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ABSTRACT

Multi-mode group velocity dispersion of both Rayleigh
and Love waves was measured for a number of paths \n the
Western United States by means of a technique developed for
separating the modes. Results for each region studied are
interpreted in terms of a crustal structure which produces
simultaneous agreement with all the modes observed, as well
as available body wave data. Certain diagnostic features
of group velocity dispersion curves were noted and used to
advantage in this study.

The analysis techniques developed have rather broad
geophysical applications, for example in studies of source

properties, interference phenomena, and noise properties.
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CRUSTAL STRUCTURE IN THE WESTERN UNITED
STATES FROM MULTI-MODE SURFACE WAVE DISPERSION

INTRODUCT ION

It is important to realize the contribution surface
wave dispersion studies of the type to be presented here
can make in determining earth properties. In partﬂcu]ar,
what can be learned from such dispersion studies that cannot
be learned as easily by another technique, such as refraction,
and what are the advantages of using surface waves.

Perhaps the most important role of surface waves is in
determining the shear velocity distribution, since little
body wave data exists for this distribution in the crust and
upper mantle. With few exceptions the crustal shear velocity
has always been inferred from reflection and refraction data
by assuming Poisson's ratio, because direct measurement of
shear velocity by these methods has proved difficult in prac-
tice. Such body wave models rarely, if ever, have accounted
for observed surface wave dispersion. Structures derived
from gravity measurements are even less adequate in this
regard. These discrepancies are due, among other things, to
the existence of Polsson ratios different from those assumed.
This means that these techniques alone do not provide a
sufficiently ;omp]ete description of the existing structure,
inasmuch as the true structure must produce simultaneous
agreement among body wave, gravity, and surface wave results.

Surface wave dispersion, which is controlled largely by the



.
shear velocity structure, provides an independent means of
inferring the existing shear velocity distribution; hence
the distribution of Poisson's ratio. One of the most impor-
tant results of this study, therefore, is the determination
of the average shear velocity structure for the paths
investigated.

The existence of vertical velocity gradients fs also

difficult to establish by reflection or refraction methods.
One can discern such features by use of surface waves, as
will be demonstrated later in this discussion.

The presence of masked layers (those which do not pro-
duce first arrivals on refraction profiles) can be detected
by surface wave analysis. This includes low velocity layers
at depth, which are not ever detectable by refraction methods.
This use of dispersion is particularly important for depths
greater than 20 or 30 kilometers where existing reflection
and refraction methods begin to fail.

Surface waves have the simple advantage that they arrive
with much greater amplitudes than body waves, both because
the dependence of amplitude with distance is different from
body waves and because more energy initially is partitioned
into surface waves. Hence, surface waves can be detected
and accurately measured to relatively large distances, so
that even aseismic regions where only small events occur can
be investigated. In addition, surface waves represent a
sampling of the entire structure rather than just portions

having high velocity contrast.



- B =

Moreover, whole regions may be investigated very expe-
ditiously and economically with surface waves by only one
person with a minimum of a single instrument, whereas body
wave surveys require much more gear and manpower. Further-
more, regions that are inaccessible and virtually uninhabit-
able can readily be investigated, since only measurements
exterior to such regions are required. §

Aé]de from deducing earth structure from surféce wave
dispersion, the dispersion is important in jtself in order
to provide a description of the transfer function of the
earth. Only after accurately correcting for propagational
effects can source properties be deduced. |deally, then, one
would like to construct a world wide "map" of the earth's
transfer function in as great detail as possible. To this
end any data is valuable. The important problem of distin-
guishing underground nuclear explosions from earthquakes
illustrates the need for knowing the transfer function of
the earth.

Among the more significant contributions of the present
investigation are (1) the first estimate from combined body
wave, Love wave, and Rayleigh wave data of the vertical
distribution of shear velocity and Poisson's ratio in the
crust of the regions studied; (2) establishment of the general
character of the important transition zone from crust to
upper mantle (25 - 100 km depth) in the Western United States;

(3) a comparison of similarities and differences in crustal
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structure from one geologic province to another which may
provide important clues to the geologic history of the Western
United States; (4) the development of a systematic method for
delineating normal modes of surface waves; (5) the determi-
nation of certain general structural properties Which account
for salient features of group velocity dispersion curves, and
(6) the programming for a digital computer of all Fhe compu-
tations required for experimental dispersion measufements, so
that comprehensive dispersion studies are now possible with a
minimum of tedious hand calculations.

The use of surface wave dispersion to determine crustal
structure is now widespread and the basic ideas involved have
been published in the literature.

Until recently dispersion over only a limited period
range for one or two modes, usually the fundamental mode of
Rayleigh waves, could be measured sufficiently well to allow
an interpretation in terms of crustal structure. The struc-
tures derived from such data are far from unique, and
detailed features of the structure are impossible to determine.
This is not to say, however, that surface wave dispersion is
not a sensitive measure of crustal properties, for its
sensitivity can be demonstrated. Two recourses exist for
imprdving the usefulness of surface wave dispersion to discern
structural detail. One is to extend the observation range for
a single mode to periods long enough so that shallow crustal
features have little effect on the dispersion and to periods

so short that'only the very shallow structure controls their
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dispersion. The other is to measure several modes in a re-
stricted period range and take advantage of the different way
each mode samples the structure. |deally one would like to
do both.

Therefore, if the fundamental Rayleigh and Love modes
and two or three higher modes of each can be measured over a
broad period range, a very restrictive structure i§ required
to fit all the data. While this derived structure; too, will
not be unique, it should be reasonably close to the true
situation, because of the additional constraints imposed by
the higher modes and the required fit over a large period
range.

In this study an attempt was made to extend the period
range of observations and to delineate as many modes as
possible. Higher modes have previously been used for studying
crustal structure by Oliver, Press, Brune, and others for a
few events where it was possible to readily delineate portions
of the higher mode dispersion curves by visual methods. For
the most part, however, the valuable higher mode information
has not been fully used in surface wave studies of crustal
structure due to their complicated appearance on the seismo-
grams and the resulting difficulty in making reliable
measurements of their dispersion.

A method for systematically delineating the various modes
was developed and used to great advantage in this study. The
technique involves a combination of group velocity windows

and band pass filtering so that a record containing only
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energy from an arbitrary region in the group velocity - period
plahe can be obtained. Each region can be chosen such that
it contains only one mode. |In effect, then, the technique
allows separation of superposed signals so long as no two
energy arrivals of the same frequency occur simultaneously.

Several paths in the Western United States were investi-
gated using group velocity dispersion obtained forgthe
fundamental Love and Rayleigh modes with periods extending to
50 seconds and for the first two higher modes in the period
range 2 to 15 seconds. Fundamental mode Rayleigh wave phase
velocity was also measured over one large net in the southern
part of the Basin and Range province.

The path lengths involved are all of the order of 1000
kilometers. Therefore, the assumption must be made that the
structure does not have strong lateral variations over these
individual paths so that the average structure derived from
the observations is representative of the structure over the
region traversed. The paths were chosen such that each was
confined as nearly as possible to a single structural province,
such as the Basin and Range, Sierra Nevadas, or coastal region
of California. The refraction data available at various
locations along these paths indicate that, in fact, no strong
lateral variations in crustal structure exist along the
individual paths. However, from region to region the
"average" structure is significantly different. Hence, it is

considered legitimate to interpret the observed dispersion in
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terms of an average structure between the source and stations.
The average structure along each path was obtained by
compar ing the observed data with theoretical dispersion®for
various assumed models of the structure, respecting any
avallable refraction data, and adjusting the elastic para-
meters of these models until the best over-all fit to the
data was achieved. |

Regardless of any such structural models deduced to fit
the data, however, comparison of the observed data between
regions in itself is sufficient to indicate the nature of the
differences which exist between the regions.

|t was found that one of the most diagnostic features of
a group velocity curve is its shape. For example, one can
use the shape to deduce the existence of thick uniform layers
as well as to ascertain whether any sharp velocity contrasts
exist at depth. This is why one should span a large period

range whenever possible.

¥The dispersion programs of Harkrider and Anderson (1962)
and Press, Harkrider, and Seafeldt (1961) were used for
the theoretical calculations.



METHODS OF ANALYSIS

A glance at the surface wave portion of typical seismo-
grams for continental travel paths, such as those shown in
Figures 4 and 5, is sufficient for one to appreciate the
difficulty in obtaining reliable group (and phase) velocity
dispersion measurements using standard visual techniques,
since precise period vs. arrival time curves are r?quired.

The problem is that appreciable energy at several different
frequencies . arrives simultaneously and the resulting seismo-
gram appears very complicated. This is always to be expected
where more than one mode is present and when any mode has an
inverse branch of group velocity dispersion.

To get an idea of the type of compiications to expect
when several modes are present, consider Figure 3, which shows
typical group velocity dispersion curves for three modes of
continental Rayleigh waves. |[f this were the prevailing
dispersion, one would observe within the group velocity window
from 3.8 - 3.5 km/sec on the seismogram a long period wave
(M]]) decreasing in period from about 45 seconds to 30 seconds.
Riding on this wave would be two shorter period waves, one
decreasing in period from about 10 seconds to 9 seconds (Mg])
and one decreasing in period from 7 seconds to 6 seconds
(M]E)' Obviously inclusion of more modes and a broader period
range would make the seismogram still more complex.

Therefore, one of the first tasks in this study was to
devise a method for separating the modes such that the dis-

persion of each mode could be reliably obtained.
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Two workable methods were developed. One is based
primarily on the definition of group velocity. The other
is based on the fact that individual modes are sufficiently
separate in most of the group velocity-period plane that they
may be isolated in the time domain. Each mode so isolated
may then be ané]yzed independently, as if only that mode were
present. |

These methods are discussed in detail in Appendix F.
Therefore, only a summary of how they work will be included
here.

To make use of either method the seismogram must first
be digitized at intervals sufficiently small that the Nyquist
frequency ( _l_r) is at least as great as the highest frequency
visible on t?étrecord. Naturally this frequency must also be
greater than any frequency of interest in the study.

Then, to apply the first method (Method A) one numeri-
cally band-pass filters the digitized seismogram, allowing
only a very narrow band of frequencies (Aw) about some center
frequency (wo) to contribute to the filtered seismogram.

This filtering eperation is done such that no phase shift is
introduced for any frequency (see Appendix G). The group
arrival for the frequency w, occurs where the harmonic
components about o, add together in phase. Thus, peaks in
the envelope of the narrow band-pass filtered seismogram
correspond to group arrivals for frequency w,. Each of

these group arrivals in turn belongs to a particular mode.

The bottom trace in Figure 8 illustrates such group arrivals,
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corresponding to the modes M.., M and M for a band-pass

21 127 11’
centered at a period of about 6 seconds. By repeating this
procedure for a succession of center frequencies spanning
the period range of interest, the complete set of dispersion
curves for all the modes present can be obtained.

|t should be noted in passing that this method also
permits an estimate of the relative excitation of Fhe various
modes with frequency. These relative excitations are strongly
controlled by source depth and source type, so that this
method may prove very useful for future investigations of
source phenomena.

In principle a time record containing only contributions
from an arbitrarily chosen region of the group velocity -
period (U-T) plane can be obtained using a combination of
group velocity windows and numerical band-pass filtering.

To illustrate, consider the
region R in the U-T plane shown in
the diagram at the right. Approxi- r
mate this region by N blocks (dashed
in the diagram) each of which is &

specified by a minimum (TI]) and maximum

period (TEQ) and a maximum (Ui) and mini-

hJ

mum (Ui+1) group velocity. Therefore,
if one band-pass filters the seismogram
such that for the time interval A/Uis t:SA/Ui+1 only periods
in the range TE]S'TE11 can contribute with sizable

i2
amplitude, the resultant total record from

| >

StS%

] N
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represents the signa] from R.

The Second-method (Method B) is an application of this
concept where one chooses R such that each group arrival
from R is a single valued function of T. The resulting record,
therefore, can be analyzed by simple conventional methods to
def ine whatever dispersion curve(s) lies within R. Examining
a number of adjacent or overlapping regions in thi§ fashion
allows one to construct the continuous dispersion curve for
each mode over a wide period interval. The adjacent shaded
and unshaded portions of Figure 2 above 6 seconds period
illustrate the simplest types of acceptable regions.

A graphic example of how well this technique works is
provided by a comparison of Figure 6, which shows the Benioff
1-90Z seismograms of a Montana aftershock recorded at three
stations in Southern California, and Figure 7, which shows
these same records after band-pass filtering to obtain the
longer period fundamental mode (M]]).

This technique was so effective that fundamental mode
phase velocity measurements could also be made over arrays
in Southern California using records as complicated as those
shown in Figures 4 and 6.

As another illustration of this method, Figure 8 shows
the result of three band passes on the Riverside seismogram
shown in Figure 6. Each pass shown permits one to accurately
define a portion of the group velocity dispersion curve of

one or more modes.
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In applying Method B there exists the problem of
selecting regions in the U-T plane which contain only a
single mode, or at least contain no two modes overlapping in
group velocity. As a practical matter, therefore, it is best
to use method B only after the approximate location of the
modes in the U-T plane is established, since tria]land error
in choosing the regions is very time consuming. However,
the problem is not as acute as it might at first appear, even
for the worst situation; namely, when the only data available
is the seismogram for an event of known epicentral distance
and origin time. It is not so acute, because a rough scanning
of the seismogram (in a fashion to be discussed presently)
quickly establishes approximately where the energy (hence one
or more modes) is located in the U-T plane.

One way to quickly scan the record for this purpose is to
successively apply Method A for a set of rather widely spaced
center frequencies in the range of interest. Correlating
group arrivals from one such pass to the next and interpolating
between them outlines the regions of interest.

Another is to compute the Fourier transform for each of
several short record segments, defined by narrow group
velocity windows in the group velocity interval of interest.
Relative maxima in the Fourier spectrum of any such segment
will occur for those frequencies whose group arrivals lie
within the group velocity window defining that segment. This

procedure may be termed the "transform'" of Method A, since
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it works essentially the same as Method A with the roles of
frequency and group velocity interchanged.

As an illustrative example, consider the velocity window
4.3 km/sec to 3.54% km/sec defined by the unshaded portion in
Figure 3. |f the dispersion shown there prevailed, the
Fourier spectrum of the seismogram for that window would
exhibit three peaks, one at about 7 seconds period; corre-
sponding to the second higher mode (M]Q), one at aBout 12
seconds period, corresponding to the first higher mode (M21)’
and another at a period greater than 30 seconds corresponding

to the fundamental mode (M,,). With no prior knowledge

11
whatsoever of the dispersion, these peaks would be sufficient
to infer the approximate location of these three modes in the
group velocity interval from 4.3 km/sec to 3.54% km/sec. As
the velocity window is changed, each of these peaks migrates
along a path in the U-T plane which defines the locus of a
zone of energy concentration, corresponding to one or more
modes.

The results of one of the earliest attempts to use this
idea on a seismogram are shown in Figure 9, where the group
veloclity window extended from approximately 4.4 km/sec to
3.0 km/sec. While this window was much too large to separate
the higher modes in detail, the resulting peaks (each labeled
with its period in Figure 9) were sufficient to indicate
where most of the higher mode energy was located (6-10
seconds period) within this window. The prominent peak at a

period of about 27.8 seconds in Figure 9 is due to the
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fundamental mode. Therefore, these results provided a sound
starting point for the more detailed analysis, as is evident
from the location (above 3.0 km/sec) of the precisely deter-
mined experimental dispersion shown in Figures 14 and 16.

In addition to the uses of these methods in dispersion
and source studies, numerous other important applications
exist. For example, in detailed earth noise studigs Method A
would provide essentially a pointwise (in time) Fourier
analysis of the records. The advantages of this are obvious,
since the duration of coherent sections of a noise record
suitable for correlation over a horizontal or vertical array
is usually very short. Two other very important applications
of these methods may be made in refraction work. First of
all they can be used to pick secondary refracted arrivals,
particularly when the predominant frequency for separate
refracted arrivals varies. Secondly, the spectrum of ampiitude
attenuation with distance for each arrival can be obtained,
again by using Method A to provide nearly pointwise time
domain Fourier analysis. Thus a valuable body of additional
information can be obtained routinely for every refraction
profile.

These methods, Method B especially, can also be used to
advantage in studies of interference phenomena, where it is
desirable to decompose records containing beats into simpler
wave trains with no beats. These simpler wave trains, taken
together, will reproduce the interference phenomena and,

taken separately, may provide clues to the physical con-
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ditions causing interference.

Actually Method B is applicable to almost any problem
requiring separation of superposed wave trains, and Method A
is applicable to any problem requiring dynamic Fourier
analysis.

Both of the above methods were programmed for the
IBM 7090 computer, so that given the origin time, the epi-
central distance, and the digitized seismogram, anj number of
passes with different combinations of velocity windows and
pband-pass filtering can be made. The filtered seismogram is
plotted and the dispersion computed and plotted automatically
for each pass on the data. Optionally, the Fourier transform
can also be computed and plotted for each pass. Therefore,
these techniques may now be used routinely for any of the
applications discussed above.

The methods presented here constitute the first system-
atic means of delineating higher mode dispersion curves on

a routine basis.
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EXPERIMENTAL RESULTS AND [NTERPRETATION

In this study an attempt was made to define experi-
mentally as many modes of Rayleigh and Love waves as
possible over a broad frequency band and to include any
available body wave and gravity information, so that the
best possible approximation to the existing structure in
each region could be obtained. This preferred str&cture
was obtained by adjusting the elastic parameters of assumed
structures until the best over-all fit between the theo-
retical and experimental dispersion was achieved.

|t is worthwhile at {his point to digress long enough
to state why the structure so derived should be a reason-
able approximation of the existing structure. Any given
structure is sampled in a characteristically different
(linearly independent) fashion by each frequency of each
mode of Love and Rayleigh waves. For example, Figure 10
illustrates approximately how the structure shown there
is sampled by the vertical component of the first three
Rayleigh modes at periods of 10.2 seconds and 6.0 seconds.

Therefore, for infinitely precise multi-mode dis-
persion over an arbitrarily large frequency interval, it
follows that one and only one structure can be found
which will produce an exact fit to all the data.
In practice, however, the accuracy of measurement, the
number of modes defined, and the frequency interval are all
limited, so one cannot hope to define a completely unique

structure.
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However, the permissible structures which explain all
the observations equally well, can be expected to con-
verge to the true structure as the data become more
complete and -accurate. The class of structures which
simultaneously explains the observed multi-mode Rayleigh
and Love wave dispersion, as well as refraction aTd
gravity data, will be far more restrictive than the
class which explains the data of a single mode. The
existing structure will be between the narrower limits
of this more restrictive class.

As the result of investigating many assumed models
during the course of this study, it became apparent that
salient features in the shape of group velocity curves
are diagnostic of certain important properties of the
structure.

The existence of an Airy phase (i.e. a stationary
value of group velocity) for example, indicates that a
section of relatively uniform velocity exists at depth.
The separation in frequency (wave length) between adjacent
Airy phases is a measure of the thickness of such a
section, and the difference in group velocity of the
ad jacent Airy phases is a measure of the velocity
contrast at the bottom of the uniform section. Figure 12
shows a test of these effects where several cases for
one model were computed varying only the thickness of

the "granite" layer, as indicated.
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From this Figure it can be seen that as the thick-
ness of the uniform layer increases from 19 km to 21 km
to 24 km (curves 2, 3, and 5 respectively), the sepa-
ration between the maximum Airy phase at about 8 seconds
period and the adjacent minimum at longer periods
systematically increases from 6 seconds to 7 seconds to
8.5 seconds (about .5 seconds per km increase in éhlckness).
The curve for 12 km thickness (curve 4) conforms to this
pattern also, If the interval between its points of
maximum curvature (Airy phases are also such points)
are used to define the separation. These Airy phases
disappear as the structure approaches a linear velocity
increase with depth. The usefulness of this result in
crustal studies is apparent, inasmuch as one can, merely
by looking at the dispersion curve for a region, or just
the seismogram, infer whether the underlying structure
has thick uniform sections or increases in velocity
gradually with depth. In this regard dispersion also
complements refraction data by indicating whether
velocity gradients exist between the velocity dis-
continuities inferred from the travel time curves; that
Is, whether or not it is legitimate to approximate the
refraction travel time curve by the particular straight
line segments selected.

Therefore, if a thick uniform section does exfst,

one can tell how its thickness changes from one area to
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to another by comparing the period interval between the
ad jacent Airy phases on the dispersion curves or just on
the seismograms, for each region.

Figure 12 also illustrates how a change in the
effective velocity contrast at the bottom of the uniform
layer affects the difference in group velocity between
the adjacent Airy phases. For curve 1 the averagé
velocity gradient below the thick layer was made Slight]y
greater than for the corresponding curve 3. This
increased the difference in group velocity between the
ad jacent Airy phases as shown in Figure 12 (compare
curves 1 and 3). Note that this did not alter the sepa-
ration between the Airy phases, as the thickness of the
uniform layer was kept fixed at 21 km for both curves.
Thus, comparison of the "depth" of an Airy phase minimum
from region to region will indicate how the effective
velocity contrast at the base of a uniform section
changes.

These same effects occur for the higher modes and
are‘sti1] more pronounced, since the higher modes are
more sensitive to structural details. Therefore, higher
mode dispersion can be used to great advantage in deter-
mining the sharpness of velocity gradients and discon-
tinuities as well as to detect thinner uniform portions
of the structure.

The point of the foregoing discussion is that when
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one finds a structure which produces agreement in shape
but not absolute value between theoretical and observed
dispersion, it means that the relative velocity relation-
ships with depth are nearly correct, so that this structure
has only to be scaled uniformly to produce good agreement
with the data.

In the discussion to follow it will be instrdctive
to keep the foregoing statements regarding the signifi-
cance of the shape of dispersion curves in mind,
especially when examining the experimental and theo-
retical curves for the areas investigated.

The events analyzed were chosen such that their
travel paths to the recording stations in Southern
California were confined as nearly as possible to
single geologic provinces. The lines emanating from
Pasadena on the map shown in Figure 1 indicate the
'principal paths investigated. Data for the slightly
different paths between other stations in Southern
California and each of the epicenters listed in Table 2
were included whenever possible, since the dispersion
for these perturbed paths was the same within the
precision in measurement.

