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AGSTRACT

In Part I, some of the important physical ideas that have besen
used in an analysie of chemical changes in rocket nozsles are
reviewed with particular reference to the three-body recombination
reaction. Modified forms of the simple near-equilibrium flow
criterion developed about 15 years ago are shown to lead to results
that are substantially equivalent to estimates derived from a criterion
of Jray. Thea influence of surface-catalyzed procesees on atomic
racombination rates in rocket nozzles is considered and found likely
{3 be importdnt in present solid-propellant rocket enginss,

in Part 11, studies of the effective desorption rates of gases
(Ar, .'e, and COZ) from sand and from silica gel are described.
These rates have been deterrnined experimentally Ly measuring, as
a function of time, the pressure drop in a vessel containing the
solids when the gases are allowaed to discharge through a emall de
i.aval nozxle. The dependence of the degsorption rate on temperature
has been investigated. A theoretical expression for the rate of
degorption from porocus solids hae been develcped assuming that the
overall process iz diffusion controlled. The experimentally determined
degorjtion rates of Ar, iie, and CG, from silica gel have been

compared wita this theoretical expreseion.
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FPaRrtT L. CHEMICAL REACTIONS DURING FLOW IN ROCKET
NOZZLES

1. APPROXIMATIONS USED IN THE THREE-BODY RECOMBINATION
RZACTION I RCCHRET MOZZLES

A, Lighthill's Approximation

I the literature we find frequent reference to Lightaill's “ideal
dlatomic gas'. b This Mideal dlatomic gas' refers to the classical
harmonic oscillator-rigid rotator approximtion(z) for diatomic
mclecules and includes only consideration of the electronic ground
state for the atom A and the molecule Ay whiclh participate in the

homageneous racombination rsaction

)
K.
Al st

.Az% X T A+ KR (1)
ix

Ware kD and kR

congtants for dissociation and recombination and X denotes eithier A

rapresent, respectively, specific reaction rate

P o &-.z‘
ihe equilibrium conastant based on ratics of partial pressures
(é,‘;p) is than related to the equilibrium constant based on ratics of mass

fractions (&) through the expresasfon [cf. ref. 2, Eq. (36} on p. 14’:3] :

v s pAZ T (VA)Z 2
PME;;.:“Y(RE/O)WA %AZKT:”Z::/JR‘W
ar
Gt W, _

, 1
=T, ¥ gRT = F /J'ET Bp - (2)
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ders Fa and Py denote the partial pressures of species A and Ay,
- 2
respectivaly; Yo and YA are the corresponding mass fractions; R is
2
tie molar gas constant; T represents the absolute temperature; /0 is

tae density of the gas mixture; WA and W are the molecular weights

A

2
of species A axnd AZ‘ respectively; m = WA/N (where N = Avogadro's
aumber) is the mass per atom of species A; k = R/N is the Boltzmann
sonstant.

For an ideel gas it follows from statistical mechanics that

[cf. ref, 2, Eqs. (29) and (30) oa p. 193]

E{p = exp(~<F /R T)
where
o

.50 _ 2p O

i3 the standard Cibbs free energy difference (i. e., the free energy
difforence at unit pressure) for the chemical process described in

Bg., 1. Eut [ci. ref. 2, Eq. (29) ca p. 193;’

3
T, 7RI (2xm) T2 (k’I‘l)Brz 6-izt,.t!\ AN
and
F, °=RTn ( b 1 1 + £ N
Ay 2 42wem) e (k1) % lae, 4, Ay

where (cf. ref. 2, p. 194)

)

' ~
“int, A — 8,
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and [cl. ref. 2, Egs. (48), (53), (54) and (40) on pp. 200-2021

-1
»:Tzim. A.‘.’; = g‘Aao [l-exp(-b % /k‘f)J (kT/s8heB).

iere G ie the internal partition function for species A when the

int, A

enarzy levels of A are refarred to the ground level of species A, gAO

is the statistical weight of the ground state of species A, and it has
vaen agsumed that the temperature is sufficiently low to justify neglect
o€ all electronic energy levels above the ground lavel. The guantity
i’,;im’ Az represents the internal partition function of molecule A, in

the yround electronic state with statistical weight €4 © when A. is
2 2

troated a3 a combination of (a) a rigid rotator with rotaticnal constant

owhere 2
he® = h

/Swzl

(r = Planck's constant, ¢ = velocity of lizit, I = moment of inertia of
Az) and (b) & harmonic oscillator of frequancy  ; all energy levels in
ths exprossion for ;:éi'nt, “““z are maaeured with respsect to the ground
state of A 2 The quantity s is the symmetry number of the diatomic
malaculs and equals unity for heteropolar moleculeg and two for homo-
polar molecules. The energies ¢, and &'Rz repregent, reaspectively,
the zerc polnt energies of the atom A and of the molecule AZ' Combi-

ration of the preceding expressions shows that

L3/ 2 0,2
(km}™ sz ) L 352 .
H_= 72 = & [l-exp(-h VikT) exp(-ZdA/kT) (3)
P bw al g J “
2
whore 2 fA- 61, = 2d, is the dissociation energy for one molecule
le
of A,. Combining Eqe. ¢ and 3, we now obtain the expression



2
Y
I:%;. :-//ZS exp(-2d, /kT) (4)

whaere

. . 0,2
mS/& g /2 (SA ) l-exp(~a ¥ /kT)

16:1/ ZhIIZ 1 B, o (hV/kT)”z
2

Py = (5)
is a characteristic density. i.dghthill noted that [l-cxp(-x)] x'lla is
& slowly varyiang function of x and proposed tc replace it by an effective
mean value. This "Lighthill approximation” is well justified for the
range of values of x actually encountered in conventional rocket
aozzles, A plot of (kT/av )1’ 2 [l—axp(ﬂ v:’k’i‘)] a8 a function of kv i
ie shown in Flg. 1. Reference to Fig. 1 shows that
(k'“:?/iw)l/ 2 [1~01tp(-h V/kT)J varies very slowly with temperature near
kT/hy = 1; it approaches zero as the temperature approachss infinity.
Yalues of kT/hv = 1 are of intereat in connsction with conventional
nozzsle flow calculations.

Ve may easily show that the statement

/2
l-exp(-hv /kT) o< (%%) (6)

corresponds to the asaumption that the vibrational energy of the molecule
iz half excited. Thus the gpecific vibrational energy of Az ig given by

the expression

‘ Cx
", vib * Zm T 37
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whare

exp(- {, hy /RT)

2 ib = H

VID ) exp(-hv /XT)

hencs
2 dfn fl-cxp(-ht)/kf‘):,
" -1 ( 1 by ) - kT L (7
A, vib Z2m ‘2 Zm di :

sere the guantity (% hy )/ 2dm represents the specific vibrational energy
assoctated with the zerc-point energy. For unexcited molecules,

2V /kT >>1 and the second term in Eq. 7 becomes negligibly smali
compared to the zero-point energy. ¥For fully excited molecules,

hy /RT << 1 and

" 2

kT4 ¢ o L wT® 4 wv | _ kT
- 2‘?1-;— a7 Iin [:1 pr’(‘ﬂ 14 /Kf)J _ - o a1 in T = -2—{;‘ .
i the other hand, if we use Eg. 6, then
, 2 12
ETY a4, T ) ol RETT & Ly _ 1 KT
“gm oar e deexp(-hv iRT) = - e gy I k”f) =2 Zm -

ihas it follows that g, 6 corresponds to the approximation that tis

visrational degrees of freedom are half excitec and that

- 1. 1" 3
Zmqu, vib -(-.zav ) + zxf. (3}

Thez internal saergy of unit mase of fluid mixture, when the

sroucd vibrational state of the molecula is chiosen as energy zero,

pecomes
¥ 1%
Y W I p A |3, . ; 1
# = e R + dA) P | T+ imqu. rct* Zmuﬁz'vib- 7 21\)) .



where
Zmqu. rot * kT;
hence,
¥y d
. _AA 3
u =~ i kT . (9)

The euthalpy per unit mass of mixture is

h=u+ /g- { P = denaity of the fluld mixture)
vihere p = pA'i' pAZ. Py = YA/J(RT/ m), pAz = (1-'§'A)/0 {kT/2m),

¥

A s
PeZm /K
ana
kT, ‘a%
AU ~oh i (10)

The approximations involved in (a) nsgleciing the influence of
excited electronic states, (b) assuming that the vibrational degrees of
froedorn are only half excited, (c) neglecting anharmonicity terms in
thie vibrational partition function, and {d} neglecting vibration-rotation
interactions in the partition function for A, are all ultimately justified
because of the low accuracy inherent in nozzle-flow celculations
becauvses chemical reaction rates are ususlly not known to better than

an order of magnitude.

5., The Reaction Rate

For the chemical process described by £q. 1, the rate of

reaction may be written in the form (cf. ref. 1, Chapter XVII)
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dy W

A A d(A) _ 2 p =X ) PZYAZ
o G T kR | 0

w WA

where W is the average molecular weight of the mixture = W, I(HY )
and the other symbole have their usual meaning. But detailed balancing
leads to the requiremant [cf. ref. 2, Chapter XVII and Eq. (36) on
P 123}
K K 20v,°
D £ ¥a

K CF *RET WYY
¢ PPN
Combining this last relation with Eq. 4 we now find that

kp

0 - ?72‘; P4 expl=2d, /kT) . (12

For the specific rsaction rate constant for dissociation we use the

conventional approximation

ky, = cr8 exp(-2d, /KT) (13
where C is a constant. Using Eqs. 12 and 13, we find from Eq. U the
regult

av, [wy, ) , 2
A Lt -8 e P2
& ’K Zw| (CT )| pUY ) oxpl-2d, /kT) " 77 Ya :I (14)

/ L

Equation 14 differs from the expression given by Freemn”) and
used by ﬁray“) and others through the occurrence of the factor (1+ YA)
in place of unity., It is casily shown that (Y A) should be replaced by

unity when the process described in Eq. 1 occurs as & minor reaction



iz a gas mixture. In any case, the relation given in Eq. 14 involves
implicitly the erroneous assumption that atoms and molecules are

equally effective as third bodies in the recombination of atoms.

II. BRAY'S AFPROXIMATE CRITERION FOR FREEZING AND
PENNER'S CRITERION FOR NEAR-EQUILIERIUM FLOW

A, Introduction

Among the first studies of chemical reactions during flow
through rocket nozzles are approximate numsarical calculations by
Peuner and Altman, (5) the development of approximate procedures
for defining '"near-equilibrium' flow and ""near-frozen’ flow by
Pennar(m in which earlier work of Schifor”) was used, and pre-
aumably exact* numerical solutions of flow with recombination of
hydrogen atoms by Krieger. (8) In agsesesing the early ideas relating
to rocket applications, it is important to remember the context in
which this werk waas done: the knowledge of chemical reaction rates
was still sparser then it is today, machine computations of composition
changes during equilibrium flow were unknown, and the objectives of
the early work were simply to define the problem within rational limits.
After soms 15 years of work in this field, the essential physical

argumants have not changed, as is evident from the following quotation:

%
Actually Krisger made a slight error in his work since he treated the
flow problem as isentropic. {8) Revised calculations have been
publisghed recently. (9)
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" Thie study of the equilibrium involving nitric oxide,
nitrogen, and oxygen suggests the occurrence of practically
frozen flow below a cartain temperature.' (Penner, 1350).

