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ABSTRACT 

Neuroeconomics has produced a number of insights into economics, psychology, and 

neuroscience in its relatively short existence. Here, I show how neuroeconomics can inform 

these fields through three studies in social decision making and decision making under risk. 

Specifically, I focus on computational biases inherent in our daily decisions. 

 

First, using functional magnetic resonance imaging (fMRI), I examine how we make 

decisions for others compared to ourselves. I find that overlapping areas of the 

ventromedial prefrontal cortex (vmPFC) are involved in both types of decisions, though 

decisions for others are modulated by areas involved in social cognition. Specifically, 

activity in the inferior parietal lobule (IPL) encodes a variable measuring the distance 

between others’ and our own preferences, suggesting that we may anchor our choices for 

others on our own preferences and attempt to modulate these preferences with what we 

know about others. 

 

Second, I investigate how visual looking patterns can critically influence the computation 

and comparison of values. In a first study using eye-tracking, I investigate the relationship 

between loss aversion and attention and find a correlation between how loss averse subjects 

are and how long they look at losses vs. gains when evaluating mixed gambles. 

Importantly, I show that this effect is not due to subjects simply looking longer at items of 

higher value. In a second study using Mouselab, I show how attention influences multi-
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attribute choice. I find that the display of different attributes has a significant effect on 

search among those attributes and, ultimately, choice. 
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SUMMARY 

In recent years, the field of neuroeconomics has shed insight on a number of traditional 

economics questions. While neuroscience has benefited from the collaboration with 

economics, there is still disagreement about the degree to which neuroscience can inform 

economics. In this thesis, I conduct three experiments to show how neuroeconomics can 

help address questions that remain unanswered with traditional economic methods. 

 

In Chapter 1 I use fMRI to show how we make decisions for others compared to 

ourselves.  Every day we make decisions on behalf of others, whether it is for a friend, a 

patient, a client, a coworker or a constituent. I investigate the neurobiological and 

computational basis of empathic choice using a human fMRI task in which subjects 

purchase items for themselves with their own money, or for others with the other’s money. 

I find that empathic choices on behalf of others engage the same regions of the brain, the 

ventromedial prefrontal cortex (vmPFC), that are known to compute stimulus values when 

making choices for ourselves. During empathic choice, these value signals are modulated 

by activity in another brain region, the inferior parietal lobule (IPL), which has previously 

been found to play a role in social processes. These findings extend our understanding of 

social cognition and have broader implications for psychology and economics. The results 

suggest that the ability to make sound empathic decisions might depend on the ability to 

compute value signals in vmPFC that give sufficient weight to the differences between 



 

 

11 
others and ourselves. It follows that deficits in empathy and general social cognition 

might impair the ability to make sound empathic decisions, which could interfere with 

everyday social interaction. 

 

In Chapter 2 I use eye-tracking to investigate the role of attention in loss aversion. While 

there is much evidence showing that individuals exhibit loss aversion in many domains, 

the mechanisms behind loss aversion remain unknown. Based on recent research showing 

that differences in attention affect the computation and comparison of values during 

simple choice, I hypothesize that differences in loss aversion across and within 

individuals could be modulated by differential attention to losses. I find that more loss 

averse subjects pay more relative attention to losses, and my results suggest a model in 

which attention must be included to make any inferences on choice. My results have 

important implications for the role of attentional processes in choice: systematic biases in 

fixations could lead to different choices. Moreover, as biases such as loss aversion can 

lead to deficits in decision-making, our findings raise the interesting possibility that we 

may be able to modulate our attention to make better choices. 

 

In Chapter 3 I further examine the role of attention, and the computational biases it 

introduces, in choice. Using a two-item, two-attribute choice task, I examine how 

consumers might quickly parse and select among a variety of options. I find striking 
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differences in search patterns depending on how attributes of each choice are visually 

arranged. These search patterns subsequently impact choice through the differential 

weighting and integration of the attributes. Higher-placed attributes for a given item will 

receive more attention and thus greater weighting in an overall value for the item. My 

results have important implications for a number of applications, including store display 

arrangement, product attribute emphasis and the organization of features on a website.  

 

These three experiments show how neuroeconomics can help address questions that remain 

unanswered with traditional economics methods. These findings extend our understanding 

of social cognition and further our knowledge of how we assess potential outcomes in risky 

and complex choice situations. These results shed light on the role that computational 

biases play in decision-making and how we might be able to modulate such biases to 

improve our choices.  
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CHAPTER 1 

Empathic Choice Involves vmPFC Value Signals that are Modulated 

by Social Processing Implemented in IPL 

 

Abstract. Empathic decision-making involves making choices on behalf of others in 

order to maximize their well-being. Examples include the choices that parents make for 

their children, as well as the decisions of a politician trying to make good choices on behalf 

of his constituency. We investigated the neurobiological and computational basis of 

empathic choice using a human fMRI task in which subjects purchased DVDs for 

themselves with their own money, or DVDs for others with the other’s money. We found 

that empathic choices engage the same regions of ventromedial prefrontal cortex that are 

known to compute stimulus values, and that these value signals were modulated by activity 

from a region of inferior parietal lobule (IPL) known to play a critical role in social 

processes such as empathy. We also found that the stimulus value signals used to make 

empathic choices were computed using a mixture of self-simulation and other-simulation 

processes, and that activity in IPL encoded a variable measuring the distance between the 

other’s and own preferences, which provides a hint for how the mixture of self- and other-

simulation might be implemented. 

 

 



 

 

14 
INTRODUCTION 

 

Humans make different types of decisions. Self-oriented decisions mostly affect ourselves 

and are guided by the goal of maximizing our own well-being. Examples include what to 

have for lunch or which clothing to purchase. Pro-social decisions involve tradeoffs 

between our own well-being and the well-being of others. Examples include a donation to 

charity and purchasing a gift for a friend. Empathic decisions entail decisions made on 

behalf of other people, with the goal of choosing what is best for them, and without having 

to sacrifice our own resources. Examples include the myriad of choices that parents make 

for their children, the decisions of a politician trying to make good choices on behalf of his 

or her constituents, and economic agents (e.g., in real estate or entertainment) who strive to 

commit their clients’ time and money to activities the clients prefer. Although a substantial 

amount of progress has been made in understanding self-oriented (Rangel, Camerer et al. 

2008; Rushworth and Behrens 2008; Kable and Glimcher 2009; Rangel and Hare 2010) 

and pro-social decisions (Fehr and Camerer 2007), much less is known about the 

computational and neurobiological basis of empathic choice. 

 

From a psychological and neurobiological perspective, empathic choice is particularly 

interesting because it is likely to involve the interaction of two different types of processes: 

those involved in basic decision-making, such as value computation and comparison, and 

those involved in social processing, such as empathy and mentalizing. 
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With respect to basic decision-making, a large body of work has begun to characterize in 

detail the computations involved in self-oriented decisions. For example, human 

neuroimaging studies have shown that activity in areas such as ventromedial prefrontal 

cortex (vmPFC) correlates with the value of stimuli at the time of choice (Kable and 

Glimcher 2007; Plassmann, O'Doherty et al. 2007; Tom, Fox et al. 2007; Valentin, 

Dickinson et al. 2007; Hare, O'Doherty et al. 2008; Plassmann, O'Doherty et al. 2008; 

Rolls, McCabe et al. 2008; Boorman, Behrens et al. 2009; FitzGerald, Seymour et al. 2009; 

Hare, Camerer et al. 2009; Hare, Camerer et al. 2009; Litt, Plassmann et al. 2009). Similar 

results have been found in non-human primate electrophysiology studies (Wallis and Miller 

2003; Padoa-Schioppa and Assad 2006; Padoa-Schioppa and Assad 2008; Kennerley, 

Dahmubed et al. 2009; Kennerley and Wallis 2009; Padoa-Schioppa 2009).  Activity in 

vmPFC has also been associated with the computation of stimulus values during pro-social 

choices (Moll, Krueger et al. 2006; Harbaugh, Mayr et al. 2007; Tankersley, Stowe et al. 

2007; Hsu, Anen et al. 2008; Hare, Camerer et al. 2010; Tricomi, Rangel et al. 2010). 

Importantly, however, none of these previous studies include instances of empathic choice. 

 

With respect to social processing, a separate body of work has begun to characterize the 

computations involved in social cognition. Empathy is normally defined as the ability to 

appreciate the emotions and feelings of others as separate from those of the self (Decety 

2010; Shamay-Tsoory 2011). A significant number of studies, using a wide variety of 
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paradigms, have shown that areas such as the inferior frontal gyrus (IFG), inferior 

parietal lobule (IPL), and dorsomedial prefrontal cortex (dmPFC) play a critical role in 

empathy computations (Mitchell 2009; Zaki, Weber et al. 2009; Decety 2010; Shamay-

Tsoory 2011). Importantly, the previous literature on empathy has also not covered the case 

of empathic choice, since the tasks used involved the observation and evaluation of other’s 

emotional states, but not decision-making on their behalf. A related literature has studied 

the neurobiological basis of mentalizing (often called theory of mind, ToM), and has found 

that areas such as medial prefrontal cortex (mPFC) and the temporo-parietal junction (TPJ) 

play a critical role in this process (Saxe and Kanswisher 2003; Mitchell, Banaji et al. 2005; 

Saxe and Wexler 2005; Mitchell, Macrae et al. 2006; Saxe 2006; Mitchell 2009). 

 

Here we present the results of a simple human functional magnetic resonance imaging 

study (fMRI) in which subjects made otherwise identical decisions (purchasing DVDs) in 

either a self-oriented context, by buying them for themselves with their own funds, or in an 

empathic context, by buying them for an unknown third party, with this party’s funds. This 

allowed us to investigate two basic questions regarding empathic decision-making.  

 

First, is the same basic neural circuitry involved in making self-oriented and empathic 

decisions? And, if not, what are the critical differences? Based on the decision and social 

neuroscience literatures discussed above, we hypothesized that empathic decisions engage 
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the basic elements of the decision making system, such as the computation of stimulus 

value signals in vmPFC, but that their computation during empathic choice requires the 

activation of regions, such as IPL and TPJ, that are known to play a critical role in empathy 

and mentalizing. 

 

Second, what are the computational properties of the stimulus values used to make 

empathic choices? In particular, we were interested in disentangling the extent to which 

subjects computed the empathic stimulus value signals using self-simulation, other-

simulation, or other-learning. Under self-simulation, subjects infer the other’s DVD values 

by computing their own value for them. Under other-simulation, subjects use some model 

of the other individual to infer his value for the DVDs but make no use of their own 

preferences for them. Under other-learning, subjects learn to compute the other’s DVD 

values by repeatedly observing their behavior. Conceptually there is an important 

difference between the last two approaches: other-simulation requires forming a social 

model of the other person (e.g., gender, nationality, age, etc.), whereas under other-

learning, the other’s preferences are learned simply by repeated observation and 

extrapolation. Thus, the other-simulation approach makes heavy use of social models and 

information, whereas other-learning involves much more basic forms of learning. 
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METHODS 

 

Subjects. 32 normal-weight, American or Canadian, male subjects participated in the 

experiment (age: mean = 22.8, SD = 3.9). All subjects were right-handed, healthy, had 

normal or corrected-to-normal vision, had no history of neurological or metabolic illnesses, 

and were not taking any medication that interferes with the performance of fMRI. All 

subjects were informed about the experiment and gave written consent before participating. 

 

Stimuli. Subjects viewed 100 high-resolution color images of DVD covers of popular films 

from the last 15 years. They included comedies (e.g., “Austin Powers”), action films (e.g., 

“Swordfish”), dramas (e.g., “Magnolia”) and thrillers (e.g., “Panic Room”).  

 

Task. There were two types of subjects in the experiment: one passive subject and thirty-

two active subjects. The role of the passive subject was to be the recipient of the active 

subjects’ decisions. 

 

Active subjects made decisions inside the scanner in two types of trials performed on 

different days (average lag = 90 days). On the first visit they participated in an empathic 
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choice task in which they made purchase decisions on behalf of the passive subject (Fig. 

1A). They were given a budget of $10 that belonged to the passive subject (any unspent 

funds were returned to him) and were given a summary sheet containing a photograph and 

some biographic information about the passive subject (see Appendix for detailed 

instructions). They were then shown images of 100 different DVDs and had to make a 

decision regarding how much to bid for each one of them on behalf of the subject. Bids 

were made using a six-point scale of $0, 2, 4, 6, 8 and 10. After every bid subjects received 

feedback equal to the amount by which they had overbid or underbid relative to the passive 

subject’s values (feedback = active subject’s bid – passive subject’s bid). Active subjects 

did not receive any form of compensation for making accurate bids. Instead, the 

instructions simply told them to try to maximize the passive subject’s well-being. The 

mapping of bids to response buttons was counterbalanced across subjects. 