The data for the Basin and Range are the most
complete, in that the dispersion was measured for more
paths and more events in this region, and in that ex-

tensive portions of this province have been explored by
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refraction and gravity methods. The permissible crustal
structures which produce equally good agreement with all
the available data in this region can vary only in detail.

Figures 14, 15, and 16 summarize the experimental
group velocity dispersion measurements obtained for

paths in the Basin and Range Province. By comparison
|

of these figures it can be seen that the data are
essentially the same for different distances along
slightly different paths. This, to'an extent, validates
the assumption that the structure in the Basin and Range
is undergoing no strong lateral variations.

From these Figures one can see that it was possible
to delineate the fundamental Rayleigh and Love modes in
the period range from about 6 seconds to 50 seconds as
well as the first two higher modes of both Rayleigh and
Love waves in the period range from 2 to about 12 seconds.
A few points which may belong to the third higher mode
were also obtained.

Figure 14 represents data from the larger events in
af tershock sequence of the Montana earthquake of
August 17, 1959. Figures 15 and 16 represent data
from a pair of earthquakes on the Utah-ldaho border in
1962. Table 2 gives the location, origin time, magni-
tude, and approximate depth for each of these events.

These events from Utah offered a unique opportunity

to investigate Love waves, since the Caltech digital
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seismograph was oriented such that one component was
normal to the geodesic path of propagation to within

one degree.

Theoretical dispersion curves were computed for
numerous structures based on the available compressional
velocity refraction models. None of these produced
agreement with the observed dispersion when the sHear
velocity was inferred® using a constant Poissons ratio
of .25. Some of these cases which do not fit the data
well are shown in Figures 19-23.

Among other things, the poor agreement of these
structures with the data indicates that if the layer
thickness and compressional velocities are correct,
Poisson's ratio is not constant at .25 in this region.
In addition, these examples point up the value of
obtaining data over as large a period range as possible.
That is, several of these cases produce reasonable
agreement with the data over a restricted period range,
but seriously depart from it elsewhere. Only when the
over-all shape of theoretical and experimental curves
agree has a good approximation to the true structure been

obtained.

*The shear velocity (B) and compressional velocity (e)
are related by the expression 2 2
4 g x* = B (1 +75%)

where o is Poisson's ratio. Figure 31 gives a con-
venient plot of compressional velocity versus shear
velocity for various Poisson ratios.
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When Poisson's ratio was allowed to vary within
reasonable limits (.22-.30), it was possible, after
numerous trials, to arrive at a structure which simul-
taneously produced satisfactory agreement among all the
data, including refraction. That structure is shown in
Figure 17. Basically this is a rather simple structure
consisting of about 2-3 km of "sedimentary" material
overlying a rather uniform section of "granitic" ma-
terial about 23 km thick, which in turn overlies an
intermediate section about 25 km thick which will be
designated section X.

Next, a maximum in velocity occurs at a depth of
about 50 km with a gradual decrease in velocity at
greater depth corresponding to the beginning of the
Gutenberg low-velocity zone centered at a depth of
around 125-150 km.

The theoretical dispersion for this structure is
compared with the data in Figures 14, 15, and 16. The
over-all agreement for the fundamental mode Love and
Rayleigh waves, the higher Love modes, and the second
higher Rayleigh mode is considered good. The first
higher Rayleigh mode agrees satisfactorily In shape but
not in absolute value between 6 and 10 seconds period.
A correction for curvature of the earth would bring the
theoretical and experimental results for the higher

modes into even better agreement at the longer periods



- Bi -

(7-12 seconds) without altering the results at the
shorter periods. Below 50 seconds the curvature effect on
the fundamental Love and Rayleigh modes is smaller than
the scatter of the data.

The other theoretical curve shown in Figure 14
(Case BEEBM3) gives as good a fit as Case 35CM2 at the
longer periods for all the modes except M21- Thei
structure for this case is given in Figure 18. |t is
important te note that the only significant difference
in the shear velocity structure of this case and
Case 35CM2 is the presence of a thin (6 km) high velocity
layer at a depth of about 25 km in this model. The
compressional velocity structure at 25 km has a corre-
sponding high velocity layer formed by reducing the
compressional velocity from 7.7 km/sec to 7.0 km/sec
between 30 and 50 km depth.

The observed data for the first higher mode (Mg])
decidedly rules out model BEEBM3 in favor of model
35CM2 and indicates that no such high velocity layer
persists in the Basin and Range. The reason ME] is so
diagnostic is that in the period range from 4-10 seconds,
it is controlled mainly by that portion of the structure
containing the high velocity Tayer. The second higher

mode (M has a node in vertical displacement in this

12)
depth range for the periods involved, as can be seen

from Figure 10, and the fundamental mode averages the
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structure so uniformly that it is not very sensitive to
such fine structural details at depth. |In contrast,
Mo has its maximum vertical displacement in the depth
range of the high velocity layer (see Figure 10) and
is, therefore, very sensitive to that portion of the
structure.®

It is Important to point out which features of this
best structure (35CM2) are definite and which are
questionable.

The location of the fundamental mode maximum at
about 10 seconds period and the steep drop to low
velocities for periods under 10 seconds (see Figure 14)
requires an appreciable surface "sedimentary" layer
approximately 2-3 km thick with a very strong velocity
contrast between this surficial layer and the "granite"
layer. A thickness of this order is necessary to move
the Airy phase maximum to a period as high as 10 seconds.
This surficial layer probably is not uniform in velocity
or composition over this area, but It varies within
limits which do not materially affect this relationship.
One can, as a matter of fact, note some difference in

both the Love wave and Rayleigh wave dispersion for

BKThe close correspondence between the amplitude of
vertical displacement with depth and the contribution
to the group velocity from each portion of the structure
is discussed in Section || of Appendix G.
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periods below 10 seconds for different stations and
events (Figures 14, 15, and 16).

The distinctive inverse branch of dispersion in
the fundamental mode from 10 seconds period to 17
seconds period (see Figure 14) requires the uniform
"granitic" layer. The interval between these Airy
phases requires the thickness of this uniform sec{ion
to be very close (within about 2 km) to 23 km in
thickness. The average thickness of this layer cannot
be as great as 30 km.

The inverse branch of the higher mode dispersion,
beginning at about two seconds with a velocity of
about 3.55 km/sec (Lg), is the analog of the inverse
branch of the fundamental Rayleigh mode dispersion curve
between 10 and 17 seconds period and similar remarks can
be made for the interval between 2 and 4.5 seconds. The
value 3.55 km/sec represents a lower bound on the average
shear velocity in the "granite" layer. The higher the
mode the closer this Airy phase maximum approaches the
shear velocity in the "granitic" layer. For any model
to fit the shorter period dispersion data even reason-
ably well, an average shear velocity between 3.6 and
3.65 km/sec was required in this upper layer.

A nearly constant compressional velocity of 6.1 % .1
km/sec for the top of this section has been definitely

established over much of the Basin and Range by the
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extensive refraction work of the Crustal Studies Branch
of the United States Geological Survey. From the work
of Birch (1958, 1960) it is reasonable that'this
velocity may increase slightly (~ .2 km/sec) with depth,
but not sufficiently to destroy the relative uniformity
of this layer. Thus, the compressional velocity Ln this
section was not allowed to vary beyond the }Imits1just
stated.

The structure just below the "granitic" layer
(Section X) which has a shear velocity of 4.1 km/sec
and a compressional velocity of 7.7 km/sec in model
35CM2 is highly controversial and requires some dis-
cussion. The fact that a layer with a compressional
velocity between 7.7 km/sec and 7.85 km/sec persists
over large portions of the Basin and Range has been
established by the recent refraction work of the USGS.

Keeping the compressional velocity of section X
fixed at 7.7 km/sec, a shear velocity of about 4.1 km/sec
(corresponding to a Polisson ratio of about .3) was
required to fit the observed dispersion in the inter-
mediate period ranges. However, a zone of higher shear
velocity (~4.6 km/sec) is required at a depth of about
50 km in order to fit the fundamental Rayleigh and Love
modes near 50 seconds period. |t was not possible to
determine the sharpness of the boundaries of this higher

velocity zone, although of the models investigated, the
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ones with the sharper contrast seemed to fit the data
better. The possibility that the velocity gradually
increases from 4.1 km/sec to about 4.6 km/sec in lower
portions of section X cannot be conclusively ruled out.

The value of Poisson's ratio (.3) required in the
upper part of section X to simultaneously satisfy the
refraction and dispersion data is unusually high, él—
though not unreasonable. Values approaching .3 have
been observed in tectonically active regions of Japan,
for example. (Qbserved values at the base of the crust
in Southern California and Eastern New Mexico are
about .28.

At the present time, however, considerable evi-
dence is accumulating for the presence of a masked
layer at the top of section X with a compressional velo-
city of about 7.0 km/sec and thickness of about 10 km. |If
this is the case, then a more ordinary Poisson's ratio be-
tween 25 and 50 km depth can be inferred. However, in
either case the dispersion requires that the average
shear velocity in section X cannot be changed greatly
from 4.1 km/sec. Such a layer will not appreciably
affect the dispersion results if only the compressional
velocity is involved, since variations in compressional
velocity alone do not have a strong effect.

A1l the models (including 35CM2) which agree with

the higher mode dispersion have a low velocity zone
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in the upper mantle. None of the other models investi-
gated could be made to agree well in shape or numerical
values with the observed longer period (7-12 seconds)
higher mode dispersion.

A thick layer (~100 km) of constant shear velocity
in the mantle also gives poor agreement. A half ﬁpace
with constant velocity below 50 km depth produces a very
poor fit for the longer period higher modes, which are
influenced strongly by the structure below that depth.
Hence a low velocity zone at depth produces a better over-
all result and is decidedly the preferred interpretation
of the observed data. The fundamental Rayleigh and Love
modes below 50 seconds in period are not very sensitive
to this deeper (HZ65 km) structure and do not furnish
any evidence on the structure below 65 km.

An attempt was made to find other evidence for the
presence or absence of an increased compressional wave
velocity around 50 km depth corresponding to that
required in shear velocity by the dispersion.

First of all, if the compressional velocity
structure of Case 35CM2 is approximately correct, one
would observe the change in the slope of refraction
travel time curves from 7.7 km/sec to about 8.1 km/sec
at a distance of about 500-600 km, corresponding to the
arrival from the high velocity dayer at 50 km depth.

Travel time curves for paths in the Basin and Range were
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constructed for several of the larger nuclear shots in
Nevada to try to observe such an arrival. While there
was a suggestion that the slope changed in that distance
range, the scatter of the points was so great that no
definite conclusions could be drawn.

One other piece of evidence was found, however,
which is suggestive that such an arrival is preseﬂt in
this distance range. |t comes from the amplitude attenu-
ation data for refracted waves from nuclear explosions
given in a recent publication by Werth and Herbst (1963),
in which a pronounced jump in the amplitude of the first
half cycle of motion was observed in the distance range
500-700 km. They suggested that this may represent a new
arrival, but did not identify it with any particular part
of the structure. This feature is explained very well
by the structure in Case 35CM2. Even the more rapid
apparent attenuation with distance for this arrival is
consistent with Case 35CM2, since a refracted wave in
this thin layer would leak energy into the low velocity
section below and give rise to rapid apparent attenu-
ation with distance.

One additional test of this model was possible using
phase velocity dispersion for the fundamental Rayleigh
mode. Figure 24 shows the comparison between Case 35CM2
and phase velocity dispersion measured for the tri-

partite array of Pasadena, Californiaj; Ruth, Nevada;
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and Albuquerque, New Mexico for the Russian nuclear
series at Novaya Zemlya. The agreement in shape over
the whole range of values is excellent. Uniformly
increasing the over-all crustal thickness in the Case
35CM2 by about 10 km will produce excellent agreement
with these observed phase velocity values. This means
that the velocity relationships among layers in Cdse
35CM2 are nearly correct. This array covered an area
including, but mostly southeast of, the paths studied
from Utah and Montana. Other evidence exists which sug-
gests that the crustal thickness is in fact somewhat
greater in this region. This evidence consists of
refraction profiles and the additional group velocity
dispersion data shown in Figure 25, which also indicate
that this region is uniformly thicker than the central
Basin and Range, but has the same velocity relationships
between layers.

So far there has been no discussion of the density
structure in the various models used, Case 35CM2, in
particular. The density structure was always kept con-
sistent with the compressional velocity structure using
the results of Birch (1961), Woollard (1959), and Nafe
and Drake (Talwani et al, 1959) concerning the relation-
ship between compressional wave velocity and density.
Since surface wave dispersion is not very sensitive to

density variations, the density of Case 35CM2 is not
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necessarily very close to the true density structure in
the Basin and Range. For example, the effect of
decreasing the density from 2.92 to 2.71 g/cm3 in a
section 18 km thick in the crust is shown in Figure 13
for the fundamental Rayleigh mode. |t can be seen that
the change in dispersion was not great. The densi{y
structure of Case 35CM2 is, however, a reasonable one.
The most significant contributions to our knowledge
of the Basin and Range provided by this study then are
(1) the first direct determination of the complete shear
velocity structure which prevails there, (2) the first
estimates of the distribution of Poisson's ratio in the
Basin and Range from combined multi-mode dispersion and
refraction data, establishing that Poisson's ratio
departs significantly (particularly between 25 and 50 km
depth) from the value of .25 usually assumed in the
crust, and (3) the inference that a thin (~15 km) high
velocity zone exists at a depth of around 50 km with a
subsequent decrease into a mantle low velocity zone.
These results are all pertinent to a discussion of
isostasy in this region. First of all, the lateral

variations of compressional velocity in the deeper part
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of the crust® (25-50 km) indicated by refraction and the
inference from this study of a low velocity zone at
greater depth points up a very important point regarding
isostatic compensation in general and this region in
particular. The assumption of isostatic compensation
implies that there exists a level in the earth (at
depth H below sea level) above which the mass is éonstant;

H+h
that is, jﬁfﬁ2)dz = constant, where h is the surface
0

elevation above sea level and /°(=2) is the density at
an elevation z above the level of compensation. [t is
most reasonable to expect that if such a level exists, it
will be in or below any zone of weakness, where dynamic
processes (such as plastic flow) leading to a redistri-
bution of mass, can most readily occur. The mantle low
velocity zone duite probably corresponds to such a zone
of weakness.

Therefore, the common assumption in the literature
that the level of compensation is at the Mohorovicic dis-
continuity does not seem reasonable, since the rigidity
(and presumably the strength have a maximum there. In
separate investigations using different assumptions,
Hayford (1909) and Bowie (1917) both concluded that the

most probable depth of the level of compensation in the

*There is considerable controversy as to whether this
zone legitimately belongs to the crust or the mantle.
The USGS has adopted this zone as the beginning of the
mantle. The view taken in this study, however, is that

this zone should be included as part of the crust.
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United States is around 100 km. These results add
additional weight to the statements made above.

Moreover, the strongest lateral variations in
crustal velocities between provinces in the Western
United States seem to occur below a depth of 25 km. There-
fore, if the density varies laterally with these
velocities (as is probable), then the level of com&en—
sation must be at depth of the order of 100 km at least.
Pakiser (1963) used the available refraction data in the
Western United States along with velocity-density
relations of Nafe and Drake, and Birch to compute the
depth of compensation such that the Basin and Range
province would be in isostatic equilibrium with the
Great Plains province. The resulting depth was about
80 km when a constant velocity (and density) was as-
sumed below the Mohorovicic discontinuity.

The inference in this study of a thin high ve]ocity
zone near 50 km depth with an attendant low velocity
zone in the deeper mantle materially relates to the
existing density structure in the lower crust and upper
mantle of the Basin and Range province, assuming that
this region is in isostatic equilibrium with adjacent
provinces. |f the density structure below this high
velocity zone is laterally uniform from province to
province, then the usual relation between velocity and

density cannot hold for the intermediate zone above,
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since the density could not have strong lateral vari-
ations. On the other hand, if the velocity-density
relation holds, then lateral variations in the density
distribution must occur for depths well into the mantle,
perhaps to depths approaching 150 km. The latter inter-
pretation is preferred, since it appears that the
entire upper mantle has been involved In the re?aﬂive]y
recent tectonic activity in the Basin and Range.

The value of .3 for Poisson's ratio in the anemalous
7.7 km/sec section X as suggested by the combined surface
wave and refraction data, greatly reduces the number of
possible materials which may constitute that zone since
the limited data which exist (Molotova and Vassil'ev,
1960) indicate that only a few rock types exhibit such
high Poisson ratios‘(gabbro is one). Therefore, a more
detailed determination of Poisson's ratio in tﬁis zone,
as well as laboratory measurements of Poisson's ratio for
various rock types under appropriate conditions of
pressure and temperature may provide important clues as
to the composition of this zone. The same is true for
other parts of the structure as well.

The existence of the high velocity zone at about
50 km depth has at least two possible explanations in
terms of tectonic history. |t could be a remnant
feature indicating where the Mohorovicic discontinuity
once was, if the ensuing tectonic activity in tbis region

served only to redistribute the upper mantle materials
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into the lower part of the crust. In this case, the
top of the 7.7 km/sec layer should be considered the
Mohorovicic discontinuity at present.

|f, on the other hand, the physical location of
this zone is controlled by the prevaillng pressure-
temperature conditions, it may be that this high
velocity zone once was located at the top of the nbw 7.7
km/sec section and migrated downward to its present
depth during the recent period of tectonic activity and
associated vulcanism. In this case, the 7.7 km/sec
layer would now represent a vestige of a pre-existing
crust-mantie interface.

A comparison of the dispersion results in this
region with the more lTimited data for other paths in
the Western United States was made in order to infer
how the structure changes laterally from one geologic
region to another.

Figure 24 shows experimental phase velocity for the
tripartite array of Pasadena, California; Ruth, Nevada;
and Albuquerque, New Mexico obtained from the Russian
nuclear explosions at Novaya Zemlya. The solid line
shows the phase velocity for Case 35CM2, the best
structure for the Basin and Range pafhs just discussed
(see Figure 17). One sees that the experimental and
theoretical curves agree very well in shape, but not in

absolute value. This means that the relative velocity
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relationships for the crustal layers in Case 35CM2 are
very nearly correct for this region also, but that the
over-all thickness is approximately 10 km too small in
Case 35CM2.

Figure 25 compares observed fundamental mode Love
and Rayleigh wave dispersion for a path from Oklahoma to
Pasadena (see Figure 1) with the data for paths frbm
Montana and Utah to Pasadena. This comparison also
indicates a rather uniform increase in average crustal
thickness for this path compared to the paths confined
strictly to the central Basin and Range.

There is also a strong suggestion that the basic
shear velocity distribution of Case 35CM2 (see Figure 17)
persists southward as far as the southern part of
Mexico. Figure 26 shows the experimental dispersion for
an earthquake in the southern part of Mexico at a depth
of 100 km. All the measurements shown in this Figure
were made by'visual methods, which accounts for the
greater scatter in the data. Nonetheless, the agreement
of Case 35CM2 with this data is remarkable. This sug-
gests that the velocity structure along this path is not
appreciably different from that measured in the Basin and
Range. The temptation, then, is to suggest that Basin
and Range type structure persists as a geologic unit at
least to Southern Mexico.

One additional fragment of evidence exists for this
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‘assertion. For several earthquakes in Mexico, Gutenberg
and Richter (1940) measured apparent velocities of body
waves between stations within the Basin and Range region
having significantly different azimuths from the

source. The distances involved were appropriate for
section X first arrivals. Surprisingly enough, these
apparent velocities were consistently about 7.8 kmysec,
which agrees with the recent detailed refraction

results in the Basin and Range.

The inference from this is that at least within the
region defined by the various azimuths from these events
to the recording stations, the crustal velocity to the
south of the Basin and Range is laterally uniform.

The experimental dispersion points between 10 and
30 seconds period with velocities above 4.0 km/sec shown
in Figure 26 constitute one of the Tirst experimental
measurements of mantle higher mode dispersion for a
continental path. |t is reasonable that this event in
Mexico would excite mantle modes, because the depth of
source was about 100 km, which is favorable for long
period higher mode excitation. The dashed curves shown
are for a Gutenberg-Birch earth model computed by Kovach
(1963). The important feature of that model is its
mantle low velocity zone, which produces the minima
shown in the period range 10-30 seconds. Models without

a mantle low velocity zone do not produce such pronounced
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minima in this range. Since the data indicate even more
pronounced minima than exist for this model, it is sug-
gested that a mantle low velocity zone definitely exists
along this path. A more precise determination of the
dispersion in this period range, however, is necessary
before drawing further conclusions about the details of
such a mantle low velocity zone under this continénta1
region.

Figure 27 shows a comparison of fundamental Rayleigh
and Love mode dispersion for the paths in the Basin and
Range with that for a path along the Sierra Nevada range
from Vancouver, British Columbia to Southern California
and for a path along the coastal region of California
from a source off Oregon. These paths are shown in
Figure 1.

It is evident from this comparison that the pre-
vailing structure in the Sierra Nevada is strikingly
different from that in the Basin and Range and the
California coastal regions. From this comparison one
can conclude, first of all, that the same velocity
relationships do not exist in the Sierras that exist in
the crust of the Basin and Range. In particular there
appears to be no "sedimentary" layer of any consequence
in the Sierras, nor any thick, uniform layer of material
near the top of the section, as exists in the Basin and

Range. Instead, the velocity in the shallower portion



- ho -
- seems to increase gradually with depth, attaining an
intermediate shear velocity (~%4.2 km/sec) at a moderate
depth (~ 25 km). The broad plateau in the Rayleigh

wave dispersion between 25 and 40 seconds and for Love
wave between 28 and 35 seconds indicates the presence

of a very thick section (~ 40 km) of intermediate
velocity material in the lower portion of the cru?t.
This thick section is also responsible for the kihks
observed In the first two higher Rayleigh modes between
6 and 10 seconds period.

At present, a model which agrees well with all the
data for the Sierras has not been found. However, some
structures which are reasonably acceptable are given in
Table 4. These are shown in comparison to the data in
Figure 28. The high shear velocity (4.6 km/sec) is
required at the base of the thick section in order to
produce the observed plateau in both Rayleigh and Love
waves.