The near-equilibrium and near-froszen flow criteria [cf. ref. 2,
Chapter ¥XII| had as objective the determination of the point in a
nozzle where sffactive freezing of chemical equilibria would occur.

A aerious difficulty arose in the practical application of these criteria
in 1949 and 1950 because there axisted at the time essentlally no precise
data which could be used not for conservative but raether for practical
applications of the criteria. Cwing to the concentration of affort in

this field in recent yeara,“. 10-13)

we are now in a position to refine
tae method of application of the criteria. That this is indeed useful
has been pointed cut recently by Ba.rr;reuﬂ who showed that the
near-equilibrium criterion could be made to yield substantially

(4,10)

eguivalent results to those of Eray Wegener's experimental

studies on the system NZ + ZNOz = Nz + NZOZ. (15) Since both
procedures define the initial location in o nozzle where significant
departures from near-equilibriura flow occur, Barrere's conclusion
might well have been anticipated. We ghall verify Barrere's obser-
vation by an analytical comparison between the methods of Sray and

Fenner for the rsaction

E+2A 5 B+ A, (15)

where E represents an inert carrier that ic present in vast excess.
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3. Refinement of Bray's Approximate Procedurs

Retaining the physical ideas of Bray, a modified derivation is

preasented.

For the chemical reaction described by Eq. 15, it is readily

ahown that
¥ 00 )
) B'YA \
da _ 2 2 (43 X = _K
-H?“ZRR/O a —m—— 1~~K- —R(l v e (16)
oA e/ e
where
_ YA YA 17
i S R Sl s R (1
A AZ Ao
¥ 'L:T
2 2 v‘13(“‘6)0
R=ZkR/o a —*W- . 418)
B A
and
a 2 .
- Y 4 ¥ » »
E YAZI A ha“(YAz/ A )e (19)

with the subscript ¢ identifying local equilibrium conditions and the

subscript o denoting initial (or nozzle entrance) conditions. It has also

) =0 sothat ¥+ % j *
= 80 ¥ ¥ o
20 A A:2 A o

The deviations from local equilibrium are conveniently described

been assumad that WA

through the parameter

5 YA/(Y’-\}
ra(?.AT = ' ‘.o SL _.>_ 10 (ZO)
Ale ”A,e;w&)o %e

§ The analysis {s now specifically applicable to the system AzNOZ. sy



in terms of r, Eq. 19 Descomes

o, YA YA ey
& _ o] — e
g G y =z ‘(T"""""r_
fg :Z lgA’ '”A’ r e
o e
and £q. 16 may be written in the form
(l-rc,)
de 1 — .
- - R 1 -~ = R"l,‘ (21)
dt ;Z' u-ae,

whers R is¢ the recombination rate and I represents the diasociation
rate. For static equilibrium, Eq. 21 yields

de _ ..
T 20

aowever, in order to have eqguilibrium flow in a nozzle, R must be
iiflaite, In which case Kq. 2l becomes indeterminats and should be
reclaced oy the law of masse action.

If R is sufficlently large, near-squilibrium flow obtains,

1 (I-rae)
i- ——— <K ]
2 Ty
and, thercfore,
) (i-re )
da 1 ] ;
E-E- << R:-z Tr_a“—-;y (22)

for near-equilibrium flow. On the other hand, when large deviations

from eguilibrivm flow occur, r = ‘E’A/(‘Z‘A) becomes much larger
Ay
thoas wndty,



and, therefore,
l-ra }
da 1 ( e
- > R {a3)
@& 2 Ty
for large deviations from equilibrium flow. Comparison of Kgs. 22 and

23 ghows that

de _pd orey) G (24)
at- :2 u-ce§ !

between near-equilibrium flow and larze deviations from near-equilibrium
flow. The aspatial location where E4. 24 is satisfied is identified by
e coordinate X=X .
If it i indeed trus that a well-defined, narrow, spatial region
exists in the noszzle where an abrupt transition occurs {rom near-
aquilibrium Qow to near-frozen flow, then £ga. 22 to 24 must all be
satisfied in 8 small spatial reglon near x .
Bray now espumes thatr ~ r_* 1, ¢ ~ . and ~da /dt ~ -dce/dt
up to the location X in which case Eq. 24 reduces to the expression
de e )
- = R, D, {45a}
“rey nas algso replaced the preceding expression by the empirical

equation
da

- '?ffg = K Ej)a {B3ray's criterion) {25b)
and gtatee that X is & constant expacted to be of order unity.
it appears more logical to use Ega, 21 and 24 first to define

conditions at X Thus
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(R - D), = (D)
o [ ]

or

(D _ 4 (.,T..__.l’"e) 2L (26)
by x ':2 Qe x, Z

Hence Eg. 24, which defines X, may be rewritien as

(““\)x = (D) a(—%—) ) (27
X

©
tlence, again assuming that near equilibrium flow is maintained to
x =K, with sudden froesing at x_, we find

g
‘o

;3

. (28)

x

Equation <4 i a modified version of Bray's criterion.

Equation 26 may be used to obtain the value of r at x_, vis.,

zua)\l"
1+..-_T) -1 . (29)

-

e
"\ T-a_
e

Raference to £q. <9 leads to the comclusion that r at x = xo is not equal
to unity but actually depends on the value of a o Ot %, The assumption
of equilibrium flow up to x o’ sudden freeszing at X g0 and frozen flow
downstrsam of x, necessarily implies a jump in r at X, Indeed, the

definition of x, &t the position where

da R
"X *P*=7



obviously precludes the possibility that D = R up to x, except in the
case where I is not a continuous function of x.

It is clear that what is required here is an honest perturbation
calculation that is substantially aquivalent to the precise solution of
the problem.

The important quantities appearing in the complete expression for
-da /¢: given in Eq. 21 are plotted in the schematic diagram shown in
Fig. 2. In an actual experiment, r does not remain equal to unity to
x =X and, therefore, the curve for Re may lie anywhere between R
and D, From the definitione of R and r given in Eqs. 18 and 20 end

fror the value of {I/ R)x glven in Eq, 26, it follows that

°
G/R‘Re ltRa/R 1 _] "
Y| TR . = 2|1 -(r?‘) 1 {33)
! ] © xo_}

from which it can be geen that the position of Re’ with respect to R and

-,

i, atx = X, depends on the valus of {a e}x through the dependence of

(r}xa on (ae)xo given in Eq. 29. We may istimata the value of (¢ e)xo
required to locate Re midway between {D}xo and (R)xo. Thus we use
tie relation

(R-Re) 1

R-D 532

o
as well ag E;. 29 to find the resulte
& -, -
T )x X
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Distance

Fig. 2.

o 8Yads 2 2
RWo W,
Y_(Y,)
B*"A’c 2 2
= (R)__,= 2k P a
e r=1 R WB WA e
1 l-ro.e R
T T2\ T-e
r e
do _
i R-D
I
I
I . = _
I \‘\»‘._4 T e———
L \—_.
). 4 x —
o

along centerline measured from nozzle throat

Schematic diagram showing the rate terms in

equation - —3% = R-D as a function’'of distance

measured along nozzle centerline.
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{a 3)x° = §, 68.

The preceding resuits may be summarized by the statement that

for {a e)x. = 0, 68, (rz)x = 4/3 and Re lies halfway between R and D
o (V)
at x . From Eqs. 29 and 30 {t may now be seen that, for {a e)x > 0, 68,
(5]
(Re)xo lies relatively closer to (R)xo whereas, for (a a)x°< 0. 68,
(Ra)"o lies relatively closer to (D)xo.

. Comparison Botween Bray's Mcdified Criterion and Fenner's
Near~-Eguilibrium Criterion

Since

9fnea ”
e dinT
EIuTL Tel dt

R -

de
@
.(-Hi_

it follows that the modified criterion of Bray given in Eq. (25b) may

J (31)
S

where the subscript 5 identifies isentropic flow, Barrere has noted

bae written in the form

R
K =

=

dinT
——

( Bing

that the right-hand side of Eq. 31 is essentlally Lamkohlerts first
similarity group E-I {cf. ref. 2, Chapter XXV) and that we may regard
it as the ratio of a chemical time

a Mme

ey = &, |- 9081 |
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to 4 convection time

dt
{ Tmech’ *dnT

This observation is of considerable value since we expect, on ths
basis of very general principles for reacting flow systems, that large
deviations from equilibrium flow will occur for a specified value of
teis important similarity group.

Penner's approximate criterion for near-equilibrium flow is

[cf. ref. 2, Eq. (9) onp. 299]

adnT

Ii:r?f_ = (32)

> -2

where |cf. ref. 2, Eq. (7) on p. 299]

T'-T K-K,

T 34
®

84aT
BIak

e

(33)

8

and X and Ke have been defined in Eq. 19, The quantity z is a
reaction time which becomes, for the chemical process described in

Eq. 15 [cf. ref. 2, Eq. (10) onp. 300),

e =

i
(BUA)E [(a,)™ 4y
z e

where molar concentrations (B), (A), and (AZ) are used. In terms

of the quantities ¢ and R defined in s, 17 and 18, respectively,

N
s = T - } . (34)
l;R(T-TJ + 2

e
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It is apparent that (T'-T)/T again represents a form of Damkohler's
first similarity group.

