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.ABSTRACT 

An experiment is described in which a compressional hydromagnetic 

wave is observed in a hydrogen plasma-filled waveguide. The theory 

of a cool, partially ionized, resistive plasma in a magnetic field is 

described briefly and expressions are derived for the dispersion 
... 

relation and transfer function which include both the propagation and 

attenuation constants as a function of frequency. Measurements of the 

cutoff frequency are presented which verify its linear dependence on 

the magnetic field, and they show good agreement with theory on the 

variation with the ion mass density. The impulse response of the 

plasma is studied, transformed into the frequency domain, and quanti-

tative comparisons are made with the theoretical transfer function to 

determine the degree of ionization, the resistivity, and the ion-

neutral collision frequency. 

Results indicate that the degree of ionization varies over a 

range from 75i to 45i when the initial density changes from 1.3 • 1021 

to 1.4 • 10
22 

atomsjm3• The measured resistivity appears to increase 

with the magnetic field, with the mean value corresponding to a tem-

3 0 perature of the order of 5 • 10 K • The average value of the product 

of the charge exchange cross section and the neutral thermal speed is 

found to be approximately (5.5 ± 1.3). l0-15 m3/sec. 
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INTRODUCTION 

The first description of hydromagnetic waves was given by Hannes 

Alfven (l) in 1942, when he proposed that they might account for the 

existence of sunspots. This original work was followed by treatments 

of these waves by Walen (2), Astrom (3), and Herlofson (4). Since 

then a considerable literature has been developed on the theory of these 

waves (see Ph.D. Thesis of A. DeSilva (5) for Bibliography and review of 

literature), but little has been done experimentally until recent years. 

The reason for this is that for laboratory plasmas with practical mag­

netic fields very high conductivities were necessary to obtain a wave 

that was not highly damped. Initially, experiments were performed in 

the liquid metals mercury and sodium by Lundquist (6) and Lehnert (7). 

These experiments detected the wave, but the damping was very high, as 

expected. 

As plasma technology advanced rapidly, it became possible in recent 

years to observe these hydromagnetic waves in a gaseous plasma. Although 

most laboratory plasmas do not have a high conductivity, the greatly 

increased wave velocity reduces the attenuation, since the attenuation 

per wavelength is approximately inversely proportional to both the con­

ductivity and the Alfven speed, with the result that dissipation is much 

less than in the liquid metals. Reports of the actual experimental 

observation of hydromagnetic waves in a plasma appeared almost simultane­

ously in 1959 by Allen et al (8) and Jephcott (9). A more detailed study 

was reported by Wilcox et al (10) in 1960 of the work begun by Allen. A 

study of the ion-cyclotron resonance effect was reported by Stix (11). 
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All of the above-mentioned experimental observations of hydromag­

netic waves were of the torsional type wave in which the experiments 

were done in cylindrical geometry, and the wave magnetic field perturbed 

the axial static magnetic field in a torsional manner. Another type of 

wave exists which is compressional by nature, in that the wave magnetic 

field tends to alternately compress and expand the static axial field. 

Whereas the former mode has a resonance at the ion-cyclotron frequency, 

so that the experiments on that mode always involve wave frequencies 

less than or equal to the ion-cyclotron frequency, the compressional 

mode has its resonance at the electron-cyclotron frequency and has a 

waveguide cutoff frequency determined by the Alfv~n speed and the geom­

etry. Experimental observations of this mode have recently been 

reported by the author and R. w. Gould (12) and by Jephcott (13)· In 

the former experiment a hydrogen plasma was employed and a band of 

frequencies from below the cutoff frequency up to and beyond the ion­

cyclotron frequency was studied. The investigation reported herein is 

an extension of that work. The latter experiment was done in an argon 

plasma, and the wave frequencies were always above the ion-cyclotron 

frequency. 

This study was originally undertaken first to observe the compres­

sional wave, and then to determine quantatively the adequacy of a 

three-fluid theoretical model of plasma in describing the propagation 

of this wave. The model of a cold plasma in a strong magnetic field 

with electron-ion and ioneneutral collision effects included is first 

developed with the plasma represented by a generalized dielectric tensor. 

Maxwell's equations are then solved using the non-diagonal generalized 
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dielectric tensor, and the dispersion relation is calculated finally 

with a high-speed digital computer. 

The experimental apparatus is very similar to that used by 

Wilcox et al (lO), except that the wave excitation mechanism is 

modified to generate the compressional mode. Measurements have been 

made of the variation of the cutoff frequency, which is proportional 

to the Alfven speed, with magnetic field and initial gas density. We 

depend on the shot-to-shot reproducibility of the system to interpret 

these results, which limits the accuracy of the experiment. Also, the 

impulse response of the system has been studied, and this gives, on a 

single shot, information on the dispersion relation over a frequency 

band which extends from below the cutoff frequency to beyond the ion­

cyclotron frequency. This method involves taking the Fourier transform 

of the impulse response, which gives the experimental transfer function, 

and fitting it to a theoretical transfer function. The curve fitting 

is used to determine the degree of ionization, the resistivity, and 

the ion-neutral collision frequency. 

In addition, measurements of the radial distribution of the wave 

field have been made, and observations of higher modes are discussed. 



-4-

CHAPTER I 

THEORETiCAL MODEL FOR THE PLASMA 

As a model for the plasma in a plasma-filled waveguide we shall 

assume that the plasma is: 

L Uniform (V N = 0) 

2. 

3· 

4. 

5-

Neutral (N. = N = N) 
~ e 

Singly ionized 

Axially magnetized (B = B e ~ 
-o o-N<Z 

Partially ionized (N = r N , 0 < r ~ 1) 
0 

6. Caol, i.e., 

a) we neglect pressure and other explicit temperature 

effects, such as viscosity, etc; 

b) we include the temperature only through collisions. 

Condition 6a is appropriate only when the magnetic pressure 
2 

p = B /2fl. m o 

is much greater than NkT, i.e., when the Alfven speed is much greater 

than the ion thermal speed. Utilizing condition 6a we can use the 

second moments of the Boltzmann equations for the electrons, ions and 

neutrals and need not consider any higher moments. Hence we may write 

for the electrons 

N m [ ~ + v ·.'Vv ] = e e ot ..... e --e (l.la) 

where the .f_ij represents the momentum per unit volume per second 

transferred from the jth to the ith species of the plasma due to col-

lisions. The subscripts 

e, i, n 

refer to electrons, ions and neutrals, respectively. We can also write 
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immediately for the ions 

= N.e(E + v. x B) +Pie +Pin 
J.-- -:1.--

(l.lb) 

and for the neutrals 

[ ~ J pne ni N m ~ + v • 'Vv = + p n n ot -n -n (l.lc) 

We shall assume now that the electron-neutral momentum transfer 

cross-section is much smaller than the ion-neutral cross-section and 

en ne 
neglect P and P • - ....... 

We shall also assume 
imt 

e time dependence 

and consider small perturbations from the steady state, where 

v = E = 0 but that B has a steady value B e in the z direction. -o -o -- o..,z 

With the above assumptions, we may write the linearized Boltzmann 

equations as 

and 

iroN m Y.e e e 
- N e(E + v x B ) + Pei 

e - -e -o -

= N.e(E + v. x B ) +Pie + Pin 
J. .-. -J. -o 

. N Pni J.ro m v = n n-n -

(1.2a) 

(1.2b) 

(1.2c) 

We shall consider 1.2c first. In order to obtain an expression 

for pni we note that the charge-exchange cross-section dominates the ,.... 

other cross-sections for ion-neutral momentum transfer (5). In a 

charge exchange collision, the particles usually pass far enough apart 

that relatively little momentum is transferred except that the ion and 
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neutral interchange roles. Thus the collision is effectively a head-on 

collision, and in such a case the momentum gained by a neutral per 

collision is very nearly m(X-t-v) The number of n ,~. -n 

such collisions per unit volume per second is just the neutral particle 

density times the ion-neutral collision frequency v . In this case the 

ni 
expression for P is given by 

Pni = m (vi - v )N v • ..,.. n- -n n 

Substituting into 1.2c we get 

iroN m v = m (vi - v )N v n n-n n- -n n 

If we now solve 1.4 for v , where we let T = 1/v we obtain 
-n 

v = -n 
1 + iroT 

and now if we put this into 1.3 we have 

iro v m N 
pni = ___ -__ i __ n_n_ ~ -- :i + iro T 

Now we note that always 

irov m N 
-i i n 

1 + iro T 

so that we may now return to equation 1.2b and obtain 

(1. 3) 

(1.4) 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 
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We may now define a new pseudo ion mass ~ so that 

If we now assume that r is the percent ionization and that 

and 

N = (1 - Y)N n o 

we may rewrite 1.9 as 

YN 
0 

~ = mi ( ~ + ia)T ) 
1 + iooT 

(1.9) 

(l.lOa) 

(l.lOb) 

= mi( ~ + ioo ) (1.11) 
v + ioo 

From this expression it is clear that if oo >> v/r then ~ -+ mi; and 

the neutrals may be neglected. On the other hand, if v >> oo , 

1.1. -+ mi/r so that the ions look heavier. This is due to the fact that 

then N ion masses in the system are being carried along by the dis­
o 

turbance but only YN charges are carrying them along, so each charged 
0 

particle appears to have an artificially low e/m ratio. Note that 

1.1. contains all the information about the neutrals. 

If we now use the definition 1.9 in 1.8 we get 

ioo.:y, = ~ (E + vi x B
0

) 
--~.J.. Jl ...... .... ~ 

(1.12a) 
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and rewriting l.2a in a similar form 

iill v = 
""'e 

e 
m 

e 
(E + v X B ) 
- -e -o 

pei 
+ :=:...__ 

Nm e 
(l.l2b) 

When we now consider the electron-ion collisions, we shall assume 

the momentum transfer to be proportional to the relative average vela-

cities of the electrons and ions and to the ion density, or simply to 

the current density. We will define the constant of proportionality by 

where 

J 

= Ne 

pie 

Ne 

= Ne(v - v ) -i -e 

(l.l3) 

(l.l4) 

in which case ~ corresponds to the resistivity as given by Spitzer 

(14). With this definition l.l2b becomes 

iill v 
e 

(E + v X B ) +~J = ---e m - -e -o m -e e 

e 
(E - ~J + v X B ) = --m ....... - -e .-o (l.l5a) 

e 

and similarly for the ions l.l2a becomes 

(l.l5b) 

We now solve 1.15a for in terms of ! - ~![ in cylindrical 

coordinates, recalling that B = B e , and solve l.l5b for v in 
-o o-z -i 

terms of E - ~[ • The resulting expressions are substituted into 
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l.l4 which yields a result in the form 

J sl is2 
0 l}Jr r 

Jg = sl 0 T}Jg 

J 0 0 z s3 l}Jz (Ll6) 

where 

r .} n2 ] p p iroE (Ll7a) sl l .,2 _ .,2 + n2 _ .,2 0 

e c 

[ .,
2 

ro n
2 

n ] p c p c 
s2 2 2 - 2 2 iE (Ll7b) 

0 
(l) c - (l) n - ro c 

ro2 + 02 

s3 = 
p p 

€ (Ll7c) iro 0 

and 

2 Ne2 
n2 

Ne2 eB eB 
0 0 (Ll8) (l) =- ' ' 

(l) --- ' n =-p mE p J..L€ c m c J..L e o 0 e 

We note that when 11 - 0 , the above s tensor is just the con-

ductivity tensor. 

If we now so~ve l.l6 for J in terms of E alone, we obtain ........ .-. 

