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Abstract

Shape-memory effect (SME) is a phenomenon where deformation suffered below a
critical temperature can be recovered on heating. About 20-30 alloys are known
to exhibit SME in single crystals. However, the degree to which they retain their
shape-memory behavior in polycrystals is widely varied. In particular, Ti-Ni and
Cu-Zn-Al undergo cubic to monoclinic transformation and recover similar strains
as single crystals; yet, the observed shape-memory behavior in the former is much
better than that in the latter. We develop a model based on energy minimization to
understand this difference. Using this model, we establish that texture is the very
important reason why the strains recoverable in Ti-Ni are so much larger than those
in Cu-based shape-memory alloys in rolled, extruded and drawn specimens. We find
that even the qualitative behavior of combined tension-torsion can critically depend
on the textﬁre. The results are in good agreement with experimental observations.

We extend our analysis to the behavior of very thin films with three competing
length scales: the film thickness, the length scales of heterogeneity and material
microstructure. We start with three-dimensional nonhomogeneous nonlinear elasticity
enhanced with an interfacial energy of the van der Waals type, and derive the effective
energy density as all length scales tend to zero with given limiting ratios. We do
not require any priori selection of asymptotic expansion or ansatz in deriving our
results. Depending on the dominating length scale, the effective energy density can
be identified by three procedures: averaging, homogenization and thin-film limit. We
apply our theory to martensitic thin films and use a model example to show that
the shape-memory behavior can crucially depend on the relative magnitudes of these
length scales. Using this theory, we show that sputtering textures in both Ti-Ni and
Cu-based shape-memory thin films are not favorable for large recoverable strain. We
comment on multilayers made of shape-memory and elastic materials.

Finally, we suggest textures for improved SME in bulk and thin-film polycrystals.
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Chapter 1 Introduction

Shape-memory effect (SME) is a phenomenon where deformation suffered below a
critical temperature can be recovered on heating. About 20-30 alloys are known
to exhibit SME in single crystals. However, the degree to which they retain their
shape-memory behavior in polycrystals is widely varied. Some materials have good
shape-memory behavior as single crystals but little or none as polycrystals, while
others display good SME even as polycrystals. Typically, shape-memory materials are
prepared by casting followed by hot-working (rolling for strips or drawing for wires)
followed by heat treatment. Therefore, it is natural to expect that the polycrystals are
textured and this has been experimentally confirmed by various groups: Eucken and
Hirsch [34], Li et al. [54], Mulder et al. [66], Inoue et al. [43], Kitamura et al. [45],
Zhao and Beyer [100, 101] for Ti-Ni rolled sheets; Willemse et al. [98] and Yamauchi
et al. [99] for Ti-Ni-Cu wires and Ti-Ni rods; Park and Bunge [79, 80, 81] for Cu-
Zn-Al rolled sheets; and Park et al. [82] for Cu-Zn-Al drawn wires. It is also natural
to expect textures in thin films prepared by rapid solidification [34, 35, 33, 27] and
sputtering [40, 96]. The purpose of this thesis is to develop a theoretical framework
and use it to understand the effect of texture on the shape-memory effect in bulk and
thin-film polycrystals.

After some preliminaries in Chapter 2, we explore the effect of texture on SME
in bulk specimens such as sheets, strips, wires and tubes in Chapter 3. We use
“recoverable strain” as a measure of SME and develop a model to estimate it for a
polycrystal with given texture. We note that the strains recoverable by superelasticity
or pseudoelasticity are essentially identical to those recoverable by SME; so our model
also provides a means to evaluate the effect of texture on superelasticity.

Our model is based on a framework developed by Bhattacharya and Kohn [11]. Us-
ing their framework, they argue that crystallographic symmetry is a very important

factor in determining the recoverable strains in polycrystals: alloys which undergo
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Recoverable Strain

SMA
Single Crystals | Polycrystals
Cu-Zn-Al . . . around 2% in general [13, 53, 91, 70|, but
Cu-ALN; | 29% depending on orientation [76, 83] can be up to 6% in textured ribbons [34, 28]

5-8% in drawn wires and rolled sheets [64,

Ti-Ni 3-10% depending on orientation [61, 90] 84, 87, 55|

Table 1.1: Experimental observations of the recoverable strains in some Cu-based SMAs
and Ti-Ni.

small change in symmetry (cubic to tetragonal or trigonal) have virtually no recov-
erable strains in polycrystals, while alloys which undergo large change in symmetry
(cubic to orthorhombic or monoclinic) always recover at least some strain even in
polycrystals. While this explains much experimental observation, it fails to make any
distinction within the latter group of alloys. In particular, it is unable to explain
why Ti-Ni is so much better than Cu-based shape-memory alloys (SMAs) (Table 1.1)
since both undergo cubic to monoclinic transformation. They speculated on, but did
not systematically explore, the role of texture. We show that texture is a very impor-
tant reason for the difference between Ti-Ni and Cu-based SMAs: the texture that
develops during rolling or drawing is very desirable from the point of view of SME
in Ti-Ni while these textures are undesirable in Cu-based alloys. Finally, we explore
in some detail the predicted recoverable strains for various textures in an attempt to
recommend textures for large SME.

We extend these ideas to the behavior of very thin films in Chapter 4. Shape-
memory materials have the largest energy output per unit volume per cycle of known
actuator systems [51]. This fact, together with the enhanced rate of heat transfer
in thin films, makes these alloys ideal for microactuator, micropump and for micro-
electromechanical system (MEMS) applications and this has motivated many exper-
imental efforts (see for example [44, 59, 42, 52, 24, 23]). All of these efforts have
concentrated on Ti-Ni-based alloys and use sputtering to produce polycrystalline
films. However, it is not clear that Ti-Ni is the ideal material since the sputtering
texture may be very different. More importantly the microstructure of martensite can

be significantly different in thin films as compared to bulk materials. We develop a
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framework to understand the microstructure and behavior of heterogeneous thin films
by combining the homogenization results of Braides [15], Miiller [67] and Francfort
and Miiller [37] with the 3D-2D asymptotic analysis of Bhattacharya and James [10].
We find that sputtering textures in both Ti-Ni and Cu-based SMAs are not favorable
for large recoverable strain. This is consistent with experimental observations. We
also use this theory to explore multilayered films and the novel properties that they
may possess.

We conclude in Chapter 5 with a discussion.

1.1 Martensitic Phase Transformation

The source of the SME is a martensitic phase transformation. It is a first order, dif-
fusionless and solid-to-solid phase transformation. The lattice has different structure
at high and low temperature and the change in lattice structure is sudden. There is
no diffusion or rearrangement of atoms during transformation and one can obtain one
structure by a deformation of the other. The transformation is usually hysteretic,
but it is possible to define a thermodynamic transformation temperature ©, where
both phases are equally stable (energetiéally favorable). The high temperature phase
is called austenite while the low temperature phase martensite.

The key feature of a martensitic phase transformation is the microstructure it
generates. In SMAs, the high temperature austenite phase is cubic while the low
temperature martensite phase typically has smaller symmetry. This gives rise to
symmetry-related variants of martensite and these variants often form microstructure
or fine-scale mixtures. Ball and James [5, 6] have proposed a theoretical approach to
model these fine phase mixtures based on the minimization of the free energy. We
follow their approach but use the geometrically linear rather than nonlinear theory
to derive quantitative results. Some shape-memory alloys can recover strains up to
10%, so it may be questionable whether we can use such a small-strain theory. The
extension to geometrically nonlinear theory is conceptionally straightforward though

operationally inaccessible at this time. Further, we believe that our main conclusions
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remain valid even in the nonlinear theory. An extensive discussion on the differences

between geometrically linear and nonlinear theories can be found in [9)].

1.2 Single Crystals

Consider a single crystal specimen at the temperature above ©, shown in Figure 1.1(a).
It is in the austenite phase with a cubic lattice. On cooling, it transforms to the
martensite with a different lattice structure as shown in Figure 1.1(b). However,
the variants of martensite arrange themselves in a way that there is no macroscopic
shape change. This is known as self-accommodation. When a load is applied to the
crystal, it deforms if it can by rearranging the microstructure. In Figure 1.1(c), the
new microstructure is obtained by converting one variant to another. The resulting
deformation appears macroscopically plastic: there is no restoring force since all the
variants are equally energetically favorable. However, this deformation is recovered
on heating because the material reverts to the unique austenite irrespective of the
martensitic microstructure. This is the shape-memory effect. The deformation is
recovered because it is accomplished not by slip or motion of dislocations but by
rearrangement of the microstructure.

Notice that not all deformations are recoverable. Suppose we have deformed the
crystal till it has accommodated all strain if it can by rearranging variants (as in
Figure 1.1(c)). If we further deform the crystal, elastic stresses build up and this
provides a restoring force for the incremental deformation till the plastic limit of the
martensite. Beyond that, there is true plastic deformation by slip and the incremental
deformation is unrecoverable.

Thus, the strains that are recoverable in a single crystal are exactly those that are
associated with microstructures of martensite. This is characterized by the set S of
recoverable strains in a single crystal shown schematically in Figure 3.2. We provide

an energetic basis for this argument in Chapter 2 and 3.
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Figure 1.1: The shape-memory effect.

1.3 Bulk Polycrystals

Next consider a polycrystal consisting of a large number of grains with different ori-
entations. At low temperature, each grain deforms by rearranging its microstructure.
However, it can not do so freely because of the constraints of the neighboring grains.
In other words, each grain has its own set of recoverable strains S(x) (which is ob-
tained by “rotating” the basic set S through the orientation of the grain x). A
recoverable strain field in a polycrystal is a possibly inhomogeneous strain field that
is recoverable in each grain. We characterize it using the set of recoverable strains in
a polycrystal P. We also provide an energetic basis for P in Chapter 3.

However, this set P is very difficult to calculate. Further, its calculation requires
the knowledge of the shape and orientation of each grain which is difficult to obtain.
Finally, even if we measure the exact texture and solve the problem for a specific

specimen, the resulting set is valid only for that specimen; we have to repeat the
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process for each specimen. Therefore, we need an easily computable, but reasonable
estimate of this set which can use readily measurable and characterizable information
about the texture. We accomplish this using bounds — the inner or the Taylor bound
and the outer or the Sachs bound. The inner bound is obtained by imposing the
same strain on each grain while the outer bound is obtained by ’ignoring compatibility
between grains. All these are shown schematically in Figure 3.4.

We specialize to specific loads in Section 3.2. We consider uniaxial tension or
compression as an example of homogeneous loading and combined tension-torsion
as an example of inhomogeneous loading. We show that under uniaxial loading of
single crystals, our model essentially coincides with that of Saburi and Nenno [86]. In
polycrystals, we again provide an inner bound and an outer bound of the recoverable
strain. For monoclinic martensites, we also provide an inner estimate.

We believe that the inner bound is in fact a reasonable estimate of the actual re-
coverable strains. We provide examples to justify this in Section 3.2.2. Bhattacharya
and Kohn [12] as well as Kohn and Niethammer [48] have derived rigorous results
in dimensionally reduced problems to support this argument. Therefore, we use the
inner bound, which can be rewritten as a linear programming problem (3.16) and
(3.17), as our fundamental tool for evaluating the effect of texture.

The outer bound, on the other hand, often is a large over-estimate. In uniaxial
tension, the outer bound is the average of the strain of the most favorable martensitic
variant in each grain. Various authors [66, 45] have used this as a model for the
recoverable strain and have predicted almost twice the observed recoverable strain.

We use our models to explore the effect of texture on recoverable strains in uniaxial
tension in Section 3.3 and in combined tension-torsion in Section 3.4. Recently Zhao
and Beyer [100, 101] as well as other groups [66, 43, 45] have measured both the
recoverable strain and the texture of rolled Ti-Ni and closely related materials. We
calculate the recoverable strains for their observed texture and find good agreement
with their observations in Section 3.3.1. Ti-Ni and Cu-based alloys, and in fact, most
SMAs have a parent phase whose crystal structure is almost body-centered-cubic

(BCC). We calculate recoverable strains for typical BCC rolling and drawing textures,
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Figure 1.2: A heterogeneous thin film with three different length scales.

and also for textures formed by rapid solidification. Figure 3.13 and Figure 3.14
highlight the striking contrast in SME between Ti-Ni and Cu-based alloys in rolling
textures. The results for various other textures are shown in Table 3.3. In Section 3.4,
we find that even the qualitative behavior of combined tension-torsion can depend on

the texture as shown in Figure 3.15.

1.4 Thin Films

The mechanism of the shape-memory effect in thin-film polycrystals is very similar to
that in bulk polycrystals. However, the nature of the microstructure and the effective
behavior can be very different in thin films as interfacial energy and surface relaxation
effect become very important. Much of Chapter 4, Section 4.1 to 4.6, is devoted to
developing a theoretical framework for studying the effect of varying length scales
that arise in thin films on microstructure and behavior. Depending on the deposition
technique, the size of grains (d) within the film can be larger than, comparable to or
smaller than the thickness of film (h). Furthermore, depending on the material, the
length scale of microstructure (= ) can also be larger than, comparable to or smaller
than that of grains (d). These length scales are shown in Figure 1.2.

We apply our mathematical results to study SME in Section 4.7. We use ex-
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amples to show that the shape-memory behavior of martensitic films can crucially
depend on the limiting ratios of these length scales. For the case of strong interfacial
energy (i.e., & >> d), the shape-memory behavior is expected to be negligible in
general polycrystals since materials can not form microstructures within each grain
to accommodate deformation. On the other hand, for small interfacial energy (i.e.,
Kk << d), materials can form microstructures freely and our model example exploring
the whole range of % shows that this set P significantly depends on the ratio of g. We
further consider cubic-monoclinic shape-memory thin films. For flat grains (d >> h),
"the intergranular constraints are mainly in-plane; any out-of-plane incompatibility is
easily overcome with very small elastic energy. While for long grains (d << h), it is
no longer possible to overcome out-of-plane constraints. Therefore, the intergranular
constraints are fully three-dimensional. Table 4.2 contrasts the behavior of films with
long or rod-like grains and films with flat or pancake shaped grains. It shows that
recoverable strains in films with flat columnar grains differs from (are larger than)
those with long columnar grains.

Finally, we consider a multilayer thin film made of a finite number of alternating
layers of a martensitic material and a purely elastic material. We find quite different
behavior when # tends to zero and infinity. We conclude that such a multilayer
thin film provides an opportunity to design materials with unusual transformation

properties.



Chapter 2 Continuum Model

2.1 Geometrically Linear Theory

Consider a single crystal and choose the undistorted austenite state at temperature
©. as the reference configuration. Let it occupy the bounded domain Q € IR? in this
reference configuration. A deformation of the crystal is characterized by the function
y : © — IR®. We assume that the specimen remains free of defects such as cracks
or dislocations and therefore we assume that the deformation y is continuous and
its gradient Vy : Q — IM>*® exists a.e. in Q where IM™™ is the set of all m x n
matrices.

Our basic modeling postulate states that the specimen will occupy the state that

minimizes its total energy given by

[ (w30, 0)ix (21)
Q
where ¢ : IM>® x IRt — IR* U {0} is the (Helmholtz) free energy density at tem-
perature O.

In much of this thesis, we work with a geometrically linear theory, and here it
is conventional to use the displacement u = y — x rather than the deformation,
displacement gradient Vu = Vy — I, and strain e[u] = 2(Vu + (Vu)?). So, with
an above notation, the free energy density ¢ = ¢(Vu, ©). Frame-indifference in this
theory implies that the free energy density ¢ is invariant under infinitesimal rotations.
It follows that ¢ depends only on the strain or the symmetric part of the displacement

gradient and

¢(H,0) = ¢(e[H],0),
e[H] = %(H—i—HT). (2.2)
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Figure 2.1: The behavior of ¢ at high and low temperature. Notice that the change of well
structure depends on the temperature.

We further expect ¢ to reflect the symmetry which the material may possess.
Thus, we assume that the free energy density is unaffected by the point group (strictly
speaking the Laue group) of the material at its high temperature state, P° [31, 32].
The point group is the set of rotations that map a lattice back to itself. It follows

o(e,0) = p(RTeR, o) (2.3)

for all R € P° and for all symmetric e.

Austenite is the stable phase above ©,. So we expect the zero matrix 0 to minimize
¢ for © > ©.. Recall that the martensitic transformation is diffusionless and hence
there is a strain matrix e), known as the Bain strain or transformation strain which
takes the austenite to the martensite. Since martensite is the stable phase below ©,,
we expect e) to minimize the energy ¢ for © < O,. Finally, we expect both 0 and

e to minimize ¢ at © = ©, (see Figure 2.1).
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Material symmetry (2.3) implies the existence of other minimizers besides e®
below ©.. Indeed, let e® be the minimizers of ¢ and k be the total number of

variants. They can be determined by
{e®,... e®} = (RTeWR, VR e P} (2.4)

and

_order of the point group of the austenite
~ order of the point group of the martensite’

Putting all this together,

o(f,0) < ¢(g,0) forallfec A 0> 0.,
o(f,0) < p(g,0®) forallfc AUM © =6, (2.5)
o(f,0) < ¢(g,0) forall f e M 0 <O,

for all g € IM>*3 where

A= {I+W:W=_-wWT} (2.6)
M, = {4+ W :W=_WT}, (2.7)
M = MiUM;y---UM,. | (2.8)

We call A the austenite well, M; the ith martensite well, and M the collection of all
martensite wells.
If we treat the austenite and each variant of martensite as linearly elastic materials,

then ¢ has the form (see Figure 2.1)

1 . . , .
¢(e,0) = min {5(e— ) A — o) + w9 ()| 29)
where ¢ = 0 refers to the austenite, and ¢ = 1,--- ,k to the martensitic variants,

A® is the elastic modulus and w®(©) controls the relative stability of the phases
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depending on temperature. The variants of martensite are symmetry-related, so

w® = .. = ®

2.2 Well Structure

All known martensites exhibiting the shape-memory effect have cubic lattice structure
in the austenite. So we choose an orthonormal basis parallel to the cubic axes, the
cubic basis, to describe the well structure of four common martensites below. We also
note that the 24 elements of the point group P° of a cubic Bravais lattice are

1

LR?(&,),R™(&),R¥ (&), R"( ﬁ(éi + &),

2 ].