When the near-equilibrium criterion was first developed in
1947, there were no experimental data available that could be used
to agzcertain the magnitude of the term (1T'-T)/T required for
significant deviations from near-equilibrium flow. Today this identifi-
cation cen be parformed in a meaningful manner by utilizing Wegener's

{15)

results. The utility of this approach has already been demonstrated
(*/egener 1960, Barrere 1961)., The only quantity that must be changed
iz the absolute value of (T'-T)/T, which wae originally chosen for

vary conservative estimates to agsure near-equilibrium flow. Thus we

may assume that T' has the magritude corresponding to a mass fraction

A
such that

Y, which has deviated from the local equilibrium mass function (YA)c

&

at the point in the flow where effective {reesing occurs. If we now
define {T'~T)/T at the point x, where Eq. 26 applies, then Bray's
modified criterion and Penner's ncar equilibrium criterion should

yield identical results. Substituting

( K-K, i
R
into Eq, 33 for {I'-7)/T yieldas
TT = 1| 84nT (35)
T R QZnKe

3



at the point where significant departure from near-equilibrium flow

.

occurs. Suat

n
fail, = £n¥;p-(;.n iap+ onfn¥ - Z (\)j' - \)j”) in "*f?j
j=1
for the chemical process
n n
U S
) vy My = 2, Vi M
j:l J:l

if

n
v - _H- _l .
j=1

also

) (0

.y
i Adhud

in k‘{p T|wmT Y & .
raare b;p iz the eguilibrium constent expressed in terms of pressure
ratiow, / ,\‘30 is the standard molar heat of raaction, 5% {g the
staucard molar eatropy change, & represents the average molecular
wel . ut of the gas mixture, and W j is the rmolecular weight of species j.
Fur . egener's experiments, .n =-1 and W {s effectively constant.

vience it follows that

[ifnd lé2ndt “4np [ Dfax ¥ ) ¥y
| el _ | + O ‘. ___{__ o BEL O
\FInT | \TPFeY | \®faT S— TL D) . ¥-1 RT Y -1

waere J is an affective value of ¥ . [hus £g. 35 becomes
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-~ vﬂ) ~ .Ti 2
(a:58/RT)+ ¥/ ¥ -1)
g , (15) . ..o . >
For ¥V egener's experiments, &sH ~ =13,300 cal/mole, ¥ =~ L3,
ant T == 300°K whaence it follows that ©'-T =~ 9K, Thie value is in good
accord with the observed experimental resulls {(cf. ¥ egener, ref. 15,

Fig. 3).

(I, INFLUBWCE OF SURFACE-CATALYZEC PROCESSES ON
ATOMIC RECOMIINATION RATES 10 RUCKET NGZZLES“M

&, Introductica

in two-phase nozzle flow procesaes, it is of interest to consider
the relative importance of a thres-body gas-phase recombination
reaction and a succeasion of heterogeneocus two-body reactions.

e consider & uniform mixture of gaseour uydrogen and small
ligquid or solid particles. We will show that, for the particle concen-
trations actually encountered in some rocket sioszles, the rate of
heterogsnecus two~body reactions may be egual tn or larger than the
rata of the tiree-dody gas-phase recombination reaction. It is there-
fors claarly important to consider such hetercgeneous two-body
recombination reactiong in quantitative rockst performance evaluation.

The following considerations are also of intsrest in connection
with the development of experimental procedures for imhroving the
verformance of nuclear rockets using ydrogen as driving flula.
Fizally, they may be modified to infer conditicons under which the flow

processes in hypersonic, air-breathing epgines cax be influsnced by
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{nduced, heterogeneous chemical reactions.

&, Dutline of Theorstical Considerations

The two assumed reaction paths for the recombination of hydrogen

atoms are:

ks
2xi+ X ”2+ X (36)
and
kz;
He Y — ==Y, (37a)
K
g (f ewe¥ — o f;‘-~£2+ % . (370)

o’ kZb denote appropriate specific reaction rate

coefficients, X repreaents eithar :i or Eé’z. Y is a amall solid or liquid

ihe quantities k3‘ kz

rparticle, and ji-~-7 denotes a hydrogen atom adsorbed on the surface
According to Ega. 36, 37a and 370, the rate of disappearance

of hydrogen atoms by thrae body processes is

- {ﬂaﬂ = 2y (0% (x)
3
or
I D0 R B (38)
dt 3 2,‘,2 i X
where n, denotes the number of particles of specieg X per unit volume;

the rate of disappearance of hydrogen atoms by two-body processaes is

- {ﬁﬁl L;kh () + kyp ()(d==nY)
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or
: o 1
- |-z z: N (ki’.an}in‘?f + kZb“}-}nH---'ﬁ) . (39)

fience the ratio

“ldngian,  Nlkgmuny Koo ooy)
-(dn,,/dt), e
be ! 3 stnﬁ iy

(40)

w
1]

is a measure of the relative importance of heterogeneous two-body to
three-body processes in the removal of hydrogen atoms.

We shall now estimate this ratio in terms of (nY+ ni,i-__?.)/nﬁ.
Cbservations by various investigators have shown conclusively that the
three-body recombination proceas occurs without appreciatle activation
anergy. an We denote by a the {ractional number of collisions that
lead to adsorption in reaction 37a and by § the fractional aumber of
collisions leading to ii, formation in reaction 37b.

For a mixture of gases containing rigid, elastic-aphere
molecules of different sizes and concentrations, the total number of
collisions of molecules of type 1 with molecules of type 2 in unit

volume in unit time “(18)

2 1 1)

.

if Ul’z =-% (Cf‘l-!- O‘z) represents the collision diameter, and T 1 and

a 2 4Te the diameters of the separate species. Hence

dngy
', =eZy vt By iy (42)
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and

1

2 . y i 1
+ din..n . . , dwk”‘( + ) (43)
“\n;‘i tjeeasY a Ky flmmey ~\/ & ml%v le} S

¥ hie ¢ v L, m.., .., and ~ T..
For the case where my >>m_, m..___, >>m,, Uy = Ty

>> G e We ubtain

de . i
[ h‘i’z ~ dek'T n,‘f::«.

2 ’
.—Hi— 2— mY s T O- QX' (a xlvl‘ * {}m:,é“ -*ﬁ ). (44)

If the concentrations (:i), {(Y), aad (H---7) ars small compered

withs (;;2). then By o2 B and we obtain for R from £qs. 38, 40 and

X
bt

Z

&4 the reault

2 __ 2
2 = p— N U-":( an, + ,mﬂ___fz. (45)
- m,, 'ﬂcsn_ n.. :
LA i"ia VA
. dlumerical Estimates and Conclusions
The ratio R has been calculated from £g. 45 for the following
sumerical values: T = 1365%°K, pressure = 5 atmos, T3 1676 cm,
g, .= 3 x 167° cm, and(lg) k3 = 3 x 1015 moie'&-(cms)z-sec-l. We
find that
/a:m,, + On e
R~ (5x108 | —H_ T iimme .
\ By

Tuerefore, the heterogensous two-body processes will become of

comparable importance with ths three-body gas-phase collisions if
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an, + pn,, -
£ Hese¥ 5 2x1077
H
or
+ n., .

By

for a ~ B~ ‘115 . But, for a represeantative propellant system in two-

20 cm 3. (a) =~ 1018 cm'3, and

15

phase nozzle flow, (:nH ) =~ 10
é..
)] ~ 10“ to 1077 cm 3. tience (nY+ nH___Y)/nH’: 10

r 6
LA L SO

to 10-3, i. ., the heterogeneous recombination processes may actually
become dominant,
The product a § appears to be of the order of 10™% for the

conditions existing in representative rocket nozzles. (20,4)
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PART II. CAS DISCHARGE RATES TEROUGH DE LAVAL NOZZLES
AND THE EXPERIMENTAL DETERMINATION OF
DESORPTION RATES

I. INTROLDUCTION

Successful measurements of chemical reaction rates during
nosele flow have basen performedu) for the mixture ZNOZ — N30‘4
by using a large-scale apparatus. Cruder data have been obtained, by
a number of investigators, on rocket engines of various sizes. In order
to utilize the full potential of this technique for studying the interplay
between chemical reaction rates and subsonic or supersonic flow, it is
clearly desirable to develop a sinall-scale laboratory apparatus which
can be constructed at low cost. Unfortunately, the use of a small,
closed voesel as gas source reduces the (psesudo-) steady flow conditions
to very short periods of tims, thereby leading to the requirement that
kinetic studies be performed with very high time resolution. As a first
step for incressing the testing time, we have studied experimentally the

discharge rates of fle, Ar, and CC,, through a de Laval nozzle from a

2
small, closed reaction vessel containing sand or silica gel beads. The
raesults and an approximate interpretation for the measurements are
degcribed in the following sections.

The sxperimental technique developed by us appears to be useful
for the empirical determ:ination of desorption rates from porous solid
psrticles under isothermal conditions (eee Appendix A for justification

of the assumed isothermal conditione) during the initial stages of

desorption. The dependence on temperature of the rates of desorption
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of Ar, !le, and (;:Q2 from silica gel has been investigated. A theoretical
expression has been developed for the rate of desorption of gas from a
porous solid under our experimental conditions (see Appendix E). Study
of the data derived from the decay of chamber pressure with time
fndicates that the assumed model for desorption from porous spheres
yields reascnable results for the heats of desorption of He, Ar, and C‘.Oz

from silica gel.

IJ. QUTLINZ OF THEORETICAL CONSIDERATIONS

Lo Dierivation of Equations for the Chamber Pressure as a Function of
Time for Systems Without Mass #ddition

Conslder adiabatic expansion of a perfect gas, characteriszed by
a conztant value of § , from a closed container through a de Laval

nozzle. The equation for conservation of mass in the container is

- ﬂ'@d’:’,l = LV (1)

where ¥V denotes the constant chambar volume, P = pt/Rg’I‘t is the
gas density at the nozzle throat if R _ denoctes the gas conatant per unit
mass, T, = [2/%%&1)} T represents the temperature at the nozzle throat

¢
1 ¥y -1)

when the chamber temperature is T, Py = [Zi(zﬂ I)J‘. P represents

the pressure at the nozzle throat wiea the chamber pressure is p, and

Ve © N Y Rth . Iience Xg. 1 may bs written in the form

3 . e K*’l /Z X'-l
¢ ’Io T At\/a/R &o' 2 { )/ & )
- LR =] = B 9 £ (2)
at | \pg T Py T v y+1
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where the subscript o identifies initial conditions in the chamber.

l. Isothermal Expansion in Chamber

For {scothermal gases in a closed chamber, the integral of

g

). & becomes

%7 = exp (.:7) for T =7, (3)
whare
¢* = -V/At"/f_ﬂg_'fo‘) (L) = mufr'no (4)
and
AN YD)
M= ff“f) ~ 9—'-1-%11 + 0. 5048, (5)

liere t represents a characteristic tirme involving chamber and nozzle

parametars, m a/JoV is the initial masa of gas in the chamber, and

n'no 2 PRV Rg’fo [7 repressnts the initial mass flow rate of gas

through the nozzle.