0 

= 0 

0 (Ll9) 
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where 

(1 = 
l 

(l.20a) 

(l.20b) 

(l. 20c) 
l + 11S3 

We now wish to solve Maxwell's equations where the currents are 

related to the fields in the above way. The pertinent Maxwell's 

equations are 

\JxE - im" H ~""o-
(l.2la) 

\JxH J + im € E ...., o- (L2lb) 

To simplify the notation we will combine the plasma current J = a • E 
;looV- =-

and the displacement current im € E into a single term by defining o-

a dielectric tensor so that 

Hence 

D 
r 

D z 

= 

(l.22) 

0 

0 

0 (L23) 



-11-

where 
ol 

(1.24a) El = E +-
0 ic.o 

02 
(1.24b) €2 = iw 

€3 E 
03 

(1.24c) = +-
0 iw 

All the information about the plasma is now contained in e11 e
2

, and 

e
3 

• The problem to be solved now is Maxwell's equations in a cyli~­

drical conducting waveguide with a dielectric tensor of the form of 

1.23. 
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CRAPl'ER II 

SOLUTION OF MAXWELL'S EQUATION) IN A CYUNDRICAL WAVEGUIDE 

1. Solution of the Differential Equations 

Although the problem of solving Maxwell's equations with a non-

diagonal dielectric tensor may be done with complete generality (15), 

only the circularly symmetric modes will be discussed here, since in 

the experiment only those modes may be excited. Using this restriction, 

we may now assume the fields to vary as ei(rot -kz). Writing out Max-

well's equations in component form we have 

ikEg = - iro ~0 1\­

oE z 
- ikEr- dr =- iro~0 HQ 

~ ~ ( rE ) = - iro ~ H 
ror Q o z 

= iro(EE +iE
2
E) 

1 r Q 

(2.la) 

(2.lb) 

(2.lc) 

(2.2a) 

(2.2b) 

(2.2c) 

It is now possible.to solve this set of equations for the transverse 

field quantities Er' Eg' Hr and HQ in terms of the longitudinal 

components and their spatial derivatives. For example, we might solve 

equation 2.la for H and substitute into 2.2b, obtaining r 

oR 
ir2Er + r 1Eg = - iro~0 d; 

Similarly we may obtain 
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oE 
r 1Er - iY2Eg ::: ik z 

dr (2.3b) 

oH oE 
r 1Hr - iY2Hg 

z z 
::: ik dr- (.l) €2 dr ( 2. 3c) 

oE 
ir2Hr + r 1Hg 

z 
::: i (.l) €1 or (2.3d) 

2 2 2 
where r 1 : k - ro ~0 €1 and r 2 = ro ~0 E2 It is clear that unless 

ri == r~ , equations 2.3a,b,c,d will allow us to solve for the transverse 

components in terms of the longitudinal components. The results are 

where 

E r 

Eg 

H 
r 

::: 

::: 

::: 

::: 

oE oH 
. z b z l.a T + -r or 

oE oH 
c2+id-z 

or or 

oE oH 
f z + ia _z 
dr or 

oE oH 
ig _z + 

or 
c-2. 

or 

f = roE2Yl + roElY2 
2 2 

rl - r2 ' 

c = 

(note, ab + cd == 0 , fd - ac == 0 ) . 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

; (2.5) 

Putting 2.4b into 2.lc and 2.4d into 2.2c we obtain the coupled 

pair of differential equations for Ez and Hz 
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id £... ( rem 
+ ~ £... ( 

r dE 
drz) + ic.oj.l. H drz) = 0 r dr 0 z r dr 

(2.6a) 

ig £... ( r dE c d r dH 
arz) - ic.oe3 Ez +-- ( ar z) = 0 • 

r dr r dr 
(2.6b) 

To find the solution of these coupled equations, we assume that H = ¢ 
z 

and E = a¢ where a is a constant, thus obtaining z . 

(2.7a) 

(2.7b) 

For these two solutions to be compatible, we must have 

(2.8) 

If we label the two solutions of this quadratic equation by a 1 and 

a 2 we have 

( 2. 9a) 

(2.9b) 

where ¢
1 

and ¢
2 

are the solutions of the differential equations, 

1 d d¢1 ic.o j.l. 

r dr (r dr) + (id+ ~ c)¢1 = 0 ( 2.10a) 
1 

1 d d¢2 ic.o j.l. 

rd"r (r dr) + (id +~ c)¢2 = 0 ( 2.10b) 
2 
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For comnleteness we should also consider a d 
-.r:: 1'3 = 0 in which case 

H = E = 0 , for which we must have 
z z 

2 2 
rl = r2 for non-zero transverse 

fields, but we shall not consider this latter case any further since 

we are looking for solutions with finite H . z 

At this point we shall define a transverse wave number T so 

that 

T2 _ ro 1-Lo 

d- iac 
(2.ll) 

2 
and solve this for a and rewrite 2.8 as a quadratic in T so that 

(2.l2) 

Using the definitions 2.5 for c, d and g , we obtain 

= 0 • 

(2.l3) 

Upon rearranging the term in the bracket it becomes apparent that the 

2 2 
equation has a factor Yl - r 2 , corresponding to the ¢3 = 0 case 

mentioned above. The remaining factor gives 

We note that this equation is quadratic both in 

= 0 • (2.l4) 

2 
rl (or k ) ' 

corresponding to two distinct modes of propagation, and in T2 which 

means that there are two values of T
2 

for each mode. 
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If we return now to construct the solutions of the differential 

equations, we see that both are of the form 

(2.15) 

where i is either 1 or 2 • Solutions of 2.15 which are regular at 

the origin are, 

(2.16a) 

(2.16b) 

Now for a particular mode, T
1 

and T2 are not independent since they 

are the two solutions of 2.14, and A
1 

and A2 are related by the 

boundary condition. In general, there will be a set of values of T1 

and T
2 

which separately satisfy 2.14 and the boundary condition, and 

a superposition of those solutions so constructed is also a solution, 

so that the general solution may be written 

where the T lm' T 2m and 

along with 2 .14 and the 

(2.17a) 

(2.17b) 

T are determined by the boundary condition 
m 

A are amplitude coefficients determined by 
m 

the particular type of excitation. 

From the expressions 2.17a,b, using the relations 2.4a,b,c,d, we 

can now construct all the field components. The results after simplifi-

cation are 



E (r,z,t) z 

E (r,z,t) 
r 
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wbere in general the A are functions of ro , and m 

2. Solution of the .. Boundary Value Problem 

(2.l8a) 

(2.l8b) 

(2.l9c) 

(2.20a) 

(2.20b) 

In the solution of the boundary value problem we shall treat one 

mode at a time since each must satisfy the boundary condition separately. 

We shall drop the m subscript in the following analysis, although the 

results will be true for any of the m circularly symmetric modes. 
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For our boundary condition we assume that our waveguide is a cylin-

drical conducting tube of radius a so that we have for the tangential 

E fields 

E
9

(a) = E (a) = 0 z 

Using the expressions 2.19a,c we obtain 

= 0 

We may use 2.22a to determine T so that 

T = 
T2Jl (Tla) 

T1Jj_(T2a) 

and we th~n obtain from 2.22b 

(2.21) 

(2.22a) 

(2.22b) 

(2.23) 

(2.24) 

This equation is now to be solved simultaneously with 2.14 to obtain 

the dispersion relation. We may rearrange 2.14 and present it in the 

form 

(2.25) 

but the set 2.24 and 2.25 is transcendental and,except in certain limit-

ing cases, an approximate solution is very difficult to obtain without 

a computer. 
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3· Solution of the Dispersion Relation at Low Frequencies 

If we neglect dissipation it may be shown that 

the order of nc' e
1 

and e2 are of the order of 
2 

c (I) 
- E ---- respectively, where 

o v2 n 
A c 

V = B/J'tlNm 
A o o i i 

' 

for frequencies of 
2 c 

e - and 
o v2 

A 

(1)2 

(2.26) 

the ordinary Alfven speed. 

e
1
/e

3 
is of the order of 

But e
3 

is of 

_ C2(1)2 /m2V2 = _ 
pA 

the order - E P so that 
m o m2 

(m2 jn2) me , which we will 
c i 

take to be of the order of m~mi . If we then neglect terms of the 

order m /m. in 2.25, we get 
e J. 

(2.27) 

Using 2.27 we find from 2.11 that a = 0 , so E = 0 , and we have 
z 

simply that 

(2.28) 

The boundary condition for each mode now becomes 

= 0 ' 
(2.29) 

so that the T are derived from the roots of the first order Bessel 
m 

function (i.e., Ta = 3.83, 7.01, 10.17, etc.). known, we 

2 may now solve 2.27 for k and we obtain 



2 2 T
2 

k = ill ~ € - -- + 
0 l 2 
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(2. 30a) 

(2. 30b) 

It is to be noted that the value of T is the same for both roots of 
m 

2.27, so that both modes are characterized by the roots of the first 

order Bessel function. 

If we now, however, investigate the limit when ill << n , then 
c 

another approximation is pettinent, namely that since 

2 2 2 2 
€~;€ is of the order of ill /n . 
~ l c 

This is especially appropriate when 

dissipation is present, since if we assume an electron-ion collision 

frequency vei >>ill , then €lj€
3 

is of the order of -

Hence if vei/illc is of the order of unity, then €lj€
3 

i(~ )( v:i) • 
c c 

only goes to 

zero as ill/U , whereas 
c 

2 
(ill/U ) • 

c 
If we then drop r 2 

and €2 from 2.25, the result may be factored as 

= 0 (2.3l) 

where the first factor corresponds to the root 2.30a and the second 

factor to the root 2.30b. The fact that the result 2.3l appears in 

factored form, however, implies that the original differential equa-

tions are uncoupled, and indeed, upon going back to the expressions 

2.labc and 2.2abc we find that, setting €2 = 0 , 

oE z 
dr (2.32a) 



and 

If now we let 

we have 

im1..1. <:m 
0 z 

Eg = - _r_l_ Tr 

and the boundary condition is 

whereas, if we let 

T
2 = - r 2 l 

we have 

-21-

(2. 32b) 

(2.32c) 

(2.33a) 

(2o33b) 

(2.33c) 

(2.35) 

(2.36) 

(2-37) 
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and for the boundary condition we have 

= 0 (2.39) 

We now notice that 2.39 is the same result as 2.29, so that this mode 

maintains the same value of T from low frequencies up to the order of 

the ion-cyclotron frequency (and, in fact, even to much higher fre-

quencies). The other mode, however, has its characteristic Ta change 

from a root of the zero-order Bessel function to a root of the first 

order Bessel function. 

If we examine the fields associated with the two modes we first 

notice that for the mode described by 2.32abc, the steady field is 

perturbed only in the theta direction, so the wave may be described as 

a Torsional Wave, and its dispersion relation is that of the ordinary 

Alfven wave at low frequencies. This mode has been studied experimen-

tally by Jephcott ( 9 ), Wilcox (10), and theoretically by many. 

The other mode has a component of the wave magnetic field in the 

direction of the steady field, so that the field lines are alternately 

compressed and expanded; consequently we may describe it as a Compres-

sional Wave, and its dispersion relation at low frequencies is given by 

(2.40) 

It is apparent from the above expression that below a critical frequency 

(J.) 

0 
= ' 

(2.41) 
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no waves propagate, (i.e., they are evanescent). This character is 

entirely analogous to the ordinary waveguide cutoff phenomena except 

that we have an effective dielectric constant 
2 2 

K = c /VA • 

4. Solution of the Dispersion Relation on the IBM 7090 Computer 

In the solution of the exact dispersion relation (i.e., exact 

within the approximations of Chapter I), an iterative technique was 

developed Which was based on the assumption that T varies slowly 

with frequency. The solution is started at a low frequency where the 

trial value of T is given by either 2.36 for the torsional waves or 

by 2.39 for the compressional waves. The corrected value of T after 

going through the iteration procedure is then used as the trial value 

at the next higher frequency, and the process proceeds stepwise in fre-

quency to as high a frequency as desired, 

The basic expansion in the iteration procedure is 

(2.42) 

The value of (and from it all other zero order quantities) is 

given by using T
10 

, the trial T , in 2.25 and solving for the root 

which corresponds to the mode of interest. 

