and charge. Behind the GBM lies podocytes, cells with interdigitating foot processes 

that form “filtration slits” of 32 nm width
10

. The glomerular filtration apparatus, taken in 

its entirety, possesses an effective size cutoff of 10 nm, and is responsible for the rapid 

“renal clearance” of small nanoparticles. Many nanoparticle-based contrasting agents for 

in vivo imaging were designed to be smaller than this size cutoff
11, 12

. Prolonged 

residency of nanoparticles in the kidney has been shown to induce toxicity in the form of 

cell shrinkage, due to excessive nanoparticle uptake by renal cells 
13, 14

. Closer 

examination of the renal corpuscle reveals the existence of another intriguing size cutoff 

that would affect the distribution pattern. Within the renal corpuscle, in the absence of 

GBM and podocytes, the sole dividing barrier between the mesangium (mesangial cells 

and extracellular matrix) and the glomerulus is the fenestrated endothelium. Sub-micron 

sized nanoparticles may feasibly diffuse and accumulate indefinitely in the mesangium 
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once they depart from the glomerulus through these pores. Here, we illustrate the size-

dependent delivery of PEGylated gold nanoparticles to the kidney mesangium.  

6.3 Results and Discussion  

6.3.1 Assembly of Aux-PEGy NPs 

Gold-based nanoparticles (AuNPs) were used here for the following reasons. 

They are compatible with multiple imaging methods. As rigid and non-decomposable 

objects, submicron-sized AuNPs larger than ca. 10 nm cannot escape the kidney by renal 

clearance. Unmodified gold nanoparticles of different sizes have zeta potentials (ζ) 

ranging from -19 mV to -28 mV. The measured ζ values are consistent with predictions 

due to classical electrokinetic theory (Fig. S2), and suggest that unmodified AuNPs of all 

sizes share the same surface charge density (σ). Next, to create particles of the same 

surface charge, we exploit the charge screening effect of poly (ethylene glycol) (PEG).  

 

NP Core  (x) PEG(y) HD-water HD-1xPBS ZP t1/2 Ω GTE SI 

 nm  Da nm nm mV h %ID %  

Au5-PEG5000 5.3 ± 0.5 5000 26.2 ± 0.3 24.8 ± 0.5 -8.44 ± 0.85 48.9 0.2± 0.1 0 0 

Au20-PEG5000 21.6 ± 0.2 5000 43.1 ± 0.2 41.4 ± 0.2 -9.62 ± 0.62 31.8 1.2± 0.5 50 + 

Au40-PEG4000 41.2 ± 0.2 4130 59.1 ± 0.3 58.6 ± 0.5 -12.34 ± 1.21 13.8 3.0 ± 0.6 80 ++ 

Au50-PEG5000 51.4 ± 0.2 5000 78.8 ± 0.2 76.5 ± 0.4 -10.91 ± 1.33 13.7 4.6 ± 0.9 100 +++ 

Au60-PEG7000 58.1 ± 0.5 7359 94.6 ± 0.5 96.2 ± 0.2 -12.51 ± 1.24 11.4 1.9 ± 0.4 90 +++ 

Au80-PEG10000 76.5 ± 0.3 10000 127.6 ± 2.1 128.9 ± 0.9 -8.93 ± 0.67 8.7 0.7 ± 0.4 70 ++ 

Au100-PEG20000 98.3 ± 0.3 20000 167.4 ± 9.6 164.3 ± 8.6 -9.76 ± 0.31 6.8 0.5 ± 0.3 60 + 

 

Table 6.1: Physicochemical properties and in vivo characteristics of Aux-PEGy NPs. x = core 

diameter of AuNP; y = chain length of grafted PEG; HD = hydrodynamic diameter; ZP = ζ-

potential in 1 mM KCl; t1/2 = blood half-life; Ω = kidney bulk particle content; GTE = glomerular 

targeting efficiency; SI = staining index (an arbitrary score that ranks both the intensity and 

spread of the silver stain, whereby +++ and 0 are the maximum and minimum values, 

respectively). The table presents in vitro data as average ± s.d. from triplicates of experiments as 

well as in vivo data as average ± s.d. from three animals per particle type. 
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The larger the gold particles, the more negative the surface charge. Thus, to create 

as set of nanoparticles with variable size and relatively constant surface charge would 

require the engraftment of longer PEG chains onto the larger nanoparticles. This concept 

prompted us to use an assortment of PEGylated gold nanoparticles (Aux-PEGy NPs) 

possessing gold particles of different core diameters (x) and PEGs of different chain 

lengths (y) (Table 6.1). The engraftment procedure entailed the use of methoxy-PEG-

thiol (mPEG-SH) molecules whose terminal thiol groups can react with the gold surface 

via the formation of gold-thiol covalent bonds. Careful choice of x and y gave rise to a 

near-constant ζ (roughly -10 mV) for Aux-PEGy NPs of various final hydrodynamic sizes 

(Table 6.1). In general, the engraftment of each additional 2000 molecular weight of PEG 

onto the gold surface translates to an increase in 5 nm of the hydrodynamic diameter of 

Aux-PEGy NPs. This approximate linearity between the PEG corona thickness and chain 

length is consistent with previous predictions for tethered polymer brushes on spherical 

interfaces without pronounced curvature
15

 (Tables S1 and S2). All Aux-PEGy NPs 

showed stability in salt solution after 24 h, with hydrodynamic sizes in phosphate-

buffered saline (PBS) roughly equal to those in water (Table 6.1).  

6.3.2 Blood pharmacokinetics  

Balb/c mice (N = 3) received single i.v. injections of each type of Aux-PEGy NPs 

at the same particle concentration. From each mouse, blood was withdrawn via the 

saphenous vein at various time points to evaluate for gold content using inductively 

coupled plasma mass spectrometry (ICP-MS). With extensive surface engraftment of 

PEG (y ≥ 4000), all particles manifested extended blood circulation with a half-life (t1/2) 
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that spans from 7 h to 38 h. Particle size and t1/2 were inversely correlated (Fig. 6.1A; 

Table S3). The simultaneous increase in x and y led to reduction in t1/2, indicating that 

size-dependent internal clearance, not colloidal stability conferred by PEGylation, played 

a dominant role in determining particle blood circulation.  

6.3.3 Organ level distribution  

Mice were then euthanized 24 h after injection to extract organs for detection of 

bulk gold content using ICP-MS. For all particle sizes, gold content of the six organs plus 

the blood samples collected at three time points summed up to ≥ 70 %ID, thus 

constituting a mass balance that accounts for the destinations of most injected Aux-PEGy 

NPs. Overall, the liver, spleen, and kidney were the main sites of particle accumulation, 

whereas the lung, pancreas, and heart showed negligible (< 0.5 %ID) particle retention 

(Fig. 6.1B; Table S4).  
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Figure 6.1: (A) Blood pharmacokinetics. All Aux-PEGy NPs demonstrated revealed extended 

circulation times in blood. (B) Organ level biodistribution. Bulk particle localization in the liver, 

spleen, and kidney was size dependent. Gold contents are normalized to % injected dose (% ID). 

For all particle sizes, the five named organs plus the blood compartment accounted for at least 70 

%ID of the injected dose. Error bars indicate one s.d. from each Aux-PEGy NP class (N = 3). 

 

At 24 h after dosing, the liver and spleen both showed a positive correlation 

between particle size and degree of particle uptake, in agreement with previous reports 

that the degree of particle phagocytosis by Kupffer cells and spleen macrophages is 

largely size-dependent (the larger the nanoparticles the greater the uptake in the 

reticuloendothelial system (RES))
16

. From Fig. 1, the blood nanoparticle content at 24 h 

appears to correlate with uptake by the RES (increased uptake by the RES is 

accompanied by lower content in the blood (leading to shorter circulation half-life)). 

Lastly and most importantly, the kidney revealed an unexpected size-dependent 
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nanoparticle retention pattern; there exists a particle size (Au50-PEG5000) at which renal 

accumulation was maximal.  

6.3.4 Tissue level renal distribution  

To understand the size-dependent accumulation in the kidney, we prepared “silver 

enhanced” kidney sections to reveal the distribution of Aux-PEGy NPs at the tissue level. 

Gold selectively catalyzes the reduction of silver ions and deposition of metallic silver, 

making nanosized objects embedded in kidney sections visible under light microscopy. 

Within the cortex, most particles resided either near resident phagocytes within 

peritubular capillaries, which intertwine the cortical tubules (proximal convoluted tubules 

and distal convoluted tubules), or inside renal corpuscles.  

Particle accumulation at peritubular capillaries did not show clear correlation with 

size (Fig. S3). However, particle accumulation inside renal corpuscles reveals a strong 

function of size (Fig. 6.2). The smallest particles (Au5-PEG5000) were virtually 

undetectable in the renal corpuscles, but were found in peritubular capillaries (Fig. S4A). 

Au20-PEG5000 nanoparticles merely accumulated in the renal corpuscles and rarely in the 

peritubular capillaries. Only ~50 % of the renal corpuscles contained Au20-PEG5000 NPs, 

and the staining scattered all over the extracellular space (mesangium) outside the 

mesangial cells. The staining intensity appeared mild (Fig. 6.2A).  For Au40-PEG4000 NPs, 

particle staining within the renal corpuscles became more intense. ~80 % of the renal 

corpuscles were stained positive for particles and staining localized closer to mesangial 

cells (Fig. S4B).  
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Figure 6.2: Tissue level distribution in renal corpuscles within the cortex. Representative light 

micrographs of “silver-enhanced” kidney sections demonstrate the extent of glomerular targeting 

by particles. Aux-PEGy NPs accumulated in a size-dependent manner. (A) Au20-PEG5000 NPs were 

detectable in small quantities within renal corpuscles. (B) Au50-PEG5000 NPs displayed most 

intense staining in the largest area of renal corpuscles among all particle sizes. Silver staining 

(dark specks indicated by red arrows) was present in every single renal corpuscle observed under 

the light microscope, resulting in complete glomerular targeting efficiency (GTE). (C) Au100-

PEG20000 NPs only accumulated in the renal corpuscles in minute amounts, presumably due to 

their inability to penetrate through the fenestrated glomerular endothelium. The right column 

(scale bar = 3 μm) illustrates the magnified renal corpuscle (green box) shown in the left column 

(scale bar = 10 μm). Legend: PTC = peritubular capillaries; RC = renal corpuscle; PC = proximal 

convoluted tubule; DC = distal convoluted tubule; U = urinary space. 
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Similar accumulation patterns were apparent for Au50-PEG5000 NPs, except that 

100 % of the renal corpuscles examined under the light microscope were stained positive 

for particles. Closer inspection of each renal corpuscle reveals the most intense silver 

adjacent to mesangial cells throughout the largest area fraction of the renal corpuscles 

among all particle sizes (Fig. 6.2B). Incidentally, this complete glomerular targeting 

efficiency (GTE) matches strongly with the maximal bulk particle content in the kidney 

observed for Au50-PEG5000 NPs. The GTE for Au60-PEG7000 NPs were also close to 

complete (~90 %), and such particles also elicited very intense silver staining near the 

mesangial cells (Fig. S4C).  

Finally, Au80-PEG10000 and Au100-PEG20000 NPs gave a GTE of 60-70 %. Due to 

the catalytic nature of staining, larger Aux-PEGy NPs are expected to produce more silver 

deposition on their periphery. While silver staining can confirm the presence of Aux-

PEGy NPs, the intensity alone does not provide the quantitation of actual particle content. 

Thus, besides the absolute magnitude of intensity, the spread of staining (areal fraction 

covered by silver) within renal corpuscles is also an important measure. We report in 

Table 1 what we denote as the “staining index (SI)”, an arbitrary measure that accounts 

for both intensity and spread of staining. For the highest score (i.e., +++), particles (like 

Au50-PEG5000 NPs) accumulated in the highest areal fraction of the renal corpuscles, and 

also at the highest intensity. Typically, the same particles can achieve a high GTE, 

meaning that they can be found frequently in different renal corpuscles throughout the 

cortex. For the lowest score (i.e., 0), particles (like Au5-PEG5000 NPs) resided in limited 

areas of the renal corpuscles, and usually at undetectable densities. Typically, the same 
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particles can achieve a low GTE, implying their low occurrence in different renal 

corpuscles throughout the cortex. 

For Au80-PEG10000 NPs, silver staining was found in limited regions of renal 

corpuscles, despite their intense staining, yielding an SI score of ++.  The largest 

particles, Au100-PEG20000 NPs, barely occupied a sizeable areal fraction of the renal 

corpuscles, and showed very modest staining, leading to their score of + for the SI. 

Overall, the staining index of the largest nanoparticles (Au80-PEG10000 and Au100-

PEG20000 NPs) was lower than that of Au50-PEG5000 NPs. Taken together, Au80-PEG10000 

and Au100-PEG20000 NPs target 60 -70% of the renal corpuscles, and within each 

corpuscle, a very limited area fraction and moderately intense staining.  

The histological data collectively suggest a size-dependent localization of Aux-

PEGy NPs within renal corpuscles in the kidney cortex. Because such particles do not 

have a constant PEG chain length, one may question whether the distribution of 

nanoparticles in renal corpuscles is PEG-dependent. To address this point, we 

investigated the tissue level in vivo distribution of Au80-PEG5000 NPs (hydrodynamic 

size: 97.1 ± 1.9 nm; zeta potential: -16.77 ± 1.14 mV) in renal corpuscles, noting that 

such particles possess a very similar hydrodynamic size and zeta potential of Au60-

PEG7000 NPs. Histological analysis reveals accumulation of Au80-PEG5000 NPs in the 

renal corpuscles in similar intensity and area as that of Au60-PEG7000 NPs but not Au80-

PEG10000 NPs, supporting that the distribution of nanoparticles in renal corpuscles is size-

dependent.  
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6.3.5 Cellular level renal distribution  

Transmission electron microscopy (TEM) was used to determine the intracellular 

localization patterns of the nanoparticles residing in the renal cortex. In agreement with 

the histological data, particles of all sizes were either engulfed by resident phagocytes or 

remained as isolated entities in circulation inside pertitubular blood capillaries. Particle 

accumulation in peritubular blood capillaries was not size-dependent (Fig. S5). Retention 

of particles in renal corpuscles, however, is a strong function of size (Fig. 6.3). Smaller 

particles (Au20-PEG5000 NPs) entered the mesangium within renal corpuscles in minute 

quantities (Fig. 6.3A). As size increases, Aux-PEGy NPs showed more association with 

mesangial cells. Au50-PEG5000 NPs accumulated in multiple clusters either within 

mesangial cells or in the extracellular matrix outside mesangial cells. The clustering 

density was the most pronounced among all particle sizes, consistent with the histological 

data (Fig. 6.3B). Particles of similar sizes (Au40-PEG4000 and Au60-PEG7000 NPs) also 

demonstrated appreciable particle accumulation in the mesangium (Fig. S6). Larger 

particles (Au80-PEG10000 NPs) only resided at the extracellular space in isolated amounts 

(Fig. 6.3C). The TEM data reveal a size at which particle association with mesangial cells 

was maximal (Au50-PEG5000 NPs). This particular size maximized bulk kidney particle 

content and glomerular targeting. Thus, Au50-PEG5000 represents the particle size that 

maximizes kidney targeting at the organ, tissue, and cellular (mesangium) levels.   

The average pore diameter of the fenestrated glomerular endothelia is reported to 

be 80 – 100 nm, roughly the hydrodynamic size of Au50-PEG5000 and Au60-PEG7000 NPs. 

Particles larger than this size cutoff (Au80-PEG10000 and Au100-PEG20000 NPs) may 

experience steric hindrance when permeating through the pores to enter the mesangium 
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and access the mesangial cells. On the contrary, smaller particles (Au20-PEG5000 and 

Au40-PEG4000 NPs) are freely accessible to the mesangium. Thus, the “size exclusion” 

effect may account for the lower kidney particle content and weaker glomerular targeting 

of the largest particles.  From TEM data, size-dependent uptake occurs solely at 

mesangial cells, which come in two types. The first type is contractile mesangial cells, 

which resemble vascular smooth muscle cells and fibroblasts that regulate surface area 

for glomerular filtration of fluids and mesangial volume.  
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Figure 6.3: Cellular level distribution in renal corpuscles within the cortex. Representative 

transmission electron micrographs demonstrate particle accumulation in the mesangium 

(mesangial cells and extracellular matrix). The right column (scale bar = 500 nm) illustrates the 

magnified portion (black box) shown in the left column (scale bar = 2 μm). Red arrows in the 

right column indicate clusters of Aux-PEGy NPs.  (A) A small portion of Au20-PEG5000 NPs 

localized in mesangial cells within the renal corpuscles. (B) Au50-PEG5000 NPs experienced the 

most prominent uptake by mesangial cells among all particle sizes. (C) Au80-PEG10000 NPs 

deposited in the mesangium in drastically reduced amounts. Legend: RBC = red blood cell; Po = 

podocyte; FP = foot processes of podocytes; GBM = glomerular basement membrane; PC = 

proximal convoluted tubule; U = urinary space; EC = endothelial cell; MC = mesangial cell; Pe = 

parietal layer of Bowman’s capsule. 

 

The second type involves mononuclear resident phagocytes derived from the bone 

marrow
17

. From the ICP-MS data, particle uptake by spleen macrophages and hepatic 

Kupffer cells (both of bone marrow origin) increase with increasing particle size. Below 

the size cutoff in kidney, larger particles (Au50-PEG5000 NPs) can penetrate through the 

endothelial pores, enter the mesangium, and accumulate inside mesangial cells (likely the 

phagocytic type mesangial cells). Smallest particles (Au5-PEG5000 NPs) may transiently 

enter the mesangium, but may not favor prolonged retention due to lack of phagocytosis 

by mesangial cells. The absence of a cellular sink may lead to their low bulk particle 

content. 

This work is the first study to systematically examine in the distribution of 10-150 

nm nanoparticles in the kidney from a systemic injection. From measuring blood 

pharmacokinetics as well as distribution patterns at the organ, tissue, and cellular levels, 

the results suggest that there is an optimal size range (e.g., Au50-PEG5000 NPs) that 

maximizes bulk particle uptake in the kidney, deposition of particles in renal corpuscles 

within the cortex, and uptake of particles by mesangial cells within renal corpuscles. 

When using nanoparticles as cancer therapeutics, accumulations in single digit %ID 

amounts in the tumor can lead to gene inhibition and tumor reduction
18

. Thus, the 
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accumulation of Aux-PEGy NPs (1 – 5 %ID) in the kidney at these amounts may be able 

to impart efficacy with kidney diseases. Moreover, the lack of significant localization 

(0.7 %ID) of larger particles (Au80-PEG10000 NPs; ~ 130 nm in diameter) provides an in 

vivo calibration to the size of the glomerular endothelial pores.  Most reported values for 

this pore size are derived from direct measurements of TEM and SEM images. Sample 

processing for microscopy involves repeated dehydration, and may lead to shrinkage of 

fine cellular features. The pore size reported here (130 nm) depicts the glomerular 

endothelial morphology at physiologically relevant conditions.  

6.4 Materials and Methods  

General Unless otherwise mentioned, all poly (ethylene glycol) (PEG) raw materials 

were purchased from Laysan Bio. All organic solvents were purchased from Sigma. 

Phosphate-buffered saline (PBS) comprises 150 mM NaCl and 50 mM sodium phosphate 

(pH = 7.4).  

Synthesis of mPEG4000-SH and mPEG7000-SH 50 mg of amine-PEG3400-thiol (14.7 

μmol) was reacted with 40.4 mg of methoxy-PEG550-(succinimidyl propionate) (73.5 

μmol) in 50 μL of triethylamine (TEA) and 1.2 mL of anhydrous dichloromethane 

(DCM). The reaction proceeded at RT with stirring for 7 h. The crude mixture was dried 

under vacuuo, and dialyzed against deionized water using a 3 kDa Amicon MWCO 

membrane (Millipore). 15 mg of amine-PEG5000-thiol (3.0 μmol) was reacted with 60 mg 

of methoxy-PEG2000-(succinimidyl valerate) (30.0 μmol) in 50 μL of TEA and 1.2 mL of 

anhydrous DCM. The reaction proceeded at RT with stirring for 16 h. The crude mixture 

was dried under vacuuo, and dialyzed against deionized water using a 30 kDa Amicon 

MWCO membrane (Millipore). The correct fraction (7000 Da) was separated using 
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HPLC using a TSKgel G3000SW column (Tosoh Bioscience). Final molecular weights 

were confirmed by MALDI-TOF.  