  

At the conclusion of the experiment, one of the 100 trials was randomly selected and 

implemented using a Becker-DeGroot-Marschak (BDM) auction. The rules of the auction 

are as follows. Let b denote the bid made by the subject for a particular item. After the bid 

is made, a random number n is drawn from a known distribution (in our case, each integer 

dollar value from $0 to $10 was chosen with equal probability). If b >= n, the subject 

received the DVD and paid a price equal to n. Otherwise, if b < n, the subject did not get 

the DVD and did not pay anything. The optimal strategy in this type of auction is for the 

buyer to bid exactly how much he is willing to pay for the item being sold (Becker, 
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DeGroot et al. 1964).  The active subjects knew that the outcome of the auction would be 

implemented, and that the person for whom they were bidding would receive any DVD 

purchased plus any remaining cash from the $10. Note that since only one trial was 

selected to count, the subjects did not have to worry about spreading the $10 dollars across 

the different films, and could treat every decision as if it were the only one. No deception 

was used in the experiment. The passive subject actually received DVDs when the 

subject’s decision led to a purchase of the DVD.  

 

During the second day of scanning, active subjects participated in the self-oriented version 

of the task (Fig. 1B). In this case they performed a similar task, except that now they made 

purchase decisions for themselves out of a $10 cash endowment that belonged to them. A 

randomly selected trial was again chosen, and the associated decision implemented, at the 

conclusion of the two sessions. At the end of the second session, subjects were asked to fill 

out a questionnaire detailing which DVDs they owned or had seen. In order to control for 

any potential order effects on bidding, the DVDs were shown in the same order as in the 

first experimental visit.  

 

The passive subject played only the bid-for-self task outside the scanner. His responses 

were used to compute the feedback signals for the active subjects.  
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Fig. 1.  Behavioral task for (A) empathic choice trials and (B) self-oriented choice trials. 
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About task order. Given the difficulty in guessing another’s film preferences, we were 

concerned that subjects would exhibit an artificial tendency to use their own preferences to 

make the purchase decisions for the other. In order to minimize this concern, we decided 

not to counterbalance the order of the two tasks, and to introduce a long multi-month lag 

between them. The results described below suggest that we were successful in avoiding a 

full self-valuation bias during the empathic decisions. However, this raises the natural 

concern of order confounds. To address this concern we carried out a companion 

behavioral experiment (see SOMs for details) in which we directly compared the effect of 

order on bidding behavior. For each individual we carried out a linear regression of bid-for-

other on bid-for-self and other-bid, separately for self-oriented and empathic choice trials. 

We found no significant differences across the two order conditions (min p=0.29, t-test), 

which rules out the order confound. 

 

fMRI data acquisition and preprocessing. The fMRI data were acquired in a 3.0 Tesla 

Trio MRI Scanner (Siemens). We acquired gradient echo T2-weighted echoplanar (EPI) 

images with a BOLD contrast in an oblique orientation of 30 degrees to the anterior 

commissure-posterior commissure line. We also used an eight-channel phased array head 

coil. Each volume of images had 48 axial slices of 3 mm thickness and 3 mm in-plane 

resolution with a TR of 3 s. The imaging data were acquired in four separate sessions; the 

first two, in which subjects bid on behalf of the passive subject, lasted approximately 13 

minutes each. The latter two, in which subjects bid for themselves, lasted approximately 9 
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minutes each. The first two sessions were performed on a separate date than the latter 

two sessions. Whole-brain high-resolution T1-weighted structural scans (1 x 1 x 1 mm) 

were acquired for each subject and coregistered to their mean functional EPI images. The 

structural scans were averaged across subjects to permit anatomical localization of the 

functional activations at the group level. 

 

Image analysis was performed using Statistical Parametric Mapping software (SPM5; 

Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK). We 

preprocessed the data in the following way. First, slice-timing correction centered at the 

middle T2 scan was applied, followed by realignment to the first volume. We then applied 

spatial normalization to the standard Montreal Neurological Institute (MNI) EPI template 

with a resampled voxel size of 3 mm2 and performed spatial smoothing using a Gaussian 

kernel with full width at half maximum of 8 mm. Intensity normalization and high-pass 

temporal filtering were also applied to the data.  

 

fMRI data analysis. We estimated several models of the BOLD responses to test the 

various hypotheses. 
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GLM 1. This general linear model was designed to identify the similarities and 

differences between empathic and self-oriented choices. It was estimated in three different 

steps.  

 

First, we estimated a GLM with AR(1) for each individual subject. The model contained 

the following regressors: R1) indicator function (equal to 1 when the event occurs and 0 

otherwise) for bid-for-other screen; R2) indicator function for bid-for-other screen 

modulated by bid-for-other; R3) indicator function for bid-for-other screen modulated by 

the absolute value of the difference between bid-for-self and bid-for-other; R4) indicator 

function for feedback screen; R5) indicator function for feedback screen modulated by the 

negative absolute value of the feedback error; R6) indicator function for bid-for-self screen; 

R7) indicator function for bid-for-self screen modulated by bid-for-self. All regressors were 

modeled as box-car functions with a duration equal to the subject’s reaction time for that 

trial, except for regressors 4 and 5, which had a duration of 1 second. These regressors 

were convolved with a canonical hemodynamic response. The model also included motion 

parameters and session constants as regressors of no interest. Trials with missed responses 

were not modeled. Second, we computed contrast statistics for all of the tests of interest for 

each individual subject. Third, we estimated second-level test statistics by computing one-

sample t-tests on the single subject contrast coefficients for each contrast of interest.  
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For inference purposes, all results are reported at p < 0.05 whole brain corrected at the 

cluster level (using the corrected cluster size threshold algorithm by Thomas Nichols; 

http://www.sph.umich.edu/~nichols/JohnsGems5.html). The only exception is activity in 

the vmPFC for which, due to the strong prior hypotheses, we report activity at p<0.05 small 

volume cluster corrected (using an anatomical mask of the vmPFC area that included both 

sides of the medial orbitofrontal cortex and the rectus gyrus).  

 

GLM 2. This model was very similar to GLM 1, except that activity at decision during 

empathic choices was modulated by two variables: bid-for-self and bid-for-other 

orthogonalized with respect to bid-for-self. All omitted details are as in GLM 1. 

 

GLM 3. This model was very similar to GLM 1, except that activity at decision during 

empathic choices was modulated by two variables: bid-for-other and bid-for-self 

orthogonalized with respect to bid-for-other. All omitted details are as in GLM 1. 

 

GLM 4. This model was very similar to GLM 1, except that activity at decision during 

empathic choices was modulated by two variables: bid-for-self and a difference signal 

(given by bid-for-other MINUS bid-for-self). All omitted details are as in GLM 1. 
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Psychophysiological interactions model (PPI). The goal of this analysis was to identify 

areas exhibiting differential connectivity with vmPFC during empathic and self-oriented 

choices. The model was estimated in the following steps.  

 

First, we extracted individual average time-series of BOLD activity within an individually 

defined region of vmPFC, given by a 4mm sphere surrounding each individual’s peak 

activation for the contrast ‘R2 MINUS baseline’ in GLM-1 within the anatomical mask of 

the vmPFC shown in Fig. 1C. We removed any variance from this time series associated 

with the motion regressors. The resulting time courses were deconvolved using standard 

procedures (Gitelman, Penny et al. 2003).  

 

Second, we estimated a whole-brain GLM of BOLD responses with AR(1) and the 

following regressors: R1) interaction between the vmPFC deconvolved time series and an 

indicator function for bid-for-other screen;  R2) interaction between the vmPFC 

deconvolved time series and an indicator function for bid-for-self screen; R3) indicator 

function for bid-for-other screen; R4) indicator function for bid-for-self screen; R5) the 

vmPFC deconvolved time series. These regressors were convolved with a canonical 

hemodynamic response. The model also included motion parameters and session constants 

as regressors of no interest. Note that Regressor 1 identifies areas exhibiting task-related 
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functional connectivity with the vmPFC seed region during empathic choices. Regressor 

2 does the same for self-oriented choices. 

 

Third, we calculated the following single subject contrasts: C1) Regressor 1 vs. baseline, 

C2) Regressor 2 vs. baseline, and C3) Regressor 1 vs. Regressor 2.  

 

Fourth, we conducted a second level analysis by calculating a one-sample t-test on the 

single subject contrast coefficients.  

 

RESULTS 

 

First we discuss tests designed to investigate if the same basic neural circuitry is involved 

in making self-oriented and empathic decisions, and to characterize the key differences. 

 

Longer RTs in empathic choice. Mean reaction times when bidding for self were about 500 

ms faster than when bidding for other (self: mean = 2.16 s, SD = 0.52; other: mean = 2.67 
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s, SD = 0.47; paired t-test p < 0.05). This is consistent with the hypothesis that empathic 

decisions involve the deployment of extra processes. 

 

Common value coding in vmPFC. We hypothesized that a common area of vmPFC is 

involved in computing the stimulus values (SVs) assigned to DVDs at the time of decision 

in both the self-oriented and empathic trials. We focused our attention on vmPFC because a 

large number of studies have found SV signals in this area (see introduction). The bids-for-

self provide a trial-by-trial measure of the SVs computed in self-oriented trials, whereas the 

bids-for-other provide a similar measure for empathic decisions.  

 

We tested this hypothesis by estimating a general linear model of BOLD responses (GLM 

1) that looked for correlations between the magnitude of the bids placed in each condition 

and BOLD activity (see Methods for details). Activity in vmPFC correlated with the bids-

for-other during empathic choices (Fig. 2A, see Table 1 for a complete list of activations). 

Activity in the same area of vmPFC also correlated with bids-for-self during self-oriented 

choices (Fig. 2B, see Table 2 for a complete list of activations). A conjunction analysis 

showed that activity in a common area of vmPFC correlated with SVs in both conditions 

(Fig. 2C), as did activity in areas of the precuneus, middle frontal gyrus, and inferior 

parietal lobule (Fig. S3). 
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We also looked for differences in the strength of SV coding across the empathic and self-

oriented conditions. We carried out this test in two ways. First, using a whole brain analysis 

and our omnibus threshold, we did not find any regions that exhibited stronger responsivity 

to bid-for-self during self-oriented choice than to bid-for-other during empathic choices at 

our omnibus threshold. Second, we carried an unbiased region-of-interest (ROI) analysis in 

the area of vmPFC that correlates with SVs in both conditions. A comparison of the 

average beta values within the ROI for the bid-for-self and bid-for-other regressors 

revealed no significant differences (p=0.26, paired t-test). 
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Fig. 2.  A) Activity in vmPFC correlated with the bids-for-other during empathic choices (p < 

0.05, SVC). B) Activity in vmPFC also correlated with the bids-for-self during self-oriented choices 

(p < 0.05, SVC). C) Conjunction analysis: activity in a common area of vmPFC correlated with the 

bids placed in both empathic and self-oriented choice trials.  
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Table 1. Areas exhibiting a positive correlation with bid-for-other 
during empathic choice (GLM 1) 

    
     Region Side k T MNI coordinates 
        x     y     z 

 
  

   Ventral striatum L/R 153 5.39 -9    6    -6 
Middle frontal gyrus L 248 4.85 -27  33  -15 
Precuneus / Inferior parietal lobule L 255 4.78 -39 -57  42 
Fusiform / Middle occipital gyrus R 632 4.52 30  -66   0 
Posterior cingulate L 240 4.50 -6   -42  15 
vmPFC* L 21 3.57 -9   42  -15 
          
Height threshold: T = 2.74, p < 0.05, whole brain cluster corrected. 
Extent threshold: k = 109 voxels, p < 0.005. 

   *Survives small volume correction at p < 0.05. 
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Table 2. Areas exhibiting a positive correlation with bid-for-self 
during self-oriented choice (GLM 1) 

   
     Region Side k T MNI coordinates 
        x     y     z 

 
  

   Inferior parietal lobule L 295 4.47 -45 -36  39 
Middle frontal gyrus L 617 4.43 -39  36  12 
Precuneus L 135 4.07 -39 -72  30 
vmPFC* L/R 105 3.79 -6   27  -12 
          
Height threshold: T = 2.74, p < 0.05, whole brain cluster corrected. 
Extent threshold: k = 105 voxels, p < 0.005. 

  *Survives small volume correction at p < 0.05. 
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Differences in the network involved in empathic vs. self-oriented choices. We also 

hypothesized that empathic choice would require the activation of additional regions, such 

as IPL and TPJ, that are known to be involved in social cognition. We tested this 

hypothesis in two steps. 

 

First, using GLM 1, we looked for regions that exhibit higher average activity during 

empathic choices, and areas that exhibit higher average activity during self-oriented 

choices. A large cluster of regions exhibited stronger activity during empathic choices, 

including bilateral inferior parietal lobule, bilateral middle frontal gyri, bilateral anterior 

insula (Fig. S4A, Table 3).   We also found regions exhibiting stronger activity during self-

oriented choices, including bilateral supramarginal gyri, middle temporal gyrus, right 

posterior insula and superior temporal gyrus (Fig. S4B, Table 3). 

 

Second, we looked for differences in functional connectivity with the vmPFC valuation 

area between the empathic and self-oriented trials. We did this by estimating a 

psychophysiological interactions model that looks for areas that exhibit increases in 

functional connectivity at the time of decision separately in self-oriented and empathic 

trials. The model uses as a seed the area of vmPFC involved in SV coding in both 

conditions (see Methods for details). We found that activity in bilateral IPL exhibited 

stronger functional connectivity with vmPFC during empathic choices (Table 4, Fig. 3A). 
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In contrast, no regions exhibited stronger functional connectivity with vmPFC during 

self-oriented choices at our omnibus threshold. Interestingly, the regions of IPL that 

exhibit stronger functional connectivity with vmPFC overlap with those that exhibit 

stronger average activity during empathic trials (Fig. 3B). 