2. Adiabatic E uations with Modifiec Values of ¥

For adiabetic expansion in the chamber,

- 2-m)({c-l)f ch
T " \p
[+ D

wheres wo use the aymbol Xc to denote on effective constant value of ths

specific heat ratio in the chamber. The differential eguation becomes

Oy
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VY (Y 02y,

[
_R.) . .2.)
pO pO

d
Tt

1
2
t

and we obtain, after integration between the limits p/p, =1l att = 0

and p/po at t, the result

(i- XC)IZ d’c

-1
2 =1+ IE,-)_‘-; (6)
Po ¢ t

In the lmit, as the gas-bead syetem in the chamber assumes an
infinite specific heat, Xc approaches unity and, therefore,

(1- z(c)/z Xc
2 -1

I:'c:/
Um = -ln-B—
¥ 1 (r-hiie Po

Thus, Eq. 6 reduces now to the isothermal case degcribed by Eq. 3.
In comparing the theoretical for mulae with experimental data, it
is reasonable to treat Xc as a variable parameter that is adjusted in
ordsr to fit the experimental data. In this manner, we may use the
proximity of Xc to unity as an indication of the efficiency with which
heat is transferred from the beads to the gases.
It should be ncted that the statements T = T, and (p/p ) =

¥ 1{Y -1)
(T/7T) € ¢ constitute effectively two different energy conservation
assumptions, both of which correspond to unobservable limiting cases.
The isothermal limit (T=T°) will constitute a falr approximation if the

heat transfer rates from the solids to the gases are very high. The



adiabatic limit for unmodified ¥ , on the other hand, represents a
reasonable approximation if the discharge rates are fast compared

with the heat transfer rates.

B. Lerivation of Chamber Presasure as a Function of Time for
Limiting Cases Involving teat and Mass Transfer From the
Seade to the Cas

For strongly adsorbed gases, mass addition by desorption (rather
than heat transfer) will dominate tie obaerved pressure-time behavior.
Tuis Hmiting condition should obtain when the rate of decay of chamber
rressure with time for chambers filled with beads is appreciably
slower than the rate of decay for the case of discharge of gases from

an isothermal chamber.

l. Mass Addition Under Isothermal Conditions in the Chamber

As a firet step in interprating the experimental results, we
aszume that the dsorption rates are constant ané independent of the
instantaneous value of the chamber pressure. '%ve may obtain some
iuslgat luto the physical conditions under which this assurned desorption
modsl applies by noting that desorption rates from highly porous
materials {(e. g., silica gel beads) should bs controlled by diffusion
processes, (2,3

If the average pore radius 1z small compared to the mean free

petiz of the ygas molecules but large compared to thea dimensions of a

mclecule, tho flow of gas in the pores will occur by Knudsen diffusion.



The average pore radius for silica gel satisfies this condition (sece
Appandix B for detaile). A concentration gradient in the gas phase
within the pores produces a concentration gradient in the adaorbed
phase on the pore walla, i.e., the flow of gae in a porous solid such
as silica gel occurs by diffuaion in the gas phase and by surface
diffusion in the adsorbed phage., Of course, only molecules possessing
sufficient eneryy to separate from the local adsorption sites will be
able to migrate over the surface. The activation energy required for
surface diffusion is equal to or smaller than the heat of adsorption
(for detalla, sea, for example, ref. 4, Fig. 12 on p. 54).

The sclution of the diffusion problem involves the extarnal density,
/D(t). as & bocundary condition. We have used for this denaity the
expresaion for an isothermal systom with a constant rate of mass
addition. The density boundary candition has then been justified by
shaowiag that results derived from it are, approximately, coasistent
with the assumption of a constant rate of mass addition under {so-
thermal conditions.

For a constant rate of mass addition, z"nd. Ej. 1 becomes

(/OV) r/oth m

or
. /2
, T ) T
L8 e el . Bl .y (n
at P, . T Py i t* o

wiere V o x’nd/ m is a characteristic desorption frequency and V =

{ree voluma = {chamber volume - total apparent voiume of beadsj. For
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isotnermal gases, E,. 7 may be integrated directly with the result

f: =-p2; = exp(-t«%-) + b {l—exp (- f;—” for T =T (8)

%
where bc = vot iz a constant.
Using Eq. 8 as the boundary condition, the diffusion equation
may be solved (see Appendix © for details) for the total rate of mase

addition n'nd. The resulting expression for m is

@ |exp |- = -exp[-natz -t:— —;—”W
SR PYSE ~ 8 PPN )| ) t UK
e o \t . L
t d 22 ¢
n=1 n'w - ~1
d

N

(9)
where (1-f)/f {3 eqgual to /)omb//)bmo if £ is the fractional void in the
bed, Po is the initial density of gases in the chamber, /9 . is the
apparent density of the porous spheres = mass of beads/apparent
volume of beads, my is the total mass of the beads, m = /OOV is the
initial mass of free gas in the chamber, £ is the porosity of the bead
which is defined as the pore volurne divided by the total volume of the
bead, t, = az/xt» is & characteristic diffusion time, a is the radius of a
aingle spherical bead, D = (I:-g+ AD‘)/(kA) is an effective diffusion
coefficient, Dg and X‘." are, respectively, the Knudsen diffusion
coefficient and the apparent surface diffusion coefficlent, and A is a
function of the temperature. Since Eq. 8 fits the experimental results
rather well (see Figs. 6 to 54), Eq. 9 should constitute an acceptable

expression for rh, subject to the agsumption of diffusion-controlled
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desorption. It is apparent that Eq. 9 is consistent with the statements
riad:antteOméthelimltofﬂqdz@ast—*oo.

A graph of Eq. 9 is shown in Fig. 1 for representative values
of the parameters. Reference to Fig. 1l indicates that, to a first
approximation, m g 18y indeed be treated as a constant for t greater

, %
than about t /4.

A socond approximation to the pressure in the chamber is

obtained by deleting the assumption that ) = /mo i congtant in

rhd
#q. 7 and by using instead the relation for rhd given by Eg. 9. In this

case, Zg. & should be replaced by the expresaion

P T
Lo Fo
. L. ]
( «, 1‘(nzwé4§—--1)~%~exp -n wd%—wl t
1 f (1-b )4+ 't d_ .t d It
T._ ")\ * 3
d 2 2t
n=zl nw -1
d _J
X | exp . {19)
t

Eqguation 10 is tue firat step in obtaining an improved solution to the
probleim. In the next laborious, though straightforward iteratiom, ¥q.
10 serves as boundary condition in the derivation of an improved

expression for i, according to the procedure deacribed in Appendix 3.

d

&, Adlabatic Conditions and a Constant Rate of Mass Addition in the
Chamber

For the case of adiabatic expansion in the chamber, Zq. 8 should

be replaced by the expression



i D
PiP,

J' dx = Y P
Y -1)7% (Y +0)/e¥ ] = ‘e’o °
f x © c {1_(1/ vot*)x c c}

The preceding relation may bs integrated for b’c = 5/3 with the result

_15,.3/4
£ Pt =
16, -1/4 -1/ 4
x"' b i1-b .
i, o o -1 /5 -1/4 -1, ~1/4
)4 in - ! - l:tan (x"'"b )1 + [tam (b )]
2z 1_x1/5b° 1/ 4 1+b°-li4 o j o

a5
whare xzp/po and bo is again equal to Vb« There ie no obvious
experimental procedure for realizing near-adiabatic conditions with

magse addition.

C. A More Complate Analysis of fas Discliarge Through a Nozszle
From a Two-Phase System

Thus far we have derived applicable relations without proper
coasfideration of the actual form of the energy equation in the two-phass
system uader discussion. For a mcre complete analysis, we must use
all of the conservation equations and obtain a soluticn after imposition
of suitable bouadary conditions,

The equation for conservation of mass, using the ideal gas

squation of state, has been given in iq. 7 and may be rewritten in the

form
c’-{z:. .,.e_aﬁ.,nfie. =) | <k _325.2. X (11)
Hi\pa Py & \ T T: t Po ‘o
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where ) is a function of pressure and temperature. An approximate

expression for conservation of energy is (see Appendix C for details)
5 (me, T) =4 + by e Ty - e T (12)

where m represents the total mass of free gas in the chamber, <, and
c:p denote, respsectively, the specific heate of the gas at constant volume
and at constant pressure, Q is the total rate of energy addition to the
448 by hest conduction and radiation, xi\d is the rate of mass addition of
free gas by desorption from the beads at the temperature T, (we assume
that the specific heat of the added gas is the same as that of the chamber

pas8), and zixe represents the mass discharge rate of gases through the

nozzle,
Since
m = pV/ RQT .
m T
. o P )
M T ——
¥ B R
e ¢ Py
and

rhd =V m»

#q. 12 may be rewritten as

'I' Z/C
‘5;)'"“‘"‘“”‘3*“ RS T (13)

All of the results derived in the preceding sactions may be obtained

d
a

by starting from E£4s. 11 and 13,
For the isothermal case without mass addition (T=7_, V a0),

Fg. 11 yields
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ot
Po t

which was previously obtained in Eq. 3. In addition, Eq. 13 yields

the rate at which heat must be added to the system to maintain T equal

to "3.”0. viz.,

it r Sy (Do

= G+

- ..f,,.) . (14)
)

[ o4

For the case without heat or mass addition (3 = 0, V = 0), Eqs.

il and 13 give the following results:
-2

- (Y -B '
v = (1»——2-—»—4 {15)
i+
ang
2Y /(- %) Y i{y -1
e, U 1—} © °=«-§-} % e
Po L e t* 1‘}

The firet equality in Bq. 16 way obtained previously in Eq. 6 for
adiabatic expansion.
For the {gothermal case with 3 constant rate of mass addition

(T=T , V = \)o# conetant), q. 1l yislds

O

£ om0 v e | 4]

o

which was previously obtained in Eg. 8. Equation 13 may be used to
sbtain again the rate of heat addition necessary to maintain T = Tyq= fo
The result is
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O 1 t
= = (Y -1){1-b ) exp |- . (17
mocho tEF c o ( t;)

In the general case wher e both heat and mass addition occur, it is
necegsary to apecify both © and xi";d explicitly and then to solve the
rasulting coupled relations, viz., Egs. 1l and 13, Ve shall not pursue
this approach further since acceptable fitas are obtained to the experi-
mental data of pressure as & function of time on the assumption that
isothermal conditions and a constant rate of mass addition prevail in

the chamber.

Il. EXPERIMENTAL PROCEDURE ANI RESULTS

‘We shall now describe the expecrimental procedure for the
deter mination of chamber pressure as 2 function of tims, show how
these measuremants may be used to obtain desorption rates, aand
finally {nterpret the observed data in terms of the previously derived

theoretical expressions.