. 1
R (—=(&; £ & + &), R¥ (—
(\/?—)(1 2 & €3)) (

V3

(& £ &, + &3)), (2.10)

for i,j = 1,2,3,% # j, and R%(@) is the proper rotation with & as axis and 0 as

rotation angle.

2.2.1 Tetragonal Martensite

There are two lattice parameters o, 3, and three variants of martensite with trans-

formation strains given by

a 0 0 a 0 0 6 0 0
0 aa 0 |, 0 B8 0], 0 a 0
0 0 6 0 0 « 0 0 «a
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2.2.2 'Trigonal Martensite

There are two lattice parameters «, 3, and four variants of martensite with transfor-

mation strains given by

B a « 8 —-a -« 8 a -« g —a «
a f a |, -a f « , a [ -a |, —-a f -«
a a f - a f —a —a f a —a f

2.2.3 Orthorhombic Martensite

There are two kinds of cubic to orthorhombic transformation; we consider only one
kind in this thesis since we are unaware of any example of the other. There are three

lattice parameters a, 3, 8, and six variants of martensite with transformation strains

given by
a 6 0 a 0 9 6 0 0
6 a 0 |, 0o 8 0|, 0 a o |,
0 0 0 0 0 « 0 0 «
a —6 0 a 0 -6 g 0 0
-0 a 0 |, 0 B 0 ) 0 a -6
0 0 g -0 0 «a 0 -0 «

We choose variant 1 so that é > 0.

2.2.4 Monoclinic Martensite

There are two kinds of cubic to monoclinic transformation. In Monoclinic-I, the axis
of monoclinic symmetry corresponds to (110)¢up;c While in Monoclinic-II, the axis of

monoclinic symmetry corresponds to (100)cupic-



Monoclinic-I Martensite

There are four lattice parameters a, 3, d, €, and twelve variants of martensite with

transformation strains given by
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We choose variant 1 so that § > 0 and € > 0.

Monoclinic-IT Martensite

There are four lattice parameters «, 3, d, €, and twelve variants of martensite with

transformation strains given by

\05
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0 a—-€ 0

\ 0 0 g
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\ 0 0 a—e/
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Symumetry - of k | Transformation Strain e() Examples Measured Parameters
Martensite
a 0 0
Tetragonal 3 0 a 0 Ni-36.8A1 [21, 89] a = —0.0608 8 = 0.1302
0 0 g
B a «a
Trigonal 4 a B a Ti-50.5Ni (R-phase) [60] a=00047 B=0
a a
a 50 7, Cu-l14AR4Ni (wt.9%) [78] | $ 200425 f=-00822
Orthorhombic | 6 6 a 0 : - > =0.0240 B = —0.0420
00 3 Ti-40Ni-10Cu (B19) [69] | oZ00240 B=-0.
. . a=10.0243 [ = —-0.0437
o a o e Ti-49.8Ni [46, 77] § =0.0580 e =0.0427
Monoclinic-I | 12 d a € : : a=0.0232 B =—0.0410
e € 3 Ti-45Ni-5Cu [69] § =0.0532 e =0.0395
ate 5 0 Cw-15Zn-17A1 [22] > =00483  f = —0.0007
Monoclinic-IT | 12 6 a-€ 0 " : i—:%%iigz ;;0—.%?3222
0 0 g8 1 Cu-14ARANI (wt.%) [75] | 700160 < o.06

Table 2.1: Transformation strains associated with different changes of symmetry. Only e
is shown here; the rest e(?,...  e® can be obtained from e by symmetry by permuting
the basis. The symmetry of the austenite is cubic. We choose variant 1 so that § > 0
(orthorhombic and monoclinic cases) and € > 0 (monoclinic case). The compositions of all
alloys are given in atomic percentages unless otherwise specified.

We choose variant 1 so that § > 0 and € > 0.
Table 2.1 lists the measured parameters for some important examples.

2.3 Microstructure

We now explain why martensitic materials form microstructure below the transfor-
mation temperature. We show that energy minimization forces a material to form
microstructure to accommodate a given boundary condition using the following ex-
ample. Consider a hypothetical material with only two variants of martensite. So ¢

is minimized only at e and e® below O; i.e.,
0 =gpleW) =pEe?) <ple) V eec M3 (2.11)
We assume ¢ satisfies the growth condition

w(e) < C(1+ |elP) (2.12)
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u=(Le®+(1-1) e®)X

Figure 2.2: A fine microstructure of e and e® can accommodate the average strain
e = el + (1-Ne® for 0 < A< 1.

for some constant C and for all e € IM3*3. Suppose e!? and e® are compatible or

twin-related; i.e., they satisfy
W _e@ 1
e —e :§(a®n+n®a) (2.13)
for some a and n. We assume that the specimen is clamped by the boundary condition
u=e"x, e =i+ (1-1)e? (2.14)

for x € 0 and 0 < A < 1. We seek to find out energy minimizing deformation below
the transformation temperature.

From (2.11), p(e**) > 0if 0 < A < 1 and © < ©,. However, we will show that the
material can accommodate such a boundary condition with vanishing total energy by
making coherent mixtures of e() and e® as shown in Figure 2.2. Indeed, set

1-XN@®n)x+m(A—1a ifm<x-n<m+\,

f(x) =
A{—a®n)x+ (m+ 1)la fm+A<x-n<m+1
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where m € Z. Now define a sequence of deformations by

u® =e*x +¢ f(f). (2.15)
€

Clearly, u® converges strongly to e**x in LP(Q, IR?) as € — 0. The associated strain
is
M ifem<x- A
e Hem<x-n<(m+4 Ae,
e®(x) = —1-(Vu(5) + (VuT) = - ( )
2 e®@ if (m+Ae<x-n< (m+1e.

Notice that e converges weakly to ** in LP(Q, IR®) as ¢ — 0. While (el (x)) = 0
a.e. in €, this deformation u® does not satisfy the boundary condition given by
(2.14). Therefore, we introduce the cut-off function 7. (x) € C°(Q) satisfying

v

0<7m <1, 7.=1 in . and IVnEISR

(2.16)
where v is some constant independent of ¢, €2, is compactly contained in Q satisfying

R, = dist(2:,09Q) = ||[u® — *"*x||1r ().

Since u® converges strongly to e**x, we can choose a subsequence of it such that
R.\Oase—0.

Now consider a new sequence defined by
ﬁ(s) — e™°x + N (u(s) _ ea.vex)_

Obviously, G satisfies the boundary condition (2.14). Let & be the associated

strain and note that ¢(€©) > 0 if x € Q\Q,. However, as € — 0, the energy of the
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specimen converges to zero. Indeed, using the growth condition (2.12), we have
v
/ p(69)dx < C / (1 F e 4 [e@ — e 4 ()Pl - eavex|v> dx

€

Q O\Qe

VAN

C / (1407 + [P + [e© — e*°|P) dx
a0,

since p(8¢)(x)) = 0 if x € (.. Let ¢ tend to zero, note that
e (x)| < max (le®], [e®)]),

we have /go(é(s)) dx 5 0.

We m(;ke two important comments. First, in the example above, we constructed
a sequence of deformations where the gradient oscillates very rapidly. Such sequences
are examples of weakly converging sequences. The rapid oscillations in the gradients
model the fine scale coherent microstructure [5, 6] and thus these weakly converging
sequences are an ideal tool for studying materials with microstructure.

Second, the energy density in our example above is zero only at e and e®. Yet
our specimen was able to have an average strain €° = Xe(!) + (1 — \)e® with zero
energy. Thus by forming microstructure, the specimen can accommodate with zero

energy many more average strains than the martensitic variants.
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Chapter 3 Shape-Memory Effect in Bulk

Polycrystals

3.1 Recoverable Strain and Energy Minimization

In this section, we describe the general framework of Bhattacharya and Kohn [12] who
discuss the behavior of shape-memory polycrystals at three distinct length scales -
the length scale of polycrystalline specimen which we call “macroscopic,” that of
individual grains which we call “mesoscopic” and that of the martensitic domains
which we call “microscopic” - as shown schematically in Figure 3.1. We assume that
there is a wide separation of length scales: i.e., the martensitic domains are much
smaller than the grains and those grains are much smaller than the specimen.

Related work addressing the micromechanics of shape-memory polycrystals in-
cludes that of Ono and co-workers [72, 73, 71], Bruno et al. [18] and Smyshlyaev and
Willis [95].

3.1.1 Recoverable Strain in a Single Crystal

Consider a single crystal of austenite and choose this as the reference configuration, so
the austenite has stress-free strain e® = 0. As it is cooled, it transforms to martensite.
In SMAs, the austenite lattice has cubic symmetry while the martensite lattice has
smaller symmetry such as tetragonal, trigonal, orthorhombic or monoclinic symmetry
as we described in Section 2.2. This gives rise to k symmetry-related variants of
martensite. Schematically, we mark each transformation strain e® as a point e in
Figure 3.2.

The total energy of the crystal is given by (2.1) where we call the integrand ¢
the microscopic energy. It is nonconvex, with multi-well structure - one well for

each variant and is given by (2.9). We only consider the behavior at some fixed



— A
Homogenization N Relaxation

Figure 3.1: The micro, meso and macro scales in the modeling of shape-memory polycrys-

tals, and the energies at these length scales.

e®

loading direction

P e

e®

S
e

Figure 3.2: Recoverable strains in a single crystal. Let the plane of the paper be the
space of all strains. e(®) = 0 is the stress-free strain of the austenite while e, ... ,e®) are
the stress-free or transformation strains of the martensitic variants. A single crystal can
recover all strains in the shaded set S if all pairs of martensitic variants are compatible.
Note that e© is a part of this set as a result of self-accommodation. For a specific loading,
the maximum recoverable strain ep is given by the maximum projection of the set S on the

loading direction.
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temperature ©; below the transition temperature ©,, so we may assume w) = ... =
w® =0 and w® > 0 in (2.9) and omit the temperature dependence in the rest part
of this work.

When subjected to some boundary condition, a single crystal generally forms a
microstructure of martensitic variants rather than a single variant. Indeed, as we
demonstrated in Section 2.3, energy minimization with the multi-well energy (2.9)
leads to minimizing sequences which we interpret as microstructure or fine-scale mix-
tures of variants [5, 6]. Therefore, the behavior of a single crystal is governed not
by the microscopic energy, ¢, but the mesoscopic energy ¢. Physically, ¢(e) is the
average stored energy when the average strain is e after taking into account the mi-
crostructure. Mathematically, it is obtained by the relaxation of ¢ and may be defined

¢(@) =, _min . { elelul) dx (3.1)

in which the slashed integral f denotes the average over the specimen. The relaxed

energy ¢ is shown schematically in Figure 3.1. Notice that it is zero on the set S:

S ={e:¢(e) =0}. (3.2)

This is exactly the set of strains that the material can accommodate by making a
mixture of martensitic variants. Thus, the elements of S are the overall strains which
are recoverable for this crystal, and we call S the set of recoverable strains for a single
crystal.

We can also give a geometric interpretation for the set S. Suppose two variants
are compatible or twin-related; i.e., they satisfy (2.13). Then, as demonstrated in
Section 2.3, we can form fine twins whose overall strain is the average of the trans-
formation strains of these two variants. Geometrically, this average strain is a point
on the line connecting these two variants, and by choosing the appropriate volume

fraction we conclude that all strains on the line joining e) and e® are recoverable.
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e(s)

S mono

Figure 3.3: The set of recoverable strains Smono in a single crystal undergoing cubic-
monoclinic transformation. This nonconvex set Spono is bounded by orthorhombic and
monoclinic estimates.

Furthermore, if all the variants are pair-wise compatible, the set of recoverable strains
S in a single crystal is the convex hull' of these stress-free variants as shown in Fig-
ure 3.2 [9]. The variants are pair-wise compatible in cubic-tetragonal, cubic-trigonal
and cubic-orthorhombic transformation and we can obtain S easily in these cases;
explicit formulas for S in these cases are given in Appendix A.

In contrast, if all pairs of martensitic variants are not compatible, the set S is not
necessarily the convex hull of the variants. For example, the transformation strains of
monoclinic martensites are not pair-wise compatible and the set of recoverable strains
Smono 18 not the convex hull of the stress-free variants. We do not know the precise
set Smono, S0 We bound it using “orthorhombic” and “monoclinic” estimates as shown

in Figure 3.3. Let 8¢

mono

be the convex hull of the monoclinic variants and let S, be
the convex hull of a fictitious cubic-orthorhombic transformation obtained by setting
e=0ineW,-.. el? We can show that Sop C Suene C SSono [11, 12]. Explicit

C
formulas for 8¢

are given in Appendix A.

1A convex hull of a few points is the smallest polygon that contains all these points.
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Finally, shape-memory alloys are self-accommodating: they can undergo the austenite-

martensite transformation with no apparent shape change. In other words, there is
a microstructure of martensitic variants whose average strain is €© or e©® ¢ S. One
can show that any material with cubic austenite that undergoes volume-preserving
transformation is self-accommodating [8]. This is certainly the case for SMAs. There-

fore, we assume that €©® € S as in Figure 3.2 and Figure 3.3.

3.1.2 Recoverable Strain in a Polycrystal

We now turn to a polycrystal. A polycrystal is an aggregate of a great number of single
crystal grains with different orientations. We describe the texture of a polycrystal by
a rotation-valued function R(x). R(x) gives the orientation of the crystal at the point
x relative to some fixed reference crystal. In a typical polycrystal, R(x) is piecewise
constant, though we shall not assume any such restriction here.

In order to discuss the behavior of the polycrystal, we introduce the macroscopic
energy of the polycrystal ¢ obtained from ¢ by homogenization. Thus, @(e) is the av-
erage energy of a polycrystal in which the average strain is e. A convenient definition
is based on the affine boundary conditions:

5() = min ][ & (R (x)e[u] (x)R(x)) dx. (3.3)

u=e-x at 90
Q

The macroscopic energy ¢ vanishes on the set P as shown in Figure 3.1. This is
exactly the set of strains that can be accommodated in each grain by a mixture of

martensitic variants. We define the set of recoverable strains for a polycrystal

P ={e:p(e)=0}. (3.4)

To understand this set, note that each grain has its own set of recoverable strain
S(x) = R(x) SR”(x) which is obtained by the rotation of the basic set S through

R(x) as shown in Figure 3.4. The elements of P are the macroscopic strains consistent
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loading direction

\
S,
\
\,
\
-
.
hSS \
., s,
\,
" \,

S (grain 2)

Figure 3.4: Recoverable strains in a polycrystal (made of two grains of equal volume
fraction). Each grain has its own set of recoverable strains (the two triangles) obtained by
a rotation of the basic set S. The polycrystal can recover all strains inside the inner bound
P;, but none outside the outer bound P,. For a specific loading, the maximum recoverable
strain is between €%, and €% which are the projections on the loading direction of P; and
Po, respectively. €% also has an alternative meaning: it is the average of the maximum
recoverable strain of the individual grain. We believe that typically eiR is a reasonable
estimate while €% is a large overestimate.

with the point-wise constraint e[u](x) € S(x). We can then rewrite the set P as
P=ce:e= ][e[u] (x)dx, e[u](x) € S(x) for “every” x € 0 } . (3.5)
Q

Finally note that P is not empty in a SMA, since it always contains e© due to

self-accommodation.

3.1.3 Bounds on Recoverable Strain in a Polycrystal

We now estimate the set P using bounds. The first, and what we will find to
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be the most useful, bound is the inner bound or Taylor bound. Consider an average
strain e. Suppose e is recoverable in each grain, ie., e € S(x) for “every” x € Q.

Then, clearly e is recoverable in the polycrystal or e € P. Thus,
P D Pi={e: R (x)eR(x) € S for “every” x € Q}. (3.6)

The set P; is shown in the shaded region of Figure 3.4. Geometrically it is the
intersection of the sets of recoverable strains of the different grains. The set P;
contains all strains that can be recovered without the cooperative effect of the different
grains. Hence, it is a pessimistic or inner bound.

The other bound is the outer bound or the Sachs bound. This bound is obtained
by allowing each grain to deform as it wishes and forgetting about the constraints

they impose on each other. Thus,

PCcP,=(e:e= ][ e(x) dx and e(x) € §(x), e(x) not necessarily compatible p .(3.7)
Q
The geometric meaning of this set is harder to visualize. Scale the sets S(x) for each
grain by its own volume fraction. P, is the set of all points that can be obtained by
adding (vectorically) points in all of these scaled sets as shown in Figure 3.4. The set
P, does not account for the constraints between grains; hence, it is an optimistic or
outer bound.
Finally, from (3.6) and (3.7), it is clear that the inner bound does not depend on
the volume fractions of different orientations, but the outer bound does.
There is also an energetic argument for these two bounds. P; is the zero set of the
constant strain upper bound @, of ¢ while P, is the zero set of the constant stress

lower bound @; of ¢. To be precise, the constant-strain test field u(x) = e- x gives

B(e) < Gu(e) = f B(RT(x)eR (x)) dx (3.8)
Q
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whereas relaxing the compatibility requirement gives
#(e) > aile) = min_ { pRT)SIR() dx. (39)
Q

Let P; = {e: g (e) =0} and P, = {e : @i(e) = 0}. Since @, < ¢ < @, it follows
that

PCcPCP,. (3.10)

We use the names Taylor and Sachs in analogy to polycrystalline plasticity.

It may so happen that the inner and outer bounds are wide apart. This is dra-
matically illustrated in Figure 3.5. If S does not span all deviatoric strains, the inner
bound reduces to a single point. We say that the inner bound P; is trivial in this
situation. Bhattacharya and Kohn [12] have argued that the actual set P is also
trivial in such a situation, i.e., P = P;. In contrast, if S spans deviatoric strains, the
set P; is not trivial. In this case, it is generally not true that P = P,. However, we
believe that even in this case, P; is often a good estimate of P, i.e., P = P;. We will
present examples in support of this claim in Section 3.2.2. Also see the recent work
of Kohn and Niethammer [48].

We close this section by recalling the arguments of Bhattacharya and Kohn [1 1) on
the effect of symmetry. If the change of symmetry is small, such as cubic-tetragonal
or cubic-trigonal transformation, the set S has low dimension; hence P; is trivial and
the polycrystal has no recoverable strains except for exceptional textures. If, on the
other hand, the change of symmetry is large, such as cubic-orthorhombic and cubic-
monoclinic transformation, the set S has full dimension. Therefore, the polycrystal

has some recoverable strains irrespective of texture.
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Figure 3.5: Inner and outer bounds of recoverable strain can be wide apart.