 

Together, these results provide supporting evidence for the hypothesis that empathic 

choice engages the basic vmPFC valuation system, just as it does in self-oriented choice, 

but that the computation of these value signals in empathic choice involves the activation 

of regions of IPL that are known to play a critical role in social cognition. 
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Fig. 3. A) Areas of IPL exhibiting stronger connectivity with the vmPFC valuation region 

during empathic choices than during self-oriented decisions. B) Region of IPL exhibiting both 

stronger functional connectivity with vmPFC and higher average (unmodulated) activity during 

empathic choices. C) Region of IPL exhibiting both stronger functional connectivity with vmPFC 

during empathic choices and a correlation with the difference preference measure. The contrasts are 

thresholded at p<.05, WBC. 
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in self-oriented vs. empathic choice (GLM 1)

Region Side k T MNI coordinates

x     y     z

Self-oriented > Empathic

Inf parietal/Supramarginal gyrus L 471 12.6 -51  -54   36

Inf parietal/Supramarginal gyrus R 409 7.06 51   -57   42

Middle temporal gyrus L 149 5.71 -63  -33   -9

Middle temporal gyrus R 165 5.44 57   -27   -24

Cingulate gyrus L 173 5.16 -9   -18    27

Middle frontal gyrus R 218 4.71 39   12    57

Insula/Superior temporal gyrus R 167 4.38 48   -6      0

Empathic > Self-oriented

Middle occipital gyrus/cuneus L 11460 -8.90 -24  -90    3

  Putamen/caudate/thalamus L * -8.63 -6   9      -3

  Middle occipital gyrus/cuneus R * -7.94 3     -93    9

  Putamen/caudate/thalamus R * -7.20 18  -27     3

  Inf parietal lobe/Postcentral gyrus R * -7.07 36  -27    69

  Precentral/middle frontal gyrus L * -7.04 -18 -75   51

  Fusiform/middle temporal gyrus L * -6.51 -39 -63  -18

  Insula/Inf frontal gyrus L * -6.23 -36  33    6

  Midbrain L * -6.16 -18 -24   -3

  Precentral/middle frontal gyrus R * -5.45 15  -72   54

  Midbrain R * -5.36 18  -24    3

  Inf parietal lobe L * -5.13 -27  -30  75

Insula/Inf frontal gyrus R 180 -5.04 45   21     3

*Part of a larger cluster.

Table 3. Regions exhibiting stronger average (unmodulated) activation

Height threshold: T = 2.74, p < 0.05, whole brain cluster corrected.

Extent threshold: k = 112 voxels, p < 0.005.



 

 

37 

  

Table 4. Areas exhibiting positive task related functional connectivity with the vmPFC  

(PPI analysis)

Region Side k T MNI coordinates

x     y     z

Self-oriented

Inferior frontal gyrus R 164 4.1 45   9     6

Supramarginal/sup temporal gyrus R 169 4.3 66  -24  36

Inferior parietal lobe L 142 3.9 -30  -57  60

Inferior parietal lobe R 134 4.7 45  -39   66

Empathic

Middle frontal gyrus R 2383 6.0 45   45  15

Insula/Inferior frontal gyrus L 354 4.5 -36  18   -3

Middle frontal gyrus L 493 5.3 -39  33   39

Inferior parietal lobe L 2727 7.1 -42  -48  42

  Inferior parietal lobe R * 6.9 48   -45  54

Empathic > Self-oriented

Inferior parietal lobe L 145 5.1 -36  -45   42

Inferior parietal lobe R 148 3.9 48   -48   57

Height threshold: T = 2.58, p < 0.05, whole brain cluster corrected.

Extent threshold: k = 102 voxels, p < 0.005.

*Part of a larger cluster.
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Next, we investigated the extent to which stimulus value signals are computed using self-

simulation, other-simulation, or other-learning, during empathic choices. 

 

No behavioral evidence for other-learning. Under other-learning, the quality of bids-for-

other should improve over time. A good measure of the quality of the individual’s bids-for-

other is given by  

 

correlation(bid-for-other, other-bid) – correlation(bid-for-self, other-bid) (1). 

 

The first term measures the extent to which the subject’s bids-for-other correlates with the 

other’s preferences. The second term corrects for the fact that the first term might be 

artificially large if both individuals tend to like the same movies. The mean quality statistic 

was 0.06 (S.E.= 0.017, p<.0001, t-test). Contrary to the other-learning model, we found no 

significant difference between the first and second half of trials (p=0.72, pairwise t-test), 

which provides evidence against other-learning. 

 

Behavioral bids are consistent with a mixture of self- and other-simulation. A comparison 

of the differences between the bids that the subjects made for themselves (during self-
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oriented choice) and those that they made for the other (during empathic choice) 

provides a behavioral test of the extent to which the stimulus values were consistent with 

the self- versus the other-simulation models. The self-simulation model predicts a very high 

correlation between the bids-for-self and the bids-for-other. In contrast, the other-

simulation model predicts a much lower correlation between the two types of bids.  

 

One critical difficulty in carrying out this test is that, regardless of how the bids are 

computed, they may be correlated because individual preferences are not independent (for 

example, no one seems to like certain movies). This problem can be circumvented through 

the following two steps. 

 

First, we estimated a mixed effects linear regression of bid-for-other on two regressors: 

other-bid and bid-for-self. Importantly, the bid-for-self regressor was orthogonalized with 

respect to the other-bid. This is important because, then, any variation on bid-for-other that 

is explained by the bid-for-self regressor cannot be attributed to common preferences. As a 

result, the relative magnitude of the bid-for-self regressor provides a lower bound on the 

contribution of self-simulation processes. Both coefficients were statistically significant 

and of approximately equal magnitude  (other-bid: mean=.52, SE=.02, p<.0001; bid-for-

self: mean=0.55, SE=0.03, p<.0001; t-tests). 
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Second, we estimated a related regression in which the independent variable was still 

bid-for-other, but the right-hand-side regressors were bid-for-self and other-bid 

orthogonalized with respect to bid-for-self. This alternative orthogonalization is useful 

because now the relative magnitude of the other-bid regression coefficient provides a lower 

bound on the contribution of other-simulation processes. Both coefficients were again 

statistically significant (other-bid: mean=.24, SE=.018, p<.0001; bid-for-self: mean=0.81, 

SE=0.03, p<.0001; t-tests). 

 

Together with the previous result, the two regressions suggest that subjects computed 

stimulus values during empathic trials using a mixture of self-simulation and other-

simulation processes. The relative magnitude of the regressors also suggests that the self-

simulation component played a stronger role in our task. 

 

Activity in vmPFC is also consistent with a mixture of self- and other-simulation. We also 

investigated the extent to which the stimulus value signals computed during empathic 

choices were consistent with self- or other-simulation. We did this by estimating two new 

GLMs of BOLD responses. The key difference with the previous models is that activity 

during empathic choices was now modulated by two variables: bid-for-self and bid-for-

other. Importantly, to deal with the problem of preference correlation discussed above, in 
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GLM 2 the bid-for-other was orthogonalized with respect to the bid-for-self, and in GLM 

3 the opposite orthogonalization was carried out.  

 

We computed the average regression coefficients for bid-for-self and bid-for-other in both 

models within the vmPFC region that correlates with stimulus values in both empathic and 

self-oriented choice.  We found that all regressors were significantly positive (p<.0001 in 

all cases, t-test). For completeness, we carried out similar ROI tests in all of the areas that 

correlated with stimulus values in either empathic or self-oriented choices and found 

similar results. 

 

These results provide further neurobiological evidence that stimulus values during 

empathic choice are computed using a mixture of the self- and other-simulation processes. 

 

We also carried out an additional post-hoc analysis designed to explore the computational 

role that IPL might play in empathic choice. Based on the results described above, as well 

as the literature discussed in the introduction, we speculated that IPL might contribute to 

the computation of stimulus values by measuring the extent to which the other’s 

preferences differ from the subject’s own preferences. In our task, this signal can be 

measured by  
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difference = bid-for-other – bid-for-self (2). 

 

This signal is computationally useful because it would allow subjects to compute their 

estimate of the value that the other places on the DVDs by computing their own value for 

it, and then carrying out the additive (and signed) adjustment given by the difference signal. 

 

To test this hypothesis we estimated a new GLM 4 in which activity during empathic 

choices is modulated by bid-for-self and the difference signal. Consistent with our post-hoc 

hypothesis, activity in inferior parietal lobule and middle frontal gyrus was significantly 

correlated with the difference regressor (Table 5). Interestingly, the area of IPL identified in 

this model overlaps with those exhibiting increased functional connectivity with the 

vmPFC valuation areas during empathic choices (Fig. 3C). 
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Table 5.  Areas exhibiting a positive correlation with the difference signal  
during empathic choice (GLM 4) 

    
     Region Side k T MNI coordinates 
        x     y     z 

 
  

   Inferior parietal lobe/precuneus L 242 5.22 -39  -54  42 
Middle frontal gyrus L 121 4.47 -39  45   -6 
          
Height threshold: T = 2.74, p < 0.05, whole brain cluster corrected. 
Extent threshold: k = 112 voxels, p < 0.005. 
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DISCUSSION  

 

The results presented here provide the following insights about the computational and 

neurobiological basis of empathic choice. First, empathic choices engage the vmPFC 

valuation system used in self-oriented decisions, and these value signals seem to be 

modulated by activity in regions of IPL known to play a critical role in social processes 

such as empathy. Second, the stimulus values used to make empathic choices are 

computed using a mixture of self-simulation and other-simulation. Third, during 

empathic choices, activity in the IPL encodes a variable measuring the distance between 

the other’s and own preferences. This variable could be used to compute the value of 

DVDs for other starting from the one’s own value, which provides a hint for how the 

mixture of self- and other-simulation are implemented. 

 

The results have implications for various areas of the neural and social sciences. The results 

extend our growing knowledge of how the brain makes decisions to the case of empathic 

choice, which had not been studied before. The results show that empathic decisions 

involve the combination of two types of processes: the basic valuation circuitry involved in 

self-oriented decisions and social processes such as empathy. In particular, in contrast to 

the case of self-oriented choice, in empathic choice, stimulus values in vmPFC seem to be 

modulated by a signal from IPL that reflects the difference in preferences between self and 
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other. This result parallels a recent finding in an fMRI study of charitable donations 

(Hare, Camerer et al. 2010), which found that the value signals in vmPFC were modulated 

by an area of posterior superior temporal cortex commonly associated with mentalizing. 

 

The results also extend our understanding of social cognition in several ways. First, they 

show that the same set of areas that have been shown to play a role in ‘passive’ empathy 

tasks are also at work during empathic choices. Second, they advance our understanding of 

the precise computations carried out by IPL (i.e., a measure of the difference between the 

other’s and the self’s preferences) as well as how they affect decision-making (i.e., by 

modulating activity in the vmPFC valuation circuitry). Third, they advance our 

understanding of the role of mPFC in social cognition, which has been previously 

implicated in person-related and not object-related knowledge (Mitchell, Heatherton et al. 

2002; Mitchell, Macrae et al. 2006; Mitchell 2009). Our results show that, during empathic 

choice, mPFC is involved in the computation of stimulus values. Importantly, the area of 

mPFC characterized here is significantly more ventral than those identified in previous 

studies, none of which involved actual empathic choices. Fourth, the statistical influence of 

own-bids on bids-for-others replicates the “false consensus effect” from social psychology 

(Ross, 77, Marks and Miller 87). The evidence that IPL activity correlates with the 

difference in the two bids suggests a candidate region for explaining differences in the 

strength of false consensus across people or context.   
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The results also have potential practical applications in psychology and economics. They 

suggest that the ability to make sound empathic decisions might depend on the ability to 

compute value signals in vmPFC that give sufficient weight to the differences between 

others and ourselves. It follows that deficits in empathy and general social cognition might 

impair the ability to make sound empathic decisions, which could interfere with everyday 

social interaction. Additional evidence for the role of vmPFC in these types of processes 

comes from lesion studies (Krajbich, Adolphs et al. 2009). 

 

We were surprised to find no other-learning process at work during empathic choice. It is 

possible that this is due to specific features of the current task that might not generalize to 

other settings. In particular, the DVD stimuli used here are highly multi-dimensional and 

complex, which makes it hard to generalize across very different types of films. Thus, we 

cannot rule out the possibility that other-learning processes might be at work in settings 

with a simpler stimulus set. 
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APPENDIX 

 
 

CONTROL BEHAVIORAL EXPERIMENT 

  

Twenty subjects (mean age: 21.85, SE: 0.76), with the same demographic characteristics 

required for the main fMRI experiment, participated in a control behavioral study. None of 

the subjects had previously participated in the fMRI experiment. The experiment was 

almost identical to the fMRI task, except for the following differences. First, half of the 

subjects completed the empathic choice task first and the self-oriented choice task second; 

the other half of the subjects completed the tasks in the opposite order. Second, the inter-

trial interval was reduced to 1s, as was the interval between bids and feedback in empathic 

choice trials. Third, subjects completed both tasks on the same day. 