The theoretical curves for the higher modes, while
agreeing in shape, are too high compared with the data.
Insertion of a mantle low velocity zone would improve
the fit at the longer periods without seriously
altering the shape in this region.

Therefore, the results of this study give another
indication that a "root" exists under the Sierra Nevadas

extending to a depth of the order of 70 km, where it is
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terminated by high velocity mantle material. Moreover,
these dispersion results establish that this "root" is
a result of an increase in thickness of the intermediate
crustal layer rather than in the "granitic" layer at the
top. However, instead of two distinct crustal units
separated by a strong velocity discontinuity, there
seems to be a gradual transition from one zone to the
other.

The last path investigated was along the California
coast as seen in Figure 1. Figure 27 shows the com-
parison of this data with that from the Sierras and the
Basin and Range. |t is clear from this comparison that
this path has a thinner crust than those in the Basin
and Range or the Sierras. A long reversed refraction
profile between Los Angeles and San Francisco has been
studied by the USGS, (Healy, 1962) which nearly dupli-
cates the path for this event. In Figure 29 the
experimental dispersion is compared to the dispersion
curves for a set of models all of which are consistent
with the refraction data for this path, assuming a
Poisson's ratio of .25. These models are shown in
Figure 30. None of these produces good agreement in
shape with the observed dispersion. |t appears, there-
fore, that in order to fit both the dispersion and
refraction data, Poisson's ratio must be allowed to

vary from a value less than .25 in the upper part of
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the crust to a value greater than .25 in the deeper

structure.
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CONCLUSIONS

The conclusions one can draw from this study
regarding crustal structure in the Western United States
may be summarized as follows:

Throughout the Basin and Range province the
crustal structure is very close to that shown in
Figure 17. The high Poisson's ratio in the zone ffom
25-50 km depth, the thin high velocity layer at about
50 km depth, and the mantle low velocity zone are note-
worthy features of this structure.

The velocity relationships of this model persist
to the southwest of the Basin and Range with an
increase in over-all crustal thickness of about 10 km.
There is also a strong indication that this basic
velocity structure, including the mantle low velocity
zone, persists southward all the way to the southern
part of Mexico.

A very different type of crustal structure exists
in the Sierra Nevada region. Here there is a very
thick intermediate crustal layer extending to a depth
of around 70 km, accounting for the "root" of the
Sierras. No "sedimentary" layer of importance persists
in this region, and the velocity in the "granitic”
layer increases with depth to where it joins the

intermediate layer at a depth of about 25 km. The
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coastal region of California was concluded to have a
shallower crust with Poisson's ratio increasing with
depth.

Considerable variation in Poisson's ratio was
found to occur in the crust in the Western United
States. This means that the common practice of
assuming a Poisson's ratio of .25 to infer crustaﬂ
shear velocity from compressional velocity should be

abandoned.
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ABSTRACT
1

The effects of the transition zone at the contfnenta1
margin of Southern California on Rayleigh wave propagation
have been investigated. Among the anomalous effects dis-
covered are a minimum in phase velocity between 20 and 35

seconds period, different phase velocities on reversed

paths across the same array, and systematic lateral re-
fraction at the continental boundary. These anomalous
effects can be attributed largely to the slope and curva-
ture of the Mohorovic¢ic discontinuity across this region.
An ultrasonic model was constructed to aid in interpreting
these results.

Interpretation of the dispersion for periods below
20 seconds indjcates that the crust thickens toward the
continent with a slope of about 5° attaining a thickness

of approximately 35 km under Southern California.
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PART 11
THE EFFECTS OF THE CONTINENTAL MARGIN
IN SOUTHERN CALIFORNIA
ON RAYLEIGH WAVE PROPAGATION

INTRODUCTION

The purpose of this investigation was to observe the
effects of a transition zone, such as a continental margin,
on Rayleigh wave propagation, and to identify, if possible,
the structural features which produce these effects, and
to determine which effects may be used as diagnostic aids
for studying other transition zones.

This represents a controlled experiment in that some
gravity and refraction data exist for the structure in the
continental margin region of Southern California.

Dispersion, ampljtude attenuation, and direction of
propagation are the parameters which comp]ete]y describe
surface wave propagation across an array, so that effects
on each of these parameters are relevant.

It is to be expected that the results cannot be inter-
preted solely using simple, plane parallel layered structure
models at a continental margin where lateral changes are
appreciable. To aid in interpreting the results for which
only rudimentary theory exists, an ultrasonic model was

constructed and used as an analog device in this study.
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In such a transition zone effects on amplitude and
direction of propagation of Rayleigh waves become more
pronounced, and these may be diagnostic of certain of the
lateral changes, in contrast to the simple layered struc-
tures where dispersion is the only diagnostic surfafe wave
parameter.

Therefore, combined measurements of dispersion,
direction of propagation, and amplitude attenuation of
Rayleigh waves should be used whenever possible for studying
transition zones.

While phase velocity dispersion across such a zone is
not so easily interpreted as for laterally homogeneous
areas, it remains a sensitive measure of crustal structure
when used properly. For this reason strong emphasis was
placed on investigation of effects on phase velocity dis-
persjon during this study.

One important side result of this research was the
programming of experimental phase velocity methods for a
digital computer so that phase velocity dispersion can be

computed rapidly and routinely in the future.
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METHODS OF ANALYSIS

The most important experimental methods for measuring
phase velocity and direction of propagation are summarized
in Eigures 33, 34, and 35. The least squares technique is
the most general and the others can be derived from it. The
relative merits of these and other methods, as well?as de-
tailed requirements for the use of each, are discuséed in
Appendix A.

For most of the dispersion measurements time domain
methods were used. However, frequency domain methods were
used to check the time domain results in a few instances,
as well as to measure most of the dispersion for the ultra-
sonic model. For a more complete discussion of the methods
used for the model experiment, refer to Appendix D.

Computer programs for these methods were written for
the Bendix G-15 and IBM 7090 digital computers. These
programs, described in detail in Appendix H, allow routine
computation of phase velocity dispersion and direction of
propagation, as well as the auxiliary distance and azimuth
information required. Table 3 gives the distances and
azimuths between stations in the Socuthern California network
using these programs.

For the continental sources there exists the problem
of separating the Jlong period fundamental mode Rayleigh

waves from the higher modes so that reliable time domain
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correlation among the stations could be achieved. A method
involving a combination of numerical band pass filtering and
velocity windows was developed for separating the modes. A
detaijled discussion of this method can be found in Appendix F
and Part | of this thesis. An example of the greatieffective—
ness of this method is given by a comparison of Figures 6 and
7. Figure 6 shows seismograms from a single event recorded
at three stations in the Southern California network.

Figure 7 shows the same seismograms after applying the mode
delineation method. [ts effectiveness is apparent. This
method proved invaluable in obtaining reliable results from
the continental sources.

Amplitude spectrum measurements were made by numerically
computing the Fourier transform of the digitized wave train
using a computer program written for this purpose. Appendix
H also contains a description of this program and the inte-
gration me{hods which can be used with it.

Theoretical dispersion curves for various structural
models were computed by means of existing computer programs
previously described in the literature (Press, Harkrider and

Seafeldt, 1960; Harkrider and Anderson, 1961).
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EXPERIMENTAL RESULTS AND INTERPRETATION

Figure 32 shows the locations of stations (solid dots)
avai lable for this study. Records from Benioff 1-90 long
period vertical seismometers at each station were used in
the analysis. These instruments were suitably matched in
phase response (see Appendix E) so that reliable co%re]ation
of each wave train across the array could be achieved.

A number of earthquakes located in the South Pacific
were used to investigate propagation from the ocean to
continent. Table 1 lists pertinent epicenter information
about these events. Table 2 gives similar data for the
continental shocks used to investigate continent to ocean
propagatibn over the same array of stations.

Composite curves showing the average phase velocity
dispersion measured for various coastal tripartite arrays
are shown in Figure 37 where Press's "standard" curves
(Press, 1956) are shown as a frame of reference. The values
shown represent the mean of the values obtained from all
the events from the South Pacific. The standard deviation
of the mean is about .5 percent for periods below 22 seconds
and about 1 percent at the longer periods. Figure 38 shows
a representative set of curves from the use of least squares
for reversed propagation over the array. The length of the
vertical symbol in the case where all stations were simultane-

ously used represents the standard deviation of the mean.
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For periods under 22 seconds, the values for both directions
have standard deviations around .5 percent and many for ocean
to continent propagation were under .3 percent.

Several features are evident from examination of these
two figures. First, for periods below about 22 sec?nds the
dispersion is typical and indicates a systematic change
(thickening) in crustal structure with distance inland. That
is, for arrays where the average thickness of the crust is
shallow, the phase velocity dispersion is consistently higher
than for arrays under which the average crustal thickness
is greater. Figure 39 shows the comparison of the published
results of Shor and Raitt from refraction in the offshore
region of Southern California and the values of thickness
inferred from phase velocity dispersion using Press's
standard curves. While the absdute values of thicknesses
inferred from the dispersion are from 5 to 8 km greater than
those inferred from refraction, the agreement in the slope
of the crust-mantle interfape derived from the two techniques
is good.® The slope inferred from the dispersion is some-

what greater, however.

XThe validity of using these curves to interpret the observed
dispersion in terms of absolute crustal thickness is open to
question, since the assumption of a plane parallel-layered
structure is clearly violated in this region. On the other
hand, changes in thickness can be estimated rather well using
ad jacent arrays, since[?c H,T)] is a slowly varying function
of the total crustal 3 thickness, H. Appendix [ dis-
cusses a modified approach for using the plane-parallel layer
theory to interpret results in regions where the thickness

changes laterally.
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Secondly, from Figure 38 one can see that the velocity
of propagation from continent to ocean is higher than for
propagation from ocean to continent over the same network
in Southern California. This effect is more pronounced
when the individual tripartite arrays near the coast are
used. These results are analogous to refraction re;u]ts
over dipping layers in that the apparent velocity updip is
greater than that for propagation downdip across a fixed
array of receivers.

The mean of the phase velocities obtained for these
reversed directions gives an average crustal thickness
about 2 km less than the values inferred only from ocean
to continent propagation. This adjustment would bring
the values of thickness determined from refraction and
phase velocity shown in Figure 39 into better agreement
without appreciably chaﬁging the slope of the base of the
crust.

Figure 40 shows two Bouguer anomaly profiles, derived
from Emery's published results (Emery, 1959), across two
portions of the region studied. The profiles are defined
by the co-ordinates of latitude and longitude they trans-
verse. These also indicate a gradual (almstlinear) increase
in crustal thickness from the continental slope to the coast
of California.

Theoretical dispersion for the refraction structure of
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Shor and Raitt, assuming a Poisson's ratio of .25, gave
results which agreed reasonably well in shape with the
observed dispersion below 22 seconds period, but which

were consistently above the observed dispersion. Uni-
formly increasing the layer thicknesses of their reﬂraction
model, inserting a thin (5 km) crustal low ve]ocityl]ayer,
or increasing Poisson's ratio in the crust will each bring
the refraction and dispersion results Inté reasonably close
agreement. At the present time there is little to choose
among these alternatives, although crustal low velocity
layers do not appear to be present further inland.

In this regard, shear velocity refraction measurements
would be most useful for resolving the discrepancies between
surface wave and body wave crustal models, since the practice
of inferring shear velocity from compressional velocity,
assuming a Poisson's ratio of .25 almost never leads to
satisfactory agreement between refraction and dispersion
results.

The results discussed above are all consistent in that
they indicate a gradual, almost linear, thickening of the
crust from 300 km offshore to the coastal region of Southern
California. There the slope of the crust-mantle interface
decreases and the crustal thickness is slowly varying as
one goes further inland.

The third striking feature of the observed data is a
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phase velocity minimum, or certainly a knee in the experi-
mental dispersion, which occurs in the period range 20-35
seconds, as shown in Figures 37 and 38. This feature
becomes less pronounced for arrays away from the coast.
Simi lar features for both the Pacific and Atlantic co?ti-
nental margins can also be observed in this period range
in the experimental phase velocity dispersion curves pre-
viously published by Press and Ewing (1959). In their
results, too, this perturbation becomes less pronounced
for arrays further inland, where the structure is pre-
sumably laterally more uniform.

Frequency domain‘determinations of the phase velocity
gave results consistent with time domain méasurements in
the period range of this anomalous feature, as can be seen
in Figure 37.

Experimental errors (Appendix C) are not nearly large
enough to remove this anomalous feature. Moreover, no
prominent "holes" occur in the spectrum of the Rayleigh
waves in this period range, as can be seen from Figure 42,
where typical spectra for events from the South Pacific are
shown. The reason this point is important is that peculiar
phase velocities have often been observed for periods cor-
responding to minima in the amplitude spectrum, particularly

when these minima result from interference. (Pilant, 1962).
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Therefore, it was concluded that this anomalous feature in
the dispersion was real. This naturally brings up the
question of how to explain this curious result.

First of all, the theory for plane parallel layer
structure does not predict a minimum in phase ve]ocgty
dispersion; at most a flat plateau can occur. Theréfore,
the existence of this minimum indirectly indicates fhat
lateral changes in crustal thickness are at least partly
responsible for this feature. The fact that, for arrays
progressively further inland (where the crustal thickness
becomes laterally uniform), this feature becomes less pro-
nounced gives another indication that the rapid lateral
changes of the crust at the continental margins are res-
ponsible for the anomalous dispersion.

No adequate theory exists at present which gives the
Rayleigh wave dispersion for geometries ofher than flat
lying layers. These problems are exceedfngly difficult to
solve exactly (or approximately) even for the simplest case
of a lateral linear increase in crustal thickness.

Therefore, it was concluded that the study of an analog
model would be the most fruitful approach to explaining
these anomalous features. 'Using the available refraction,
gravity, and surface wave data for a guide, an ultrasonic
model was constructed which approximates the geometry, as

well as the ratio between the mean crustal velocity and the
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mantle velocity, for this region. The shape of this model
is shown at the bottom of Figure 45. This is the analog
of a crust which thickens with a constant (5 degree) slope
from a thickness of 10 km to 40 km. In this particular
analog model the period in microseconds corresponds directly
to the period in seconds in the earth. For a detai#ed
account of how this model was constructed and how the results
were obtained refer to Appendix D. Figure 45 summarizes
the dispersion results for this model, for various station
arrays on the model. The solid curves are the plane-layer
theory for a layer over a halfspace where only the thickness
of the layer is changed.

The agreement between the measured and theoretical
values outside the transition zone is very good as shown
for the curves H=.25 and H=1.0 in this figure. For pro-
files entirely within, or partly within, this transition,
however, certain important departures from the theory were
observed.

First of all for arrays completely in the transition
zone (where the underlying slope is linear) the velocity
of propagation updip was higher than for propagation down-
dip. At the shorter periods the mean of these velocities
fell on the theoretical curve appropriate for the mean
thickness beneath the array. (Profiles 22-27 in Figure 45,

for example).
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When the array was partly in and partly out of the
transition zone (that is, when it spanned the section where
the slope changed) certain anomolous results were obtained
at the longer periods ( > 20 4sec). In these instances
there was a pronounced flattening in the dispersion curves
between periods of 20 and 40 micro-seconds for bothgdirections
of propagation and in one or two cases a slight minimum
occurred. (Profiles 25-29, 26-29 in Figure 45, for example.)

Below 204 seconds period the dispersion followed the
typical pattern of decreasing uniformly as the mean thickness
over the array increased. This was true even when the mean
thickness was only slightly different (Profiles 23-29, 25-
29, and 26-29 in Figure 45). Below 20 Mseconds the velocity
was different over reversed profiles, but not so pronounced
as ‘when the profile was Complete]y inside the transition
zone (Profile 25-29 in Figure 45, for example).

These results are highly suggestive that the different
phase velocities observed on a reversed path in Southern
California are a result of the slope of the crust-mantle
interface and that the anoma@lous dispersion beyond 22
seconds period is due to changes in the slope of this
interface beneath the arrays in Southern California. This
would explain why these anomolous effects are less pro-
nounced or absent away from the continental margins in

laterally more homogeneous areas. In the model this effect
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is most pronounced for wave lengths from 3 to 5 times the
mean depth of the layer-halfspace interface. By analogy,
the same features should be observed for approximately
this range of wave lengths in the earth. The ranges of
wave lengths where the anomaly occurs in Southern California
is from about 80 to 150 km, which is approximately ;he
range of 3-5 times the mean crustal thickness in this region.
It is clear that only the shorter period ( £ 22 seconds
in Southern California) phase velocity dispersion gives a
reliable indication of how the crust is changing in a tran-
sition zone when conventional interpretation is used. In
both the experimental results and the model results the dis-
persion in this shorter period range, without exception,
reflected the systematic increase in crustal thickness by
a corresponding decrease in phase velocity.
However, if the foregoing conclusions concerning the
anomalous features of the dispersion in this transition
zone are correct, it means that it will also be possible
to use these peculiarities of phase velocity dispersion
to detect the presence of a tapering crust, to locate
sections where the slope of the crust-mantle interface
changes, and to determine the approximate depth at which
these perturbations in crustal thickness occur.
Therefore, phase velocity dispersion should be a very

practical means of studying lateral changes of the crust
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at the continental margins of other areas. One could then
determine the similarities and differences in the continent
to ocean transition zone from one area to another. Such
studies might furnish important clues to the geologic pro-
cesses which lead to the formation of continents as well

as those which maintain the continents in their preEent
position.

In addition to dispersion, one other aspect of surface
wave propagation is useful in investigating transition zones.
That feature is lateral refraction of surface waves for
oblique incidence on a velocity boundary. This refraction
follows Snell'!'s law and is controlled by the phase velocity
in the two regions. A more complete discussion of lateral
refraction of surface waves is given in Appendix B.

Because direction of propagation is computed as a by-
product of phase velocity measurements, the refraction as
a function of frequency can be experimentally measured
simultaneously with the phase velocity, provided the
dIréction of propagation of the incident wave can be de-
termined.

In the present study limited use of lateral refraction
could be made since the angles of incidence were small
(< 20 degrees), and there was no sure way of determining
the exact angle of incidence on the boundary. |t could

only be assumed that every frequency in the wave train had
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the identical angle of incidence on the boundary and that
this direction corresponded to the geodesic direction back
to the source.

An attempt was made to check the validity of this as-
sumption by examining the group velocity data for tpe
Pacific which was recently published by Santo and Bch
(1963). Their data indicates that over the entire range
of geodesic paths to Southern California used in this study,
the oceanic crust is relatively uniform and has high group
velocity compared to adjacent regions. This means that the
least time path should correspond rather closely to the
geodesic path for the events used in this study. The group
velocity of one of the events used is shown in Figure 43.
The lines bracketing the data in this figure represent the
limits of group velocity for the range of possible paths
to the United States from the source region of interest here.
These limiting curves aretaken from the results of Santo
and B8th (1963), just mentioned.

Therefore, the angle of incidence at any point on the
continental boundary can be expected to coincide reasonably
closely to the geodesic direction back to the source for
all the events used in this study.

In spite of these possible uncertainties, the observed
direction of propagation showed a systematic variation such

that for propagation from ocean to continent the waves always
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appeared to come more nearly from the normal to the con-
tinental boundary. There was some dispersion in this sys-
tematic refraction, in that waves of about 40 seconds
period and above were essentially unrefracted, as were
waves at about 15 er 16 seconds period, while interpediate
periods were refracted several degrees depending Gn1the
angle of incidence at the boundary.

The fact that perieds above 40 seconds were hardly
refracted at the boundary implies that the sharp differ-
ences in velocity between oceans and continents are super-
ficial, since with increasing period, the waves are
sampling the structure to progressively greater depths.
The lateral differencesin velocity between oceanic and
continental structure are a maximum at the intermediate
depths (10-50 km), since the intermediate periods which
"feel" the velocity at these depths most strongly, are
refracted most in traversing the continental boundary.

However, the vanishing refraction around 15 seconds
period (indicating no velocity contrast) points up the
danger of associating velocity with composition in the
earth. Clearly the shallow (top 10-20 km) material in
the oceans is vastly different from that in the continent.
Yet for certain periods (in this case around 15 seconds)
the average velocity which the wave "sees" is the same for

both oceanic and continental propagation.
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Similar refraction effects were observed for events
propagating from the continent to the ocean, except that
the refraction was away from the normal to the boundary,
as expected for an average crustal velocity increase toward
the ocean. |

A method for using the lateral refraction of surface
waves to experimentally determine the strike of linear
features was developed. Basically, it takes advantage of
the fact that the sma]ler~the angle of incidence, the smalle the
deflection from the incident direction of propagation.

This method is described in detail in Appendix B and sum-
marized in Figure 44. When applied in Southern California,
the strike of the velocity boundary between continent and
ocean was found to be about N30W, which agrees reasonably

well with the strike of the continental slope, shown dotted

in Figure 32.
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CONCLUSIONS

It may be concluded from this study that the crust at
the continental margin of Southern California increases
in thickness toward the continent with a slope of about
5 degrees, achieving a thickness of approximately 35 km
under Southern California proper. %

Over transition zones where the crustal thickness
varies rapidly, only the shorter period (< 20 seconds)
portion of the dispersion curve can be used reliably to
determine lateral changes in crustal thickness, using con-
ventional interpretations of dispersion data.

The anomalous feature of the observed dispersioan,
that the phase velocity in opposite directions over a fixed
array is different, may be attributed to a sloping crustal-
mantle interface at the continental margin.

The pronounced minimum, or kink, in the observed dis-
persion in the period range 22-35 seconds may be atiributed
to changes in the slope of the Mohorovidié discontinuity
under the coastal region of Southern California. This
anoma lous feature in the dispersion appears to occur for
periods corresponding to wave lengths 3 to 5 times the mean
depth of the perturbed interface.

Lateral refraction of surface waves at the continental
marginrindicates that the strong lateral variations in

average velocity which occur in the transition from oceanic
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to continental crust do not persist to great depth in the
mantle under Southern Californija.