3.2 Maximum Recoverable Strain in Tension and
Torsion

We now specialize our discussion to maximum recoverable strain under specific load-
ing. We consider uniaxial extension or compression as an example of homogeneous

loading and combined tension-torsion as an example of inhomogeneous loading.

3.2.1 Extension or Compression

Consider a polycrystalline SMA below the transformation temperature in the self-
accommodated state. Apply a uniaxial stress ¢ to this specimen in the £ direction.

We will show that the mazimum recoverable strain eg is given by

max (£-ef) if o > 0 (extension),
en={ °P (3.11)
n’éi})l (€-ef) if ¢ < 0 (compression).

The maximum recoverable strain in a single crystal is also given by (3.11) if P is
replaced with S. The formula (3.11) has an interesting geometrical interpretation.
The maximum recoverable strain €g is the maximum projection of the set P (or )
on the loading direction £ ® £&. In single crystals, it is clear from Figure 3.2 and

Figure 3.3 that the maximum projection of the set S is always equal to the maximum
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projection of the transformation of strains e() ... e®). Therefore, it follows that
variants coalesce under loading to produce the most favorable variant in a single
crystal. Thus, our model coincides with that of Saburi and Nenno [86] except they
use a geometrically nonlinear theory.
In polycrystals, we can not calculate er since we do not know P. However, we

can bound it as before using inner and outer bounds. Indeed, let us consider only the

tensile loading (¢ > 0). It follows from (3.6), (3.7) and (3.11) that
eh <er < €% (3.12)
where

p=max (§-ef) and e =max ({-el). (3.13)

The inner bound €%, assumes that every grain undergoes the same strain and it does
not take into account the cooperative response between grains. On the other hand,
the outer bound €% assumes that each grain picks its most favorable variant and
ignores the fact that the constraints from the neighboring grains can suppress the
most favorable variant. We believe that the inner bound is a reasonable estimate of

the actual recoverable strain (see Section 3.2.2).

Now consider a polycrystal made of N grains with orientations Ry, Rs,--- ,Ry
and volume fraction A, Ag,- -+, Ay. Then, we can further write €, and €% as
€ = max ‘e 3.14
R R}"eRjES Vi=1.. N (£ 6)’ ( )
N
€z = max (Ajvj-evy) (3.15)
j=1

where v; = RJT §. We can interpret (3.14) and (3.15) geometrically as shown in
Figure 3.4: the inner bound is the maximum projection of the set P; on the loading
direction while the outer bound is the average of the maximum projection of each

set R; S Rf on the loading direction weighted by its volume fraction A;. Note also
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from Figure 3.4 that €% can be strictly smaller than the smallest recoverable strain
amongst all grains.
We can also rewrite (3.14) and (3.15) as linear programming problems if S is the

convex hull of stress-free variants. The inner bound,

u}

k
€f = max ( ¢- (4 Rie®RT )s) (3.16)
=1
where the maximum is taken over the following constraints

k k
Z,uf R,e"R] = Zlhl R.ePRT for j=2,--,N,

i=1 i=1

k
Zy’g = 1, UgZO for j=1,--,N, (3.17)
i=1

and the outer bound

N k
e=>_ N | max & mReORNE | (3.18)
=1 21'0:1 pi=1 =1

Recall that in the cubic-monoclinic transformation Sy, is unknown. Therefore,

we can not evaluate (3.14). Instead, we use

. oy © 3.19
" R’JreRjesorth Vj=1,-,N (§ é.) ( )
66 froveed maX . e 3'20

) RIeR;ES50n0 V=1, N €-eg) (3.20)

N
%= max (4;v;-ev;) (3.21)
j=1 mono

as the inner bound, inner estimate and outer bound, respectively. We can rewrite
equations (3.19) - (3.21) as linear programming problems as before.
Finally, we prove (3.11). Consider a polycrystal subjected to an applied traction t

on the boundary such that t = ¢'T'n for some fixed matrix T where n is the outward
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m>

Figure 3.6: The stress-strain curve under the tensile loading.

normal. In the case of the uniaxial loading in the £ direction, T has the form of

100
T=(@E=]00 0 (3.22)
000

in an orthonormal basis {£,£1,£&5}. The strain field &, in the specimen minimizes

the energy

/(cﬁ(e[u]) —oeul-T) dx (3.23)
Q
over all compatible strain fields e[u]. Since @ is independent of z, there is a solution
€, which is also independent of x. Set €, = €, - T. For ¢ as shown in Figure 3.1
(p=0o0n P, @ > 0 outside P, @ is convex), €, is of the form shown schematically in

Figure 3.6. The maximum recoverable strain g is
€R = llir(l) € = (‘1715‘1) &) T. (3.24)

From the properties of @ stated above, it follows that (liII(l) &,) € P and this implies
o>
(3.11).



Figure 3.7: A rank-two laminate containing four orientations R; and i = 1,--- ,4.

3.2.2 Maximum Recoverable Strain in a Laminated Poly-

crystal

We have claimed above that the inner bound provides a reasonable estimate to
the actual recoverable strain. We justify that with an example - a polycrystal with
a laminated texture. Laminated microstructures have been used extensively in the
study of polycrystals and composite materials since the exact effective properties can
be obtained by solving an algebraic problem (see for example [57]). We consider
the tetragonal and orthorhombic martensites where we know the exact sets Sieer
and Syn. A rank-two laminate containing four orientations R;, ¢ = 1,---,4, is
shown in Figure 3.7. Here, n;,ny and nz are the normals of the laminates with the
corresponding volume fraction Aq, A2 and Ag, respectively.

If we assume a wide separation of scales between the two levels of the laminate,
it can be shown that the strain is piecewise constant with values e;,e3, e; and e, as

also shown in Figure 3.7. Kinematic compatibility or coherence forces the following
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constraints

1
€ — €y = E(n1®m1—|—m1®n1),
1
€3 — €4 = 5(1’12 ®m2—|—m2®n2), (325)

(uer+(1=M)es) = (haes + (1~ Aa)es) = 5 (ms ® my +m; © o)
for some vectors m;, my; and mj and the average strain
€ave = Az(A1€1 + (1 — A1)en) + (1 — Az)(Azes + (1 — A2)ey). (3.26)
Moreover, to be recoverable, e, e;, e; and e, must satisfy
Rie; R;, RIe;Ry, RTesR3, RTe R, € S. (3.27)

Putting all these in (3.11), we can conclude that for tensile loading in the ¢ direction,

the maximum recoverable strain is given by
er =max - ey (3.28)

where the maximum is taken over e, ez, €3 and e4 subjected to the constraints (3.25)

and (3.27).

Tetragonal Martensite

For materials undergoing cubic-tetragonal transformation Sie, is given by (A.2);
Bhattacharya and Kohn [12] have used it to show that P; is trivial unless the poly-
crystal has (001) texture. We conjecture following Bhattacharya and Kohn [12] that
in a polycrystal with sufficient symmetry, the set P will be also trivial. We present
the following example in support of this conjecture.

Consider a laminated polycrystal undergoing cubic-tetragonal transformation. Set

R, =1 R, = Ry, R; = R;, and R, = R; R, where R;, is a rotation about the axis
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iz = (0,0,1)T; etc. Further, n; = iz, n; = Ry i3 and n; = i;. The set P; is clearly
trivial for this polycrystal. We show that the set P is also trivial; and consequently,

the maximum recoverable strain is zero in every direction. Indeed, using (3.25);,

(3.27) and (A.2) gives

a 0 0
R{e]_Rl = R§e2R2 - 0 a 0 (329)
0 0 —2a

relative to the self-accommodating state. Similarly, using (3.25)2, (3.27) and (A.2)

gives

b 0 0
R§e3R3 = R£e4R4 = 0 b 0 ' (330)
0 0 -2

relative to the self-accommodating state. The constraint (3.25)3 forces a = b= 0 and
this implies P = {0}. Using the dual variational principle [12] (or see (4.111)), we

can further show that there exists a constant C' > 0 such that

@(e) > Clel*.

Thus, we have a quadratic lower bound and this polycrystal behaves like an elastic
material without shape-memory effect. Finally, in this example, we show that P
is trivial for the chosen orientations. If we simply count on the unknowns (degrees
of freedom) and constraints in (3.27) and (3.25), there are eight (8) unknowns but
nine (9) constraints. So we believe P is trivial for most orientations unless certain
exceptional textures; for example, the texture where all orientations have a common

axis perpendicular to nz and dimension P = 2 in this case.
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SMA Orientation Normals Volume Fraction
Ry | Ry ny | ng l nz Al | Az | Az
1 -1 o Vi —v3 o0 — o 1
Ti-40Ni-10Cu 71- 101 0 713 V2 V2 V3 705 f 0 05| 05 0.5
2\No o v2 -1 -1 2 L 2 o
CulaalaNi | 2 ( o o i O G o £ :
u-1 -4Ni 0 0 2 1 1 2 0 1 0 05| 05 0.5
75( -1 -1 0 Vel _vz vz v3 1 v ( 0

Table 3.1: Orientation, normals and volume fraction of the rank-two laminates used in the
calculation for Ti-40Ni-10Cu (B19) and ~; Cu-14A1-4Ni (wt.%).

Orthorhombic Martensite

We consider two examples of materials undergoing cubic-orthorhombic transforma-
tion: Ti-40Ni-10Cu (B19) and v; Cu-14Al-4Ni (wt.%). We assume R; = Rz = R;
and Ry, = Ry = R,. The texture, normals and volume fraction of the rank-two
laminate are listed in Table 3.1 and the tensile loading direction for both cases is
¢ = (cos(#),0,sin(8))7 for various 6. In fact, we will find later that this is exactly like
the rolled sheet subjected to tensile loading along the rolling plane (see Section 3.3.1
and Figure 3.10). Figure 3.8 shows the inner bound, the outer bound and the exact
value of the maximum recoverable strain calculated according to (3.14), (3.15) and
(3.28), respectively. We have repeated the same calculations for different laminates,
i.e., for different normals of n;, ny and n3. The results are either the same or closer
to the inner bound except in very few exceptional situations. We have also performed
the calculations for a rank-three laminate. The results are even closer to the inner
bound. It is clear that the constraints between the grains is overwhelming and hence
€r = €. Finally, the drawback of the outer bound can also be seen especially in the
case of 7} Cu-14A1-4Ni (wt.%) at the loading direction 6 = 0°.

To understand the effect of the intergranular constraint, we show in Figure 3.9 the
volume fractions of the different orthorhombic variants calculated according to the
exact solution as well as the inner and outer bounds in the grains with orientation
R, for the case § = 60°. Variant 6 is the most favorable variant in both Ti-Ni-Cu
and Cu-Al-Ni for this orientation and hence the outer bound uses 100% variant 6.
However, compatibility forces variants 1, 3, 4 and 5 to also form in Ti-Ni-Cu and

variants 1 and 3 to also form in Cu-Al-Ni in the exact solution. The inner bound
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Figure 3.8: Maximum recoverable strain for the rank-two laminates subjected to uniaxial
tension in different directions. (a) Ti-40Ni-10Cu (B19) (b) 7] Cu-14Al-4Ni (wt.%).

which respects compatibility does not get the volume fractions exactly correct, but is

close.

In conclusion, these examples demonstrate that the inner bound is a reasonable
estimate of the maximum recoverable strain while the outer bound is a poor estimate.
This is consistent with the results of Bhattacharya and Kohn [12] and Kohn and

Niethammer [48] who provide rigorous results in dimensionally reduced problems.

3.2.3 Combined Tension-Torsion

Consider a shape-memory wire or a circular tube below the transformation temper-
ature in the self-accommodated state. Pull it uniaxially to the given strain ¢, and
apply a torque M to the ends. We wish to find wg, the maximum recoverable twist
- angle per unit length. Notice that wg is not dimensionless; it depends on the outer
radius ro of the specimen. However, rowg is dimensionless and is independent of

the dimensions of the specimen. Therefore, we estimate the maximum recoverable
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Ti-40Ni-10Cu Cu-14Al-4Ni
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I exact
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° S
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Figure 3.9: Constraints from neighboring grains can suppress the most favorably oriented
variant. Volume fractions of the different orthorhombic variants in the grains with orienta-
tion Ry for the case 6 = 60°. (a) Ti-40Ni-10Cu (B19) (b) 7; Cu-14A1-4Ni (wt.%).

normalized twist yg = rowpg. It will be clear that the normalized twist g is also the
shear strain in the outer-most part of the cross section.

Torsion is a very difficult problem in general anisotropic bodies. Therefore, we
assume that the grains are very small and the specimen is macroscopically uniaxial
in symmetry. Further, we assume that the applied traction on the boundary has the
form t = (7(r)T*+ T*)n where T* = 1(i3 ®is +is ®13), T* = 0(i3 ®i3), and n is the
outward normal. Here, {i,, iy, i3} is the cylindrical basis with iz parallel to the axis
of the specimen. Clearly, the applied torque M = |, a0, T(T)rdS where 09, is the
circular or annular cross section of the specimen. In this situation, it is reasonable to
assume that the state of stress T = 7(r)T* + T* throughout the specimen and the

strain field has the form

e —= 612 622 ry z1 (3.31)

—~ZZ Az
Yo Vo €o

where €11, €13, €95 and v are fixed constants, and ¢, is the prescribed axial strain. The
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solution is then obtained by solving the following constrained minimization problem:
min / (@(e[u]) — r(r) efu] - T*) dx (3.32)
Q

over all e of the form (3.31) and all 7(r) > 0 that satisfy 3 [, 7(r)rdS = M. Let
ey and Ty (r) minimize (3.32). Then, following an argument similar to that in the

case of uniaxial loading, we obtain the maximum recoverable normalized twist as

5 . - ST |
vr = lim (e - T) [r=r, max (e T) |r=r, (3.33)
e as in (3.31)

Equation (3.33) can not be solved without knowing the set P. However, we can
bound it by replacing P with P; and P, to get the inner and outer bound, respectively.

In particular, in the case of materials undergoing cubic-monoclinic transformation,

Ve = max (€T |perp (3.34)
e as in (3.31)
R;-.”eRjesmh vj=1,---,N

Ve = max (€T |p=ro (3.35)
e as in (3.31)

RfeRjesgmo Vj=1,--,N
N
7102 = max ()‘j (ej ’ Tt)) |r=ro (3'36)

=1 €; as in (3.31)
R7e;R;E€S80no
are the inner bound, inner estimate and outer bound, respectively.

We now explicitly evaluate the inner bound ~% and estimate 7% of the maximum
recoverable normalized twist using (3.34) and (3.35) for Monoclinic-I wires or circular
tubes with random texture.

Consider (3.34) first. In the case of random polycrystals, (3.34) can be rewritten

as

Ve = max (€T |p=r, - (3.37)
e as in (3.31)
RTeRESorn VRESO(3)
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Without loss of generality, we may take e;, = 0 simply by rotating the z; and z, axis
with respect to the wire axis. Notice that ey + ez = (2a + B) — €y and therefore
e11+ €22 is a fixed constant for a given applied extension €y. Therefore, the constraint

in (3.37) can then be rewritten as

X 0 —v %f 1 0 0
e —_—
RT 0 X 0% ‘:—; R+ % RT| 0 -1 0 |R €S8, (3.38)
VR B! €o 0 0 O

VYR € SO(3) where x = 3(2a+ 8 —¢€). Using (3.38), we can show that the maximum

in (3.37) is achieved when e;; = ezs = x. Then, the eigenvalues A;, A, and )3 of e

are
1 2 472
A= §(X+60—\/(X—Eo) +45%)
A = x (3.39)
1
As = §(X+€0+\/(X—€o)2+4’72)
where ¥ = vL, r = \/2] + 13 < 7o
Now the constraint RTeR € Sy YR € SO(3) is equivalent to
/8 S A17)‘27A3 S a,
—}‘—% < o= /Ec)é for each {ijk}=perm{123} (3.40)
a —

according to [11]. Combining (3.39) and (3.40), we obtain the relation between 7%

and ¢

i\/pz(éﬁg‘%ﬁl)?—gég if;;:ﬁ%gl
Vr = (3.41)
1y/o (9% — 3p% + 4pla— §)? — 98 if p= 2 >1

where € = €o—%(2a+ (). The result for Ti-Ni wire or tube is shown in Figure 3.15(a).
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Similarly, the constraint RTeR € S¢

mono

VR € SO(3) is equivalent to

/3 S )‘17)‘%)‘3 S «,

Oy (2

a—f

A — A

5| < (

- g )e for each {ijk}=perm{123}. (3.42)

Using (3.39) and (3.42), one can find out the relation between 7% and €, explicitly.
The result for Ti-Ni wire or tube is also shown in Figure 3.15(a). We can similarly

evaluate 7% and % explicitly for Monoclinic-II wires or tubes with random texture.

3.3 Results for Uniaxial Loading

We now evaluate the theoretical bounds on recoverable strains under uniaxial loading
for specific textures. We shall use experimentally observed textures for comparison,
and idealized textures for prediction. We focus on Ti-Ni and Cu-Zn-Al alloys. The

results for other Cu-based SMAs are very similar to those of Cu-Zn-Al

3.3.1 Rolling Texture: Comparison with Experimental Ob-

servations

Zhao and Beyer [100, 101] have recently measured the texture and recoverable strain
in rolled Ti-Ni-Cu sheets. After rolling, the specimens were heat-treated at a tem-
perature below the recrystallization temperature of this alloy. The Cu composition
was around 5% so that the martensite phase was monoclinic similar to Ti-Ni [69, 88].
The observed texture is shown in Figure 3.10: 60% of the grains had a {110}(110)
orientation in the parent phase while 40% of the grains had a {111}(110) orientation.
Here, {hkl}(uvw) means {hkl} planes lie parallel to the rolling plane and (uvw) di-
rections lie parallel to the rolling direction (RD). ND and TD denote the normal and
transverse directions of the rolled sheet. Specimens were cut along different loading
directions (LDs) along the plane of the sheet and the recoverable strains were mea-

sured by the thermal cycling tensile test. The experimental results are shown as dark
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Figure 3.10: Directions in a rolled sheet and texture observed by Zhao and Beyer.

circles  in Figure 3.11.