For each individual we carried out a linear regression of bid-for-other on bid-for-self and 

other-bid, separately for self-oriented and empathic choice trials. This regression measures 

the extent to which the bids-for-other were driven by their own preferences or by the actual 

preferences of the other subject. As shown in Fig. S1, we found no significant differences 

across the two order conditions (min p=0.29, t-test). 
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Fig. S1.  Results of the companion behavioral experiment 

 

 

TIME COURSE ANALYSIS FOR vmPFC 

 

We carried out a post-hoc ROI analysis to estimate time courses of BOLD activity in the 

vmPFC valuation areas. This was done as follows. First, we extracted a time course of 

average BOLD activity at each TR within the region of vmPFC that was found to correlate 

with stimulus values in both self-oriented and empathic choice trials (Fig. 1C depicts the 

ROI). Second, we removed from this time course the variance associated with the six 

motion regressors estimated during the pre-processing process. Third, we resampled the 
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time series into ten time bins per TR, and smoothed it using cubic spline interpolation. 

Fourth, we then estimated a finite impulse response model that included separate regressors 

for the following conditions: 1) empathic choice trials for which the bid-for-other was 

above average for those trials, 2) empathic choice trials for which the bid-for-other was 

below average, 3) self-oriented choice trials for which the bid-for-self was above average, 

4) self-oriented choice trials for which the bid-for-self was below average. The model was 

estimated at each time bin within a 20 second window starting at the onset of the DVD cue. 

Finally, the parameter estimates for each condition were averaged across participants at 

each time point. Fig. S2 depicts the results of the analysis. 

 

Fig. S2 . Time course of BOLD responses in the vmPFC valuation area. 
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Fig. S3. Additional regions exhibiting a positive correlation with stimulus values in both 

empathic and self-oriented choice trials (GLM 1). 
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Fig. S4. A) Areas exhibiting higher average (unmodulated) activity during empathic 

choices. B) Areas exhibiting higher average activity during self-oriented choices (GLM 1). 
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EXPERIMENTAL INSTRUCTIONS FOR SELF-ORIENTED CHOICE 

TASK 

 

In this experiment you will be bidding on a number of DVDs. To enable this, please note 

that $10 has been placed on the table in front of you. This money is yours to use for this 

experiment. Whatever money you do not use will be yours to keep at the conclusion of the 

experiment. 

 

In each round of the experiment, you will see the cover of a DVD displayed on the screen. 

Please look carefully at the DVD and decide how much you would be willing to pay for the 

DVD on a scale from $0 to $10, in increments of $2. So the possible bids are $0, $2, $4, 

$6, $8, and $10.  If you already own the DVD, bid as if you do not own it. When you are 

ready, enter your bid for that item using the relevant key on the keypad.  If you take longer 

than 6 seconds to enter a bid, one will randomly be selected for you. You should bid in 

the following way: press “z” for $0, “2” for $2, “4” for $4, “6” for $6, “8” 

for $8, and “0” for $10. 

 

After you enter your bid, you will see a blank screen for several seconds, after which the 

next DVD will appear. You will bid in this way for 100 DVDs. After you have completed 

all rounds of the experiment, ONE of the rounds will be selected at random. The computer 
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will generate a random number from 0 to 10. If this number is larger than or equal to 

your bid for the DVD in the selected round, you do not purchase the DVD and keep the 

entire $10. If the number is less than your bid, you pay the amount of the random number 

for the DVD, obtain the DVD, and keep the rest of the $10. Note that if a DVD you already 

own is selected, you will simply keep the $10 and will not have to buy the DVD. 

 

For example, let’s say trial number 22 was selected, and that in this trial you were shown a 

picture of the DVD “The Godfather” and entered a bid of $6. Let’s say the random number 

drawn was 8. In this case, you would not be able to buy the DVD and would keep the entire 

$10. However, if the number drawn were 4, you would purchase the DVD for $4 and keep 

the remaining $6.  

 

Note that only ONE of the rounds will be executed in this way. Note also that you have 

every incentive to be truthful in your bid for each DVD, since any single one of the bidding 

rounds can be implemented at the conclusion of the experiment. You must therefore treat 

every bid as if it will be implemented, though in the end only one of the bids will count. 

You should also note, then, that you do not have to divide your budget of $10 over all the 

rounds – only one of the rounds will actually be implemented, and hence you can treat each 

round as if you have all $10 available for that item. Thus bidding truthfully is the best 

strategy you can use in this experiment. 
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You will now go through five practice rounds to ensure you have understood the 

instructions. These practice rounds will not have any consequences for the actual 

experiment and they will not be used in selecting a random round at the end. Please 

observe the DVD carefully and enter a bid when you are ready, but within 6 

seconds of the DVD appearing. 
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EXPERIMENTAL INSTRUCTIONS FOR EMPATHIC CHOICE TASK 

 

In this experiment you will be asked to think about the preferences of another person 

(whom you will learn about shortly) and how much that person would be willing to pay for 

a number of DVD titles that will be shown to you. 

 

On the next page, you will learn about the person whose preferences and choices you will 

be trying to guess. This person is a former Caltech student. Please read this carefully, as it 

will contain information that may be valuable to you during the experiment.  
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Meet Todd. He’s from Omaha, NE and studied neuroeconomics at Caltech. He enjoys rock 

climbing, hiking, and yoga. He also enjoys watching movies, and his favorite film is 

Braveheart. He likes sports, pizza, and has a fondness for whisky, but dislikes traffic and 

having to wait for anything. 
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Todd came to our lab last year and went through 100 rounds of the following 

experiment. In each round, he was shown a DVD cover and was asked how much he would 

be willing to pay for that DVD from $0 to $10 in increments of $2 (e.g., either $0, $2, $4, 

$6, $8, or $10). We used a type of auction that ensured that Todd was telling the truth.  

 

This experiment will also consist of 100 rounds. In each round of the experiment, you will 

see the cover of a DVD displayed on the screen for 6 seconds. This DVD cover is 

EXACTLY the same one seen by Todd. So for each DVD that you will see, we know how 

much Todd was willing to pay for it. 

 

Your task in this experiment will be to try to guess the amount that Todd was willing to pay 

for each DVD shown. 

 

In each round of this experiment, you are to look carefully at the DVD cover shown, and 

decide how much you think Todd was willing to pay for the DVD. This value should be 

between $0 and $10 and in increments of $2. Once you have decided on a value, you will 

indicate your bid of $0, $2, and so on by entering the number corresponding to your bid on 

the keypad. You have a maximum of 6 seconds to enter a value, after which a value will be 
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entered for you randomly. You should bid in the following way: press “z” for 

$0, “2” for $2, “4” for $4, “6” for $6, “8” for $8, and “0” for $10. 

 

After you have entered your choice, you will see a fixation screen with a “+” sign for 1 

second. After this fixation screen, in order to help you to get to know Todd better, you will 

be told how far off your guess was from Todd’s actual bid. For example, if your guess was 

$6 while Todd’s guess was $4, you will be told that the error in your guess was 2. If your 

guess was $6 while Todd’s guess was $10, you will be told that the error in your guess was 

-4. Your goal is to minimize the absolute value of the error – you want to obtain errors as 

close to 0 as possible for your guesses. 

 

Following the feedback, after several seconds you will be shown another DVD cover, and 

you will complete the same task again for each round of the experiment.  

 

Remember, this experiment is not about your own preferences, but what you think Todd's 

preferences are based on what you know about him. To ensure you are trying your best to 

guess his preferences, $10 has been placed next to you. This $10 is Todd's money, and you 

will use it to bid on each DVD.  
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After you have completed all rounds of the experiment, ONE of the rounds will be 

selected at random. The computer will generate a random number from 0 to 10. If this 

number is larger than your bid for the DVD in the selected round, you do not purchase the 

DVD with Todd's money, and we give the entire $10 to Todd. If the number is less than or 

equal to your bid, you pay out from Todd's money the amount of the random number for 

the DVD, and Todd obtains the DVD and keeps the rest of the $10. 

 

For example, let's say trial number 22 was selected, and that in this trial you were shown a 

picture of the DVD "The Godfather" and thought that Todd would be willing to pay $6 for 

the DVD. Let's say the random number drawn was 8. In this case, Todd would not be able 

to buy the DVD and would keep the entire $10. However, if the number drawn were 4, 

Todd would have to purchase the DVD for $4 and keep the remaining $6.  

 

Note that only ONE of the rounds will be executed in this way. So you do not have to 

divide Todd's budget of $10 over all the rounds - only one of the rounds will actually be 

implemented, and hence you can treat each round as if Todd has all $10 available for that 

DVD. So you want to bid what you really think Todd would be willing to pay for the DVD 

shown in each round. 
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You will now do five practice rounds to ensure you have understood the instructions. 

These rounds are not based on real data from Todd's decisions; the 'feedback' at the end of 

each round is randomly generated for the practice rounds. These rounds will not have any 

consequences for the experiment; they are simply for you to become familiar with the task 

and to give you an opportunity to ask any questions you may have. Remember to first 

observe the DVD and then enter your decision of what you think Todd was willing to pay 

by entering the corresponding number on the keypad. Remember: press “z” for $0, 

“2” for $2, “4” for $4, “6” for $6, “8” for $8, and “0” for $10.  
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CHAPTER 2 

Variation in Loss Aversion is Associated with Differential Attention to 

Losses 

 

Abstract. Risk aversion is widespread in our daily decisions. A popular explanation is 

loss aversion, or the tendency to prefer avoiding a loss over obtaining a gain by 

overweighting losses relative to gains. A large body of behavioral evidence has shown that 

individuals exhibit loss aversion in many domains; however, the mechanisms behind loss 

aversion remain unknown. Based on recent research that has shown that value-independent 

differences in attention affect the computation and comparison of values during simple 

choice, we hypothesized that differences in loss aversion could be modulated by 

differential attention to losses. In particular, we hypothesized that paying greater attention 

to losses would result in greater loss aversion both across and within subjects. We tested 

this hypothesis using a simple eye-tracking choice task in which subjects made binary 

choices between a mixed-valence lottery and a constant sure outcome. We found that more 

loss averse subjects paid more relative attention to losses: value-independent differences in 

attention account for 72.5% of differences in loss aversion across individuals. 
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INTRODUCTION 

 

Many of our daily decisions involve risk, from financial investments to social interactions. 

Human behavior in such scenarios is generally risk averse: people require a much larger 

potential upside to compensate for any potential downside. For example, most people 

would reject a gamble offering them a 50-50 chance of winning or losing $50. They would 

require nearly twice as much in gains, or $100, to compensate for the potential loss of $50. 

This firmly established feature of risk preferences is called loss aversion: losses are 

weighed more heavily, and thus have more impact on choice, than gains of equivalent 

magnitude and likelihood (Kahneman & Tversky, 1979). Preferences incorporating loss 

aversion can reconcile modest-scale risk aversion where other theories, such as expected 

utility theory, fail (Rabin, 2000). Loss aversion has been conceptualized as a multiplicative 

overweighting of losses relative to gains and has been well established both in the 

laboratory and in real world data. Loss aversion has been found to be responsible for a wide 

range of phenomena, including the endowment effect (Knetsch, Tang, & Thaler, 2001), 

labor market decisions (Camerer, Babcock, Loewenstein, & Thaler, 1997), the pricing and 

purchasing of consumer goods (Hardie, Johnson, & Fader, 1993; Putler, 1992) and 

behavior in financial markets (Barberis & Huang, 2001; Benartzi & Thaler, 1995; Odean, 

1998). Studies with primates have shown that they also exhibit loss aversion (Chen, 

Lakshminarayanan, & Santos, 2006). These studies suggest that loss aversion may be a 

fundamental feature of how we assess potential outcomes in risky choice. 
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Little, however, is known about the mechanisms responsible for individual variations in 

loss aversion. A number of studies have shown that loss aversion can be affected by 

framing (Gneezy & Potters, 1997; Thaler, Tversky, Kahneman, & Schwartz, 1997). Some 

studies have proposed that loss aversion may be due to some basic hedonic property of our 

reaction to losses, or to an error in judgment caused by an exaggeration of losses’ actual 

proportion (Camerer, 2005; Kermer, Driver-Linn, Wilson, & Gilbert, 2006; Novemsky & 

Kahneman, 2005). It is difficult to distinguish the drivers of loss aversion from purely 

behavioral data alone because different cognitive processes might result in the same 

outward behavior. For example, it may be that some people are more loss averse than 

others because they spend more time evaluating the potential downside of their decisions 

(say, a day of their company’s revenue) compared to the upside (a boost to the company’s 

brand), or because they may be more fearful to face a loss in one domain (a new mate) than 

in another (a new job). Behavioral data can be integrated with psychophysiological 

methods to shed light on the mechanisms behind differences in loss aversion across 

individuals, as well as variation within individuals. 

 

A more recent approach thus uses process tracking to understand choice. A number of 

studies have examined visual fixation patterns during simple choice to show that attention 

affects the computation and comparison of values. Johnson et al. (2007) develop a 

theoretical model that includes attention, in the form of visual fixation, as a decision weight 

over possible outcomes. Willemsen et al. (2011) use computer mouse tracking data to study 

a simple choice task using the Asian disease question (Tversky & Kahneman, 1981) and an 
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employment choice paradigm (Tversky & Kahneman, 1991) and suggest that framing 

may lead to directional comparisons that distort attribute valuations and thus choice. 