Lateral refraction of surface waves can be used to
determine the strike of linear features in the earth. In
Southern California the strike of the continental m@rgin

was found to be about N3OW.
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TABLE 1

SUMMARY OF OCEANIC SOURCES USED

) Origin
Date Location lat.| Long. Time Mag.
1957
Dec 17 E. Santa Cruz Is | 12§ | 167 E | 13:50:05 73 b
1958
May 31 New Hebrides Is 15 S 169 E 19:32:30 '
Aug 6 W. Tonga Is 17s | 173w | 21:09:09 63/1
Aug 20 New Hebrides Is 14 s 167 E 09:40:07 64-6%
Sept 22 | Kermadec s 331s | 1774w | 19:05:4k4 6
1959
Apr 12 Samoa |s 1535 173 W 20:54:00 6-6%
May 31 Solomon Is 635 155 E 00:28:09 6%
Aug 24 Solomon |s 103S 161 E 21:30:46 7
Sept 1k Kermadec Is 281s 177 W 14:09:39 7Y L
Sept 29 W. Kermadec Is 29 S 1763W 15:31:57 %-63/4
1960
Mar 8 New Hebrides Is 165S 168%1E 16:33:38 7-7%
1961
July 6 New Hebrides Is 20 S 169 E 22:09:31.4 | 6%
Aug | Solomon Is 9.85 | 160.5E| 05:39:53.2 | 63-63/L
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TABLE 2

SUMMARY OF CONTINENTAL SOURCES USED

Origin
_ Lat(N) [Long(W) Time Dept
Date Location (Deg.) | (Deg.) (6eT) Mag. (km)
1962 i
Aug 30 Utah 41.8 111.8 13:35:28.7 5374-6 37
Sept 5 Utah Lo.7 112.0 16:04:29.0 5.0 14
1959
May 2L Oaxaca, Mex | 17.5 97.0 19:17:40.0 | 63/4-7 100
Aug 18 Montana LL 81 111.07 06:37:15.0 7.1 25
3.3
Aug 18 Montana L5.0 111.0 07:56:18.0 6.5 25
Aug 18 Montana LL .3 110.7 08:41:50.0 6.0 25
Aug 18 Montana L. 8 11,1 11:03:52.0 53-5¥L 25
Aug 18 Montana Lk 88 110.73 15:26:06.5 6% 25
Aug 19 Montana Lh 9 111.63 04:04:03.0 6 25
Sept 26 Oregon Cst. 43,5 128.5 08:20:51.0
1956
June 28 Vancouver Is.| 148,75 129.25 22:58:50.0 62-6% 25
1952
April Oklahoma 35.38 97.78 16:29:34 4
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TABLE 3

DISTANCES AND AZIMUTHS BETWEEN STATIONS
IN SOUTHERN CALIFORNIA

LATITUDE(N) LONGITUDE(W) DISTANCE DISTANCE AZIMUTH

STATION deg min sec deg min sec (Deg) (km) (Deg)
Barrett 32 4o 48.0 .116 Lo 18.0

St. Nicholas 33 15 00.0 .119 31 24.0 2.463 274.0 284 .1
Palos Verdes 33 45 30.0 .118 21 24,0 1.775 197.4 307.7
Pasadena 3L 08 s54.0 .118 10 18.0 1.928 214 .4 319.8
Riverside 33 59 36.0 .117 22 30.0 1.436 159.7 [ 336.0
Palomar 33 21 12.0 .116 51 42.0 .690 76.8 346.7
Hayfield 33 L2 24,0 .115 38 12.0

St. Nicholas 33 15 00.0 .119 31 24.0 3.280 36L4.8 263.1
Pasadena 34 08 s54.0 .118 10 18.0 2.153 239.5 282.5
Riverside 33 59 36.0 .117 22 30.0 1.475 16L4.0 281.7
Palomar 33 21 12.0 .116 51 42.0 1.082 120.4 251.3
Barrett 32 Lo L48.0 .116 Lo 18.0 1.342 149.3 220.6
Tinemaha 37 03 18.0 .118 13 L2.0 3.955 L439.8 328.L
Palos Verdes 33 45 30.0 .118 21 24,0 2.267 252.1 272.1
Palomar 33 21 12.0 .116 51 42,0

St. Nicholas 33 15 00.0 .119 31 24.0 2.231 2L8 .2 268.1
Palos Verdes 33 45 30.0 .118 21 24,0 1.312 145.9 288.3
Pasadena 34 08 s54.0 .118 10 18.0 1.349 150.0 306.4
Riverside 33 59 36.0 .117 22 30.0 . 768 85.5 326.3
Barrett 32 Lo 48.0 .116 L0 18.0 .690 76.8 166.6
Tinemaha 37 03 18.0 .118 13 L2.0 3.858 L4291 343.5
Palos Verdes 33 45 30.0 118 21 24.0

St. Nicholas 33 15 00.0 .119 31 24L.0 1.098 122.2 242.8
Pasadena 34 08 54,0 .118 10 18.0 418 L§ .5 21.5
Riverside 33 59 56.0 .117 22 30.0 .8L9 94.5 7137
Palomar 33 21 12.0 .116 51 42.0 1.312 145.9 107.5
Barrett 32 Lo L48.0 .116 Lo 18.0 1.775 197.4 126.8
Tinemaha 37 03 18.0 .118 13 42.0 3.290 365.9 1.8
Pasadena 3L 08 tL4,0 .118 10 18.0

St. Nicholas 33 15 00.0 .119 31 24.0 1.439 160.1 231.9
Palos Verdes 33 45 30.0 .118 21 2L.0 418 Ls .5 201.6
Riverside 33 59 36.0 .117 22 30.0 .679 75:5 102.9
Palomar 33 21 12.0 .116 51 42,0 1.349 150.0 125.6
Barrett 32 Lo L8.0 .116 40 18.0 1.928 2144 139.0
Tinemaha 37 03 18.0 .118 13 L2.0 2.900 322.5 359. 1
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TABLE 3 (Cont.)

DISTANCES AND AZIMUTHS BETWEEN STATIONS
IN SOUTHERN CALIFORNIA

LATITUDE(N) LONGITUDE (W) DISTANCE DISTANCE AZIMUTH

STATION deg min sec deg min sec (Degq) (km) (Deg)
Riverside 33 59 356.0 .117 22 30.0

St. Nicholas 33 15 00.0 .119 31 24.0 1.939 215.7 248 .1
Palos Verdes 33 45 30.0 .118 21 24.0 .8L4g 94.5 254.3
Pasadena 34 08 s54.0 .118 10 18.0 .679 7h.5 283.L4L
Palomar 33 21 12.0 .116 51 42.0 . 768 85.5 | 146.0
Barrett 32 Lo L48.0 .116 LO 18.0 1.436 159.7 155.6
Tinemaha 37 03 18.0 .118 13 L42.0 3.133 348.4 347.4
St. Nicholas 33 15 00.0 .119 31 24.0

Palos Verdes 33 45 30.0 .118 21 24.0 1.098 122.2 62.2
Pasadena 34 08 54,0 .118 10 18.0 1.439 160.1 51.1
Riverside 33 59 36,0 .117 22 30.0 1.939 215.7 66.9
Palomar 33 21 12.0 .116 51 L2.0 2.231 2L8.2 86.6
Barrett 32 Lo 48.0 .116 Lo 18.0 2.463 274.0 102.6
Tinemaha 37 03 18.0 .118 13 L2.0 3.941 438.3 15.2
Tinemaha 37 03 18.0 .118 13 L42.0

St. Nicholas 33 15 00.0 .119 31 24.0 3.941 438.3 196.0
Palos Verdes 33 45 30.0 .118 21 24.0 3.290 365.9 181.9
Pasadena 34 08 s54.0 .118 10 18.0 2.900 322.5 179.1
Riverside 33 59 36.0 .117 22 30.0 3.133 348.4L 166.9
Palomar 33 21 12.0 .116 51 L2.0 3.858 L29.1 162.7
Barrett 32 Lo L48.0 .116 Lo 18.0 L 5hL8 505.8 163.2
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TABLE 4

SIERRA STRUCTURES

Case S 70
Layer Compressional Shear i
Thickness Velocity Velocity | Density
D(km) a(km/sec) B(km/sec)| p(km/sec)
L.o 5.10 3.00 2.50 |
L. o 5.73 3.40 2.67
5.5 5.93 3.60 2.72
7.0 6.33 3.70 2.78
2.0 6.33 3.85 2.85
16.0 7.40 L.10 3.20
16.0 7.40 4,10 3.20
15.0 7.40 L.10 3.20
e 7.97 L. 60 3.40
Case S 55
ThLaier Compressional Shear D
ickness Velogity Velocit ensity
D(km) a(km/set) B?km/seg] p(km/sec)
L.o 5.10 3.00 2.50
L. o .73 3.45 2.78
5.5 5.9 3.60 2.78
7.0 6.33 3.70 2.78
3.0 6.33 3.85 2.78
16.0 7.59 L. .25 3.20
16.0 7.59 L. 25 3.20
20.0 7.58 L, 25 3.20
oo 8.10 L. 65 3.47
Case S 10
Layer Compressional Shear ]
Thickness Velocity Velocity Density
D(km) a(km/sec) B(km/sec) | p(km/sec)
3.0 5.10 2.94 2.60
15.0 5.5 344 2.67
10.0 6.40 3.65 Z. 70
25.0 6.93 L.02 3.00
oo 7.98 L.50 Fwld
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TABLE 5

INSTRUMENT CALIBRATION
GALVANOMETER (OR PENDULUM) DAMPING

O%o) = A
Qo) =0
_Aagf
B =Ae sinh (147=; w5¢)
Wy Var=s
max[ow] = 0 t,= Eh () 7
Vived 27 z
o T[t)l"] T;E% 73290 T;z%
.9 | g « 75 14,85 15.7 16.6
.0 1.0 .158 13.5 14.3 15.1
.05 .98 .156 13.3 14,0 14.8
N .965 .1533 13.1 13.8 4.6
.2 9L . 1492 1275 13.45 14.2
+3 4912 145 12.35 13.05 13.8
L .885 . 1408 12,0 12,65 13.4
5 .86 PRL 11.65 12,3 13.8
.7 .82 « 430 1.1 {1 1245
+0 . 766 o h22 10.4 11.0 11.6
.0 .641 .102 8.7 9.16 9.7
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APPENDIX A

EXPERIMENTAL MEASUREMENT OF PHASE VELOCITY DISPERSION

In the following paragraphs a summary of the techniques
available for experimental measurements of phase velocity in
both the time domain and frequency domain are givenﬁa]ong
with some of the requirements and assumptions invoIQed in
each.

[. TIME DOMAIN ANALYSIS

A. Recording Conditions

To obtain phase velocity dispersions from records in
the time domain alone, several conditions of recording must
be met.

(l) The three or more stations used must have
approximately matched instruments so that crests, zeros,
and troughs may be reliably correlated across the array.

(2) The dimensions of the array must be of the
order of a wave length for the shortest period of interest
so that phase correlation is possible.

(3) Timing must be accurate enough to give the
desired precision in phase velocity.

(4) Distances and azimuths between stations must
be accurately known.

B. Data

(1) Correlate and successively number extrema

(crests, zeros, troughs) across the array such that extremum
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number k at one station is also extremum number k at each
of the other stations. (K/4% = 0,1,2,3,.... when zeros,
crests, and troughs are all used.)

(2) Measure the arrival time of each extremum
and plot arrival time versus extremum number at each
station. For a given phase® the slope of this curve gives
its period. Horizontal components of Rayleigh wave% may
be included to give a composite curve, if the extremum
numbers are changed by * to allow for the N/2 phase dif-
ference between the horizontal and vertical displacements.
The period to be associated with the phase velocity of a
particular crest, zero, or trough is the mean of the indi-
vidual periods from all the stations for that phase
(Savarensky, 1959, pp. 1106).

(3) Choose the mtM station as a standard and

apply a correction to the arrival time of the kth peak at

the ith station given by KEM,L: [,‘7? ¢(k7?) —g—/:ﬁwf:ﬂérf‘ (’)

where ij is the period of the kth peak at the i th
station and qjajf) is the instrument phase delay in
radians for period kTi‘ It should be noted that if there
is dispersion, this correction, in general, cannot be zero,

even if the instruments are perfectly matched, since

lc # Tm 4ﬂ(k7¢_) # ¢[k7;) and (ﬂ[ﬁ# ConsTANT.

Ty phase is defined as any feature on the seismogram which
can be correlated from one station to another, such as a peak,
zero, trough, impulse, etc. In this case a single period

may be assigned to each phase.
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Instrument mismatch also is taken into account by this
correction.

(4) Compute the distance and azimuth of each of
the stations from some arbjtrarily chosen "pseudo-origin.”
for the tripartite method distances and azimuths between
stations are required. [t is useful to know the distances
and azimuths from the epicenter as well, as will be?seen
presently.

Since the method of computing phase velocity assumes
plane wave fronts, errors occur because this assumption
is violated for earthquake or explosion sources. In most
cases only distant events are used so that this effect is
not important. However, a correction can be made to take
curvature of the wave fronts into account. The center
station of the array (with respect to the source) is taken
as a standard and a correction to the arrival times of
corresponding phases at other stations is applied.

This correction can be approximated by

t = dr. /C (22)
di= B[ -2+ )] (28)
Where
¥ = mean of the epicentral distances of the
reference station and the jth station
D; = mean arc distance from the reference station

to the jth station given by T,QG-°Q

th

= azimuth from j station back to source

o1 2

= mean phase velocity for the phase being measured
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Another more precise way of correcting for this effect
is to form a pseudo-array by modifying the station co-

ordinates in the following way:

P = S.ﬂ *
@J CJOJ +d5 % (pseudo-longitude of jth station)
@J = g +diycos (pseudo-latitude of jN stiation)
where
q% = true longitude of jth station
é& = true geographical latitude of jth station
o4 = azimuth from ((E)QJ) back to the source
dg = same as in equation 2b above

This correction modifies distances between stations
so that the curved wave fronts are effectively plane.
This correction is the most accurate of the two suggested,
although more computation is required, since distances
between stations must be recomputed for each event analyzed.

Some caution should be exercised in applying this
correctjon when the travel path from the source to the array
traverses transition zones, because lateral refraction
effects may significantly alter the location of the
"effective" epicenter (see Appendix B).

C. Methods

Given data in the form described above, it is then

possible to compute the phase velocity by one of the



- 87 -
following methods.

(1) One Station Method

Using a single station, phase velocity may
be computed for either (a) multiple transits of the same
wave train around the earth, or (b) wave trains for which

the initial phase at the source is known or assumed.
!

Then
C(T) = k’;——‘ (3)
where
Y = geodesic distance around the earth for (a)
above, or epicentral distance for (b) above
&L = travel time of kM extremum around the
earth for (a) above, or travel time from
the epicenter for (b) above, including
initial phase at the source.
%i = average period of the kN extremum

This method has the advantage of simplicity and
no requirement of plane wave fronts.

It has the disadvantages that it assumes the
surface waves follow a geodesic on the earth's surface,
that averaging the periods in case (a) may introduce sig-
nificant errors (Savarensky, 1959), and that it requires

knowledge or assumption of initial phase at the source.
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(2) Two Station Method

Using any two stations not equidistant from

the source the phase velocity of the jo = extremum is given
by
== : -Y,
CA%] & o (4)
where |
. = epicentral distance of it station
(L. = arrival time of kKt extremum at ith
station
ii = average period of kth extremum

Advantages of this method are that the
numerical calculation is simple and that thé wave fronts
need not be plane.

Disadvantages are that the direction of
propagation to each station is assumed to be along a geo-
desic, when often this is not the case, it assumes no
azimuthal variation of initial phase at the source, and it
assumes no azimuthal difference in velocity over the dis-
tances Y, for the two azimuths involved. These disad-
vantages are minimized if the &wo stations are on the same

azimuth from the source.

(3) Tripartite Method

Using any array of three non-colinear stations —

across which phases can be correlated, the phase velocity
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and direction of propagation can be determined for that
array by the technique described in Figure 33. The first
to apply this technique was Press in a study of crustal
structure in California (Press, 1956).

The phase velocity of the kth phase is

given by
C _ A, Sen A Dz sirn (A + o) i
- _— —
& KL/Z k?:.?
and the direction of propagation by (5)
=/ S
= 4
HK 217 k?:ZA’B b CDSO(
gz‘.;gAlL
where
Z&u = distance from station 1 to station i
(i = 2, 3]
;Ei - measured travel time of kth phase from

station 1 to station i, corrected by

€

iLis as defined in equation 1 above

L
I

angle between stations 2 and 3 measured
from station 1

Basic assumptions in this technique are (1)
that the wave fronts are plane and (2) that the underlying
structure is laterally homogeneous over the dimensions of
the array.

Advantages of this method are (1) that one
need not know the source location, (2) direction of propa-
gation is measured rather than assumed, (3) greater pre-

cision in phase velocity results from the fact that distance
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between stations can be more accurately determined than
epicentral distance, and (4) the average period of each
phase is determined from three measurements instead of two.

Disadvantages are that no measure of pre-

cision can be assighed to the phase velocity and direction
of propagation and no check is available on the assumption
of homogeneity and plane wave fronts.

g
(4) Least Squares Method

Given the arrival time of a particular phase
and the geographical co-ordinates appropriate for each
" station of a multi-partite array of N statiom,the best (in
the least squares sense) phase velocity and direction of
propagation for that phase hay be determined, as well as
an error estimate for each.

The idea was first used by Aki in a study of
dispersion in Japan (Aki, 1961). With minor modifications
the technique is summarized in Figure 34. The arrival

time of the kth phase at the ith station is given by

e =) . sin &,
. = A;Coso L2955k 4 A -Siney + .
S S S T ATy ¥ 5 (6
= N * b"y + ¢ Z
where
A: = distance of the ith station from an arbi-

trary pseudo-origin

o = azimuth of the ith station from the pseudo-
origin
qk = predicted arrival time of the kth phase at

pseudo-origin
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8, = direction of propagation of kth phase

across the array

Ck = phase velocity of Kth phase across the
array
X 1 c os 6k
Cr
y =  Si7 Ek
Ci
z = L
Therefore,
=7
Qk = tan ()%()

(7)

standard deviation of X

~7

H

M
pra—
£

[ L]

K lc‘\
SN——
Y

N~

X(qﬂu~~,uﬂ5 ¥ (x,%2

_ =, ol .
= lui average period
Te N

The advantages of this method are that
(1) it gives error estimates for phase velocity and direc-

tion of propagation, (2) a;s b.

;> and c in equation 6

above, being independent of direction of propagation, are
determined once for all, so that subsequent events require
measurement only of arrival times of phases correlated

across the array, (3) the average period Tk, determined
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from N measurements, is more reliable, (4) it affords an
opportunity to check the assumption of lateral homogeneity
and plane wave fronts by replacing a station by the "pseudo-
origin" and determining the difference between the predicted
and observed arrival time of each phase, and (5) all those
previously mentioned for the tripartite method.
Disadvantages are that the computét]on
requires either a high speed digital computer or much

laborious hand calculations.

[I. FREQUENCY DOMAIN ANALYSIS

A. Data Requirements

To compute phase velocity in the frequency domain
the following data requirements should be satisfied.

(1) Digital samples of each analog signal at
intervals At such that the shortest period visible on
the record is 2 2At. This minimizes errors due to aliasing
(Blackman and Tukey, 1958).

(2) The beginning time t] and ending time t2

should be such that there is zero signal for t £ t] and

for t2 t2. This insures that at each station all of the
transient signal is-included for the computation of the
Fourier transform.

When more than one dispersed wave train is
included in t2-t], certain digital filtering operations
(described in Appendix F) can be performed to insure that

only one mode is analyzed at a time. This is important,
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since the Fourier transform will mix the phases from two
such transients and lead to serious errors in phase
velocity.

(3) Instrument phase response at each station
must be known as a function of frequency.

(4) Relative time among all the stations must
be known very accurately; hence, some time standard must
be established which is common to all the stations.

(5) The co-ordinates (latitude and llongitude)
must be accurately known for each station, so that the
necessary distances and azimuths can be computed.

B. Methods

A1l the methods in the frequency domain are
identical to those in the time domain when the travel
time of a particular phase of average period T between

stations is replaced by

. L 5 g
§t, = t:—% + 7 [T p(7) 2 N, (8)
where
t; = the time (with respect to some standard

common to all the stations) of the first

digital sample at the ith station

t; = the time (with respect to the same standard
as ti) of the first digital sample at the

jth station
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42@7= observed phase (fractions of a circle)
with respect to ti at the ith station
minus the instrument phase for period T

at the ith station

observed phase (fractions of a circle)

with respect to tj at the jth station

@.7)

minus the instrument phase for periéd T
at the j statjon
N@ = arbitrary integer, which, once determined,

remains fixed for all T

To show that this transformation is valid, consider
the propagating transient wave train at a distance r from

the source and represent it (Sato, 1955} by

oo . - F (w)
£l r= ) Flope G C—(:)) . é?;‘-r (9)
where
Flwr) - amplitude spectrum at distance r
Clw) = phase velocity dispersion
/A (w) = initial phase at the source
W = frequency (radians/sec)

Then the Fourier transform of f(t,r) with respect to

time is given by

= Wt [ Witw)
ff(-z‘)r)e_ dt = Alur)e

B L Blw) + anTT] (10

" = Flwp) e~ CE
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Thus taking the ratio of the transforms at two

stations, the it angd jth, say, one obtains

F{w, 5-) ed[“f(ﬁ‘ -'ﬂ/(/u) 1-177/0‘--7;-)]-_ ,4’/41,»;-) 6‘-[yf'g,)-k‘[/u?7( .
= Alar)

~ (w, V‘)

Note that the initial phase at the source cancels.
f

Equating the phases in equation 11 (assuming F(w,r) and

A(w,r) are real for all r) and solving for C(T) one‘gets

. _nh
e T[(Lg{r}—}{(ﬁ)/w iM&]

(12)

where
M;;':)Z.‘"nf = an integer
i £ = perijod

To get equation 12 in a more tractable form for

computational use one can rewrite equation 10 as follows

ot B D
it - ;'uZ‘ -t -7
flyrie d¢ = e e dr
tx.

o

o .-.'.'(»Jf

s ﬂujr)-wt] (13)
= Hlwrle
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where
T =T = t]
D = duration of the transient f(t,r) which has
the property that it is identically zero

for t £ t1 and for t 3-t1 + T at distance r

Therefore, equating the phase in equation TO'wgth

that in equation 13 and substituting o = Enﬁ‘ one gets

_Vr[izyo = 40(73T) - f?%*
27

(14)

so that equation 12 becomes

V-5

L) = ot + TP -Plr) 2N, ) (15)

whereX
ti = (tT)i time of first digital sample at
ith station
t, = (t])j time of first digital sample at

it station

Hence, it can be seen that equation % in the time

domain and equation 15 are connected through equation 8.