Theoretical bounds computed using (3.19), (3.20) and (3.21) are shown in Fig-
ure 3.11(a). Here, the upper dashed line (OB) is the outer bound €%, the dashed line
in the middle (IE) is the inner estimate €5, and the thin continuous line (IB) is the
inner bound €%. As expected, the experimental observations of recoverable strains
lie close to the inner estimate and inner bound while the outer bound is a serious
over-estimate.

However, the experimental result near the RD violates the inner bound. There are
a variety of reasons. Among them is the fact that the texture is not ideal; not all grains
have the {111}(110) or {110}(110) orientation, but contains certain “wobble” about
the ideal orientation. Therefore, we take 100 grains with the following orientation:
40 grains are oriented randomly within 5° of {111}(110) while 60 grains are oriented
randomly within 5° of {110}(110). We call this a texture with 5° wobble. The results
are shown in Figure 3.11(b). We have also repeated the calculation using 200 grains
with the same distribution and find the results are essentially identical. However, if
the wobble is taken as 10° instead of 5° [43, 19], the inner estimate (IE) and inner
bound (IB) drop about 1% in the vicinity of RD and remain unchanged near the TD.

We also compare our results with similar experiments of Inoue et al. [43]. First
consider their PL-CR specimens which have a strong {111} fiber || ND. This means
the rolling planes are {111} in the parent phase while the RD is random. Our

bounds calculated with 5° wobble and their experimental observations are shown
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Figure 3.11: Comparison of theory and experiment for the Zhao-Beyer texture. Here,
e Expt is the measured recoverable strain. OB, IE and IB mean outer bound €%, inner
estimate €%, and inner bound 632, respectively. (a) ideal texture (b) texture with 5° wobble.

in Figure 3.12(a). As expected, the results are almost isotropic in the plane and
the experimental results are close to the inner bound and the inner estimate. Next,
consider their PL-RX specimens which contains (110) partial fiber || RD with peaks
at {332}(110) and {111}(110) accompanied with a spread towards {110}(110). This
texture is similar to that observed by Zhao and Beyer [100, 101] except that the dis-
tribution of the rolling planes is different. Our bounds calculated with 5° wobble are
compared with their experimental observations in Figure 3.12(b).

The inner bounds and estimates, which we emphasize do not use any adjustable
parameters, are in general agreement with the observed recoverable strains: they
pick out the level and the trend. However, they do differ in one crucial aspect. In
particular, notice in Figure 3.11 and Figure 3.12 (b) that the inner bound contains a
cusp-like dip around 35 degrees. The main reason, we believe, is the fact that for a
monoclinic material we use the set Sy instead of Speno to calculate the inner bound.

The difference between these sets is significant in some isolated directions; and one
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Figure 3.12: Comparison of theory and experiment for the Inoue-Miwa-Inakazu textures.
Here, o Expt is the measured recoverable strain. OB, IE and IB mean outer bound €%,
inner estimate €%, and inner bound eiR, respectively. (a) PL-CR specimens with {111} (uvw)
texture (b) PL-RX specimens with (110) partial fiber with components from {111}(110) to
{110}(110).

such direction corresponds to the cusp-like dip for these textures. This is indeed a
weakness of our inner bound which uses S, and calculation of the set Spono still
remains a major outstanding problem. It is to overcome this weakness that we also
include the inner estimate. A significant difference between the inner bound and
estimate in some loading direction provides a warning that the inner bound may be

too conservative in this direction.? A second reason for the deviation is the fact that

we use only the major fiber (with wobble) rather than the exact measured texture.

3.3.2 Rolling Texture: Prediction

Most SMAs have a body-centered-cubic (BCC) superlattice structure in the austenite
phase [63]. This is certainly true for Ti-Ni and Cu-based SMAs. Common BCC
textures are listed in Table 3.2 [85, 97, 30, 58]. We note that a-fiber II is not common

2At the same time, close agreement between the inner bound and estimate (as shown in Fig-
ure 3.12 (a)) indicates that these are reliable predictions.
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Fiber Fiber Axis | Relevant Components Associated with the Fiber
a-fiber I | (110) || RD {001}(110) — {112}({110) — {111}(110)
o-fiber 11 | (110) || RD {111}(110) — {110}(110)

~-fiber | {111} [ ND {II1(110) — {111}(112)

n-fiber | (100) || RD {001}(100) — {011}(100)

Table 3.2: Some common texture fibers observed in BCC metals and alloys. The a-fiber
IT is the characteristic texture of Ti-Ni with the B2-lattice.

in general BCC textures, but is observed in SMAs [43, 101].

Figure 3.13 and Figure 3.14 show the inner bound and estimate for Ti-Ni and Cu-
Zn-Al for the different textures listed in Table 3.2. Comparing these, it is clear that
the recoverable strains are much higher in Ti-Ni than in Cu-Zn-Al for typical BCC
textures. The a-fiber I in Ti-Ni exhibits two peaks in RD and TD of the rolled sheet as
shown in Figure 3.13(a). Therefore, this texture is desirable for uniaxial applications
since it is easy to extract good specimens from a rolled sheet. On the other hand,
the vy-fiber observed in [43] exhibits the least anisotropy as seen in Figure 3.13(c).
This texture is preferred if the recoverable strain is required in every direction of the
rolled sheet. In Cu-based SMAs, the shape-recovery strain while poor in general is
expected to be relatively large for the n-fiber. Unfortunately, this fiber is usually less
common. We also note that the behavior of a-fiber I can be improved by restricting
the fiber components from {001}(110) to {112}(110): the result is similar to that of
Figure 3.14(a) except the peak of the inner estimate rises to about 5% around 45°.
Park and Bunge [79, 80, 81] have observed this texture in a hot-rolled Cu-Zn-Al sheet

although no recoverable strain measurements are available.

3.3.3 Other Textures
Random Texture

The inner bound and inner estimate on the maximum recoverable extension for a
polycrystal with randomly oriented grains are shown in Table 3.3 for Ti-Ni and Cu-
Zn-Al. The behavior of these alloys is quite similar, and rather poor with random

texture.
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Figure 3.13: The predicted uniaxial recoverable extension in Ti-Ni for various rolling tex-
tures. The upper dashed line is the inner estimate €% while the lower continuous line is the
inner bound €%,
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Recoverable Strains (%)
Ti-Ni || Cu-Zn-Al
en | || & €
random 2312313 1.7
(110) wire/rod [ 6.0 [ 7.5 || 1.3 1.7
(111) wire/rod [ 3.9 9.6 || 1.7 1.7
{100} ribbon |2.3[23] 4.6 7.1

Texture

Table 3.3: The predicted uniaxial recoverable extension for various textures in bulk poly-
crystals.

Wire Drawing Texture

BCC metals and alloys have been shown to develop strong (110) fiber texture af-
ter drawing or extrusion [41]. Assuming equal volume fraction in all of the fiber
components, the inner bound and estimate of tensile recoverable strain in Ti-Ni and
Cu-Zn-Al are listed in Table 3.3. Clearly, Ti-Ni is expected to have much better
shape-memory behavior than Cu-Zn-Al for this fiber. Park et . [82] have observed
a strong (110) fiber texture in the parent phase in cold drawn Cu-Zn-Al wires although
no recoverable strain measurements are available.

Yamauchi et al. [99] observed a (111) recrystallization fiber texture in cold-drawn
and subsequently annealed Ti-Ni rods. Similar observation was reported in [98] for
Ti-Ni-Cu wire. Our bounds for this (111) texture is also listed in Table 3.3. Again,
this texture is more favorable in Ti-Ni than in Cu-Zn-Al.

Finally, Miyazaki et al. [64] have reported that drawn wires of Ti-50.6Nji alloy can
recover around 6% tensile strain although there is no additional information to show

those wires have such (110) or (111) fiber texture.

Solidification Texture

Eucken et al. (34, 35, 33] have obtained a columnar grain structure with a strong
{100} texture in meltspun ribbons of both Ti-Ni alloy and Cu-based SMAs. Their
experimental results show that Ti-Ni ribbon can recover less than 4% tensile strain,
but Cu-Al-Ni ribbon can recover as large as 6.5% strain. Indeed, this difference

can be predicted using the inner bound [11]. One can prove the exact inner bound is
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(a— Zi;ﬁ) in Monoclinic-I martensites. On the other hand, Monoclinic-II martensites
can recover ((a+ ) — 2"‘—;@) tensile strain if € > & or (o + €) — 22t2) tensile strain if
€ < 0. As a result, the exact inner bounds on recoverable extension are 2.3% and 5.8%
for Ti-Ni and Cu-Al-Ni, respectively. Clearly, {100} texture favors larger recoverable
strain in Cu-based SMAs than in Ti-Ni alloys.

3.4 Results for Combined Tension-Torsion

We now report the results for combined tension-torsion: first pull the self-accom-
modated wire (or circular tube) specimen to the desired strain ¢, below the trans-
formation temperature, and measure the twist angle using the thermal cycling test
under the constant torque. Figure 3.15 shows the results for a random polycrystal and
for a wire or tube with (110) or (100) textures. The calculation for (110) and (100)
textures is similar to that for random texture at the end of Section 3.2.3. Notice that
the maximum recoverable normalized twists are relatively small. Further, the recov-
erable twist decreases with increasing imposed recoverable extension in random and
(110) texture while (100) texture shows the opposite behavior. Sittner et al. [94] have
used force control to study stress-induced pseudoelasticity in Cu-Zn-Al-Mn under the
combined tension-torsion. The maximum recoverable normalized twist is around 1%
in their experiment, and it increases with applied tensile loading. Unfortunately, they

do not provide any information about the texture.
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Figure 3.15: The predicted recoverable torsion (normalized twist) for different applied
extension in Ti-Ni and Cu-Zn-Al polycrystals with random texture, (110) and (100) fiber
textures, respectively. Notice that torsion (normalized twist) means outer radius times
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angle of twist. Here, IE and IB mean inner estimate 7§ and inner bound 'yj'?.
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Chapter 4 Shape-Memory Effect in Thin Films

4.1 Effective Energy of a Thin Film

Our first task is to develop a framework analogous to that described in Section 3.1
to discuss the effective behavior of heterogeneous thin films as shown in Figure 1.2.

Let the film occupy a reference domain
Q"= {xecR®: (z,,1,) € 5,0 < z3 < h} (4.1)

where S is a bounded Lipschitz domain, {z,, 7, 23} are relative to an orthonormal film
basis {ey,ez,es}, and h is the film thickness. Let ¥ : " — IR® be the deformation

of the film. The total energy of the heterogeneous thin film is
Ol = [ {95 + (05, 22, 22,2}
eyl /{ﬂ V231 + (VS = =, 5) j dx (4.2)
Qh

where ¢ : IM**® x IR? x (0,1) — IR is the elastic free energy density of the film. We
assume that ¢(-,£1,&;,-) is periodic in the in-plane variables & and &, with period
Z = [0,1]2. So d scales like the typical grain size. Further, since we wish to model
martensites, ¢(F, -, -, -) may have a multi-well structure and consequently nonconvex.
Note that we have included the interfacial energy ofrthe type k?|V2y|%. Minimizers
of the energy (4.2) have oscillations on a length scale that scale with & and hence we
call £ the length-scale of the microstructure. We are interested in finding the limiting

behavior of the film when all length scales &, d and h tend to zero. Therefore, we take

k=#x(h) >0, d=d(h)>0, ’lgr(l)n(h) =0, }lgr(l)d(h) =0, (4.3)
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and assume that they have fixed limiting ratios:

a = lim o' = lim —. (4.4)

K . h
h—)OE’ ,8——-}1”1_13(1)

In bulk materials, the homogenization of cellular elastic materials with nonconvex
energy density ¢ has been studied by Braides [15] and Miiller [67]. The same problem
including the interfacial energy has been studied by Francfort and Miiller [37]. How-
ever, microstructure can be significantly different in thin films as compared to bulk
materials, endowing materials with dramatically distinct properties (for example, see
[3]). Recently, Bhattacharya and James [10] have developed a theory of single crystal
martensitic thin films which captures this effect. Related work on the modeling of
thin structure with convex (quadratic) energy density includes, for example, Kohn
and Vogelius [49, 50], Damlamian and Vogelius [26] and Caillerie [20]; and related
problems with nonconvex energy density include, for example, Acerbi et al. [1], Le
Dret and Raoult [29], Fonseca and Francfort [36]. We wish to combine homogeniza-
tion with the thin-film analysis for nonconvex energies and apply it to heterogeneous
martensitic films. Braides et al. [17] and Braides and Fonseca [14] have studied a
similar problem with xk = 0.

Our approach is variational. We study the “variational limit” of (4.2) as h tends
to zero. Since the energy defined in (4.2) will scale like A as h tends to zero, we shall

be interested in the limiting energy per unit thickness; i.e.,

& = Lo,
The equilibrium configuration for each finite thickness corresponds to the minimizer
(minimizing sequences) of the functional égh). We expect the minimum values and the
minimizers of the functional égh) to converge to those of the “limiting energy” é:(lo).
In this context, the natural tool which captures such properties is I'-convergence
as proposed by De Giorgi [38] and De Giorgi and Franzoni [39]. The notion of

I'-convergence, under a suitable technical hypothesis, is nearly identical to that of
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Theorem 1
Theorem 1 | Theorem 1 AT
K>>d| AT AT x>h

<<

Theorem 2 | Theorem 3 A T

K~d A A
T H H I?? )
T
Th%o lﬁm 2 Theorem 3
K<<d | >, H HT
<< T
Theorem 4

h<<d h~d h>>d

Table 4.1: Summary of the effective behavior of a heterogeneous thin film. A means aver-
aging, H means homogenizing and T means thin-film limit. “T'H” denotes that the effective
energy density ¢ is obtained by taking thin-film limit first, and then homogenizing in the
plane of the film. On the other hand, “HT” denotes homogenization first followed by thin-

film limit. Finally, a stacked symbol T denotes performing these operations simultaneously.

convergence of minimizers (see also Remark 1). Using this notion, we show that the

limiting energy is always given by

ég())[)’] = /95 (gwyl gyz) dz,dz,
S

where ¢ is the effective energy density and only depends on the in-plane gradient of
deformation y and not explicitly on the position.

In the following, we give a non-technical description of our main results which is
summarized in Table 4.1. The most important finding is that the effective energy

density ¢ crucially depends on the limiting ratios of these three length scales.

1. Strong interfacial energy (k >> d). Assume ¢ = ¢(F, %, 2). Our Theorem 1
shows that the effective energy density @ is obtained by averaging the micro-
scopic energy ¢ over the period, then passing to the thin-film limit. It costs
materials more energy to form microstructures within each grain as a result of

strong interfacial energy. Material is internally stressed. The result is also true
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if p=¢(F,%,%2 %) and if kK >>d and K >> h.

. Flat grains (d >> h). Assume ¢ = ¢(F,%,2). If the length scale of mi-
crostructure is much smaller than that of grains (i.e., if K << d), then Theorem 2
shows that the elastic energy dominates the interfacial energy and materials can
form microstructures freely. As a result, the macroscopic energy density @ is
impervious to the presence of interfacial energy. Further, @ can be identified to
be obtained by taking the thin-film limit and then homogenizing in the plane
of the film. The thin-film limit says that only the in-plane compatibility is
important and this allows a wider class of microstructure formed in thin films
than in bulk materials. On the other hand, if the length scales of grains and
microstructure are in the same order of magnitude (i.e., if & ~ d), Theorem 2
shows that the interfacial energy explicitly contributes to the effective energy
density @. Materials can form only a limited amount of microstructure because

of competing energies between elastic energy and interfacial energy.

. Comparable grains (d ~ h). Assume ¢ = o(F, 2, 22 %) Our Theorem 3
gives the expression of effective energy density @ when all length scales are
comparable. This case apparently has no simple explanation since the averaging,

homogenizing and thin-film limit are taken into account together.

. Long grains (d << h). Assume ¢ = @(F, %, 2) First if d << &,h, our
Theorem 1 includes this case. Next if K = 0 and d << h, this case has been
recently proved by Braides and Fonseca [14]. It says that the effective energy
density is obtained by homogenizing the bulk material, then passing to the
thin-film limit. We expect the result is also true even if the interfacial energy
is included and if & << d. Finally, if kK = d << h, we conjecture the effective
energy density is obtained by taking averaging and bulk homogenization first,

and then passing to the thin-film limit.

. Multilayers (k versus h). Assume ¢ = o(F,%2). In such a situation, only two

physical parameters k and h are relevant. Our Theorem 4 gives the expression
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of ¢ containing through-the-thickness variations.

4.2 Mathematical Preliminaries

It is often convenient to work on a fixed domain instead of a varying domain Q" so

we introduce the following change of variables:
z, = (21,22) = Xp = (21,%2), 23 = %wg, x e Ot (4.5)
and set
Q' =9 x(0,1). (4.6)
To each deformation y : " — IR® we associate a deformation y : Q! — IR® via
y(z(x)) =§(x), xe Q"
We use the notation V, for the gradient in the plane of the film; i.e.,
Vyy=y1®e+y2Q®e,,

— 9y _ (% dyz us\T. i in L&() ygj
and y,; = 3% = ( 5o 5 5o0)" 5 etc. We now change variables in +e' using (4.2),

and (4.5) and get

5 L_hyr=
&l = 3]

2 1
= [{e (vt mar + giva)

Ot

1 z
+ o(yalyalzys 23)} dz. (4.7)
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We have used the notation
F={f6f)=fce+hoe+fQe;

for F € IM3*3,

We assume the energy density ¢ satisfies the following conditions:
1. ¢(F,z) is Carathéodory and nonnegative.

2. Periodicity in the plane of the film: ¢(F,z,,23) is periodic in the in-plane
variable z, = (21, 22) with period Z = [0,1]? for all F € IM**® and z € (0, 1).

3. Growth and coercivity conditions:
a([FP —1) < o(F,z) < oo(|FP + 1) (4.8)

for all F € IM**® and for a.e. z = (2,,2) € IR® x (0, 1).

4. Lipschitz condition:
[P(F,2) — 0(G,2)| < (1 + [FJP~! + |GPPY)|F — G (4.9)

for all (F,G) € IM**® x IM**® and for a.e. z = (z,,2) € IR? x (0, 1).