4. Expsrimental Apparatus and Procedure

A schematic diagram of the apparatus is shown in Fig. 2. The
apparatus consisted of a reaction vessel with a volume of 1110 cm3 (1)
which containsd the gas and the solid particles, a de Laval nozzle (2)
with & tharoat diameter of 4. 4 mum, a rapidly- opening( 3) valve {3},
and a dump tank (4). The dump tank, the volume of which was ten times

that of the reaction vessel, was evacuated to a pressure much lower



than the chamber pressure (the initial pressures in the dump tank and
in the reaction vessal were about 0. 5 mam of g and about 740 mumn of
iig, respectively). The valve at the nozzle exit position opened in
less than 10'3 sec, and pseudo-steady discharge of gas from the reaction
vessel bagan in about one millisec. A Type 535 Tektromix
oacilloscopse {5), equipped with a Polarold camera, was used to record
the time dependence of the pressure as mwasured by & Coneolidated
Blectrodynamic Corporation strain-gage prossure transducsr (6}
installed in the reaction vessel. The temnpsrature of the contents of
the reaction vessel was regulated by using sither a heating mantis or
ain acetons~dry ice cooling bath (7). Five iron-constantan thermo-
conples were uged to record the temperature of the gas in the reaction
vassel. The top of the reaction vessel could be removed to allow
introduction of solid particles. A 100-mesh screen (8) was located
npstreamn f the de Laval nozzle to prevent solid particles from being
lown into the nozzle. The reaction vessel was evacuated and filled
with gas by means of a three-way stopcock (?). The gas was passed
through a dry ice water-trap {10) before entering the reaction vessel.
For sach ygas (C.Oz. Ar, and ii¢), the chamber pressure was
moasured as a function of time for (&) initial temperatures ranging
from -50°C to 120°C with the chamber filled with 6-16 mesh silica gel,
{t) an initial teinperature of about 22°C with the chamber filled with
iZ-meah quartz sand, and {c¢) an initizl temperature of about 22°¢C with
the chamber empty. The same material, consisting of 6%96g of 6-16

mesk silica gel with an epparent density /bzl. Ztol 3 g/::m3 and &
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true demsity o= 2.2 g/ cm3 (Grade 42, the avison Chemical
Company) was used in all of the experimernts psrformed under (a); in
the experimaente (b), the same semple of 1331g of 12-mesh quartz sand
with a density of 2. 6 g/cm3 (Crystal Silica Company, Oceanside,
aliforaia) was used.

The system containing silica gel was prepared for a series of
experimemnts with each of the adsorbed gases by heating the reaction
vessel and its contents to about 130°C, evacuating anc flushing the
system with the gas, and finally allowing the system to reach equili-
brium at a pressure of about one atmosphere and at a temperature of
about 120°C. The first measurement of pregsure az a function of time
was made at about 120°C, and succeeding measurerments were made at
successively reduced temperatures using intervals of 15°C to 20°C
down to about -30°C.

The system with quart: sand wasa thoroughly evacuated and then

fiushad with each of the gases used befors performing an experiment.

$i. Experimental Cetermination of L'esorpticn Rates

Since the calculations given in Appendix A, 4s well as the
experimental maasurements of chamber temperature, indicate that the
free chamber gases ere nearly isothermal for t >0, Eq. 1l may be
used with T=To and d(T/To)/dt = 0 for the direct determination of
b= xhdtigj m, = Vta'. Thus b may be derived from the experimental data
of preseure as a function of time by using the expression

d
b('r)a-f; *‘a'?(fgj (18)

3
whare 7T =t/t .
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C. Experimental Reasults

The results of experimental measurements are plotted in Figs.
3to 65. The data in Figs. 3, 4 and 5 refer to the pressure drop as &
function of time during the discharge of CO,, Ar, and He, reapectively,
from & vessel contalning no golid adsorbent. The dashed curves were
calculated from the theoretical equation for adiabatic expaneion
(Eq. 6) by using theoretical estimates for the applicable specific haat
ratios. The valucs of b’c were chosen to obtain the best fit of Zq. 6
to the exporimental curves. The values of tﬁ were computed from
Eq. 4 by using these values of J . The valuss of Jc and t” are
shown in the figures. Reference to ¥igs. 3, 4 and 5 shows that the
theoretical estimatss for Jc apply very closely, at least during the
initial phases of the experiments.

The results shown in Figas. 6 to 18 refer to the pressure drop
during ths discharge of CC, when ths reaction vessel contained 6-16
mesh silica gel at various initial temperatures. Figures 19 to 44 and
Figs. 45 to 54 contain similar data for Ar and for ile, respectively.
The regults shown in Figs. 55 to 58 refer to the di charge of COZ’ Ar,
and jie, when ths reaction vessel contained 12 mesh quarts sand at
roomn temperature initially. The dashed curves in Figs. 6 to 57
represent computer~calculated, least-squares fits of Eq. 8 to the
experimental curves; the values of b, determined in this way are
indicated in the figures. The dashed curve in Fig. 58 was calculated
from the theoretical equation for an iscthermal chamber without maes

#*
addition {Eq. 3). The values of t were computed according to £q. 4



v using for ¥ the appropriate velue for the gas as calculated at Ta’ro.
savles 1, I and U and Fig. 59 show o, a5 a fuaction of the initial
temperature I for the :::‘;:‘Jz-, Ar-, and iza-silica gel systems. It is
apparent that tae smpirically determined values of b = Vot*, together
w15l the caleulated valuss of tﬁ, provide an estimate for the character-
istic degorption frequency o The valua of the {ree chamber volume
v ouged in Zq. 4 for the evaluation of tlg was determined by taking the
difference between the volums of tie reactivn vessel and the volume of
taa beads. The volume of the bDeads includes the pore volume and
corresponds to the ratio mhiﬁb where N iz the total mass of the besads;
tie density /0 b for silica gel wee supplicd by the manuwfacturer (1. e.,
i Lavison Chemical Compaay), and 0 b ior the quartz sand was
deterinined by the autior experimentaily using tiie water ~digplacement
inethod

Experi:nental curves of the dimensimnlsss desorption rate

" N . , o . .
i:z:ég'i}dt rm g 88 & function of ths reducsd time T =t/t for the CO

2-'
Ar-, and lie-silica gel systems have Deen determined by using the
jr ccodire outlingd in Sectiom II-Y:, together with ths experimental data
sh.own in Flge., 6 to 54, The results may be represented by curves of
I as a function T for each gas for a glven initial temperature. Repre-
gentative experimental curves of the Jdimensionless desorption rates
are shown in Fig, 69,

The theoretical eguation {sce Ry, 3) for b{ 7T )xxhdt*i'mo was
fitted to each of the expsrimental curves of b{(7 ). The fit wae

. . ; %
accornplished by choosing suitable values of the parameter a = ¢t Ity



-44.

and of tha factor |6 (1-f)/f| (1-b_)(}A). For Ar and He, the
theoretical curves of b{ 7 ) fit the experimental curves very closely
for all 7, and both « and [6€ (1-£)/f (1-b_)(}+ A) were, therefore,
determined ae functions of the temperature. Figures 61 and 62 show
theoretical curves of b{ 1 ) fitted to representative experimental
curves for Ar and kis, respectively.

For COZ’ the experimental curves were best fitted by using the
limiting form of Eq. % for small a (see Appendix 33, Eq. B-2l).
however, the fits were not very good, particularly at the lower
temperatures, Furthermore, only the product [66 (l-f)/f} (l-vbo)ﬂ‘*A)"f?
couid be deterinined, ¥igure 63 showa the theoretical curves o b{T )
fittcd to representative experimental curves of b{ v ) for C(Jz.

The dependence of bo on temperature for the He-, Ar-, and
Qt(}2~silica el syatéms is given in Tubles I, 1, and iII, respectively,
aad in Mig. 59, and the factor 6 € (1-f), { ie & knowr constant equal to
2, 6 {calculated using apparent density Py =L 2as g/cms, true density
Po= 202 gi’cms. total mass of the beads my 3 $96g, and chamber
volume V = 1110 cm3) widch was the sarme for all of the experiments;
hence, for e and Ar, it was poegsible to detarmine ¢ and A as functions
of temperature (see Tables I and 1), but, for C0,, only the product

2 & {+ A) was determined as & function of temperature (sce Table 111},

~

., Interpretation of Experimental Resulis in Terms of Theoretical
Lguations

The deviations of the experimentally determined curves of

vressure as a function of time, for the discharge of Ay and He from o



vagsel containing no solid adsorbent, from the theoretical equation for
adiabatic expansion (see Figs. 4 and 5) are probably due to heat
transfer from the walls of the vessel to the gas as the gas cooled.
Initially, the expansion was very nearly adiabatic, but heat transfer
began to affect the chamber pressure for 7 greater than about 0. 6.
The corresponding experimental curve for COB (see Fig. 3) suggests
t-at the influence of heat transfer was offset by an increase in J during
the discharge (heat transfer tended to increase the preasure whereas
cooling tended to increase ¥ ). As the result of fortultous compen-
sation, & very cloege fit was obtained to the theoretical equation for
adiabatic expansion.

The results shown in Fig. 58 refer to the discharge of CC,, Ar,

2°
and :le when the reaction vessel contained l2-mesh quarts sand. The
broken curve reprezents the theoretical equation for an iscthermal
system without mass addition. The relatively small differences
between the experimental curves for tha different gases indicate that
very little mass addition by desorption occurred during the experiments.
Furthermore, the close agreement of the sxperimental curves with the
theoretical curve for isothermal gases indicates that nearly isothermal
conditions existed in the chamber during the decharge. The results
for sand are thus seen to be very different from those obtained with
silica gel where strong adsorption and mass addition during diecharge
dominated the observed pressure~-time behavior (compare Figs. 10,
28 and 50),

Figure 60 shows representative experimental curves of the

dimensionless desorption rate b as a function of the reduced time



T o= t/tfﬁ. Ag ig to be eaxpected, the reduced desorption rates increase
rapidly as the temperatures are reduced becauss larger amounts of
waa are initially edsorbed at lower temperstures.

The values of ¢ and A obtained Ly fitting the theoretical equation
for tie dimensionless desorption rate b{T ) to the experimental
curves of b{ 7T ) for ‘ie are shown in Teble . XTarlier experiments by

other investizators indicate that iie is not measurably adsorbed

\
{i.s., A =0} except at very low texnperatures, (6, 7) For A =0, the
guantity )
t(r AT )
a = ~—-—£2-—-E—- (19)
& (H ’ﬂ;,)
bacomes
»
t O
a = »——23- (20)
a

Coe s W
which iz independent of the temperature gince t o< I;N T and

S & T . Qur experimental values for ¢ and A for lle egree with

these fiudings within the limits of experimental arror. The percentage
error in the guantity (M A) for .le iz estimated to be about = 157,

The experimental values of @ and {I+ A} were used in Eg. 19 to
chtain tiw quantity {Dg -a}‘?fa). Theorsatical valuea of tha Knudsen

diffusion coafficient (I )theor {see asppendix T) were calculated for
&

sach experiment. lioth (F:g-& AI,%&} and (}‘Z“g) are prusented in

thaor
Table L. VWithin the limits of experimental error, we ocbtained the
ragult

}-; + ] ~ ™y
{ g “La) (“g'theor
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The percentage error in the experimental value of (D8+ AD‘) is at
least as great as the + 15% error in (4 A), and the percentage error
in (Dg)thoor is estimated to be about £ 259 (because of uncertainty
in the value of the pore radius np).