If we now solve 2.25 for T1 and T2 in terms of r1 , we get, 

keeping terms of first order in o , 

(2.43a) 

(2.43b) 
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where T
20 

is the alternate root of 2.25 and is given by 

and 

It -1 -

T == - T + y (1 + ..l) + __g_. 
2 2 [2 e ey] 

20 10 10 €1 €1 

Using 2.20a and 2.20b with 2.42, 2.,4Ba;'b, we have 

(2.44) 

(2.45a) 

(2.45b) 

(2.46a) 

(2.46b) 

If we now use all these expressions in 2.24 and expand the Bessel func-

tions in a series about T
10

a and T
20

a , keeping only first order 

terms in 8 , we may finally solve for 8 , obtaining 

A.J o (TlOa)Jl (T20a)+BJ o (T20a)J 1 (TlOa)+CJ o (TlOa)J o (T20a)+DJl(TlOa)Jl (T20a) 

(2.47) 
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where 

[(ttl- tt2)1\o 
2 

- r1o J (2.48a) A= TlO + 2tt T 
1 10 

[(ttl- tt2)f320 
2 

+ r1oJ (2.48b) B = T20 - 2tt T 
220 

c = TlOT20a(tt2f310 - ttlf320) (2.48c) 

D 
2 2 (2.48d) = tt2f320T20a - ttlf310Tl0a 

Now although the formal expansion was about r
10 

, which was chosen for 

symmetry reasons, the value of 5 is used to improve the trial value 

of T
10 

by 2.43. The T
1 

so computed is used as T
10 

and the process 

is repeated until 5 is as small as desired. Examples of k , T11 and 

T21 for the compressional and torsional modes are given in Figures 

labc and 2abc. 

5. The Impulse Response of the System 

We now consider the impulse response of the system for excitation 

by a current loop at the plane z = 0 with radius b in a waveguide 

of radius a (see Figure 3). In order to compute the excitation coef-

ficient for any of the m modes, we need to know the orthogonality 

relations, and these are quite complex for this problem. Nevertheless, 

they have been worked out by A. G. Lieberman, and using them he has 

obtained ( 15) 

(2.49) 

· e rdr -z 

where the script notation implies the expressions of 2.18abc and 2.19abc 
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Figure 3. Current carrying loop of radius b in 
conducting cylinder of radius a • 

without the A , and the tilde implies a transpose in the sense of 
m 

considering B
0 

to point in the opposite direction, so that 

f(B ) = f( -B ) 
0 0 

(2.50) 

This corresponds to setting m and n to -(1) and -n respec-
c c c c 

tively, and we find that the result is to change e2 to - e2 , and 

all other quantities are even in B 
0 

Hence 

.,._, 

tr = - ~ (2.5la) 
r 

....... 
e.g = ~ (2.5lb) g 

J{r = J-1 r (2.51c) 

........ 
Jig = -Jig (2.5ld) 
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so that 2.49 becomes 

A = __ -_I_.o'-b-~_9=m~(-b_) ----
m a 

2 f ( t_rmJIQm + CQmJ/rm)rdr 
0 

(2.52) 

This expression assumes irut 
I = I e • 

0 
To find the impulse response of 

the system, we first note that the steady state response for H , for 
z 

example, is given by 

H (r,z,t) = A [J (T,~r) + T J (T2mr)] z m o ~ mo 

so that the impulse response is given by 

i(mt-kz) e (2.53) 

( 2. 54) 

and if we wish to study the response to something other than an impulse 

of current, we simply use I(m) instead of I in equation 2.52; and 
0 

if we want the time-derivative of the magnetic field which would be 

detected by a magnetic probe we simply use im I(m) instead of I
0 

in 

2.52 and 2.54. An example of a typical response to a critically damped 

sine wave for the compressional mode is shown in Figure 4. 
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CHAPrER III 

EXPERIMENTAL METHOD 

In attempting to realize experimentally an axially magnetized 

plasma-filled waveguide, we have chosen a cylindrical tube because 

of the difficulties involved in forming a plasma in other geometries, 

and since a uniform cylindrical field can be produced easily with a 

solenoid. Waves may then be launched in the waveguide with a current 

loop at a specified radius and observed with small magnetic probes 

elsewhere in the waveguide. 

1. Apparatus 

The hydromagnetic waveguide is a stainless steel tube (Figure 5) 

13.5 em ID and 91.5 em long with a 2.5 mm wall. The driving end is 

closed with a l-inch thick pyrex plate through which is placed a 

coaxial stainless steel electrode. The opposite end connects to a 

section of 6-inch glass pipe which is blanked off at the end with a 

1/2-inch pyrex plate and has a 2-inch side port to the vacuum pump. 

The magnetic field is supplied by a pulsed double layered solenoid 

fabricated with 3/16-inch square copper wire and epoxy-fiberglass 

laminate. The energy is stored in a 1200 J..Lfd, 10 kv bank and switched 

by two parallel ignitions. To prevent voltage reversal, two parallel 

crowbar ignitrons are also used. The basic frequency is about 350 cycles 

per second so that the field is within 1% of its maximum value for about 

90 J..LSeconds. The stainless steel tube and the hollow stainless steel 

electrode were chosen because of the high resistivity of stainless steel 

so that the magnetic field could penetrate the waveguide. The field 
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inside the tube does reach above 90i of the value it would attain if 

the tube were absent. To improve the homogeneity of the field, several 

extra compensating turns appear at each end of the solenoid. The homo-

geneity has been measured to lie within ~ of the center value over 

more than 8o cmof the tube. The field has been calibrated to within ~· 

The vacuum pumping system consists of a 2-inch oil diffusion pump 

backed with a 5 cfm mechanical pump, a water-cooled baffle and a 2-inch 

-6 liquid nitrogen trap. The ultimate pressure is approximately 2 • 10 

Torr. For the experiment the pump is valved off and hydrogen is leaked 

in to the desired pressure as measured with a Pirani gauge which was 

calibrated against a McLeod gauge. Between runs the system is evaculated 

-5 below 5 • 10 Torr. 

The ionization energy is supplied by a 35 ~sec square wave pulse 

network, synthesized by Fourier harmonics, so that the fundamental LC 

circuit has a period of 70 ~sec, or f = 14.3 kilocycles, and the 
0 

next has a frequency f
1 

= 3f
0 

, etc., up to the fifth odd harmonic 

where each successive capacitor stores less energy. The inductors are 

tuned for a flat top on the square pulse. The characteristic impedance 

of the network is approximately .75 ohms, but the plasma appears to be 

approximately .05 ohms, so the pulse network acts as a current genera-

tor, once the voltage causes a breakdown between the electrode and the 

wall. At 12 kv the network stores about 1.25 • 103 joules, and runs 

about 14 k amp into the plasma when switched on by an igni tron •. To 

control the duration of the current pulse, a crowbar is placed across 

the output and can be controlled to 1 ~sec or less. A resistive 
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voltage divider allows the electrode voltage to be monitored, and a 

current transformer is used to monitor the current. 

2. Plasma Formation 

When the pulse network is switched on with an ignitron, the full 

charging voltage appears between the coaxial electrode and the wall of 

the waveguide. A local breakdown occurs quickly (within 1 J..LSec except 

at low pressures) at the driving end, and then an ionizing wave forms 

and travels down the tube. This wave has a well-defined front and 

travels very nearly at constant velocity (typically, 5 cm/J..Lsec) if 

there are no serious obstructions in the tube. This type of shock wave 

has been studied,theoretically by Kunkel and Gross (16) for a slab geo-

metry and the theory says the velocity should be constant if the current 

is constant. The shock front is very narrow (approx. 1-2 em) and behind 

the front the plasma is left rotating due to the J x B forces. For 
-o 

the slab geometry the temperature behind the front should be of the 

order of 3 • 10
4 

°K for n = 6 • 10
21

jm3 , B = 1.6 W/m
2 

, but it is 
0 

not known what corrections are necessary for cylindrical geometry. The 

theory also predicts the density to be higher immediately behind the 

front with a rarefaction wave following behind, but how much mass is 

moved along with the front in cylindrical geometry is unknown; however, 

there must be some, and it is likely from the theory that the density 

in the rarefaction wave is no more than .9 of the unperturbed value. 

In the narrow region behind the front, there is an axial component of 

velocity in the direction the front travels, and the mass velocity is 

approximately 3/8 of the front velocity (or typically 2 cm/J..Lsec). 
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Another characteristic of this kind of wave is that the current 

apparently travels down the waveguide on the surface of an imaginary 

cylinder defined in radius by the outside of the driving electrode. 

This leaves a hollow "core" where current never flows, so that it 

might be expected that the degree of ionization and the temperature 

would be low there. Studies at Berkeley, however, using this same 

ionizing wave in the same geometry, have shown spectroscopically that 

in the "core" the ion density is at least ao;, of that in the annulus 

and the temperature > 50'{o that of the remainder of the plasma ( 17) • 

When the ionizing wave reaches the probe, the line is crowbarred 

so that current running up the alumina probe sheath does not add too 

much impurity to the plasma from the sheath itself. The crowbar also 

stops the WxB 
~ -o rotation, but not the axial velocity drift, so the 

plasma drifts to the loop after crowbar in about 10 ~sec. It is cus-

tomary to let the current drive the front a little past the probe 

sheath and then to wait 10 ~sec so that the loop is enveloped in plasma. 

The crowbar, in stopping the ExB 
""-t -o rotation, sets up turbulence 

in the plasma. The effect of the crowbar is to set 

(3.1) 

but this does not demand that E = 0 everywhere, so that some motion 
r 

can still ensue. The severity of the turbulence, as well as its decay 

in time may be seen in Figure 6. 

In view of the turbulence and the "hollow core", the other prob-

able sources of plasma non-uniformity are relatively minor. The 
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Fig. 6. Kerr Camera Photographs of the Decaying Plasma 

The time in ~sec after crowbar is indicated below 
each picture. The shutter time for the first six pic­
tures was .2 ~sec, and l ~sec for the others. 
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characteristic decay time for thermal conduction to th~ walls is greater 

than 300 ~sec (18) so no appreciable effect will be noticed in the first 

50 ~sec or so from thermal conduction. The diffusion across the field 

has a time constant of approximately 25 msec (18) to diffuse one tube 

2 4 0 
radius for a field of 1.6 W/m and a temperature of 10 • Hence no 

radial variations are expected due to diffusion. Diffusion axially to 

the ends of the tube is governed by the diffusion of ions into the 

neutral atomsat the end, and the time constant for ions to diffuse one-

half the length of the tube is approximately 16 msec (18). The over-all 

temperature decay time is approximately 150 ~sec, and this loss is prob-

ably due primarily to 3-body recombination radiation and some losses are 

through conduction to the wall. 

In conclusion we can say that the plasma has turbulence and a 

"core" region that contribute to plasma non-uniformity, but that all 

other changes that might cause density and temperature variations are 

slow on our time scale. The approximation in the theoretical analysis 

ef a steady uniform plasma is not expected to be too good, but the wave 

is expected to average out some of the radial variations, and that is 

the best we can do, as the inclusion of radial variations in the theory 

appears to be intractable. 

3. Wave Generation and Detection 

In order to generate the circularly symmetric compressional modes, 

a current loop at any ~adius in the waveguide is sufficient to excite 

them, but in order to study a single, or nearly a single mode, there are 

optimum sizes for the loop. In order to excite primarily the lowest 

mode, we may set the loop size so that the next higher mode has a zero 
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excitation coefficient. The third and higher modes w?-ll then be 

excited but they tend to damp out faster, and the frequency band 

below the third mode cutoff will give relatively pure information 

on the lowest mode. 

In practice we have examined two cases, using the € - 00 3 
limit to compute the coefficients, where we set the second mode 

excitation coefficient to (i) zero; and (ii) its maximum value. 

If the loop radius is b and the tube radius is a , this leads to 

(i) ( 3 . .-2) 

(ii) ( 3· 3) 

Most of the data was taken with a loop of radius 3.11 em, approximating 

condition (i) which yields 3.69 em. The loop was made of a copper wire 

in a glass envelope, and the leads left the loop coaxially and went 

coaxially into the pulse generator. 

The experiment, as first conceived and tried, was to excite a 

wave using a damped sine wave current. Due to the plasma impedance, 

however, the LC circuit damped to l/e in a few cycles, and rapid 

damping coupled with the dispersion made direct analysis very difficult. 