Notice that in (4.8) and (4.9), 0 < ¢; < ¢, and p satisfies
l1<p<oo.

We seek to minimize &) [y] over the space V where

V={y:yeW"(Q!, ) n W(Q!, [R*)}. (4.10)
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Therefore, we introduce
&'yl i yeV,

e"ly] = (4.11)
+00 otherwise.

So the new formulation of the variational problem is minimized over a fixed space.
Clearly, the minimum values and minimizers of both formulations coincide if égh) ly] <

Q.

Now our goal is to compute the I'-limit of e&h) as h,d and  tend to zero with fixed

limiting ratios (4.4). To this purpose, we recall that

Definition 1 A family egh) of functionals on WLP(Q!, IR*) (1 < p < 00) is said to
T'-converge (in the weak WP(Q, IR®)-topology) to e\ if and only if

(I) every sequence y™ with
y® ~y in WW(QHIR?) ash o0, (4.12)
satisfies the “lower bound”

e ()] > O]
liminfe;"[y™] > e;”y]; (4.13)

(II) for every y € W1P(0, IR®), there emists a sequence y™ called the “recovery

sequence” such that

y® ~y in WWQLIR®) ash—0 (4.14)
and
lim e [y®] = e [y]. (4.15)
—0

Remark 1 The limiting functional e§°), by construction, is lower semicontinuous with

respect to weak convergence in W?(Q!, IR?) [16] and, therefore, attains its minimum



56
value due to the coercivity condition (4.8). Further, using the fact that the L2-norm is
sequentially lower semicontinuous and Rellich’s compactness theorem, one can show
that egh) admits a minimum for any fixed h > 0 (cf. Francfort and Miiller [37]).
Therefore, minimizers of egh) converges to those of e§°) by the fundamental theorem

of I'-convergence (see, for example, Braides and Defranceschi [16]). (i

In the following, we will show that in all cases egh) I'-converges to a functional e{")

of the form

o / P(Vpy)dz, if yeVs,
el ¥Y]=19 % (4.16)

400 otherwise,

where ¢ may be described as an effective energy density and Vy is defined by
Vs={y:ye W(Q',[R’) and y; =0 forae zin Q'} (4.17)

which is canonically isomorphic to W?(S, IR?). The following lemma is the first step

towards proving (4.16); with it we only need to compute the I'-limit of egh) fory € Vs.

Lemma 1 Ify ¢ Vg, then e&o) [y] = +o0.
Proof. Assume y ¢ Vs. It suffices to show that for any sequence y® € V such that
y® —~y in W'(QL IR?) as h — 0,

lim inf e [y ®)] = +o0. (4.18)
h—0

Suppose (4.18) were not true. It means that there exists a sequence y® converges
weakly to y in WP(Q!, IR?), but liminf),_,o egh) [y®)] is finite, say this number M.

Therefore, there exists a subsequence y (not relabeled) such that

lim inf e{® y®] =M < +.
h—0
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By coercivity, %y(g ) is bounded in LP(Q', IR®) and this implies

y(g’f ) 50 strongly in LP(Q, IR?) (4.19)

as h — 0. Since y(® converges weakly to y in Whe((, IR?) as h tends to zero, this

gives

v Bys in L/(QY, RY). | (4.20)

Combining (4.19) and (4.20), we have y 3 = 0 a.e. by the uniqueness of the weak
limit. Thus, y € Vs which contradicts the assumption and this completes the proof.

O

4.3 Strong Interfacial Energy

Theorem 1 Let e&h) and e§°) be defined by (4.11) and (4.16). Then, egh) I'-converges

to the functional e§°) if

(1) ¢=@(F,2) and & — 0o as h — 0; further,

B(F) = Qao(F),

6o(F) = inf G(Flb) (4.21)
B(F) = / o(F, 2,)dz,

where Qo is the lower quasi-convex envelope of o, F € IM?*? and Z = [0,1]%;

(i) ¢ = o(F, 2, 2) and & — 00, % — 00 as h — 0; further, ¢ is given by (4.21)y,



58
(4.21), with (4.21); replaced by

H(F) = / o(F, z)dz; (4.22)

Zx(0,1)

(iii) ¢ = @(F,2s) and £ — 0o as h — 0; further, @ is given by (4.21)1, (4.21), with
(4.21); replaced by

¢(F) = / ¢(F, 23)dz3. (4.23)

Remark 2 It is clear that @(F) enjoys the same growth and coercivity conditions
(4.8) and is continuous by virtue of the Lipschitz condition (4.9) on ¢. It follows that
%o given by (4.21), is well defined and the infimum is achieved. Further, Proposition
1 of Le Dret and Raoult [29] shows that ¢o(F) satisfies the growth and coercivity

estimates (4.8) and is continuous. O

Proof of Theorem 1. We begin with the case (i): ¢ = ¢(F, %) and £ — oo as
h — 0. We first construct a recovery sequence for any y € V. Recalling Remark 2
and invoking the relaxation theorem due to Dacorogna [25] yields the existence of a

sequence y® which converges weakly to y in WP(S, IR?) such that
/950 (Voy®)dz, — /Q(,bo(Vl,,y)dz],J as 6 — 0. (4.24)
s s

Since the infimum of @, is achieved (see Remark 2), an argument like that used by
Le Dret and Raoult [29] shows that for each element of the sequence y(® | there exists

a measurable b® ¢ L2(S, IR®) such that
Go(Vpy®) = (V50 [b?). (4.25)

Further, we may also assume at this moment that both y®)(z,) and b®(z,) are
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smooth functions because of the Lipschitz character of S (see Remark 3). Define
y&M =y® (2p) + hb®) (2p)23 (4.26)
and substitute it into egh), we have
eMly®n) = / {<* (IV2y® + RV 22 + 2|V, b@?)
(o9
zZ
#(Vpy? + hV,(b®24) [b®, 22)} g, (4.27)

The first term of the integrand, &? (|V2y® + hV2b® 22 4 2|V,b® |?), vanishes for
any fixed § since k(h) — 0 as h — 0. Therefore, using the Lipschitz condition (4.9)
on ¢ yields

h N N
P y6m) 1, / / P(V,y D (2,) b (z,), 3,)d2, dz,
S Z

(Vey ) (2,)[b®) (2,))dz,

Po(Vpy @ (2p))dzp. (4.28)

I
B

Above in (4.27), we have approximated (V,y® |b®) by a piecewise constant element
in LP(S, IR®), passed to the limit as in (4.28) using the Lemma A.1 by Ball and Murat
[7],' and then use the estimate (4.9) on ¢ again to complete the whole argument.

Recalling (4.24) gives

lim sup lim sup egh) [y®P)] = e&O) ly]. (4.29)
0—0 h—0

Now appealing to the standard diagonalization argument of Attouch (Corollary 1.16)
[4] yields a sequence y®™®) that converges weakly to y in Wie(Q, IR?) as h — 0 and

"Let 1 < p < oo and let g(x) € LP (IR™) be [0,1]™—periodic. Then g(%) converges weakly in

loc
LP(Q) to its mean value as £ — 0 for any bounded open subset ).
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satisfies
lim (% [y (%)) = ¢ [y]. (4.30)
—0

'To complete the proof, we need to establish the lower bound. Let y® LN yeVs
in Wh?(Q!, IR®). We may assume that liminf,_oe{” [y®] is finite; else the result
follows. We may also restrict ourselves to a subsequence y® (not relabeled) which
achieves the liminf. Note that taking further subsequences does not change the

liminf. For any d > 0 let S’ CC S with |S\$’| < J. Define

P = {z,€dZ*:2,+dZ C '},
Sd = U (ZP+dZ)7

z, EP4
Q44 =54x(0,1) and =5 x(0,1).

Clearly S¢ C §'. For each % in Q% define

1
Y®(z,, 35) = = / (v,,y<h>|—y(§))dz,,, 2, €2, +dZ, z,€ P’  (4.31)
Zp+dZ

One can check easily that
h
Yl soq@rsy < 1755y oo (4.32)

Using the Poincaré inequality for each small square in S¢ at fixed z3, summing all

such squares, and integrating over z; from 0 to 1, one can deduce that

1
1Y — (Vo 2y D) auy < O (32 / K2 (ivzy“’lzwivpyfé"lz) dz (4.33)

Ql.d

where C is some constant that does not depend on h. Using the fact that 2 2 —0as
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h — 0 and the finiteness of lim inf,_,q egh) [y™], we have
1
IY® = (Voy @Iyl >0 ash—o. £.34)

Thus, we can apply Egoroff’s theorem to assert the existence of a measurable s st

A of ¥ such that, for sufficiently small b, A C Qb9 | \A| < 6 and
Y® — (pr(h)]%yg’ ) ) = 0 uniformly on A (4.35)

as h — 0 for some subsequence (Y(h) ~ (pr(h)liy,(sh ))) (not relabeled). Using the
Lipschitz condition (4.9), (4.32), (4.35) and the uniform boundedness of
(VY @13y llzo(e), we have

1
/go(Y(h), %)dz — /cp(V,,y(h)[Ey,(:), Zsz”)dz —0 ash—0. (4.36)
A

Let A,, be the projection of the slice of A at the constant z3; L.e.,
Ay = {(21, 22) : (21, 22, 23) € A}, (4.37)
Also, pick any Z, € P? and let
Qs =2, +dZ, and Q ={(2,,2):2, € Qg, 2z € (0,1)}, (4.38)

and notice that Y®) is constant over Qs for any fixed z3 € (0, 1). Thus, using Fubini’s

theorem, we have

1

[ o 2y [ [ ox®, 2,

AﬂQ 0 QSnAZ3
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and

z Z z
/ @(Y(h)7gp)dzp = /‘P(Y(h),?i?‘)dzp_ / W(Y(h),”dg)dzp

QsNA., Qs Qs\A4z,
> / GYP)dz, — cy(1+ YD) |Qs\A,|  (4.39)
Qs

where we have used the second inequality in (4.8). Using the other inequality in (4.8),

we have

Z
[ oY, 2y, > e, (Y0P 1)[Qs .4, (4.40)
QSnA23

Combining (4.39) and (4.40), we obtain

zZ ~
| e, 2yia, > [ 40@)(x®)ia, ~ 2 [ wo@an, @
QSnAz;; QS QS\Az3

where

CllQS N Azsl
1|Qs N Az + 2| Qs\ A,
C 3 XA, Z,)dz
- ! Jay 4z Xk f) ? for ze@Q (4.42)
(e1 = c2) . vaz X, (Z)d2p + 2

(@) =

and x 4,, is the characteristic function of the set A,,. Integrating (4.41) over z; from

0 to 1 and summing the same equation over all Z, in P?, this gives
/(,o(Y(h),%)dz > / 1D (2)G(Y™)dz — 2 ¢ / 1D (2)dz. (4.43)
A Ql.d Ql,d\A

Invoking the Lebesgue point theorem on (4.42) as d — 0 as h — 0 for each fixed 23,

we have

ClXAz3 (zp)
CiXA., (2p) + ca(1 — XA, (2p))

1D (2, 25) — = Xa.,(Zp), ae. on €, (4.44)
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and (4.43) becomes

hinlnf-/cp(Y(h) p)dz > hmmf//,a(d)(z)cﬁ(Y(h))dz. (4.45)
A A

Recalling (4.36), (4.45), (4.35), and the fact that ¢ is nonnegative, we obtain

1 z
- )2k Zp > Lmi M2y Zp
hgbn_gglf/so(vpy 5¥s 5 )dz > ln;bn_gglf/so(v y |- Y5 )z
Q 4
— limi () Zp
= hﬁri}élf/W(Y ,d)dz
4
liminf/,u(d)(z)gé(Y(h))dz
h—0
4

v

_ @) () (h)
hglrgnf/u (2)o(Vyy lhys )dz
A

hglnlnf/,u(d)(z) o(V,y ™) dz. (4.46)
A

v

Now, invoking the Egoroff’s theorem yields the existence of a measurable subset

A" C A with [A\A'| < ¢’ such that for some subsequence (not relabeled)
p® — x4, =1 uniformly on A’

as d — 0 as h — 0. Therefore, for any 7 > 0, we have

h—0 h—0
A A

lim inf / 1D (2)@o(Vyy™)dz > liminf / 1D (2)3o(V,y ™) dz

> timipt (1= 7)Qeo(Voy®)dn. (247
—}

It we define G : WP(Q!, IR*) — IR by

() = / Q0(V,9)dz
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and set & : IM>*® — IR to be ®(fy|f,|f;) = Qo(fi1|fz). Since Q@, is quasiconvex,
it can be shown [29] that @ is also quasiconvex, bounded below by —c; and satisfies
the similar growth and coercivity conditions (4.8). Then G is sequentially lower

semicontinuous on WP()!, IR®) (see Acerbi and Fusco [2]). Applying this result to
Jor 1 = 1) x4 QPo(V,y™)dz, we have '

lim inf / (1= 1)QPo(Vpy™)dz > / (1 —n)QGo(V,y)de.

A Al

By letting ¢’ and 7 tend to zero, we have

tmint [ 40@)7o(V,y)ds > [ @e(@y)ia

-
A A
Combining with (4.46) yields
1
it [ (VO 2y, s > [ Qpu(T,y)de
h—0 h*> d
A A

Using the fact that Q@o(V,y) belongs to L}(Q') and |Q'\A] < 26, we obtain the
desired lower bound by letting § — 0.

We now consider the case (ii); i.e., ¢ = ¢(F, %2 2) and 5 00,7 —o00ash—0.
We can construct the recovery sequence in a way similar to the previous case without
any difficulty. Next, the proof of the lower bound is also similar, except we have to

replace (4.31) by

1

. 1 1 A
Y® (%) = -d—z/ / (pr(h)|ﬁy,(;))dzpdz3, Zp € 7, +dZ, z,€ P’
0 z,+dZ
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Note that (4.32) remains valid, but (4.33) becomes

1 d 1
YO (OOl Ol < CEQF [ (195 OP+ 195 PP) ds
QL.d

+ oGr [ (VP gy P de
QLa
where C is some constant that does not depend on h. Since both § — oo, £ — 00 as
h — 0, we obtain (4.34). The rest of the proof is similar and we omit here.
Finally, the case (iii) (¢ = ¢(F,23) and & — 0o as h — 0) follows from the case
(ii). 0

Remark 3 For each § > 0, y® € W'P(S, IR®) and b® € LP(S, IR®), the bounded
Lipschitz domain permits the existence of sequences y»¢) € C=(S, IR?) and b®) ¢
C$ (S, IR?) such that

y@®) — y©@  strongly in W'P(S, IR®)

b® 5 b@® strongly in LP(S, IR®)
as € — 0. Then, (4.26) is replaced by
y@Geh) — 362 4 b6 (7 )z,
and (4.29) now becomes

limsup limsup limsup 6§h) ly

6—0 e—0 h—0

6] = e y].

Appealing to the already quoted diagonalization argument yields the existence of a

recovery sequence labeled only in terms of A and thus (4.30). O
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4.4 Film Thickness Much Smaller than Hetero-

geneity

Theorem 2 Suppose p = p(F, %) and & — o and 2 — 0 as h — 0. Let F € IM>*?,

Z =[0,1)% and ¢ be defined by (4.11). Then, e T-converges to the functional el”

defined by (4.16) if

(i) =0 and
5(F) = inf i F .
p(F) = jnf wewl?zf(mk]z[ ¢o(F + Vyw, z,)dz, (4.48)
po(F,z0) = Jnf_ o(F%[b, z,); (4.49)
(ii) &> 0 and
5(F) = inf  inf ][ {0 (IV20[2 + 2|V,bP) + o(F + Vyiwb, 2,) } dzy;(4.50)
kelN weWP (kZ)nWE2(k 2)

beLr (kZ)" W2 (kz) k2
(iii) @ = oo and

(F) = Q@o(F),

PolF) = inf @(FD),  5(F) = [ p(F,2,)dz,

where Q@ is the lower quasi-convexr envelope of @q.

Remark 4 It can be shown that the effective energy density satisfies the growth and

Lipschitz condition for 0 < a < oc; i.e.,

ci([FPP — 1) < (F) < e;(|FP + 1) (4.51)
P(F) = ¢(G)| < (1 + [FP~* + [GPP)[F - G (4.52)

for all (F,G) € IM*** x IM3*2, Suppose 0 < o < 0o0. The upper bound is obtained
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by setting w = b = 0 in (4.50) and using (4.8) on ¢. To show the lower bound,
note that for every & > 0, there exists k € IN,w € W, ?(kZ, IR®) N W*(kZ, IR?) and
b € I*(kZ, IR®) N W, *(kZ, IR®) such that

o(F) < ][ {a® (IV2w]? +2|V,b|*) + o(F + V,w|b,2,) } dz, < ¢(F) +e. (4.53)
kZ

Using (4.8) on ¢ yields

o(F)+e > cl( 7[ IF+prlb|”dzp—1)
kZ

> o ( ][ IF + Vw0 Pdz, — 1)

kZ
> Cl(

since | - [P is convex and |F|b|sxs > |Flsx2 for all b € IR®. To prove the Lipschitz

P
][(F + Vpw)dz, | — 1) > ¢ (|F|P — 1)
kZ

condition for o > 0, choosing the same w and b as the test functions for 3(G), we

have

P(@) - ¢(F) < {[¢(C+Twlb,z) - p(F + Vywib,2,) | day + e
kZ

1., =
< C<1+E§||G+pr|b”ip

p-1

1 ., = p 3 - —
+ 3 I|F+ prlb”Lp> |G —F| +e. (4.54)
Now invoking the growth conditions on ¢, ¢ and (4.53) gives

1 = _
Ol [IF + Vb, - 1) < ][ o(F + V,lb, 2,)dz,

< pF)+e<c(FP+1)+e (4.55)
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and
1= ~ = 1 .=
LG+ Vywlbl, < CIG — B + 5 B+ Vyib]7,) (4.56)
Collecting (4.54)-(4.56) gives

#(G) — ¢(F) < (1 + [FP + |G HIF ~ G| +e. (4.57)

We have the desired inequality as ¢ — 0. The opposite inequality can be obtained by

interchanging F and G. The case & = 0 and o = oo can also be treated similarly. O

Proof of Theorem 2. The case @ = oo is a corollary of Theorem 1. The proof for
finite & > 0 consists of two parts. First, we prove the I'-limit in the case where the
limit function is affine (Part A). We then prove the general case by approximating
an arbitrary function by piecewise affine functions (Part B). We will give a detailed
argument in Part A. After that, we simply sketch the steps for general y € Vi in Part
B.