*Note that 4& is the phasg obtalned when the Fourier
transform is defined by fﬂﬂc :Jf . If g% were
used, then

CR‘(W ‘*‘%(“J in equation 15.
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For a multi-station array of L stations one should
choose one station as a standard, say the mth station,
and determine the ij (all j#£m). Then the 6tmj(T) can
be determined and used in any of the time domain formulas
previously given in this Appendix. In the least squares

th

formulation set the arrival time at the m station to

{
zero and use 6tmj(T} for the arrival time of period T at

the jtN

station.

When uncontaminated wave trains are available, fre-
quency domain analysis is preferable, since it involves
no errors in determining the period and allows exact
correction for instrumental phase delay. Frequency
domain analysis is essential for computing dispersion
for cases where the group velocity dispersion is slight,
such as the mantle G waves. [t is also essential when
the dimensions of the array are so large that phase cor-
relation in the time domain is not reliable, as well as
when the instruments used are not matched.

In addition, frequency domain analysis provides the
amplitude spectrum of the signal as a byproduct of the
phase determination.

Disadvantages are the necessity of a high speed
digital computer, the necessity of analog to digital con-
version, and the danger of phase distortions being intro-
duced when more than one transient (such as a higher mode)

is included in the time series analyzed.
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APPENDIX B

LATERAL REFRACTION OF SURFACE WAVES

[f a surface wave is obliquely incident on a boundary
S separating regions of different velocity structure, this
wave is laterally refracted in a manner governed by the
phase velocities in the two regions (Stonely, 1934;5
Evernden, 1954). The signal arriving at a station B

from a source at point A across the boundary is given by

” cuw(t = Tew V)
Jr Jwige) e dwds (1)

S -
where
%(GD = source function of azimuth
f(w) = source function of frequency
C,(w) = phase velocity in 1st medium
C}(w) = phase velocity in 2nd medium
Y; = epicentral distance from A to intersection
with boundary S
Y. = distance from intersection of r] and S to

station B
Making equation 1 stationary with respect to w and
s, assuming f(w) and g(@ ) are slowly varying functions

of w and s, gives
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d_[wét-rnG-rngw] =t- r, & (e ) -1 2 (16,0

= ¥ :
=t //w) U(u) = p (travel time) (2)
_ef_! e T - 3 A dr £ dn
T B v, €, (w) v;é;(uQ] = ) Zs -pﬂC1 = 0

(lateral refraction) (3)
|

If S is a linear boundary, then dY‘_,. = Senot, ?5—5‘;‘;,
ds ®

so that equation 3 above becomes

Sl;ﬂ ’:1 = sen lz'
¢, (w) &, (w)

Since in general C](w)/CQ(w);fconstant, the angle
of refraction i2 is a function of w, so that the spectrum
of i](m)-ig(m) is a measure of the relative phase velocity
contrast between the two regijons.

For more complicated geometry equation 1 may be
appropriately evaluated to determine the distortion of
each wave front due to crossing the boundary S. This
type of analysis would be pertinent in studies of beat
phenomena and other complications often observed in the
surface wave portion of seismograms.

Strike of Linear Features

In the case where the boundary S is linear and r is
sufficiently great that the wave fronts may be considered
plane, one can use the measured refraction of surface

waves to determine the "strike" of the boundary S, as well
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as to assign a lower bound on the phase velocity in the

other region by a technique which is outlined in Figure 4,

The angles Bi(w) are obtained from the difference
between the measured direction of propagation and the
geodesic direction back to the source. The intersection
with the o¢ axis gives the strike of the boundary for each
frequency. E

In this way the orientation of the velocity boundary
with depth may be inferred, since the depth sampled by
surface waves is frequency dependent.

Once the strike of this boundary is determined, thenp
a bound on the phase velocity in the medium containing the
source can be obtained. [f the location of one point on
the boundary is known, then estimates of the true phase
velocity rather than a bound can be obtained.

In addition, the approximate extent of the velocity
contrast with depth can be determined by using a range of
frequencies and finding a frequency below which there is
nc appreciable refraction. The maximum depth of the dis-
continuity is, then, the depth to which this first un-

affected frequency "sees."

For example, this frequency
for fundamental mode Rayleigh waves crossing from the
Pacific to the continental United States in Scuthern
California is .02 cps, corresponding to a wave length of

the order of 150 km.

Effective Epicenter

For propagation from a high velocity material to a
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low velocity material across a linear boundary the re-
fraction is such that the "effective epicenter"* s moved
further away from the boundary along the normal through
the true epicenter. Conversely the effective epicenter
is moved closer for propagation from low to high velocity
material. This effect should be taken into account when
the correction for curved wave fronts is made (see Appen-
dix A). This effective epicenter changes for every fre-
quency and for every different angle of incidence on the
boundafy. However, over the small range of angles of
incidence spanning local arrays, the effective epicenter
may be considered fixed for each frequency (but different
from the actual epicenter).

Thus, lateral refraction of surface waves may provide
a practical means of delineating the shape of boundaries
between bodies of different velocity material. The pro-
cedure would be to use an array of dimension small compared
to the radius of curvature of the boundary and measure the
strike of a small segment of the interface, as outlined
above. Moving this array or opera{ing several arrays si-
multaneously will then permit mapping of the entire boundary.

]n addition, many of the concepts of geometrical optics
may be used to treat cases where the boundary separating the

regions is not linear, compared to the dimensions of the

BKThis term is used to designate that geographical position
from which the wave appears to come after it has been re-
fracted across the boundary.
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array(s) available. This type of approach may prove use-
ful in explaining observed interference phenomena, different
levels of background microseism noise from site to site,
and the long coda often observed following the principal

part of a surface wave train.
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APPENDIX C
EXPERIMENTAL ERRORS

The experimental measurements presented in the text
are subject to one or more of the sources of error to be
enumerated and discussed in this Appendix. t
l. Timing Errors: Absolute time could, for the moét

part, be determined to about .1 second at each station.
Arrival time of phases (peaks and troughs) could be
measured to better than .5 seconds on the long period
instruments and to better than .3 on the short period
instruments.

!l. Distance Errors: Distances between points on the

earth's surface can be computed with an accuracy of at
least .1 km and azimuths to .01 degree. Thus, distances
and azimuths between stations have accuracies of this
order, since the station co-ordinates are known very pre-
cisely.

However, epicenter location is rarely better than
*5 km and often is an order of magnitude worse. The co-
ordinates reported by the United States Coast and Geodetic
" Survey, the most common source of epicentral information,
are given only to the nearest tenth of a degree, or about
10 km. This means that epicentral distance may be in

error by *10 km.
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IIl1. Least Time Path Errors: Errors may result if the

least time path travelled by the surface waves is not
along a geodesic on the earth's surface. These errors
are very difficult to estimate since the three-dimen-
sional velocity distribution in the earth's crust and
upper mantle, which controls this effect, is poorly known.

The late arrivals of surface wave energy commoﬁly
observed following many events can be attributed to such
non-geodesic travel paths. Whenever possible, therefore,
one should experimentally verify that the direction of
propagation is nearly along a geodesic before computing
average velocity using geodesic distances, or else attempt
to estimate the true distance travelled.

Within geologic provinces these effects appear to
be negligible for fundamental mode surface waves of
period above about 10 seconds and for higher modes above
about 2 seconds. However, for transmission through or
near transition zones, these effects were found to be
appréciable for periods of 40 seconds or more for the
fundamental Rayleigh mode. Therefore, some care should
be taken to test for these effects, even for the longer
periods, when the wave train has traversed more than one
geologic province.

1V. Phase Velocity

A. Time Domain

Errors in phase velocity measured in the time



- 105 -
domain may result from

.(]) inaccurate distances between stations

(2} inaccurate travel time of a phase between
stations

(3) inaccurate determination of the period to
assign to a phase at each station

(4) interference effects

(5) instrument mismatch

(6) dispersion induced errors

(7) violations of assumptions made in the
computational method

(8) microseism noise

The combined effects of these errors can cause an
uncertainty of as much as 1 percent in the average phase
velocity values obtained in this study using tripartite
arrays. With the least squares technique standard devia-
tions considerably under 1 percent were obtained for most
events.

A maximum error of less than .2 percent can be attri-
buted to (1) for the arrays used in this study.

The most significant error in phase velocity results
from (2). At each station the arrival time of a phase can
be determined to about .5 seconds which implies errors up
to 2 percent in individual values of phase velocity.
However, averaging the values from several events gives

a resultant with a standard deviation of about .5 percent,
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a value comparable with the other errors-enumerated above.

When the least squares technique was used, the standard
deviations were, for the most part, well under 1 percent,
even for individual events.

By smoothing the phase number vs. arrival time curve,
errors due to (3) can be kept within about .5 percent.

Errors due to (4) may be considered insignifica;t,
since only events which clearly could be correlated across
the array were used. This is further substantiated by the
smooth Fourier spectra (phase and amplitude) obtained for
the events analyzed.

| Errors due to (5) for individual tripartite arrays

used are less than .5 percent for periods under 20 seconds
and less than 1 percent for longer periods. Since the
true magnitude of this error depends on the array dimen-
sions, the direction of propagation, and the phase velo-
city, it may be more instructive to give the maximum dif-
ferences in instrument phase delay. These differences can
be obtained from Figure 41. With the exception of River-
side, all the stations used are matched to within .3
seconds in the period range studied and some combinations
are matched considerably better. Below 20 seconds period
all the instruments are matched to within about .15 second.
When several stations are combined in the least squares
technique, these errors are in effect further reduced, so

that for the purposes of this investigation effects of
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instrument mismatch may be neglected.

Errors due to (6) occur because the predominant
period of a particular phase changes from station to sta-
tion due to dispersion. Savarensky (1959) gives the

following expression for this effect on phase velocity:

Z—I
Ca= 32 [-+&(E-0068] o
)/2

where 1= (To + T
6t = T2 - T]
T: = period at ith station

%é- = phase velocity of a particular extremum
(peak, zero, trough) having period T; at
Py the ith station
C(t) = true phase velocity for period 1

The second term in the bracket in equation 1 gives
the error introduced by assigning to the observed velocity
of a given phase the mean period(T2 + T])/2, when that
velocity is, in fact, appropriate for some other period
in the interval between T2 and T]. The magnitude of this
error depends on the group velocity dispersion of the
medium and the distance between stations. For the arrays
studied in Southern California, this error is never more
than .5 percent, and for the most part it is considerably
less. Hence this source of error can be neglected.

Another dIspersIdn induced effect is given by the

time delay 72_44(2—) _ 7;—- Q(Tj
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where
cgﬁf)= instrumental phase shift at the i'" station
T: = period of a given phase at the ith station

Note that this error exists even when the two instru-

ments are perfectly matched in phase, since T2¢ T] and

49/};);& 4ﬂﬁgj in general. However, for the instruments
|
used and dispersion encountered in this study this error

amounts to less than .5 percent in phase velocity.

Effects of (7) are caused by either departure from
plane wave fronts or strong lateral inhomogeneities under
the array perpendicular to the direction of propagation.
Corrections for the first can be made when necessary (see
Appendix A). However, for the epicentrai distances and
array dimensions involved in this study departure from
plane wave fronts introduces errors considerably less than
.5 percent in phase velocity. A test for both these effects
is provided by the least squares method. Using one of the
station locations as the pseudo-origin one obtains the pre-
dicted arrival time for each phase at that station, as
well as its standard deviation. |f the observed and pre-
dicted arrival times agree, then the assumptions of the
method are considered verified. For the events checked in
this way the observed and predicted arrival times agree
within the standard deviation, so the applicability of the
method in Southern California is assured.

The effects of (8) are considered insignificant since
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only large events with very high signal to noise ratios

were used (see Figure 36, for example).

B. Frequency Domain

The sources of error discussed above for the time
domain all exist for the frequency domain analysis, except
(3) and (6). Of these, only (2) is different in its effect
in the frequency domain. The travel time for periob T

between two stations is given by

¢ = Sty + T(S@) 2 W) (2)
where
§t, = difference in feducial time between the

two records
Swfj== measured phase difference (fractions of
a circle) between the two stations for
period T
N = arbitrary integer
The error in phase velocity is given by

ﬁ aC - 172$54%zcr3 (3)
9 oA
It is very difficult to estimate the magnitude of
A[Sﬂl('r)] since it is made up of noise, both
from miecroseisms and from digitizing and computation.
However, all of these errors may be considered ran-
dom, so that the smoothness of the phase spectrum is an

indication of the accuracy in phase determination.
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Moreover, actually smoothing the phase spectrum can further
reduce the effects of these errors. For the array dimen-
sions and the period range considered in thisstudy the maxi-
mum error in phase velocity due to the error in determining
phase shift is estimated to be about .5 percent. Therefore
the results from frequency domain analysis are also accu-
rate to within 1 percent. !

V. Group Velocity

Errors in group velocity result from
(1) inaccurate epicentral distance
(2) group delay of the instrument
(3) group delay of the source

(4) interference of modes

(5) errors in origin time

(6) timing errors on the seismogram

(7) period determination

(8) noise
. Errors due to (1), given by %_‘_J:%A_ result principally
from inaccurate epicenter location and deviation from geo-
desic travel paths. The first introduces an error of less
than 1 percent, since the epicenters used are located to
+10 km and the distances used are 1000 km or more. As well
as could be determined, deviation from a geodesic travel
path was not important, sinee the observed deviations from

geodesic travel paths were small.

Errors due to (2) are very small since a correction
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for this effect was made using the measured instrument
response. 7

Errors due to (3) are difficult to estimate, since
the effective time duration of the source is not known.
It is assumed throughout that this error is small. The
only check on this assumption is that several events of
different magnitude from the same general area gaveithe
same dispersion results to within about .5 percent.1

Errors due to (%) result from interference of modes
such that spurious group arrivals are obtained which are
appropriate to no mode. Special care was taken to avoid
this problem as much as possible. The fundamental mode
is free of this type of error, as are the higher modes
above about T seconds period. The increased scatter of
the results at shorter periods is, in part, due to this
source of error.

Errors due to (5) are less than 1 percent. In addi-
tion this error is partly compensated by theerrors in epi-
center location, since epicenter location and origin time
are made consistent for body waves at many stations.

Errors due to (6) are much less than 1 percent, since
the timing accuracy is .2 seconds or better.

Errors due to (7) are about 1 percent or less for
periods above 7 seconds and roughly 2 percent at shorter
periods, depending on the interference among modes and

background noise.
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The largest errors occur as a result of (8), since
the signal to noise ratio for the short periods some-
times approaches unity, especially for the higher modes.
The difficulty in distinguishing between microseism noise
and higher mode signal may sometimes cause very large
errors in measurements at an individual station. However,
averaging the results for several events from the §ame
source region at one station and/or the results from
several djifferent stations gives a resultant which is
more trustworthy. The composite curves obtained in this
study indicate an accuracy approaching 1 percent in group
velocity for periods under 7 seconds. For the longer
periods accuracies of 1 percent or better can easily be

achieved.
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APPENDIX D
MODEL EXPERIMENT

The peculiar phase velocity dispersion results 5b-
tained near the coast in Southern California prompted
an ultrasonic model experiment to investigate the '
effects of sloping interfaces and changes in slope én
Rayleigh wave propagation. No adequate theoretical
treatment of the sloping interface problem exists.
Numerous attempts have been made to solve this problem,
but none have been very successful, even for the
simpler Love wave problem. Therefore, analog models
offer the best opportunity to investigate the effects
of such structures at present.

The available refraction and gravity data were used
as a basis to construct the model about to be described,
so that it was a reascnable approximation of the
structure at the continental margin of Southern
California.

Design of the Model

The model was designed such that a 1/4 inch layer
increased with a slope of 5 degrees to a thickness of
1 inch (see Figure 45). This is the analog of an
increase in crustal thickness from 10 km to 40 km. The

compressional velocity was chosen to be the analog of
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an average crustal velocity of 6.5 km/sec and a mantle

velocity of 8.2 km/sec. The shear velocity contrast

is the analog of 3.0 km/sec in the crust and 4.68 km/sec

in the mantle. A density contrast of 1.6075 gm/cm3 in
the layer and 2.77 gm/sec> in the half space resulted.

Although this model is obviously oversimp]ifieg

and the elastic parameters not an accurate representation

of the true structure, it is considered adequate to
allow a qualitative comparison of the model results
with the real earth measurements.

It should be noted, however, that the only limi-
tations in principle, to achieving precise analogs of
earth models are in obtaining suitable materials and
constructing the model with sufficiently small
tolerances.

To achieve the desired compressional velocity in
the layer the results of Healy and Press (1960) for
controlling the velocity and density of a thin lami-

nated plate were used. That is,

N
ve = Z A \/57__2,\/%-!? (1)

where V = velocity of the composite laminated

plate
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thickness of ith layer

& =
p; = density of ith 1ayer
Vi = shear or plate velocity in i th layer

N = number of layers in the composite.
In order that equation 1 hold, the total width D
of the composite should be small compared to the l

shortest wavelength of interest. Therefore,

N
P = qu‘- << Am,-" is one condition which
t=/

must always be satisfied.

The scaling was such that the period in micro-
seconds corresponds reasonably closely to the period
in seconds in the earth.

Model Construction

The model was fabricated from an aluminum sheet
of dimensions 48" x 30" x .087". The contour of the
desired crustal shape was uniformly milled from the
aluminum to a remaining thickness of .022". The
"depth" of this layer was .25" from 0-20 inches and
1" from 28-48 inches with a linear increase from 20-28
inchesr(see Figure 45). Epoxy resin plastic was poured
onto this contour and allowed to solidify, restoring
the total thickness of this laminated portion to .087".
Shell Epon No. 828 plastic was used with 10 percent

(by weight) diethylenetrianamene hardener.



The resulting elastic parameters of the model are

given in the following table.

TABLE 7

MODEL PARAMETERS

Material Plate Velocity Shear Velocity D%nsity
(inches/Msec) (inches/#sec) | (g/cm3)

Laminated

layer .16 .078 1.6075

Aluminum

half space .2196 . 1248 2.7

Equipment

The attendant equipment for making measurements on

the model was essentially that described in previous

publications of Healy and Press (1960) and Qliver,
Press, and Ewing (1954).

Barium titanate cylinders

were used as sources and barium titanate bimorph trans-

ducers were used as receijvers.

Experimental

Results

With the source at the thin end of the model,

records were taken at 1 inch spacings from station

17

to station 3% (see Figure 45) across the regions where

the layer thickened. Then, the source was placed at

the thick end and records taken at these same stations,

thus reversing the profile.
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The range of period (#-sec) which the source
adequately excited, so that reliable measurements
could be made, was from 10 to 50 microseconds. This
spans the period range of interest for which the analog
model was constructed.

Several different methods were used to measure
the dispersion. These were all simple app]ications!
of the general techniques for measuring dispersion
described in Appendix A. Phase velocity was measured
primarily in the frequency domain using the Fourier
transform of the time records at each station. How-
ever, these results were amply checked by measurements
in the time domain. These less precise time domain
measurements consistently fell on or scattered close
to the corresponding frequency domain measurements.

The time domain measurements were facilitated by
ad justing the high and low frequency cutoffs on a
Krohn-Hite filter such that only a very narrow band of
frequencies about a selected frequency was passed.
This serves the same purpose as a long travel path in
the earth which disperses a wave train sufficiently
that the period changes only slightly over several
oscillations in the time domain. Samples were taken
at the same stations as before. Repeating this

procedure for a succession of center frequencies made
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it possible to define the whole dispersion curve.
This approach was particularly useful when the source
was at the thin end of the model, where the Rayleigh
wave traveled to the sloping region essentially non-
dispersed as shown in Figure 48.

One can appreciate the necessity for simplifying
the time domain measurements by examining Figure 4?,
which shows the set of seismograms obtained with the
source at the thick end and an open pass band. Figure 48
shows the simpler narrow band pass records over this
same profile.

Figure 45 gives a summary of the results obtained,
along with a comparisqn with plane parallel layer theory.
The agreement between theoretical and experimental
dispersion between stations where the layer is of
uniform thickness is very good. However, where the
thickness is not uniform, certain departures from the
theory are apparent. Among these is a difference in
phase velocity on a reversed path keeping the stations
fixed. The data shown for the phase velocity between
stations 22 and 27in Figure 45 illustrates this
effect, which is analogous to the body wave refraction
over a dipping interface. Another is the appearance
of a kink in the dispersion curve near 25 A -seconds
period when the receivers span a region where the
slope of the interface is changing. |In one case

(station 29-25 curve in Figure 45) an actual minimum
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- was observed. Moreover, at the Tonger periods the
phase velocities across these regions fell below those
measured entirely in the thickest portion of the model
beyond the sloping region.

Below 20 M-seconds period, however, the usual
inference of a greater average thickness where the |
phase velocity is lower seems valid, because even when
the average thickness was only slightly different,
there was the expected systematic difference in phase
velocity (compare profile 25-29 dispersion with profile
26-29 dispersion in Figure 45). That is, without
exception the greater the mean layer thickness between
stations, the lower the observed phase velocity at a
given period below 20 AM-seconds. Therefore, these
shorter periods, with wave lengths less than 3 times
the mean layer thickness, seem to give the most relia-
ble indication of how the average layer thickness
changes over regions where the layer thickness varies.

Conversely, the period range most strongly
affected by underlying changes in slope of thelinter—
face corresponds to wave lengths 3 to 5 times the mean
layer thickness.

In addition, the apparent attenuation is different
for propagation in opposite directions between fixed
stations. That is, the apparent attenuation for

propagation downslope is less than for propagation
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upslope, especially in the intermediate period range
(15-30 M -sec). The apparent attenuation downslope is
uniform and small (Figure 48), while that upslope is
extreme at the intermediate periods (Mll in Figures 47
and 48).

Figure 46 shows that the large amplltude port}on
labeled M 1 in Figure 47 is a higher mode, because:it
conforms to the theoretical displacement with depth
predicted for the first higher mode, shown schemati-
cally at the right of Figure 46. That is, it exhibits
a reversal in polarity at depth and a subseqguent
gradual decrease in amplitude with depth.

