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Abstract

Accidental ignition of flammable gases is a critical safety concern in many industrial applications.
Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and
adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this
end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more
accurate test methods and standards as a means of designing safer air vehicles. The focus of this
work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot
surface ignition and flame propagation, and puffing flames.

Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and
ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659,
are used to determine the lowest temperature required to ignite a specific fuel mixed with air at
atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is
heated also influences the limiting temperature and the type of combustion. This study investigates
the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100
kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from ¢ = 0.6
to ¢ = 1.2 were investigated. The problem is also modeled computationally using an extension
of Semenov’s classical auto-ignition theory with a detailed chemical mechanism. Experiments and
simulations both show that in the same reactor either a slow reaction or an ignition event can take
place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture
which approaches the ignition region slowly undergoes a significant modification of its composition.
This change in composition induces a progressive shift of the explosion limit until the mixture is no
longer flammable. A mixture that approaches the ignition region sufficiently rapidly undergoes only
a moderate amount of thermal decomposition and explodes quite violently. This behavior can also
be captured and analyzed using a one-step reaction model, where the heat release is in competition
with the depletion of reactants.

Hot surface ignition is examined using a glow plug or heated nickel element in a series of premixed
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n-hexane air mixtures. High-speed schlieren photography, a thermocouple, and a fast response pres-
sure transducer are used to record flame characteristics such as ignition temperature, flame speed,
pressure rises, and combustion mode. The ignition event is captured by considering the dominant
balance of diffusion and chemical reaction that occurs near a hot surface. Experiments and models
show a dependence of ignition temperature on mixture composition, initial pressure, and hot surface
size. The mixtures exhibit the known lower flammability limit where the maximum temperature of
the hot surface was insufficient at igniting the mixture. Away from the lower flammability limit,
the ignition temperature drops to an almost constant value over a wide range of equivalence ratios
(0.7 < ¢ < 2.8) with large variations as the upper flammability limit is approached. Variations in the
initial pressure and equivalence ratio also give rise to different modes of combustion: single flame,
re-ignition, and puffing flames. These results are successfully compared to computational results
obtained using a flamelet model and a detailed chemical mechanism for n-heptane. These different
regimes can be delineated by considering the competition between inertia, i.e., flame propagation,
and buoyancy, which can be expressed in the Richardson number.

In experiments of hot surface ignition and subsequent flame propagation a ~ 10 Hz “puffing”
flame instability is visible in mixtures that are stagnant and premixed prior to the ignition sequence.
By varying the size of the hot surface, power input, and combustion vessel volume, we determined
that the instability is a function of the interaction of the flame with the fluid flow induced by the
combustion products rather than the initial plume established by the hot surface. The phenomenon
is accurately reproduced in numerical simulations and a detailed flow field analysis revealed a com-
petition between the inflow velocity at the base of the flame and the flame propagation speed. The
increasing inflow velocity, which exceeds the flame propagation speed, is ultimately responsible for
creating a puff. The puff is then accelerated upward, allowing for the creation of the subsequent
instabilities. The frequency of the puffing is proportional to the gravitational acceleration and in-
versely proportional to the flame speed. We propose a relation describing the dependence of the
frequency on gravitational acceleration, hot surface diameter, and flame speed. This relation shows

good agreement for lean and rich n-hexane-air as well as lean hydrogen-air flames.
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Chapter 1

Introduction

1.1 Motivation

Accidental ignition of flammable gases is a critical safety concern in many industrial applications.
Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and
adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this
end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more
accurate test methods and standards as a means of designing safer air vehicles.

Following the TWA 800 accident on July 17, 1996, the National Transportation Safety Board
(NTSB) investigated the fuel tank flammability and fuel tank ignition sources (NTSB, 2000). The re-
sults of investigation led the NTSB to recommend that the FAA find a means to eliminate flammable
mixtures in the fuel tanks. In 2008, the FAA created a requirement to install an inerting system
to eliminate flammability, particularly for heated center fuel tanks by reducing the oxygen content
below 12%. As part of the NTSB investigation, several research projects were carried out at the
Explosion Dynamics Laboratory at California Institute of Technology including: “Flash Point and
Chemical Composition of Aviation Kerosene (Jet A)” (Shepherd et al., 1999), Spark Ignition En-
ergy Measurements in Jet A (Shepherd et al., 1997). While not directly addressed in the final FAA
rule-making, the reduction or elimination of possible ignition sources is an essential part of engineer-
ing design practices for aircraft and industries with flammability hazards. In this regard, Shepherd
et al. (1997) investigated the required ignition energy for Jet A, while Bane et al. (2011) showed
that kerosene mixtures have comparable minimum ignition energy to the lean hydrogen mixtures
used for certification. The lean hydrogen mixtures were assumed to have lower ignition energies
and thus using them as test mixtures would have an inherent safety margin. In light of the findings

by Bane et al. (2011) we were motivated to investigate the test standards currently in use for thermal
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ignition, i.e., in heated vessel of by hot surfaces. There are of course other potential ignition sources
such as open flames, electrical streamer discharges, hot and burning particles, but these were not
the focus of this study.