Part A. Suppose y = Fz, with F € IM®*%. We begin by constructing a recovery
sequence for the case where o > 0. It follows from the definition of @ that there
exists sequences k) € IN, w® e WyP(k©Z, IR®) N Wy (k@ Z, IR®), and b ¢
LP(k©) Z, IR®) N Wy (k© Z, IR®) such that

1
k()2

/ {o? (V2@ + 2|V, bO|?) + o(F + V,w® | b 2,)} dz,, — (F) (4.58)

Kz

as € = 0. We use w® and b'® to construct our recovery sequence. Unfortunately,
b®) may not be smooth enough to allow second differentiation. However, using the
approximation argument similar to Remark 3 shows that we may assume that b(®)

Cs°(k® Z, IR®). Define

y® — Fa, + dw(s)(%) + hb(s)(-zf)% (4.59)
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where w® and b® are extended periodically in the plane of the film since w(® =
Q% =bl = %:l = 0 on 9k® Z in the sense of trace. Clearly, y*) 2 Fz, for each

€ > 0. Substituting (4.59) into egh) defined by (4.11), we have
2)

h Kk
M y®] = / {(
F @ © Zo
+ o(F + Vyw +zl-Vpbzg|b ’E) dz. (4.60)

2
gi,w(E) + Ev§b<€>z3| +2 |g-v,,b<6>

(o1}

By assumption that % — 0 and £ — o as h — 0, invoking the Lipschitz condition

(4.9) on ¢ yields

k()2
OV A

Q! = €
Ppyte) 5 S / (o (IV20OP + 2|V, bOP) + o(F + V,® | b, 2,)} d, (4.61)

as h — 0. Above, we have applied the property of mean value? to (4.60) in deriving

(4.61). Then, using (4.58) gives

lim sup limsup e{” [y®9] = || (F) = 5| 3(F) = e[y]. (4.62)

e—0 h—0

Recalling (4.59) and (4.62) and appealing to the standard diagonalization argument
yields the existence of a sequence ) = y(<(*) that converges weakly to y = Fz,

in WLP(Q!, IR?) and satisfies
tim " [y] = " [y

The case of & = 0 is similar. Indeed, using an argument similar to Remark 2 shows
that (4.49) is well defined and the infimum is also achieved. From the definition of
@, there exists sequences k© € IN, w© € Wy*(k© Z, IR®) such that

1 _ . =
i [ o+ V0,5, - p(F)
ke z

2ibid 1.
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as € — 0. Following an argument like that used in (4.25) gives measurable functions

b® € Lr(k®) Z, IR®) such that
po(F + pr(s), zp) = p(F + va(a) I b(e)7zp) (4.63)

for almost all z, € k) Z. The rest of the proof follows similarly.
A slight refinement (see Lemma 2.1 in Miiller [67]) shows that the recovery se-

quence y® can in fact be constructed such that

on ¥ =05 x (0,1) in the sense of trace.
We now turn to the lower bound when y is an affine function and @ > 0. We
assume that S is a square domain with side length s. Set w® = y® — Fz, and

assume also that (4.64) holds; we have

O™
on

wh eV o in WQ R and o® — =0 (4.65)

on X = 05 x (0,1) in the sense of trace. We may also assume that lim inf,,_,q e{® [y (®)]
is finite; otherwise the proof is trivial. Choose k € IN to be smallest integer such that
kd > s+ d. We can find a square S@ with the side length kd such that S ¢ §@
and the corners of S are in dZ2; ie., §@ = d(z) + kZ) for some z) € Z*. Now

extending w® to S@ by

wh, for ze S x(0,1),
0, for ze (S@\S) x (0,1),

o® =
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we have
h ~ ~(h h
Pye - f {mz (Iv280p + 9,60 + o)
S x(0,1)
e(F+V w(h)|—w d)} dz /@(F]O,%”))dz
(§(D\8)x(0,1)
= I]_"'I2.

The second integral —I > —c,(1 + [F[?)|S@\S| converges to zero since [S@\S| <
(s +2d)? — s> — 0 as d tends to zero as h tends to zero. Changing variables z,

d(z) + 2,) and 2 > %23, using the periodicity of ¢ and Fubini’s theorem, we have

L>d — / / { IV2Zo®)2 4 2 ;v,,w(")lz) +o(F + V,o® | o¢ z,,)} dz,d3s

0 kZ

where

a(B)fa 1. . d.

o®(z,, 25) = Ew(h) (dz,, “};23) (4.66)
Notice that for almost every 2; € (0, 2), the function G)g:) (2,) = @M (2, 35) belongs
to WyP(kZ, R®) N\WZ*(kZ, IR?). Similarly, for almost every %; € 0,8, 3) belongs
to LP(kZ, IR®) N W, (kZ, IR?). Tt follows that

als

o> a2 [ B e > @h26(F) > so(E),

0

Thus, we have shown that lim inf},_,o e{" [y®)] > s23(F) = el”[y] which is the desired
lower bound.

For the general domain S, assume the sequence y® satisfy (4.65). Consider a

square () which contains S. Using the fact the recovery sequence can be obtained

such that (4.64) is satisfied for the domain (Q\S) x (0,1), we can also obtain the
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lower bound.
Now let S be any open bounded Lipschitz domain and let y® X y = Fz, in
Wtr(Q!, IR?). No further assumption such as (4.65) is imposed on y®. We use the
argument of De Giorgi [38] (see also Francfort and Miiller [37]) to obtain the lower

bound. Fix So open and compactly contained in S. Let

R= -;—dist(So, 8S).

For any strictly positive integer v, define
S; = {zp € S : dist(zp, Sp) < gR} , 1<i<vy,
and scalar functions 7;(z,) € C§°(S) such that

=1 in S;; and 7, =0 in S\, (4.67)

[Vpme) < ¥ and  |V2n;| < (582)2

Moreover, let Qf = S; x (0,1) for i =0,--- ,v and set

h — —
y’g ) = Fz, +n; (y(h) —Fz,).

Then, for each i, ygh)

2

converges weakly to y = Fz, in Wl P(Q}, IR®) as h tends to zero

and (y™ — Fz,) satisfies (4.65). Therefore, it follows from the previous result that
liminf e [y™; Q'] > O y; Q1. (4.68)
h—0
Now

h h h
ey 0 = ePly®;al ] +eMy®; oh\ak ] + M y; o1\})

< P y®; 0+ Py QNQL ] + e(1+ [FIP) |0\ Q3| (4.69)
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Using the growth condition (4.8) on ¢ and the definition of n:i(2,),

h)r (h
e Iy QL]

2 h 3
<c [ {e(ivors Zwa®r e Lyar
oh\e!_,
1/—{—1 2 v+1
O —Fa P a(p ) vy - B 2 )ly(")lz) (4.70)

o — 1 _
" (1 + [P+ [Vy® — FJP + (V L2)ely® — Fa, o+ lﬁyg‘ ) l”) } “

N 2 N
Notice that we have used the inequality <Z |ai|) <N Z |a;|* in deriving (4.70).

=1 i=1

Since y® A Fz, in WhP(Q, IR?), this implies y® 2 Fz, in Lr(Q; IR?) by Rellich’s

compactness theorem and

/ &

Qh\QL_

)ply(h) Fz,|’dz -0 ash -0, (4.71)

By the assumptions of finiteness of lim infy 4o e( ) [y(h)] and non-negativity of ¢, it is

concluded that ”Vy(h)

Laq) is uniformly bounded in h. Further since

[ 5y aa| < Crll Ty D1,

0t

and ,ty(g,) is uniformly bounded in LP(QY; IR?) due to coercivity of ¢, Poincaré in-

equality implies
%yﬁ? —0 in WY3(Q4IR})  ash —0.

Similarly, [|xV2y®)| L2(qn) 18 uniformly bounded in k. Using the Poincaré inequality

twice implies that

ky® —~ 0 in w22(Ql; IR®)  ash—0,
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from which it is deduced that
_ - 1
/ K2 {[y(h) ~ P>+ [Vy® - F* + ;Eygj);z} dz — 0, (4.72)
N\,
. . . . . () (k) 1R -

as h — 0. Notice that (4.72) is obvious if p > 2 since y*, V,y* and 1y3” is also
uniformly bounded in L?(2!). Collecting (4.68) to (4.72) gives

eyl < liminfef’[y®] +cp(1+ |F)|Q\0)

2 1
voo [ {e(ivymee Zma ey e) e
QN

_ S|
+ (1 +[FP + |V,y® —FP + I-};yg) l”) } dz.
Summing (4.73) over ¢ = 1,--- ,v and dividing by v gives
e’ly] < liminfef”[y®] +c,(1+ [FI?)|Q"\2y
C 2 1
e R (L R A [ BT D
Ql
_ 1
+ (1 +[FP +Vy® — B+ |y 5 |P> } da.

Recalling the assumption of finiteness of lim infy,_,o e\ [y"] and note that ||V,y® —
F||Lr@) and ||,%y(§’ ) || L2 (o) are uniformly bounded in h since y*) — Fz, in W1?(Q, IR?)
and ¢ enjoys the coercivity (4.8). This concludes the proof by letting v — +o00 and
Q) — QL

The proof for the case where a = 0 is almost exactly the same except we use
Fovo® Ly, Ze Fovo® %o
P(F + Vo™ | 203, =) 2 polF + V0™, —)

after (4.66).
Part B. In the case where y is the piecewise affine function, the proof for the lower

bound is obvious. The recovery sequence can also be constructed by virtue of (4.64).
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For general y € Vg, the existence of recovery sequence can be deduced as follows.
The Lipschitz boundary 0S of the film guarantees the existence of a sequence of

piecewise affine functions y® such that
y® 5y in W'(S,IR?) asd —0. (4.75)

For each piecewise affine function y(®, there exists a recovery sequence y™% such

that
y®) —y@ in wie(Q!, R®) and e{[y*?] - e [y®] (4.76)

as h — 0. Define

h
F(,8) = [Py ™) - ePly]| + [ly®D =yl
< [P — Py ]| + [Py @) - ePly]| +
h,s [ ]
Hy( )~y )”LP(Ql) + Hy( ) - y”Lp(nl) : (4.77)

The Lipschitz condition of (4.52) for the homogenized energy density ¢ implies that
|e§°) [y®@] — e [y]| —0 asd—0.

It follows limsup;_,, limsup,_, f(h,d) = 0. A standard diagonalization argument
establishes the existence of a recovery sequence.

It remains to prove the lower bound for general y € Vg. Let y® — y in

Wir(Q, IR?) as h — 0. Without loss of generality, we may assume that lim infp_9 egh) [y ™)

is finite. First, the regularity of S permits the existence of a sequence w® € C*(S5)

such that

w® oy in Wh(S, [R?),
kVaw®™ — 0 in L*(S,IR"?) (4.78)
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as h — 0. For any § > 0, there exists a partition {S;} of S into open sets such that

Z/Ipr F,Pdz, <6 with F;= ][prdzp (4.79)

ig,

Let ¥® = Fiz, + y® —w® for z € O} = Si‘x (0,1). Clearly §® — F;z, in
Wir(Q}, IR?) as h — 0. Using the previous result for piecewise affine functions, we

have after summation,

hmmfZe( y®; 0l > Z OF,z,; S (4.80)

Notice that from (4.78), we have

| 16725 10ty — 11692 P2y | <
6(V2F® — V2y®)|| 12y = “K'V;Z:w(h)HLz(Q}) —0 (4.81)

as h — 0. Using (4.79), (4.81) and the Lipschitz conditions on ¢ and @, we obtain

My ®; 0] - 3P y®; 0l | < -6k (482)
Oly] Ze(") [Fizp;Si] | < C-6v (4.83)

for sufficiently small h. Collecting (4.80), (4.82) and (4.83) concludes the proof. O

4.5 Film Thickness Comparable to Heterogeneity

Theorem 3 Suppose ¢ = p(F, %2, 23) and & — o and ﬁ - 0B >0ash — 0. Let
F e IM**? and e(h) be defined by (4.11). Then eg ) - -converges to the functional 6( )

defined by (4.16) if
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(i) a =0 and

En e - 2
o(F) = klgl}c\fwlen;{g][ {(,o(F—I—prlw,g,zp, [3)} dz, (4.84)
f

where

P =kZx(0,8), Z=[0,1? =P=0kZx(0,3), (485

AP = {w:we W (P IR?), wlss =0} (4.86)
(i) >0 and

¢(F) = inf inf f {a2|V2w|2 + @(F + Vyw | w3, 2y, -Z—Zi)} dz (4.87)

kewwEAi ﬂ

o
where
O

Al = {w:w e W, IB) N W, IRY), wlps = 5= |ss =0} (4.88)

(iif) @ = 0o and

oolF) = inf pED),  PF) = [ o(F2)da
Zx(0,1)

where Q@ is the lower quasi-convezr envelope of Gy.

The proof of Theorem 3 for finite o > 0 is very similar to that of Theorem 2. Indeed,
if % = f3, the idea to construct the recovery sequénce for the affine function y = Fz,

is to use the following scaling

y® = Faz, + dw(Z2, 222) (4.89)
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where w(z) € Ag . The proof of lower bound also follows exactly that of Theorem 2

step by step by using the same scaling (4.89) and we omit here. The case a = o is

a corollary of Theorem 1.

Theorem 3 also implies the following theorem if the in-plane heterogeneity van-

ishes.

Theorem 4 Suppose ¢ = ¢(F, z3) and r—>ad ash—0. Let F € IM*? and eﬁh) be
defined by (4.11). Then I'-converges to the functional € defined by (4.16) if

(i) &/ =0 and

@(F) = J&fvwlél,%][(pm + Vow | w3, 23)dz
&

where QU and A} are defined by (4.85) and (4.86);
(ii) o >0 and

@(F) = inf inf ][ {a’2 V2wl + o(F + Vyw|ws, Zg)} dz
@

kEN weAl

where Y, and A} are defined by (4.85) and (4.88);
(ili) o/ = oo and
B(F) = Qpo(F)
1
PolF) = int G(FI)  p(F) = [ o(F, =)dzy
beR
0

where Q@y is the lower quasi-convez envelope of po.

(4.90)

(4.91)

Indeed, for finite o/ > 0, the vanishness of in-plane heterogeneity allows us to set

ﬂzlinTheorem3andnotethatﬁzf%—%aza’ash—)& The case o’ = 0o is

a corollary of Theorem 1.
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Remark 5 If our film is homogeneous and the interfacial energy is negligible (a =
o' = 0), all our results coincide with that of Le Dret and Raoult [29]; i.e., ¢(F) =
Qo(F). This is obvious in Theorem 1 and Theorem 2, but not in Theorem 3 and
Theorem 4. So we explain this in some detail. Consider a homogeneous film with
energy density ¢ = o(F) and let

F) = inf o(F|b).
#o(F) = inf o(Fb)

Assume @ enjoys the growth and coercivity conditions (4.8). Clearly, ¢, also has such
a property. Hence, WP quasi-convexification is equal to W quasi-convexification

and Qpy can be expressed as

Qyuo(F) = inf ][ ¢o(F + V,0)dz,. (4.92)
a,eWg’P(Z)Z

On the other hand, for homogeneous film, ¢ defined in (4.84) becomes

o(F) = klgﬂfv wlen;ff o(F+ V,w|ws)dz (4.93)
2

for any finite 8 > 0. We wish to show @ = Q.

First, it is clear that
@(F) > Quo(F).

To prove the reverse inequality, notice that there exists sequences of &° € W, ?(Z, IR?)

and b’ € LP(Z, IR?) such that

][ oo(F + V') dzy = ][ o(F 1 Vb)) dz, — Quo(F)  (4.94)
Z Z

as & — 0. Since C5°(Z, IR®) is dense in LP(Z, IR®), we may assume b’ € C°(Z, IR?)
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(see Remark 3). Let k € IN and h =  and define

_ 1.
y 9 = Fz, + & S(hzp) + b (hzp)2s. (4.95)
It is clear that (y®? — Fz,) € A? defined by (4.86). Therefore,

B(F) < f o(Vy ) dz (4.96)

A

for any h = £,k € IN and § > 0. Notice that by changing variable , = hz, and

%3 = 23, (4.96) becomes

o(F) <

R

B
/ / o(F + V00 (5,) + hV, b’ (2,)2:|b%(2,))d2,d 2. (4.97)
0

Z

Let h — 0, and then § — 0 in (4.97), we have

@(F) < Quo(F).

Remark 6 If the film does not contain any out-of-plane heterogeneity; ie., ¢ =
¢(F, 22), then Theorem 1(i) and Theorem 2(i) imply that the ratio % is irrelevant
to the effective energy. In particular, the effective energy of a homogeneous film is
independent of the ratio £. This ratio £ is important only if the film contains out-of-
plane heterogeneity such as Theorem 4. We provide an example to explain this. Let

= (0,L),2' = § x (0,1), and y : Q' — IR? be the deformation. The energy per

unit thickness for this homogeneous thin film is

2 1 1
Py = [ {2 (1wl + olvial + jelyaal?) + plyalgya) ) da (499

Ql
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and the effective energy as h — 0 is

1yl = [ @ (gy_) dz.
S

Notice that the effective energy density @ is independent of the ratio +. Let us now

specialize to the material with local energy density ¢ (F) : IM**? — IR of the form
1
pO(F) = 3 {(Fu -1+ (F5 - 1)" + Fi + (Fee — 1)°}.
The minimizers for ¢ are

10 1 0
F = , B = : (4.99)
11 ~1 1

Suppose the edge of this thin film is clamped and set F = (1,0)T. We now show
that @(F) = 0. First consider the case x = 0. Then, at each A > 0, the sequence
shown schematically in Figure 4.1(a) is clearly a minimizing sequence for egh) ly] and
it follows that @(F) = 0. If & # 0 but is small; ie., o/ = £ L 0, a slight refinement
establishes the same result. On the other hand, if o/ > 0, it is not clear whether
Figure 4.1(a) minimizes egh) [y] as it contains too much interfacial energy. We now
show that the sequence in Figure 4.1(a) minimizes the energy even if o/ > 0. Indeed,
set

% for 0 <z <3,

f(zl) =

—z1+3 fors <z <1

Let x™ e C$°([0,1]) converges strongly to f in W,*([0,1]) as m — oco. For each
fixed m, extend x!™ periodically to IR and consider

m m Z
YA hm) g € )(El) +hz, (4.100)

where 3(17) is chosen to be the largest integer such that 3% < \/r—:(—h)- Substituting
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(b) (©

Figure 4.1: (a) The sequence that minimizes the energy with density () for o/ > 0. Here
the darkly shaded and white regions represent Fgl) and Fgl) defined by (4.99), respectively.
(b) The sequence that minimizes the energy with density (2 only for o/ = 0. Here the
darkly shaded and white regions represent ng) and ng) defined by (4.101), respectively.
(c) The sequence that minimizes the energy with density ©® for o/ > 0. Here the darkly
shaded and white regions represent ng) and ng) defined by (4.101), respectively.