Assembly of PEGylated gold nanoparticles (Aux-PEGy NPs) Methoxy-PEG-thiol 

(purchased or synthesized above) of a certain molecular weight (y = 4000, 5000, 7000, 

10000, and 20000), dissolved in deionized water was added to 3 mL of aqueous 

suspension of unconjugated gold colloids (Ted Pella) of a designated core size (x = 5 nm, 

20 nm, 40 nm, 50 nm, 60 nm, 80 nm, and 100 nm) at an excess concentration of ~ 9 PEG 

strands per nm
2
 of gold surface. e.g. To ensure complete coverage, PEGylation of 50 nm 

AuNPs required the addition of 10 μL of 1 mM mPEG5000-thiol (in deionized water) to 

0.5 mL of aqueous suspension of 2.25 ×10
10

 particles. All PEGylation reactions 

proceeded at room temperature for 2 h with constant stirring. To remove any unbound 

methoxy-PEG-thiol, the reaction mixture was dialyzed against deionized water using a 30 

kDa or 100 kDa Amicon MWCO membrane (Millipore) for three times.   

Physicochemical characterization of Aux-PEGy NPs Hydrodynamic diameter (HD) and 

ζ-potential (ZP) of Aux-PEGy NPs were measured using ZetaPals (Brookhaven). For HD 

measurements, the particle pellet was re-suspended in 1.2 mL of deionized water or PBS. 

Reported HDs are average values from 3 runs of 3 minutes each. For ZP analysis, the 

pellet was re-suspended in 1.4 mL of 1 mM KCl. Reported ZPs are average values from 

10 runs each with a target residual of 0.012 measured at a conductance of 320 ± 32 µS. 

Animal experiments For each type of Aux-PEGy NPs, three 9-week, female Balb/c mice 

(Jackson Laboratory) received i.v. injections of particles via the tail vein at a 

concentration of 4.5 × 10
11 

particles per mL, formulated in 120 μL of filtered 5 % glucose 
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in deionized water (D5W). At three consecutive time points after injection (30 min, 4 h, 

and 24 h), 30 μL of mouse blood was drawn from each mouse via its saphenous vein 

using Microvette CB 300 Capillary Blood Collection Tube with EDTA (Sarstedt). Blood 

samples were stored at 4 ºC for future use. After 24 h, mice were euthanized by CO2 

overdose for the collection of the liver, kidney, lung, heart, spleen, and pancreas. All 

organs were fixed in 4 % paraformaldehyde (PFA) in PBS for 3 days.  

ICP-MS Homogenized organs were oxidized in 0.5 mL of acid mixture (70 % HNO3 and 

35 % HCl at a 3:1 volume ratio) in a microwave until they fully dissolved. After adding 

20.5 mL of deionized water, the sample was centrifuged at 3200 x g for 15 min to remove 

cell debris, leaving the supernatant for gold content analysis using HP 4500 ICP-MS 

(Agilent). Nebulization occurred with a flow of 1.3 L/min of argon using a Babbington 

type nebulizer in a pyrex Scott-type spray chamber. The argon plasma power was 1200 

W with a flow of 15 L/min and an auxiliary flow of 1.1 L/min. A calibration curve 

against known concentrations of Aux-PEGy NPs of all sizes was used to measure the gold 

content, using 2.5 % HNO3 and 0.42 % HCl as the blank solvent and tissues from 

uninjected Balb/c mice to account for background organ gold content. Reported values 

are expressed as % of injected dose (%ID). Error bars indicate one s.d. in each mouse 

group (N=3). Each mouse weighed ~ 20 g at the time of experiment, and had a total 

blood volume of 1.6 mL (average mouse volume is 77-80 μL/g).  

Histology with silver enhancement PFA-fixed organs were dehydrated and embedded 

in molten paraffin to generate sections of 4 µm thick. Sections were deparrafinized with 

xylene and rehydrated with a reducing ethanol gradient and rinsed with deionized water 

extensively, dried, and stained for Aux-PEGy NPs using the Silver Enhancement Kit for 
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Light and Electron Microscopy (Ted Pella) in the dark for 20 min at RT. After rinsing 

with running tap water for 2 min to remove excess silver, sections were counter-stained 

with Gill’s 3 hematoxylin and 1 % eosin (in 95 % ethanol) for 40 s each, and then 

mounted with Permount for viewing under an Axioplan 2 light microscope (Zeiss) with a 

40x objective. To estimate the glomerular targeting efficiency (GTE) of particles to renal 

corpuscles from light micrographs, 300 renal corpuscles, selected at random positions 

from 10-15 kidney sections per injected mouse, were inspected visually for the presence 

of silver stains. For the staining index (SI), both the staining intensity and spread of these 

300 renal corpuscles were scored.  

TEM Tissue blocks (~1 mm
3
) were fixed in 2.5 % glutaraldehyde (in 0.1 M sodium 

cacodylate, pH = 7.4) for 2 h, stained by 1 % OsO4 at 4 °C for 2 h, and 0.9 % OsO4 and 

0.3 % K3Fe(CN)6 at 4 °C for 2 h. Gradual dehydration with ethanol and propylene oxide 

enabled tissue embedding in Epon 812 resins (Electron Microscopy Sciences). 80 nm 

thick sections were deposited on carbon and formvar-coated, 200-mesh, nickel grids 

(EMS) and stained with 3 % uranyl acetate and Reynolds lead citrate for visualization 

under a 120 kV BioTwin CM120 TEM (Philips).  
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6.7 Supplemental information for Chapter 6 

 

Appendix I: Structure of the renal corpuscle and mesangium   

 

 

 

Figure S1: Illustrations of the renal corpuscle and the mesangium. (A) This light micrograph 

reveals the typical morphology of the renal cortex. Scale bar = 10 µm. (B) This close-up reveals 

the inner structure of a renal corpuscle. (C) This transmission electron micrograph shows the 

internal structures of the renal corpuscles. Scale bar = 10 µm. (D) This schematic diagram shows 

the relationship between mesangial cells and glomerular capillaries (modified from Sakai and 

Kriz). Legend:  renal corpuscles (RC), distal convoluted tubules (DC), proximal convoluted 

tubules (PC), peritubular capillaries (PTC), red blood cells (RBC), leukocytes (WBC), mesangial 

matrix (MM), mesangial cells (MC), foot processes of podocytes (FP), urinary space (U), 

glomerular capillary space (C), glomerular basement membrane (GBM), and pores (P) of the 

fenestrated endothelium of glomerular capillaries. In panel C, white arrows trace the glomerular 
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basement membrane. In panel D, red arrows indicate the pores between the glomerular capillaries 

and mesangium. If smaller than the pore width, particles can enter the mesangium from the 

glomerular capillaries in the absence of GBM and podocytes as structural barriers. 

Reference:  

Sakai, T. and Kriz, W. The structural relationship between mesangial cells and basement 

membrane of the renal glomerulus. Anat. Embryol. 176, 373-386 (1987). 

Appendix II: Surface charge of unmodified gold nanoparticles  

For any charged sphere of radius R in an electrolyte, its zeta potential (ζ) is given as 

follows: -  

R

R









1
 

 

Above σ, ε, and κ
-1

 are the surface charge density, permittivity constant, and Debye 

length.  

From this equation, ζ of charged gold spheres becomes more negative as R increases, 

consistent with data shown in Table I. For typical ζ measurements in 1 mM KCl at room 

temperature, κ
-1

 is roughly 9.8 nm, a constant independent of R. By curve fitting of the 

measured ζ as a function of R, the dimensionless charge density (σ/ε) is approximately 3. 

This means that unmodified gold surface of all sizes have a constant surface charge 

density.  

 

Figure S2: DLS measurements of ζ of unmodified gold nanoparticle matches reasonably with 

estimates based on Debye-Huckel electrokinetic theory. 
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Appendix III: PEG corona thickness of PEGylated gold nanoparticles  

Based on a previous work by Takae et al, each 20 nm AuNP can anchor 520 PEG chains 

of 6000 Da each. This translates to a PEG grafting density (Σ) of 0.4 PEG/nm
2
.
 
 

The Kuhn length (b) of PEG is 0.7 nm. Thus the dimensionless PEG grafting density (σ*) 

is: -  

 2* b (0.7 nm)
2
 (0.4 PEG/nm

2
) = 0.196  

Hill et al evaluated the grafting density of oligonucleotides on submicron sized AuNPs 

(10-100 nm). If the oligonucleotide density data due to size curvature is applicable to the 

study of PEG grafting, then a rough estimate of PEG grafting density of Aux-PEGy NPs is 

provided below: -  

 

Core Hil et al    

size (x) oligo  PEG PEG - σ*  

(nm) (#oligo/nm^2) (#PEG/nm^2)   

20 1.40E+13 4.00E-01 0.196 Takae et al 

40 8.50E+12 2.43E-01 0.119  

50 8.10E+12 2.31E-01 0.1134  

60 7.80E+12 2.23E-01 0.1092  

80 7.10E+12 2.03E-01 0.0994  

 

Table S1: Rough estimates of PEG grafting density on AuNPs of different sizes. 

 

σ* takes on the value of 0.1-0.2 (for AuNPs above the size of 20 nm), which represents a 

very high grafting density according to Wijman et al. Physically, how high is this 

density?  

According to scaling analysis by deGennes on grafted polymers, the brush conformation 

appears if σ* > N
-6/5

, where N is the number of Kuhn polymer segments. How can we 

estimate N?  

Take Au50-PEG5000 as an example. The MW of each PEG unit is 44 g/mol. The two C-O 

bonds (each 0.145 nm) and C-C bond (0.15 nm) add up to 0.44 nm. The contour length 

(Rmax = Nb) of a fully stretched PEG5000 coil is 5000/44*0.44 nm = 50 nm. If b = 0.7 nm, 

then N = 71.4. Clearly, σ* is greater than N
-6/5

.  Hence, PEG polymer chains fill are 
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overlapping with each other, with their blobs acting as hard spheres and cover the gold 

surface densely. The σ* > N
-6/5

 result is also apparent for all other Aux-PEGy NPs.   

Alternatively, one can calculate the footprint (D) of each PEG chains (separation distance 

between each adjacent PEG chain) on the gold surface, knowing that 4πD
2
 = Σ. For Au50-

PEG5000, D = 2.29 nm, which is shorter than the Flory radius of PEG5000 in a good solvent 

(RF = bN
3/5

 = 9.07 nm). Because RF > D result is also apparent for all other Aux-PEGy 

NPs, the grafted PEG chains all take the “brush conformation” on the gold surface for all 

particle sizes.  

 

MW (g/mol) 4000 5000 7000 10000 

R_max (nm) 40 50 70 100 

N 57.14286 71.42857 100 142.8571 

N^(-6/5) 0.007792 0.005961 0.003981 0.002595 

R_F (nm) 7.930037 9.066115 11.09425 13.74166 

D (nm) 2.289032 2.347735 2.389476 2.504419 

x (nm) 40 50 60 80 

x/2b 28.57143 35.71429 42.85714 57.14286 

 

Table S2: Polymer parameters of grafted PEG on AuNPs. MW: molecular weight; Rmax = bN: 

contour length; N: degree of polymerization (no. of Kuhn segments); RF = bN
3/5

: Flory radius in a 

good solvent; D: separation distance between PEG monomers; x = core size of AuNP. 

On a planar surface, the brush height of tethered PEG corona (H) should scale linearly 

with N (Alexander, de Gennes). Yet on a spherical interface, H ~ N
3/5 

because the chains 

extended away from the surface should be more diffuse compared to those densely 

packed chains near the surface, thus shortening H. Yet, DLS measurements revealed H ~ 

N, not N
3/5

, suggesting that the curvature effect on H is not eminent.  

For σ* ~ 0.1 and using self-consistence-field simulations, Dan et al showed that the 

curvature effect becomes less important, and that H will approach the planar limit of (H ~ 

N) when x/2b >100. For Aux-PEGy NPs at hand, their values of x/2b mainly lie in the 

range of 28-57, so H ~N
0.9

 according to simulation results by Dan et al. This explains the 

observed “linearity” between H and N even on spherical particles. 
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Appendix IV: Tissue level accumulation of PEG-AuNPs in peritubular capillaries 

 

 

Figure S3: The deposition of PEGylated gold nanoparticles in the renal cortex excluding renal 

corpuscles is not a function of particle size. Typically, particles are located adjacent to peritubular 

capillaries or in the connective tissue space between adjacent convoluted tubule cells. 
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Appendix V: Tissue level accumulation of PEG-AuNPs in renal corpuscles  

 

 

 

Figure S4: The deposition of PEGylated gold nanoparticles in renal corpuscles is a strong 

function of particle size. The right column illustrates the magnified portion (green box) of the left 

column. (A) Smallest particles (Au5-PEG5K) showed undetectable staining. (B, C) Middle-sized 

particles (Au40-PEG4K and Au60-PEG7K) showed most intense silver staining near the mesangial 

cells throughout the entire renal corpuscle. (D) Larger particles (Au80-PEG10K) showed intense 

staining, but at a reduced areal fraction of the renal corpuscles. Scale bar = 10 µm.  
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Appendix VI: Cellular level accumulation of PEG-AuNPs in peritubular capillaries 

 

 

 

Figure S5: The deposition of Aux-PEGy NPs in the renal cortex excluding renal corpuscles is not 

a function of particle size. Particles are located adjacent to peritubular capillaries or in the 

connective tissue space between convoluted tubule cells. Images shown in the 2
nd

 column (scale 

bar = 500 nm) are magnified versions of those shown in the 1
st
 column (scale bar = 2 μm). 
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Appendix VII: Cellular level accumulation of PEG-AuNPs in renal corpuscles  

 

 

 

Figure S6: The deposition of Aux-PEGy NPs in the renal corpuscles is size-dependent. Middle-

sized particles (Au40-PEG4K and Au60-PEG7K) accumulated within mesangial cells or in the 

mesangium as individual entities at the maximal amount. Images shown in the 2
nd

 column (scale 

bar = 500 nm) are magnified versions of those shown in the 1
st
 column (scale bar = 2 μm). 
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Chapter 7: Polycation-siRNA nanoparticles can disassemble at the 

kidney glomerular basement membrane
3
  

7.1 Abstract: 

Despite being engineered to avoid renal clearance, many cationic polymer 

(polycation)-based siRNA nanoparticles that are used for systemic delivery are rapidly 

eliminated from the circulation. Here, we show that a component of the renal filtration 

barrier – the glomerular basement membrane (GBM) – can disassemble cationic 

cyclodextrin-containing polymer (CDP)-based siRNA nanoparticles and thereby facilitate 

their rapid elimination from circulation. Using confocal and electron microscopies, 

positron emission tomography (PET) and compartment modeling, we demonstrate that 

siRNA nanoparticles, but not free siRNA, accumulate and disassemble in the GBM. We 

also confirm that the siRNA nanoparticles do not disassemble in blood plasma in vitro 

and in vivo. This hitherto unrealized clearance mechanism may affect any nanoparticles 

that assemble primarily by electrostatic interactions between cationic delivery 

components and anionic nucleic acids (or other therapeutic entities).  

7.2 Introduction: 

A major challenge with the use of small interfering RNA (siRNA) in mammals is 

their delivery to intracellular locations in specific tissues(1). The two most investigated 

approaches to siRNA delivery involve the combination of siRNA with cationic lipids 

(lipoplexes, liposomes, micelles) or cationic polymers (polyplexes)(2). Polymer-based 

siRNA delivery vehicles can be tuned to be non-immunogenic, non-oncogenic, non-toxic 

and targeted(3). A targeted nanoparticle formulation of siRNA (not chemically modified) 

                                                      
3
 Reproduced with permission from: Jonathan E. Zuckerman, Chung Hang J. Choi, Han Han, Mark E. 

Davis, “Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane“ 

Proc. Nat. Acad. Sci. USA 109, 3137 (2012). 
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with a cationic, cyclodextrin-containing polymer (CDP)-based delivery vehicle (clinical 

version denoted CALAA-01) was shown to accumulate in human tumors and deliver 

functional siRNA from a systemic, intravenous (i.v.) infusion (4). This first-in-human 

study demonstrated the clinical potential for cationic polymer-based siRNA delivery 

systems.  

Like most cationic polymer based siRNA delivery systems (5-9), the siRNA/CDP 

nanoparticle is rapidly eliminated from circulation (shown in mice, monkeys and 

humans) (10-12). In fact, polymer complexation often does not extend the circulation 

time of siRNA. The rapid clearance of these siRNA nanoparticles is puzzling because 

they are engineered to be above the size cutoff for single-pass clearance via renal 

filtration (13). In understanding the mechanism behind the rapid clearance of this type of 

cancer therapeutic, we can efficiently seek ways to increase their circulation time and 

thus enhance their anticancer efficacy (3). 

We hypothesize that the paradoxical renal clearance of polycation-nucleic acid 

nanoparticles results from their binding and disassembly by components of the renal 

filtration barrier. Three key properties of such nanoparticles (diameters between10 and 

100nm, positive zeta potentials, and electrostatically driven self-assembly) make them 

susceptible to this mechanism of clearance.  

The renal filtration barrier, located within the glomerulus of the nephron consists 

of three layers that must be traversed to enter the urinary space. These three layers are the 

glomerular endothelial fenestrations (ca.100 nm )(14), the glomerular basement 

membrane (GBM), a 300 nm thick connective tissue membrane rich in heparan 

sulfate(15) (pore size of 3 nm)(16) and the podocyte filtration slits  (ca. 32 nm)(17). The 
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renal filtration barrier, in its entirety, possesses an effective size cutoff of ca. 10 nm, and 

is known to facilitate the rapid renal clearance of small molecules drugs and free siRNA.  

Gold nanoparticles of up to 130 nm in size can cross the fenestrated glomerular 

endothelium but not the GBM(14). Therefore, we believe that siRNA nanoparticles of 

diameters of ca. 100 nm in circulation can access the GBM and preferentially deposit 

there due to their positive surface charge. Once in the GBM, they are disassembled by the 

abundant negatively charged proteoglycans (e.g., heparan sulfate) present that structurally 

mimic the polyanionic charge of nucleic acids. After disassembly, their components are 

small enough to cross into the urinary space.  

To test this hypothesis, we first demonstrate that siRNA nanoparticles do not 

disassemble in circulation. We then examine the distribution of siRNA nanoparticles in 

the kidney via microscopy methods and confirm that siRNA nanoparticle deposit and 

disassemble in the GBM. Finally, we analyze the kinetics of kidney transit by positron 

emission tomography (PET) studies and model the dynamic PET data using insights 

derived from our kidney imaging experiments.  The combination of these studies 

provides conclusive evidence to support our hypothesis.  

7.3 Results:  

7.3.1 Nanoparticle components remain assembled in vivo and will assemble when 

administered separately in vivo.  

The siRNA and polymer components of the nanoparticle (CDP/AD-PEG) assemble via 

electrostatic interactions into spherical 60-100 nm nanoparticles (Figs. 7.1a-c) with an 

average zeta potential of 10.6 ± 1.5 mV.  
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Figure 7.1: Characterization of siRNA nanoparticles. (a) siRNA nanoparticles assemble due to 

electrostatic interactions between the cationic cyclodextrin containing polymer and the anionic 

siRNA. PEG provides steric stabilization and is bound to the particles via inclusion complex 

formation between its terminal adamantane (AD) modification and the cyclodextrin cup of the 

CDP. (b) Cryo-TEM images of siRNA nanoparticles revealed sub-100 nm spherical objects, scale 

bars = 100nm. (c) Nanoparticle tracking analysis of siRNA nanoparticle sizes and zeta potentials 

(Error bars represent standard deviation of 3 measurements, n=3) 

 

Gel mobility shift assays were used to determine siRNA/CDP association in 

plasma (Fig. 7.2a). In these assays the siRNA component of the nanoparticle is detected 

via ethidium bromide staining.  Free siRNA present in a sample will migrate down the 

gel towards the anode. siRNA assembled within nanoparticles remains in the well or 

moves up towards the cathode. When incubated with 95% mouse plasma the free siRNA 

band is broadened and migrates slower compared to siRNA in water, likely due to 

general electrostatic interaction with positive plasma components. siRNA has been 

shown to have a half-life of 1.2 hours in 90% mouse plasma(18); therefore, all analysis 
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from animal plasma were performed within 1 hour of plasma collection to ensure that 

free siRNA present in the plasma sample could be visualized.   

We first determined if siRNA is released from the nanoparticles in circulation. 

Gel mobility shift assays on plasma from mice receiving injections of siRNA 

nanoparticles demonstrate that all of the siRNA in the samples was present in the well or 

migrated up towards the cathode with no evidence of free siRNA traveling towards the 

anode. These data suggest that the siRNA component of the nanoparticles is not displaced 

from the polymeric delivery components in vivo.   

Furthermore, we determined if the individual components of the nanoparticles, 

siRNA and polymers, could assemble in vivo. In these experiments, free siRNA was 

administered then one minute later CDP/AD-PEG polymers were added. Plasma was 

collected one minute later. Plasma from mice receiving these sequential injections of 

individual nanoparticle components was analyzed.  All of the siRNA in these samples 

remained in the well or traveled up towards the cathode, indicating its association with 

polymers. These results demonstrate that not only is the siRNA component of the 

nanoparticle not displaced from the polymer components, but that siRNA and polymer 

components will self-assemble in circulation.  