For safety aspects, several different temperatures are important for the characterization of a
particular fuel. Colwell and Reza (2005) describe how the temperature required for ignition increases
given the situation. For example, the flash point is the temperature above which a pool of liquid
fuel has sufficient vapor pressure to be ignited by a pilot flame (ASTM, 2010). The flash point of Jet
A lies in the range of 4366 °C (Colwell and Reza, 2005, CRC, 1983, NFPA 325, 1994). If we were
to take the flash point as a general upper bound for any design temperature, we would be unable
to boil water for coffee or tea on an aircraft. This, of course, it not the case since no open flame is
present near the fuel tank, by design.

For ignition from hot elements, the particular quantity of interest is the temperature that leads
to ignition of a flammable atmosphere without a flame present. A measure of this temperature is
defined as the auto-ignition temperature. The auto-ignition temperature standard test is to inject
a fuel into a heated vessel and determining by visual inspection if ignition has occurred within 10
minutes (ASTM, 2005). For many applications, the auto-ignition temperature determined from
this standard test is what is then used to define limiting (highest) temperature of hot surfaces in
region where flammable vapor may be present. However, this test has many limitations, which are
explored in the following chapters. The flame propagation resulting from an ignition of a premixed
fuel-air mixture determines the pressure rise and thus potential structural damage resulting from an
accidental ignition, and must also be considered. The ignition process is a complicated interaction
of chemical heat release, encompassing the competition between chain branching and terminating
reactions, heat transfer into and out of the system, and fluid mechanics. To mitigate the risk of
accidental explosions in industrial facilities and on aircraft in the aviation industry, the mechanisms
and parameters leading to ignition must be investigated. The ultimate goal is to use our better
understanding of the thermal ignition process and auto-ignition tests to further improve the safety

of aviation and other industrial systems operating with flammable mixtures.



1.2 Background

Seminal work in the area of ignition by hot surfaces was done by Davy (1817) while investigating

explosions in coal mines (Babrauskas, 2003). Davy describes a common way of lighting the mines as:

“a steel wheel, which, being made to revolve in contact with flint, affords a succession of
sparks: but this apparatus always requires a person to work it; and, though much less
liable to explode the fire-damp than a common candle, yet it is said to be not entirely

free from danger.”

In his experiments, Davy was unable to ignite a combustible coal gas (firedamp) mixture with a
hot iron rod, unless the iron rod itself is burning. The first explanation of this effect (Babrauskas,
2003) was given by Mallard and Le Chatelier in 1880. They concluded that a sufficiently long time
is necessary for the gas to stay in contact with the hot surface in order for the mixture to ignite.

Thornton (1919) was among the first to perform experiments on the current required to ignite
various gaseous mixtures by electrical wire, with particular focus on the hazard that arises from
broken light bulbs in coal mines. In this work, measurements were performed at elevated pressures
using water to compress the gas, and it was concluded that ignition by hot wires is independent
of pressure, but changes with wire diameter. These experiments, however, are incomparable to the
atmospheric tests since the absorption into the water and water vapor content are not accounted
for.

In 1927, Coward and Guest investigated the ignition of natural gas and air mixtures by heated
nickel bars of varying size, composition, hot surface material, and flow velocity above the hot sur-
face. The work concluded that the ignition temperature depends on the mixture composition, but
an explanation was not provided. Coward and Guest observed that wider heated bars reduce the
temperature required for ignition, and that flow over hot surface, created by a fan, could either
decrease or increase the ignition temperature depending on the speed.

Scott et al. (1948) used an early version of the auto-ignition test apparatus, which would later
become the ASTM E 659 test shown in Figure 1.1. Experimental auto-ignition temperatures are
given for a multitude of compounds as part of the experiments at the Bureau of Mines in Pittsburgh,
PA.