We then tried exciting the plasma with a critically damped sine wave 

circuit with an undamped frequency of about 7 megacycles, so that the 

pulse width was approximately 40 nsec. This excited some of all frequen-

cies and the full dispersion of the plasma became apparent in tbe received 

signals. The analysis was not extremely simple, since all the frequency 
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information was there, but the analysis of the received signal yielded 

the entire dispersion relation on a single shot over the frequency band 

excited by the pulse. 

This technique is discussed at length in the next section. 

The pulse itself was produced by a .002 ~fd capacitor charged to 

14 kv and discharged through a 22 ohm 2-watt carbon resistor by a 

spark gap into the loop. Although the peak power through the resistor 

4 was more than 10 times the rated power, only 2 joules were dumped into 

the resistor, and no ill effects were observed after thousands of 

firings. While the loop was imbedded in the plasma, the plasma added 

some additional impedance, which was frequency dependent, so the circuit 

was somewhat overdamped; but the important thing was that the waveform 

of the pulse could not be described by a simple RLC circuit, and for the 

wave analysis, the actual waveform was measured for comparison with the 

received signals. 

The signals were detected with 10-turn magnetic probes which had 

a measured response which was essentially flat to 15 megacycles and 

down 3 db at about 22 megacycles. They were constructed inside a piece 

of slotted solid-wall 50-ohm coaxial line •. The signal was fed through 

a high pass filter into a Tektronix 555 dual beam oscilloscope. Filters 

were necessary to eliminate pickup from the slowly changing axial field 

and also to eliminate any slow changes in the plasma after crowbar. The 

filters cut off charply at about .5 megacycles and their entire fre-

quency response to 50 megacycles, in conjunction with the probe and the 

oscilloscope was measured and calibrated; although, as we shall show in 

the next section, we do not need to know this information for the final 

data analysis. 
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The probes were inserted into the plasma inside"alumina sheaths 

which extended~ radially beyond the center of the tube far enough so 

that the sensitive area of the probe could be placed on axis. These 

sheaths could be placed every 10 em down the length of the tube, but 

it was found that best results in the way of plasma uniformity were 

obtained with one sheath placed 20 em upstream from the loop, with 

both pieces lying in the central region of the tube so as to be far 

from end effects and reflections. 

For timing reference a probe was inserted into the pulse 

generator and sampled the field due to the pulse current. This signal 

was always displayed on the upper beam of the dual beam oscilloscope 

and served to define zero time. 

The two traces, the pulse and the signal from 20 em away, were 

photographed on Polaroid film and all wave analysis was done from the 

photographs. 

4. Data Analysis Technique 

If one were to excite the plasma with a true delta function of 

current, and record the received signal with no distortion at all, then 

the Fourier transform of the received signal would yield the transfer 

function of the plasma by definition. This transfer function could be 

related theoretically with the dispersion relation itself, although 

here we always compared the theoretical and experimental transfer func­

tion rather than the dispersion relation itself. If the excitation 

coefficient were independent of frequency, then the transfer function 

would be simply related to the dispersion relation by a constant. To 

find the theoretical transfer function, we note from 2.52 and 2.53 that 
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the axial wave magnetic field transform on axis is given by 

b (m,z) = 
z 

1-L I b t~(b) (1+ -r) 
0 0 e 

a 

-ikz 
e 

2 J ( [,r/-/9 + f-9}/r )rdr 

0 

(3.4) 

for the compressional mode. Now a general response is expressed in 

terms of a forcing function, in this case the current transform times 

the transfer function, so we may write 

where now 

b (m,z) = I (m) T(m,z) z 0 

T(m,z) 
i.J.

0
b t:

9
(b) -ikz 

e 
-----------c. a 

2 J ( C.,r"}/9 + ~9 Jir )rdr 

0 

( 3·5) 

(3.6) 

But we always examine the signal from a magnetic probe, and hence the 

derivative of the wave field. This means that we write for the Fourier 

transform simply 

. 
b (m, z) = imb (m, z) = imi (m) T(m, z) 

z z 0 
(3. 7) 

However, we always observe the forcing function, the current, also with 

magnetic probes, so we can write 

since 

. 
b (m,z) 

z 
I (m) T(m, z) 

0 

I (m) = im I (m) 
0 0 

( 3 .8) 

(3.9) 
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We now notice that we never observe the true fields, inasmuch as 

we use a magnetic probe which has a non-flat sensitivity over the fre-

quency range considered, and we also use a high pass filter in conjunc-

tion with the oscilloscope. The detecting system might be represented 

by another transfer function which, for the signal receiving system we 

might call Hl , and for the current pulse measuring system we will 

call H
2 

. Then we have 

(3.l0) 

and 

. (3.ll) 

where the * denotes the actual measured quantity. Using equations 

3.lO and 3.8 we may now write 

and using 3.ll we may further write 

.* 
b (m, z) 

z 

If the systems are now arrangedso that 

' 
we may find the true transfer function T(m,z) from 

T(m,z) = 

.* 
b (m,z) z 

r*(m) 

(3.l2) 

( 3·l3) 

(3.l4) 

( 3·l5) 
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.In the experiment, condition 3.14 is satisfied by measuring the 

driving current waveform with the signal receiving system, character-

ized by H1 (m) 1 one time for taking the Fourier transform. It was 

observed that the shape of the driving pulse was very highly repeat-

able, so that one measurement was sufficient. After this single shot 

was taken, the pulse signal was transferred back to the system 

characterized by H2(m) but only the time of the beginning of the 

pulse was read from this system, so that any dissimilarities in the 

systems were unimportant. 

At this point we wish to note that all data was taken at 

z = 20 em 1 so that although the transfer function was z-dependent, 

we only studied its frequency dependence; therefore the z-dependence 

will not be explicitly included from this point on in the analysis. 

We may now separate all the quantities in 3.15 into an amplitude 

and phase, and it is convenient to represent them in exponential form 

so that 

"* a (m) + i¢ (m) 
b (m) s s 

- e z (3.16a) 

"* a (m) + i¢ (m) 
I (m) = e p p (3.16b) 

T(m) = 
~(m) + i¢T(m) 

e ( 3 .16c) 

where the subscripts represent the signal, pulse, and transfer function, 

respectively; Using these definitions with 3.15 we have, taking 

logarithms, 

= a -a s p 
(3.17a) 

(3.17b) 
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Equations 3.l7ab supply the recipe for comparing the theory with 

experiment, for we may take the Fourier transforms of the pulse and 

signal waveforms (the a s 
and a 

p 
are the logarithms of the ampli-

tudes of the transforms of the time functions) on the computer and also 

compute the theoretical transfer function. 

In practice we have made the actual comparison of theory with 

experiment with two different assumptions. Since system Hl was used 

in a different geometry for measuring the current, a relative amplitude 

calibration was necessary although the frequency dependence was iden-

tical. Since a chance of a systematic error at this point existed, we 

analyzed the data assuming first that our calibration wao correct, and 

then that we had no knowledge of the calibration, and the comparison 

was only relative for the amplitude data. This latter approach allows 

also for a possible constant factor error in the amplitude of the exci-

tation coefficient. 

In order to make the comparison in the time domain, we observe 

that from 3-l5 

"* b (m,z) 
z 

"* = I (m) T(m1 z) 
0 

so that the time function is given by 

CD 

.* J "* b (t,z) = b (m,z) z z 
-oo 

CD 

imt d.c.o 
e 

2:rc 

J "* imt dill I (m) T(m, z) e 
2:rc 0 

-oo 

(3.l8) 

( 3 .l9) 

and we see that the observed pulse transform is used for this comparison. 
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Due to the complexity of T(m,z), the integral is done by Simpson's 

rule integration on the 7090 computer. 

In the formation of the plasma there are three fundamental para­

meters of the problem which we do not know on any run. These are the 

percent ionization, the resistivity, and the ion-neutral collision 

frequency. On the other hand, we presume that we do know the magnetic 

field strength, the total number density of particles, and all dimen­

sions in the system. Hence we have treated y , v , and ~ 1 the 

percent ionization, ion-neutral collision frequency, and resistivity 

respectively, as disposable parameters, and have attempted to determine 

them by curve fitting. 

Due to the complexity of the computation of the transfer function, 

the curve fitting was always done by sampling the experimental curves 

at about ten frequencies, computing the theoretical values at those 

frequencies, and measuring the absolute value of the differences at 

each frequency. A weighted average of these differences was taken to 

be a measure of the quality of the fit. 

The procedure of searching for the best fit, as measured by the 

minimum average error, was to vary one parameter at a time, and find 

its relative minimum. We always chose to determine y first, holding 

the other parameters fixed; then to vary v , holding y and ~ 

fixed; then to vary ~ , holding y and v fixed. For each parameter 

a relative minimum would be determined (within li in y and lOi in v 

and ~) before varying the next one, and the process was recycled until 

a simultaneous minimum for all three was found. At this point the 
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tolerance on v and ~ was tightened to ~ and again the process 

was repeated until a simultaneous minimum was obtained. The values 

of r , v , and ~ thus calculated are within 1~ or ~ of the values 

which give the best fit in the sense described above. This does not 

guarantee that the accuracy of these values is within this tolerance, 

because some systematic errors in either the theory or the experiment, 

and in the method of weighting the various differences could all 

affect the results in a systematic but unknown way. 

It is possible, however, to make some estimates of the relative 

probable errors of the various parameters by examining the relative 

increase of the average error incurred by changing each parameter one 

percent. This gives a measure of the relative curvature of the error 

curve for each of the three parameters, where a higher curvature means 

minimum is known better or that the technique is very sensitive to that 

parameter. A low curvature would imply that nearly any neighboring 

value would be nearly as good, so that the errors could be much larger. 

The method of weighting the differences between the experimental 

and theoretical values of the propagation and attenuation constants 

has been used in a systematic way, but the scheme developed involves 

certain arbitrary decisions which may be open to question. The tech­

nique has incorporated some of the knowledge we have about the probable 

errors in the data recording and reduction, and it is described in 

Appendix B. A discussion of these errors upon which the weighting 

scheme is based, follows below. 

The technique of obtaining Fourier transforms from a photograph 

using a digital computer involves several inherent errors. In th~ first 

place the photograph only covers a finite time period, so that ignoring 
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the portion of the signal which is left off introduces some error. The 

general treatment of the error introduced by truncation is included in 

Appendix A and the result may be summarized as a "smoothing" of the 

transform if any information is really chopped off. A mor~ specific 

approach to the error in our particular problem is also treated, using 

the knowledge of the asymptotic form of the time waveform, and this 

result shows that the error in our case is principally near the cutoff 

frequency, and the maximum error in the amplitude of the transform is 

directly related to the amplitude of the function at the time of 

truncation. The resulting maximum error may be expressed as 

Max.Error ~ ; • (amplitude of function at trunc.point) (3.20) 

where T is the exponential decay time constant. This result is only 

approximate, since the function only approximately resembles a damped 

sine wave at long times. 

Another error results from computing the transform by a digital 

method, i.e., the function is sampled at only a fi~ite number of 

points: In Appendix A it is sho"Wn that if any appreciable energy 

is present in the "true" transform above a frequency ~ ::::: 1C/ t::. t where 

t::.t is the spacing between sample points, aliasing will occur, whereby 

information at t::.ro above ~ will appear added to the information 

t::.ro below ~ • We have made t::.t small enough, or ~ high enough 

that no significant errors should enter our analysis from this source. 

A third error results from errors in reading the value of the 

function at the sample points. In Appendix A the error in the 
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transform due to this reading error is worked out on the assumption 

that the errors are uncorrelated in time. Although this assumption 

is not too gpod, since errors tend to be much greater where the slope 

is steep, the expression in Appendix A probably gives a lower limit 

to the error, so that we can tell where the transform data is not 

significant. We have generally assumed the mean error to be of the 

order of an oscilloscope trace width. The result is a probable error 

which is independent of frequency, so that where the amplitude is 

high, the percent error is small. The error near maximum amplitude 

is almost always negligible from this source, but below cutoff and at 

high frequencies, this error is quite severe and effectively limits 

the range of validity of the results. 