Krajbich et al. (2010) found that visual fixations drive value computation and integration in 

a simple binary choice task: the amount of time subjects spent looking at their options had a 

critical effect on choice. Armel and Rangel (2008) found that willingness to pay for 

appetitive items increases significantly with computation time, while the opposite is true 

for aversive items. Similarly, changing the relative amount of time that subjects fixate on 

an item while making a choice can change the probability the item is chosen (Armel, 

Beaumel, & Rangel, 2008). Busemeyer et al. (1993) develop a cognitive, dynamic model of 

decision making called decision field theory (DFT), which describes how preferences 

might evolve over time before a choice is made. The approach encompasses a range of 

information accumulation models and has been shown to account for a wide range of 

phenomena, including the relation between choice and decision time as well as preference 

reversals (Busemeyer & Diederich, 2002). Glöckner et al. (2011) use an eye-tracking task 

in which participants select between two non-negative outcome gambles to test several 

models of information search. They find that choice proportions are in line with the 

predictions of cumulative prospect theory, and their process data indicate support for 

decision field theory models.  

 

In this paper, we propose to better understand the underlying choice process to uncover 

what drives loss aversion. We investigate attentional processes in the context of financial 

decision making under risk. Specifically, we examine visual fixation patterns to see how 
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values for losses compared to gains might be constructed and integrated differently both 

across and within individuals. Given the effects of attention on the computation and 

comparison of values during simple choices in these and other studies, we hypothesized 

that differences in loss aversion across and within individuals might be driven by 

differential attention to losses compared to gains. We tested this hypothesis by using an 

eye-tracking decision making experiment in which subjects made binary choices between 

risky options and a constant sure outcome.  

 

METHODS 

 

Subjects. Twenty-two California Institute of Technology students participated in the 

experiment (age: mean = 24.3, SD = 4.7; 9 female). Two subjects were excluded because 

the eye-tracker had difficulty in capturing their gaze. All subjects had normal or corrected-

to-normal vision. All subjects were informed about the experiment and gave written 

consent before participating.  

 

Task. Subjects received written instructions for the task and underwent five practice rounds 

to ensure their understanding of the task. They were informed that these trials would have 

no effect on their earnings in the actual experiment. In each trial, subjects first viewed a 

fixation cross in the center of the screen and were asked to fixate on it for 500ms. The trial 

would not commence until they had done so. Subjects then viewed the choice screen. Each 

lottery was comprised of a gain and loss component, as well as percentages indicating the 

likelihood of receiving each, all of which varied across trials (Fig. 1A). Gain and loss 
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values always appeared on top, while the percentages appeared on bottom, though the 

locations of gain and loss were randomized. In each trial, subjects made a choice to accept 

or reject the gamble in favor of a constant sure outcome of $0. Subjects were instructed to 

press “1” if they strongly accepted the gamble, “2” if they weakly accepted the gamble, “3” 

if they weakly rejected the gamble and “4” if they strongly rejected the gamble. Subjects 

completed 384 trials of the task, with a break every 100 trials. The gain outcomes for the 

lotteries were drawn from the set {$2, 4, 6, 8, 10, 12} and corresponding losses were 

obtained by multiplying the gain outcomes by a factor ranging from [-¼,-2] in increments 

of ¼ in a factorial design pairing each gain with each multiplier, yielding a total of 48 gain-

loss combinations. These parameters were chosen based on a parameter recovery exercise 

to find lottery values that were efficient for measuring changes in loss aversion (see Sokol-

Hessner et al., 2009). Eight percentage pairings (in which the combined percentages were 

less than 100%, to increase task difficulty) for each of these combinations resulted in a total 

of 48*8 = 384 trials. Subjects were paid a show-up fee and experiment completion fee. In 

addition, five randomly selected trials were implemented for real money at the conclusion 

of the experiment. 

 

Eye Tracking. Eye movements were recorded at 50 Hz using a Tobii desktop-mounted eye 

tracker. Before each trial, subjects were required to maintain fixation at a cross at the center 

of the screen for 500ms before the gamble would appear, ensuring that subjects began each 

trial fixating on the same location.  
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Fig. 1.  (a) The time course of a sample trial. Subjects are forced to fixate at the center of the 

screen for 500ms. They are then presented with the lottery, divided into its gain and loss 

components and the relative probability of obtaining each underneath, and are given as much time 

as they want to make their choice. After selection, subjects see a blank screen for 1s before the next 

trial begins.  
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Data Analysis. We defined four regions of interest (ROIs), or square boxes surrounding 

each of the four numbers appearing on the screen during each trial. The ROIs were located 

in the upper left, lower left, upper right and lower right quadrants of the screen. The eye 

tracker recorded whether the subjects’ fixations fell into one of the ROIs or was not 

recorded (a missing fixation). On average, the latency period (time elapsed between 

stimulus appearance and first recorded fixation) was 247.50 ms (SD = 45.74 ms). The 

latency period was assumed to be due to peripheral attentional processes involved in first 

fixation selection and not part of the decision time. Subjects spent 11.94% (SD = 5.12%) of 

each trial looking at a point other than one of the four ROIs. Missing fixations during the 

trial were treated as follows:  

 

1) If the missing fixations were recorded between fixations to the same item, then 

those missing fixations were changed to that item and assumed to be response 

time. For example, a fixation pattern of “upper left, missing, upper left” would 

become “upper left, upper left, upper left.”  

2) If the missing fixations were recorded between fixations to different items, then 

those missing fixations were discarded and not counted in response time. 

 

These missing fixations were likely due to momentary transitions between items or 

momentary loss of fixation from the eye tracker. The mean number of trials dropped per 

subject was 0.70 (SD = 1.42). The mean response time was 3952 ms (SD = 1231 ms).  
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Prospect Theory Model. We estimated the parameters of a prospect theory model for 

each subject (Tversky & Kahneman, 1992). The subjective utility of a lottery L is defined 

by four parameters: the gain or loss amount x, the percentage chance of receiving that 

amount p(x); the loss aversion coefficient 𝜆, and the curvature of the utility function 𝛼 

(representing risk aversion due to the presence of diminishing sensitivity to changes in 

value as the absolute value increases). The subjective utility of each lottery was estimated 

with Equation (1), while Equation (2) translates the difference between the subjective value 

of the lottery and the subjective value of the certain amount (0) into a probability of gamble 

acceptance using the logit sensitivity 𝜇:  

 

𝑢 (𝐿) = 𝑝 𝑥 ∙ 𝑥! ,          𝑥 ≥ 0 
−𝜆 ∙  𝑝 𝑥   ∙ 𝑥 ! ,          𝑥 < 0 

           (1) 

𝑝 𝑎𝑐𝑐𝑒𝑝𝑡 = !

!!!!! ! !"#$%& !! !"#$%&'

 
           (2) 

 

The lottery values themselves were originally chosen based on a parameter recovery 

exercise to find lottery values that were efficient for measuring changes in loss aversion, 

similar to that employed by Sokol-Hessner et al. (2009). In essence, a hypothetical 

participant was created by selecting a range of psychologically plausible values for the 

three model parameters based on results from earlier studies. Stochastic choices were 

simulated, using those parameter values and Eq. 2, over the initial monetary amounts. 

Given these simulated choices, we then used the maximum-likelihood procedure to 

estimate parameters by maximizing the following likelihood function: 



 

 

76 
 

𝑙 𝛼, 𝜆, 𝜇 𝑦 = 𝑦! log 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡) + (1−!"#
!!! 𝑦!) log 1− 𝑝 𝑎𝑐𝑐𝑒𝑝𝑡           (3) 

 

where 𝛼, 𝜆 and 𝜇 are the parameters to be estimated, y is the subject response, i is the trial 

number, and p(accept) is as defined in Eq. 2. The Nelder-Mead Simplex Method as 

implemented in Matlab 2007a was used to obtain estimates for each parameter. If the 

estimated parameters were close to the actual ones used to create the simulated data, then 

we could say that the modeling procedure could ‘‘recover’’ parameter values accurately. 

We used this method of creating our stimuli to improve our ability to accurately recover a 

range of parameter values from actual participants given the choices made and therefore 

increase the power of statistical tests to detect differences across and within subjects. 

 

RESULTS 

 

Basic psychometrics. The mean parameter values estimated across all subjects were as 

follows: 𝜇 = 6.98 (SE = 1.70), 𝛼 = 0.79 (SE = 0.07), 𝜆 = 1.53 (SE = 0.12) (See Table S1 for 

details). Note that there were five subjects with unusually low values of 𝛼, 𝛼 < 0.50. To 

ensure the robustness of our main results, we repeated several keys analyses with these five 

subjects removed (see Appendix, Fig. S1). The results did not differ from our main 

findings. 
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The model fit the choice curve well. The choice data indicate that choices were a logistic 

function of the subjective lottery value lottery value (pseudo-R2=0.55; Fig. 1B). Reaction 

times and number of fixations both correlated with difficulty (mixed effects regression 

estimates: -16.23, p=0.05, and -0.09, p=0.0000, respectively; Fig. 1C-D). 
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Fig. 1.  (b) Psychometric choice curve.  

 
 
Fig. 1.  (c)  Reaction time as a function of difficulty (the absolute value of the subjective value of 

the lottery).  
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Fig. 1.  (d)  Number of fixations as a function of difficulty (the absolute value of the subjective 

value of the lottery). 
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Attentional biases across subjects. Consistent with the first hypothesis, we found that 

more loss averse subjects paid more relative attention to losses. The loss aversion 

coefficient 𝜆 is positively correlated with the relative time spent looking at losses compared 

to gains (mixed effects regression estimate: 0.08, p=0.02; Fig. 2A).  

 

To calculate the magnitude of this effect across subjects, we performed the following 

analysis. We took the 5% and 95% individual loss aversion coefficients across subjects, 

𝜆!% and 𝜆!"%, respectively, according to the distribution of the relative time spent looking 

at losses compared to gains. We divided the difference 𝜆!% − 𝜆!"% by the difference 

between the maximum and minimum loss aversion coefficients, 𝜆!"# − 𝜆!"#, to obtain a 

statistic indicating the percentage of the differences in loss aversion across individuals that 

is accounted for by value-independent differences in attention: 72.5%. 

 

Across subjects, the correlation between 𝜆 and the total time spent looking at the loss 

amount was 0.49 (p=0.03), while the correlation between 𝜆 and the total time spent looking 

at the gain amount was 0.17 (p=0.49). The correlation between 𝜆 and the difference in the 

percent of time spent looking at the loss amount vs. the gain amount was 0.51 (p=0.02).  

 

Attentional biases within subjects. We also conducted another analysis in which we 

examined whether the magnitude of differences in loss aversion are correlated with the 

magnitude of attentional fluctuations within subjects. For each subject, we divided the trials 

into two halves based on whether excess total fixation to gains over losses is above or 
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below the median. We then estimated the model parameters for each subject in each of 

the samples independently. We found that the mean difference in 𝜆 between the below and 

above median samples is 0.12 (SD = 0.026, p=0.02). Fig. 2B shows a scatter plot of the 

difference in lambda vs. the difference in percent time looking at losses in the two samples 

(mixed effects regression estimate: 0.06, p=0.05). 

 

To calculate the magnitude of this effect within subjects, for each subject, we looked at the 

5% and 95% probability of accepting the lottery, 𝑝!% and 𝑝!"%, as a function of the 

difference in time spent looking at gains compared to losses. The percent of the variation in 

𝜆 that is explained by their fixation is then given by dividing the difference 𝑝!% – 𝑝!"% by 

the difference in the time spent looking at gains compared to losses for each individual. On 

average, we found that the percentage of variation in the probability of accepting the lottery 

explained by the amount of time spent looking at the loss amount vs. the gain amount is 

6.25% (SE = 2.09%). Fig. 2C shows a histogram of the individual percentage variations. 

 

In addition, we found a strong relationship between the last fixation and choice. 

Specifically, for the last fixation only, subjects spent more time looking at gains compared 

to losses as expected value increased (mixed effects regression estimate: 28.64, p=0.0001; 

Fig. 3A). There is thus a bias toward the chosen item.  

 

Properties of the general search process. However, this choice bias does not extend to the 

general nature of the fixation process, which is independent of underlying value. To rule 
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out that our main effect is simply due to subjects paying more attention to large gains or 

losses compared to smaller ones, we examine whether the time spent looking at gains 

compared to losses is a function of the expected value of the lottery. If subjects were 

paying more attention to more attractive options (e.g., large gains), we would expect this 

relationship to be positive, resulting in an upward sloping curve. However, we find that 

there is a nearly flat relationship between expected value and time spent looking at gains 

compared to losses (mixed effects regression estimate: 2.42, p=0.05; Fig. 3B). While the 

relationship is significant, it is extremely small and cannot account for the effect. Note that 

as the last fixation displays a choice bias, the last fixation has been discarded here. 

 

We also examine several additional fixation properties. First, the probability that the first 

fixation was to the upper left was much higher than for any of the other areas (Fig. S2A). 

This is likely a cultural artefact from reading left to right and top to bottom. As a result, the 

first fixation was more likely to be to either the gain or loss amount, while later fixations 

were more likely to be to the probabilities (Fig. S2B). The last five fixations did not show 

any bias towards area (Fig. S2C) or type (Fig. S2D). Fixation duration was relatively 

constant regardless of the item location (Fig. S3A) or type (Fig. S3B).  