It can be seen from Figure 47 that this higher
mode (Me]) attenuates very differently from the funda-
mental mode (M]]), propagating essentially unattenuated
upslope over most of the sloping region.

A discussion of these results as they relate to

measured phase velocity dispersion in Scuthern California

is included in Part Il of the main text.
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APPENDIX E
INSTRUMENT RESPONSE

For many types of investigation in seismology instru-
ment response must be taken into account. The object of
this Appendix is to indicate how instrument response may
b¢ determined for the seismograph systems used in t%is
study.

1. General Linear System

The result of passing a time function f(t) through a

linear system is given by

oo

| R(t) = Jf}(T)W(t - 1) dT (1)
where W(t) = transfer function (time) of the system
then F.T [R(W)] = R(w) = Fl W(w) (2)

where F(w) = Fourier spectrum (amplitude and phase)
of f(t)

W(w) = Fourier spectrum (amplitude and phase)

of W(t)
or, W(w) = R(w)/F(w) (2a)
In the special case when f(t) = §(t) (impulse)

F(w) = 1, so that W(w) = R(w)

Hence, to calibrate any linear seismometer system
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using this technique, one should apply to the system some
convenient time function for which the Fourier transform
is known or can be accurately computed. Numerically
compute the Fourier transform of the resultant time
function R(t) by use of existing digital or analog
computer programs described in Appendix H. The reﬁponse
of the system is obtained then by use of equation 2a
above, where both R(w) and F(w) have been determined.

This technique is particularly useful when compli-
cated amplifiers and other electronic circuitry constitute
paft of the recording system, since the theoretical
response of the ensemble of all these components is often

extremely difficult to calculate.

|l. Particular Systems

In certain simple seismograph recording systems it is
practical to compute the theoretical response, since the
procedure is straightforward. To do this, one must measure
the appropriate instrument constants and use them in the
expressions for the response of the system.

A. Pendulum Galvanometer Systems

1. Velocity transducer

The impulse response of this system is given

by
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W(w) = 003 (X2(w) + Y2(w))~2 (Amp1itude)
(3)

tan™! (X(w) /Y (®)) (Phase)

@ (w)

where

® = frequency (radians/sec)

B TR - 2 _o? 2l 2
X = W [n1 + n,= + A k]kg(l (i 9 + n,=n,

¥ = —2w3(k] + ko) + 20(n %k, + n 2k,)

]

n, = natural frequency of the pendulum

n, = natural frequency of the galvanometer

k]/n]= h] damping factor for the pendulum with the
galvanometer clamped (h] = |} fer critical
damping)

k2/n2 = h2 damping factor for the galvanometer with
the pendulum clamped (h2 = 1) for critical
damping

o~ = coupling factor
0 = constant determined by parameters of the
electrical and mechanical system (see
Hagiwara, 1958)
The techniques used to measure these constants as
well as the response for the stations calibrated will be
given later in this Appendix.

Examples of this type of seismograph are numerous.
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Among those commonly encountered are the Benioff long

period seismograph (T] =1, T, 90), the Benioff short
period seismograph (T] =1, Tp = .2), and Press-Ewing
long period seismograph (T] =15 or 30, T, = 90)

2. D.C. Transducer

The impulse response of this system isigiven

by
%

2
Wlw) = D o [Xz(w) + Yg(mﬂ (Amplitude)
l (4)

=
2
1l

tan—][—Y(w}/X(qy - tan—][Zi/ZJ (Phase)

where
X(w) = same as for velocity transducer (equation
3 above)
Y(w) = same as for velocity transducer (equation
3 above)
Zn = circuit impedence where the subscript n
denotes the type of circuit (W,T, or Box)
Zi = imaginary part of Zn

Z_. = real part of Zﬂ
D = constant determined by parameters of the

electrical and mechanical system.

B. Damped Pendulum

The impulse response of a éimp]e, damped pendulum

is given by



- 125 -

W(w)

M {E— (néﬂéle + 4 hgng/f.oie\g—E (Amp1litude)
(5)
tan~! LEthA&Q - ngil (Phase)

P

where
n = natural frequency of the pendulum
h = damping factor

M

static magnification

Common examples having this type of response are the
Wood-Anderson torsion seismograph, the Benioff strain
seismograph, and the Caltech digital seismograph.

I11. Procedure for Measuring Instrument Constants and

Response
The instruments used in this study were primarily of
the pendulum-galvanometer type. Therefore, only the
procedure adopted for measuring the constants of this
type instrument will be given, although essentially the
same procedures can be used for the damped pendulum and
displacement systems.

The equations of the pendulum galvanometer system

are
2 =) 2
d“X dX . _pd=u dg
+ 2k.8A 4+ n. X = -B 4+ 20 k 6
th 19t 1 ——-gdt i By = (6)
)
d 2k d 24 dX
+ 2o t+n2¢_20“"2k2_t (7)
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where
@ = deflection of the galvanometer
X = pendulum displacement
u = ground displacement
n, = natural frequency of the pendulum
n, = natural frequency of the galvanometer
k1/n] = h] damping factor for the pendulum

k2/n2 = ho damping factor for the galvanometer

0? 0, = coupling factor (g~ 2)

B constant

The basic equation to be solved for determining the
constants is equation 6 or 7 with the right hand side

equal to zero, i.e.

2
d¥ & ohn 8% 4.0y = 0 8
d—tz it ¥ . ()

The Laplace transform of (8) is

1
¥ = (m2+ 2k)go + y'y . (9)
(= + k)= + (1-h%)n
where y, = initial displacement

y's = initial velocity
In the following paragraphs the detailed procedures
for measuring the constants, Nys Nos h], hO]’ h2’ h02,
¢, and @ necessary for computing the instrument

response will be given.
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A. Free Period and Air Damping of Galvanometer

Disconnect the leads to the galvanometer and
deflect the mirror by a small applied voltage to the
terminals. Record the decay curve which, for an impulse
with the system initially at rest, (i.e. y =0 in

equation 9)is given by i

_ ~hpanat 5
y(t) = y' e sin 1-h.,. nA.t (10)

The ratio R of successive maxima of !y(i)f permits
calculation of h02 (air damping of the galvanometer)

using the following expression

' g "
h02 = (1 + 1°/&nR) (11)

Several such determinations of h02 can be made and
averaged, since equation 10 has several oscillations for
which R can be measured. Then the free period of the

galvanometer is given by

T, =2 1-h2 T-

02'p | (12)
n, = 21T/T2
where

T = measured time interval between p half cycles

of equation 10.
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B. Free Period and Air Damping of the Pendulum

Disconnect the transducer leads, deflect the
pendulum, and record the subsequent motion using an
auxiliary high impedence recorder. A Varian recorder
was used for this purpose.

The air damping, hO]’ is obtained as in (A) above,
using equation 11. The free period, T., is obtained

1

using equation 12 with hOI'

C. Galvanometer Damping

Clamp the pendulum (before reconnecting the leads
to the galvénometer), connect the galvanometer leads,
deflect the galvanometer mirror with a small applied
voltage, and record the resultant motion as before.
The result for O in equation 9 is given by
y(t) = Ce—hen2t sin V]—hggngt h2< ] (oscillatory)
(13)

= Ce Mot h2 = 1 (non-oscillatory)

-h n,t
22 . ]/ 2
Ce sin h h2 -1 n2t

h2> 1 (non-oscillatory)

For h2< 1 use the same procedure as in (A) above to
find h2.
For h2 = 1 the time interval from t = 0 to tm is

2H/T2, where

ﬂ%ﬁ [y(tﬂ = y(t,), so the test for critical

damping involves only measurement of this time
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interval.

For h2>1 one can use the interval from t = 0 to

t. where mix [y(tﬂ = y(t,) and solve for h, by inverse

m

interpolation using the expression

t = tanh_](Yhe— 1 /h) T (1%)
th— 1 21 l

Table 5 gives values of h for various values of'tm

with period T as a parameter.
In addition inverse interpolation using the method
of regula falsi can be used to determine more estimates

of ho using the ratio y(tp)/y(t;) where 0<t <t,. This

1
method is summarized as follows:

y(ta)/y(ty) = e M2h2{ta=t)sinnph 21 nptp
sinhfFEE:T not

h = ho
F(h) = flh,to,t,To) = y(taVy(tg)

Then the recursion relation for obtaining h is

hy = hy-
=hy - - ] (15)

1 = F(hy_1)/F(hy)
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Technically this procedure will work for any h,
but for h< 1 the procedures outlined previously are
much simpler and require little calculation.

D. Pendulum Damping

Clamp the galvanometer, apply either an impulse or
an Initial displacement to the pendulum, and record|the
resulting motion with an auxiliary recorder attached to
the transducer terminals. A Varian recorder was used
for this purpose.

Depending on the initial conditions, the resultant
can be analyzed appropriately to give the pendulum
damping.

Initial Impulse

-h.n.t
1" .
Ce [V1-h12 cos YT-h 2n t -h sinyi-h)2n;t

[ h<! h <
Vi 3
Ny

Nt

y(t)

Il

[
(P
@

—

1
=
‘+

]
O
@

Vh]Q-I cosh h12-1n]t -h]sinth]2-1 nt

[ ™ hy> 1




_]3]_

Initial Displacement

-h;n;t ﬁ\hxl
y(t) =ce || sin’Vl—hlen'lt ho<1 Il -

—h]n]t
= Ce hy, =1 :

= ce™MMtsinnyhi2-1n,t hi 71 [t

For h]< 1 the motion is oscillatory and the
techniques in (A) above can be used.

When h]3 1 the same table 5 may also be used to
determine the pendulum damping for either initial
condition by using the appropriate tm shown above.

In addition, the method of regula falsi can be used,
provided the appropriate F function is used in equation
15.

E. Coupling Factor

The coupling factor G is given by

2
hi- hgq)(hps = hgp) Z
~2 _ (M= Poy)(hp - hop)  Zpp p

hiho Z1 (18)
where
Z, Zs
. Lcla A —AWW.
pg T oy ¥ 7 7 ({)
a“c 5%42
C
Zi k.
Z]] =z 4+ P ,
a
Zb +ZC
F et
. Z +Z
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Z, includes the impedance of the transducer and Zb

includes the impedance of the galvanometer.

With these measured constants (n], h h h

Rgs Bys Bgpe T
h02’ 6~ ) one can compute the phase and relative amplitude

using equation 3.

F. Magnification Factor for Absolute Amp]itudei
Response |

While one can compute the magnification factor Q for
absolute amplitude response, knowing the mechanical and
electrical constants of the system (moment of inertia
of pendulum, distance of recording drum from the
galvanometer, field strength of the magnet, etc.), it
is simpler to drive the pendulum with a sinusoidal
wave of some known amplitude Ay and frequency @, and
record the resulting amplitude to get the absolute
magnification M at w, - One such value with the
relative response curve computed from equation 3 gives
the complete absolute amplitude response.

Hence, one can determine the complete amplitude
and phase response of the system. Since only phase
calibration was of concern in this study, however, the
absolute magnification was not measured. The response
curves determined for the stations used are shown in

Figure 41.
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APPENDIX F
MODE DELINEATION METHOD

The details of the method developed to separate
the various modes will be given in this Appendix.

I. Basis of the Method 1

The definition of group velocity provides the founda-
tion of the method developed to separate the modes. That
is, for a given epicentral distance, mode, and frequency
(mo) the group arrival occurs at a time when the spectral
components in a narrow band of frequency about wy add up
in phase. Except for a discrete set of frequencies where
two or more modes cross, each mode has a distinct dis-
persion curve, so that the group arrivals of each mode
are separated in time for any given frequency.

This makes it possible in prfncip]e to delineate the
dispersion appropriate to each mode present by either or
both of the following procedures.

(A) Perform a very narrow band pass about a selected
frequency, and plot all the group arrivals observed for
that frequency. Each such arrival presumably belongs to
a particular mode. Repeating this procedure for a succes-
sion of frequencies then defines dispersion curves for all
the modes present.

(B) Using the proper combination of velocity windows

and band pass filtering, a time record representing any
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specified region of the group velocity-frequency plane

can be obtained. Then a region can be chosen such that

it contains only one branch of any single mode, and the
resulting time record can be analyzed using conventional
methods to obtain the dispersion. Using this technique
one pass is made on the data for each branch of each mode.
This procedure requires some general knowledge of dhere

the dispersion curve for each mode is located.

[1. Narrow Band Pass (Method A)

Construct a set of filter coefficients (see Appendix
G} which allows a very narrow pass band of frequehcies.
Then peaks in the envelope of the filtered seismogram
represent group arrivals for a frequency in the band—pass
interval. This is seen as follows:

The oberation of fLJtering a time series gives a new
time series y(t) = J’Q(T) h (t-t)dT, and its frequency
spectrum from the F;:?ier transform of y(t) is Y(w)=G(w)H(w).
The filtering function h(t) can be constructed such that
H(w) =1 O and zero elsewhere with no phase
shift (see Appendix G).

Then
;i

oo Wy
LWt
%(f) = R_e fG(w)H(w)e wdw‘ = /ﬁ: w/_G—(W’)e dws ;
- DO 1 ]).

[Pl + Pl) + RX]

e

—of(w) X

G = |St)W(iw)e
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where
5(05) = source spectrum
VVﬁ» = jnstrumental amplitude distortion
QDLw) = instrumental phase delay
gx(uo = attenuation factor during propagation
42(”) = initial phase at the source
fwX = phase delay due to propagation éver
distance X
Defining
sw = (W - w)/z D= tw) /e

Al ) = § () Wi e X

@ (W,x) = k(X + Plw) + Plw)
Expanding A(w,x) and @(w,X) in Taylor series

about W and suppressing the X dependence,

Alw) = AG) + (82) (w-5) + Olw-a)] "

6 (s = O+ (8) (9 +(ZR)T 01w ]

Z

Inserting these expansions into equation 1,
making the change of variable w' = w-® and rearranging

gives

( aw N PX -P{u')]
y (x,8) = Re [e ’Zm/ A (&) +(§§)Bw’f0‘[(w')‘]]e[ :/,‘,f

—dw

\1

(3)
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where

PE) = ot - @(@)
Plu)= (22)s +(28) & + O[(w)]

Qg £
Then retaining only 1st order terms in the expansion of Alw)

gives

¢ pl€) H d(‘-[{f))
y (x4) = F\’e{e 4 [/‘7( @) I(e +@w } i

[u i — Pwl]

where (¢ = j( duw’

-4ud

Evaluation of I(t)

e 17 aw
I = [&:s (w't - Plw))dw’ + ¢ ffm (ta't - Plw)) des’ (5)

~4aw 4w

plw) = [x é_/;)ﬁ-f- 4ﬂ’(5) + g&:‘)] o’

+ [X(J;L‘f,_)ﬁ+ 4/2,472 +@;ﬂ{7€_’_f' 4 ﬁ’[(u’)f] (6)

*This expression can readily be generalized to include “higher

order terms, i.e. Vel n
L#(XIIL) = /?e-[ < G_ ‘/ (9“‘]” dE"

—
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Noting that
K = Y/
50 = L)
BE o - Y g =~ VRrey

Equation & becomes
/ /
) + @ (@) o
Pw)= [ * gt + o
Iz ﬁ[ 13}7
XU(w) +§p(w)+¢(w w4 W :
+
- EC I#
If Aw is chosen such that
X U (%) ’;/5)] aw
b M By S (w)-f'% =
“ U(a) 4 e
even order terms of order (w')

- a(m‘)2 is an odd function. Therefore,

and above can be neglected.

Then P(w')

w't - P(w') + a(m')2 = Q(w') is also an odd function of w'.

Hence,
Aw and
- [ L't~ Pl ' = =[5t [ Gt - ] 4w
s ra
4w
= - [ 5cn P(w) cos d
ddfw w) eo (O(w) w’ - —£C,as @ (w') Sinfoe w’ ?) dew’
" o (9)
- /ws Q) sin ("“"'z) duw’ = 7 cos Qlw) sen (e’ *)dw
-4k a

£ 2 Aw sin(xaw) = ﬁ(aw"?)
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and 4 sW

jﬁaﬁ[w'z.‘ - P(w')]a’w' = fCas & (w) cos (xeo’ )
-au -2

aw )
" fmo D lw’) sen (o d"?) dw
o
w ’ &
= Z ;05 w'§ cos lot ') o’ = th’;cﬁwf + O(w")

(10}

where

= £ = A gﬂ(is)-ﬁ(lﬁ)

Ul

Thus, neglecting terms of order (Aw}3 and above, equation 5

becomes

Ll =2 -——*ﬁ';‘dwf (11)

Therefore, equation 4 may be approximated by

Y (x,t) &= ngc[ 7&‘)2 n/( ) 5 (()SmMJ{]

(12a)

=7 ﬁ/w)x)aas )7(X t) Szﬂdwf(x )
ffﬂxf)

( ) s¢nm SZ(xf [chosawf()gf) Sen 4w (xty 12b)

gFﬁng £oot)

where only the first two terms of equation 12a are retained.
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The dominant term in this expression is ampli-

tude modulated by Eiﬁ?éfif which attains its
maximum as g s
f-a 0 e as t->1T =X +1$(5)’L92[a0
U(@)
Thus %
U(B) = —— 7= |
~_ 5) — Q)
- Pls) g - (13)
-a((cb')x

g(x,f‘) = aw S(3) W(z)e

Narrow band pass filtering about @ permits deter-
mination of 7 ; 99%5) is determined from the instrument
response; and qz?b) may be assumed small when X is several
wave lengths from the source, so (J(&) can be readily

measured.

Generalization ig Multi-mode Case

Equation 11 applies to any particular mode. Then the
resultant for more than one mode is obtained by super-
position of time functions of the form of equation 11.
That is,

4G,8) = ZZ{/; (3) s 7 (¢) 5 a0 () -
n=y §(f)

+ @’_/g_a_)a sin 7,( )[Aw c‘.anwf(;t) _ sinawf (f]]

£(8) £¢8)

where - o, (D)X

A ) = S (mwWikle )
e = & (¢~ @) = 9 - 4

Fre) =t~ Ut - ¢l - (a)
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géx)f) then has N ;elative maxima in its envelope given
by the zeros of ;i[ﬁ) (i.e. the succession of group
arrivals for the various modes).
In addition, spurious maxima can occur due to con-

structive interference among the modulating factors
sin aw b, (£) :

£08

carriers 505}1&9 of the various modes. The 1at{er is

of the various modes, as well asamong the

most troublesome where the group velocity dispersion
curves of two or more modes coalesce.

Keeping only those group arrivals common to an array
of stations and consistent for a number of adjacent fre-
quencies minimizes these difficulties. In addition it is
sometimes useful to use slightly different Aw intervals
about @ and retain those envelope maxima which are f e
variant under small changes in Aw.

The bottem seismogram of Figure 8 shows the results
of narrow band pass filtering a seismogram. Each peak
in the envelope of the curve corresponds to a group
arrival for frequency @ % .146 cps. The location of
maxima in the envelope can be determined from a plot of
the integral of the absolute value of the filtered seis-
mogram over a half cycle of oscillation.

Note that using equation 14,'it is possible to obtain
a rough estimate of the relative excitation of the modes
by comparison of amplitudes of the group arrivals of the

various modes at each frequency sampled.
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I[l. Mode [solation (Method B)

The raw seismogram to be analyzed can be represented

by ‘ g
x #) = 2 {ﬁn(wt.)c < (w[}f) sSwn AUJL' éh(h/",f) ]5)
g( iz nz’g o T £ (0, t) (

+ (Q—@“) ——Z——Sin "(wl‘) ) [Awd Cos 4wy fn(ﬂfe}f) - Sen Al ;;[cd;)f%/}
J & w; fn(&);}f) ;i/aﬂj ’TL)

The inner sum gives the seismogram for each mode and
the outer sum superposes all the modes®. The idea of
this method is to isolate each branch of each mode by a
combination of band pass filtering and velocity windows.
That is, the inner sum for the frequency interval between
successive Airy phases must be found for each mode. The
selection of a region enclosing only one such branch
requires a determination of the general location of the
dispersion curves in the group velocity-frequency plane.
This can be accomplished by one or a combination of the
following:

(a) use of the previous method at a few selected

frequencies

*The inner sum is a generalization of the Aki synthesis
method (Aki, 1960), including amplitude as well as phase,
which may be used numerically to construct theoretical
seismograms for each mode. The entire expression (15)
can also be used to constrict a complete seismogram
including the relative excitation of the modes for
different types of sources.

-
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(b) computing theoretical curves for an approxi-
mate structure derived from refraction results,
gravity results, and/or fundamental mode dis-
persione.

{ 6] linear interpolation between Airy phases

(d) wusing peaks in the spectrum of short velocity
windows™ i
(e) trial and error
Figure 3 shows typical dispersion curves for the

first three modes. [f the spectrum of the velocity window

shown in Figure 3 were computed, a peak due to the Ist
higher mode should appear in the vicinity of 12 seconds
period, another at about 7 seconds due to the 2nd higher
mode, and one due to the fundamental mode above 30 seconds.

Figure 2 (unshaded portions) shows three band passes in

frequency about these periods. The time record corres-

ponding to each of these band passes has only one mode
arriving at any given instant. Figure 8 shows three such
passes made on the same seismogram. Each pass allows de-
termination of a portion of the dispersion curve of one

or more modes using conventional time domain analysis.

*This procedure is termed the "transform" of Method A,
since it is applied in the same way as Method A with the
roles of group velocity and frequency interchanged.
Further discussion of this point may be found under
Methods of Analysis in Part | of this thesis.
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APPENDIX G

Contained in this Appendix are several results,
each of which supplements the text and one or more of
the appendices and yet is sufficiently distinct to be
included separately here.