Another type of reading error is that due to a kind of jitter 

in the sampling so that the data points are not truly equally spaced, 

but have some scatter about some equally spaced points. The assump­

tion that the errors are uncorrelated is probably good here, and on 

that basis this error has been analyzed in Appendix A and shows again 

a white noise spectrum whose amplitude now, however, is related to 

the root mean square of the slope. The magnitude of this error is 

comparable in general to the additive reading error, and the two com­

bine simply to give an estimate where the data is significant. 
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CHAPI'ER IV 

EXPERIMENTAL RESULTS 

The quantitative experimental results may be expressed in two 

w~ys, corresponding to two different methods of data analysis. These 

quantitative methods are a) the study of the variation of the cutoff 

frequency with magnetic field and density, and b) the method of form­

ing the Fourier transform of the impulse response and comparing the 

observed transfer function with a theoretical transfer function. In 

addition to these quantitative methods we have studied briefly the 

excitation of higher modes in a qualitative way, and we examined the 

radial dependence of the wave magnetic field. We shall first examine 

the application of the first method to some early results which 

showed very poor agreement with theory and which led to a major re­

design of the experimental apparatus. 

l. Early Results 

When the experiment was first conceived, the design of the 

apparatus generally favored the least complicated mechanical design 

consistent with the specific needs for generating the plasma and 

detecting the waves. Because there were severe mechanical stresses 

when the magnetic field was pulsed, glass was generally avoided, and 

hence the probe sheaths were made of teflon instead of alumina and 

the exciting loop was covered with teflon and epoxy resin instead of 

glass. The insulating plugs at each end were made of lucite because 

of its machinability, and faced with glass because it was realized 

lucite would deteriorate in contact with the plasma; however, the 
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lucite was inside the vacuum system. Other minor differences 

existed between the early equipment and the apparatus described in 

Chapter III, but these seem now to have been the most important. 

With this apparatus, the general qualitative form of the re-

ceived waveforms was about as expected, but the measured value of 

the cutoff frequency was systematically lower than expected. Since 

the cutoff frequency m 
0 

which is given by equations 2.4l is in-

versely proportional to the square root of the ion mass density, 

assuming the gas to be fully ionized gives a lower limit to the 

expected value of m 
0 

Because the observed value was even lower 

than this limiting value, we re-examined some of the assumptions we 

made in the theory. We considered other reasonable boundary condi-

tions such as that which would be appropriate for an insulating 

sheath and expect only very small changes would occur and in the 

wrong direction. We tried to consider the effect of a radially 

non-uniform density distribution in a qualitative way, and again the 

effect is to raise the cutoff frequency. Since the cutoff is not 

perfectly sharp, the last frequency measured is not the true cutoff 

frequency, but is systematically higher, with the result again tend-

ing in the wrong direction to lend an explanation of the observed 

phenomena. Our conclusion then was that we probably did have an 

ion mass density as high as our measurements indicated. Since there 

was not enough hydrogen in the system to account for all of the mass, 

we supposed that the result indicated the presence of impurities, 

either in the form of many lighter ions, such as carbon, or rela-

tively fewer heavy complex ions. 
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We tested this hypothesis in several ways. First we studied 

the variation of m
0 

"With the initial pressure of H
2 

• If the 

amount of impurity were nearly constant, we would expect little 

pressure dependence at low pressures, where the Hz mass would be 

less than the impurity mass. The result is shown in Figure 7, 

where it is apparent that there is little pressure dependence. It 

should be noted that all points should lie either on or above the 

line indicating the lOOi ionized H2 dependence, whereas nearly all 

lie below. The results tend to indicate a nearly constant amount of 

ion mass when the H2 pressure was varied over a wide range. 

A second test was made by studying the propagation of the 

torsional mode, which was excited by applying a sharp current pulse 

through the plasma from the driving electrode to the wall of the 

tube. At low frequencies (m << n ) this mode is dispersionless, c 

so that a pulsed excitation will be detected as a pulse downstream. 

Some broadening does occur due to dissipative effects, and these 

make the analysis somewhat difficult, but in principle the Alfven 

speed IDalf be measured directly from the time delay between the 

driving and received pulses. A study of the variation of the Alfve'n 

speed measured in this way against the initial H
2 

pressure is also 

plotted in Figure 7, where the scales for the two sets of data for 

the two modes have been normalized by using the relation 

= ( 4- .l) 

where T = 3.83/a , the appropriate value for the lowest mode. It 

is apparent that the relation 4.1 is obeyed quite well, and that the 



(!) COMPRESSIONAL MODE J en 
l": • TORSIONAL MODE 1

10 ~ 
100 1t~0 u /y~ I Z 

~ 0 
c.n c4t.. >-
~ ';0 5 ~ 
E 50 °% 4 w 
U 0A1 ~ 

40 'VI? 0 0, 
c • • • · 3w cr . ~ 

30 K!J • (!) • lL 

><I. I • • (!) • "{W) J 2 ~ 
20 ~ I ~ 

~ 

. 80 = 1.28 W/m2 I u 
.. 

5 10 25 50 100 200 

PRESSURE IN MICRONS 
Fib-ure 7. - / Observeu value~ of cutoff frequency and Alfven speed versus magnetic 

field; origiaal appar~tus. 



-57-

torsional mode data shows the pressure dependence to be incorrect 

but in precisely the same manner as the compressional mode data. This 

was taken to be rather conclusive evidence that the plasma was 

seriously contaminated. 

A final experiment which was performed inadvertently proved 

very conclusively that the H2 made little difference. This experiment 

occurred when once, quite accidentally, no hydrogen at all was admitted 

to the chamber, and the experiment proceeded quite as usual. A wave 

was detected and its cutoff frequency was the same as that for low 

H
2 

pressures. It is significant that a clean system would not even 

have broken down to form the plasma in the first place, and with the 

apparatus described in Chapter III, no breakdown will occur with 14 kv 

on the electrode in the empty tube. 

Although the preliminary data was far from ideal, we should note 

that the relation 4.1 was found to be experimentally verified, and the 

magnetic field dependence was also verified and found to agree with 

the behavior implied in 4.1. The result of this study is shown in 

Figure 8 and the linear dependence of f = ru /2~ upon B
0 0 0 

is 

apparent. We should also note that the qualitative shape of the re-

ceived waveforms was in good agreement with those waveforms computed 

theoretically, except that the time scale was longer, due to the slower 

Alfven speed. 

As a result of these investigations the entire plasma-vacuum 

chamber was redesigned, along with the solenoid, so that the impurity 

problem could be minimized. The newer system has no organic compounds 
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in the vacuum system and only glass, stainless steel and alumina 

are exposed to the plasma.. It is estimated now that the amount of 

impurity ion mass density is less than the ion mass density of 

hydrogen when N = 3 • 1020 m -3 (which corresponds to .005 Torr). 
OH 

2. Studies of the Cutoff Frequency 

With the apparatus described in Chapter III which is the 

updated version of the apparatus in the previous section, the ex-

periments described in that section were repeated. Over 200 pictures 

were taken at a variety of initial densities and magnetic fields; 

The data from over 125 pictures were selected for analysis on the 

basis of the general qualitative features of each picture. 

Some pictures showed very irregular waveforms, and some varied 

in amplitude by large factors from the average value for the parti-

cular set of magnetic field and pressure. Most of the irregulari-

ties occurred systematically; that is, for a particular setting of 

field and pressure, ionizing current duration, and delay after crow-

bar, nearly all pictures were irregular and irreproducible. For a 

different delay time or ionizing current duration, however, the pic-

tures might tend to be both regular and nearly reproducible with 

only 10-15~ variations in amplitude on a. shot to shot basis. The 

settings of the delay time and ionizing current duration were somewhat 

critical, in that shortening or lengthening either one by about 5 ~sec 

(but not by 2 ~sec) typically would change things noticeably; whereas 

lengthening the delay time by about 20 ~sec or more brought about 

reproducible signals, although smaller in amplitude. 
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The irregularities apparently have to do with the location 

of the ionizing front at the time of the event. If the ionizing 

current were turned off 5 ~sec sooner than usual, the ionizing front 

might either not arrive at the loop, or just arrive at the loop, and 

this could give rise to severe irregularities. In the next 5 ~sec, 

however, the loop is certainly imbedded in the plasma, since the 

front speed is of the order of 5 cm/~sec. If the delay time were too 

short, again the front might not arrive, as crowbar generally occurred 

just after the front passed the detecting probe sheath (see Figure 6, 

frame 1). After crowbar, the front continued to move at about 

2 cm/~sec, so again the loop was definitely imbedded in the plasma if 

the delay was long enough. If the current ran too long, the ionizing 

front might be driven into the exciting loop, whereas normally it 

"coasted" the last 10 em or so. In this case the Kerr cell photographs 

have shown even more severe turbulence to occur than was shown in 

Figure 6 and severe contamination was suspected from the probe sheath, 

since a bright arc was swept out in the rotating plasma. If the delay 

time ¥as too long, another irregularity occurred in the waveforms. 

This irregularity did not appear to be correlated with any obvious 

turbulence as seen by the Kerr cell camera, but possibly had to do 

with reflections of the wave. This irregular period lasted only 15 

to 20 ~sec, after which the signal gradually became smaller in the 

decaying plasma. 

Thus a 5 ~sec "window'' was located for each set of values of 

pressure and magnetic field which gave a maximum am.pli tude, quali_ta­

tively regular, generally reproducible signal. At the lowest 
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pressures and highest magnetic fields, this window was very short 

and some of this data has been discarded because of the irreproduci­

bility. This implies the length of the window has some sort of 

inverse dependence upon the Alfven speed, as might be expected, as 

the over-all time scale is shortened at high Alfven speeds. 

For each of the more than 125 pictures, the last observable 

frequency was measured, generally by taking an average of the last 

three or four half-cycles. Measuring the cutoff frequency in this 

manner introduces a systematic error, for the cutoff frequency is 

always lower than the last measured frequency for the amount of 

damping observed in the experiment. The percentage error may be 

assumed to be nearly constant, however, so that parameter studies 

will still show the proper trends, but the numerical values will be 

systematically high. 

The results of the parameter study are shown in Figures 9, 10 

and 11. Figure 9 shows the dependence of the measured cutoff fre­

quency upon initial density for several magnetic fields. In general, 

each point represents an average taken from two or three pictures. 

For the case with the lowest magnetic field, a reference line is drawn 

in to indicate the value of the cutoff frequency for a 100~ ionized 

plasma. 

Several things may be noted from the data of Figure 9. First, 

it may be seen that there is no apparent tendency for the cutoff fre­

quency to level off at low densities as would be expected if impurities 

were still a problem. Although the straight lines which are drawn to 

indicate the general tendency do not have the exact slope which the 
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reference line has, the points show no systematic tendency to fall 

below the lines at low densities. From this fact we may estimate 

that the ion mass density of the impurities, which might be assumed 

to be approximately independent of the density, must lie well below 

the ion mass density of hydrogen at the lowest indicated density. We 

have, in fact, investigated densities even lower than that indicated, 

and although the results are erratic, we have estimated that the ion 

mass density of the impurities is probably less than the ion mass 

density of hydrogen at 20 -3 n = 3 • 10 m or else the amount of im-

purities depends nearly linearly upon the hydrogen density. 

The second point to notice about Figure 9 is that all of the 

points lie above the theoretical lines (only the lowest of which is 

drawn in) which indicate the location of f 
0 

for 100~ ionization. 

This is to be contrasted with Figure 7, where the points nearly all 

lie below the reference line. This indicates the plasma is generally 

partially ionized, and although the systematic error involved in 

reading f
0 

from the photographs always estimates the percent ioni-

zation too low, the result is still true, as the error is always too 

small to account for all the _differences from the 100~ ionization 

reference lines. This error has been estimated by the more careful 

treatment of some of the data, which is discussed in the next section 

and it appears that the transfer function analysis generally yields a 

percent ionization about 6 ~ ± 10~ higher than the measured cutoff 

frequencies indicate. 