Next, we confirmed that injection of free siRNA or polymer components alone 

could not result in nanoparticle like bands on the gel. Analysis of plasma from animals 

receiving only siRNA demonstrated siRNA migrating down the gel towards the anode, 

confirming that free siRNA can be detected by the assay. Polymer components injected 

alone yielded no bands on the gel (except the non-specific background band always 

present in plasma samples). These data confirm that the gel bands present in nanoparticle 
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samples do not result from the association of siRNA or polymers with plasma 

components.  

 

Figure 7.2: Nanoparticle components remained associated and assembled in vivo but were 

disassembled by heparan sulfate. (a-c) Gel mobility shift assays demonstrated siRNA/CDP 

association. Free siRNA will migrate down the gel towards the anode, whereas siRNA/CDP 

nanoparticles remain in the wells or migrated towards the cathode. (a) In vitro siRNA 

formulations were formulated as indicated (formulated nanoparticles = siRNA+AD-PEG/CDP in 

H2O) and incubated at 37°C for 15 min. Plasma samples: Formulated nanoparticles = plasma 

from animals 3 min after injection of formulated siRNA+AD-PEG/CDP nanoparticles. Sequential 

injection of components = plasma from animals where free siRNA was injected and then 1 

minute later  CDP/AD-PEG were injected, plasma collected at 3 min after the first injection. 

siRNA or CDP only = plasma collected from animals 3 min after receiving injection of only 

siRNA or AD-PEG/CDP. Disassembled nanoparticles = plasma from animals where formulated 

siRNA nanoparticles were injected and then 1 min later an excess of ~6kb plasmid DNA was 

injected, plasma was collected  at 3 min after the first injection. All duplicate lanes are from 

independent animals. (b) Plasma samples from animals receiving formulated siRNA 

nanoparticles taken at the indicated time point after injection. (c) Gel mobility shift assays of 

siRNA nanoparticles in increasing amounts of heparan sulfate in 50% mouse plasma. All plasma 

containing samples have a band of background staining that migrates at ~5kb as indicated in the 

figure. 
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Finally, we induced nanoparticle disassembly in vivo to demonstrate that 

disassembled nanoparticles can be visualized via gel mobility shift assay. In vitro, we 

demonstrated that plasmid DNA could rapidly displaced siRNA from the nanoparticles 

by competitively binding to the positively charged polymer nanoparticle components 

(Supplementary Fig. S1). We hypothesized that injection of plasmid DNA one minute 

after siRNA nanoparticle administration would induce nanoparticle disassembly in vivo 

and that free siRNA could be detected in these samples. Analysis of plasma from mice 

receiving sequential injections of siRNA nanoparticles and plasmid DNA confirmed our 

hypothesis. In these samples, the siRNA component of the nanoparticle was found to 

migrate down the gel towards the anode. These data demonstrate that disassembled 

nanoparticles can be detected via the gel mobility shift assays. Furthermore, they support 

our previous conclusion that siRNA is not displaced from the polymer in vivo by plasma 

components. Additionally, these data suggest that CDP can also self-assemble with 

plasmid DNA in vivo. 

Gel mobility shift analysis on plasma samples taken at multiple time points after 

dosing of siRNA nanoparticles revealed siRNA remaining in the well for all time points 

(Fig. 2b). These data indicate that siRNA nanoparticles remain assembled over the entire 

circulation time of the particle. 

Additionally, Oney et al. have demonstrated that upon injection, the CDP can 

bind and completely neutralize the anticoagulant activity of i.v. doses of RNA aptamers 

targeting the coagulation factors IXa and Xa, suggesting that CDPs are capable of 

scavenging all free circulating RNA from plasma(19). Taken together, these data strongly 
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suggest that rapid clearance of these siRNA nanoparticles is not from the result of 

disassembly in plasma.  

7.3.2 Heparan sulfate (HS) disassembled siRNA nanoparticle in vitro.  

HS is a major constituent of the GBM and is responsible for its negative charge (15). HS 

is known to disassemble nucleic acid-containing, cationic polymer polyplexes(20). We 

confirmed that HS (extracted from bovine kidney) did release siRNA from the 

nanoparticle at charge ratios (HS/CDP) above 0.8 -/+ in 50% mouse plasma, whereas 

plasma alone could not (Fig. 7.2c). The amount of HS per mouse glomerulus is ca. 2.5ug 

(estimated from(21, 22)) and 2500ug per kidney (c.a. 10,000 glomeruli(23)), a feasibly 

sufficient amount of HS to disassemble a single 10 mg/kg injection of siRNA 

nanoparticles (250ug for a 25g mouse).  

7.3.3 Dynamic PET data revealed differences in kidney transit for siRNA 

nanoparticles and free siRNA.  

We employed PET to track the dynamic, whole-body distribution of Cu
64

-DOTA labeled 

siRNA in mice, and showed that siRNA in both free and nanoparticle forms demonstrated 

identical plasma half-lives as well as rapid clearance to the bladder(10). The only 

significant difference was in kidney transit: Compared to free siRNA, siRNA 

nanoparticles revealed delayed peak and increase in bulk kidney signal, as well as 

delayed transit from the kidney to the bladder for the siRNA nanoparticles (Fig. 7.3 a,b). 

The results from the dynamic PET data lead us to hypothesize that siRNA nanoparticles, 

but not free siRNA, transiently accumulate in the kidney before passing to the bladder. 
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7.3.4 siRNA nanoparticles but not-free siRNA transiently accumulated in mouse 

glomeruli following i.v. administration. 

 We hypothesized that the transient accumulation of the siRNA nanoparticles in the 

kidney suggested by our PET studies occurs in the glomerulus. We tested this hypothesis 

using confocal microscopy to examine the distribution of free siRNA and siRNA 

nanoparticles in kidney during clearance. Greater than 90% of the administered 

nanoparticles have been shown to clear from circulation within 10 minutes and nearly 

completely by 30 minutes (10). Therefore, we examined the distribution of siRNA 

nanoparticles in the kidney at time points between 3 and 30 minutes following i.v. 

injection. siRNA nanoparticles were formulated with 80% fluorescently labeled siRNA 

(Cy3). Formulation of nanoparticles with 80% Cy3-siRNA did not alter the size, charge 

or stability of the nanoparticles. 
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Figure 7.3: Real-time PET imaging and compartment model of GBM induced disassembly of 

siRNA nanoparticles. (a) Images of PET signal from kidneys and bladder of mice receiving free 

and nanoparticle formulated 
64

Cu-DOTA labeled siRNA (Data adapted from ref. 10). (b) 

Quantification of kidney, blood, and bladder 
64

Cu-DOTA labeled siRNA intensities from PET 

studies (Error bars = standard deviation, free siRNA n=4, siRNA nanoparticles (NPs), n=5). (c) 

Computed results from compartment model of PET data for free siRNA (red) and siRNA 

nanoparticles (black). 

 

Following administration of free Cy3-labled siRNA, fluorescence signal was 

observed to accumulate in renal tubules. The fluorescence signal in tubules increased 

until 10 minutes and then plateaued (Fig. 7.4a). No evidence for glomerular localization 

of Cy3-siRNA was observed in these animals at any time point. These observations are 

consistent with previous observations of free siRNA uptake by proximal tubule cells (24).  



 154 

 

Figure 7.4: siRNA nanoparticles, but not free siRNA, transiently accumulate in glomeruli 

following i.v. administration. Time course of confocal microcopy images of kidneys extracted 

from mice receiving: (a) free Cy3-labeled siRNA, (b) Cy3-labled siRNA nanoparticles or (c) no 

treatment. Higher magnification images of glomeruli from 6 min (d) and 10 min (e) time points. 

White arrows indicate glomeruli positions, blue arrows indicate areas of tubular Cy3-signal 

accumulation, yellow arrows indicate cy3-fluorescence in peri-tubule vasculature lining. 

 

In striking comparison, strong Cy3 fluorescence signal localized to glomeruli was 

observed following administration of siRNA nanoparticles (Fig. 4b). This glomeruluar 
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siRNA signal was observed first at 6 minutes post injection of the nanoparticles in ca. 

75% of glomeruli inspected. Close inspection of the glomeruli (Fig. 7.4d,e) revealed Cy3 

fluorescence localized to circular patterns that coincide with the lining the glomerular 

capillary walls (determined by position of red blood cells in the bright field image). 

These data demonstrate that the siRNA nanoparticles, but not free siRNA, accumulate in 

the glomerular capillary walls (the site of the GBM).  

The glomerular siRNA nanoparticle Cy3 fluorescence intensity reached a 

maximum at 10 minutes followed by attenuation at 15 minutes and 30 minutes. 

Observable glomeruli with fluorescent signal also decreased markedly at 15 minutes and 

were rarely detected at 30 minutes. These data indicate that siRNA nanoparticles only 

transiently accumulated within the glomerular capillary walls and ultimately exit the 

glomerulus. Visual examination of urine following nanoparticle administration revealed 

the highest Cy3 intensity at and after 10 minutes post injection (Supplementary Fig. S2a), 

consistent with the assertion that siRNA accumulated in the glomerulus rapidly ends up 

in the urine, although Cy3 intensity in urine is similar following free siRNA 

administration (Supplementary Fig. S2b). Additionally, Cy3 was not readily cleaved from 

the siRNA molecule after 30 minutes in plasma (Supplementary Fig. S2d), indicating that 

any observed Cy3 fluorescence signals represents distribution of siRNA and not free 

Cy3.  

Less Cy3 fluorescence was detected in tubules following siRNA nanoparticles 

administration than what was observed following free siRNA administration. These data 

suggest that the concentration of siRNA within the tubule lumen during clearance of the 

siRNA nanoparticles was consistently less than the concentration of siRNA when free 
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siRNA was administered, despite the fact that the both entities are clear from circulation 

at the same rate. These results support the notion that the renal filtration barrier is 

impeding the delivery of siRNA into the tubule system, preventing the higher 

concentrations required to drive higher levels of proximal tubule cell uptake.  

7.3.5 Nanoparticles deposit and disassemble at the kidney GBM.  

The confocal microscopy data demonstrated that the siRNA nanoparticles were 

accumulating in the lining of the glomerular vasculature. We employed TEM to confirm 

that the siRNA signal in these locations resulted from siRNA in nanoparticle form 

accumulating specifically at the GBM (Fig. 7.5). We examined kidney tissue from mice 

10 minutes after receiving free siRNA or siRNA nanoparticles because at this time point 

we observed maximal glomerular siRNA signals in both PET and confocal microscopy 

studies. We used uranyl acetate to detect the presence of nucleic acid nanoparticles in 

tissue sections because it preferentially binds to nucleic acids including the siRNA within 

the nanoparticles (4, 20).   

TEM analysis of kidney tissue following administration of free siRNA revealed 

typical appearing glomeruli. No darkly staining, globular structures indicative of 

nanoparticle morphology were observed within or near the GBM or any other structures 

in the kidney (Fig. 7.5a).  

TEM analysis of kidney tissue following administration of siRNA nanoparticles 

revealed abundant, darkly staining, globular objects lining and within all visible GBMs, 

with sizes and shapes consistent with those of siRNA nanoparticles (Figs. 5b-d). Most 

objects were localized to the lamina rara interna with some of the smaller objects 

localized to the limina rara externa, both are locations of anionic sites within the 
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GBM(25). Additionally, some objects were observed within the glomerular endothelial 

fenestrations. No objects of this morphology were observed in the urinary space. The 

localization of the siRNA nanoparticles observed here matches the high intensity siRNA 

fluorescent signals along the glomerular capillary walls (site of the GBM) seen in the 

confocal microscopy studies. These data demonstrate that intact nanoparticles in 

circulation transit through the glomerular endothelial fenestrations and deposit within the 

GBM. Moreover, the absence of nanoparticles in the urinary space suggests that intact 

siRNA nanoparticles cannot cross the podocyte filtration slits of the renal filtration 

barrier.   

 

Figure 7.5: Nanoparticles accumulate and disassemble at the kidney glomerular basement 

membrane. (a) Image of GBM from an animal receiving only free siRNA. (b) Low magnification 

EM image of glomerular capillaries from a mouse 10 minutes after i.v. administration of siRNA 
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nanoparticles. (e,d) Higher magnification images of the GBM regions of these glomerular 

capillaries. BM=Basement membrane, E=Endothelial cell, FB=Filtration barrier, M=Mesangium, 

(I/D)-NP = (Intact/disassembling) nanoparticle, P=podoyctes, PC=peritubule capillary, 

PF=podocyte foot process, R=Erythrocyte, U=Urinary space. 

   

Close inspection of these objects within the GBM revealed a subset of nanoparticle sized 

objects with irregular borders and heterogeneous staining intensity (Fig. 7.5c,d). The 

objects appeared to have lost their regularity and staining intensity in regions more 

closely associated with the GBM, implying the loss of some of their nucleic acid content 

compared to the uniform staining of intact siRNA nanoparticles. These data suggest that, 

upon GBM association, siRNA can be dissociated from the nanoparticle, i.e. nanoparticle 

disassembly was occurring at the GBM. Because there is no evidence for intact 

nanoparticles in the urinary space, these also data support our hypothesis that the 

transient nature of the GBM accumulation of siRNA nanoparticles observed in the 

confocal microscopy study stems from their disassembly at the GBM.  

Some larger, darkly staining objects were also found within the endothelial cells 

lining the peri-tubule capillaries following siRNA nanoparticle treatment (Supplementary 

Figs. S3a, b), consistent in morphology with unpackaging nanoparticles within 

endosomes (20). These data are consistent with the results from our confocal microscopy 

study, where we observed some non-glomerular renal vessels with appreciable 

fluorescence signal in their walls in tissue from mice receiving siRNA nanoparticle 

treatment.  Renal peri-tubule endothelial cell uptake of pegylated gold nanoparticles has 

been previously observed (14) and may be a generalized phenomenon for nanoparticle 

systems.   
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7.3.6 Compartment modeling of kidney transit revealed how siRNA nanoparticle 

accumulation and disassembly at the GBM could yield the kinetics observed in the 

PET experiments.  

Because non-invasive, real-time monitoring of siRNA nanoparticle behavior at the 

microscopic level was not possible, we developed a mathematical compartment model of 

kidney transit to correlate our microscopic observations with the bulk kidney signal from 

the dynamic PET experiments (Figure 7.3c, Supplementary text).  

 Kinetic parameters for a model describing the transit of free siRNA through the 

kidney were derived from anatomic properties of the kidney, and by fitting the PET data 

for free siRNA (“free siRNA model”). Based on our imaging data, two additional 

expressions were incorporated into the free siRNA model to create the “siRNA 

nanoparticle model”: (1) an expression to model the binding and disassembly of the 

nanoparticles within the GBM, and (2) an expression for peri-tubule endothelial cell 

uptake. All parameter values were fixed to those derived in the free siRNA model, except 

those pertaining to the two nanoparticle specific expressions (e.g., binding constant of 

nanoparticle on the GBM and rate of disassembly of nanoparticle) that were determined 

by fitting the PET data for siRNA nanoparticles. Assimilation of these two expressions 

into the nanoparticle model allowed us to model the key differences in the PET 

pharmacokinetics data between free siRNA and siRNA nanoparticles as they pass 

through the kidney – the delayed bladder accumulation, delayed peak kidney 

accumulation, and persistent kidney signal for the siRNA nanoparticle experiments.  
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Figure 7.6: Schematic of siRNA nanoparticle deposition and disassembly in the GBM with key 

modeling expressions highlighted. Nanoparticles cross through fenestrations in the glomerular 

endothelial cell lining and enter the GBM. Within the GBM, the nanoparticles are disassembled 

by the abundant heparan sulfate molecules. Once disassembled, the nanoparticle components can 

cross the remainder of the GBM and the podocyte filtration slits and enter the urinary space. 

 

Kinetic parametric sensitivity analyses of both models confirmed that both GBM 

and endothelial cell expressions of the nanoparticle model are required to reproduce the 

observed kidney dynamics of siRNA nanoparticles in the PET data. No arbitrary choice 

of parameters in the free siRNA model could delay the peak kidney accumulation to fit 

the nanoparticle PET data, except through the addition of the expression for GBM 

binding and disassembly in the nanoparticle model. Therefore, mathematical 

compartment modeling demonstrate that the glomerular accumulation and disassembly of 

the siRNA nanoparticles revealed by imaging data (confocal and TEM) could be 

responsible for the dynamics observed in our PET experiments. Additionally, this 

analysis suggests that siRNA dissociated from nanoparticles in circulation could not 

recapitulate the dynamics observed in the kidney.  
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7.4 Discussion:  

Here, we have elucidated a new mechanism of nanoparticle disassembly in vivo 

(Fig. 7.6). We have demonstrated siRNA/CDP nanoparticles remain assembled and that 

their individual components can even self-assemble in circulation. Moreover, using 

microscopy, we have conclusively demonstrated that siRNA/CDP nanoparticles 

transiently accumulate in and can be disassembled by the GBM. Finally, using 

compartment modeling, we illustrated how our microscopic observation of GBM 

accumulation and disassembly could feasibly result in the bulk dynamics observed by 

PET, whereas disassembly in circulation could not.  

To date, the rapid clearance of siRNA-cationic polymer nanoparticles has been 

ascribed to instability in circulation and reticuloendothelial system uptake (5-7, 9, 10) . 

Extracellular matrix mediated disruption of cationic nucleic acid polyplexes within liver 

sinusoids has also been reported (26). While, our findings do not exclude these alternate 

explanations for other nanoparticle delivery systems, they reveal another clearance 

mechanism applicable to a general class of nanoparticles with the following 

characteristics:  (1) ca. 100 nm or smaller in hydrodynamic radius, (2) positive in zeta 

potential and, (3) held together primarily by electrostatic interaction. 

Since the siRNA nanoparticles presented here not only remain assembled in 

plasma, but their individual components self-assemble in vivo, it is unlikely that the 

components of the nanoparticle prefer to exist freely in circulation. These data also 

suggest that even if the nanoparticles were disassembled at other locations in the body, 

the individual components would reassemble in circulation. Thus, only nanoparticle 

disassembly at that GBM would allow transit of the nanoparticle components into the 
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urine. In fact, the siRNA nanoparticle components are found to be mostly assembled in 

urine after excretion (Supplementary Fig. S2c) suggesting that particles re-form in the 

urine after GBM disassembly and filtration.  

 Therefore, GBM mediated nanoparticle disassembly is responsible for the rapid 

clearance of the siRNA/CDP nanoparticles. This phenomenon is likely generalizable to 

most cationic polymer based nucleic acid delivery systems, or any other delivery vehicles 

that self-assemble due to electrostatic interactions. For example, 93 nm DNA/PEI 

polyplexes have been observed to filter through the GBM following direct injection into 

the renal artery (27) and both Cationic polymers alone (28) as well as positively charged 

ferritin nanoparticles (29) have been shown to bind to the GBM after i.v. injection.  

Avoiding GBM disassembly will be a key design criterion for future nucleic acid 

delivery vehicles as well as other nanoparticle systems assembled via electrostatic 

interactions. Future nanoparticle therapeutic development could be facilitated via heparan 

sulfate stability studies during design. Furthermore, creation of particles with negative 

zeta potentials may allow avoidance of the GBM due to charge repulsion. Our study of 

20-170 nm negatively charged PEGylated gold particles did not reveal any particle 

deposition in the GBM for nanoparticles of any size (14). Finally, this mechanism of 

clearance could be utilized to tune the pharmacokinetics of nanoparticles based on their 

stability to heparan sulfate disassembly, thereby providing a convenient mechanism for 

more rapid clearance, when desirable, for particles larger than 10 nm such as imaging 

agents.  
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7.5 Materials and Methods 

siRNA nanoparticle formulation: siRNA nanoparticles were formed by using 

cyclodextrin-containing polycations (CDP) and AD-PEG as described in ref. 27 (pre-

complexation). Nanoparticles were formed in 5 % glucose in deionized water (D5W) at a 

charge ratio of 3 +/- and a siRNA concentration of 2 mg/ml unless otherwise indicated. 

Some experiments presented here (NTA, TEM, PET, stability assays) were performed 

with particles formulated with less than 1mol percent AD-PEG modified with a terminal 

transferrin targeting ligand. No discernible differences in size, charge, pharmacokinetics, 

and behavior at the kidney have been observed between particles formulated with or 

without AD-PEG-Tf(10, 30). 21 base pair unmodified and Cy3 labeled siRNA was 

purchased from Qiagen.  

Nanoparticle tracking analysis (NTA): NTA measurements were performed with a 

NanoSight NS500 (NanoSight), equipped with a 405-nm laser. All measurements were 

performed at room temperature. The software used for capturing and analyzing the data 

was NTA 2.0. For measurements the samples were measured for 30 s with manual shutter 

and gain adjustments. Three measurements of the same sample, advancing the sample 20-

50ul between measurements, were collected. The error bars displayed on the NTA graphs 

were the standard deviation of the three measurements. 

Nanoparticle stability assays: Formulated siRNA nanoparticles were incubated with the 

indicated amount of mouse plasma (collected from Balb/c mice) and/or heparan sulfate 

isolated from bovine kidney (Sigma) for 15 minutes at 37°C. 1µg of each sample was 
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loaded into each well of a 1% agarose gel and voltage was applied for 20-30 minutes. 