1. Numerical Band Pass Filter

Find a time function, h(t) = h(-t) (real)
such that F.T. [h(t)] = fh(t);i“’t dt = H(w)e! P(o)
has the following proper{ies

H(w) = 1 o] < w

(o + w-)P

(T i . (1)

Il

1
A
e
in
!
g

e (mr" w)p
=T —  oc<oso
(mr'wc) 1
l |
1
SD(‘”) = 0 everywhere '1 :
NOW _Mr _UC O Nc a),.
4
Hlw) = H¥(—m) since h(t) is real
and
H(w) = H(-w) since h(t) is symmetric
hence
H(w) = H¥(w) which implies P(w) = 0
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Taking the inverse transform of equation 1 and

simplifying, one obtains its corresponding time function

given by
1 e-iwet _ g-iwpt
h(t) =
.7 P
i [ (i)P*]
(2a)
5 B'%E o gloyd ] ®
g l
(-i)PFl atP t
or
(-1)ppf cos w.t - cos w-t P (si :
h(t) = 5 c ort - 1 (sin w.t-sin w-t)
2"(®r—wc) (i)p+l
(2b)
4+ Cos w.t - cos wprt + i(sin wt-sin w t) —p+ 1]

|f one shifts the center frequency away from zero
then the results above must be modified by multiplying
h(t) in equations 2a and 2b by 2 cos wot.

Discretizing and normalizing frequency to the

. 1 y
f = as follows:
sampling frequency = 3

=
|

= h(t,)at = h(ty)
fS

)J >) =
b O
Il I |
—-h —ﬂ =
i T, B o} >
1 part
-t
o

—H —h

S
Il

-4
()]
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Then equation 2b becomes

h(t.) = ﬂz-_lp[ 2MA, - cos 2MA) (1 + (-1)PFT)
" - (EHJM) (cos 2nA, - cos 2TA,)( ( N

i(sin 2MnA, - sin 2MnA,) (1 + (_])pﬂ (iﬂ)_(p+lgs(2ﬂnAst

= hf O

N

hy = pif_ -1 g (cos EHnAC - cos 2MnA,) (1 + (—})p+L)
T BTA,

(5)

- i(sin 2MnA, - sin 2MA) (1 + (-1)9)] (in)_(pig«l 2TnA,

i A e
B
Case p =1 : ; :
W 2
A

hn = (ﬂn);g(cos 2MnA, - cos 2TnA,)cos 2MnA,/(2A,) (6)

note that h, = 1/(2m)

Multiplication in the frequency domain is accomplished
by convolution in the time domain, so in order to band pass
filter a signal S(t), one convolves h(t) with S(t) to get the

filtered record
= il

f(t) = [h(T]S(t—T)dT = [h(T)S(t—f—T)dT (7)

—

=3 -
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discretizing such that
S(tk) = S(kat) = Sk

equation 7 becomes

n=-p

Note that At for the integration was included !
previously in hp.

General Filter

A more general numerical filter can be constructed
simply by computing the Fourier transform of the desired
frequency function either analytically or numerically.

Let H(w) be the desired spectrum (amplitude and
phase) to be passed. Then the time function to convolve

with the signal to achieve the desired filtering is
o0

h(t) = [H(w)eimtdcu/en (9)

— P

The only restriction on H(w) is that it s integrable.

In practice h(t) is discretized and truncated for
use in equation 8 above. |In principle this approximate
h(t) can be made arbitrarily close to the desired h(t),
so any particular frequency shaping of the signal can

be accomplished.
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2. Group Velocity Inversion

From an energy method published by Jeffreys (1961)
it Is possible to determine the effect of each portion of
a given structure on both the phase and group veloFity
dispersion for any mode of surface waves.

Existing Love wave dispersion programs have béen
modified by Anderson (1963) to use Jeffrey's method, and
similar modification of Rayleigh wave programs is now Iﬁ
progress. Therefore, only the expression for the group
velocity of Rayleigh waves will be discussed here in order
to indicate how the structure controls group velocity
dispersion and how one can use existing dispersion pro-
grams to find the\structufe which best fits the observed
data.

After rearranging Jeffrey's expression, using the
definitions of shear and compressional velocity in terms

of the elastic parameters, the following result is obtained

for the group velocity:
U: y—l {/(/ jﬁ(o(lul‘f ﬁzw‘z)dj (”

+ [;[: (x=28%)w'u +ﬂz-"‘3"]°ﬁ7][//:}“i“2}‘g’
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where
I = frequency
k = wave number
p = density
&% = compressional velocity
B = shear velocity

u = horizontal particle displacement
du
ul w —
dz
w = vertical particle displacement
\,\!.l —t g}ﬂ—.’-
dz
U = group velocity

For the N layered case equation 1 becomes
Jis
= { %[ (Ku*- wi)d3

W, pw )g}{gf/),,} :
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where

ziy - zj- = h; thickness of the i" layer.

For a given lavered structure, (h;,™;, B, p;),
existing dispersion programs give u, w, k, and ¥ , so that
all the elements necessary to compute U are available. |If,
for a particular dispersion point, one plots the Eétegrands
of the numerator in equation 2 as a function of z, it is
apparent what portion of the structure is controlling
the dispersion at that frequency. Scrutiny of several
frequencies in this way will suggest what changes must
be made in the assumed model to bring it into closer
agreement with the observed data. That is, this provides
a means of inverting group velocity dispersion.

Actually the partial derivatives of U with respect
to each elastic parameter in each layer can be computed
to make the inversion even more straightforward. However,
as mentioned above, a computer program to do this is not
vyet operational.

Reformulating equation 2 with the simplifying

2 2
assumption that A, = A, so that&; = 38; gives

/Z?% gy
ﬁf X g .
/?aw Wu)ﬁyi;;éiQﬁ+W)#

~ 43
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This expression enables one to use only the output from
exlsting dispersion programfix)determine approximately
what part of the assumed structure controls any given
group velocity value. That is, maxima (with depth) of
the integrands of the numerator correspond approximately
to portions of the structure controlling the dispersion,
and these integrands can be formed easily from the'va]ues
of u and w provided by existing programs. I[n most‘
instances zones of maximum contribution were found to
correspond rather closely to zones where the absolute
value of vertical displacement with depth was maximum.
Therefore, merely examining the distribution of vertical
displacement with depth for a given dispersion value is
sufficient to indicaterwhat part of the structure is
Important for that particular mode and frequency.

As an illustrative example Figure 11 shows the
integrands of equation 3 (shaded regions) plotted with
depth for the first higher mode (MQ]) at a particular
period (7.249 seconds), for the structure indicated (Case
5EEBM3) . In addition the individual elements appearing
in the integrands are shown. |t is clear that the portion
of the structure contributing most to the group velocity
at this period Is centered at about 25 km depth. Note
the close correspondence of this zone with the maximum

absolute value of vertical displacement w, as mentioned

earlier.

*%See Harkrider and Anderson, 1962; Press, Harkrider and
Seafeldt, 1961. ,
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The dispersion curve for this mode (My;) for Case
S5EEBM3 is shown in Figure 14 compared with the observed
data. Figure 11 (the shaded part or just the vertical
displacement with depth) immediately indicates which
portion of the structure is responsible for the large
discrepancy between this assumed model and the observed
data at about 7 seconds period. |

Therefore, using this approach, one can adjusf an

assumed model in a systematic fashion to find that

structure which best fits the observed dispersion.
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3. Surface Distance from Rudoel!s Formula

In many investigations in geophysics it is desirable
to know the surface distance between points on the earth's
surface very precisely.

With the aid of modern computers it is practical to
use Rudoe's formula, which gives surface distances more
accurately than the standard methods of converting{distance
in degrees of central angle in the earth to surface
distance. Since Rudoe's formula is not well known it
seems worthwhile to give the formula here with a brief
explanation of how it works.

The basis of the method is to approximate the geodesic
distance between any iwo points on the ellipsoid of revo-
lution representing the earth by normal section distances
between the two points. That is, one computes the distance
from one point to another along the intersection of a
p}ane passing through the two points and the center of the
earth, with the surface of the earth (ellipsoid of revolu-
tion). This intersection is an ellipse which very closely
approximates the geodesic passing through the two points.*

The surface distance between the points (42}2,) and

(%, 21) where 49 is the geographic latitude and A is the

*For example the length of the normal section differs from
that of the geodesic by under 1 in 150,000,000 for a dis-
tance of 2000 miles. The difference between the normal
section and geodesic distances can always be ignored for
the earth.
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longitude is given by

L= b [alu-0)+6 (524~ 5in2e)

+f,,(5£n‘;‘d; — Sin ‘/l/,’) P ]

where

éo = [VI /(/+€°)]‘V;f-£ cos*A, 60?%

€, = € (Ca:"Q cos A, + Sin 160,)

= |+ &fy - T, 6" + 7%
PR v /5 7
G = Yot = Tozv &
- _ z i 4
C('v = 4‘& & + %Z'/ &
o P Lo~ [ snf + (1+&)(Z-2) ]
=t T et 4,77 B P

0 = ﬁw'/[z"an ﬁ%/ﬁ_@ cos/%.)]

y = U, cos ﬁ Cos AR
2
Yy, = A caS{ﬂz_"” 4A

2z = Y(1+€T)sind
= Vl(/—-éa)ft'ﬂg

¥ See Bomford, Geodesy, pages 88-89.
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azimuth at 44,2,) of

-/ ‘' AA
= tarn L normal section con-
(A~ cosaR) )sind
taining qﬂ, A,)
T

N, = EA 4 et ﬁiﬁiﬂ
’ /7‘5#%{{ C/-/-é?fz‘an‘ﬁ
AA = AZ._X,

Z
e = e/(f—-e
& o= [a"+69/a‘ eccentricity of the ellipsoid with

semiaxes a and b

Yy = radius of curvature in the prime vertical

Using the International Ellipsoid as the earth model
the quantities necessary to use Rudoe's formula are given by
e = 6.72267002 - 1073
Vi = exp [3.8054426856 - 7.32368% - 107* cos 24,

+6.175 - 1077 cos 4f, - 7.0 - 10710

cos 6¢%+«.‘.]

Equation 1 gives normal section distances correct to 1 in

107 for any distance.
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Rudoe's formula was incorporated in a computer
subroutine for calculating distances and azimuths on

the earth. (see Appendix H).
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APPENDIX H

COMPUTER PROGRAMS

A number of computer programs and subroutines have
been written to facilitate the computations described
in the text of this thesis. ‘

Some of these programs have broad enough appli-
cation to be of use in future research, so that
inclusion of them here seems warranted.

The source programs have some explanation of the
methods used whereas, the subroutines merely state

what the subroutine does and how to use it.

1. Source Programs

A. |[Fourier Analysis Package1

This program forthe [BM=7090 computer calculates
the Fourier Transform of a series of points X[ af ter
any, all, or none of the following operations are per-
formed before taking the transform:

(1) Remove a mean or linear trend from the data.

(2) Filter with up to 1000 filter coefficients

and decimate by any number up to 100.

(3) Remove a mean or linear trend from the

resulting series.



- 5% -

*(4) Print out and plot the resultant series after
some, all, or none of the above.
The output format is:
Frequency Period Cosine Sine Modulus

(cycTes/ (time Trans. Trans. (A)

time unit)  units)

Modulus Loge A Phase I ndex
Normed S i (Frac-
(A7R ) tions of
B a circle)

Plot of Modulus Normed, }Loge(A/A and Phase as a

max | >
function of frequency.
Limitations:
(1) Total number of data points £ 15,000
(2) Total number of frequencies <. 1,000
(3) Total number of filter coefficients & 999
(%) Decimation number £ 99
(5) Any number of different sets of data may be
Fourier transformed as one job by putting
them one after another behind the program
binary deck.

To use the program, prepare a data deck, for each

series to be analyzed, consisting of the following:

*After step (%) one can bypass the Fourier Transform if

ust processing of the data with any of (1), (2), or
63) is desired. ,
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(1) Two cards containing any identifying infor-
mation; these two cards must be inserted
even if one or both is left blank.

(2) One card specifying the format of the data
somewhere in the first haif of the card
(Col. 1-36), and the format of the filter|
coefficients, if any, somewhere in the
second half (Col. 37-72).

(3) One card of input parameters located as

follows:
Col 1-5 NN Number of data points (format 15)
Col 6-10 K Number of frequencies
desired (format 15)
Col 11-25 F| [nitial frequency (format E 15.9)
Col 26-40 DF  Frequency increment (format E 15.9)
Col 41-55 DT Digital interval of data (format E 15.9)

Col 56-57 INT Type of integration desired (format [2)
0 Trapezoid rule
1 Modified trapezoid rule
2 Simpson's rule
3 Filon's method
Col 58-59 L Degree of trend to be
removed (format [2)
1 Linear trend
=< 0 Mean

-1 Bypass detrend



Col 60-61

Col 62-64

Col 65-66
Col 67-68

(6)

LL

MN

ML
M1

Data

card.
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Degree of trend removed just (format |2)
before going into F.T.

=1, 0, or -1 as above

Number of filter coefficients (format [3)
= 0 Bypass

= | Compute coefficients

> 1 Read coefficients

Decimation number (format [2)
Print and plot option (format 12)
('

-1 Print and plot preprocessed data
and bypass F.T.
= < 0 Bypass and go to F.T.

1 Print and plot preprocessed data

and go to F.T.

~—

in the format specified on the format

Filter coefficients, if any, in the format
specified on the format card. (See (2)
above). Or if MN = 1 specify N and Band.
(See Note 6).

Additional cards of Modification A, if any.

Each data deck must be arranged in the exact sequence

given above.

The complete program ready to be run then should

consist of:
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(1) Peripheral cards, as required by computing
center
(2) an XEQ card
(3) the binary program deck, including subroutines.
(%) a DATA card
(5) Data decks as described above
(6) an END OF FILE card
Notes:
(1) To communicate between the printed values of
the Fourier transform and the plotted values match
index numbers at the extreme right of the printed
values with those along the abscissa of the plotted
values.
(2) The plotted values and their symbols are:
*(A/Apay) - (10/9) }
+|Loge(A/Apax) |
. Phase (use scale -0.5 to 0.5)

(use scale 0 to 1.1)

(3) When a filtering operation is done a non-zero
decimation number, ML, must be used.
(4) Methods of Integration and Formulae:

Assumption:

co 0 T co
F.T. = ~[f(t)dt = J'f(t)dt + v[ f(t)dt + J"f(t)dt =
R ~e0 0 4
-

Jf(t)dt

0
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Where f(t) = X(t)el®t
(i) Trapezoid
At[f(@)/z + f(At) +...M F(T-At) + f(T}/é]

_T(at)2F" (1) /12

& DLETET
grror
i
(ii) Modified Trapezoid

= At[}(O)/E + f(A) +...+ F(T-At) + f(T)/E]
(at)2[f(0) - (1) N12

+ Tttty 20

e —v s D EL LT

Error
(iii) Simpson's rule

. ==é£_[f(0) £ UF(AL) + 2 F(201) 4eoot b F(T-AL)
3

fm]

- T(at)t fIV(1)/180 -
= ki GLlaT

Error
(iv) Filon's method:
. = At P(f(T) - £(0))+ p(f(0)/2 + f(2At) +...+ F(T)/2)

¥ (f(at) + £(30t) ...+ f(T—AtUil i

_T(At)4[4meiﬁT/2g?{) . izz}]elwt
180 -
- —~ Qb &T
EFFraefr
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Where, i a .
o - 26 _ 286 28
T 45 315 4725
2 4 6 8
2 26 46 26 _ 8 .
B=3 T 75 ~ 708 Y67 5515 (See Tranter, C.J.;
2 4 ¢ 8 Integral Transforms
R T 25— iy Mathomabical
= 3 T s 210 11340 997920 in Mathematjica

Physics, pp;67—72)
B = wat £T/% (6=T/4 see Note 7)

Selection of the integration routine which should
be used depends on the series to be transformed and
the transform frequencies of interest.

The properties of the first three rules are well
known and only a couple of points need be made in
their regard. Computationally the trapezoid and
modified trapezoid are the fastest, but for a very
large number of points machine roundoff error can be
up to twice that in Simpson's and Filon's methods.
Modified trapezoid depends more on the first derivative
at the end points than does Simpson's rule, but if
these derivatives are reliably determined, the error
in the modified trapezoid rule is 4 times smaller than
that in Simpson's rule. The main disadvantage to all
three is that for a given accuracy, closer and closer
spacing of data points is required as the frequency

of interest increases, due to the rapid oscillation of
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the eimt factor.
Filon's method eliminates this disadvantage and
requires a data spacing no finer than that necessary

’

to integrate the series without the elmt factor.
Computationally it is slightly longer since the
weighting coefficients are a function of frequency
and must be calculated for each new frequency; howeQer,
this is more than compensated for by the fewer data
points required. In the limit as w»0 this method
reduces to Simpson's rule.

With Simpson's rule and Filon's method an odd
number of data points is required.

(5) Computation time per 1000 data points per
frequency is about 3 sec.

(6) To compute filter coefficients insert card
containing:
Col 1-5 N Determines number® (2N+1), if filter

coefficients to be computed and used.(15)

Col 6-20 Band(1) Specifies center fregquency (cps of
desired band times DT i.e. f_x DT (EI5.7)

*An approximate formula to determine the number, (2N+1),
of filter coefficients required is 012

N = 3
[Band(3) ] [€]
where € is the maximum error (percent)
between the desired filter and the one achieved. (See

Ormsby, 1961, pp. 440-466.) '




Col 21-35

Col 36-50

(7)
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Band(2) Specifies half band width in cps
times DT = fC¥DT (E 15.7)

Band(3) Specifies frequency interval be-
tween cutoff (fc) and total reject,
(f_), times DT = (f .- )%0T (E 15.7)

A revision has been made so that for e:>p/4

the following formulas are used for «, B, ¥ -

ol =

w
I

¥

Il

(8° + @.5in@ .cos® - 2 sin“p)/g>
2(8 (1 +'Cosge ) -2 sin® cosd L/GB

4@ine-—9cmse)/93

B. | Fourier Analysis Package - Modification A

This program does the same things as the previous

package with the following added opticnal features:

(1)

(2)

Permits any number of velocity windows on a

set of data.

Band-pass filters and decimates each window

and plots result.

Picks zeros, peaks, and troughs of windowed,
filtered series.

Computes and plots group velocity dispersion
U(T) for each zero, peak, and trough and any
number of intermediate values. ‘
Computes the envelope of the windowed, filtered

series with corresponding group velocity.
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(6) Transforms windowed, filtered series and
plots result.
(7) Transforms filter coefficients giving transfer

function and plots result.

Input:

(1) 2 cards ldentification (unchanged)
(2) 1 card Format specification (unchanged)
(3) 1 Parameter card (unchanged through Col. 68

but including Col. 69-70 M2(Velocity Window
option)(format |2)
= 0 Use program exactly as before modifi-
cation
# 0 Permits new options of Modification A
(4) Data in prescribed format
(5) Filter coefficients, if any, as before.
(6) 1 card containing:
Col 1-15  DELTA Epicentral distance (format E 15.7)
Col 16-30 TINIT Arrival time of first (format E 15.7)
point of series (or
travel time if TORIG
is made zero.)
Col 31-45 TORIG origin time of event (format E 15.7)
(7) Any number of cards each containing:
Col 1-4 NU Number of intermediate(format [4)
group velocities

Col 1=12 UMX Maximum velocity for (format E 10.4)

window



Col

Col

Col

Col

Col

Col
Col

Col

Col

13-24

25-36

37-48

49-60

61-63

64-66
67-69

70-71

72
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UMN Minimum velocity for (format E 10.4)
window
BAND(1)Center of pass band (format E 12.6)
times DT
BAND(2)Half band width times (format E 12.6)
DT
BAND(3)Cut off to total reject (format E112.6)
times DT
N Determination number of (format 13)
coefficients (2N+1)
ML Decimation number (format 13)
KW> 0 Permits ﬁread In" of a
new initial frequency
and frequency increment
and changes number of
frequencies to be calcu-
lated to KW.
= 0 Computes for frequencies
last specified previously.
NT= 0 Finds transform of filter (format [2)
coefficients
20 Does not find transform
of coefficients
ND= O Another pass to follow (format |1)
on same data
> 0 Last pass on current

set of data
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(7Ta) Follow every parameter card above on which
KW = 0 with a card containing:
Col 1-15 FI New initial frequency (format E 15.7)
Col 16-30 DF New frequency increment (format E 15.7)

C. |Least Squares Phase VeiocityaK

This program for the Bendix G-15D computer takps
phases correlated across an array of N stations (N ;a 3)
and by means of a least squares fit to the data finds
estimates of the phase velocity, C, the direction of
propagation across the array, o, and the arrival time
of each phase at the "origin" chosen, T,- When N > h
the standard deviations of C, &, and T, are given.

Theory:

T: » = AicosxI cos ﬁj + Ai sin<_ sin b,  + T

1] i -
C . c. 1 o
J J

Il

aiX + biY + Ciz

where Tij = arrival time of the jth phase at the
 th station
A, = great circle distance from "origin"

to the ith station.

azimuth of it station from "origin"

®An IBM 7090 subroutine was also written for this
calculation (see Part || this Appendix).
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X = cos B,
J
&,
J
Y = sl §,
J
L
J
Z = TOJ'
Hence & = taﬂ—i(Y/X)
2 .
C = (X +Y) b
Y
2
X‘ (Z(@Zk ,ax ) standard deviation
of \6 (X;Y:Z)
Qutput Format:
X G, Y Oy
z Gé
i 6& o) C% N

Procedure:
1. Load IC 1000 DP
2. Read program (551700 then 691700; wait for
photo reader light to remain off)
aK3. Enter: a) Ai in consecutive locations In
CH 13 starting at 1300
b) o(i in consecutive locations in
CH 15 starting at 1500
4. a) Manually set index register 47200(2(N-1))

*If the aj, bi are already computed, enter the a; in
CH 13 and bj in CH 14, set index register 47200( 2(N-1)),
and go to step 5.
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b) Compute automatically beginning at 1179
(691179). The coefficients bi and a, will
be computed and typed out in pairs, bi
then a; . When the computer halts, the a;
will be stored in CH 13 and the b, in CH 4.

5. Enter: a) T2 (i=1,N) in CH 12 starting,

at 1200 |
b) N in 0990 (N <A47)

6. Compute automatically beginning at 1710. N-2
calculations will be made, successively eliminating
stations starting with first station. Manually stop
program if less than N-2 calculations are desired.

Data Is not destroyed.