The Bureau of Mines continued their work, which was published in part in Zabetakis et al.
(1954) and Kuchta et al. (1965), performing a wide range of experiments on auto-ignition and hot

surfaces using a variety of fuels. In these investigations, experiments were conducted to test the effect
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Figure 1.1: ASTM E 659 auto-ignition temperature apparatus (reprinted, with permission,
from ASTM (2005), copyright ASTM International)

of surface area and volume on auto-ignition in quiescent mixtures, with the work on hot surfaces
performed in a slow flowing reactor. The results of these efforts included a scaling relationship for
the ignition temperature as a function of the natural logarithm of the (hot) surface area as shown
in Figure 1.2. However, the effects of the surface geometry or orientation are not considered, and
consequently the scaling laws extrapolated from theory developed by Semenov (1940) only hold for
a limited range of hot surface areas.

The graph reproduced in Figure 1.2 is also found in Babrauskas (2003) without the data points.
While the trends developed by Semenov (1940) are supported by this data, the broad application
of this work should be taken very cautiously as the control over composition and flow velocity are
very limited.

We separate the investigation of thermal ignition into the goal of finding the lowest possible
temperature at which a gaseous mixture will ignite, i.e., auto-ignition, and the required temperature

for less favorable geometries such as isolated hot surfaces.
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1.2.1 Thermal Ignition in a Heated Vessel — Auto-Ignition

Ignition is the process of initializing an exothermic chemical reaction that can lead to a propagating
flame or detonation. Ignition can occur through the generation of highly reactive species (radicals),
whose production rate is in competition with their destruction rate, as well as the competition of
chemical heat release and heat loss to walls, which determines the mixture temperature and thus
the reaction rates. In general, combustion of hydrocarbon fuels is separated into slow reaction, cool
flames, and ignition regimes based on pressure and temperature (Glassman, 2008, Pilling, 1997).

Slow reactions occur when fuel is in contact with an oxidizer at temperatures below the ignition
temperature (Babrauskas, 2003). The fuel and oxidizer react, but do so without a rapid increase in
pressure, and the heat released by the oxidation is lost to the environment. Since the reaction rate
is a strong function of temperature, these reactions will not take place at a temperature far below
the ignition temperature (Babrauskas, 2003).

Cool flames occur at temperatures higher than slow reaction and below the ignition tempera-
tures (Babrauskas, 2003). This lower temperature leads the reaction down a different path, creat-
ing peroxides as reaction products, which are only partially oxidized and thus release less energy

than if the reaction had gone to completion (e.g., COy and HyO for hydrocarbon oxygen reac-
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tions) (Babrauskas, 2003). The resulting flames have a pale blue color, and can exhibit oscillatory
behavior (Yang and Gray, 1969). Townend et al. (1934) were the first to map at what temperatures
and pressures ignition and cool flames of hexane air mixtures occur.

From a chemical reaction perspective, ignition is characterized by a “rate of chain carrier gener-
ation exceeding the chain termination reaction” - or in other words, a runaway reaction (Glassman,
2008). In this case, the reaction releases energy and thus speeds up the reaction rate if that energy
cannot be lost to environment at a sufficiently fast rate. The reaction then leads to a pressure and
temperature rise until the reactants are consumed.
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Figure 1.3: Regions of ignition as a function of temperature and pressure for n-hexane for several

molar concentrations of n-hexane in air (Townend et al., 1934) (Figure adapted from Babrauskas,
2003)

A classical view of how ignition, nonignition and cool flames are separated as function of tem-
perature and pressure is given for n-hexane as shown in Figure 1.3 (Townend et al., 1934). At low
temperature and low pressure some radical species may be formed. Due to the low pressure, the
diffusivity is high and they recombine into stable species at wall, which means that testing vessels
of different material can have different explosion limits (Warnatz et al., 2006).

The auto-ignition temperature is not a universal quantity and depends on the substance and
molecular structure of the fuel as well as the oxidizer and whether or not any diluent are present, e.g.,
the nitrogen in air. For this investigation, we are interested in fuels like hexane that have comparable

auto-ignition temperatures to aviation kerosene (see Table 1.1). The combustion characteristics
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and path of pure substances are far more easy to characterize than those of complex hydrocarbon
fuels such as Jet A, which consists of many different species of paraffins, iso-paraffins, aromatics,

naphthenes, and olefins (Shepherd et al., 1999).