Visualization was achieved via ethidium bromide staining (Sigma).  

Animal Studies: All animals were treated according to the NIH Guidelines for Animal 

Care and Use as approved by the Caltech Institutional Animal Care and Use Committee. 

6 to 9-week old, female Balb/c mice (Jackson Laboratory) received i.v. doses of 10 

mg/kg siRNA nanoparticles in D5W. Mice were euthanized by CO2 overdose for organ 

collection at indicated time points. All organs were fixed in 4 % paraformaldehyde (PFA) 

in PBS for 3 days. For confocal imaging, nanoparticle formulations contain 80% Cy3-

siGL3.  

In vivo siRNA/CDP assembly/disassembly assays:  Experiment 1: Free siRNA was 

injected at 10 mg/kg dose via tail vein. Experiment 2: siRNA nanoparticles were injected 

at 10mg/kg via tail vein. Experiment 3: Free siRNA was injected at 10 mg/kg, 1 minute 

later CDP/AD-PEG components were injected at a 3 +/- charge ratio of the injected 

siRNA. Experiment 4: CDP/AD-PEG was injected at nanoparticle equivalent 

concentration. Experiment 5: siRNA nanoparticles were injected at 2.5 mg/kg, 1 minute 

later 10mg/kg plasmid DNA was injected. Blood collection for all 3 experiments was 

performed via saphenous vein bleed 3 minutes after the first injection and collected using 

Microvette CB 300 Capillary Blood Collection Tube with EDTA (Sarstedt). Samples 

were centrifuged for 15 minutes at 1,300xg and the plasma supernatant loaded onto a 1% 

agarose gel for analysis. All samples were processed within a 1 hour of collection. 

Cryo-electron microscopy: Samples were vitrified using an automated climate-

controlled plunge-freezer (Vitrobot, FEI). Briefly, glow discharged Quantifoil holey 

carbon grids (SPI Supplies) were loaded into the chamber of the Vitrobot and 5ul of 
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samples were applied. Grids were blotted for 1s and drained for 1s before being plunged 

into the center of a Vitrobot cup filled with liquid ethane, they were then quickly 

transferred into the outer ring of the cup containing liquid nitrogen. The grids were stored 

under liquid nitrogen for later analysis.  Samples were visualized in Techni T12 Cryo-

electron microscope (FEI) equipped with a cryo-specimen holder. Acceleration voltage 

was set at 120kV. 

Transmission electron microcopy: Tissue blocks (~1 mm
3
) were fixed in 2.5 % 

glutaraldehyde (in 0.1 M sodium cacodylate, pH = 7.4) for 2 h, stained by 1 % OsO4 at 4 

°C for 2 h, and 0.9 % OsO4 and 0.3 % K4Fe(CN)6 at 4 °C for 2 h. Gradual dehydration 

with ethanol and propylene oxide enabled tissue embedding in Epon 812 resins (Electron 

Microscopy Sciences). 80 nm thick sections were deposited on carbon and formvar-

coated, 200-mesh, nickel grids (EMS) and stained with 3 % uranyl acetate and Reynolds 

lead citrate for visualization under a 300 kV TF30UT transmission electron microscope 

(FEI). 

Confocal microscopy: Formalin-fixed organs were dehydrated and embedded in molten 

paraffin to generate sections of 4-μm in thickness. Sections were deparrafinized with 

xylene, rehydrated, and mounted with ProLong Gold antifade reagent (Invitrogen) for 

viewing under a Zeiss LSM 510 inverted confocal scanning microscope (with a Plan 

Neofluar ×40/0.75 objective). The excitation wavelengths of Cy3-siRNAs was 543 nm 

(HeNe laser) and the corresponding emission filter was 560-610 nm. The measured 

resolution at which images were acquired is 512×512 pixels, and the image bit-depth is 8-

bit. 10 sections from each organ were inspected. Typically, 5 glomeruli from each tissue 
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section were inspected. The Zeiss LSM Image Browser Software allows the extraction of 

images.  

Micro-PET/CT Imaging:  Micro-PET imaging was performed as described 

previously(10).  Briefly, a micro-PET FOCUS 220 PET scanner and a MicroCAT II CT 

scanner (Siemens) were used for data acquisition.  Mice were anesthetized by using 1.5–

2% isoflurane. siRNA labeled with 
64

Cu (100–300 µCi) (1 Ci =37 GBq)  was injected via 

tail vein and a dynamic PET scan was acquired for 1 h. Total siRNA dose was 2.5mg/kg. 

The image resolution was 1.7 mm. A 7 minute micro-CT scan was then performed. 

AMIDE software(31) was used to examine the 
64

Cu signal intensity. Ellipsoid regions of 

interest were placed to over organs of interest. To ensure accurate anatomical positioning, 

regions of interest were placed on fused micro-PET/CT images generated by the AMIDE 

software.  Values were normalized to an elliptic cylinder region of interest drawn over 

the entire mouse.  

Compartment modeling: Model variables and parameters are defined in the 

supplemental text. The system of first-order ODEs was solved by using MATLAB 

(Mathworks).  
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7.8 Supplementary Information for Chapter 7 

Supplemental Figure S1: Plasmid DNA will dissociate siRNA from nanoparticles. 

siRNA nanoparticles were formulated and then increasing concentrations of ~6kb 

plasmid DNA were added. Samples were immediately loaded onto the gel.  
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Supplemental Figure S2: Characterization of siRNA nanoparticle components excreted 

into urine. a,b) Images of urine samples taken at multiple time points after injections of 

either free Cy3-labled siRNA or Cy3-labled siRNA nanoparticles. Urine was collected 

from urinary meatus when released at time of euthanasia. c) Gel mobility shift assay on 

urine samples from mice receiving either free siRNA or siRNA nanoparticles. Most of 

the siRNA remaining exists in complex with CDP in the urine. d) Cy3 label is not 

cleaved off siRNA after 30 minute incubation with 95% plasma at 37°C. No staining 

agent used in this gel, signal results from Cy3 fluorescence. 
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Supplemental Figure S3: (a,b) siRNA nanoparticles are also identified within 

endothelial cells lining the peritubule capillaries10 min after administration of siRNA 

nanoparticles but not (c) free siRNA. E=Endothelial cell, NP=nanoparticle, P=podoyctes, 

PC=peritubule capillary, R=Erythrocyte, T=Tubule. Image sizing was performed 

with ImageJ software.   

 

Supplemental Text 

 

Compartment model of kidney transit of free siRNA and siRNA nanoparticles   
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Because non-invasive, real-time monitoring of siRNA nanoparticle behavior at 

the microscopic level was not possible, we developed a compartment model of kidney 

transit to better understand the relationships between our microscopic observations and 

the bulk kidney signal obtained from the PET study. Specifically, compartment modeling 

of the kidney was used to demonstrate how GBM accumulation and disassembly of 

siRNA nanoparticles could result in the dynamics observed in our PET study. The goal of 

the model was to reproduce three key characteristics of the PET data: 

1. Delayed and augmented peak kidney accumulation for siRNA nanoparticles 

versus siRNA alone 

2. Delayed bladder accumulation for the siRNA nanoparticles versus siRNA alone 

3. Increased total kidney retention of the siRNA nanoparticles versus siRNA alone 

Two models were developed, a free siRNA model and a siRNA nanoparticle model. 

The free siRNA model replicates the behavior of free siRNA in the kidney. Key reaction 

parameters that describe the rates and processes of free siRNA filtration used in the free 

siRNA model were determined by inserting anatomical constraints as well as fitting the 

free siRNA model predictions to the free siRNA PET data.  

The siRNA nanoparticle model reproduces the behavior of siRNA nanoparticles in 

the kidney. Two additional expressions were included to the siRNA nanoparticle model: 

(1) deposition and complete disassembly of siRNA nanoparticles to free siRNAs at the 

GBM, and (2) uptake of siRNA nanoparticles by peri-tubular capillary endothelial cells. 

Reaction parameters specific to both expressions were fit to the PET data from the siRNA 

nanoparticles, by holding constant all reaction parameters previously deduced from the 

free siRNA model (see table below).    

 

 

Part I: Estimation of anatomical parameters 

 

Total renal corpuscle volume (Vrc ): Mice have ~10,000 renal corpuscles per kidney (1). 

We assumed that each renal corpuscle is a sphere of radius 40 µm (2).  

 

Vrc = (4/3) π (40 µm)
 3

 × (2×10
4
 corpuscles) = 0.005 cm

3 

 

Total GBM surface area (Sgbm) and GBM volume (Vgbm): The surface area of GBM in a 

healthy mouse is ~2.84 × 10
4
 µm

2
 per renal corpuscle, or equivalently, 5.7 cm

2
 (Sgbm) per 

mouse (3). We assume a GBM thickness of 300nm (5). 

Vgbm = 5.7 cm
2 
× 3×10

-5
cm=1.7×10

-4
cm

3
. 

 

Total kidney interstitial volume (Vint): The cortex, medulla, and pelvis account for 70%, 

27%, and 3% of the total kidney volume (4). Here, we combined volume contribution 

from the pelvis and medulla. The interstitial fraction in the cortex and medulla amounts 

to 7% and up to 20%, respectively (5).Vint amounts to ~10% of the total kidney volume.  
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Total renal tubules volume (Vrt): All remaining parts of the kidney other than renal 

corpuscles and interstitial space belong to renal tubules throughout the cortex and 

medulla.  

 

Vrt = Vkidney - Vrc - Vint = 0.22 cm
3
 

 

 

Part II: Free siRNA model 

 

Diagram of the compartmental model for free siRNAs in the kidney. GBM = glomerular 

basement membrane, PTC = proximal tubule cells, dotted line: fenestrated walls of glomerular 

capillaries. 

Blood concentration of siRNA: In order to limit the number of parameters in the model, 

we chose to represent the level of siRNA in blood by a simple exponential decay 

function.  

 

 tACC NP

plasma

siRNA

plasma  exp , where A = 35% ID/cm
3
 and α = 0.6 min

-1
. 

Values for A and α were derived by curve fitting the PET data for free siRNA. 

Renal filtration of free siRNA: Upon their entry into the glomerular capillary tuft, free 

siRNAs (MW: c.a. 13 kDa; size: 3.2 nm) pass through the fenestrated endothelium and 

permeate into the renal filtration barrier (with an apparent permeability Pgbm). Once 

within the filtration barrier, free siRNAs enter the urinary space within the renal tubules 

at a rate kfilter.  

siRNA

gbm

siRNA

filter

gbm

siRNA

gbm

siRNA

plasmagbm

siRNA

gbm

siRNA

gbm
Ck

V

CCSP

dt

dC
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In the urinary space, free siRNAs can experience uptake by proximal convoluted tubules 

(PCTs) (6). This model includes an additional rate constant krt that depicts the 

reabsorption of free siRNAs into PCTs. It assumes no reabsorption in other renal tubule 

components but PCTs. fcortex (= 0.7) and fpct (= 0.64) denote the volume fraction of the 

cortex in the bulk kidney and the fraction of PCTs in the cortex, respectively (5).  

siRNA

rt

siRNA

bladder

siRNA

rtpctcortex

rt

gbm

siRNA

gbm

siRNA

filter
siRNA

rt Ckkff
V

VCk

dt

dC


 

Ultimately, unabsorbed siRNAs depart from the kidney and enter the bladder at a rate 

kbladder.  

bladder

rtsiRNA

rt

siRNA

bladder

siRNA

bladder

V

V
Ck

dt

dC
  

For initial conditions, 
siRNA

bladder

siRNA

rt

siRNA

gbm CCC  = 0 at t = 0. Curve fitting of the bulk 

kidney concentration of free siRNAs allows for the determination of the values of 
siRNA

gbmP ,

siRNA

filterk , and siRNA

bladderk .  
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Part III: siRNA Nanoparticle model  
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Diagram of the compartmental model for siRNA nanoparticles in the kidney. GBM = 

glomerular basement membrane, PTC = proximal tubule cells, PTEC = peri-tubule 

endothelial cells, dotted line: fenestrated walls of glomerular capillaries.  

Blood concentration of siRNA nanoparticle: same as free siRNA model 

Peri-tubule endothelial cell uptake: Our imaging studies revealed that some siRNA 

nanoparticles are internalized by peri-tubule endothelial cells within the kidney. This 

region of nanoparticle accumulation is likely responsible for the majority of the persistent 

PET signal observed in the kidney at 30 minutes. Because these endothelial cells reside 

within the interstitial space of the kidney, we used Vint to represent the volume of this 

compartment and deduce the value of NP

enk .  

int

)1(

V

HCRTV
Ck

dt

dC bloodNP

plasma

NP

en

NP

en 
  

Renal filtration of siRNA nanoparticles: Our imaging studies revealed that siRNA 

nanoparticles accumulated and are disassembled in the GBM. We model the GBM as a 

collection of binding sites of heparan sulfate ([HS]0).  Each nanoparticle can bind to a site 

with an equilibrium binding constant NP

adsK . Upon binding and formation of an intermediate 

complex NP-HS, the degradation of the nanoparticle will occur. Compared to binding, 

degradation is the rate-limiting step (with rate
NPkdeg ). 

HSsiRNAHSNPHSNP
NPNP

a d s
kK   d eg  

The rate expression describing these processes is as follows:  

NP

g b m

NP

a d s

NP

g b m

NPNP

CK

CKHSk
r ads




1

][ 0d eg

 

The pores of the glomerular endothelium are ~100 nm in diameter. We believe 

that the net movement of siRNA across this membrane is the same for both free siRNA 

and siRNA in nanoparticles. Because both formulations of siRNA (free or nanoparticle 

associated) have similar blood clearance rates, the net rate for siRNA crossing the 

glomerulular endothelium for both these formulations are necessarily similar. This 

assertion is further supported by the observations that both siRNA formulations deposit 

similarly in all other sites in the body besides the kidney.  

Physically, the idea of similar rate of endothelial crossing for both siRNA 

formulations is reasonable. While free siRNA experiences less hydrodynamic drag than 

nanoparticles when crossing the glomerular endothelium, they face electrostatic repulsion 

by the GBM, whereas the positively charged siRNA nanoparticles do not. Additionally, 

each nanoparticle has been estimate to contain ~2000 siRNA molecules. Therefore, even 

if the permeability of the glomeruluar endothelium for an intact nanoparticle is less than 

that of free siRNA, the net rate of siRNA crossing this barrier in nanoparticle form could 

be equivalent. Therefore, we set Pgbm of the nanoparticle to be the same as the Pgbm 

determined in curve fitting of the preliminary model for free siRNA.  
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The governing equations of siRNA nanoparticle accumulation and disassembly in the 

GBM are: 

Nanoparticle accumulation and disassembly: 

NP

gbm

NP

ads

NP

gbm

NP

ads

NP
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NP

gbm

NP
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NP
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dt
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Released free siRNA in GBM: 
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siRNA
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Total GBM heparan sulfate concentration ([HS]0): Based on the PET experiment, each 

mouse (20 g) receives infusion of siRNA (in free or nanoparticle form) at an amount of 

2.5 mg/kg. This means each whole dose (100% ID) contains 50 µg of siRNA. This 

translates to ~9 × 10
16

 anionic charges/ID.    
 

(50 µg-siRNA/kidneys) × (mol-siRNA/14000 g-siRNA) × (42 mol-saccharide /mol-

siRNA) × (1 mol-anionic charge/mol-saccharide) × (6.02 ×10
23

 anionic charge/mol-

charge) = 9×10
16

 anionic charge/ID. 

With known amounts of GBM in renal corpuscles and content of heparan sulfate in each 

corpuscle, we can estimate [HS]0 in equivalent terms of the percent injected dose (%ID) 

(7, 8).  
 

(188 µg-GBM/corpuscle) × (13.3 µg-HS/mg-GBM) × (mol-HS/75000 g-HS) × (220 mol-

saccharide /mol-HS) × (2 mol-anionic charge/mol-saccharide) × (6.02 ×10
23

 anionic 

charge/mol-charge) × (corpuscle/(4π (40 µm)
3
/3)) × (100% ID/9×10

16
 anionic charge) = 

4×10
6
 %ID/cm

3
.  

 

This represents an extremely high and localized concentration of negative charge within 

the GBM. 

 

The model assumes full degradation of nanoparticles such that the only 

component filtered out of the glomerular basement membrane to the urinary space is free 

siRNA. We therefore employ the same equations for PCT uptake and delivery to bladder 

as in the free siRNA model. 

 

For initial conditions, 
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kidney

siRNA

rtrt

NP

gbm

siRNA

gbmgbm

NP

glomglom

NP

ensiRNA

kidney

NP

kidney

Total

kidney
V

CVCCVCHCRTVCV
CCC




)()1(int  

 

 



 177 

List of parameters  

The governing differential equations (with their initial conditions) were solved with 

MATLAB using ODE15s with the appropriate initial conditions.  
 

Table I: Anatomical parameters 

Name Description (units) Determination Method Value 

Vkidney Total kidney volume (cm
3
)  Direct measurement 0.25 

Vrc Total renal corpuscles volume (cm
3
) Estimated from (1, 2) 5×10

-3
 

Vgbm Total kidney GBM volume (cm
3
) Estimated from Sgbm 1.7×10

-4 

Sgbm Total kidney GBM surface area (cm
2
) Estimated from (3)  5.7

 

Vint Total kidney interstitial volume (cm
3
) Estimated from (4, 5) 0.025

 

Vrt Total renal tubules volume (cm
3
) Estimated from Vkidney 0.22

 

fcortex Volume fraction of cortex Estimated from (5) 0.7  

fpct Volume fraction of proximal convoluted tubules Estimated from (5) 0.64 

[HS]0 Total heparan sulfate concentration (% ID/cm
3
) Estimated from (7, 8) 4×10

6
 

Vblood Total blood volume (cm
3
) Estimated from (9) 1.5 

HCRT Hematocrit Estimated from (9)  33% 

Vbladder Total bladder volume (cm
3
) Estimated from (10)  0.15 

 

Table II: Reaction parameters 

Name Description (units) Source of data for 

fitting 

Value 

A  Plasma concentration (% ID/cm
3
) Blood clearance  35 

α Rate of elimination (min
-1

) Blood clearance 0.6 

Pgbm GBM apparent permeability (cm min
-1

) Kidney - free siRNA 10000 

kfilter Rate of filtration into renal tubules/pelvis (min
-1

) Kidney - free siRNA 600 

kbladder Rate of filtration into bladder (min
-1

) Kidney - free siRNA 0.2 

krt Rate of renal tubule reabsorption (% ID cm
-3 

min
-1

) Kidney - free siRNA 2 

Kads Equilibrium binding constant to GBM (% ID cm
-3

)
-1 

Kidney - nanoparticle 10 

kdeg Rate of nanoparticle degradation (min
-1

) Kidney - nanoparticle 1×10
-3

 

ken Rate of peri-tubule endothelial uptake (min
-1

) Kidney - nanoparticle 1.3 
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Chapter 8: Targeted-nanoparticle delivery of siRNA to the kidney 

glomerulus 

 

8.1 Abstract 

 

The kidney is the site of many acute and chronic conditions that could benefit 

from the development of kidney targeted therapeutics. Despite this fact, kidney disease 

remains a relatively overlooked indication for targeted nanoparticle-based therapeutic 

development. Here, we demonstrate that the kidney is an extremely accessible organ for 

targeting using nanoparticle-based therapeutics. First, using a well characterized model 

system of PEGylated gold nanoparticles, we demonstrate the general pattern of 

nanoparticle kidney distribution in mice following systemic administration using 

microscopy methods. We show that nanoparticle deposition is restricted to the 

glomerulus and peri-tubule interstitia. We then show how this model nanoparticle system 

predicts the major distribution of cationic polymer-based siRNA nanoparticles in the 

kidney and how the positive surface change and decomposability of the siRNA 

nanoparticles effect their kidney distribution. We also highlight how the addition of 

mannose and transferrin targeting ligands can alter the intra-renal distribution of the 

siRNA nanoparticles to target specific cells within the kidney. Finally, we demonstrate 

that the siRNA nanoparticles can facilitate delivery of siRNA to the glomerulus and 

knockdown the expression of glomerular EGFP in transgenic mice.  

 

8.2 Introduction 

 

Nanoparticles have been investigated extensively as therapeutics for tumors and 

the liver because of their intrinsic proclivity to deposit in these tissues
1,2

. The kidney is 

another site of nanoparticle accumulation
3
; however, it has been relatively overlooked as 
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a target for nanoparticle therapeutics. Nanoparticle therapeutics have high therapeutic 

indexes compared to traditional small molecule drugs, owing to their biodistributions, 

and enable administration of highly specific therapeutic modalities such as small 

interference RNA (siRNA)
1
.  

 

Figure 8.10: Schematic of kidney glomerulus and nanoparticles used in study. (A) Schematic 

of glomerular cross section demonstrating nanoparticle deposition into mesangial cells. 

C=capillary lumen, GBM=glomerular basement membrane, M=mesangium, P=podocyte, 

U=urinary space. (B) Schematic and physical properties of PEGylated gold nanoparticles and 

siRNA/CDP nanoparticles. 