(4.100) into (4.98), we find the energy is driven to zero if & —s 0 first and m — 00 next.
By standard diagonalization process, we obtain (4.100) is the minimizing sequence
for (4.98).

Next consider another material with the local energy density @ (F) : IM>*? 5 IR

of the form
1
e (F) = 3 {(Fu—-1+F} +(F3 -1+ (Fa —1)%}.

The minimizers for @ are
11

F? = , FP = . (4.101)
1

Now if the edge of the film is clamped and if kK = 0 or o = 0, Figure 4.1(b) is clearly
one sequence minimizing the energy of this strip. On the other hand, if &' > 0, it can
be shown that the sequence in Figure 4.1(b) does not minimize the energy. Instead,
the sequence that minimizes the energy in this case looks like that in Figure 4.1(c).
Indeed, set g(21) = 1 and let ™ e C([0,1]) converge strongly to g in W,*([0, 1]).

Consider

g = o W™ (21)20, Y™ = hz,. (4.102)
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Using an argument similar to the above, we can show that (4.102) is the minimizing
sequence for (4.98).

In summary, material can form microstructure freely with interfaces which are
perpendicular to the film (Figure 4.1(a)) and such interfaces cost vanishing energy as
h — 0 independent of - Further, material does not need to form the out-of-plane
fine-scale microstructure to reduce the energy (Figure 4.1(c)) as long as there is no

out-of-plane heterogeneity contained in the film.

4.6 Film Thickness Much Larger than Heterogene-
ity
Let us consider the case k = 0, p = o(F, Ef) and the following change of variables
A Z 2
Zy = f? 23 = 23,

hy(2p, %) = y(hip,%).

Then, egh) becomes

(Vy,—F)dz,d3;. (4.103)
h

/]

Since % — 00 as h — 0, (4.103) suggests that @ is obtained by homogenizing in the

=kn \
>

plane of the film first and then passing to the thin-film limit, or

P(F) = Q¥ (F),

HEY — H
o (F) = bugacp (F|b), (4.104)
HPF) = inf inf ][ F+Vw,z,)dz

o"(F) = jnf ] o »)

kZ
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where Q! (F) is the lower quasi-convex envelope of ¢, Z = [0, 1]> and F = (F|b).
Notice that ¢¥ is the homogenized energy density of bulk cellular elastic materials
[67]. This conjecture has recently been proved by Braides and Fonseca [14] and
involves difficulties similar to those associated with reiterated homogenization for
nonconvex energies (see [16, 68]).
Next, consider the case ¢ = ¢(F, %), k # 0 and %2 — a < oo as h — 0. Using the

same change of variables above gives
1 p A
h? / / {a2 (7{)2 | V29 |2 + o(Vy, %’-’)} dz,d3s. (4.105)
0 5 h

Comparing (4.105) with equation (2.4) and v =1 in [37] suggests that @ is obtained
by averaging and homogenizing in the plane of the film first, and then passing to the

thin-film limit, or

o(F) = Qugi(F),

vy '(F) = inf o*H(F|b), (4.106)
beR?
AH . . 2( 2, , 12
F) = inf inf o\ Vw |+ o(F + Vw, z,) } dz.
P E) kewuewg’P(kZ)nwg’z(kZ)z[ { | "l p)}
kZ

We conjecture that (4.106) can be confirmed by following the approach similar to
that of Braides and Fonseca [14].

Finally, our Theorem 1(i) includes the case £ — a = 0o as h — 0.

4.7 Recoverable Strain in Polycrystalline Thin Films

4.7.1 Model Example

We consider a two-dimensional model problem where the deformation y is replaced
by a scalar-valued function 7 : IR*> — IR. We assume that the film is polycrystalline

with columnar grains. Let R : IR — SO(2) describe the texture of our polycrystal
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film. We assume R(z1) is periodic with period [0,1]. The microscopic energy density

has the form

o(f, *)— P(RT(Z i

The total energy of the film per unit thickness is

&[] = / {HZ (

01

calh
022

8n 2
822

on 87) 1
h2 821 622 h4

1 67] 2
) (8z1 W o )} dz (4.107)

where § = (0, L) is the one-dimensional film and Q! = § x (0,1). The limiting energy

per unit thickness is
_, 0
e’ [n] = / Qo(a_gl')dzl- (4.108)
S

Assume the film thickness is comparable to the grain size and the interfacial energy
is negligible; i.e., d — B >0and £ - 0as h — 0. It follows from (4.84) that e(h)
I-converges to the functional e1 ) if the effective energy density @(£) of the film is
given by

o) =, in, AL (R7 e + +oml3m)) ba (4109)

s
Qk

where

Q) = kZx(0,8), Z=0,1],
A = {w:weWPQS R)

per

where elements of W1 P(Qf , IR) are periodic only in 2; with period kZ. Notice that

per

we have replaced Af in (4.86) by fif:; a slight refinement of the argument of Miiller

[67] shows we can minimize (4.109) over either of these two spaces.
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Let @ be the relazation of ¢ and consider the analogue of (4.109)

Ow  Ow

. . - T

;gﬂfvwgf][ {90 (R @)(E + 5212 ))}dz (4.110)
Qﬁ

k

These two expressions (4.109) and (4.110) are in some sense equivalent since the
minimizing sequences for the former converge weakly to the minimizers of the latter,
and the minimizers of the latter give rise to minimizing sequences for the former
[2]. Therefore, from now on, we won’t distinguish between minimizing sequences and
minimizers and use ¢ in (4.110) to replace ¢ in (4.109). Further, in our particular
problem below, ¢ is convex and it suffices to take k — 1; however, we do not use it
since we consider bounds.

We state a useful lower bound for @. Let

Vv (g) = max{f - g — ¢(f)}

be the Fenchel transformation of the function Y. Let w € AZ and consider any vector
field g = (g1, g2)” which is periodic in z; with period Z = [0, 1]. If we assume V-g = 0
in Q? and g-n =0 at z; = 0 and B where n = (0,1)T is the outward normal, it

follows that

f G(R(f; +walws))dz > ][ {fi0n — ¢"(R7g)}dz f {161 — " (RTg)}da.

0 : o

Optimization over w, k and g gives

o)z max o {fig— ¢ (R(e() }a @.111)
g-n=0o0n z2=0, 8 Qf

where g is periodic in z; with period [0, 1.
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We now specialize to a two-variant material with microscopic elastic energy

o) = min {5 (1= 17+ )3 (i + 07+ £)} (.112)

where f = (fi, f2)T. It can be shown that, in this case,

DN =

o(f) = = {(lAl - D2+ f3} (4.113)

with the convention that a, = max{a,0} and
~k 1 2
o*(f) = S If1° + 1 Ail. (4.114)

Our main interest is to study the shape-memory behavior or stress-free configura-
tion of the film. In other words, we want to determine the “set of recoverable strains

for the polycrystalline thin film” which we define as

P ={£: o) =0}

A single crystal is the special case of the polycrystal. In that case, clearly, P contains
a line segment [—1, 1]. But for films with general texture, P is expected to be smaller
than this line segment. The extent of this reduction of recoverable strains in thin
films also depends on the parameter 3 and our task is to determine it. We do so in

detail for the special polycrystal as shown in Figure 4.2(a).

Proposition 1 Consider the polycrystal with the texture

R(z) R, m<z<m+3 (“rain 17),
21) =
R, m—3<z<m (“grain 2”),

where m € ZZ and

cos@ —sinf cosf siné
R; = and R, =
sinf cosf —siné cos#
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in the “grey” and “white” rectangles of Figure 4.2(a) for 0 <6 < Z. If 3 < 3 cot¥,
then

P ={£:|¢| <cosf—2Fsinb}; (4.115)
if 8= —21-cot 0, then there exist positive constants ¢ and C such that
céPP < @(€) < ClEP  for ¢ sufficiently small (4.116)

and clearly P = {0}; finally, if B > 3 cot 9, then there exists a constant C > 0 such
that

(&) > Clel* (4.117)

and once again P = {0}.

Proof. Consider the case § < %cot 0 first. The test field n can be constructed using
the idea proposed by Bhattacharya and Kohn [12] for bulk polycrystals. Indeed, in
order to get the zero energy, the test field must have the property that RTVz should

be parallel to e; a.e. and |V7| < 1. This motivates the following construction:

a(cos 0, sin 6)7 in the darkly shaded region of “grain 1,”
Vn=1{ a(cosf,—sin@)T  in the darkly shaded region of “grain 2,” (4.118)

0 otherwise,

as shown in Figure 4.2(b) for some |a| < 1. This test field is compatible since V7 is
piecewise constant, and on every interface [[V7]] -t = 0 where [[ ]] denotes the jump
across the interface and € is the tangent. Further the area of support of V7 is greater
than zero since § < %cot 6. The average f Vn = a(cos @ — 23sinf)e; and hence we

obtain a lower bound of

P D {¢: €| < cosf —28sinb}.
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~+-cot(o) d
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B > B() B < B0
% cot(9) f,
P

(d) ®

Figure 4.2: (a) A polycrystalline thin film with the texture containing two orientations.
(b) The test field V5. The darkly shaded regions form the support of V7 and the straight
lines within them are level sets of 7. (c) The test divergence-free flow g. The darkly shaded
strips form the support of g and the arrows within them point out the direction of the flow.
(d) The test field Vi) when 8 = 5y = %cot 0. The darkly shaded regions form the support
of Vn and the straight lines within them are level sets of 1. (e) The recoverable strain
(= 3|P|) versus different values 3. (f) The behavior of G(¢) for & near zero with different
values 3. Notice that ¢(§) grows quadratically if 8 > (3, becomes flat (zero) if 3 < By, and
has an exact cubic growth near the origin if 8 = (.
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Next we show that P contains no other points. Indeed, this is equivalent to
showing that @(£) > 0 if || > cosf — 203sinf. We can accomplish this using the
lower bound (4.111). Consider the dark strips shown in Figure 4.2(c). Taking the
slopes of these strips as (8 — p)/(5 + p) where p > 0, set

(3 +u,1—B)T  in the darkly shaded strip of “grain 1,”
g=9 (3+uB—p)7T in the darkly shaded strip of “grain 2,” (4.119)

0 otherwise.

It is easy to verify that V-g =0 and g-n =0 at 2, = 0 and 8. Substituting the test
field Tg into (4.111) and using the formula (4.114) for $*, we obtain

o) > 7f hn—5 f 8P~ Irl f e -RT (el
= é{—[(% +1)”+ (p = BT + (L + 2p) fir
— [(cos @ — 283sin 6) + 2uco]|T|} (4.120)

where A = %(%% is the area fraction of the strips and ¢y = sin# + cos . To get the

optimal lower bound we maximize (4.120) over 7. Clearly, ¢(f;) > 0 if

(1 + 2p)| f1] — [(cos @ — 20sin @) + 2uco) > 0.

Notice that if |f;| > (cos@ — 28 sin 6), then the above inequality holds for sufficiently
small ; and hence f; ¢ P. This proves (4.115).

We now turn to the case 8 > -;-cot 0. We obtain the desire lower bound from
(4.111) by using the same test field Tg as above with

_ 2(3sinf — cos 0 S
b= 2(sin@ +cosf) =

(4.121)
Then (4.120) gives

o) > 5 {~1G + 0 + (u= BP0+ 1+ 2ir ). (4.122
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Maximizing over 7, we conclude that for some C' > 0 independent of f;,

@(f1) > CfL.

Finally, we come to the case 8 = %cot 0. We start with the lower bound first.

Using the divergence-free field 7g in (4.119) and substituting it into (4.111), we have

o) 2 5 {1 + w7+ (= 071 + @ s — 2molrl ) (4129

where ¢ = sin # 4 cos . This bound is positive if (1 + 2u)|f1| > 2uco or

| f1]
“= e — A1)

Now maximizing (4.123) with respect to 7 and choosing u = a|fi| with a < ﬁ, we

have for some ¢ > 0

_ p(1+28) [ ([fi] +2u(]fi] = c))?
P = 3501 2m) (4[(% + )P+ (- 6)2])
= c|fiP+O(f1)* for fi near 0.

Next we return to the upper bound. Pick € > 0 such that § — e > 0 and construct

a field n as shown in Figure 4.2(d):

L_(cos (6 —€),sin (0 — €))7 in the darkly shaded region of “grain 1,”

cose

Vn = L (cos (@ —¢),—sin(f —¢€))T  in the darkly shaded region of “grain 2,”

cose

0 otherwise.

By geometry, the area fraction of these darkly shaded strips is

sine
sin @ cos (f — €)

A=1-20tan( —¢) =
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since cos § = 2(3sin 6. It follows that

fi =][V7l= ! (cos (0 —€) —20sin (0 —€)) = t:fms.

CcoS € sin 8

The local energy is
AT L. 9
SR (2)Vn) = é-tan €

whenever V7 # 0. Therefore, this test field gives an upper bound

1 sine
p(h) = 2 (sinﬁcos(O—e)) ame
sin® @

< = f]
2cos (0 —e)y/1+sin’6 f;
sin? @

< e f3

— 2cosf fi

O

This example shows the effect of 3 (film thickness over the size of heterogeneity)
on the shape-memory behavior quite dramatically. The recoverable strain j,lz-|’P| versus
B is shown in Figure 4.2(e). Further, the growth of @(£) as it departs from P also
significantly depends on the ratio 5. As shown in Figure 4.2(f), there exists a point
Bo = 3 cot 8 such that for 8 > By, §(£) grows quadratically and for 8 < G, @(£) is
flat (zero) and for B = fo, $(£) has a cubic growth for £ near the origin.

In this example we only deal with a simple texture with two orientations. But
we can generalize our method to a texture with N orientations within the cell. The
exact set of recoverable strains and the behavior of @(£) for £ near the origin can
also be predicted similarly. However, our current analysis is texture-dependent and it
would be very useful to develop texture-independent bounds to explore the full range
of behavior of a film. Bhattacharya and Kohn [12] have used the translation method
to predict the shape-memory behavior for bulk materials. Unfortunately, it does not

work here. For example, consider the following identity which plays a central role in
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their analysis. If n =f-zand ( =g -z at 895:, then

][det(Vn, V() = det(f, g). (4.124)

Unfortunately (4.124) does not necessarily hold if we only knew 7 and ¢ on part of
the boundary 8kZ x (0,() rather than an entire boundary 8Q%. Notice that the
test field w in the definition of variational principle (4.109) is periodic only in z; and
does not satisfy any boundary condition on the top and bottom parts of the film.
This lack of information prevents an identity like (4.124) and we can not use their
method. Similarly, in the lower bound (4.111), the divergence-free flow g must meet
an additional requirement g - n = 0 on the top and bottom parts of the film. This

adds another difficulty in developing useful bounds.

4.7.2 Martensitic Thin Films

We now turn to the physically relevant problem using the geometrically linear theory
of martensites; i.e., (F) = ¢'""(e[F]) and e is the linear strain (see (2.2)). To describe
a martensite, the energy density is endowed with a multi-well structure - one well for

each phase or variant and has the form in (2.9); i.e.,
¢'"(e) = min 1|e —e®? (4.125)
i=1,k | 2

where e® is the transformation strain for i = 1,- - - , k. Notice that we have restricted
our analysis to some fixed temperature below the transformation temperature, and
have assumed elastic constants are equal to the identity since we are only interested
in the stress-free configuration.

Shape-memory thin films are often made by sputtering [44, 59, 42, 52, 24, 23|.
The grains in these films are typically columnar (e.g., see Figure 2 of [44]). So we

assume
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where R : IR* — SO(3) is a given function describing texture and is assumed to be
periodic with period Z = [0, 1]2.
Let us consider the single crystal film first. Set II be the matrix that projects any

3 X 3 matrix into 3 X 2 matrix

Then,

3(F, + FT) ~II"IT | 3(b, + Fy)

vo(F) = inf Qhin
beR? b, +Fo)T | byl
. in € ap in/=
= il (1) e (4.126)
ac ap as3

where F,, = IITFII, & = [7ell; F3, = (F31, F32)7, b, = (b1,69)7 and a, = (a1,a2)7.
For the multi-well energy density defined by (4.125), ¢i® can be shown to be

. 1 }
oinE) = i:r{];pk{?é—é(’)ﬁ} (4.127)
e® = mPeWII (4.128)

We define Sy, the set of recoverable strains in a single crystal film with orientation

es, to be
Sy = {&: Qpp"(8) = 0}.

This is exactly the set of strains that the material can accommodate by making a mix-
ture of martensitic variants. In general, this set Sy is hard to determine. However, if
all variants 8 are pair-wise compatible; i.e., they satisfy (2.13) foralli,j =1,--- ,k,

then the associated Sy is simply their convex hull [9] as we described in Chapter 3. One
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can show that this is true for materials undergoing cubic-tetragonal, cubic-trigonal
and cubic-orthorhombic transformation irrespective of the orientation of the film. Un-
fortunately, cubic-to-monoclinic martensites have transformation strains that are not
pair-wise compatible in general. But they can be compatible in certain orientations.
Indeed, let R denote the crystal orientation, the orientation that takes the film basis

{e1,es,e3} to the crystal basis {f},f;,fs}, f; = Re; for i = 1,2, 3, and notice that
1 o7 @2 _ 1 @OpT2_ L G)(2
§]R eR —e"| =§|e—Re RY| :—2—|e—U |“ (4.129)

where U® = Re®RT. Tt is well known that two 2 x 2 symmetric matrices U and V
are compatible if and only if det(U — V) < 0 [47]. Set f; = RTe; for i = 1,2,3 and
A = (e®) — e), we have
det(MTRARTII) <0 <= det oAl H-AL )
fr.Af; £ Af;
— f7-adj(e® —eD)f; <O0. (4.130)

It follows that S is the convex hull of transformation strains IITU®II if (4.130) is
satisfied for all 4,j = 1,--- k. The vector f; is interpreted as follows. Let {hkl}

denote the thin film normal in the cubic crystal basis; i.e.,
es | hfy +kf,+1f;.