The third point to notice is that the slope of the lines which 

have been drawn through the data points is systematically different 
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from the slope of the reference line. This indicates a systematic 

change in percent ionization as the initial density is changed. No 

such systematic variation with magnetic field was found, so the 

percent ionizations for the various fields were averaged for each 

density, and the average value--With the rms deviation indicated 

with error bars--has been plotted against the logarithm of the density 

in Figure 10. This graph shows a steadily decreasing percent ioniza­

tion at higher densities, indicating the ionization mechanism seems 

to be less effective at higher densities. The ion density does still 

increase with increasing initial density, but the number of neutrals 

increases faster. There is no theoretical explanation known for this 

effect, but the tendency is in the direction one might expect, in that 

any scheme with a limited amount of potential energy cannot continue 

indefinitely to ionize all the particles as their number increases. 

The total energy of the ionizing current bank is at least three times 

as much as is needed to ionize all the hydrogen and heat it above 

10,000°K at the highest density indicated, but still some limiting 

process may take place. 

The fact noted above, that the percent ionization shows no 

systematic trend with the magnetic field, is illustreated in Figure 11. 

Here the plot of f 
0 

against the magnetic field shows that a straight 

line through the origin is as good a fit as one which only comes 

close. The scatter in the data is large enough that a non-zero inter­

cept could occur. But the average of the data shown, along with other 

data at different densities, shows that the lines do extrapolate very 

close to the origin, certainly within the pr~bable error, giving no 
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evidence of a systematic variation in the percent ionization with 

the magnetic field. The dependence illustrated in Figure ll is the 

same as in Figure 8, except that now the agreement with theory may 

be made quantitative, assuming a partial ionization, instead of only 

qualitative as was the best previously possible when all values of 

f were too low. 
0 

One apparently obvious check on the cutoff frequency has been 

omitted in the present analysis of data. Whereas the velocity of the 

torsional mode was measured in the earlier experiment, and the vela-

city obtained in this manner compared with the value computed from 

4.1, no such comparisons have been made with the more recent data. 

The reason for this is due to the amount of pulse distortion in the 

propagation of the torsional wave. Although ideally this mode is 

non-dispersive, the dissipative mechanisms apparently influence the 

propagation so strongly that the pulse is greatly distorted--the dis-

tortion being primarily a large broadening of the transmitted pulse. 

It is suspected that the delay between the peaks of the driving and 

received pulses, or since magnetic probes which detect the time 

derivative of the field are used, the delay between zero crossings, 

gives a reasonably good estimate of the Alfven speed. But the 

accuracy of such an estimate is not presently known, so we have put 

this information aside for a separate investigation at a later date. 
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3· Study of the Impulse Response 

The most critical test of the adequacy of the plasma model 

involves the study of its frequency dependence. This is especially 

true if the wave propagation is very dispersive as is the case for 

the compressional mode, particularly near cutoff. There are at 

least three more or less separate effects which cause dispersion in 

the frequency range we have chosen to study. First, the boundary 

condition is responsible for the cutoff phenomenon, so the study of 

the transfer function in this frequency range will give information 

about the boundary condition and indicate the adequacy of the theory 

to describe it. 

Second, if the ion-cyclotron frequency lies in the range of 

frequencies studied, the propagation constant differs significantly 

from the value it would have if the ion-cyclotron frequency were well 

above the observed frequency range. With the magnetic field we have 

available, this critical frequency does lie either in or near the range 

of frequencies we can study, so the dispersion due to ion-cyclotron 

effects should be noticeable. Hence we should be able to check the 

adequacy of the model near this frequency. 

Third, the ion-neutral effects should lead to some dispersion in 

this range, since the ion-neutral collision frequency is comparable 

generally to the cutoff frequency. The effects are frequency dependent 

and generally extend into the propagating region above cutoff. We 

expect that some indication of the adequacy of the method of including 

ion-neutral effects should be apparent from the data. However, in the 

experiment the effect is generally small, since the resistive damping 



-69-

is so large, so the statistical errors in the data may make the com­

parison 1d th theory less significant than it would be if the resis­

tivity were small. 

In order to study the transfer function over a frequency band, 

a method which gives all the information on a single shot is a great 

advantage, since our plasma is not, in general, highly reproducible. 

This was acaomplished by exciting the wave 1d th an impulse which was 

very short compared to the time scale of the received signal. This 

yielded a spectrum which was nearly flat over the frequency band from 

below cutoff to the upper limit of the range of the detection equip­

ment. The actual shape of the impulse was measured and from its 

Fourier transform we were able to normalize the transform of the 

received signal so that we had the effective response to a delta func­

tion (see equation 3.15). 

An example of the received waveforms is shown in Figure 12, where 

the impulse is shown in the upper trace and the received signal below. 

That the qualitative features are as expected may be seen by comparison 

with Figure 4 (which was not intended to match Figure 12 quantitatively). 

Nearly twenty such pictures have been analyzed in detail which cover a 

variety of magnetic fields and initial densities. Each such signal 

has been digitized and its Fourier transform computed on a digital com­

puter at one-hundred frequencies spaced about a quarter of a megacycle 

apart. 

The computed transfer function of the signal shown in Figure 12 

is shown in Figures 13 and 14 as an example of the type of data which 

can be extracted from such a picture. Included in Figures 13 and 14 
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Figure 12. A typical photograph of a received signal. The upper 
trace is the time derivative of the driving current, 
as measured with a magnetic probe, and is displayed 
for 'timing reference (amplitude arbitrary). The lower 
waveform is the signal received from a magnetic probe 
which measures the time derivative of the axial com­
ponent of the wave magnetic field on axis, 20 em from 
the driving loop. The vertical sensitivity for the 
lower waveform is 20 gauss/~sec/div. The horizontal 
scale is .2 ~sec/div. 
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are the theoretical transfer function phase and amplitude curves 

respectively, which were determined by the curve fitting technique 

described in Chapter 3· Several characteristic features of the 

experimental transfer functions may be noted from this example. We 

observe that the shape of the phase curve generally fits the theoreti­

cal curve very well except near and below cutoff and at very high 

frequencies where the amplitude shows high attenuation. 

It is characteristic of the data that the experimental phase 

curve does not usually bend down near cutoff, but appears to go to a 

negative phase. It is thought that since the attenuation is changing 

so rapidly with frequency in this region, and since it is quite high 

where this phase error occurs, we do not attach too much significance 

to the apparent discrepancy. 

Well below cutoff, the phase is determined only by noise, and 

is hence random; this makes the origin of the phase curve indetermin­

able by following it down to zero frequency. The phase is then 

usually undertermined by some multiple of 2~/z and often our computer 

convention of keeping track of the phase as it goes through successive 

cycles introduces an error of one or two multiples of 2~/z • The 

number of cycles erroneously introduced by this convention is usually 

apparent from some general consideratiqns about the shape of the 

curves, and an experienced eye can nearly always guess immediately 

where the proper origin belongs and correct the error. If an improper 

choice is made, however, the curve fitting technique yields highly 

doubtful values for the adjusted parameters, and the least average error 

is often five times as high as it is for the proper choice. This has 
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been tested in several cases where the phase origin was deliberately 

offset by 2~/z in both directions from the presumed origin, with the 

result that the alternate choices gave either ridiculous or highly 

doubtful values for the parameters, and the fit was invariably much 

worse. Occasionally a wrong choice has been made initially, but the 

resulting parameter values were so suspicious that the origin was 

shifted by one cycle and the fit was vastly improved, the best fit 

values being then quite reasonable. Hence we feel that this ambiguity 

has always been resolved successfully. 

The second general feature is that at very high frequencies, some 

definite deviations from a smooth curve occur, which appear to be random 

in nature, or at least to show no trend from picture to picture. In the 

example shown in Figure l3 the curve exhibited a violent bend toward 

larger values of t3 at a frequency just above the highest shown on the 

graph. At this frequency the indicated amplitude was far below the 

probable noise level, so this was not included in the figure. It is 

characteristic of the data that whenever the amplitude is above the 

noise level, the phase curves match the theoretical curves very closely 

with no large deviations; but often they deviate greatly when the ampli-

tude is below a few percent of the maximum amplitude. 

The frequency dependence of the portion of the transfer function 

is shown in Figure l4 in terms of the effective attenuation coefficient 

at 20.32 em. It should be noted that the effective attenuation coeffi-

cient has information about the amplitude of the excitation coefficient 

so that if 

b ( z,m) = b (m) 
0 

imt - if3z - az e (4.2) 
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then the effective attenuation coefficient is defined by 

b(m, z) = e 
imt - if3 I Z - a I Z ( 4. 3) 

so we have 

(4.4) 

such that the a' shown in Figure 14 is z-dependent. This combination 

is used for comparison because it is the experimentally observed quantity 

corresponding to the transfer function. Since we did not study the z-

dependence of the transfer function, we may treat a' as if it were 

only frequency dependent. 

Several things are immediately apparent from Figure 14. First, 

the over-all fit is not nearly as good as it was for the phase curve, 

and this is a general characteristic among the cases we have studied. 

We may expect then that the determinations of the resistivity and the 

ion-neutral collision frequency, which are principally determined from 

the wave attenuation coefficient, will have a larger probable error 

than the determination of the degree of ionization which is determined 

principally from the phase information. 
/ 

Some of the differences between the experimental and best fit 

curves appear to be systematic and appear to indicate some inadequacy 

of the theory. First we note thatthere appear to be indications of 

higher order modes, and this is a characteristic result in the cases 

we have analyzed. However, the best fit curves do not usually show 

much influence from these higher modes, although they would appear more 
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strongly if the resistivity were lower. If a curve were drawn in 

corresponding to a lower resistivity, the qualitative features of 

lower attenuation near the third mode minimum and the sharp increase 

in attenuation just above that, which is due to interference between 

the first and third modes, may be recovered. But the basic slope of 

the curve above the lowest mode minimum would increase in that case 

and the minimum attenuation would be lower than the experimental mini­

mum. The result of this change would be that nearly the entire curve 

would lie to the left of the experimental data, and hence yield a poor 

over-all fit. 

It was thought at one time that a much better fit would be 

obtained if the theoretical curve described above with the proper 

qualitative features were moved to the right by some appropriate amount. 

This would correspond to assuming some error in the amplitude calibra­

tion of one of the probes. Hence, the entire curve was assumed to be 

in error by an additive constant, and this constant was treated as 

another disposable parameter. The result was that the shift was gen­

erally small and the average error was reduced somewhat. The best fit 

values of the resistivity and the ion-neutral collision frequency deter­

mined in this way were only very slightly changed, however, so the 

approach was abandoned with the conclusion that the values were deter­

mined principally by the shape of the curve. 

There is some evidence that the values obtained for v and/or 

~ are too high, corresponding to too much dissipation, since if the 

inverse Fourier transform of the best fit transfer function is taken 

to produce a time function, the amplitude of the theoretical signal is 
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systematically lower than the amplitude of the experimental signal, 

and the envelope indicates a higher damping rate than is observed. 

Thus if the curve fitting had been done in the time domain, the re­

sults might have been systematically different although not by a 

large amount. 

It was mentioned previously that if the resistivity were lowered 

below its best fit value, effects due to the third mode would begin to 

appear. However, we wo~d not expect effects from the second mode to 

appear, since the exciting loop radius was chosen to excite none of 

that mode. But the experimental results show an effect in Figure l4 

and in many of the cases studied which appears to be due to the second 

mode. We have taken this to be possible evidence of some degree of 

radial non-uniformity in the plasma, since the cutoff frequency seems 

to support our assumption about the boundary condition. Only an im­

proper assumption about the boundary condition could account for such 

large excitation of that mode in a uniform plasma. It is not known how 

to use this information to make any estimate of the degree of non­

uniformity, since consideration of nearly any non-uniform distribution 

leads to severe computational problems in a cylindrical waveguide. The 

radial non-uniformity (and perhaps also a longitudinal non-uniformity) 

in plasma density may also account partially for the discrepancies noted 

above in the values of 1} and v • 

When the over-a1l results from the curve fitting were examined, 

only one systematic variation with magnetic field was observed. It was 

noticed that the resistivity appeared to be almost proportional to the 

magnetic field strength over the range we examined. The results are 
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shown in Figure 15. The error bars on the points are not to be 

interpreted as indicating our estimate of the probable error at each 

point except in a relative sense. Where the error bars are greater, 

the uncertainty is probably greater. They were deduced from the error 

curvature near the minimum average error and represent approximately 

the range over which ~ must be varied to double the average error, 

holding r and v constant. A possible interpretation of this 

result is offered in the next chapter. 