The results for Ar listed in Table II indicate that both ¢ and A
a.r; functions of the temperature. Assuming that A < exp{Q/RT), where
Q is the molar heat of adsorption, a plot of InA as a function of 1/T
should yield a straight line with slope of Q/R, if Q is constant. The
plot of InA as a function of 1/T for Ar is shown in Fig. 64. The slope
of the dashed line through these points yields Q ~ 4200 cal/mole. In
the literaturs, the value of the molar heat of adsorption for Ar on
silica gel is stated to be about 3000 cal/mole. &

The quantity (D‘ + AD.) for Ar was calculated by using Eq. 19
together with the experimental values of ¢ and (HA). In addition,

theoretical values of the Knudsen diffusion coefficient (Dg) for

theor
Ar were calculated using for D 8 the equation given in Appendix B.
Both (D8 + AD‘) and (Dg)theor are listed in Table II. The values of
(D8+ ADa) begin to decrease rapidly, compared to (Dg)thaor' in the
neighborhood of T = 280°K. This change may possibly be explained
by assuming that the porosity of the silica gel, £ , is effectively
reduced because of the volume occupied by the adsorbed molecules.
For example, the cross-sectional area of a pore with a radius of 20 X
is reduced by a factor of (16/ 20)2 = 0, 64 due to a single adsorbed

layer of molecules with collision diametors approximately squal to 4 R.
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Since (l+A) is proportional to 1/ ¢ , (Dg«l» AD‘) is also proportional to
1/& (see Eq. 19). Therefore, a reduction in ¢ as the temperature
decreases (i.e., as the amount of adsorption increases) would result
in larger values for (D8+ AD ‘) than those which were obtained in
Table II by using & constant value of ¢ .

The percentage error in the quantity (l+A) for Ar is estimated
to be about + 5 to £ 10%. The percentage error in the experimental
valus of (Dg-l- AD‘) is at least as great as the percentage error in the

quantity (+A), and again the uncertainty in ‘Dg) is ostimated to

theor
be about + 25%.

The results in Tables I and II indicate that as the temperatures
are increased, the valuss of ¢« and (It A) far Ar approach the corre-
sponding values of ¢ and (1+A) for He. This is to be expected because
(a) as the temperatures are increased, the amount of Ar initially
adsorbed becomes very small {i.e., A ~0) and (b) for A ~0, &«
approaches the value t‘D 3/ ‘Z (see Eq. 20) which is independent of
molecular weight and is, therefore, the same for gases with the same
value of the ratio of specific heats ) (see Eq. 4 and the equation for
D8 in Appendix B).

As was indicated in Section II1-C, the product ¥ e (l+A) was
determined experimentally for COZ' References 8 and 9 indicate that
the valus of A for CO, at 150°C is approximately the same as the value
of A for Ar at -22°C; the experimental results for Ar {n Table I show
that A = 16 at To= -22°C; hence, we may assume that A =>> | for co,

in the temperature range from -50°C to 120°C. Using Eq. 19, the
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product ¥ @ (M A) may be written as

,,, 1/2
t (WAND + AD)
Na'(HA) =
a
or, for A >> 1],
* 1/2
t A{C Aib‘)
Na (HA) =~ 1"2 . (21)
&
Assuming that Dg << AD‘. Eq. 21 becomes
. 1/2
t o
Na(l+A) = A -—~29‘——- . (22)
a

Substituting D‘r- {constant) N T exp(-E/RT), (10) where E is the molar
activation energy for surface diffusion,and A = (constant) exp(Q/RT)
into Eq. 22 ylelds the following temperature dependence for N a (l+A):

N@ (W A) o< exp [Q-(E/2)] /RT. (23)
In this case, a graph of {n [‘\/?(HA)] ag a function of 1/ 7T should

yield a straight line with slope |Q-(E/2)] /R.

Assuming on the other hand, that Dg >> AD‘, Eq. 21 reduces to
* )
t AD )1/ ¢

a

Na(l+a) =~ (24)

Agaln substituting A = {constant) exp{(Q/RT) and using the proportionality
D o< ~ T in Eq. 24, we find

N e (l+A) o< exp(2/ 2RT). {25)
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In this case, a graph of in [N/'?(HA)] as a function of 1/ T should yield
a straight line with slope Q/2R.
Figure 65 shows the experimental results for CC’Ir2 plotted in the
form of #n [N (A)| as a function of 1/T. A straight line with a
slope of 1400°K may be drawn through the points for T = 300°X. Hence
Eq. (25) implies that
0 =~ 5800 cal/mole for Dg >> AD‘ (26)

and, because E is necessarily smaller than (i, Eq. 43 implies that
Q = 5800 cal/mole for Dg << AD,. (27)

The temperature dependence of the heat of adsorption of CO, on
silica gel has been investigated by Kalberer and Schuster. (8) For
pressures much smaller than one atmosphere, they obtained 7200
cal/mole at 0°C and 5370 cal/mole at 75°C -- a decrease of 1830
cal/mole for a temperature increasa of 75°C. For pressures near 1/2
atmosphere, they obtained about 6300 cal/mole at 0°C and about
5600 cal/mole at 75°C -- a decrease of 700 cal/mole for & tempe ratur e
increase of 75°C. In our experiments, the pressure varisd from about
740 mm Hg to 100 mm Hg; hence, estimates for the heats of desorption
based cn literature data are about 6600 cal/mole for T = -40°C and
about 5100 cal/mole for T =~ 120°C and are, therofore, in fair agreement

with our expsrimentally determined results.
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APPENDIX A

APPROXIMATE JUSTIFICATION OF THE ASSUMFTION THAT THE
SILICA GEL-GAS SYSTEM REMAINS EFFECTIVELY ISOTHERMAL

Furnco(m

studied experimentally the heat transfer rates from a
stream of heated gases to a bed of particles in a cylindrical pipe. The
particles were initially at & uniform temperature T o' The temperature
of the gas at the pipe entrance was constant and equal to T, > To.

The outside swrface of the pipe was insulated; hence, as t -~ o, the
temperature of the entire bed approached T,. The heat transfer
coefficient determined under these conditions should approximate
closely the heat transfer coefficient in our experiments. Furnas

used experimental measurements of the temperature of the gas at the
pipe exit, together with the theorstical results of Schumann, (12) to
deter mine the dependence of the heat transfer coefficient per cm3 of
bed h (in cal/cms-uc-oC) on velocity v (in cm/ sec), temperature T

(in °K), particle diameter d (in cm), and fractional void f of the bed.

His expression for the heat transfer coefficient is

B(v/1000)% 7 70: 3 1ol. 68-3. 56£°

h= 0 § (A-1)

where the velocity v refers to flow in the empty pipe and B is a constant
which depends on the physical propertiea of the particles.
As a reasonable first approximation, we assume that the velocity v

in cur experiments varies linearly with the distance x from the bottom of
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the reaction vessel, viz.,

v=v, %‘- (A-2)

where ﬁl and A are, respectively, the gas denasity and cross-sectional
area of the reaction veasel and xi:‘ is the mass flow rate et x = £, The
heat transfer rate from the particles to the gas in the volume A dx at
x is

dCt = hAA Tdx cal/sec (A-3)
where AT is taken to be the effective difference in the temperature
between the bead surface and the surrounding gas [i. .., ,:.‘aTsz(t. t)-l‘} .
Combining Eqs. A-l, A-2, and A-3 and substituting the representative
values A = 85 cm®, £ =13 cm, d = 0. 24 ¢cm, f = 0. 5, T, = 300°K,
B = 0.007, * v, = 32 cm/sec for Ar, v, = 100 cm/sec for e, and
v, = 28 ¢m/ sec for COZ. into the resulting equation yislds, after
integration over the length £ of the chamber, the resuits

7.4 4T cal/sec for Ar,

2= 16. 6 .. T cal/sec for ile, (A-4)

6.5 a1 cal/sac for C‘GZ.

* The value B = 0. 007 applies to limestonae. Furnas(n) used particles of
iron ore, coal, coke, and limestone and found that the values of &
ranged from 0. 014 for fron ore to about 0. S05 for coke.



From Eq. 17 we find that the rate of heat addition necessary to
maintain the system isothermal is

o) =.‘i:.g.Y. (1-b_) exp |- ;",-,-)

58 exp (- -%-) cal/sec for Ar,
t
= { 200 exp (- -,t;—) cal/ sec for :le, (A-5)
t
\25 exp (— f;-) cal/sec for COZ‘

for typical experiments at T, = 300°K in which Py = 1 atm, V = 555 cm3,

4 » g

¢  =0.19 and b = 0.19 for Ar, ¢t =0.06andbd = 0.1 for He, and t = 0. 22
and b = 0, 6 for CO,. Since the rate of heat addition necessary to
maintain the system isothermal is the maximum rate of heat transfer,

we may obtain upper limits for 4T by equating Eqs. A-4 and A-5;

,

(58/7. 4) exp{-t/t") °C for Ar,
AT < §(200/16.6) exp(-t/t") °C for iie,

| (25/6.5) exp(-t/t") °C for co,.

Taking the averagea of both sides of the above inequalities over the
period of time te for typical experiments, and denoting ths time

average of AT by AT, we {ind that

2°¢C for Ar,
LT < 4°C for He, (A-6)
1°¢ for CO,;

the test durations were
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0. 60 sec for Ar,
tf = 0. 15 gec for He,
0. 60 sec for COZ.

and correspond, approximately, to the duration of sonic conditions in
the nozzle throat. The values obtained in £q. A-6 are constant, to
within about one degree, for initial chamber temperatures in the range
230°K to 390°K.

Equation A-6 is an expression for the time average of the
temperature difference between the bead surface and the gas. LEut we
are actually interested in the temperature drop of the gas during the

course of a run, i.e., in the quantity (T, T} which may be written as

(T -T) = [To-rd(g.:)] + [T o, v)-T/. (A-7)

Two phenomena determine the value of the first term, viz., the surface
temperature of the bead decreases (a) because of energy loss by con-
vection to the gas and (b) because of endothiermic desorption of gas from
the bead. These two effects will be assumed to be additive, i. 8., we

write

[TO‘Td(‘lt)} = 4T + 47T

h d (A-8)

where the first term is associated with heat loss by convection and the
second term with the heat of desorption.

An upper limit to A’I‘h may be obtained by solving the thermal
diffusion equation in a spherical bead using as boundary condition a

constant rate of energy loss from each bead of
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ok [ (a-9
0

where Q) is given by Eq. A+5 and N represgaents the total aumber of beads

in the chamber. Since Eq. A-5 corresponds to the maximum rate of

energy logs for maintaining isothermal gases, we obtain an upper limit

for ATh. We find from Eq. A-9, for ii =~ 7.6 x 104 (with m, = 696g,

/)b =1, 25g/cm3. and a = 0. 12 ¢m) that

2.3x10"% cal/sac for Ar,

9.6 x 1074 cal/sec for He, (A-19)

£
1]

L i.1lx 10"4 cal/ sec for CCZ.