 

An analysis of subjects’ transitions among the gain and loss amounts and probabilities 

indicated a common pattern (Fig. S4).  Subjects were much more likely to exhibit 

horizontal and vertical rather than diagonal fixations.  
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Fig. 2.  (a)  Lambda coefficients estimated for each subject as a function of the percent of time 

spent looking at the dollar value of the loss – the dollar value of the gain.  
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Fig. 2.  (b)  Scatter plot of the difference in lambda vs. the difference in percent time looking at 

losses after dividing individual trials into two halves based on whether excess total fixation to gains 

over losses is above or below the median.  
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Fig. 2.  (c) Histogram of individual percentage variations in the probability of accepting the 

lottery explained by the amount of time spent looking at the loss amount vs. the gain amount. 
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Fig. 3. (a)  For the last fixation only, time looking at the dollar value of the gain minus time 

looking at the dollar value of the loss as a function of the expected value of the lottery. (b)  Across 

all but the last fixation, time looking at the dollar value of the gain minus time looking at the dollar 

value of the loss as a function of the expected value of the lottery.  
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DISCUSSION  

 

Our study provides insight into how we process risk. The results describe the nature of the 

attentional processes that guide choice in a simple lottery task. Specifically, we show that 

attention plays a key role in differences in loss aversion both across and within subjects. 

Our results suggest a model in which attention must be included to make any inferences on 

choice. In addition, our data also demonstrate that prospect theory can account for a 

number of correlations between choice and fixation patterns.  

 

Our results contribute to the literature on the cognitive processes behind information search 

and integration. While subjects in our study were not under any time constraints, we find 

evidence to support some of the key predictions of DFT, including preference variability 

and a strong relationship between preference and reaction time. Similarly to Krajbich et 

al.’s (2010) attentional drift diffusion model (DDM), we found that the first and middle 

fixations were independent of the value of the fixated item. Our data also display a last-

fixation bias, which in the DDM framework, is a direct implication of the fact that the value 

of the non-fixated item is discounted. In our experiment, subjects discount the lottery when 

they spend more time looking at losses during the last fixation. Other results, however, 

were inconsistent with the predictions of the DDM. This is likely due to the fact that 

lotteries are much more complex stimuli than snack foods, and attentional processes are 

deployed differently. 
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An important question raised by our results is the directionality of the relationship 

between attention and loss aversion. Is it that more loss averse individuals pay more 

attention to losses, or that paying more attention to losses causes one to become more loss 

averse? Several related studies have shown that it is possible to bias choices by 

exogenously manipulating relative fixation durations and that the fixation process may 

have a causal effect on the value comparison process (Armel et al., 2008; Shimojo, Simion, 

Shimojo, & Scheier, 2003). Willemsen et al. (2011) use a path model relating gain vs. loss 

frames and reference options to information acquisition and choice. They find that the 

framing of gains vs. losses as well as reference points affect attentional differences, and 

these changes significantly affect both search and choice. However, the evidence in this 

study is not sufficient to establish a causal relationship between attention and loss aversion. 

An experiment manipulating subjects’ fixations to establish causality is thus a promising 

idea for future research. Another topic for future study is how changes in emotional states, 

such as stress, may change loss aversion and thus risk aversion. Understanding how loss 

aversion changes within individuals in different contexts can further uncover the 

mechanisms driving loss aversion. 

 

In addition, our results do not rule out the possibility that subjects’ values may have an 

effect on fixation patterns. While expected value did not have an effect on fixation patterns, 

reaction time did increase with choice difficulty. Thus random variation in fixation duration 

might affect the search process and thus choice. An open question is therefore to test 

whether the relationship between values and fixations is actually exogenous and how the 

fixation process takes value into account. 
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An additional question that was not tackled in this paper is how such choices might be 

implemented in the brain. One brain region that is likely to be involved is the medial 

orbitofrontal cortex (mOFC), which has been found to encode value at the time of choice in 

a number of different studies and contexts. Tom et al. (2007) found that activity in mOFC 

during a monetary risky choice task correlated with stimulus values consistent with the 

predictions of prospect theory. Furthermore, the authors found that the same area of mOFC 

correlates with both positive and negative potential outcomes. Similarly, Plassmann et al. 

(2010) found that mOFC activity correlates with the appetitiveness and aversiveness of 

foods. Levy et al. (2010) further showed that the mOFC encodes subjective values in 

choice under risk as well as ambiguity. Basten et al. (2010) found evidence that the brain 

weighs costs against benefits by combining neural benefit and cost signals into a single 

representation of value that is accumulated over time, in accordance with perceptual 

diffusion models. Most recently, Lim et al. (2011) showed that value computations in the 

mOFC and the ventral striatum are fixation-dependent: activity in the these areas correlates 

with the difference in value between attended and unattended items. The question of how 

attention influences these computations and whether these signals are driven by attentional 

processes elsewhere in the brain remains an open question. 

 

Our results have important implications for decision making and the role of attentional 

processes in choice. Our data show that systematic biases in fixations could lead to 

different choices. Moreover, as biases such as loss aversion can lead to deficits in decision-

making, our findings raise the interesting possibility that we may be able to modulate our 
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attention to make better choices. Further uncovering the relationship between attention 

and loss aversion is of direct interest to a number of fields, including psychology, 

economics and neuroscience. 
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APPENDIX 

 
 

SUPPLEMENTARY TABLES AND FIGURES 

 

Table S1. Parameter estimates for all subjects. BIC = Bayesian information criterion. 

 

Subject µ ! "

Log 

likelihood BIC

1 8.73 0.95 1.12 128.47 -239.09

2 10.38 0.43 1.08 236.56 -455.27

3 2.60 0.95 1.40 144.36 -270.87

4 33.66 0.13 1.02 300.2 -582.55

5 13.21 0.49 1.21 177.29 -336.73

6 1.15 0.82 1.77 236.29 -454.73

7 4.30 0.92 1.04 171.16 -324.47

8 17.68 0.22 1.35 243.56 -469.27

9 2.19 0.79 2.44 213.19 -408.53

10 8.41 0.42 1.54 183.21 -348.57

11 5.75 0.74 2.81 232.86 -447.87

12 3.16 1.12 0.88 194.36 -370.87

13 5.52 1.01 1.22 120.22 -222.59

14 2.45 1.17 1.91 138.45 -259.05

15 0.38 1.50 2.48 178.37 -338.89

16 4.21 0.84 1.25 144.65 -271.45

17 5.07 0.91 1.17 137.94 -258.03

18 2.16 0.87 1.87 172.78 -327.71

19 5.11 0.65 1.79 163.94 -310.03

20 3.41 0.97 1.29 132.46 -247.07

Mean 6.98 0.79 1.53 182.52 -347.18

SE 1.70 0.07 0.12 10.73 21.46  
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Fig. S1. Probability of fixation (a)  to a given area and (b)  for a given type for the first 

five fixations, and probability of fixation (c)  to a given area and (d)  for a given type for 

the last five fixations. 

 

 
 



 

 

98 

  



 

 

99 
Fig. S2. Fixation duration as a function of (a)  area and (b)  type. 
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Fig. S3. Probability of transition to an area given current area of fixation. 
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Fig. S4. Key figures with five subjects with 𝛼 < 0.50 excluded. (a) Fig. 1b, (b)  Fig. 

2a, (c)  Fig. 2b. 
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CHAPTER 3 

Display and Search Dynamics in Multi-Attribute Choice 

 

Abstract. Consumer choices are a crucial component of everyday decisions. When 

entering a store to make a purchase, consumers must dynamically search and select among 

a variety of options.  Understanding the details of this decision-making process is therefore 

essential for developing models of choice behavior. This raises two questions that are 

studied in this paper: (1) What attentional processes are involved in the choice between 

multi-attribute consumer goods? (2) Do simple display changes affect these attentional 

processes and thus choice? We hypothesized that (1) value-independent differences in 

attention impact multi-attribute choice, and (2) simple changes to the display impact the 

attentional fixation process and thus choice. We tested these hypotheses using a two-item, 

two-attribute choice task to determine how decision-making processes are modified by the 

introduction of multiple discrete attributes for each item. Subjects were presented with 

pairs of posters, each of a different design and size, and asked to choose the more desirable 

one.  Attributes of each choice were arranged in two visual conditions: designs on top, and 

sizes on top.  MouseLab was used to gather detailed search-process data. We found that 

attentional processes play a key role in integrating across multi-attribute goods in consumer 

choice. Moreover, we found that simple display changes resulted in striking differences in 

visual search patterns, which subsequently impacted choice through differential weighting 

and integration of the attributes. Our results demonstrate the value of understanding 
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computational processes in consumer choice and have important applications in 

economics and marketing. 
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INTRODUCTION 

 

Consider the hundreds, if not thousands, of choices made every day between items that 

differ in many dimensions, such as color, taste, and size. Consumers need to dynamically 

search over an often complex choice set. Understanding the details of this decision-making 

process is essential for developing models of choice behavior. This raises two basic 

questions that we study in this paper: (1) How do attentional fixation processes impact 

choice for multi-attribute consumer goods? (2) Do simple display changes affect these 

attentional processes and thus choice? 

 

This study builds on previous literature from economics and marketing that has used visual 

attention to provide a window into the computational processes involved in consumer 

decisions. Such studies have typically used process data, such as eye-tracking or MouseLab 

(Payne et al., 1993; Camerer et al., 1993), to examine choice among several alternatives 

because they allow experimenters to track where subjects look in a display. Process data 

can provide important insight to help us understand and influence consumer choice, an 

endeavor on which companies spend billions of dollars every year. An understanding of the 

computational processes behind consumers’ decisions can yield a better model of 

consumers’ well-being and help make predictions about how changes in the display of 

multi-attribute consumer goods can affect attention and thus choice. 

 

In economics, a number of studies have examined the computational process used to make 

strategic decisions. For example, Camerer et al. (1993) and Johnson et al. (2002) showed 
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that subjects often did not look ahead or look at their partners’ payoffs in determining 

offer patterns in bargaining settings. Gabaix et al. (2006) used MouseLab to investigate 

information acquisition under both time and financial constraints. They found evidence to 

support a directed cognition model, which assumes that subjects use partially myopic 

option-value calculations to determine how to search among several options. Knoepfle et 

al. (2009) and Wang et al. (2010) used eye-tracking to study information transmission and 

found that visual fixations as well as pupil dilation could be used to predict an otherwise 

unobservable, private information state. Similarly, Caplin et al. (2011) collected interim 

choice data to better understand the dynamic search algorithm used by subjects when faced 

with complex choices. However, none of these studies investigate consumer choice. 

 

Several marketing studies have looked into consumer choice using different types of 

displays. However, most such studies have been limited to hypothetical choice. For 

example, Van der Lans et al. (2008) studied how subjects found brand information within a 

display; however, no choices were made in the experiment. Russo et al. (1975) found a 

critical role for fixation patterns in multi-alternative, multi-attribute choice with car 

descriptions, though only hypothetical choices were made. Chandon et al. (2008) analyzed 

commercial eye-tracking data collected for hypothetical magazine product ads and found 

that packaging played a more dominant role than pricing in attentional fixations, but the 

authors did not control for visual saliency or display location. Lohse (1997) used a business 

phone directory search task and found that display ads were more significantly noticed than 

plain listings, and viewed color ads more quickly and for longer duration than non-color 



 

 

107 
ads. However, such effects might simply be due to the greater saliency and complexity 

of larger and more colorful items. 

 

More recently, Krajbich et al. (2010) used eye-tracking to study simple binary choice 

between snack foods and found strong evidence in favor of a drift-diffusion model (DDM) 

in which integration is driven by visual attention. In particular, while the fixation process is 

random with respect to the value of the items, fixations have a considerable effect on value 

integration in item comparison, through which attentional fixations subsequently bias 

choice. Krajbich et al. (2011) extended the model to the case of multi-alternative choice. 

Reutskaja et al. (2011) used a similar eye-tracking paradigm to examine multi-alternative 

choice under time pressure and found that subjects appear to use a stopping rule to 

terminate the search process, which leads them to choose items they looked at first as well 

as more often. 

 

A related class of models to the DDM is decision field theory (DFT), a cognitive, dynamic 

model of decision making developed by Busemeyer et al. (1993). DFT describes how 

preferences might evolve over time before a choice is made; in such models, fixations 

matter for sequential integration across multidimensional items. In DFT, fixations focus the 

integration of value to a subset of dimensions, unlike in DDMs, in which fixations bias the 

integration of value in favor of one of the items. The approach encompasses a range of 

information accumulation models and has been shown to account for a wide range of 

phenomena, including the relation between choice and decision time as well as preference 
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reversals (Roe et al., 2001; Busemeyer & Diederich, 2002). However, there is little 

direct testing of the impact of fixations on choice in DFT using eye-tracking. 

 

The above studies have yielded a deeper investigation of the underlying computational 

processes, which is central to understanding how preferences are built, and, as a result, how 

choices are made. However, these studies have not addressed how multiple attributes might 

be integrated when making choices between multiple items, and there is no evidence with 

real choice demonstrating the effects of display on choice through the attentional fixation 

process.  