In general, the degree of ionization determinations showed the 

least probable error. In some cases the fit was so good that a change 

in r of only 2-1/2 to 3~ would double the average error, and the 

average change necessary to produce this result was less than 5~, so 

the uncertainty in y is generally small.* 

It is worth while to note that the percent ionization computed 

by curve fitting was 6~ higher on the average than the value determined 

from the measured cutoff frequency. The standard deviation of the ratio 

of the two determinations was 1~, but for the three cases which had the 

least average error, the best fit value was 4.5i ± 3i high, This indi-

cates the method of determining the degree of ionization from the cutoff 

frequency is probably quite good even though it introduces a small sys-

tematic error. 

The significance of the value of r determined by curve fitting 

or by measuring the cutoff frequency is not completely certain, however, 

*Even the most extreme weighting schemes investigated in computing the 
average error to be minimized never changed the best fit degree of 
ionization by an amount greater than the uncertainty listed above. 
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since the plasma is apparently radially non-uniform. Due to the 

nature of the compressional mode as contrasted with the torsional 

mode, we expect that the value of y represents an average degree 

of ionization over the entire radius. Whereas in the limit of zero 

resistivity, the torsional mode propagation is determined by the 

local density along the field lines on which the disturbance was 

begun, the compressional wave may be thought of as a superposition 

/ 
of waves which travel in all directions at the Alfven speed. At the 

cutoff frequency the propagation is only in the transverse direction 

while the plasma oscillates at a resonance for that direction. When 

the wave travels only perpendicular to the magnetic field, it is nor-

mally called a magneto-acoustic mode, but this is only a special case 

when the propagation vector is perpendicular to the magnetic field. 

The compressional mode is defined for propagation only along the field, 

but the character of the cutoff phenomenon depends upon the superposi-

tion of waves going in all directions. Due to this omnidirectional 

character we expect the value of r determined by curve fitting to 

be an average quantity in some sense, but not necessarily the ordinary 

mean degree of ionization. 

The data on the ion-neutral collision frequency taken from the 

curve fitting technique shows the largest uncertainties as measured 

by error curvature. The very highest curvature measured indicates that 

a 9% change would double the error, while some cases indicate that 

probably a factor of two in the value of v would only double the 

error. Since no systematic trends are apparent, we have taken a 

weighted average of the quantity avn where cr is the ion-neutral 
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cross section and v is the neutral thermal speed and we have 
n 

assumed 

v = yn CJV o n (4.5) 

In the average we have used the error curvature to determine the rela-

tive weights, since some values deviate rather widely from the average 

but have very small corresponding curvature. The result is that 

-l5 3; (crv )= 5·5 · lO m sec n 
and the probable error is unknovm, but the 

standard deviation is about 20'{o of this value. The value quoted above 

is probably of the right order of magnitude, but little is knovm of the 

charge-exchange cross-section in this energy range. 

4. Other Qualitative Checks 

In addition to the quantitative measurements described above, 

we made a few auxiliary checks of some other aspects of the theory. 

After observing some evidence of higher order modes in the mea-

sured transfer functions, we used another smaller exciting loop which 

was designed to excite a maximum amount of the second lowest circu-

larly symmetric mode. Although the effect was not quite as large as 

expected, a definite difference in the transforms·was apparent near 

the expected minimum of attenuation for that mode. In some cases the 

interference between modes made obvious changes in the received wave-

forms, and this tended to distort the pictures so much that even the 

cutoff frequency was difficult to determine. 

The other qualitative check was the measurement of the radial 

dependence of the axial component of the wave magnetic field. The result 
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of' measuring the amplitude of' the signals at dif'f'erent radii 'Wi. th the 

magnetic probe is sbovm in Figure 16. The theoretical shape, 'With 

the amplitude adjusted, is also sbovm f'or reference. The negative 

amplitudes were determined by a phase reversal of' the signals. The 

~arge scatter is due to the non-repeatability of' the plasma, especially 

out toward the tube walL Although the phase was quite regular f'rom 

picture to picture, indicating the degree of' ionization was nearly 

constant, the amplitude and envelope shape occasionally showed varia­

tions as large as/5~, so that the data is only presented to show the 

basic features. The result is taken as support f'or the basic assump­

tion about the boundary condition. 
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CH.APTER V 

CONCUJSIONS 

Inasmuch as the plasma is known to be non-uniform, with the degree 

of non-uniformity undetermined, it is difficult to draw specific con­

clusions about the adequacy of a theory which is constructed to describe 

a uniform plasma. In general, however, it is thought that the experi­

mental results indicate that the theory is adequate except perhaps in 

one area. 

It is felt that the general agreement between theoretical and 

experimental phase curves, such as is evidenced by Figure 13, indicate 

that the theory adequately describes the dispersion characteristics of 

the compressional waves in a waveguide within the experimental error, 

From this type of data the average degree of ionization can probably 

be determined within 5i· 
The more easily determined quantity, the cutoff frequency, gives 

an accurate enough measure of the Alfven speed to show its dependence 

upon magnetic field and density. This method generally indicates a 

degree of ionization which is low by about 6i with respect to the best 

fit values with a scatter of± l2% . 
From the measured value of the cutoff frequency and the character­

istic dispersion near it, along. with the apparent radial dependence of 

the axial component of the wave magnetic field, we have concluded that 

the assumed boundary condition is consistent with the observations. How­

ever, these results may be relatively inconclusive asto the exact bound­

ary condition, since the assumption of an insulating sheath surrounding 

the plasma such that no radial currents are allowed to flow to 

the wall, may lead to basically the same radial field dependence 



-85-

and nearly the same value of the transverse wave number. 

Since the curve fitting technique was so insensitive in determining 

the value of the ion-neutral collision frequency with the observed data, 

it is difficult to make any real estimate of the accuracy of the deter­

minations. There may be systematic trends which exist in the present 

data but were overlooked due to the scatter in the data. Since it is 

difficult to measure the charge-exchange cross-section at low energies 

by alternate methods, this method might be useful in experimentally 

determining this quantity if the errors could be reduced-

The most significant tendency observed which may indicate an 

inadequacy in the theory was presented in Chapter IV and shown graphi­

cally in Figure 15. This data shows a tendency for the resistivity to 

increase with magnetic field over the range studied and, although the 

uncertainties are admittedly large, the trend is believed to be system­

atic. Several possible explanations may be offered for this phenomenon. 

First, the effect may be due to some unknown systematic error in 

the experimental technique or method of data analysis. We have inves­

tigated the possib~lity of an incorrect amplitude calibration of the 

magnetic probe as described in the previous chapter, with the conclusion 

that it could not account for this result since the best fit values of 

~ are determined principally by the slope of the amplitude curves and 

not by the magnitude of the amplitude. It is possible that some non­

uniform density effect could be responsible for the trend, but this is 

doubted, as we have been unable to understand the effect even qualita­

tively on this basis. 

A second possibility is that the effect may indicate some system­

atic decrease of temperature with magnetic field, since the classical 
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resistivity depends approximately inversely on the temperature to the 

three-halves power. This possibility is also doubted since in the 

formation of the plasma the temperature both just behind the ionizing 

front and in the rarefaction wave farther behind, varies as the 

square of the ionizing front velocity and this velocity increases 

monotonically with increasing magnetic field (16). It is difficult to 

understand how that trend could be reversed only 15 ~sec after the 

ionizing wave is turned off. In fact, it is more likely that the tem­

perature varies only slightly if at all with magnetic field, since the 

percent ionization shows no systematic variation, and some degree of 

quasi-equilibrium may well have been established. 

A third possibility for understanding the trend shown in Figure 15 

is that there may be some inadequcy in the theory which assumes that 

the resistivity is isotropic. We have always assumed ~ to be a scalar 

quantity, which implies the resistivity is independent of direction, 

while the a tensor, which we shall call the effective conductivity 

tensor, is not the reciprocal of ~ but is the description of the 

conductivity in·the laboratory frame, and is not a scalar quantity. 

Hence we have assumed that the anisotropy of the plasma properties in 

the laboratory frame are not due to any anisotropy in the momentum 

transfer due to collisions. 

This view is not strictly correct, however, if the electrons make 

several Larmor rotations about the magnetic field lines between colli­

sions with ions. In such a case, the resistivity does have tensor 

properties, and the component perpendicular to the magnetic field may 

be larger than the parallel component by as much as a factor of 1.93 
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according to a computation of plasma transport coefficients quoted 

by Bernstein and Trehan (l9)· The cross-over region between the iso-

tropic and anisotropic cases occurs when the ratio of the electron 

cyclotron frequency to the electron-ion collision frequency is approxi-

mately l.5 • In the region near this value for the ratio, the 

transverse resistivity then increases with increasing magnetic field 

to a value about double its parallel value. From the values of Tl 

indicated in Figure l5, the value of this critical ratio appears to 

change from a value of about l-5 to 3, so that the trend indicated 

may be evidence of this cross-over, since the compressional mode depends 

almost entirely on the transverse resistivity. 

If this tentative hypothesis is correct, the trend of Figure l5 

should not continue beyond the range indicated, so that lowering the 

ratio of ill to v . should not lower the value of ~ observed very 
c eJ. 

much, and raising the ratio should not raise the upper value very much. 

Unfortunately, it is difficult to change ill much beyond the range indi­c 

cated with the experimental apparatus at hand. However, the electron-

ion collision frequency v . eJ. 
is proportional to the electron density, 

so it is possible that the range of the ratio illc/vei can be extended 

and we can discoverjwhether the trend continues or levels off at a 

finite limit. 

There is data at hand which was taken over a wide range of pres-

sures, but its analysis was not completed in time for this report. 

This study is being continued and this trend will be examined further 

over a wider range of the ratio ill /v i • c e 
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Another avenue of investigation which may be pursued is the 

study of the torsional mode in this same plasma. The damping of 

this mode depends principally upon the parallel resistivity, so that 

if the trend of Figure 15 were really due to a variation in tempera­

ture ~ should show the same behavior for the torsional mode. If it 

is due to the crossover from an isotropic plasma to an anisotropic 

plasma, however, the value of ~ measured from the torsional mode 

should show no such trend in the same region. This could, perhaps, 

be a critical test to determine the adequacy of the present theory. 
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APPENDIX A 

Errors in Fourier Transforms Computed by Digital Methods 

(Adapted from a research note by R. H. Hertel) 

In the Fourier analysis of oscillograph records and similar data 

by digital methods, significant errors may be introduced by the compu-

tation process. Four sources of error will be discussed here: 

A. Truncation 

B. Sampling 

c. Additive Noise 

D. Timing Jitter 

It is assumed that the function f(t) to be analyzed is zero for t < 0 

and has a Fourier transform F(m) given by 

i[f(t}] = F(ro) =] .-ialtf{t) dt. (1) 

-ro 

The computed transform F*(m) is to be obtained by truncating f(t) at 

t = T , sampling at N + 1 uniformly spaced times, and computing the 

transform of the resultant function. It is assumed that errors may 

occur both in choosing the sample times and in converting the value of 

the function to digital for.m. To simplify the discussion the sources 

of error listed above will be treated separately. 

A. Truncation 

Including only the effects of truncation permits us to -write for 

the computed transform 

F*(ro) = J e -irot f(t) dt 

0 

(2) 
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No harm will be done if this is rewritten 

F*(ro) = f/[f(t) g(t)] = 7 e-irot f(t) g(t) dt ( 3) 

-ex:> 

where 

{0
1 ,,·· g(t) = 

lti<T 
( 4) 

otherwise 

Thus the effect of truncation is identical to multiplication by g(t) • 

No change would be introduced by making g(t) zero for negative times 

since f(t) is zero there anyway; the choice made here is in the 

interest of simplicity in the results. Now multiplication in the time 

domain corresponds to convolution in the frequency domain: 

00 

ef[f(t) g(t)] J F(x) G((l) - x) dx 
(5) = 

2n 
-oo 

where 

G((l)) ~[g(t)] , (6) 

In this case 

T 

G((l)) = J e-i(l)t dt ( 7) 

-T 

G((l)) 2T 
sin (l)T 

(8) = (l)T 

Thus the computed transform can be obtained by·convolving the true 

transform with the function G((l)) ; this process has the following 
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qualitative effects: 

1. F(m) is reproduced in frequency regions ~here it is 

substantially constant over a frequency range ~de com­

pared to 1/T cps (the 11 ~dth" of G(m) ) ·. 