The solution of the heat transfer problem ocutlined above 13(13)
ke nz’t
o 8Xp \=
AT =-—ilz—ﬁ—§-'-—+ a 24 Z 2 (A-11)
“*h pea " Bk TR 4
4va p o=l e J

whera L cp. a, and k are, respectively thie density, heat capacity,
radius, and thermal conductivity of the bead, and the quantities a, are

the positive roots of the characteriatic equation tan(a n} za . For

(14)

a=0.12cm, k =0,00035 cal/ cm-sec-a-i:, /) = 2, 2g/cm3,

<:p =0, 22 cal/g*oC.(“) and t = 0, & sec for Ar and CGz and t = §, 15 sec

for e, Eq. A-ll leads to the result
6.1 °C or Ar,
AT, = J 0. ¢ YC for ile, (A-12)
0.05 °C for CO,.

\
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The drop in surface tomperature of the bead 4T, associated with
the heat of desorption depends on the rates and heats of the desorption
process. If very little gas is adsorbed and desorbed from the solid,
as in the experiments with lie, then ‘:‘Td will be approximately zero.

If significant adsorption occurs, we must investigate the relative
magritud of gaseous diffusion compared to surface diffusion (see
Appendix B) before an esgtimate of AT, can be made. 1t is clear that
any estimate of &Td will be very crude; however, {f it is assumed that

desorption occurs uniformly within the bead, 4 [, may be estimated

d

using
m .2

m, ¢ 4T, = d’d

et Ta® W (A-13)

where m, and cp are, respectively, the total mass and the heat
capacity of the beads, Q4 is the molar heat of adsorptioen, m, is the
mass of gas desorbed during the test duration te of an experiment,
and W is the molecular weight of the gas. The values of m may be
estimated using the experimentally determined values of b, = rhdt*/mo
given in Tables I, 1I, and lII and in Fig. 39, l.e.,

ol ™% {A-14)
i

5, 16)

The heats cf adsorption are, (15, approximately,

( 6600 cal/mole for CQZ at -4-00(3,

5100 cal/ mole for CO, at 120°¢,
Dy = (A-15)
3000 cal/mole for Ar at 00(‘;.

146 cal/mole for He at 4°%.
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Substituting Eq. A-14 and Eq. A-15 together withp = 1 atm,
m, = 696g ¢, =0.22 cal/g-°C, and

0. 24 sec for CO_ at -40°C,

2

) 0. 19 sec for CO, at 120°C,
t =

0. 20 sec for Ar at 0°C,

0.06 sec for iie at 0°C,

\

into Eq. A-l13 we obtain

( 2°c for CO, at -40°C.

2
0. 6°C for CT, at 120°¢C,
AT, =<

d 0. 4°C for Ar at 0°C,

0°C for e at 0°C..

Measurements of the temperature dacrease of the gas-silica gel
system after the completion of each run, using & number of thermo-
couples at various locations in the chamber, indicated that the
temperatur e drop for CO, was about 3°C at an initial temperature of
115°C and about 10°C at an initial temperature of -36°C. For Ar and
Fie, on the other hand, the temperature decrease was found to be
about one °C at all initial temperatures. These measurements
suggest that the effects of the heats of desorption are not large.

The experimental me asurements of chamber pressure ae a
function of time for the COZ“ Ar-, and He-quartz sand systems agree
well with the theoretical curve for an isothermal system without mass

addition (see Fig. 58). In other words, systems for which very little

desorption occurs are nearly isothermal, in accord with the resulits
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derived in Eqs. A-6 and A-12.

The analysis and experimental data indicate (a) that the tempera-~
ture of the beads is approximately constant and equal to T during a
run and (b) that heat transfer rates ara sufficiently high to maintain the
systemn effectively iscthermal. It is apparent that a really quantitative
analysis of the heat transfer problem requires solution of the complete
sot of equations describing the sy stem, subject to the applicable

boundary conditions.
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AFFPENDIX B

DCETERMINATION OF THE OVERALL RATE OF DESORPTION OF
GAS FROM HIGHLY POROQUS SPHERES

It iz assumed that the desorption of gas from a highly porous
sphere obeys the spherically symmetric diffusion equation. In
particular, we assume that the radius of the average pore in the solid
is amall compared to the mean free path in the gas but large compared
to the dimensions of a molecule so that Knudsen or free molsecule flow
occurs in the gas. *

Since the surface concentration of adsorbed molecules depends
on the pressure, a preseure gradient in the gas phase will, in general,
give rise to a concentration gradient in the adsorbed phass. Ve assume
that flow of gas in a porous solid occurs by diffusion in the gas phase
(Knudsen diffusion) and by surface diffusion in the adsorbed phase. (3,18)
The assumption that the pore radius is large compared to the dimen-

sions of & molecule implies that the thickness of the adsorbed layer

remains negligibly small compared to the pore diameter. A schematic

=
Assuming that the pores are cylindrical and have a small radius com-
pared to the mean free path of the gas molecules, the Knudsen diffusion
coefficient may be approximated, according to the kinetic theory of

gases, 1 by the relation
2 -
D av
g 3%
where a_ is & radius of the cylindrical pores, V=z(8R T/’w)llz is the

average molecular velocity of a perfect gas accordigg to kinstic
theory, and T represents the absolute temperature of the gas. The
ratio a,/) (where A is the mean free path at S. T. P.) for silica gel
with pore radius ap 2x10‘7cm(14’ is estimated to be about ¢4x10°4,
It can be seen that D _ depends on molecular weight but not on molecular
size. If the pore raglul is not large compared to the dimensions of a

molecule, the flow must depend on molecular size and Knudsen
diffusion no longer appliees.
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diagram of a typical pore in a highly porous spherical particle is shown
in Fig. B-1l.

The diffusion equations may be written as

8 D ]
e k| e (-1
r
and
8/)4 Dn ] 28/04 .
W OCZ T WS (B-Ib)

where /)‘ is the mase of adsorbed gas per unit volume of adsorbent,
/08 is the mass of the gaseous phase per unit volume of adsorbent, Dg
and D, are, respoectively, the Knudsen diffusion coefficient and the
apparent surface diffusion coefficient, and G represents the rate of
masgs transfer per unit volume from the adsorbed phase to the gas
phase within the porous solid (thus G is positive for desorption and
negative for adsorption). In Egqs. B-la and 3-1b it has been assumed
(a) that Dg and D‘ are independent of concantration, (b) that the
porosity £ , defined as the pore volume divided by the total volume
of the sphere, is independent of r, (c) that the pore radius ap is
uniform throughout the sphere, and (d) that the adsorbed molecules
on the pore walls are limited to a monolayer. Adding ¥qs. B-la and
3«1lb, we obtain

D a/) L a/)
8 8 2 a 8 2
VRGP b o AR trw | (B-2)

thus eliminating G from the equations.
In the following analyais, we assume (for justification, see the

remarks following Eq. B-13) that the adsorbed phase and the gas are
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Gas molecules adsorbed on external surface are
negligibly amall in number compared to the
number of molecules adsorbed on the pore walls
within the solid.

o]

, Gas molecules adsorbed on pore
walls; P, (r,t) is the average

I concentration of the adsorbed
molecules in g/cm® of adsorbent,

I where r = radius from the center
of the particle. The corresponding

I density of molecules in the gas

' phase fhot shown in the figure)
within the pores is Dg(r,t),

I

Enlarged section of pore
opening at external
surface of the particle.

e — -
External surface of
spherical porous particle,

Typical pore with
average radius ap.

Fig. B-1. Schematic diagram of a typical pore in a highly
porous spherical particle of radius a.
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in squilibrium at all times and that the relation
= B3
Lalrst) Aﬁg(r. t)+ B (8-3)

spplies. Here A = (constant) [oxp(Q/RT)] is & function of the tempera-
ture with O representing the molar heat of adsorption; 5 is also a
function of the temperature.

Combining Eqs. B-2 and B -3, under isothermal coaditions,
yields the result

8 D & | 28/ }
e 2 R Ll (B-4)
where
D+ AD_
DE-—&-—-—-—-—HA

The applicable boundary conditions are

fg(r.O) = C/O and /08(" t) = e:/o(t) {B-5)

where & is the radius of the sphere, Po is the initial density of gas
external to the sphere, and /D(t) is the variable external density of

the gas., Equation B-4 may now be solved with the resultug)

[/g(r, t)- é‘/)o] =

@ t
- 2:‘3 Z {"nn“ (-m %E) exp(-nzwzt/td)J[/o(x)-/oo]
0

n=xl

axp(nzwle td)dx} (3-6)

where ty® sle. When the external concentration varies according to

Eq. 8, viz.,
(€)= 2 )= =(1-b ) [1-exp [~ &

a V& o *p ;F /)o'
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then Eq. B-6 leads to the result

t
/ d »r

a t
[/JB(r' t- f/)o] = éA/)ou"ba) -1+ T t [exp (‘ :‘)]
sin ..g

t

co (sin 353- ) exp(-n?'w?' t—-!-—)
+ ‘g‘;' Z ('l)n g d r . (B-7)

n=l xz(nzsrz —:—-—- -1)

d

s

The rate of mass diffusion across the surface of a single sphere is
8, 8 0
. 2 a
m = - [m (Da “3r + Bs _Ejr )]rza

or, using Eq. B-3,

, 8, ]
2 .
m= - D+ AR
ot (o o |58
which becomes, in view of Eq. B-7
ta tq t
m= ha(l-bo) é'/)o(Dgi-AD‘) (l- ~ cot < )exp (- -—;)
t t ¢t
@ exp|-ate? L]
-2 Z . (B-8)
2 2

w
%
t
nsl {nt -E—-‘l
d

By writing a Fourier series for cot (N t&/t‘)x and setting x=1, we

obtain
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t t [+ +)
/ d } d ; E 1
t ¢ nrl (n !... -

Hence Eq. B-8 may be rewritten as

exp |- ) omp [e247 &

m = 8'4(1-b°)€p°(Dg+AD‘) Z ¢ d > . (B-10)
x

n=l (RZIZ l!"' -1)

\ d J

nﬁ‘,

The total rate of mass addition from IN spheres is
thy = Nrh = (Tf:%—-- m (-11)
37 P

where m, and /Ob are, respectively, the total mass and the apparent
density of the spheres. Substituting £q. £-1C intc Eq. 5-11 we obtain

the desired result, vie.,

exp(~-§-,— -exp (-nznzig-)
th = 6(1eb ) o T — (D mD)ZJ t - | (p.1z
° 7o T e
n= | n%e* & 1)
d 7/
or
n'ndt 6 1-{) N t.g i exp (- :;)-axp (-n ® f:)
b= m_ | E(l-bo)(‘T( A)(?g)nzl% (nziz% -1) ?