Table 1.1: Selected minimum auto-ignition temperatures (AIT) at one atmosphere from Kuchta
(1985) and CRC (1983)

Fuel . .AITj *C]
in air in oxygen

Hydrogen 520 ~400
Methane 630 500
Propane 450 N/A
n-Hexane 225 220
Gasoline (100/130) 440 315
Kerosene 230 215
Turbine Fuel 238 N/A

While the ASTM E659 is a standard test for the auto-ignition temperature, only the minimum
temperature for ignition at atmospheric pressure is investigated (ASTM, 2005, Colwell and Reza,
2005, Pilling, 1997). The specific mixture composition is not controlled because liquid test fuel is
injected directly into an open heated vessel. The contents are not actively mixed, and it is presumed
that “a considerable range of composition exist within pockets of gas in the vessel as evaporation of
liquid fuel, or mixing of the injected gaseous fuel, occurs” (Pilling, 1997).

In prior laboratory research, the combustion products have either been condensed and the liquid
analyzed later (Bailey and Norrish, 1952), or a gas chromatograph was used to analyze a small
sample at a maximum frequency of about 0.1 Hz (Wilk et al., 1986). Additional work was done
in rapid compression machines at higher temperatures, 600-800 K (Griffiths et al., 1993), and gas
sampling techniques (Ribaucour et al., 1992, Vanhove et al., 2006). While pressure transients are
easily captured in these experiments, fast and accurate fuel concentration measurements requiring
optical techniques have never previously been applied to the auto-ignition phenomenon.

The present work includes tests conducted using hexane as a surrogate for kerosene, with the
experimental setup addressing problem of the control over gas composition, allowing for testing
at varying pressures, and precise control over the heating rate, which has been identified as an
important factor (Mason and Wheeler, 1922). Additionally, the current study allows for continuous

measurements of the fuel concentration.
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1.2.2 Thermal Ignition from a Concentrated Hot Surface

Isolated hot surfaces surrounded by a flammable mixture such as a pipe carrying hot gas in a
flammable leakage zone in an aircraft or the overheating of a failing device, are potential ignition
sources. For design purposes, it is important to understand the dependence of the ignition tem-
perature on hot surface size and geometry since limiting space restrictions may lead to unfeasible
design solutions. While, standardized tests exist to evaluate various properties of fuels, including
the ASTM E659 (ASTM, 2005) for auto-ignition temperature of fuels, and the ASTM D56 (ASTM,
2010) for flash point, no standard test exists for hot surface ignition (Smyth and Bryner, 1997).

As mentioned before, Coward and Guest (1927) investigated hot surface ignition of natural gas-
air mixture by various heated metal surfaces, but the control over the flow velocity at the hot surface
and visual observations were limited. Platinum surfaces were found to be catalytic, but the ignition
temperatures were higher than those of noncatalytic nickel. Kuchta et al. (1965) extended the work
at the Bureau of Mines, varying the size and geometry of the hot surfaces, but with limited control
over the composition and flow over the hot surface. The hot surface of interest is heated to a given
temperature inside a flow reactor and then a mixture of fuel and air is passed over it at a specified
flow rate. However, the exact mixture composition is unknown and the flow velocity at the hot
surface can only be roughly estimated based on the overall flow rate and vessel size.

Gray (1970) analytically investigated the effect of surface area to volume ratio. The work fol-
lows the work of Kuchta et al. (1965) and White (1967) who concluded from experimental data
that increasing the surface area in a fuel tank, e.g., by inserting metal honeycomb, increases the
safety. Gray pointed to the negative temperature coefficient behavior of larger hydrocarbon as an
alternate source for the behavior.

Ono et al. (1976) studied the ignition of stoichiometric mixtures of methane, propane, ethyl-
alcohol, and diethylether in air by a vertical hot plate inside a combustion vessel. Measurements of
the flow velocity were performed by particle image velocimetry. The choice of geometry is quite useful
in comparisons with simulations and analytical models for flow along a heated vertical plate (Tritton,
1988). The temperature of the hot surface is initially kept at a temperature just below the ignition
temperature and then raised to initiate ignition. As mentioned earlier, slow reactions can take place
at temperatures just below the ignition temperature and change the composition of the mixture.

Laurendeau (1982) performed a wide literature review of available hot surface ignition data for
various hydrocarbon fuels, particularly methane. The data collected was used to derive a simple

correlation relating the ignition temperature to various parameters. Also taken into account in
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the model is the flow outside the hot surface, such as stagnant, free, and forced convection. The
value of this model is to give general trends of the ignition temperature, but does not provide
accurate numerical values. Laurendeau points out that detailed information about the experiments
and application are necessary to make accurate comparisons, including the surface size, orientation,
geometry, mixture composition, and temperature history leading to ignition.