 

In this paper, we disentangle how different attributes of a product, such as visual design or 

size, are evaluated and integrated when choosing between two similar products. We build 

on the attentional DDM model put forth by Krajbich et al. (2010), which makes stark 

predictions about the relationship between attentional fixation patterns and choice. We 

extend their framework on the attentional DDM model to the domain of multi-attribute 

choice by examining the computational processes used to search and identify multiple 

attributes and integrate across these attributes to make a choice. Our experimental design 

also allows us to test if the visual fixation process depends on display effects. Specifically, 

we hypothesize that (1) value-independent differences in attention impact multi-attribute 

choice, and (2) simple changes to the display impact the attentional fixation process and 

thus choice.  
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We tested these hypotheses using a two-item, two-attribute choice task to determine 

how decision-making processes are modified by the introduction of multiple discrete 

attributes for each item. We first elicited subjects’ valuations over poster designs and sizes. 

Subjects were then presented with pairs of posters, each of a different design and size, and 

asked to choose the more desirable one.  Attributes of each choice were arranged in two 

visual conditions: designs on top, and sizes on top.  MouseLab was used to gather detailed 

search-process data. Our experimental design allowed us to test if the choice process is 

influenced by display effects––in other words, whether the location of an item in the 

display affects its probability of selection. First, we found evidence to support the 

hypothesis that value-independent attentional fixation processes play a key role in 

integrating across multi-attribute goods in consumer choice. Second, we found that simple 

display changes resulted in striking differences in visual search patterns, which 

subsequently impacted choice through differential weighting and integration of the 

attributes. 

 

METHODS 

 

Participants. Seventy-four participants completed the experiment (age: mean = 33.03, SD 

= 8.28; 71% female), which was administered over the internet as part of a larger online 

survey. Participants were recruited from an online pool registered with the Center for 

Decision Sciences at Columbia University. Each participant completed the entire survey 

and received compensation for their participation.   
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Stimuli and recording. Participants viewed images of seven artistic posters (sourced 

from zazzle.com) displayed on their computer screens. Stimulus presentation and response 

recording were controlled using the MouseLab Web process tracing tool (Payne et al., 

1993).   

 

Task. Participants received extensive training in the use of MouseLab at the beginning of 

the session. Participants were then instructed at the start of the experiment that they would 

make a series of choices between pairs of artistic posters of different designs and sizes. To 

incentivize participants to take their choices seriously, they were told that they would be 

mailed a poster based upon the choice made during one randomly-selected trial. A copy of 

the instructions is included in the Appendix. 

 

Each participant then performed two rating tasks. In the first task they viewed and rated 

seven poster designs. On each trial one poster design was displayed on-screen, and 

participants rated the design on a scale from 1 (do not like it at all) to 7 (like it very much) 

by clicking an appropriate radio button below the design. Once participants had entered a 

rating and pressed the “continue” button, the trial ended. Participants had unlimited time to 

make each rating. Each of the seven poster designs was presented once, with order of 

presentation randomized across participants.   

 

In the second rating task participants viewed and rated three poster sizes. Before the task 

began participants were shown a relative comparison of the sizes. Three solid gray boxes 

displayed side-by-side (size increasing left-to-right) depicted the relative sizes of the poster 



 

 

111 
types. Above each box a label indicated the actual size of each poster type: “portfolio 

(circa 15’’ x 11’’)”; “small (circa 20’’ x 15’’)”; and “large (circa 30’’ x 23’’).” Participants 

were given unlimited time to examine the screen before beginning the rating task. On each 

trial of the task one of the solid gray boxes from the pre-task screen was displayed along 

with its corresponding size label. Participants rated the size on a scale from 1 (do not like it 

at all) to 7 (like it very much) by clicking an appropriate radio button below the rectangle. 

The trial ended and choices were recorded when the participant pressed the “continue” 

button. Participants had unlimited time to make each rating. Each of the three sizes was 

presented once, with order of presentation randomized across participants. 

 

Participants then performed the main choice task, consisting of 30 trials. On each trial the 

participant chose between a pair of posters. Every poster was composed of two attributes: a 

design and a size. Attributes of one poster were displayed top to bottom on the left size of 

the screen, while attributes of the other were displayed in the same order on the right side. 

Display order was counterbalanced across participants: half viewed designs on top on all 

trials (C1; Figure 1a), while the other half viewed sizes on top (C2; Figure 1b).   

 

Poster pairs were constructed by combining every unordered pair of the participant’s five 

highest-rated designs (ties broken by random selection) with every unordered pair of sizes, 

resulting in 10 * 3 = 30 distinct unordered poster pairs. Order of presentation of the pairs 

was then randomized to construct 30 trials. On each trial the display order (left-to-right) of 

the designs was randomized. The pairing of each design and size was chosen to ensure non-

dominated choices (e.g., so that the higher-rated design was not also paired with the higher-
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rated size)––the higher-rated design was paired with the lower-rated size, and vice 

versa. In cases of equally-rated designs or sizes, the presentation of sizes was determined 

by random selection. 

 

In order to track search processes, each attribute was hidden behind a solid gray box that 

revealed its contents only while the participant held the mouse cursor over the box. Boxes 

were labeled with the attribute revealed by opening them. To prevent selection bias due to 

initial positioning of the mouse cursor, participants began each trial by clicking on a cross 

positioned between the four attribute boxes at the center of the display. Participants had 

unlimited time to complete each trial. The trial ended and the choice was recorded when 

the participant pressed the “choose” button beneath a poster. The locations, timings, and 

durations of each “fixation” (defined by the opening and closing of a box) and the ultimate 

choice were recorded by MouseLab Web.   

 

After the choice task was completed, one trial was randomly selected and the poster 

selected on that trial was mailed to the participant. 
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Fig. 1. (a) Sample choice screen for condition 1 (C1), with poster designs on top. (b) 

Sample choice screen for condition 2 (C2), with poster sizes on top.  
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Data analysis. As the study was administered over the internet, we could not directly 

monitor participants’ activity to ensure compliance with instructions or ensure that 

participants remained attentive during every trial. We used a data-cleaning procedure 

screen for improperly completed trials and inattentive participants. 

 

To screen for accidental fixations caused by moving the mouse briefly across one box to 

reach another, we discarded any fixations with a duration less than 100 ms. We chose a low 

threshold to ensure that such fixations were truly accidental and not part of the participant’s 

search pattern and that the subject gained no information about the stimuli even through the 

short-duration fixation. 

 

To ensure that participants remained attentive throughout each trial, we employed several 

tests to screen for anomalous trials. First, we discarded all trials with reaction times more 

than 4 SD above or below the mean across all participants (mean = 6.53 s, SD = 4.12 s). 

Second, we discarded all trials in which the average fixation duration was more than 4 SD 

above the mean across all participants (mean = 0.735 s, SD = 0.242 s). Third, we discarded 

all trials in which the average transition time between fixations was more than 4 SD above 

the mean of across all participants (mean = 0.105 s, SD = 0.103 s). These tests were 

collectively designed to screen for trials in which participants were not attentive to the task, 

as signaled by an excessively fast choice (suggesting that the choice was not fully 

considered and was made haphazardly) or excessively slow performance during the trial 

(suggesting that the participants became distracted during performance of the trial or 

walked away from the computer). As an additional safeguard, we discarded any subject 
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who successfully completed fewer than 15 trials (half of the total) as determined by the 

data-cleaning procedures.  

 

As a result of the cleaning, we discarded an average of 1.4 trials per participant (M = 1.43, 

SD = 2.39). One participant was eliminated entirely. 

 

Finally, sometimes subjects returned to the same area of fixation immediately following a 

fixation; such fixations were treated as one fixation with a duration equal to the sum of the 

two separate fixations.  

 

Theoretical model. The theoretical model developed here extends the attentional DDM put 

forth by Krajbich et al. (2010) to the domain of multi-attribute choice. Their model takes as 

a framework DDMs of binary response selection (Stone, 1960; Ratcliff, 1978) that have 

proved to be quite accurate in describing a range of perceptual decision making data (Gold 

et al., 2001; Gold et al., 2002; Mazurek et al., 2003). The key idea behind such models as 

applied to binary choice is that the stochastic evidence for one response (the relative 

decision value, or RDV) is accumulated over time until the integrated evidence passes a 

decision threshold, and a choice is made. There is thus a tradeoff between the benefit of 

accumulating more information and the cost of taking more time to make a choice. 

Krajbich et al. (2010) apply this type of model to the domain of binary choice for simple 

snack items and find that it explains many relationships between choice and fixation 

patterns. 
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Following Krajbich et al. (2010), our model assumes that an RDV, which evolves over 

time as a Markov Gaussian process, is computed until a choice is made. In our case, we 

have a choice between two posters with two attributes each, design and size. The RDV 

starts each trial at 0 and continually evolves over time at one of two possible rates, 𝜇! , 𝜇! 

(both in units of ms-1), depending on which attribute is fixated, design or size, respectively. 

A choice is made when a threshold is reached at either +1 or -1. If the RDV reaches the +1 

threshold, the left item is chosen; if the RDV reaches the -1 threshold, the right item is 

chosen. We assume that consumers have independent valuations over designs and sizes 

that can be elicited through prior ratings, just as in the single-attribute case. These 

valuations are termed 𝑟!!, 𝑟!!, 𝑟!!, 𝑟!! , representing the two design ratings and the two size 

ratings for the items on the screen for any trial. Importantly, the slope with which the RDV 

evolves depends on the fixation location at that instant. The slope is proportional to the 

weighted difference between the values of the fixated and non-fixated items and is given by 

the following expression: 

 

𝑓 𝑟!!, 𝑟!!, 𝑟!!, 𝑟!!,𝐸! = 𝛼!!!𝑟!! + 𝛼!!!𝑟!! − 𝛼!!!𝑟!! − 𝛼!!!𝑟!!     (1) 

The coefficients of this expression are given by: 

𝛼!"# =
𝜇! ,   𝑓!" = 1         

𝜇!𝜃,   𝑓!,!!! = 1                 
0,   otherwise          

  (2) 

where 𝑓!" is an indicator variable for fixation on the ith attribute of the jth item, with 

𝑖 ∈ {𝑑, 𝑠} and 𝑗 ∈ 1,2  and 𝜃 between 0 and 1 is the bias term toward the fixated option. 
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In words, this model gives full weight to the rating of the fixated attribute and item, a 

reduced weight to the fixated attribute of the non-fixated item (with the bias term fixed 

across attributes for simplicity), and no weight to the non-fixated attribute. When the 

consumer is looking at a given item, the RDV changes according to: 

𝑉!!! = 𝑉! +

𝜇! 𝑟!! − 𝜃 𝑟!! , current fix = 𝑑!
−𝜇! 𝑟!! − 𝜃 𝑟!! , current fix = 𝑑!
𝜇! 𝑟!! − 𝜃 𝑟!! , current fix = 𝑠!
−𝜇! 𝑟!! − 𝜃 𝑟!! , current fix = 𝑠!

+ 𝑁(0,𝜎!)      (3)   

where 𝑉! is the value of the RDV at time t and 𝜎! is the variance. Note that there may be 

other possible functional forms for the value of the RDV. Here we use the above model as 

a starting point to derive qualitative predictions, with the idea that potential refinements can 

be made in the future. 

 

With respect to the fixation process, we adopt the same treatment of fixation lengths as in 

the basic model in Krajbich et al. (2010), sampling from an empirical distribution of first 

and middle fixations instead of attempting to model fixation length explicitly. We also 

condition the fixation distributions on the fixated attribute, as it is natural to suppose that 

fixation lengths may be different for different attributes. The order of fixations, however, is 

more complex in the multi-attribute case. We have four distinct fixation locations and three 

possible transitions from one fixation to the next (with four possible transitions for the first 

fixation). For the first fixation, as in the basic model, we simply use an empirical 

distribution of first fixation locations. For subsequent fixation patterns, we could assume 
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that the transition process is an exogenous Markov chain with given probabilities for a 

next transition conditional on the current fixation location. However, empirical data shows 

that transitions occur in more complex ways, so we take the transition process to be 

exogenous but conditional on the entire past history of fixations for that trial. For example, 

the probability of transitioning from d1 to s1 changes based on the pattern of fixations up to 

that point. In order to avoid sparse search patterns in the data, after the sixth fixation, we 

conditioned the search tree only on the location of the immediately previous fixation.  

 

We thus have a four-parameter model with (𝜃, 𝜇! , 𝜇!,𝜎!) that we can simulate using the 

Bayesian updating procedure described above. Note that as we have a low number of trials 

per subject and thus relatively high variation across subjects, our data is not particularly 

well suited to fitting this type of model. Instead, we simulate the model based on plausible 

parameter values of 𝜃, 𝜇! , 𝜇!,𝜎! = (0.6, 0.0001, 0.00001, 0.015). In simulated runs, 

the RDV generally moved toward the fixated item, but the slope depended on the values of 

the designs and sizes (Fig. 1c, d). For example, the RDV signal integrated toward the right 

item barrier when the subject fixated on the right design, even though it had a lower value 

than the left design (Fig. 1d). This suggests that, as in simple binary choice, visual fixations 

are also important for the integration process in multi-attribute binary choice. 
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Fig. 1. (c, d) Simulated runs of the model using 

𝜃, 𝜇! , 𝜇!,𝜎! = 0.6, 0.0001, 0.00001, 0.015 . 
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RESULTS 

 

Basic psychometrics. As predicted by the model, the choice data indicated that items that 

were rated more highly were more likely to be chosen across both display conditions (Fig. 