 

The glomerulus is a primary site of renal diseases (e.g., IgA nephropathy) and a 

common secondary site in many systemic disorders (e.g., diabetic nephropathy) that 

could benefit from kidney specific therapeutics. Mesangial cells are a particularly suitable 

target for nanoparticles because the glomerular endothelium is fenestrated and there is no 

basement membrane between the endothelial cells and the mesangium (Fig. 8.1A).  

siRNA can be used to inhibit proteins considered to ‘undruggable” by traditional 

means in a highly specific manner
4
. siRNA requires carriers to facilitate their transport 

through circulation and uptake at desired sites of actions
5
. We have developed a polymer-
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based targeted-nanoparticle formulation of siRNA (Fig. 8.1B) that was shown to 

accumulate in human tumors and deliver functional siRNA from a systemic, intravenous 

(i.v.) infusion 
6
. This first-in-human study demonstrated the clinical potential for cationic 

polymer-based siRNA delivery systems.  

Here, using a well characterized model system of PEGylated gold nanoparticles 

we demonstrated that nanoparticles have a characteristic distribution pattern in the kidney 

following systemic administration. We then show how siRNA nanoparticles of like size 

follow a similar distribution pattern in the kidney and highlight how differences in the 

siRNA nanoparticle (positive surface charge and decomposability) alter their distribution. 

We also investigate how the targeting ligands transferrin and mannose can dramatically 

alter the intra-renal distribution of the siRNA nanoparticles. Finally, we demonstrate that 

the siRNA nanoparticle can deliver functional siRNA to the glomerulus and inhibit gene 

expression.  

8.3 Results 

8.3.1 Transferrin-targeted PEGylated gold nanoparticles accumulate in glomeruli 

and peri-tubule interstitia of the kidney following system administration.  

Biodistribution studies of nanoparticles composed of micelles or polyplexes can 

be confounded by their degradation or disassembly in vivo. Therefore, we first explored 

nanoparticle delivery to the kidney using a model system of non-decomposing 

transferrin-targeted PEGylated gold nanoparticles that mimic the size of the siRNA 

nanoparticle delivery system (Fig. 8.1B). We employed a silver enhancement technique
3
 

to visualize the gold nanoparticles in tissue sections via light microscopy and utilized 

transmission electron microscopy (TEM) to confirm subcellular localization (Fig. 8.2).  
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Gold nanoparticles with both high (~ 200) and low (~ 2) transferrin contents were 

found to accumulate within glomeruli in a similar pattern 8 hours after intravenous 

administration. TEM analysis revealed that within the glomerulus, nanoparticles 

deposited solely within mesangial cells and matrix. 100% of glomeruli examined were 

found to contain nanoparticles. We also observed gold nanoparticles in the peri-tubule 

interstitia throughout the kidney. Transferrin density on the surface of the nanoparticles 

did not alter the pattern of distribution of the sgold nanoparticles in the kidney, 

suggesting that nanoparticle uptake by mouse mesangial or peri-tubule interstitial cells 

was not dependent on the presence of transferrin.  

 

Figure 8.2: Transferrin (Tf) targeted PEGylated gold nanoparticles deposit in the 

glomerulus following intravenous or intraperitoneal administration. Light micrographs (A) 

glomeruli and (B) peri-tubule capillaries in kidneys from mice receiving the indicated treatments 

via intravenous (IV) or intraperitoneal (IP) routes. Low and high indicate ca. 2 and 200 Tf 

respectively on the PEGylated gold nanoparticles (Au-NPs) surface. Au-NPs appeared as black 
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speckles on sections following sliver enhancement and red blood cells appear ruddy brown (no 

counter-stain is used). Scale bar=20 μm. Electron micrographs of (C) mesangial cells and (D) 

peri-tubule interstitial from kidneys from treated mice. Boxes are magnified view of the boxed 

gold particles in the micrographs. Scale bars=  200 nm. MC= mesangial cell, US= urinary space, 

PC=peritubule capillary lumen, PI=peritubule interstitial, TC=tubule cell. 

 

Shimizu et al.  have demonstrated that  10-20 nm siRNA micelles can deposit 

within the glomerulus following intraperitoneal administration 
7
. We hypothesized that 

this phenomenon could be extended to larger size nanoparticles. To test this hypothesis 

we examined gold nanoparticle distribution in the kidney following an intraperitoneal 

injection and observed a similar distribution pattern for the gold nanoparticle as observed 

following intravenous  

administration.  

8.3.2 siRNA nanoparticle deposition in the kidney is similar to gold nanoparticles 

but can be influenced by using the targeting ligands mannose or transferrin. 

 We next examined the kidney biodistribution of intravenously administered 

siRNA nanoparticles containing fluorescently labeled nucleic acid and polymer 

components. We also explored how the kidney distribution of the nanoparticles was 

effected by including different targeting ligands in the siRNA nanoparticle formulation – 

mannose or transferrin that can facilitate nanoparticle internalization by engaging the 

mannose receptor (MR) or the transferrin receptor (TfR), respectively. The MR is known 

to have a restriction expression pattern to mesangial cells within the kidney 
8,9

, whereas 

the TfR is a more general receptor expressed by many cell types although not highly in 

the glomerulus
10

. Confocal microscopy was employed to study the biodistribution of 

these nanoparticle formulations within the kidney at 10 and 120 minutes post injection.  
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8.3.3 siRNA nanoparticles, but not free siRNA accumulate in the glomerulus and 

peri-tubule interstitia.  

We examined the distribution of Cy3-labeled siRNA in kidneys from mice 

receiving intravenous doses of Cy3-siRNA alone or formulated in nanoparticles (Fig. 

8.3). We observed fluorescence signal of free Cy3-siRNA localized to proximal tubule 

cells at 10 minutes post dose, but fluorescence was nearly indistinguishable from 

background at 120 minutes.  In comparison, we detected strong Cy3 fluorescence within 

all glomeruli at 10 minutes following doses of Cy3-siRNA nanoparticles. The glomerular 

Cy3 fluorescence signal was localized to the glomerular capillary walls and the 

mesangium.  
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Figure 8.3: siRNA nanoparticles accumulate in mouse glomeruli following i.v. 

administration (A) Laser scanning confocal microcopy of kidney sections from mice receiving 

free siRNA or siRNA nanoparticles formulations with Cy3-labeled nucleic acid. (B) Magnified 

images of glomeruli at 10 min and 120 min from mice receiving either mannose (Mn) or 

transferrin (Tf)-siRNA nanoparticles. Glomeruli at 10 min appeared similar among all conditions 

and Tf and non-targeted siRNA nanoparticles appear similar at 2 hours. Detector gain for all 

images was adjusted for maximal dynamic range or until diffuse green background auto-

fluorescence in proximal tubules was apparent (untreated). Images with more visible background 

are lower in overall fluorescence intensity. White arrows indicate glomeruli, dotted white arrows 

indicates proximal tubules, blue arrows indicate peri-tubule capillaries, scale bars=20μm. (C) 

Electron micrographs of kidneys from mice that received doses of untargeted nanoparticles. 
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Although greatly attenuated, glomerular Cy3 fluorescence was still detected in all 

glomeruli at 120 min post dose. Whereas at 10 minutes post dose the Cy3 glomerular 

signal is most intense within the glomerular capillary walls, the Cy3 glomerular signal at 

120 minutes is most intense in mesangial regions. Some Cy3 signal was still observed in 

the glomerular capillary walls. 

In a similar fashion to the gold nanoparticles, siRNA nanoparticles were found to 

deposit within the peri-tubule interstitial of the kidney. The siRNA nanoparticles were 

found along the walls of the peri-tubule capillaries at 10 minutes and were observed as 

more punctate structures at 120 minutes.  

8.3.4 Transferrin and mannose targeting ligands alter intra-renal distribution of 

the siRNA nanoparticles. 

 Transferrin targeting ligand resulted in increased Cy3 fluorescence along the 

luminal side of the proximal tubule surface at 10 min. At 120 min, this proximal tubule 

Cy3 signal was observed in deeper locations within the proximal tubule cells. 

Additionally, Cy3 fluorescence in the proximal tubule cells at 120 min following 

transferrin-targeted siRNA nanoparticle treatment was much greater than following 

siRNA administration alone.  

Mannose targeting ligand resulted in two changes to siRNA nanoparticle 

distribution. First, the Cy3 glomerular intensity remained much stronger at the 120 min 

time point compared to the other nanoparticles formulations. Second, mannose targeting 

resulted in a more punctate distribution of the siRNA nanoparticles within the peri-tubule 

interstitia at 10 min and stronger fluorescence at these locations at 120 min compared to 

the other siRNA nanoparticle formulations.  
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8.3.5 TEM analyses demonstrate siRNA nanoparticle localization to the GBM and 

peri-tubule interstitial.  

We more closely examined the kidney deposition of the non-targeted siRNA 

nanoparticles via TEM 10 min after dosing (Fig. 8.3C). We used uranyl acetate staining 

to detect the presence of nucleic acid nanoparticles in tissue sections because it 

preferentially binds to nucleic acids including the siRNA within the nanoparticles
11

.   
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Figure 8.4: Intra-renal distribution of the polymer (CDP) component of the siRNA 

nanoparticles. (A) Laser scanning confocal microcopy of kidney sections from mice receiving 
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siRNA nanoparticle formulations with Cy3-labeled nucleic acid and AlexaFluor350 (AF350) 

labeled CDP at 10 min. White arrows indicate glomeruli, dotted white arrows indicates proximal 

tubules, blue arrows indicate peri-tubule capillaries, white arrow heads indicate collecting 

tubules. Green=Cy3-labled nucleic acid, Red= AF350-CDP, yellow=co-localization of Cy3 and 

AF350 signals. (B) left – Images of a glomerulus and middle – tip of a renal papilla at 10 min 

from a kidney of a dual labeled Tf-siRNA nanoparticle treated mouse. Double line arrows = co-

localization of Cy3 and AF350 signals in the collecting tubule lumen indicating re-assembly of 

the nanoparticle components as they are filtered through the kidney. Right: image of the kidney 

cortex from a mouse receiving only AF350-CDP. (C) Images of kidney regions at 120 min from 

mice receiving the indicated treatment. Images are also reproduced in green and magenta in Supp. 

Fig. S1. 

 

Within the glomerulus abundant siRNA nanoparticles were observed within the 

glomerular basement membrane. Many of the smaller siRNA nanoparticles deposited 

within the lamina rara externa in direct contact with podoctye foot processes. We also 

observed nanoparticles internalized by endothelial cells lining the peri-tubule capillaries. 

 8.3.6 The cationic-polymer components (CDP) of the siRNA nanoparticles 

strongly interacte with different regions of the kidney.  

The distribution of the CDP components of the nanoparticles was also examined (Fig. 

8.4). Strong AF350-CDP fluorescence that co-localized with the Cy3-siRNA signal was 

observed in all glomeruli from all siRNA nanoparticle formulations at 10 min. Co-

localization of Cy3 and AF350 fluorescence was also observed on the luminal surface of 

proximal tubules in kidneys from mice that received transferrin targeting nanoparticles. 

Co-localization between the two nanoparticle components was also observed in these 

regions at 120 min.  

 Some CDP was not found to co-localize with the siRNA components of the 

nanoparticle. AF350-CDP fluorescence was more extensive than Cy3 fluorescence within 

the mesangial areas of the glomerulus. Also, AF350-CDP signal alone was observed to 

line the luminal surface of proximal tubules and collecting ducts in kidneys from mice 

receiving non-targeted and mannose targeted nanoparticles.  Examination of kidneys 
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from mice receiving only the AF350-CDP nanoparticle component revealed similar 

fluorescence localization; although the free CDP demonstrated a preference for 

mesanagial deposition compared to CDP administered as nanoparticles which had similar 

preference for glomerular capillary walls and mesangium.  

The pattern of distribution of CDP was persistent at 120 min. These siRNA 

nanoparticles have been demonstrated to result in elevated BUN and creatinin levels at 

high doses (27 mg/kg) in monkeys
12

 (lower doses 3 and 9 mg/kg did not results in these 

elevations). The data presented here suggest that the strong interaction between the CDP 

and kidney components may mediate this toxicity.   

 

Figure 8.5: siRNA nanoparticles are internalized by mouse and human mesangial cells in 

vitro. (A) Fluorescence microscopy images of mesangial cells following 5 minute incubation with 

indicated treatment condition. (B) Flow cytometery analysis of mesangial cells following 

incubation with different Cy3-labeled siRNA nanoparticle formulations. For all expeirments a 

detergent wash was performed to remove non-internalized nanoparticles/siRNA from the surface 

of the cells prior to analysis. 
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 8.3.7 Mouse and human mesangial cells internalized siRNA nanoparticles 

in vitro.  

To demonstrate the feasibility that human mesangial cells will also internalize 

siRNA nanoparticles we compared the uptake of siRNA nanoparticles by human and 

mouse mesangial cells in vitro. Mesangial cells from both species internalized the siRNA 

nanoparticles; even in the absence of a targeting ligand. We observed internalization after 

only 5 minutes of exposure to the siRNA nanoparticles (Fig. 8.5A). The human 

mesnagial cells internalized a larger amount of nanoparticles in 10 minutes than their 

murine counterparts in 1 hour (Fig. 8.5B). Inclusion of transferrin and mannose targeting 

lingands in the formulation of the siRNA nanoparticles increased their internalization by 

mouse mesangial cells, but only mannose enhanced uptake by human mesangial cells.  

8.3.8 Nanoparticle formulation is required for long term delivery of siRNA to the 

glomerulus.  

We examined for the presence of siRNA in isolated glomeruli from mice 1 or 3 

days after they received doses of free siRNA or siRNA nanoparticle formulations (Fig. 

8.6A). Real-time PCR was employed to detect the presence of a specific siRNA sequence 

(siTrace). Although the PCR assay was designed specifically for the siTrace sequence 

some non-specific background signal was observed in the negative control siCON 

nanoparticle group.  
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Figure 8.6. Detection of siRNA in isolated glomeruli from mice. (A) Light micrographs of two 

preparations of isolated glomeruli from mouse kidneys. (B) Real-time PCR based detection of 

siTrace. siCON= Transferrin-targeted nanoparticles with siCON, Tf-NP siTrace = transferrin-

targeted nanoparticles with siTrace, Mn-NP siTrace = mannose-targeted nanoparticles with 

siTrace. 3 mice (1 day) or 5 mice (3 days) per group, p values are from one tailed t-tests. 

 

At 1 day post dosing we detected siTrace at significant levels above background 

in glomeruli from all treatment groups. Levels of siTrace in glomeruli from siRNA 

nanoparticle treatment groups were found to be at least an order of magnitude higher than 

the free siRNA group.  A similar amount of siTrace was detected among glomeruli from 

all the siRNA nanoparticle treated groups. At 3 days post dosing we detected siTrace at 

significant levels above background in glomeruli only from animals receiving siRNA in 

nanoparticle formulation. We observed some increase in average siTrace level over 

background in the glomeruli from mice receiving free siTrace; however, this level did not 

reach statistical significance. The transferrin-targeted nanoparticles appeared to deliver 
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more siTrace to the glomerulus than the mannose-targeted nanoparticles; however, the 

difference between the two groups did not reach statistical significance.  

8.3.9 siRNA nanoparticles silence gene expression in the glomerulus.  

We next examined the ability of transferrin and mannose targeted nanoparticle to 

silence EGFP expression in the glomeruli of transgenic mice. We used fluorescence 

microcopy to examine EGFP fluorescence in kidney sections from each mouse (Fig. 8.7). 

Kidneys from mice receiving the control siRNA nanoparticles were found to have strong 

expression of EGFP throughout their kidneys. Glomerular expression was found to be 

higher than tubules and podocyte expression appeared higher than mesangial areas. 

Transferrin and mannose targeted siEGFP nanoparticles were found to reduce glomerular 

EGFP expression. EGFP knockdown was most noticeable within the mesangial regions 

of the glomerulus. A significant decrease of high EGFP glomeruli of ~ 2 fold was 

observed in both Tf- and Mn-nanoparticles. A significant increase in the number of low 

EGFP glomeruli of ~ 6 fold was observed in the Tf-nanoparticle treated animals, whereas 

only a 3 fold non-significant increase was noted in the Mn-nanoparticle treatment group. 

However, a significant increase in the number of intermediate EGFP glomeruli was noted 

only in the Mn-nanoparticle group.  
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Figure 8.7: EGFP knockdown following administration of siRNA nanoparticles targeting 

EGFP in EGFP expressing transgenic mice. Mice received control nanoparticles (Tf-

nanoparticles siCON), transferrin-targeted nanoparticles with siEGFP (Tf-nanoparticles siEGFP), 

and mannose-targeted nanoparticles with siEGFP (Mn-nanoparticles siEGFP). Mice received two 

doses of 10 mg/kg siRNA on day 1 and day3 and kidneys harvested on day 5. (A) Fluorescence 

micrographs of median intensity glomeruli from each mouse in the experiment. Each column is 

one treatment condition. White arrows point to position of glomeruli (B) Results of blinded 

scoring analysis of glomerular EGFP fluorescence intensities. 70-72 glomeruli were imaged from 

each mouse and scored as high, intermediate, or low EGFP fluorescence (representative examples 

of each scoring category are pictured). All imaging and scoring were performed in a blinded 
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fashion. Average number of glomeruli for each scoring bin are shown. Error bars are standard 

deviation. P values are results of one-tailed t-test. 

 

8.4 Discussion 

Here, we have illustrated the feasibility of nanoparticle mediated delivery of 

therapeutic entities to the kidney glomerulus. We have previously observed kidney 

accumulation of non-targeted PEGyated gold nanoparticles between 20 and 150nm in 

size
3
. 75 nm was found to be the optimal size for passive targeting of the kidney due to 

the competing effects of increased cellular uptake of nanoparticles with increasing size 

and the ~100nm fenestration size cut off of the glomerular endothelium. Now, we have 

extended the results of these studies by demonstrating that intraperitoneal administration 

is also an effective means of nanoparticle delivery to the glomerulus and that glomerular 

deposition occurred within 8 hours of administration. Furthermore, we demonstrated that 

the presence of transferrin did not provide for additional uptake by mesangial cells in vivo 

compared to untargeted nanopartilces
3
. 

 We confirmed the generalizability of our findings with the gold nanoparticle 

model system by demonstrating that similarly sized siRNA nanoparticles deposited in 

kidney in a nearly identical pattern to the gold nanoparticle system – glomerulus and peri-

tubule interstitia. However, there were some differences between the two systems.  

First, in addition to mesangial deposition, the siRNA nanoparticles were found to 

deposit within the GBM. Unlike gold nanoparticles that have a negative surface charge 

and are likely repelled by the negatively charged GBM, the siRNA nanoparticles have 

positive surface potentials that allows them to bind there. This localization allowed the 

siRNA nanoparticles (but not the gold nanoparticles) to contact podocyte foot processes 

and potentially enable uptake there. Second, tubule uptake was observed for the 
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transferrin targeted siRNA nanoparticles, but not for the transferrin targeted gold 

nanoparticle system.  

Transferrin targeting resulted in a substantial increase in proximal tubule uptake 

of siRNA nanoparticles. This phenomenon was not observed with the Tf-gold 

nanoparticles. Because they are >10nm and are non-decomposable, the gold nanoparticles 

cannot cross the renal filtration barrier. We have previously demonstrated the siRNA 

nanoparticles are disassembled by the GBM thereby allowing both siRNA and polymer to 

be filtered into the urinary space individually
13

. Once in the urinary space the can re-

assemble with the CDP in the tubule lumen (Fig. 4B). The re-assembled transferrin 

targeted siRNA nanoparticles could then engage receptors on the luminal surface of the 

proximal tubules, enabling their uptake. The receptors responsible for uptake are likely 

either the transferrin receptor
10

 or cubilin, another receptor that has been demonstrated to 

be responsible for transferrin reabsorption in the proximal tubule 
14,15

.  Glomerular 

filtration of the nanoparticle components is required for this type of delivery and a similar 

phenomenon had been demonstrated for PEI-DNA nanoparticle delivery to proximal 

tubules
16

. 

Free siRNA taken up by proximal tubule cells was rapidly degraded, likely 

because it could not readily escape from the endosome. Transferrin targeted siRNA 

nanoparticles taken up by the proximal tubule cells were not as rapidly degraded, 

suggesting that this could be a superior method of delivery to proximal tubules than 

administration of free siRNA
17

. The siRNA nanoparticles have also been engineered to 

facilitate endosomal escape
11

, whereas the mechanism of endosomal escape for free 

siRNA is unclear, despite evidence for free siRNA induced silencing of genes in 
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proximal tubule cells
17

. Additionally, the transferrin receptor has been demonstrated to be 

up-regulated within the mesangium of patients with IgA nephropathy
18–20

 and transferrin 

targeted particles may also be useful for this indication.  