Kumar (1989) focused his experiments on hydrogen-oxygen-diluent mixtures. The combustion
of hydrogen differs from that of hydrocarbon fuel. In addition, its high diffusivity will change
the hot surface ignition characteristics relative to hydrocarbon fuels, which must be kept in mind
when comparing the results of ignition experiments and simulations. It is still very relevant for
many applications including loss-of-cooling events in nuclear power plant like Fukushima—Daiichi on
March 11, 2011.

Kumar also developed a model of solving the transport and energy conservation equation using
an explicit scheme, that requires very small time steps down to 1 ns for accurate solutions. The
equations describe the ignition from a hot surface in one dimensional unsteady condition with the
gas at temperature below the hot surface temperature and the chemistry uses a reduced mechanism
for hydrogen-oxgyen-diluent combustion. In the experiments and simulations, the effects of pressure,
mixture concentration, diluent, and initial gas temperature were investigated with relatively good
agreement for most parameters.

In an effort to create a standardized test for hot surface ignition, Smyth and Bryner (1997) at the
National Institute of Standards and Technology (NIST) performed a large number of experiments
testing the temperature required for ignition of a gas mixture flowing over a heated metal foil. In this
work, the foil was placed at 45° for a constant residence time of 150 ms, and a wide variety of fuels
and hot surface materials were examined. From the results given in their study, the temperature
are higher than even those of Kuchta et al. (1965) at comparable surface size, which would indicate
that the residence time was too short to activate any low temperature chemistry. Additionally, the
geometry chosen for the experiment is very difficult to reproduce computationally (Shepherd, 2012).

Babrauskas (2003) points out that hot surface ignition can be investigated in a similar manner
to the auto-ignition tests, where no uniform heating eliminates convection. For hot surfaces, this
could be achieved by placing the hot surface at the top of the vessel and thus stably stratifying the

mixture, however, no such experiments have been performed.
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1.2.3 Hot Surface Ignition of Liquid Fuels

A special type of hot surface ignition is ignition of liquid fuel droplet by hot surfaces. This process
is significantly more complex due to the breakup of droplet, evaporation of the fuel and mixing with
the air necessary to crate a lammable mixture. However, the connection to the work presented here
is clear and thus worth mentioning. In 2005, Colwell and Reza performed a large number of tests
using droplets of fuel impinging a hot surface and evaluating the ignition probability as a function
of temperature. While the work included a thorough review of thermal ignition testing on available
data, an extrapolation of their results to the fundamental physical and chemical processes leading
to hot surface ignition is difficult. The complexity of the experiments performed is too great to use
analytical models or even perform simulations and a statistical approach is taken to characterize the
likelihood of ignition as a function of temperature. A thorough literature review of ignition of liquid
droplets was done by Bennett (2001).

In this study, we explore the conditions leading to ignition and compare these to high quality
computational results. Our goal is to develop sufficiently realistic and detailed models so that these

ignition thresholds and ignition transients can be accurately predicted.

1.2.4 Cyclic Flame Propagation in Premixed Combustion

The process of thermal ignition of a lammable mixture by a hot-surface and the subsequent flame
propagation is important to the fundamental understanding of combustion, as well as industrial
safety applications. Flame instabilities are of particular interest since they can affect the flame
propagation speed and increasing the flame surface area and accelerating the flame speed. This
chapter focuses on a global flame instability, i.e., a flickering or puffing flame, rather than small
scale instabilities at the flame front.

Flames propagating with a flickering or puffing behavior with frequencies around 10 Hz have been
discussed since the First International Symposium on Combustion in September 1928 (Chamberlin
and Rose, 1948). Chamberlin and Rose were among the first to make quantitative measurements
of the oscillation frequencies observed in Bunsen burners. For a range of gases (e.g., natural gas,
hydrogen, carbon monoxide, butane, and ethane), the rate of flame oscillations was observed to be
“on the order of 10 per second”. The oscillations were quantified by tracking the tip location of the
flame. Chamberlin and Rose observed that frequency changed with the size of the injection nozzle,
and the origin of the flicker was attributed to an alternating rate of diffusion of oxygen into the

flame
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The oscillation of non-premixed gaseous flames have since then been investigated experimentally
by Kimura (1965), Toong et al. (1965), Durao and Whitelaw (1974), Grant and Jones (1975), Strawa
and Cantwell (1989) and Durox et al. (1996).