Using the definition of f; and £ yields
f5 || heir+key+les.

It is also very important to know what crystal orientations lead to compatible wells
and we can then determine S;. In fact, it can be shown that all pairs of monoclinic
variants are pair-wise compatible for {100} and {110} films in Ti-Ni and {110} and
{111} films in Cu-Zn-Al. In contrast, not all pairs are compatible for {111} films in
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Ti-Ni and {100} films in Cu-Zn-Al. However, the following set of variants which are
pair-wise thin-film compatible in {111} films in Ti-Ni:

(a —5—6\ (a = e\ (a ~e~6\

—4§ «

\—ee ﬂ) \e—eﬂ) \—(56 a)
(a 6——5\ (,B—e e\ (,8 e—-e\

e B —e a 6|, ¢ o =6 |, (4131
\—5—ea} \e—da} \—e—6a)

and in {100} films in Cu-Zn-Al

) “'6 a _6 b 6 ﬁ 6 b

) —€

(a-i—e ) 0\ (a—e 5 O

0 a—€ 0 |, b a+e 0 |,

\ 0 o 8) \ o o g

(a—i—e -4 0\ (a—e - 0

- a—€¢ 0 |, - oa+e 0 ]. (4.132)
\ 0 0 B \ 0 0 A3

Consequently, Sy contains their convex hulls. We will use (4.131) and (4.132) for
calculating Table 4.2 later.
We now turn to polycrystalline thin films. We define the set of recoverable strains

of a polycrystalline thin film

P; = {&: (&) = 0}. (4.133)

Our task is to determine the set P;. However, this is very difficult since it requires us
to solve the nonlinear homogenization problem. One alternate, as we did in Chapter
3, is to estimate the set P; using texture-independent bounds. The bound which
we believe to be the most useful bound is the Taylor estimate based on the use of a

constant-strain test field. So it is an upper bound for ¢ but is the inner bound for P;.
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Indeed, in our model example above, one can show that the exact recoverable strain
is the same as that predicted using Taylor estimate for 5 = 0 and co. Unfortunately,
the Taylor estimate is only meaningful for homogenization; and consequently, there
is no analogy for the case 0 < 8 < 0o since homogenization and thin-film limit are
taken into account together. |

We now give the expression of the Taylor estimate on two extreme cases: § =0
and 8 = oo and assume o = % % 0 in both cases. Consider B = 0 first. If all grains

are columnar, then the Taylor estimate on the set Py is

T° = n S}(zp) = {&: Qpi*(&;R(z,)) =0, forae. z,€ Z} (4.134)

zZp€EZ

where
AP(@ R(zy)) = min | &~ I (R(z,)e "R (z)11[". (4.135)

Clearly, the average strain € is recoverable in a polycrystalline film if it is recoverable
in each grain (or in a.e. z,). Further, in sputtered films, very often all grains have a
common axis {hkl} (the film normal). Therefore, as we describe above, the set Sf(z,)
can be determined exactly for all z, in (4.134) for certain textured cubic-monoclinic
films. Consequently, 7° is fully determined.

Consider B = oo and assume all grains are columnar. Let P be the set of recover-
able strains in bulk or thick films: P = {e : p¥(e) = 0} where ¢¥ is given by (4.104)3

in terms of geometrically linear theory. Then, it can be shown easily that
7P = {&: ¢f(e) = 0}.

So if this function pf is convex, then it implies Py = {& : Qp{l () = 0} = IITPIL
But in general P; D IITPII D 771l where 7 is the Taylor estimate on P and is
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Toxture Recoverable Strains (%)
Ti-Ni || Cu-Zn-Al
5 | & || € €%,
random 23123 | 1.3 1.7
{1117 film 53 |81[ 19| 59
{100} film 23|23 (71| 7.1
{110} sputtered film | 2.3 [ 2.3 || 1.7 1.7

Table 4.2: The predicted uniaxial recoverable extension for various textures. €x and e%
are the inner estimate and inner bound for films with 8 = co and 8 = 0, respectively.

given by

T = ﬂ S(z,) = {e: Q™" (R(z,)TeR(z,)) =0 for ae.z, € Z}.  (4.136)

zp€Z

When subjected to uniaxial in-plane tension in the £ direction, the Taylor bound

of maximum recoverable extension is

e% = max (¢ - €€) for 8 =0,
BeT? (4.137)
eﬁzéég}qﬁ;n({-éf) for # = o0.

Table 4.2 contrasts the behavior of films with long or rod-like (h >> d) grains and
films with flat or pancake shaped (A << d) grains [93]. It lists the predicted re-
coverable strains for films with different textures in Ti-Ni and Cu-Zn-Al. Note that
they are larger for flat grains compared to long grains as we expected. We also note
here that neither the random nor {110} sputtered texture which is common for BCC
materials [40, 96] are ideal textures for large recoverable strain. The ideal textures
appear to be {100} for Cu-Zn-Al (this texture can be produced by melt-spinning)
and {111} for Ti-Ni. However, depending on the deposition technique, it is common
that the film thickness and grain size are on the same order. This gives finite value
B > 0. Unfortunately, we do not know any general method to estimate recoverable
strains for this case since homogenization and thin-film limit are taken into account
together and can not be treated separately. Further, we also do not know the critical

point (3, if any, such that above it one should use €¥ for thick films and far below it



Figure 4.3: The effective behavior of a multilayer thin film is determined by the energies
above for small and large values of 7.

one should use €% for thin films.

Before closing this subsection, we should mention the effect of the ratio £ of the
size of the microstructure to that of the grain. Above, we took this ratio to be zero;
however, this may not be true when the grain size becomes very small (on the order
of tens of nanometer). From Theorem 1 (k >> d), it costs materials more energy to
form microstructure inside each grain and consequently strains can not be recovered
unless the texture is exceptional. The analysis on the case of comparable x and d is

difficult, but it interpolates the two extreme cases.

4.8 Multilayers

Consider a multilayer film made up of a finite number of alternating layers of a
martensitic material and a purely elastic material. Let A be the volume fraction of
the martensitic material and let ¢, be the mismatch strain of the elastic material
relative to the austenite phase of the martensitic material. The effective behavior is
some combination of the behavior of these two materials; however, the nature of the
behavior depends on the ratio o' = # of the microstructure size to the thickness. For
example, assume the local energy density ¢ : IR? x (0,1) — IR has the following form

Prare(f) = 3((Ff — 1+ f3), for B2 < 2 < g

(4.138)
Pelas (F) = 3((f1 — €m)? + f2), for B2 <oy <

(p(f, 23) =

form=1,---, M. From Theorem 4, the effective energy densities for small and large
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values of o' are given by

PO = {E- 10+ 5 ey fora =0,

=€) = Q {%(52 - 1)+ —1—%—)\(5 - em)z} for o/ = oo.

The result is also schematically shown in Figure 4.3. The effective energy for o/ small
is shown on the left while that for o large is obtained by the quasi-convexification (or
convexification in this case) of the multi-well energy shown on the right-hand side of
Figure 4.3. The thin dark line is the energy of the martensitic material and the thick
light line is the energy of the elastic material. The behavior of the multilayer is shown
by lines of increasing greylevel for decreasing volume fraction A (also see [10]). For
small @/, the martensitic material freely forms microstructure and the multilayer is like
an elastic material with soft-modulus. For large o/ on the other hand, the multilayer
behaves like a phase transforming material: it has two variants with transformation
strains which may be different from that of the original martensitic material, and one
variant is preferred over the other. Hence, this multilayer film will display a two-
way shape-memory effect. Further notice that the multilayer is internally stressed so
that the minimum energy is not zero. Finally, the multilayer can form “macroscopic
twins”: these are not twins confined to the martensitic material but encompass both
the elastic and the martensitic material. Thus, multilayers promise to be a means of

making apparently new materials with interesting and novel properties.
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Chapter 5 Discussion and Conclusion

We have investigated the effect of texture on SME in polycrystals. We start with
bulk polycrystals - sheets, strips, wires and tubes. We use a theoretical framework
to quantify recoverable strain and then use inner and outer bounds to estimate it.
We demonstrate with examples that the inner bound accounts for the intergranular
constraints and consequently provides a reasonable estimate for the actual recoverable
strain while the outer bound ignores these constraints and is a large overestimate
(also see [12]). In the case of a cubic to monoclinic transformation, our inner bound
becomes conservative (because we replace the unknown set Syon, With the smaller
set Sortn); S0 we supplement the inner bound with an inner estimate. We compare
the predictions of the inner bound and estimate with the experimental observations
of Zhao and Beyer [100, 101] as well as Inoue et al. [43].

The inner bound and estimate are quite easy to calculate — they can be written as
linear programming problems — and incorporate some easily measurable information
about the texture. Therefore, these are ideal tools to study the effect of texture on
SME. We demonstrate this with specific calculations focused on Ti-Ni and Cu-Zn-Al.
Both these alloys undergo cubic to monoclinic transformation, recover similar strains
as single crystals and are predicted to recover similar strains as random polycrys-
tals. Yet, their observed behavior is widely varied. Figure 3.13, Figure 3.14 and
Table 3.3 shed light on the striking contrast in SME between these two alloys. Fig-
ure 3.15 demonstrates that even the qualitative behavior of combined tension-torsion
can critically depend on the texture.

We then trun to polycrystalline thin films. We derive a theory for the effective
behavior of a heterogeneous thin film with three competing length scales: the film
thickness (h), the length scales of heterogeneity (d) and material microstructure (k).
We start with three-dimensional nonhomogeneous nonlinear elasticity enhanced with

an interfacial energy of the van der Waals type (4.2), and derive the effective energy
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density as all length scales tend to zero with given limiting ratios. We do not require
any priori selection of asymptotic expansion or ansatz in deriving our results. We
show that the macroscopic behavior of the film is determined by the effective energy
density @. It describes the overall behavior of the film after taking into account
the effect of martensitic microstructure, grains and multilayers. The most important
result is that ¢ depends qualitatively on the relative magnitudes of length scales and
we summarize our results in Table 4.1.

We demonstrate with an example that the recoverable strain can crucially depend
on the ratio of the film thickness to the typical grain size. Table 4.2 contrasts the
behavior of films with long or rod-like grains and films with flat or pancake shaped
grains. It lists the predicted recoverable strains for films with different textures in Ti-
Ni and Cu-Zn-Al. We also show that a multilayer thin film made of a shape-memory
material and a purely elastic material can display very interesting behavior depending
on the ratio 7.

The following is a list of our main conclusions and suggestions.

e In Ti-Ni, the texture that develops during rolling, extrusion and drawing is
extremely favorable from the point of view of large recoverable strains. In
contrast, in Cu-Zn-Al and other Cu-based SMAs the texture that develops

during these processes is rather unfavorable for SME.

o In Ti-Ni, the a-fiber I rolling texture has the largest uniaxial recoverable strain
in the RD and TD. Thus, this texture is ideal for applications which require
SME in only one direction. On the other hand, the «-fiber rolling texture has
relatively large recoverable strains and has little in-plane anisotropy. Hence,

this texture is ideal for applications which require SME in multiple directions.

e In Cu-Zn-Al and other Cu-based SMAs, the SME can be improved in rolled
sheets if one can make either the n-fiber texture or the a-fiber restricted to
{001}(110) — {112}{110). In the later case, relatively large recoverable strain is
predicted around 45° from the RD.



103
e {100} solidification texture shows large recoverable strain for Cu-based SMAs

but not for Ti-Ni ribbons.

e Typically, the recoverable torsion is quite small. In wires, rods and tubes with
random or (110) drawing texture, the recoverable angle of twist decreases with
increasing applied uniaxial extension while the behavior is reversed for (100)

texture.

e Both Ti-Ni-based and Cu-based SMAs recover comparatively small strains in
thin films owing to the unfavorable {110} or random sputtering texture. Ti-
Ni films with {111} texture and Cu-based SMA films with {100} texture are

predicted to have large recoverable strains.

e In view of large recoverable strains, flat grains are preferable to long grains in

columnar films.

e Multilayer thin films provide a promising avenue for making materials with

novel properties.

We conclude with a few comments.

Other Models

Various authors [66, 45] have used a model that is equivalent to what we call the
outer bound to predict the effect of texture on recoverable strain. This bound ig-
nores the constraints of neighboring grains which turn out to be very important and,
consequently, their predictions are much larger (often by a factor of two) than the
observed recoverable strains.

Inoue et al. [43] have used a different model, which they found agreed well with
their observations. In the language of this paper, rather than using the set S for a
single crystal, they use only a small subset of it, the size of which is determined by
a parameter q. They then average over the grains; in other words they use an outer

bound based on this smaller set. In the examples they consider, the underestimate in
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the single crystal for a choice ¢ = 0.5 in each grain compensates for the overestimate
inherent in the outer bound, and they obtain very good agreement with experiment.
However, it is unclear whether this choice gives good results in other situations,

especially for different materials, textures and multiaxial loading.

R-phase Ti-Ni

Ti-Ni alloys often transform from the cubic to a trigonal R-phase before transforming
to the monoclinic martensite [60, 62, 65]. This cubic-trigonal transformation also
display SME and superelasticity. Though the strains are smaller, this transforma-
tion is often preferable compared to the cubic-monoclinic transformation in view of
small hysteresis and ease of control [74]. According to the symmetry arguments of
Bhattacharya and Kohn [11], a random polycrystal of cubic-trigonal material will not
display any SME. However, a polycrystalline wire with (111) texture has about 0.9%
recoverable uniaxial strain. A rolled sheet with y-fiber texture also has a nontrivial
inner bound of about 0.2% recoverable extension in any rolling plane direction. Many
shape-memory wires do possess the (111) texture and once again this prediction is
consistent with observation. Thus, texture produces the good behavior in Ti-Ni even

in the case of the R-phase.

Texture Formation

Various researchers are conducting experiments to systematically study the effect of
texture on SME. Apart from those cited above, we report on the interesting work of
Matsumura et al. [56] on rolled sheets of Fe-Mn-Si alloys. This alloy undergoes a
face-centered-cubic (FCC) to hexagonal-close-packed (HCP) transformation. By ex-
tracting specimens from different parts, Matsumura et al. have found that the surface
layer with a shear texture has a larger SME than the less anisotropic mid-thickness
layer. This suggests an opportunity to improve shape-memory behavior by targeting

special textures using novel processing techniques.
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Effective Moduli of Thin Films

The theoretical framework developed in Chapter 4 can also be used to study the
effective conductivity or elastic modulus of linear composites. We show in [92] that
in general the effective conductivity of composites made of anisotropic materials can
depend on the ratio § = % (the film thickness to the grain size). It is clear that similar
results must hold for elasticity; and there is some suggestive experimental evidence in
this direction. However, optimal bounds exploring the whole range of % still generally
remain open due to reasons discussed at the end of Section 4.7.1. An exception is
a composite made of two isotropic conductors; Damlamian and Vogelius [26] have
obtained optimal bounds for a composite thin structure. They consider the case
v = ¢f, E,f, z3) (8 = 1 in our notation and fully three dimensions). However, their
optimal bounds are (-independent and hence their bounds hold for all 5. Further,
their optimal microstructure are zz-independent. Proposition 2 in [92] shows that
their B-independent bound may not be optimal if the conductivity is anisotropic and
the film normal is not an eigenvector of the conductivity tensor. We speculate that

their lower bound is optimal only for 8 = 0 and upper bound only for 8 = .
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Appendix A Expression of S

In this appendix, we give the expression for S in the different cases. In cubic-
tetragonal, cubic-trigonal and cubic-orthorhombic transformation, S is the convex

hull of stress-free martensite variants; i.e.,

k k
52{356221%6(“, Ki 20, Zﬂizl}- (A1)
i=1 i=1

In the case of cubic-monoclinic transformation, Spep, is estimated using the sets we
call Sgrep, and 8%, such that Sy C Smono C S, a8 described in Section 3.1. We
assume o > 3 for Monoclinic-I martensites and a—e > 3 for Monoclinic-II martensites
and use the notation {ijk}=perm{123} to denote that {ijk} is some permutation of

{123}; i.e., {ijk} = {123} or {231} or {312}, etc.

Tetragonal Martensite

€11 + ez + e33 = 2a + 3,
Ster = { €|l min{a, B} < €11, €9, €33 < max{a, 3}, ¢ - (A.2)

ez =613 =€y =10

Trigonal Martensite

e = e = ez3 = 3,
min{—a, 3a} < e1s + €13 + ex3 < max{—a, 3a},
Seig = q €|| min{—a,3a} < ey — €13 — 33 < max{—a,3a}, ¢- (A3)

min{—o, 3a} < —e12 — €13 + €23 < max{—a, 3a},

min{—a,3a} < —eyz + €13 — €93 < max{—a, 3a} )
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Orthorhombic Martensite

e + ez +e33 = 2a + G,
min{a, 8} < e11, €22, €33 < max{a, 8},
S = L | MO P < e em e, B 3 (A.4)
—(554)0 < e < (554,

for each {ijk} = perm{123}

\

Monoclinic-I Martensite

enn +exp +e33 =20+ 0,

_Je B < e, ex,e33 < @, > (A5)
—(25%)0 — (25 )e < ejp < (5246 + (2=f)e,

for each {ijk} = perm{123}

\ J

SC

mono

Monoclinic-IT Martensite

The exact formula for S, is quite difficult, but the following estimate suffices for

mono

our purposes.

€11 + €22 + €33 = 2o+ 3,

B < eq,ea,e33 < a+e,

Stono C { € - (A.6)
—(5=%)d <ep < (She=sii)d,

for each {ijk} = perm{123}