The mannose receptor has been demonstrated to have a restricted expression to 

the mesangium and interstitial macrophages in the kidney
8,9

. Mannose targeting resulted 

in an increased residency time for siRNA nanoparticles within the glomerulus. However, 

these effects may only have been transient as the total amount of siRNA detected in 

isolated glomeruli by PCR 1 day following intravenous administration was not different 

among different nanoparticle formulations. Similarly, mannose targeting did not result in 

any additional benefit in the EGFP knockdown experiment. We speculate that the doses 

of siRNA nanoparticles used in this study may be saturating and limit the ability of 

mesangial cells to internalize additional surface bound nanoparticles.  

At 3 days post dose a higher amount of siRNA was detected in glomerular isolates 

from Tf-targeted nanoparticles, it is possible that trace amounts of proximal tubule cell 

contaminantes may have biased these measurements because only Tf-targeted 

nanoparticles were demonstrate to accumulate to a high amount in this potential 

contaminant fraction of tissue.  

Mannose receptor 2 has been demonstrated to be upregulated in mouse model of 

chronic kidney injury induced renal fibrosis and to play a protective role
21

. Mannose 

targeting could potentially be used to target nanoparticles to sites of kidney fibrosis.  

Shimizu et al. have demonstrated that non-targeted 10nm siRNA/cationic polymer 

micelles can reach the glomerulus following intraperitoneal administration
7
. 

Administration of these nano-carriers to lpr mice resulted in the decrease of MAPK1 
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expression and reduced sclerosis within the nephritic glomeruli of these mice. Our data 

are consistent with this report and further demonstrate the generalizability of this type of 

approach to other types and sizes of delivery systems and administration methods. 

Several other strategies of siRNA delivery to the kidney have been reported. 

Hauser et al. have demonstrated that a monovalent Ig-protamine conjugate could 

successfully delivery siRNA to normal murine podocytes in vivo
22

. Yuan et al. have also 

shown that subcutaneous administration of  cholesterol conjugated PS modified siRNAs 

targeting 12/15-lipoxegenase reduced kidney damage in diabetic mice
23

. Other reported 

examples of siRNA delivery to the glomerulus and kidney in general have employed less 

clinically applicable direct renal artery injections
24

. 

We focused our study on healthy kidneys for two reasons. First, we wanted to 

establish a baseline comparison for future studies in diseased kidneys. Second, we wanted 

to demonstrate that nanoparticle designed to protect the kidney from effects of systemic 

diseases could reach healthy regions of the kidney. Reports examining nanoparticle 

delivery to diseased kidney
25–30

 have suggested that nanoparticles have a higher 

propensity for deposition in the diseased kidney, likely due to increased vascular 

permeability during states of renal inflammation.  

End stage renal failure and chronic kidney disease imposes a large disease burden 

around the world. Nanoparticle-based therapy has the potential for improving outcome 

for these patients. The use of siRNA nanoparticles also could facilitate inhibition of well 

known mediators of renal damage that are difficult to inhibit via traditional small 

molecule inhibitors. siRNA knockdown may also be a promising strategy to aid in the 
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understanding of the pathogenesis of renal disease by knockdown of specific in defined 

locations throughout the kidney.  

8.5 Materials and Methods 

siRNA nanoparticle formulation: siRNA nanoparticles were formed by using 

cyclodextrin-containing polycations (CDP) and AD-PEG as previously described (pre-

complexation)
31

. Nanoparticles were formed in 5 % glucose in deionized water (D5W) at 

a charge ratio of 3 +/- and a siRNA concentration of 2 mg/ml unless otherwise indicated. 

21 base pair unmodified and Cy3 labeled oligos were purchased from Qiagen. siRNA 

targeting EGFP is from Novina et al. (2002)
32

. siRNA nanoparticle formulated with 80 

mole % Cy3-siGL3 and AF350-CDP were similar in size and stability to their non-

labeled counterparts (Supp. Fig. S2).  

Synthesis and characterization of transferrin and mannose-targeted PEGylated gold 

nanoparticles: was performed as described previously
33

. 

Cell culture: SV40-MES (mouse mesangial) cells were obtained from ATCC. Human 

mesangial cells were obtained from ScienCell. For nanoparticle uptake experiments, cells 

seeded in 6 well plates were washed with PBS and nanoparticles suspended in 2mL of 

opti-MEM (Invitrogen) were applied. At the indicated time points the nanoparticle 

solution was removed and the cells washed with cell scrub buffer (Gene 

Therapy Systems) to remove surface associated nanoparticles or nucleic acids prior to 

analysis.  

Synthesis of Alexa-Fluor 350 Labeled CDP: CDP (30mg) and Alexa Fluor® 350 

succinimidyl ester (5mg, Invitrogen) were transferred to a flask wrapped in aluminum 

foil and dried under vacuum for 2 hours. 0.5ml of anhydrous dimethyl sulfoxide and 
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N,N-diisopropylethylamine (0.7ul) were subsequently added under argon. The reaction 

was allowed to proceed in the dark under argon with constant stirring overnight. The 

reaction mixture was dialyzed against water three times via a 3kDa membrane centrifuge 

filter device (Amicon). The retentate was then filtered through a 0.2um filter (Palls) and 

lyophilized to yield a yellow colored product.  

Animal Studies: All animals were treated according to the NIH Guidelines for Animal 

Care and Use as approved by the Caltech Institutional Animal Care and Use Committee. 

6 to 9-week old, female Balb/c mice and C57BL/6-Tg(CAG-EGFP)1Osb/J (Stock #: 

003291) mice were obtained from the Jackson Laboratory. Mice were euthanized by CO2 

overdose for organ collection at indicated time points. All organs were fixed in 4 % (w/v) 

paraformaldehyde (PFA) in PBS overnight. For confocal imaging, nanoparticle 

formulations contain 80 mole % Cy3-siGL3 and AF350-CDP. Formalin-fixed organs 

were dehydrated and embedded in molten paraffin to generate sections of 4-μm in 

thickness. 

Histology with silver enhancement: Deparrifinized sections were rehydrated with a 

reducing ethanol gradient and rinsed with deionized water extensively, dried, and stained 

for gold nanoparticles using the Silver Enhancement Kit for Light and Electron 

Microscopy (Ted Pella) for 20 min at RT. After rinsing with running tap water for 2 min, 

sections were mounted with Permount for viewing under an Olympus X50 fluorescent 

microscope (with a   40x/1.3 oil objective).  

Transmission electron microcopy: Tissue blocks (~1 mm
3
) were fixed in 2.5 % 

glutaraldehyde (in 0.1 M sodium cacodylate, pH = 7.4) for 2 h, stained by 1 % OsO4 at 4 

°C for 2 h, and 0.9 % OsO4 and 0.3 % K4Fe(CN)6 at 4 °C for 2 h. Gradual dehydration 
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with ethanol and propylene oxide enabled tissue embedding in Epon 812 resins (Electron 

Microscopy Sciences). 80 nm thick sections were deposited on carbon and formvar-

coated, 200-mesh, nickel grids (EMS) and stained with 3 % uranyl acetate and Reynolds 

lead citrate for visualization under a 300 kV TF30UT transmission electron microscope 

(FEI). 

Fluorescent Microscopy: Sections were deparrafinized with xylene, rehydrated, and 

mounted with ProLong Gold antifade reagent (Invitrogen) for viewing. Confocal 

microscopy: Images were obtained on a Zeiss LSM 510 inverted confocal scanning 

microscope (with a Zeiss PlanApochormat×63/1.4 oil objective). The excitation 

wavelengths of Alexa Fluor 350-CDPs and Cy3-siRNAs are 705 nm (two-photon laser) 

and 543 nm (HeNe laser), respectively. Their corresponding emission filters are 390-465 

nm and 565-615 nm, respectively. The measured resolution at which images were 

acquired is 512×512 pixels, and the image bit-depth is 8-bit. The Zeiss LSM Image 

Browser Software allows the extraction of images. Epi-fluorescent microscopy: Images 

were obtained on an Olympus IX50 fluorescent microscope (with an Olympus Planfluor 

40x/1.3 oil objective). The measured resolution at which images were acquired is 

512×512 pixels, and the image bit-depth is 8-bit.      

Magnetic bead based Glomerular isolation: Glomeruli were isolated using the method 

developed by Takemoto et al.
33

. Mice were euthanized prior to magnetic bead perfusion.  

RNA isolation: Total RNA was isolated from cells using the miRNeasy kit (Qiagen) 

following manufacturer’s instructions and quantified using a Nanodrop 2000 

spectrophotometer (Thermo).  
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Real time reverse transcriptase PCR:  Custom Taqman miRNA qPCR assays (Applied 

Biosystems) for siTrack were used for quantification of siRNA from total RNA. Real-

time PCR analysis was performed using a MyiQ Single Color Real Time PCR Detection 

System (Bio-Rad).    
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8.8 Supplementary Information for Chapter 8 

 

Supplemental Figure S1: Intra-renal distribution of the polymer (CDP) component of the 

siRNA nanoparticles in green and magenta pseudocolor. (A) Laser scanning confocal 

microcopy of kidney sections from mice receiving siRNA nanoparticle formulations with 

Cy3-labeled nucleic acid and AlexaFluor350 (AF350) labeled CDP at 10 min. White 

arrows indicate glomeruli, dotted white arrows indicates proximal tubules, blue arrows 
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indicate peri-tubule capillaries, white arrow heads indicate collecting tubules. Green=Cy3-

labled nucleic acid, Red= AF350-CDP, yellow=co-localization of Cy3 and AF350 signals. 

(B) left –  Images of a glomerulus and middle – tip of a renal papilla at 10 min from a 

kidney of a dual labeled Tf-siRNA nanoparticle treated mouse. Circles indicate co-

localization of Cy3 and AF350 signals in the collecting tubule lumen indicating re-

assembly of the nanoparticle components as they are filtered through the kidney. Right: 

image of the kidney cortex from a mouse receiving only AF350-CDP. (C) Images of 

kidney regions at 120 min from mice receiving the indicated treatment.  

 

 

Supplemental Figure S2: Characterization of dual-labeled fluorescent siRNA nanoparticles. 

(A) AlexaFluor 350 (AF350) is conjugated to the terminal ends of the CDP in place of 

imidazole. (B) The presence of 80% Cy3-siRNA and/or 80% AF350-CDP did not affect 

siRNA encapsulation. (C) Particles formulated with an 80% fluorescently labeled fraction 

of CDP and siRNA are similar in size, zeta potential, and stability to the standard particle 



 208 

formulation.  To measure salt stability, particle size was tracked by DLS for 5min, then 

PBS was added to make 1xPBS solution, the sample was then immediately put back into 

the DLS machine and tracked for a further 10min. 
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Chapter 9: Evaluating the potential of using exosomal and plasma 

microRNAs as markers of drug activity: B-Raf(V600E) inhibition in 

melanoma as a model system.  
 

9.1 Abstract:  

MicroRNAs have emerged as promising biomarkers for cancer owing to their 

stability in bio-specimens (tissue and blood) and their relative ease of detection. Here, we 

evaluated the hypothesis that exosomal microRNAs secreted from melanoma cells can be 

used as marker of drug activity. We first characterized the total RNA content of cell line 

derived melanoma exosomes by deep sequencing to understand the relationship between 

intracellular and exosomal RNA. We found that relative abundances of mRNAs and 

mature microRNAs were correlated between cells and exosomes. Additionally, we found 

that exosomes were enriched for tRNA, intronic and intergenic sequences of RNA. Using 

microarray profiling and real-time PCR, we examined the kinetics of intracellular 

microRNA expression changes following treatment with the B-Raf inhibitor PLX4720. 

We observed treatment specific microRNA expression alterations that reached maximum 

magnitudes at 24 hours post treatment. We also examined the microRNA expression 

profile of two melanoma cell lines with acquired resistance to B-Raf inhibitor therapy 

and found that different mechanisms of drug resistance were associated with different 

alterations to the microRNA transcriptome. We demonstrated that PXL4720 treatment 

resulted in detectable changes to microRNA levels in melanoma cell line derived 

exosomes. We performed label-free quantitative mass-spectrometery proteomic analysis 

of exosomes from PLX4720 treated cells. We observed clear changes to protein levels in 

exosomes related to PLX4720 treated, such as up-regulation of several receptor tyrosine 

kinases.  Finally, we examined the microRNA expression profile in plasma from seven 
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melanoma patients before and after initiation of B-Raf inhibitor therapy and compared 

these expression patterns to 5 healthy patient plasma samples. We observed changes in 

circulating levels of several microRNAs we speculate could have been related to 

treatment response.  

9.2 Introduction: 

Incorporation of non-invasively measured markers of drug action and disease 

response into clinical trial design could aide in the evaluation of therapeutic compounds. 

For development of targeted therapeutics in particular, trials designed solely to assess 

maximal tolerable dose (MTD) and treatment efficiency based on Response Evaluation 

Criteria In Solid Tumors (RECIST) are less applicable than for cytotoxic 

chemotherapies
1
. In clinical trials evaluating targeted therapeutics other functional 

determinants of the biologic activity and clinical responses are also necessary for 

establishing their mechanism in patients. As we learned from the clinical trial whose 

results we presented in Chapter 2 of this thesis, getting biopsy samples to achieve 

mechanistic proof of function is challenging. Establishment of non-invasive blood-based 

analyses that can provide evidence about a targeted therapy’s mechanism of action in 

patients is highly desirable.  

MicroRNA (miRNA) are ~22 nucleotide long, endogenous non-coding RNAs that 

regulate gene expression post-transcriptionally. miRNAs have emerged as an extremely 

promising new class of biomarkers.  Besides their unusually high stability in formalin 

fixed tissue, miRNAs have been demonstrated to be remarkably stable in human blood
2
.  

Some circulating miRNAs are believed to be packaged into small membrane 

bound vesicles known as exosomes (c.a. 10-100nm in diameter) shed from tumors into 
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circulation 
3
. This packaging is thought to protect the RNA from degradation in the extra-

cellular environment. Several types of cancer are associated with increases in circulating 

exosome populations including melanoma, lung, and ovarian cancers
4–6

.  In ovarian 

cancer the increases in circulating exosomes have been demonstrated to be proportional 

to increasing disease stage
4
. Exosomes can be isolated from patient blood based on their 

physical characteristics (size, density) and protein markers. Therefore, analysis of this 

population of vesicles isolated out of blood, if selected via tumor markers, may provide 

specific information about the tumor itself. 

The miRNA profile of tumor derived exosomes has been reported to be 

representative of the intracellular miRNA profile from the cells they are derived from
7
. 

However, several reports have demonstrated that there may be preferential enrichment or 

depletion of certain miRNAs from exosomes
8
. Advanced stage melanoma patients have 

an increased level of exosomes in their circulation
5
 and significant effort has been made 

to understand the miRNA expression alterations associated with progressive disease, 

mutational status, and survival
9,10

. Surprisingly, to date, no miRNA profiling has been 

performed on extracellular RNA derived from melanoma patients or cell lines. A single 

study has examined miRNA profile from circulating blood cells; however, analysis of 

miRNA from this population of erythrocytes and white blood cells may not be as 

informative as analysis of circulating miRNA derived from tumor tissue directly
11

. 

Additionally, a single study has investigated plasma levels of miR-221 in melanoma 

patients
12

.  

We believe that cell-free circulating miRNA encapsulated in tumor derived 

exosomes could serve as useful, time-dependent biomarkers for melanoma diagnosis and 
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monitoring of disease progression. Here, we tested the hypothesis that intracellular 

changes to the microRNA transcriptome induced by drug treatment can be measured in 

tumor derived exosomes. To test this hypothesis we employed a clinically relevant model 

system, pharmacologic inhibition of B-RafV600E in melanoma. Vemurafenib is an 

inhibitor of the mutant B-Raf kinase (V600E). It was discovered using a crystallography-

guided, scaffold-based drug design approach
13

. This approach allowed for an inhibitor 

that preferentially bound to the mutant form of the B-Raf kinase (affinity of 31nM versus 

100nM for the wild type) 
13

. Only cells harboring B-Raf(V600E) are sensitive to 

vemurafenib treatment
16,17

  Early clinical trials demonstrated a remarkable 80% response 

rate and since then it has been demonstrated to prolong patient survival and gained FDA 

approval
14

; however, acquired drug resistance emerges frequently
15

. Paradoxically, 

vemurafenib treatment results in stimulation of the MAPK pathway in some BRAF wild 

type cells
18

. Therefore, we hypothesized that inhibition of B-Raf with an analogue of 

vemurafenib, PLX4720, would result in treatment specific changes to the microRNA 

transcriptome that will be measureable in exosomes secreted from PLX4720 treated 

melanoma cell lines and tumors. Additionally, we hypothesized that we could detect 

treatment related changes in circulating microRNA from the plasma of melanoma 

patients receiving B-Raf inhibitors.  

9.3 Results: 

9.3.1 Isolation and characterization exosomes secreted from human melanoma cell 

lines.  

We first developed a protocol for isolation of exosomes from melanoma cell 

culture media utilizing a differential centrifugation protocol based on previous work
19

. 
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Successful isolation of exosomes was confirmed by electron microscopy (cup shaped 

morphology) and western blotting (CD63 enrichment in exosomes) (Fig. 9.1). RNA was 

then isolated from cells and their corresponding exosomes. RNA from exosomes was 

found to be enriched for low molecular weight RNA species (Fig. 9.1B). Overall, the 

total amount of RNA in exosomes is several orders of magnitude less than the total 

amount of RNA found in cells. Melanoma exosomes were also found to contain N-Ras 

protein and the transferrin receptor (Fig. 9.1C).  

 

Figure 9.11: Isolation and characterization of exosomes secreted from M202 melanoma 

cells. (A) TEM analysis of purified exosomes. (B) Bioanalyzer trace of exosomal RNA, peak at 

25 seconds is low molecular weight RNA fraction. (C) Western blot analysis of exosomal marker 

CD63 in cells and exosomes.  

9.3.2 Characterization of mRNA and microRNA profiles of exosomes secreted by 

melanoma cell lines. 

  We quantitatively examined the levels of mRNA and microRNA in two human 

melanoma cell lines and their secreted exosomes.  RNA-seq analysis revealed global 

differences in the type of RNA present intracellularly and within exosomes (Fig. 9.2A). 

We observed depletion in exonic and enrichment in intronic mRNA sequences within 

exosomes. Additionally, we observed enrichment in intergenic sequences within 

exosomes. The relative abundances of mRNA were found to be correlated between cells 
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and exosomes in both cell lines (Fig.9.2B). 711 mRNA transcripts were found to be 

differentially enriched between cells and exosomes.  

 

Figure 9.12: RNA-seq analysis of M202 and M249 human melanoma cell lines and their 

secreted exosomes.  (A) Global composition of cellular and exosomal RNA. (B) Scatter plot of 

Log2 sequence reads of mRNA transcripts from cells and exosomes. (C) Top twenty most 

abundant mRNA transcripts in exosomes from both cell lines.  

The 464 exosomally enriched transcripts were found to be related to ribonucleoprotein 

complexes, translation initiation, microtubules, and chromosome assembly. The 247 

exosomally depleted transcripts were related to the mitochondrion, protein transport, and 

ribosomal proteins. The most abundant exosomal transcripts were found to be highly 

enriched compared to intracellular transcripts (Fig. 9.2C). Several of the highest 

abundance exosomal transcripts were found to be common between the two cell lines 

including TRAK2, RAB13, KIF1C, VIM, and EEF2.  
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Figure 9.3: smRNA-seq analysis of M202 and M249 human melanoma cell lines and 

their secreted exosomes. (A) Global composition of cellular and exosomal small RNA. (B) 

Scatter plot of Log2 sequence reads of mature microRNAs from cells and exosomes. (C) 

Histogram of the top 10 most abundant microRNAs in exosomes and their corresponding 

intracellular levels. 

 

We next characterized the low molecular weight RNA species within the cells and 

exosomes (Fig. 9.3). Intracellularly, microRNAs made up the majority of small RNA 

species. In exosomes, tRNA was found to be the dominant small RNA specie while 

mature microRNA composed only 13-19% of the total small RNA population. The M249 

cell line was also found have an enriched population of scRNA. Only trace amounts of 

immature microRNAs were detected.  

Globally, the abundances of microRNA species in cells and exosomes were found 

to be correlated in both cell lines (Fig. 9.3B).  We observed that 2 microRNAs dominated 

the expression pattern of cells and exosomes of both cell lines– miR-21 and miR -146a.  
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MiR-30d and let-7a were also found in high abundance in both cell lines. We observed 

differential enrichment of 53 and 74 microRNAs into exosomes of M202 and M249 cell 

lines respectively; 43 of which were common between the two cell lines.   

9.3.3 Kinetics of miRNA expression changes following B-Raf(V600E) inhibition by 

PLX4720 treatment.  