Kimura (1965) investigated propane jet flames, which exhibited periodic oscillations (10-15 Hz)
above a critical injection velocity. Premixing the propane with air suppressed these oscillations. After
investigating the temperature and velocity profile, he concludes that the oscillations are caused by
the instability of the laminar jet flow.

Toong et al. (1965) observed these instabilities for flames created by burning liquid fuel at the
end of a probe in air to simulate droplet combustion. They postulate that “it is quite likely that the
onset of the self-sustained flame oscillations is due to the amplification of the Tollmien-Schlichting
waves, in the region where the Reynolds Number is greater than the critical value.” However, Grant
and Jones (1975) argue that based on their experiments and those of Durao and Whitelaw (1974),
linear stability theory is insufficient in explaining how the frequency is invariant over a large range
of parameters.

The jet injection velocity was substantially reduced in the experiments conducted by Durox et al.
(1996). In fact, in their theoretical analysis the injection velocity is assumed to be negligible and
the flame instability is attributed to a shear layer created by the buoyancy induced velocity on the
flow behind the flame front. In their study, the effect of pressure and gravitational acceleration
were tested by performing the experiment on parabolic flights that created microgravity as well as
maximum accelerations of 1.8 g.

Buckmaster and Peters (1988) have carried a theoretical analysis of the oscillations associated
with a infinite candle. Similar oscillations have also been observed in fires above pools of liquid
fuels (Cetegen and Ahmed, 1993) and in room fires (Zukoski, 1986).

These oscillations are not limited to non-premixed flames, but also occur in premixed flames as
shown by Durox et al. (1990), Cheng et al. (1999), Shepherd et al. (2005), Guahk et al. (2009),
and Tanoue et al. (2010). In these studies, the frequency of the instability is again on the order of
10 Hz. In all of these previous experiments of premixed flames, the gaseous mixture was injected
into the burner at a specific injection velocity.

Durox et al. (1990) also performed experiments on parabolic flights of premixed flames to study
the effect of varying gravitational acceleration. Additional data is given for the variation of the
oscillation frequency as a function of injection velocity (1.45-2.4 m/s), pressure, and equivalence

ratio.
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Cheng et al. (1999) studied the effects of buoyancy on premixed “V-flames” by considering both
gravitation acceleration in the direction of injection and opposed to it. The results were considered
as a function of Richardson number, the ratio of inertia to buoyancy force, but “findings point to
the need to include both upstream and downstream contributions in theoretical analysis of flame
turbulence interactions.”

Guahk et al. (2009) investigated the oscillations of conical flames and inverted conical flames.
They describe the oscillations as a flame-intrinsic Kelvin-Helmholtz instability.

A combined experimental and numerical approach was taken by Shepherd et al. (2005), who
injected a methane-air mixture at 0.73 m/s. The analysis showed that the “flame tip oscillation is
caused by a competition between the pressure fields associated with the predominantly radial motion
of the burnt gases near the flame front and the rotating vortex motion.”

Tanoue et al. (2010) measured the temperature distribution of a premixed methane flame injected
at 2 m/s and attribute the instability to a Kelvin-Helmholtz instability.

The experiments and simulations investigated in the present study use a very different configu-
ration than the previous work. Instead of studying jets, a combustible mixture, which is quiescent
prior to ignition is examined. The puffing phenomenon occurs in a closed vessel that is filled entirely

with a homogeneous combustible mixture and then ignited by a hot surface.

1.3 Thesis Outline

Results from studies on heated vessels subjected to ramp heating are presented in Chapter 2, hot
surface ignition in Chapter 3, and premixed puffing flames in Chapter 4. Chapter 2 describes the ex-
perimental setup, with additional background for the diagnostic techniques presented in Appendix A
and B. Experimental results are presented and discussed here with a complete list of experiments
performed given in Appendix I. Additional detail of the theoretical analysis is given in Appendix C
and D. Some of the thermodynamic data used in the chemical mechanism was treated for disconti-
nuities as described in Appendix H. Chapter 3 details the dependence of ignition temperature with
mixture composition and resulting flame propagation with additional literature and tabular data
available in Appendix F. Experimental data and still images are available in Appendix 1.2, with
color images shown in Appendix L. The puffing phenomenon is described in detail in Chapter 4 with

some additional scaling arguments given in Appendix G.
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