2a). Note that the plot shows only design, and not size, ratings. Due to the design ratings’ 

high correlation with size ratings (see Supplementary Materials), size ratings were excluded 

in the relevant figures to avoid dominance.  

 

A logit regression of differences in poster and size ratings on choice shows that choices are 

a logistic function of the ratings and size in both conditions (design coefficient = 1.29, p = 

0.0002 for C1; 2.02, p = 0.0000 for C2; size coefficient = 0.27, p = 0.052 for C1, 0.54, p = 

0.0002 for C2; Fig. 2b). There were no significant differences between C1 and C2 in poster 

design (p=0.053) or size ratings (p=0.14). Within conditions, however, the difference 

between poster and size rating effect was highly significant (p = 0.0026 for C1 and p = 

0.0000 for C2), suggesting subjects place more weight on poster design compared to size. 

 

We also examined response time and number of fixations per trial. Response time was 

correlated with difficulty, or the difference in poster design ratings (linear regression 

coefficient = -537.9, p = 0.0019 for C1, and -475.7, p = 0.0001 for C2, respectively; Fig. 

2c), and there were no significant differences between the two conditions (p = 0.75). The 

same was true of the number of fixations per trial (linear regression coefficient = -0.46, p = 

0.0047 for C1, and -0.47, p = 0.0001 for C2, respectively; p-value between C1 and C2 = 
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0.95; Fig. 2d). This correlation between both response time and number of fixations and 

difficulty is a common property of drift-diffusion models. 

 

 

Fig. 2. (a) Choice curve as a function of the difference in poster design ratings.  
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Fig. 2. (b) Logit regression coefficients of choice vs. constant and differences in poster 

design and size ratings. (c) Response time as a function of the difference in poster design 

ratings. 
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Fig. 2. (d) Number of fixations as a function of the difference in poster design ratings.  
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Choice biases. The differential impact of display on search seen in the data is important 

because search impacts value integration and thus choice. The attentional DDM also 

predicts that the decision process should show several choice biases. First, the model 

predicts a last-fixation bias: subject should be more likely to choose an item if their last 

fixation is to that item, a result of the fact that the value of the non-fixated item is 

discounted. As predicted, we find that the last fixation exhibits a choice bias towards the 

last fixation location (logit regression slope = 0.58, p = 0.0064 for C1, 1.26, p = 0.0001 for 

C2; Fig. 3a). There is a significant difference in the slopes of C1 and C2 (p = 0.037).  

 

Second, the model predicts that final fixations should be shorter than middle fixations since 

fixations are interrupted when a decision threshold is reached. We find that, consistent with 

the model predictions, last fixations are shorter compared to middle fixations for both 

design and size in C1, though not significantly for C2 (for design: p = 0.0016 for C1, p = 

0.29 for C2; for size: p = 0.0000 for C1, p = 0.069 for C2; Fig. 3b). In addition, there is a 

significant difference between the two conditions for last fixation duration to poster design 

(p = 0.022; Fig. 3c), but not size (p = 0.91). This result provides some evidence that the 

integration aspect only occurs during the viewing of complex stimuli, like poster designs.  

 

Finally, the model predicts that there should be a choice bias due to relative increased 

looking time for one item over the other. As predicted, Fig. 3d shows the bias in choosing 

the relatively more viewed item as a function of the rating difference (logistic regression 

slope = 0.25, p = 0.084 for C1, 0.17, p = 0.013 for C2).  
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In addition, the results show a large overall differential in attention to design vs. size––

poster designs are looked at longer than size in both conditions (p=0.0000 for C1, p=0.0000 

for C2; Fig. 3e). There are no significant differences in latencies between the two 

conditions when looking at poster design (p=0.1801) and size (p = 0.2887). This 

differential attention to designs is consistent with the larger weights that design ratings have 

in the logit regression described in Fig. 2b. 

 

 

Fig. 3. (a) Choice bias for the last fixation as a function of the difference in poster design 

ratings. 
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Fig. 3. (b) Fixation duration as a function of fixation type. (c) Choice bias for the last 

fixation to a poster as a function of the difference in poster design ratings.  
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Fig. 3. (d) Choice bias for the more viewed item as a function of the difference in poster 

design ratings. (e) Average fixation time by attribute and condition. 
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Properties of the general search process. However, the choice biases do not extend to 

the general nature of the fixation process, which is independent of underlying value. To 

rule out that our effect is simply due to subjects paying more attention to preferred items, 

we examine whether the time spent looking at items is a function of their value across all 

but the last fixation. Fig. 4a-b shows that fixation durations are independent of the value of 

the fixated design for C1 (Fig. 4a; mixed effects regression estimate: -9.8, p=0.47), though 

not for C2 (Fig. 4a; mixed effects regression estimate: 40.8, p=0.0028) and size for C1 

(Fig. 4b, mixed effects regression estimate: -1.4, p=0.93), though not for C2 (Fig. 4b, 

mixed effects regression estimate: 26.4, p=0.019). However, note that while the 

relationships for C2 are significant, they are extremely small and cannot account for the 

effect.  

 

The fixation duration does depend slightly on the difference in value between the fixated 

and non-fixated design for C2 (Fig. 4c, mixed effects regression estimate: 20.4, p=0.010), 

but not for C1 (Fig. 4c, mixed effects regression estimate: -16.8, p=0.067) and size for C2 

(Fig. 4d, mixed effects regression estimate: 19.6, p=0.053), but not for C1 (Fig. 4d, mixed 

effects regression estimate: 4.9, p=0.55), though, again, these effects are extremely small. 

Fixation duration depended more strongly on the difficulty of the decision for poster design 

in both conditions (Fig. 4e, mixed effects regression estimate: -45.5, p=0.0053 for C1; -

41.5, p=0.0096 for C2) but not for size (Fig. 4f, mixed effects regression estimate: -1.7, 

p=0.90 for C1; -11.4, p=0.52 for C2). Note that as the last fixation displays a choice bias, 

the last fixation has been discarded here. 
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Fig. 4. For middle fixations, fixation duration as a function of (a) poster rating, (b) size 

rating. 
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Fig. 4. For middle fixations, fixation duration as a function of (c) difference in design 

rating between fixated and non-fixated item, (d) difference in size rating between fixated 

and non-fixated item. 
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Fig. 4. For middle fixations, fixation duration as a function of (e) difference in design 

rating between better and worse item,  (f) difference in size rating between better and worse 

item. 
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Display configuration strongly impacts search. More striking differences between the 

two display conditions were found upon examining the search data. Fig. 5a shows the 

difference in fixation location between the two conditions as a function of fixation number. 

Poster designs are fixated earlier on in C1, and the same is true for poster sizes in C2. 

Similarly, a plot of the transitions between design and size in the two conditions suggests 

that subjects in C1 are more likely to search within the two attributes of one item before 

looking at the other item, while there is no such clear pattern for C2 (Fig. 5b).  

 

Figures 6a and 6b report fixation transition probabilities or “search trees” with branches 

trimmed to reflect only the most-traversed paths.  Search trees showing the modal search 

patterns in C1 (Fig. 6a) and C2 (Fig. 6b) show evidence for path-dependent search behavior 

that varies dramatically between conditions. In C1, over 97% of first fixations are to the 

poster design, while this is true of only 57% in C2. In C1, there is a very clear search 

pattern of design, design, size, size. In C2, however, the modal search path is much less 

clear: there appears to be a multiplicity of patterns. Figures 6c-d show the same data in a 

different format: the darker squares indicate more likely fixation patterns. While Fig. 6c 

demonstrates a clear search pattern, Fig. 6d is much more varied. The results show that 

attention appears to be driven by the latent values of stimuli and by top-down processes: 

search is not random. 

 

We see a similar, striking pattern when looking at the distribution of last fixations between 

the two display conditions (Fig. 7a). Subjects in C1 are much more likely to look at size, 
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while subjects in C2 are much more likely to look at design. Moreover, this trend is 

constant regardless of the total number of fixations in the trial (Fig. S2a-d). 

 

Fig. 5. (a) Probability of fixation to poster design as a function of fixation number. (b) 

Probability of transition to an area given current area of fixation.  
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Fig. 6. (a) Search tree displaying modal search patterns for C1. (b) Search tree 

displaying modal search patterns for C2.  
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Fig. 6. (c) Heat map of the probability of looking at the poster design first as a function 

of the probability of switching attribute category after the first fixation for C1. (d) Heat 

map of the probability of looking at the poster design first as a function of the probability of 

switching attribute category after the first fixation for C2. 
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Fig. 7. (a) Distribution of the last fixation by attribute and condition.  
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DISCUSSION 

 

Our results provide insight into the nature of the computational processes that guide multi-

attribute, binary choice. We found evidence to support an extension of the attentional DDM 

to multi-attribute choice, in which visual fixations play a key role in the value integration 

process. In particular, we found that value-independent differences in attention impact 

multi-attribute choice. Moreover, we found that simple changes to the display impact the 

attention fixation process and thus choice, which suggests that the visual fixation process 

may play a causal role in the value integration process. This supports the results of related 

studies that have shown that manipulating attentional fixations can bias choice (Shimojo et 

al., 2003; Armel et al., 2008).  

 

It is important to emphasize that values do have an effect on the pattern of fixations. For 

example, as shown in Fig. 2c-d, the response time and number of fixations increase with 

choice difficulty. However, our display manipulation results also suggest that small 

variations in attentional fixations can affect the choice process in a significant way. C1 

might be interpreted as a more “natural” display condition, as the poster designs were 

found to be a far more significant determinant of choice than the sizes. Subjects may 

therefore have habitually expected the designs to be displayed at the top of the screen, with 

the more minor size information displayed below. This would be analogous to what we see 

in many consumer product scenarios: prices often appear underneath products, and product 

features (e.g., a car or a jewelry piece) are often listed in order of importance. The violation 

of this expectation by displaying sizes on top in C2 may have led to idiosyncratic 



 

 

138 
behavioral reactions by different subjects: for instance, the wide dispersion in search 

patterns that we observed.  

 

Our results have important implications for understanding and influencing choice. Our 

findings provide new insight for economic theory by demonstrating that exogenous factors 

that are uncorrelated with value, such as location, can affect the information integration 

process and, through it, choice.  As a result, systematic biases in attentional fixations could 

lead to deficits in decision-making. Modeling the visual fixation process could be used to 

better understand and correct for such deficits. Moreover, such biases have a number of 

applications in business and marketing, including store display arrangement, product 

attribute emphasis or the organization of features on a website. Higher-placed attributes for 

a given item will receive more attention and thus greater weighting in an overall value for 

the item. This explains why prices are typically much less salient in location and visual 

aspect compared to other, more attractive attributes. 

 

Further research extending our study to multi-item choice with a larger number of attributes 

would yield further insights and confirm whether the biases present in our data generalize 

to more complex settings. In addition, such an extension would be a more realistic 

approximation to the types of complex decisions that consumers actually face. In addition, 

our results do not rule out alternative models of how attentional fixations might interact 

with choice. A systematic investigation and comparison of other models is another 

important topic for future research. 
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APPENDIX 

 

SUPPLEMENTARY FIGURES 

 

Correlation between poster design and size ratings. Due to the construction of the choice 

set, the design ratings were highly negatively correlated with the size ratings (correlation = 

-0.4957, SE = 0.0073). Fig. S1 below shows a histogram of the correlation between poster 

and size ratings by subject. 
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Fig. S2 (a) Distribution of the last fixation by attribute and condition when the total 

number of fixations in the trial is 4. (b) Distribution of the last fixation by attribute and 

condition when the total number of fixations in the trial is 5.  
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Fig. S2 (c) Distribution of the last fixation by attribute and condition when the total 

number of fixations in the trial is 6. (d) Distribution of the last fixation by attribute and 

condition when the total number of fixations in the trial is 7. 
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EXPERIMENTAL INSTRUCTIONS 

 

Poster task 

In this study, we are interested in your choices between posters. There are no right or 

wrong answers; we are really interested in what you think. Art posters come in different 

sizes and can be of different kinds. In this task you will see pictures of 7 different art 

posters by well known artists. We will present you with pairs of different kinds of posters 

that are of different sizes.  

 

In a few minutes we will ask you to pick which of two poster/size combinations you would 

rather own. You will actually be mailed one of the posters based upon your choice.  We 

will pick one pair of choices that you make randomly, and send you the poster you prefer, 

so your choices will matter. First we will ask you to rate several different kinds of poster 

and sizes, then you move on to the main choices. 

 

For this study you need a screen size of at least 1000x700 pixels.  

 

When you click the button, a new window will be opened with the task. Please do not close 

the current window. After the task you will return to this window again. 
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Design rating 
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Size rating 
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Choice introduction 

Thanks for rating the sizes. 

 

On the following pages, we will present you with 30 choices between two posters of 

various sizes. You can view the poster and their sizes by moving the mouse over the boxes 

on the screen.  

You will actually be mailed one of the posters based upon your choice. We 

will pick one pair of choices that you make randomly, and send you the poster you prefer, 

so your choices will matter. 

 

Choice trial 
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Feedback screen for randomly selected choice 

 



 

 

 