We examined the microRNA transcriptome of three B-Raf(V600E) positive 

human melanoma cell lines by microarray analysis at multiple time points after treatment 

with 1µM PLX4720 (Fig. 9.4). All three cell lines, M249, M229, and HT-144 have 

PLX4720 EC50s below 1µM. At 6 hours post treatment we observed 28 differentially 

expressed microRNAs between PLX4720 and DMSO control treated samples. 

microRNAs were considered differentially expressed if they were found to be 

significantly up or down regulated at least 1.5 fold in 2 of the 3 cell lines tested.  Most 

PXL4720 induced microRNA changes were increases in expression between 1.5 and 3 

fold.  Only two microRNAs, miR-29b* and miR-222* were found to respond to 

PLX4720 treatment (~2 fold decrease) in all three cell lines.  

At 24 hours post treatment we observed 58 differentially expressed microRNAs in 

the PLX4720 treated cells. The magnitude of the expression changes were also increased, 

although no changes greater than 8.33 fold were observed in any cell line. 15 microRNAs 

were found to respond to PLX4720 treatment in all three cell lines (14 up regulated, 1 

down regulated). miR-3663-3p was up regulated among all three cell lines the most (5.6 

fold average) and mR-92a was down regulated the most (0.6 fold average). Several up 

regulated microRNAs at 6 hours were found to be further up regulated at 24 hours.  
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At 72 hours the number of differentially expressed microRNAs had decreased to 

29. 4 microRNAs were found to be differentially expressed in all PLX4720 treated cells 

at this time point, miR-211, miR-92a, miR-1972, and miR-338-3p. miR-211 was the only 

microRNA elevated >2 fold in all cell lines.  

To validate the microarray results, we examined the expression of 7 microRNAs 

via real-time PCR at 48 hours post PXL4720 treatment (Fig. 9.4B). The PCR data 

matched closely the data obtained from the 72 hours microarray study. 
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Figure 9.4: Kinetics of miRNA expression changes following B-Raf(V600E) inhibition by 

PLX4720 treatment. (A) Heat map of differentially expressed microRNA in three cell lines over 

time. (B) Real-time PCR validation of microarray results.   
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9.3.4 microRNA expression changes following PLX4720 treatment are specific to 

treatment response.  

We examined the expression of several PXL4720 responsive microRNAs  

following PLX4720 treatment in two human melanoma cells lines lacking a B-

Raf(V600E) mutation (M202, M207) and two cell lines with acquired resistance to 

Vemurafenib (the clinical version of PLX472) (Fig. 9.5). We did not observe alterations 

to the expression of treatment responsive microRNA in these cell lines. These data 

suggested that the microRNA expression changes following PLX4720 resulted from 

response to BRAF inhibition rather than non-specific effects of the compound itself.  

Additionally, full microRNA transcriptome analysis of two Vemurafenib resistant cell 

lines, M229 R5 and M249 R4, following 6 hours of PLX4720 treatment resulted in no 

significant changes to the expression of any microRNA. 

 

Figure 9.5: PLX4720 did not induce changes in microRNA expression in treatment resistant 

cell lines.  Real-time PCR expression analysis of microRNA expression.  
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9.3.5 microRNA expression changes following PX4720 are dose dependent.  

We examined the dose dependence of PXL4720 induced microRNA expression 

changes in HT-144 cells. We observed a correlation between PLX4720 concentration and 

magnitude of the change in microRNA expression.  

 

Figure 9.6: Dose dependence of PX4720 microRNA expression changes. Real-time PCR 

analysis of microRNA expression in HT-144 cells that were treated with the indicated amount of 

PX4720 for 48 hours. Expression data are normalized to miR-16.  

9.3.6 Correlation of PLX4720 induced microRNA changes and cellular responses 

to PLX4720 treatment.  

We next examined the relationship between cellular response to PXL4720 

treatment and kinetics of PLX4720 induced microRNA expression changes (Fig. 9.7).  

MAPK pathway output was rapidly suppressed following B-Raf inhibition (Fig. 9.7A). 

However, cell cycle arrest did not initiate until 12 hours after treatment and was not 

complete until 24 hours (Fig. 9.7B). Apoptosis occurred after prolonged B-Raf inhibition 

(48 hours) (Fig. 9.7C).  

The majority of PLX4720 induced microRNA changes were observed at 24 hours 

after PLX4720 treatment. These changes were temporally correlated with complete 

induction of cell cycle arrest. The PLX4720 induced microRNA changes detected at 6 
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hours post dosing preceded cell cycle arrest by several hours and may likely have been 

more directly due to drop in MAPK pathway output.  

The microRNA changes observed in the microRNA study at 72 hours were found 

to be temporally correlated with apoptosis initiation. We examined miR-211, miR-584, 

and miR-338-3p expression at multiple time points after PLX4720 treatment (Fig. 9.7D). 

We found that PLX4720 induced changes in their expressions reached their highest 

magnitude by 48 hours post treatment, which correlated with significant apoptosis 

induction. These data suggest that these microRNAs are expressed in the remaining live 

cells in the culture dish. Therefore, these microRNAs may be both indicators of drug 

activity and emerging resistance.  

 

 

Figure 9.7: Late PLX4720 response microRNAs were temporally correlated with cell cycle 

arrest and apoptosis rather than MAPK pathway inhibition. (A) Western blot analysis of 

phosphorylated ERK1/2 levels following B-Raf inhibition with vemurafenib (data reproduced 

from
17

).  Flow cytomerty based (B) cell cycle analysis and (C) Annexin V apoptosis analysis of 

M229 cells at multiple time points after PLX4720 addition. (D) Real-time PCR analysis of 3 
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PXL4720 responsive microRNA in M249, HT-144, and M249 melanoma cell lines at several 

time points after PLX4720 treatment.  

9.3.7 BRAF inhibitor resistance is associated with changes in microRNA 

expression.  

We hypothesized that acquired resistance to BRAF inhibitor therapy would result 

in an altered microRNA expression pattern in those cells. To test this hypothesis, we 

examined the microRNA expression profile via microRNA analysis on two melanoma 

cell lines with acquired resistance to Vemurafenib (M229 R5 and M249 R4) in the 

presence and absence of PX4720. We observed many significant microRNA expression 

changes in both cell lines compared to their sensitive parent cell lines (Table 9.1).  

There were considerably more microRNA expression changes in the M229 R5 

cell line than the M249 R4 cell line. The expressions of 93 microRNAs were found to be 

significantly changed by at least 2 fold (including 15 with >10 fold changes) in M229 R4 

cells compared to M229 cells. miR-146a, a microRNA found in high abundance in all the 

melanoma cell lines profiled, was found to be completely silenced in the M229 R4 cells 

(>1000 fold decrease in expression). The PLX4720 inducible microRNAs miR-211, miR-

338-3p, and miR-204 were all observed to be down regulated in M229 R4 cells. The 

PLX4720 repressed miR-584 was found to be down regulated in M229 R4. PCR was 

used to confirm the expression differences in these microRNAs of interest (Fig. 9.8B).   
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Figure 9.8: microRNA profiling of melanoma cell lines with acquired resistance to B-Raf 

inhibitor therapy. (A) Heat map of significantly differentially expressed microRNA (Median 

FDR<0.1%, 2 fold cut off). Cells were grown in 1uM PLX4720 or DMSO control for 6 Hr. (B) 

Real-time PCR validation of microarray expression data. 

 M249 R5 cells were observed to have 20 microRNAs differentially expressed at 

least 2 fold from M249 cells. All microRNAs were within an order of magnitude of 

expression between the two cell lines.  

 The mechanisms of Vemurafenib resistance of these two cell lines are known
20

. 

M229 R4 was found to have up regulated expression and activity or platelet derived 

growth factor beta (PDGFRβ) that circumvents B-Raf signaling. M249 R5 was found to 

have acquired an activating N-Ras mutation directly upstream of B-Raf. The microRNAs 

found to be differentially expressed between M229 R5 and M229 cells likely represent 
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direct targets of PDGFRβ. microRNAs found to be differentially expressed in M249 R5 

versus M249 are likely direct targets of MAPK signaling in melanoma.  

9.3.8 PLX4720 treatment induced changes in microRNA levels in exosomes.  

We hypothesized that the observed intracellular microRNA expression changes in 

response to PXL4720 treatment would be recapitulated in the exosomes secreted from 

these cell lines. To test this hypothesis we examined the microRNA profile of exosomes 

from melanoma cell lines treated with PLX4720.  

We observed significant microRNA level changes after PLX4720 treatment in 

exosomes secreted from each cell line examined (Fig. 9.9). Between 12 (M249) and 36 

(HT-144) micoRNAs were found to be differentially secreted in exosomes from 

PLX4720 and vehicle treated cells. PLX4720 did not induce any changes in microRNA 

levels in exosomes from a PLX4720 resistant cell line (M202).  
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Table 9.1: Highly differentially expressed microRNA in Vemurafenib resistant cell lines. 

Fold change = ratio of expression level in resistant cell line compared to its drug sensitive 

parental cell line. Only microRNAs with at least a 4 fold change in expression in the M229 R5 

cell line were listed. All significantly differentially expressed microRNAs in M249 R5 were 

listed.  

 

However, there were no significant microRNA level changes common in 

exosomes among all 3 cell lines. 3 microRNAs were found to be significantly elevated in 

2 of the 3 cell lines, miR-211, miR-338-3p, and miR-204. miR-211 and miR-204 were 

also found to be elevated though not to the level of statistical significance in exosomes 

from the third cell line, whereas miR-338-3p was only elevated in M229 and HT-144 

exosomes. miR-22* was also found to be induced by PLX4720 treatment in M249 and 

HT-144 exosomes via PCR (Fig. 9.9B).  
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Figure 9.9:   (A) Heat map of significantly differentially expressed microRNA in exosomes from 

the indicated melanoma cell line (Median FDR<0.1%, 1.5 fold cut off). M229, HT-144, and 

M249 are sensitive to B-Raf inhibition, M202 is resistant. (B) Real-time PCR validation of 

microRNA levels in exosomes from the indicated cell lines following PLX4720 treatment or 

vehicle control.  

 

9.3.9 Quantitative proteomic analysis of melanoma exosomes following PLX4720 

treatment.  

We also hypothesized that PLX4720 treatment would result in detectable changes 

to the exosomal proteome. To test this hypothesis we employed label-free quantitative 

mass-spectrometry analyses to examine the M249 exosomal proteome in the presence or 

absence of PLX4720. We observed clear changes to the exosomal proteome in the 

presence of PLX4720 (Table 9.2). 84 proteins were found to be uniquely present in 

exosomes secreted from PLX4720 treated cell lines. 52 proteins identified in exosomes 
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from vehicle treated cells were not detected in exosomes from the PLX4720 treated cells. 

Of particular note, was the presence of VEGFRs and PDGFRs only in exosomes from 

PLX4720 treated samples. Up regulation of these receptor  

Uniquely identified in 
Exosomes following 
PLX4720 treatment   

Enriched in Exosomes following 
PLX4720 treatment   

Depleted from Exosomes following 
PLX4720 treatment   

Not identified in Exosomes 
following PLX4720 treatment 

Gene Symbol   

Gene 
Symbol 

PXL4720/DMSO  
Fold Change   Gene Symbol 

PXL4720/DMSO 
Fold Change   Gene Symbol 

H14 
 

RS8 7.13 
 

FN1 0.25 
 

IL1AP 

H12 
 

H32 7.06 
 

TSP2 0.18 
 

UBL3 

H13 
 

H33 6.99 
 

EDIL3 0.32 
 

TSN9 

RPL14 

 

HIST1H3A 6.92 

 

AAAT 0.36 

 

GOG7B 

RL10 

 

H31T 6.92 

 

CEACAM1 0.44 

 

CH10 

XRCC6 
 

H4 6.69 
 

DNJA1 0.45 
 

IST1 

HP1BP3 
 

H3C 6.55 
 

ADA10 0.43 
 

VP37B 

BAF 
 

H2A2B 6.39 
 

PLS1 0.48 
 

AT1B1 

TYRP1 
 

H2A1H 6.36 
 

RAP2B 0.59 
 

ITIH5 

GNB2L1 
 

H2A1C 6.33 
 

RAB7A 0.59 
 

ANXA1 

DHX9 
 

H2AX 6.33 
 

IGSF8 0.49 
 

RGAP1 

H2AY 

 

H2A1B 6.30 

 

AT1B3 0.60 

 

M4K4 

MPRI 
 

H2A1D 6.30 

 

UBA52/RPS27A/UBB/UBC 0.60 

 

CALU 

RL15 
 

H2A2A 6.30 
 

AT12A 0.54 
 

DSG2 

SYVC 
 

H2A2C 6.30 
 

ITA7 0.56 
 

ANO6 

PSD13 
 

H2A1A 6.30 
 

GRP78 0.65 
 

PXDN 

VGFR1 
 

H2A1J 6.30 
 

AT1A4 0.57 
 

TENA 

GSK3B 
 

H2A3 6.30 
 

AT1A3 0.60 
 

UE2NL 

VGFR2 
 

H2A1 6.27 
 

AT1A1 0.60 
 

IF5A1 

SRS11 

 

H2AJ 6.23 

 

ATP4A 0.63 

 

VPS4A 

PGFRA 
 

H2AZ 6.23 
 

RP1BL 0.63 
 

K1C10 

EPRS 
 

H2B3B 6.20 
 

UBA52/RPS27A/UBB/UBC 0.62 
 

RAB23 

VGFR3 
 

H2AV 6.17 
 

UBA52/RPS27A/UBB/UBC 0.62 
 

NRP2 

PGFRB 
 

H2B1D 6.14 
 

COPT1 0.45 
 

PKHB2 

RS3A 
 

H2B2F 6.14 
 

AT1A2 0.61 
 

SCRIB 

L1CAM 

 

H2B1O 6.14 

 

RAP1B 0.66 

 

NEDD4L 

K6PF 
 

H2B2E 6.14 
 

ICAM1 0.64 
 

SPTAN1 

RS27 

 

H2B1H 6.11 

 

ARF1 0.67 

 

EPHA5 

RS27L 
 

H2B1J 6.11 
 

FPRP 0.61 
 

TSN14 

HNRNPC 
 

H2B1A 6.11 
 

AT2B1 0.69 
 

YES 

SRSF3 
 

H2B1K 6.08 
 

SNP23 0.68 
 

SERPINC1 

RL10A 
 

H2BFS 6.08 
 

RADI 0.70 
 

TS101 

MK03 
 

H2B1L 6.05 
 

SCRB1 0.67 
 

SRC 

DDX17 
 

H2B1M 6.05 
 

PDC6I 0.63 
 

PRPS3 

COPB 
 

H2B1C 6.05 
 

EZRI 0.71 
 

PZP 

KIF5A 

 

H2B1N 6.05 

 

EPHA4 0.60 

 

ACSL3 

PLEC 
 

H2B1B 6.05 
 

CSPG4 0.67 
 

SC6A8 

PSDE 
 

RL18 5.34 
 

HSP7C 0.68 
 

FARP2 

RS24 
 

MVP 4.20 
 

HSP72 0.70 
 

LASP1 

RL5 
 

XRCC5 4.03 
 

CD59 0.71 
 

DYN2 

RL8 
 

RL7 3.10 
    

K1C15 

RS14 
 

CLH1 3.02 
    

UBE2N 

PRS10 
 

CLH2 2.83 
    

MOT7 

NLK 

 

RL29 2.61 

    

SNTB1 

FLT3 
 

RL30 2.57 
    

TBCA 

SCAM2 

 

MYH10 2.40 

    

GDF15 

NPC2 
 

CAV1 2.35 
    

E41L2 

RS23 
 

DYHC1 2.30 
    

PSB9 

LMNA 
 

PSMD1 2.24 
    

DLRB1 

SYDC 
 

TCPA 2.15 
    

YKT6 

DYNC1I2 
 

CLCA 2.12 
    

PSA6 

DDX3X 

 

TCPG 2.06 

    

EPHA3 

CTL2 
 

AGRIN 2.06 
     SMD3 

 

SND1 1.97 
     GNA13 

 

SIAS 1.97 
     RL32 

 

TCPD 1.91 
     RS3 

 

ARP2 1.91 
     SSBP 

 

MYH11 1.91 
     RL17 

 

RPSA 1.87 
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RS16 

 

PLS3 1.85 

     2ABA 
 

MYPR 1.82 
     HNRPU 

 

RAN 1.81 

     YPEL4 
 

TCPQ 1.77 
     COPG 

 

MYH9 1.76 
     MAP4 

 

PUR9 1.75 
     DPYL2 

 

GNS 1.69 
     CATL2 

 

MYO5A 1.68 
     EM55 

 

FASN 1.67 
     RL28 

 

TCPE 1.63 
     KIF5C 

 

MFGM 1.63 

     PTGR1 
 

IGSF3 1.59 
     ACON 

 

UBA1 1.56 
     S10A6 

 

HSPB1 1.54 
     FBRL 

 

TBB4Q 1.53 
     FSCN1 

 

WDR1 1.51 
     TIF1B 

 

SERA 1.51 
     TPM4 

 

TBB8 1.48 
     TPM2 

 

SAHH 1.48 

     RAB6B 
 

TBB4B 1.41 
     MYO5B 

 

TBA1B 1.39 

     LIPB1 
 

TBA1A 1.38 
     COMT 

 

TBA4A 1.37 
     RL13 

        PABP4 
         

Table 9.2:   Label-free quantitative proteomic analysis of M249 exosomes 72 hours following 

PLX4720 treatment. 

tyrosine kinases has been demonstrated to result from the release of feedback inhibition 

following treatment with MAPK targeted therapeutics. Increased levels of these proteins 

in exosomes could be useful for validating target inhibition. The level of Histones in 

exosomes from PLX4720 treated cells is greatly elevated, suggestive that apoptosis was 

occurring. These data suggest that exosomal proteins could be used to detect cellular 

response to B-Raf inhibition.  

9.3.10 In vivo PLX4720 treatment induced miR-211 up-regulation in HT-144 

tumors, but down regulation in circulating exosomes.  

We hypothesized that microRNA changes in tumors and exosomes observed in vitro 

could be recapitulated in the in vivo setting. To test this hypothesis we treated HT-144 

tumor bearing mice with 3 daily doses of 20mg/kg PLX4720 or vehicle control (DMSO) 

via intraperitoneal administration. 72 hours after initiating treatment the mice were 

euthanized and blood and tumors were collected.  
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 Total RNA from the tumors were collected and probed for miR-211 levels. We 

observed a 2 fold significant increase in miR-211 expression in tumors from PLX4720 

treated mice compared to vehicle control. These data confirm that microRNA can 

indicate drug activity in vivo. 

 

Figure 9.10: Characterization of serum exosomes from HT-144 tumor bearing mice treated 

with PXL4720. (A) Nanoparticle tracking analysis of exosomes in serum. (B) PCR quantification 

of miR-211 levels in tumors and serum exosomes. Error bars=S.D., n=5. P-values are from two 

tailed t-test.  

We isolated exosomes from the serum of all mice used in this study via exoquick 

precipitation. Exosomes from all animals were characterized via nanosight analysis. 

Exosomes were found to have an average size of ~80nm in both treatment groups. A ~2 

fold decrease in the total number of exosomes was observed in the serum of the PLX4720 

treated mice; however, this was not statistically significant.  

We then isolated RNA from the exosomes and quantified the amount of miR-211 

levels from each sample. Surprisingly, we observed a ~80% drop in miR-211 levels in the 

serum exosomes from PLX4720 treated mice compared to controls. These data were 
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consistent with the finding of reduced exosome number, but inconsistent with our in vitro 

results of miR-211 induction following PLX4720 treatment.  

9.3.11 MicroRNA profiling of plasma from PRE and POST treatment samples from 

melanoma patients enrolled in BRAF inhibitor clinical trials.   

We examined the plasma microRNA profile of 7 melanoma patients and 5 healthy 

controls via microarray analysis. Paired PRE and POST treatment samples were available 

for 6 of the melanoma patients. Patients were on therapy with Vemurafenib or 

GSK2118436 B-Raf inhibitors and remained on therapy continuously in the interim 

between PRE and POST samples. All patients were responding to drug at the time of the 

post treatment sample collection. Total plasma RNA was extracted from all plasma 

samples and subjected to microarray analysis.  

Melanoma patient plasma was clearly distinct from the healthy controls (Fig. 

9.11A). 188 microRNAs were found have altered expression in the plasma of melanoma 

patients. Most of these were increases in microRNA levels with only 2 microRNAs, miR-

720 and miR-4290 decreased in melanoma patient plasma. Many microRNAs were found 

to be present at levels greater than tenfold compared to the healthy control plasma (Fig. 

9.11B). Several of the most enriched microRNAs in melanoma patient plasma were 

known oncomirs including miR-20a, miR-19b, and miR-17
21

.  

We next compared the PRE and POST treatment melanoma plasma pairs (Fig. 

9.12). On average, there were no differences between the PRE and POST treatment 

patient samples. On a patient by patient basis there was some evidence for treatment 

related microRNA level changes. We observed large changes in plasma microRNA levels 

following treatment initiation in 4 out of the 6 patients examined (Fig. 9.12). We 
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observed almost no changes in plasma microRNA levels in patients MR and DJ. In the 4 

patients with large changes in microRNA expression levels there was some potential 

correlation between microRNA level changes among the patients.  