2. Any variations in F(m) ~hich occur in a frequency 

range narro~ compared to 1/T cps ~11 be smoothed. 

3· Ripples similar to those in G(m) are introduced at 

discontinuities in F(m) . 

These qualitative observations must be qualified by noting that if f(t) 

happened to be zero for t > T no error at all ~auld result from the 

truncation. The process of convolving its transform 'With G(m) ~auld 

leave F(m) unchanged. 

The effect of truncation can be more appropriately treated by con-

sideration of the portion cut off, if it is know.n. In the case of the 

impulse response of a plasma-filled ~aveguide, the long-time asymptotic 

form may be expressed simply for the compressional mode as an exponen-

tially damped sine ~ve at the cutoff frequency. Suppose 

f*(t) = f(t) - e(t) (9) 

The Fourier transform is linear; therefore 

F*(m) = F(m) - E(m) (10) 

~here E(m) is the transform of e(t) • No~ let e(t) have the fol-

lo'Wing form: 

e(t) = A e-at sin(m t + Q) U(t - T) 
0 

(11) 
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where U(t) is the unit step f'unction. This can be rewritten 

e(t) = e (t - T) U(t - T) 
0 

where 

e
0

(t) -at = A
1

e ~ m
0

t + A2e 
-2t 

sin m t 
0 

Al 
-atr ( ) = A e sin m

0
T + 9 

and 

A2 
-aT ( = A e cos m T + 9) 

0 

The shif'ting theorem of' Laplace transf'orm theory now yields 

-sT 
e (~s + A2 m

0
) 

2 2 
(s +a) + m 

0 

Replacing s by ~m to obtain the Fourier transf'orm 

E(m) 

The error transf'orm has the magnitude 

IE(m) I = 2 2 2 2 2 
(m + a - m ) + ( 2am) 

0 

(l2) 

(l3) 

(l4) 

(l5) 

(l6) 

(l7) 

(l8) 

If' the damping is slight, a << m
0 1 the maximum magnitude occurs nearly 

at m = m
0 

and is given by 



IE(ro) lmax 
A e -o:T 

~ 
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at ro zro 
0 

(19) 

-o:T It is to be noted that A e is the value of the envelope of e(t) 

at the truncation point. The distribution of E(ro) with frequency 

depends on the relative sizes of A1 and A2 and is sketched in 

Figure A-1 for two extremes. The result given in 19 can be expressed 

in another way in terms of T = 1/0: , the time constant of the exponen-

tial envelope of e(t) , as 

T (envelope magnitude ) 
IE(ro) lmax = 2 ·(at truncation point) 

B. Sampling 

Let us now take for the computed transform 

F*(ro) = :f[f(t) h(t)] 

where 

h(t) 
2T N 

2N + 1 2::: e<t- k.6.t) 
k=-N 

(20) 

(21) 

(22) 

The factor 2T/(2N+l) is included to make the areas of h(t) and 

g(t) of the pregious section equal. Again F*(ro) can be expressed 

as a convolution 

where 

<X> 

F*(ro) = ;11: J F(x) H(ro- x)dx 

-<X> 

(23) 
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H(ro) = ~ [h(t)] 

00 
N 

2T J -imt 
= 2N+l 

e L o(t- kllt) 
k=-N -co 

2T N -imkllt 
= 2N+l L e ~ 

k=-N 

The sum in equation 24 can be evaluated in closed form ( 20) 

H(ro) = 
2T 

sin(2N+l rollt) 
2 

2N+l rollt 
sin--

2 

(24) 

(25) 

This function is sketched in Figure A-2 and is seen to have large humps 

of height 2T and width 4~ 
( 2N+l) L':. t 

spaced at intervals of 2~ 
L':.t = 2~ • 

The frequency roN = ~1 L':. t is called the Nyquist frequency. The large 

humps are separated by smaller ripples decreasing in amplitude to 

2T/(2N+l) midway between the main humps. In the vicinity of the 

origin, rollt << 1 , replacing the sine by its argument and approximating 

2N+l - 2- by N yields 

H(ro) = 2T sin roT 
roT ' 

rollt << 1 , N >> 1 (26) 

This result is the same as G(ro) , equation 8 . The main effect of 

digitization is thus the presence of additional humps ~ H(ro) at even 

multiples of the Nyquist frequency. This becomes clearer if T is 

allowed to increase indefinitely with the sample time L':. t fixed. This 

process causes the height of the main humps to increase and the width 
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to decrease; the area remains fixed. The subsidiary ripples remain 

more or less fixed in height and more numerous. In the limit 

co 
H(ro) - 21r [ 8(ro- 2k roN) 

k=-CO 
(27) 

as N,T -co with .D.t fixed • Convolution of this limiting function 

with F(ro) has the simple result 

co 
F*(ro) - [ F(ro- 2k roN) (28) 

k=-co 

It is apparent then, that the value of F*(ro) for a given frequency 

will be significantly different from F(ro) if F has an appreciable 

value at frequencies whose magnitudes are spaced ro radians/sec above 

and below every even multiple of roN • This effect is known as 

aliasing. In practice, b.t should be chosen small enough so that roN 

is considerably greater than the highest frequencies at which f(t) 

has any significant energy. 

c. Additive Noise 

An error in reading the value of f(t) at a sample point may be 

taken into account by adding a noise signal n(t) to the given func-

tion. Then the effect in the frequency domain is to add to F*(ro) a 

noise spectrum 

N*(ro) = (29) 
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We shall be content with finding the mean or expected value of' N*(ru) 

and its standard deviation. It will be assumed that the error is 

independent f'rom sample to sample (white noise) and stationary 

(statistics independent of' time). If' p(n) is the probability dis-

tribution function of' n , the assumption of' white noise permits us 

to write 

( 30) 

f'or the joint probability distribution of ni = n(ti) and nj= n(tj) • 

The mean value of n(t) is assumed to be zero: 

<D 

E[n] = J n p(n) dn = 0 

-ex> 

The mean value of the noise spectrum can now be computed. 

CX> 

E[N*(ru)] = J N*(ru) p(n)dn 

-oo 

N CX> 

T -iku.>.6t f = N+l E e n(kb.t) p(n)dn 
k=O 

-ex> 

= 0 

The expected value of the square of the magnitude of N* is 

( 31) 

( 32) 

The doUble sum in 33 can be separated into one sum involving only the 
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terms for which k f j and another involving the rest of the terms. 

The first yields 

-i(k-j)mt:.t ] 
e ~nj 

Interchanging the sums and integrals and noting that the exponential is 

not involved in the inte~ation and may be taken outside, the remaining 

integral is by equations 30 and 31 

ffp(nk,nj)~dnj = JJ p(~) p(nj) ~dnj 

= J p(~)dnk J p(nj)dnj 

= 0 

Thus only the terms with j = k remain and 

E[IN*((J)JI
2

J = (N~1 ) 2 E[t n
2

(J<.t>t)] 

crj nT
2 

= N+l 

2 2 where crN = E[n (t)] is the variance of the noise signal. 

( 35) 

(36) 
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D. Timing Jitter 

Suppose that there is an error €k in the time tk at which 

a sample is taken; then for small €k 

( 37) 

If this value is used in place of f(tk) it is equivalent to adding 

a noise signal 

to f(t) or a noise spectrum 

M(m) = 
N 

T L €kf'(kl!.t) e-ikrol!.t 
N+l k=O 

(38) 

(39) 

We next find some properties of M(m) assuming that the errors at 

different times are 1.Ulcorrelated. Let 

(4o) 

j f k 

( 4l) 

j = k 

Following the procedure used in the last section, it can be show.n 

that 

E[M(m)] = 0 ( 42) 

and 

I 1
2 T 2 

E[ M(m) ] = (N+l) 
2 N 2 

a€ L [f' (kl!.t)] 
k=O 

(43) 
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For large N the sum in 43 is well approximated by an integral 

N 2 E [f'(k t)] = 
k=O 

= 

Equation 43 then yields 

T 

tt J [f'(t)]
2 

dt 

0 

T [f' ]2 
6 t avg 

(44) 

(45) 
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APPENDIX B 

METHOD FOR COMPUTING WEIGHTS USED IN CURVE FITriNG 

We have used the estimates of the additive noise and jitter 

reading errors to estimate the errors in the propagation and attenua-

tion constants in the following way. 

If we represent the probable error amplitude by A and the 
e 

measured signal transform amplitude at a particular frequency by A 
s 

or As(m) , then in general the amplitude will be given by 

(l) 

The attenuation constant a corresponding to the amplitude A is 

given by 

a =-~log c:) (2) 
0 

where A
0 

is related to the driving pulse amplitude. The correspond-

ing expressions for a and a are 
s e 

l A 
a = - log (.-£) 

s z A s 

l A 
a = - log (.-£) 

e z A e 

Using these expressions we may solve for a in terms of as 

with the result that 

(3a) 

( 3b) 

and a 
e 

( 4) 

The uncertainty o in a is then taken to be the difference between 
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(5) 

If the measured amplitude were smaller than the error amplitude, as 

would be greater than ae so that the expression inside the brackets 

could become negative. In order to avoid the possibility of taking 

the logarithm of a negative number, we have arbitrarily chosen to 

define the uncertainty in a by the positive sign, so we use 0 
+ 

always. 

We have also assumed a probable error of approximately 5~ in 

the determination of A
0 

so that we have a o where 
0 

0 = -05 
0 z 

which is independent of frequency. 

Using these measures of our estimate of the probable errors, 

we have arbitrarily chosen the weight function for each frequency 

to be inversely proportional to the square root of the sum 

squares of 0 (c.o) and 0 so that 
+ 0 

w 
w (c.o) 0 

= 
a 

Jo!(c.o) + 02 
0 

where w is chosen such that 
0 

The weighting function for the phase information is even more 

( 6) 

( 7) 

(8) 
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arbitrary, for it is not known how to make good estimates of the 

errors that should be expected in this data. However, several 

general considerations have been made quantitative in an arbitrary 

way, so that the same scheme may be used with each set of data. We 

first presume that the phase error will be larger where the amplitude 

is smaller, and we choose to assume that the error in the propagation 

constant ~ where the amplit~e is largest is equal to n/4z . The 

error is then assumed to increase proportionally as the attenuation 

constant increases, and the weights are assumed inversely proportional 

to this error, hence 

W (m) 
p 

oC l 

~ + a (m) - a 
~z s minimum 

(9) 

As ~ increases, however, the probable error increases only 

as the error assumed above, so that the percentage error may get 

smaller if ~ increases faster than the denominator in equation 9· 

Hence we choose to weight the phase differences proportional to ~ 

so that 

= (lO) 
~ + a (m) - a 
~z s minimum 

where is chosen such that 

(ll) 

It is apparent from equation ll that the phase errors have been given 
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half the weight the amplitude errors received and this is due to the 

fact that we wish to determine v and ~ primarily from the ampli­

tude data, and suppressing the phase data has been found not to 

affect the determination of r which is determined primarily from 

the phase information. 

These expressions serve to define uniquely the weights used in 

the weighted average of the errors, but it can only be claimed that 

this scheme exhibits some of the desired characteristics. Other 

schemes have been tried, ranging from equal weights for the differ­

ences at all frequencies to more extreme weights near maximum ampli­

tude or maximum phase with the result that some values of the 

parameters might be changed by several percent, but never greatly, 

so we do not believe any significant systematic errors are introduced 

by the scheme described above. This method does have some merit in 

that it does some of the things one would expect an appropriate 

scheme to do • 
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