7. a) Relocad N in 0990
b) Set index register 27000 (2(K-1)) where the
K'" station is the first to be eliminated.
c) Compute automatically beginning at 1706
(691706) N-2 (or K if N-22 K) calculations
will be made successively removing stations
beginning with the K th station, then the
(K-1)St etc.
8. Go to step 5 for next phase, il + I}
Remarks:
1. The average period to be associated with each

phase is not computed by this program and must be

obtained elsewhere.
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2. The use of this program is not restricted to
dispersed surface waves. |t can be used for body waves
or any propagating event to find the apparent velocity

and direction of propagation.

D. |Group Velocity from Phase Velocity Dispersion

This program for the [BM 7090 computer takes N
phase velocity (C) versus period (T) or frequency (f)
points, fits a best least squares polynomial (P(x)) to
the points and uses this polynomial and its derivative
to obtain the group velocity as a function of period or

frequency. The formula used is

B P(x)
Ut = 5 = P oo o)

where x =T period
P(x) = C(T) phase velocity if k is even
PI(x) = dC(f)
daT
W o= f frequency
Pi{x]) = C{f) phase velocity if k Is odd
P'(x) = dC(f)
df

Any order polynomial up to 19 may be used for the fit.
Any number of values of U for arbitrary T or f may
be computed, as well as values at the input values of T

or f, if desired.



Input:

~. If1 =

Each set of data should consist of

(1) 2 cards of identifying information

(2) 1 card containing:

Col

1-36 Format of phase velocities to be

read. e.g. (18F%.1)

Col 37-7T2 Format of periods or frequengies to

be read.

(3) 1 card containing:

Col 1-6 N
Col 7-12 NZ

Col 13-14 KK
Col 15-29 DT

Col 30-44 TB

Col 45-46 L

Col 47-48 LF

Number of input dispersion points.
Number of output dispersion points
desired.

Degree + 1 of desired polynomial.
Period (frequency) increment between
output points.

Beginning period (frequency) for output
points. (Computes NZ dispersion points
at intervals of DT beginning at TB).

= 0 Does not compute values at the
input points.

= 1 Computes for input periods (fre-
quency) using fitted phase velocities.
= 2 Computes for input periods
(frequency) using both fitted and

input phase velocities.

=0 indicates input periods will be read.
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= 1 indicates input frequencies will

be read.

=2 indicates input periods to be
computed at equal increments beginning
2% T1.

= 3 indicates input frequencies toj be
computed at equal increments beginning
at Tl.

= -1 indicates input C(f) to be computed
at equal increments beginning at T1.

= -2 indicates input C(T) to be computed
at equal increments beginning at TI1.

Col 49-60 T1 Beginning input

Tif LF =2
f if LF =3
C(f) if LF = -1
e(T) if LF = -2

Col 61=72 TINC Increment for input
T If LF =2
¥ If LE

Il
W

C(f) if LF = -1
c(T) if LF = -2
(4) Input phase velocities if not computed
internally, in the format specified above.

(5) Input periods (frequencies), if not computed
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internally, in the format specified above.
Qutput:
(1) Coefficients of fitted polynomial
(2) Period (frequency) Phase Vel, Group Vel.

a) from TB to TB + (NZ-1)DT
b) optionally for input T, computed C
c) optionally for input T, input C

Notes:

1. c(1) =c(T(1)) I = T,N

2. |f T or f is computed C must be read and vice
versa.

3. For experimental data a rather lTow order fit
should be used because it smooths the data and better
approximates the true group velocity curve.

L. T(1) or f(1) is used to normalize the input
values of T or f before the fitting is done. Qther
normalizations may be used by changing a command in
the Fortran source deck and recompiling. OQutput
values are not normalized.

Limitations:

1. N £ 5000
2. KK$20



2. Subroutines

A. | Subroutine DISTAZ (TH, PHI, N, K, XDEG, AZ,

AZINV, DIST, STA)

Distance-Azimuth Computations

Computes distances and azimuths from the Kth point
on the earth's surface to each of a set of N-1 otheri
points, given the longitude and geographic latitude
of each point.

Distance in degrees of central angle and azimuths
are computed using direction cosines with geocentric
latitude. Distance in kilometers is determined using
Rudoe's formula. The |nternational Ellipsoid taken

as the earth model.

STA(1) = Alphanumeric designation of |'th station
(16) (1 = 1,N)

TH(!) = Geographical latitude of |th station
in degrees (1 = 1,N)

PHI(l) = Longitude of Ith station in degrees
(] = 1,N)

N = Number of stations including origin

K = Station to be used as origin

Quantities Computed:

XDEG(!)= Distance in degrees of central angle

from STA(K) to STA(I)
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DIST(1)= Distance in kilometers from STA(K) to
STA(1)

AZ(1) = Azimuth from STA(K) to STA(l) (measured
from North)

AZINV(1)= Azimuth from STA(l) to STA(K)

PRINT FORMAT :
Origin STA(K)
lat, TH(K)
Long. PHI (K)

Station Latitude Longitude DIST(deg)

STA(1) TH(I) SBRI(L) XDEG( 1)
DIST (km) Azimuth Back Azimuth
DIST(1) AZ(1) AZINV(1)

Restriction:
Each of the subscripted variables above must be in

a DIMENSION statement in the source program.

B. |Subroutine PHVEL (Y, DIST, AZ,L,M,K,PV, SDPV,
TH, SDTH, PAT, SDPAT)

Anput:
Y(1,J) = Arrival time of the jN event at the Ith
statien | = 1,08 J = 1K
DIST(I) =Distance of 1th station from some point

(pseudo-origin) within or near the array.
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AZ(1) Azimuth of It station from the pseudo-

I

origin.

L(JJ) Specifies the array of stations to be used

for phase velocity calculation. This
enables one to use any subset of a large
number of stations for a particular ph@se
velocity calculation. M £ total numbér
of stations. (e.g., L(1) =2, L(2) =4,
L(3) =8, L(%) =3 would compute phase
velocity for array of stations 2, 4, 8,
and 3)
M = Number of stations in the array L
K = Number of events or phases.
Computes:

PV(J) Phase velocity of jth event across the

array L of M stations

SDPV(J)= Standard Deviation of PV(J)

TH(J) =Direction of propagation of jth event
across the array L of M stations

SDTH(J)= Standard deviation of TH(J)

PAT(J) = Predicted arrival time of the jth event
at the pseudo-origin.

SDPAT(J)=Standard deviation of PAT(J)

Restrictions:

M £ 100 can be increased by changing DIMENSION
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of X(100), A1(100), and AZ(100) and
recompiling.

Requires Subroutine LSQFIT and DET3

C. | Subroutine P1CK (X,NN,DT,YS,Y,N)

This subroutine takes an oscillatory function,
X(t), having NN values sampled at an interval DT
beginning at YS and picks the location ¥; of each |
zero, peak, and trough and stores them as the array
Y. Y(1), Y(3), Y(5) . . . . are the zeros of X(t),
and Y(2), Y(4), Y(6) . . . . are the peaks and troughs.
N is the total number of values in the Y arréy, i.e.
total number of zeros, peaks and troughs picked.
Restriction:

Arrays X and Y require DIMENSION statements in

the source program.

D. |Subroutine IMPRSP (M, KK, W, DW, A, TG, TP, Y)

Given:
M = number of synthesis points desired
KK = number of input frequencies to be used
W(1) = array of frequencies I = 1, KK
DW(1) = array of frequency increments DW(I|) =

WE3)-W(I-2) I =1, KK

A(l) = array of amplitudes 1 = 1, KK
TG(1)
TP(1)

Group delay 1 =1, KK

Phase delay 1 = 1, KK

T = starting time
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Computes:

L s

AW.:) sin k. o .

Y(t) = %zg— ! ( ) (t—tgi)) cos (Wi(t_tpi))

1=]

t'—tgi
Qutput: |
Prints and stores Y(t) as the array Y(I) 1 = 1; KK

Required statements in source program:
Dimension W( ), A( ), DW( ), TG( ), TP( ), Y( )
E. |[Subroutine LSQFIT (Y,Al1,A2,N,D2,SD2,D3,S3D3,

D4,SD4,SD )

For a set of N equations of the form
Yi = AliXj + A2jXp + X3 (l)

Finds least square fit giving best Xl’ XE’ X3 and
the standard deviation of each.
Restriction:
(1) N&20 (This can be changed by changing
DIMENSION statement for Y, Al, and A2)
(2) Requires SUBROUTINE.DET3
(3) Coefficient of X3 is always 1; this can
always be achieved by dividing both sides
of (1) by the coefficient of X3

Input:
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Arrays Y(1,1)
AT(1) 1 == TN
A2(1)
N = number of values in each of the

above arrays; also number of equations

of form (1)
Qutput:
D2 = X, where X; Is quadratic mean error in
o determining X;
SB2 =g~
X1
D3 = X
9 2,
SD3 =g
o
D4 = X3
SO =g—°
X3
Sb = 02 where ¢~ is quadratic mean error in the

whole set of observations

F. [Subroutine NDTRND (K,KK,X,N,Z)

This subroutine takes an X, of N points, fits a
least squares straight line to the first K points and
a different least squares straight line to the last
KK points, and removes a linear trend from all N points
of X using a weighted slope

CRECCRE AN

KK
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to give a new array, Z, of N points.

(1) Input K, KK, N, X defined above. (K, KK, N
are integers)

(2) Output array Z of N "NDTRND"' ed points (Z
can be X in the calling statement causing
original series to be replaced by new
"NDTRND"eéd series; i.e., calling sequence
can be (K, KK, X, N, X)

(3) Limits: K < 1000

KK £ 1000
This can be increased or decreased by changing
DIMENSION of Y(1000)
(4) Required subroutine DETRND

G. |{Function NFACT (N,K)

Factorial Function
Computes NFACT = N * (N=1) *-(N-2) - (N-=3) ---
(N-K) for any integer N with K< (N-1)

e [Subroutine DET3 (A,D )

Compute value, D, of a 3 X 3 determinant
A(T) A(2) A(3)

A =[A(H) A(5) A(6)
A(T) A(8) A(9)

|. |Subroutine POLVAL (X,B,KK,S)

Evaluate a polynomial:

Takes an independent variable X and a set of KK
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coefficients B(l,1),! = 1,KK and computes the value, S,
of a polynomial of degree KK-1 having coefficients B.
i.e. S =B(1,1) + B(2,1)X + B(3,1)%X% + ... B(KK,1)xKK-T
Restrictions:

KK £ 20. This can be increased by recompiling

and changing first dimension of B in DIMENSION statement.

J. |Subroutine DERIV (X,B, KK, S)

Derivative of a polynomial:

For a given X computes S =(ﬂi) where Y = B(KK,])XKK']
dX
X

+ .00 + B(2,1)X + B(1,1)
Restrictions:

KK § 20 This can be increased by changing just
dimension of B in the DIMENSION statement.

K. | Subroutine DPOLYC (K,N, B,A,M)

Given a set N + 1 coefficients, B, of an NJ(h

degree polynomial this subroutine computes the M

coefficients, A, of the Kth derivative polynomial.

Input:
B(1) | = 1,N + 1 = Array of coefficients of an NtP
degree . polynomial
N = Degree of polynomial
K = Derivative desired
Qutput:
A(L) | = 1,M = Array of coefficients of Kfh

derivative polynomial
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M ~ Number of coefficients of KI

derivative polynomial
Requires DIMENSION statement for B and A in source
program; FUNCTION NFACT.

L. |[Subroutine CXPROD ( Z,S,L,K )

Complex Product:
Given a set of complex numbers Z(1,1) + iZ(I,?i
| = 1,N and L(J) a set of K integers between 1 and N,

this subroutine computes the complex product

K
s =1 [ Z(L(),1) +1Z(L(I),2)] =S(1,1) + i5(1,2)
Jai}
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APPENDIX 1

MODIFIED USE OF THEORETICAL DISPERSION CURVES

Transition zones appear to be able to

phase velocity dispersion curves enough so

distort the
that absclute

thickness values derived from the ordinary theoretical

dispersion for plane horizontal structures are not
reliable.
Examination of typical continental phase velocity

dispersion curves indicates that in the period range

above about 16 seconds agiij) is a slowly varying
T

function of H for 25 &€ H £ 45 km. This means that it
may be possible to interpret the observed dispersion
using the standard theoretical dispersion calculations

in a slightly different way.

Lot o(7,8) = phase veleeity

T = period

H = crustal thickness
then

de(T,H) = (25) dT +

o<
T 'H (57 ) dH

For a fixed T,

R

dC(T,H) = (gg)TdH

or (2)
_ 2C

dH dc/ (E)T
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Once existing body velocities and densities are

determined for a region, then the usual multi-layered

I

for any interval H]S H £ H2 defining the bounds on the

absolute thickness thought to exist in that region. In-

dispersion calculation permits a determination of F%;)
-

herent is the assumption that only layer thicknesses
change so that no lateral gradients exist in body vé]ocity
within each layer.

However, it should be pointed out that with the
relative ease of computing theoretical dispersion curves,
one can readily investigate cases where only some of the
crustal layers vary laterally in thickness without vio-
lating this assumption.

Values of dC(T) are obtained from the experimental
measurements of phase velocity over two or more adjacent
local tripartite arrays.

For numerical computations, let

Tetr T

dC(rH) —> aC (7,1 =aC:

d H — 4&# (3)
(afff”) > «(7;,H) = &,
7-.

[4

Then an independent estimate of the change in thick-
ness is obtained for every period 7, ([::4z,»~r)AO so

that the mean change in crustal thickness is given by

- AC:
P S St B
AH‘NE% (1)
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with a standard deviation of

o= [ 2 (4% - aW)]

The following table serves as an example for values

of aé),
dH I

These values come from Press's standard curves.
i
TABLE 6
Change in phase velocity (C) with change in total
crustal thickness (H) vs. period (T) using Press's

standard curves.

e | B G
25< H< 35 4m 35< HES 45 fm

12 015 . 006
14 .020 .0075
16 .025 011
18 .023 014
20 B 017
22 | .018 .018
24 .015 017
26 .012 .0165
28 .010 .015
30 .008 011
36 .005 .008
i) . 0045 . 0055
48 . 004 .0035
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Note that in this example éﬁ;) is a very
oM /T
slowly varying function of H for periods beyond 20
seconds for the depth range 25 < H £ 45 km.

To assign absolute thicknesses using this modified
method requires that the crustal thickness be known at
one point in the region to be studied. This is the only
requirement in addition to usual ones of specifyin&
velocity-density structure for computing the theoretical
dispersion curves. [t is felt that in transition zones
this modified approach is the most reliable means of de-

termining absolute crustal thickness from phase velocity

dispersion.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

= 18T =
FIGURE CAPTIONS

Map showing the paths from Pasadena to the
continental sources used. Paths from other
stations in Southern California to the source
areas are not shown.

Typical group velocity dispersion curvesl!showing
suitable band passes (alternate shaded and
unshaded portions above 6 seconds period) for
separating the modes in the time domain.

Typical group velocity dispersion curves,
velocity windowed (unshaded portion) to separate
the modes in the frequency domain.

Sample seismograms showing continental events
used. The records shown are playouts of the
digitized seismograms from the various stations
indicated.

Seismogram of a Montana aftershock recorded at
Riverside. This is a good example of the com-
plicated appearance of the seismogram when more
than one mode is present with sizeable amplitude.
Seismograms from a Montana aftershock recorded
at three stations in Southern California on
matched Benioff 1-90 vertical component
seismographs.

Result of applying the mode isolation technique

to the seismograms shown in Figure 6 to recover



Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.
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the fundamental mode Rayleigh Waves.

Result of three band passes on the Riverside
seismogram in Figure 6 to delineate the modes
present in each frequency band.

Spectra at three stations of a velocity window
from about 4.5 km/sec to 3.0 km/sec for & Mon-
tana aftershock. The period in seconds is
indicated for each peak. These spectra were

not corrected for instrument response.
Normalized vertical displacement with depth at
two periods for the first three Rayleigh modes
(My15 Myys Myp) for the structure shown. This
illustrates that for a given frequency each
successive higher mode samples deeper into the
structure. The compression velocity (=) and
shear velocity (B) are in km/sec. The density
(p) is in cgs units.

Example of how the first higher mode (M21) at
7.249 seconds is sampling the structure indi-
cated. The true sampling is given by scaling
the shaded zone B plus 4 times the shaded zone A
by the p]ﬁig appropriate for each layer.
Comparison of cases to test the sensitivity of
modes to changes in thickness, velocity gradients,
and thin high velocity layers. The structure for

Case S5EEBM3A differs from that of SEEBMY only in



Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

- ]89_

a thin, high velocity layer at depth as shown in
Figure 18. Case S5EEBM6 has a more gradual
increase in velocity with depth.

Test of the effect of density on fundamental mode
dispersion. The crosses represent the result of
changing the density from 2.9 to 2.78 lnlthe
depth interval from 26.5 to 44.5 km.

Composite experimental group velocity dispersion
for the aftershock sequence of the Montana earth-
quake of August 17, 1959. The solid and dashed
lines are two theoretical models derived to fit
the observed data.

Observed Love wave dispersion from two events in
Utah to Pasadena. The structure for Case 35CM2
is shown in Figure 17. The solid line shows the
effect of sphericity on Loj. The narrow minimum
in the dispersion at about 7 seconds period
(dotted 1ine) was obtained by computing the

exact group velocity by an energy method.
Observed Rayleigh wave dispersion from two events
in Utah to Pasadena. The structure corresponding
to theoretical curves for Case 35CM2 is shown in
Figure 17.

Structure which provides the best fit to all the

Basin and Range dispersion data.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

20.

2].

22

03,

24 .
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. Structure for two models having a thin high

velocity layer at depth and a mantle low velocity
layer.

Comparison of theoretical and experimental dis-
persion for the Basin and Range, including
several cases which do not fit the data well.
Theoretical phase and group velocity disLersion
for the structures shown in Figure 21. The thick
solid line indicates the observed group velocity
dispersion for the Basin and Range.

Crustal models based on the compressional wave
refraction results of Berg et al in the Eastern
Basin and Range. Only the shear velocity is
allowed to vary from one case to another.
Theoretical phase and group velocity dispersion
for the structures shown in Figure 23. The
thick solid line indicates the observed group
velocity dispersion for the Basin and Range.
Crustal models based on the compressional wave
refraction results of Berg et al in the Eastern
Basin and Range. O0Only the shear velocity is
allowed to vary from one case to another.
Observed phase velocity dispersion for the array
Pasadena - Ruth, Nev. - Albuquerque, N.M. com-
pared to the theoretical dispersion for Case

35CM2 shown in Figure 17. Data from the Soviet



Figure 25.

Figure 26.

Figure

Figure

Figure

Figure

L

28,

29.

30.
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nuclear tests at Novaya Zemlya were used to obtain
the experimental points.

Comparison of experimental Rayleigh and Love wave
dispersion for the Basin and Range with that for
a path further south from Qklahoma to Pasadena.
Observed Rayleigh wave dispersion for a path

from Southern Mexico to Southern CaIIforéia.

The dispersion for the structure model 35CM2 is
shown, as well as long period higher mode curves
for a Gutenberg-Birch model. Note that between
15 and 30 seconds the observed data scatters
below the theoretical values.

Comparison of observed dispersion for the Basin
and Range, Sierra Nevada, and California coastal
regions.

Comparison of observed and theoretical dispersion
for the Sierra Nevada region. Table 4 gives the
structure for the theoretical curves.

Observed Rayleigh wave group velocity dispersion
along the California coast (solid dots) compared
with theoretical curves for various assumed
models consistent with refraction data. Figure
30 shows the structure for each of these cases.
Crustal models consistent with refraction results

in the coastal region of California.



Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.
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Graph showing the relationship of compressional
and shear velocity for various Poisson ratios.
Map showing the location (solid dots) of stations
used for phase velocity measurements.

Summary of Press! tripartite method for deter-
mining phase velocity and direction of propaga—
tion.

Least squares method for determining phase
velocity and direction of propagation. The
arrival time of the kth phase at the ith station
is T;,- The standard deviations of Cy and &6,

are included in expressions (i) and (ii)
respectively.

Modifications in Press!' tripartite method

(Fig. 33) for use in the frequency domain. The
phase difference between the Ith and jth stations
is A@ij5 T.,. is the difference in feducial times

]
th

used at the i and jth stations; m and n are

integers; Arij is the difference in epicentral
distance between the ith and jth stations; € is
arbitrary and small; and T is the period.
Typical seismograms from an earthquake in the

South Pacific recorded on matched Benioff 1-20

vertical seismographs in Southern California.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

37 -

38.

39.

4o0.

4.

42,

43.

= 193 =
Composite of the experimental phase velocity
dispersion at the continental margin of Southern
California, using tripartite arrays and Fourier
analysis. Press' "standard" theoretical phase
velocity curves are shown for reference.
Experimental phase velocity dispersion cFmparing
propagation in opposite directions over a fixed
array in Southern California. |
Comparison of refraction and phase velocity
methods for determining the depth and slope of
the crust-mantle interface. The structure
section is from Shor and Raitt (1958).
Two Bouguer gravity profiles across the con-
tinental margin of Southern California.
Measured phase response for the Benioff 1-90
vertical instruments at the stations shown in
Figure 32. The relative amplitude response
normalized to unity at 5 seconds period is also
shown.
Sample Fourier spectra for an event in the South
Pacific recorded in Southern California.
Experimental group velocity dispersion for an
event in the Solomon |slands. The dashed curves
are limits of observed group velocity in the

United States from this source region.



Figure

Figure

Figure

Figure

Figure

1,

45,

46.

4.

48.
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Summary of a method for determining the strike of
linear features from lateral refraction of sur-
face waves.

Summary of results from an ultra-sonic model
experiment. The solid lines represent theoretical
curves for a layer of thickness H over a half
space. The geometry of the model is shoén below
the legend.

Amplitude dependence with depth for the funda-
mental and first higher mode of Rayleigh waves at
station 27 in the ultrascnic model shown
schematically in Figure 45. Note the reversal

of polarity in the higher mode at about H/,.
Records for a profile on the ultrasonic model
(Fig. 45) with the source at the thick end and

no filtering. The fundamental (M]]) and first
higher mode (My;) are labeled.

Records for two profiles on the ultrasonic

model (Fig. 45). The profile on the left was
made with the source at the thin layer end and

no filtering. The profile on the right was

made with the source at the thick end and a
narrow band pass (compare with open band

records on the same profile In Figure 47).
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