 

 

Figure 9.11: MicroRNA profiling of plasma from melanoma patients in B-Raf inhibitor 

trials and healthy controls. (A) Heat map of all significantly differentially expressed 

microRNAs between melanoma patients and healthy controls. (B) Table of top 10 most highly 

increased microRNA in melanoma patient samples compared to health control. Fold change is 

ratio of average microRNA intensity for the indicated groups. PRE= before starting treatment, 

POST=after treatment, CON=healthy control.  

 12 microRNAs were found to be 6-25 fold higher in patients RA and DW whose 

post treatment plasma samples were collected within one month of treatment initiation 

(Table 9.3). Many of these same microRNAs were found to be decreased >4 fold in 

patients CK and DB whose post treatment plasma samples were collected several months 

after treatment initiation. The data point to these microRNAs as possible indicators of 

early drug activity and either longer term drug response or emerging resistance. We 
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observed several of these microRNAs to be responsive to B-Raf inhibition in vitro 

including miR-30e, let-7i, mir-320, and miR-584.   

 

Figure 9.12: Patient by patient comparison of PRE and POST treatment plasma microRNA 

profiles. Scatter plots of Log2 microRNA spot intensities from microarray data comparing PRE 

and POST drug treatment plasma samples. Grey coloring of spots indicates >2 fold change in 

level of microRNA in POST sample. Vem=Vemurafenib, GSK= GSK2118436 B-Raf inhibitors. 

 

 A unique set of microRNAs were found to be elevated in the post dose sample 

from patient DB.  Several of these microRNAs were demonstrated to have highly altered 

expression in the vemurafenib resistant cell lines including mir-146a, miR-584, and miR-

199a. Of note, no changes in miR-211 or miR-338-3p levels were observed in these 

experiments.  

 In parallel to the microarray experiment we also performed a more limited study 

of three microRNAs, miR-211, miR-338-3p, and miR-204, in patient plasma collected 
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from a larger panel of patients (Fig. 9.13).  Plasma RNA was isolated from an additional 

13 melanoma patients as well as additional post treatment samples from the 7 melanoma 

patients described above. Many patients had several post dosing samples including 

samples where these patients’ cancers began progressing on treatment.  

 Plasma levels of miR-211, miR-338-3p, and miR-204, on average, were found to 

be elevated in the plasma taken from patients when their disease was progressing on 

treatment (Fig. 9.13). On average, miR-211 and miR-338-3p were also found to be highly 

elevated in melanoma patient plasma compared to healthy control plasma. For all these 

analyses the variability was very high and no data reached statistical significance.  
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Table 9.3: Potential treatment related plasma microRNA level changes in patient plasma. 

All microRNAs with fold changes greater than 4 between PRE and POST samples in at least one 

patient are listed. Green=decreased after treatment, Orange=increased after treatment.  
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Figure 9.113: Plasma levels of miR-211, miR-338-3p, and miR-204 in melanoma patients 

and healthy controls. Real-time PCR analysis of plasma levels of the indicated microRNA. 

Healthy controls n=5; PRE-dose n=13 for miR-211, n=11 for miR-338-3p and mir-204, On-Drug 

responding  n=30  for miR-211, n=14  for miR-338-3p and miR-204; On-Drug progressing n=10  

for miR-211, n=8  for miR-338-3p and miR-204. Error bars are SD.  

 

9.4 Discussion 

 Here, we have evaluated the potential of using the cellular material secreted in 

exosomes as markers of drug response and resistance.   

 The global RNA content of exosomes was found to be unique from the 

intracellular RNA profile. For long RNAs, exosomes were enriched for introns and inter-

genic sequences. These data suggest that exosomes may be elimination pathways for 

these cellular materials. The relative abundances of mRNA gene transcripts were 

correlated between cells and their secreted exosomes. With small RNAs, exosomes were 

found to be enriched for tRNA and in M249 exosomes small cytosolic RNAs (scRNA). 

In a similar fashion to the mRNA transcripts, the relative abundances of mature 

microRNAs were found to be correlated between cells and their secreted exosomes.  
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Treatment of sensitive cell lines with the B-Raf inhibitor PLX4720 resulted in 

specific alterations to their microRNA transcriptomes over time. Several miRNAs have 

been associated with the MAPK pathway. The expression of miR-7, -221, and -222 can 

be regulated by the MAPK/ERK pathway
22, 23

. Also, the ERK inhibitor U0126 resulted in 

expression alterations to miR-17, -20, -92a, and let-7a in HeLa cell
24

.  We also observed 

modulation of these microRNAs in our study as well as some additional microRNAs 

including miR-211, miR-338-3p, and miR-3663. miR-211 has been demonstrated to 

function as a tumor suppressor microRNA
25

 and miR-338-3p has been demonstrated to 

be up regulated in N-Ras/B-Raf wild type melanoma tumors compared B-Raf/N-Ras 

melanomas
9
. The data suggest that these microRNAs may be important for the 

pathogenesis of B-Raf mutant melanoma.  

We also identified microRNAs differential expressed in Vemurafenib resistant 

cell lines. The M229 R4 cell line, with up regulated PDGRβ signaling, showed more 

extensive perturbations to its microRNA transcriptome than the M249 R4 cell line that 

possessed an activating N-Ras mutation. These data suggest that different resistance 

mechanisms may be detected by analyzing microRNA profiles if these changes are 

recapitulated in exosomes. Additionally, these data point to many microRNAs that may 

be regulated by PDGRβ pathway and N-Ras mutations.  

We were able to detect changes in the microRNA profile of exosomes secreted 

from PLX4720 treated cell lines. These data suggest that exosomal microRNA can be 

used to monitor drug activity. However, no distinctive treatment responsive microRNA 

profile emerged. Each cell line had distinct microRNA changes in their exosomes. Only 

miR-211 was found to be up regulated in exosomes following PLX4720 treatment in all 
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cell lines. Also, the magnitude of the microRNA expression changes in exosomes was 

rarely above 2 fold following PLX4720. We speculate that a much larger magnitude shift 

in microRNA levels would be required for successful implementation of exosomal 

microRNA markers for use in clinical samples.  

In vivo we found that miR-211 expression was induced within PLX4720 treated 

tumors. However, the miR-211 level in circulating exosomes was decreased. However, 

the variability in these measurements was extremely higher, further suggesting that larger 

magnitude microRNA changes in response to treatment than those observed in our study 

would be required for a robust clinical assay.  

There were many limitations to the microRNA profiling of the patient plasma 

samples including small sample size, multiple drugs, and inconsistent sampling times. 

Despite these limitations, several microRNAs of interest did emerge from this study. 

However, validation on a much larger and more standardized set of patients samples 

would be required to determine if these microRNAs can be used as marker so drug 

response and resistance.  

From these studies we came to several conclusions about the use of extracellular 

microRNAs and exosomes as marker of drug activity. (1) We found that both mRNA and 

microRNA expression profiles are correlated between cells and their secreted exosomes. 

Therefore tumor derived exosomes in patient circulation may provide accurate 

information about the RNA transcriptome of a patient’s tumors. (2) We found that 

microRNA expression alterations in response to B-Raf inhibitor therapy were transient 

(peaking at 24 hours). These data suggest that circulating microRNAs should be assessed 

between 24-48 hours after treatment initiation. (3) We found that drug resistance was 
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associated with many high magnitude (>10 fold) microRNA expression changes. We 

believe that monitoring circulating levels of these microRNAs may be useful for 

detecting and characterizing emerging drug resistance in patients. (4) We demonstrated 

that exosomal microRNA levels could be affected by PLX4720 treatment. These data 

demonstrate, in principle, that exosomal microRNA could be used to monitor drug 

activity. However, there was considerable variability in which microRNA levels were 

affected among the cell lines tested and the changes in these levels were low magnitude. 

Therefore, their utility for detecting drug activity in patients is still unclear. (5) We 

demonstrated that exosomal protein levels could be affected by PLX4720 treatment. 

These data demonstrated that protein markers of apoptosis (increased amounts of 

histones) and drug activity (detection of RTKs) could be monitored in exosomes. 

Because up-regulation of receptor tyrosine kinases (RTKs) (e.g., PDGFRβ) due to loss of 

feedback inhibition following drugging of an oncogenic kinase is emerging as a general 

phenomenon for these therapeutic agents, we believe that monitoring of these RTKs in 

tumor derived exosomes in patient circulation may provide confirmation of drug action. 

(6) Our in vitro and in vivo studies of miR-211 levels in exosomes secreted from HT-144 

cells were inconsistent (up regulated in vitro and down regulated in vivo). We did observe 

up regulation of miR-211 within the tumor itself in vivo. Therefore, we hypothesized that 

the presence of non-tumor exosomes in the serum we collected confounded our results. 

We did observe some down regulation of miR-211 in drug insensitive cell lines (M202 

and M207) and it is possible that non-tumor cell exosomal secretion of the murine miR-

211 homologue from normal organs decreased in response to therapy and overwhelmed 
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the tumor signal. These data suggest that tumor exosomes should be isolated specifically 

for analyses from patient blood.  

9.5 Materials and Methods: 

Cell lines and culture 

Melanoma cell lines M202, M229, and M249 cell lines were established from patient’s 

biopsies under UCLA IRB approval #02-08-067 and have been previously 

characterized
17

. The HT-144, cell line was obtained from American Type Culture 

Collection (ATCC, Rockville, MD). All cell lines were cultured in complete serum media 

containing RPMI 160 with L-glutamine (Mediatech Inc., Manassas, VA) with 10% (all 

percentages represent v/v)  fetal bovine serum (FBS, Omega Scientific, Tarzana, CA), 

1% penicillin, streptomycin, and amphotericin (Omega Scientific) at 37°C with 5% CO2 

in filter-top flasks. 

Exosome isolation 

Cells were grown in media depleted of bovine exosomes (ultracentrifugation for 16hr at 

100,00xg) for 72 hours. Media was clarified via centrifugation at 300xg for 5 minutes, 

the supernatant was centrifuged at 2000xg for 20 minutes to remove cell debris, and 

subsequently at 10,000xg to remove large vesicles. Exosomes were pelleted via 

ultracentrifugation at 100,000xg for 90 minutes, washed with 50mL of PBS, and re-

pelleted. The final exosome pellet was suspended in PBS. Exosome yield was quantified 

using a BCA Assay (Thermo).  

Electron Microscopy 
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Exosome samples were fixed in 2% paraformaldehyde. Farmvir carbon coated grids were 

floated on 5μl of fixed exosomes for 5 minutes, washed for 30 seconds in water, and 

stained with 3% uranyl acetate for 30 seconds. Grids were dried and visualization under a 

120 kV BioTwin CM120 TEM (Philips).  

Western Blot analysis 

Total cell or exosome protein was extracted using RIPA Buffer (Thermo Fisher Scientific 

Inc., Waltham, MA). Lysates were diluted to equivalent protein concentration in beta-

mercaptoethanol-containing Laimmli sample buffer (Thermo-Fisher) and incubated at 

95
o
C for 5 minutes. Antibodies: mouse polyclonal anti-NRAS antibody, mouse-

polyclonal anti-hTFR, horseradish peroxidase-conjugated donkey anti-mouse 

immunoglobulin G (Santa Cruz Biotechnology, Santa Cruz, CA). Mouse anti-CD63 

antibody (BD biosciences). Development was done using SuperSignal West Dura 

Extended Duration Substrate (Thermo-Fisher). Blot images were captured using a 

Molecular Imager VersaDoc 3000 system (Bio-Rad, Hercules, CA). 

RNA isolation 

Total RNA, including the low molecular weight RNA fraction, was isolated from cells 

using the miRVana isolation kit (Ambion) or TRIzol (Invitrogen) following 

manufacturer’s instructions. Total RNA from exosomes was extracted using TRIzol-LS 

(Invitrogen) following manufacturer’s instructions. RNA from cells was quantified using 

a Nanodrop 2000 spectrophotometer (Thermo) and RNA form exosomes or cell culture 

supernatant, was quantified via RiboGreen Assay (Invitrogen).  

Microarray analysis and statistics 
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Fluorescent labeling and microarray hybridization were carried out by Ocean Ridge 

Biosciences (Jupiter, FL). Low molecular weight (LMW) RNA was purified from each 

cell sample by ultrafiltration. A set of 11 synthetic microRNAs are added at 1/100,000 

dilution to each LMW purified cellular or total exosomal RNA sample. RNA samples are 

labeled with Alexafluor- 647 fluorophore using Invitrogen's Rapid Labeling kit. Labeled 

miRNA were hybridized to ORB’s version 6.0 multispecies microarray, which provides 

full coverage of mirBASE version 15. After hybridization, the miRNA arrays were 

scanned using a GenePix 4000A array scanner (Axon Instruments, Union City, CA). Raw 

data intensities were Log2 transformed. Spots with intensities < 2 standard deviations 

above the negative control spots were removed from further analysis. Data were quantile 

normalized (Matlab) and triplicate spots were averaged. Data analysis and clustering was 

performed using MeV 4.4. Differentially expressed miRNA among the 4 cellular and 

exosome miRNA data sets were determined using a one way ANOVA analysis. 

Differentially expressed miRNA between cellular and exosome samples or DMSO and 

PLX4720 treated samples were identified using significance analysis of microarrays 

(SAM) with the R package ‘samr’ on median centered normalized data divided into two 

groups for 2 class paired t-test analysis. Unsupervised hierarchical clustering analysis on 

the basis of Pearson correlation and complete/average linkage clustering was performed 

on significant miRNA from each analysis.  

Real time reverse transcriptase PCR of miRNA 

Taqman miRNA qPCR assays (Applied Biosystems) were used for quantification of 

miRNA from total RNA from cells, exosomes, or cell culture supernatant and carried out 

according to manufacturer’s instructions. 5-10ng of total RNA was added to each reverse 
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transcription reactions and PCR reactions were performed in at least duplicate. Real-time 

PCR analysis was performed using a MyiQ Single Color Real Time PCR Detection 

System (Bio-Rad).   
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Chapter 10: Future directions: 

10.1 Improving circulation time is the key challenge for improving the efficacy of 

the siRNA/CDP nanoparticle system.  

In Chapter 8 of this thesis we elucidated the mechanism of rapid clearance of the 

siRNA/CDP nanoparticle system, disassembly at kidney glomerular basement membrane. 

Development of nanoparticles that can avoid this mechanism of clearance is necessary to 

improve their pharmacokinetic profile and thereby their efficacy.  

We believe there at least two promising design solutions to this problem. First, we 

hypothesize that siRNA nanoparticles with slightly negative zeta potentials will avoid 

this clearance mechanism. In Chapter 6 and 8 we demonstrated that PEGylated gold 

nanoparticles of similar size to the siRNA nanoparticles deposit within the mesangium, 

but not the glomerular basement membrane. The key difference between these two 

nanoparticle systems is their surface changes, positive for the siRNA nanoparticles and 

negative for the PEGylated gold nanoparticles. A siRNA nanoparticle with a negative 

surface potential will be repelled by the GBM, thereby preventing its disassembly and 

elongating its circulation time.  

Second, we hypothesize that siRNA nanoparticles assembled via non-electrostatic 

interactions will not be susceptible to this mechanism of clearance.  Disassembly of the 

siRNA nanoparticles at the GBM resulted from competition between the GBM negatively 

charged proteoglycans and negatively charged siRNA for binding to the positive CDP. If 

the nanoparticles were not assembled via electrostatic interactions this type of 

competition would not occur. We hypothesize that self-assembling polymer based siRNA 

nanoparticles can be created that do not use electrostatic interactions for assembly. We 
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propose the development of polymer delivery vehicles that are assembled via RNA base 

pairing between sense and anti-sense strands of siRNA that are each covalently linked to 

PEGylated polymer backbones. Creation of DNA nanoparticles through this type of 

interaction has been reported
1
 and we see no barrier to extending this methodology to 

siRNA.  

10.2 Clinical potential for Herceptin targeted siRNA nanoparticles.  

In Chapter 4 of this thesis we demonstrated that Herceptin targeted siRNA nanoparticles 

achieved more potent therapeutic effects than Herceptin alone in a breast cancer mouse 

xenograft model. We also demonstrated that siRNA induced Her2 knockdown could be 

an effective therapeutic option for Herceptin resistant Her2 (+) cancers. Future work with 

this system should be focused on evaluating a panel of Herceptin resistant cell lines with 

variable resistance mechanisms to learn which patients may benefit most from this 

treatment strategy. Additionally, subtypes of other cancers, most notably gastric cancers
2
, 

have amplified Her2 expression. The Herceptin targeted siRNA nanoparticle system 

could also be evaluated for use in these cancer subtypes.  

10.3 siRNA nanoparticles have promise for kidney disease. 

In Chapters 8 of this thesis we demonstrated the ability of nanoparticles to reach the 

kidney and delivery siRNA payloads. There are many forms of acute and chronic kidney 

disease that could benefit from highly specific, kidney targeted therapeutics. Several 

proteins including, PDGFRβ and TGFRβ, that have been implicated in renal fibrosis in 

response to both acute and chronic renal injury
3
. These proteins are difficult to drug 

specifically via traditional small drugs and therefore are promising targets from siRNA 

based therapeutics. PDGFRβ has an expression pattern the kidney in heath and disease 



 247 

that matches the deposition pattern of siRNA/CDP nanoparticle delivery system. We 

believe PDGFRβ is a promising therapeutic target for our delivery system for a multitude 

of kidney diseases.  

10.4 Using microRNA as markers of drug activity in the clinic.  

In Chapter 9 of this thesis we evaluated the use of microRNAs as markers of B-

Raf inhibitor activity in vitro, in vivo, and in patients. Although we demonstrated that 

extra-cellular microRNAs in exosomes could be used as markers of drug activity, the 

microRNA changes associated with treatment appeared to be relatively cell line specific. 

In patients we observed a limited number of microRNAs that we speculate are related to 

drug treatment; however, they were not recapitulated in the pre-clinical models. 

Additionally, the magnitudes of the microRNA expression changes observed in vitro 

were low and may be difficult to detect in highly variable patient samples.  

We believe future studies on exosomes from patient or animal serum would 

benefit from selective isolation of tumor derived exosomes. Our in vitro and in vivo 

studies of miR-211 levels in exosomes secreted from HT-144 cells were inconsistent (up 

regulated in vitro and down regulated in vivo). We did observe up regulation of miR-211 

within the tumor itself in vivo. Therefore, we hypothesized that the presence of non-

tumor exosomes in the serum we collected confounded our results. We did observe some 

down regulation of miR-211 in drug insensitive cell lines (M202 and M207) and it is 

possible that non-tumor cell exosomal secretion of the murine miR-211 homologue from 

normal organs decreased in response to therapy and overwhelmed the tumor signal. We 

believe that isolation of only the tumor derived exosomes could overcome these 

confounding factors. For experiments in animal models, tumor exosomes could be 
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isolated using antibody pull downs with validated antibodies that can distinguish human 

from animal exososome surface proteins (e.g., transferrin receptor). Isolation of tumor 

exosomes from patient samples is more challenging and efforts will have to be 

undertaken to discover specific markers on tumor exosomes to facilitate their isolation.  

 Another promising observation from our work on exosomes was the detection of 

certain receptor tyrosine kinases (e.g., PDGFRβ) in exosomes only after PLX4720 

treatment. Because up-regulation of receptor tyrosine kinases (RTKs) due to loss of 

feedback inhibition following drugging of an oncogenic kinase is emerging as a general 

phenomenon for these therapeutic agents
4–6

, we believe that monitoring of these RTKs in 

tumor derived exosomes in patient circulation may provide confirmation of drug action. 

We hypothesize that tumor exosomes isolated from melanoma patients on therapy could 

be analyzed via phosphor-RTK array following treatment initiation to examine for up-

regulation of the activity of RTKs that indicate drug activity.  

10.5 References: 

1. Kim, J., Im, C.-A., Jung, Y., Qazi, A. & Shin, J.-S. Self-assembled nucleic acid 

nanoparticles capable of controlled disassembly in response to a single nucleotide 

mismatch. Biomacromolecules 11, 1705-9 (2010). 

2. Fornaro, L. et al. Anti-HER agents in gastric cancer: from bench to bedside. 

Nature reviews. Gastroenterology & Hepatology 8, 369-83 (2011). 

3. Perico, N., Benigni, A. & Remuzzi, G. Present and future drug treatments for 

chronic kidney diseases: evolving targets in renoprotection. Nature Reviews. Drug 

Discovery 7, 936-53 (2008).  

4. Chandarlapaty, S. et al. AKT Inhibition Relieves Feedback Suppression of Receptor 

Tyrosine Kinase Expression and Activity. Cancer Cell 19, 58-71 (2011). 

5. Pratilas, C. a et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-

MEK signaling and elevated transcriptional output of the pathway. Proceedings of the 

National Academy of Sciences of the United States of America 106, 4519-24 (2009). 



 249 

6. Duncan, J.S. et al. Dynamic Reprogramming of the Kinome in Response to Targeted 

MEK Inhibition in Triple-Negative Breast Cancer. Cell 149, 307-321 (2012). 

 