T {%-13)
where (1-f),/f is equal to /)omb/ P, i f is the fractional void in
the bed.



For the case where very little gas {8 adsorbed, we set A=0 in
Eq. B-13 and ty= az/DB. For significant adsorption but AD << Dg'
ty= .‘(uA)/Dg; finally, for D_<< AD,, t,= az(HA)/AD‘.

In conclusion, it is appropriate to justify the use of Eq. B-3,
It has been found sxperimentally that the adgsorption isotherms of Ar
and (:02 on silica gel are appr oximately linear over a wide range of

pressures. (20, 21) The multimolecular adsorption theory of Brunauer,

Emmett and Touer(zz)

provides a general equation which, under
certain conditions, also yields a linear isotherm over a wide range of
pressures (see, for example, ref. 23, Fig. XI-8, onp. 479). In
particular, a linear isctherm is cbserved when the heat of adsorption
in the second and succeeding layers is approximately equal to the heat
of adsorption in the first layer, i.e., multilayer adsorption occurs to
some extent before ths bare surface is covered with a monolayer. In
othe:.'~ words, the use of Eq. B-3 does not necessarily imply mono-
molecular adsorption. Direct experimental justification is provided,
for example, by the fact that Eq. B-3 holdse for adsorption of CC, on

2
(21, 24) It should be noted,

silica gel after the monolayer has been filled,
however, that the theory which has been developed from £gqs. B-la and
B-lb is valid only for monomolecular adsorption.

The following limiting cases of Eq. E-13 are of some interest.

For the case where t*lt << 1, the discharge time is much shorter

d
than the diffusion time. Since t* is small, the external density drops
rapidly to the value 1/ Lo = bo (see Eq. 8). Equation B-13 may

be rewritten in the form



b= 6& (1-b ) (-] (1) [exp(-T)] S(ia) (B-14)

* *
where ¢ =t /td. T =t/t, and

@ 2 2
S(Tiei=¢a Z : oxp[;an bl -l)T] . (B-15)

P4
nsl {ean v ~1)

Differentiating 5(T:a ) with respect to 7 ylelds

o
%‘% =a exp{T) Z exp(-anzr?'?)

n=1
or,
w
%S_? = a exp(T) Z [exp(-anzwz‘r‘ ):] -1, {(3-16)
n=0

For very small a, we may evaluate the sum by using the Euler~

Maclaurin sum formula with the result

o0
Z exp{-a nzwz*r) =J’D exp(-a nzwz T)dn+ %
n=0 0
o
1 j 2 1
= exp{- Ty )dy/+ 5, (2-17)
~a (o ) ¢

whence it follows that

@©

Z exp(-a nzwz T) =

n=0

L+ 1 (13-13)
2N war
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Substituting Eq. B-18 into Eq. 5-16 we find, for sufficiently small
values of ¢ -,

d8 1 axp{ T
£-3F “%;) ' (B-19)

From Eq. B-15, it can be seen that the value of S(7T;a) at T = 0 is equal

to zero; hence, we may integrate Eq. E-19 to obtain S(v;e) as follows:

1

T NT
S(r;c)zéwl%f !’—‘3—%')- dt! m/%f exp(t)at. (8-20)
0 0

The integral in Eq. B-20 is tabulated in ref. 25. Substituting Eq. B-20
into Eq. B-l4 yields the desired result
Nt
b= 6€ (1] (1-b ) A) /L exp(-7) | explth)at  for small a
N o ™ ’
0 (B-21)
For the case where t*/td >>1, the process of mass addition by
diffusion occurs very rapidly compared with the discharge rate and
the density within the pores decreasss nearly as rapidly as the external
denaity, i.e., the rate of desorption is determined by the external

density. For t >0, Eq. B-13 then becomes, approximately,

b= &(1-b ) |5 (A) exp |- f:)



APPENDIX C

DERIVATION OF THE ENERGY EQUATION

Consider a vessel containing gas and beads from which gases
are desorbed while gas flow occurs through a de Laval nozzle. We
construct & surface 3(t) bounding the volume V(t) in which the gas-bead
system is contained. In this manner, we construct a thermodynamic
system conteining uniformly distributed sources. Applying the first

law of thermodynamics, we may write the expression

* J/O(c+-z-)anmd[c T+/§l } fa;aw Jv. (c Bds  (C-1)
vi(t) Vit) 8(t)

corresponding to the statement

increase in energy of the system = energy surplied to the

system through the boundaries or {rom imbedded sources

+ work done on the system.
Here the time derivative is the Euler time derivative following the fluid,
e = internal energy per unit mass, vzlz = kinetic energy per unit mass,

d pTd represents the rate of energy addition from the uniformly dis-

tributed sources at the temperature ’I“:1 associated with desorption of
gas at the temperature T ,, v = velocity of the gas, § = rate of heat
addition per unit volume of gas, T = stress tensor (with components
0'u= -p JU+ TU' where ’ruz ijth component of the viscous stress
tensor and -p 5“ = {jth component of the pressure teansor), and n =

outward directed normal to 8(t). Using the general rnlation(“)



5 j/)l(x,t)dva Jﬁg—’%—‘) av

V(t) V{t)
we obtain the identity

d J. + vé )av = j d v ) dv
at P (e 2z P dt (e + z .
v{t) Vit)

Furthermore, using the continuity equation 80/8t+ V. (o ¥v) =0

and noting that d/dt = 8/8t+ v .7 , we find that

( 2 2

2
Jﬂa%(e+yz-)dv= f %[ﬂ(e+§-)}+ v.[,ov‘(e-r'-"z-)] 4V
v(t) V(t)

= 8[ va]. vl .
= .8.t_/o(e+.T) av + /J(e+-z—)v.ndS
v{t) 5(t)

where Gauss's theorem has been applied Neglecting shearing stresses,

Eq. C-1 becomes, tharefore,

2
J. %[,o(e-r -‘-’z—)} -4 dV:x'ndcpTd- J PV . n dS
v(t) 5(t)
2
- f/o(o+ S)v. nds. (C-2)
5(t)

It is now convenient to choose S(t) as the surface bounding the
chamber volume V . We may then integrate the term appearing on the

left-hand side of £q. C-Z2 over the uniform contairer. Thus, we find
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for the integral the result

¥ (m e T) -0
if m denotes the total mass of free gas in the container at any time
and Q represents the total rate of heat addition to the volume V . It is
apparent that v = 0 everywhere on S(t} except where mass is leaving
from the chamber. Hence
v.n 2 v n ¥ L2 = 1
I PV. ndS = J,/o(pv),nd&ume(/o)e meRgTe
3(t) S(t)
for ideal gases where the subscript ¢ identifies the uniform conditions
at the exit plane and xi:e represents the mass flow rate out of the
control volume V (which equals the masa discharge rate through the
de Laval nozzle). Similarly,
vi oo o vz ve
prle+ -2-) v. ndS =(e+ «2--)e xhe = (ch + -z-)exixe = chrh‘
S(t)
since the translational energy per unit mass at the exit plane of the
volume V is negligibly small compared with the internal e¢energy per
unit mass at the same location.

Introducing the preceding relations into £4. C-2, we obtain the

desired rosult, vis.,

] b JUR
- (mcv‘x’) = (G + rhdcp"'d mecpT .
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Table I. Values of the parameters bQ, uzt*/td, and (1+A) obtained
by fitting Kqs. 8 and 9 to the experimental data for He.

TCK) | b, |ex0? [ (44 (D fzma)xxf (2 )ipgor™ 103
(em”/sec) (cmzl sac)
223 0.095 | 8.0 0.7 12. 2 14. 5
237 | 0.112 | 5.0 1.0 11. 2 15.0
251 0.103 | 5.0 1.0 11.0 15. 4
268 | 0.088 | 9.0 0.7 14. 4 15. 9
279 0.114 | 5.0 1.0 12, 1 16. 2
296 0.110 | 5.8 L1 14. 5 16. 7
324 | 0.099 | 8.0 0.8 16. 1 17. 5
337 0.112 | 6.0 1.0 15. 7 17. 8
362 | 0.105 | 6.0 2.9 14. 8 18,5
389 0.105 | 5.0 1.0 13. 6 19. 1




»
Table II. Values of the parameters bo' a=t td' and (1+A) obtained
by fitting Eqe. 8 and 9 to the experimental data for Ar.

TCK)| b, | «x0® | Q+a (D8+?n.)xxo3 (D“)ﬁwm_xlc»3
(em”/sec) (em?/sec)
228 | 0.324| 0.2 50 0.7 4.6
231 | o0.296 | 0.2 43 0.6 4.7
239 | o0.280| o0.2 41 0.6 4.7
251 | 0.259 | Lo 17 1.2 4.9
255 | 0.254 | 1.0 16 1.1 4.9
267 | 0.240 | 2.0 11 L6 5.0
267 | 0.239 | 1.2 14 1.2 5, 0
281 | e.211| 70 5.3 2.7 5, 1
286 | 0.189 | 12.0 3.8 3.4 5.2
296 | 0.187 | 10.0 3.9 3.0 53
296 | 0.193 | 10.0 4.0 3.0 5.3
297 | 0.179 | 120 3.4 3.0 53
312 | 0.189 | 6.0 5.0 2. 4 5. 4
319 | 0.172 | 20.0 2.8 43 5, 5
319 | 0.169 | 20.0 2.6 4.0 5.5
325 | 0.170 | 20.0 2.6 41 5,5
333 | 0.165 | 20.0 2.6 41 5.6
334 | 0.161 | 18.0 2.6 3.8 5.6
345 | o0.162 | 20.0 2.5 41 5 7
353 | 0.152 | 20.0 2.3 3.9 5 8
353 | o0.142 | 20.0 &2 3.6 5. 8
363 | 0.143 | 20.0 2.1 3.6 5.9
370 | 0.142 | 20.0 2.2 3.7 5.9
378 | 0.147 | 20.0 .3 3.9 6.0
379 | 0.142 | 24.0 2.0 40 6.0
383 | 0.124 | 28.0 1.6 40 6.0
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Table III. Values of the parameters bo and u“Z(HA) obtained by
fitting Eqe. 9 and [-21 to the experimental data for COZ'

T(°K) b, | a%n+a)
237 0. 684 3.0
248 0. 692 3.1
260 0. 669 2.9
i14 0. 660 2.8
294 0. 600 2.1
305 0. 584 2.1
306 0. 593 2.0
333 0.515 1.5
351 0. 461 1.2
364 0. 423 .1
378 0.379 0.9
390 0. 356 0.8
390 0. 367 0.8
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'r=t/t*

The desorption rate m, as a function of the reduced time

The followin‘gi values were used for the parameters

Fig. 1.
T=t/t .
mg = 0.89 g, t* = 0.190 sec, f= 0.5, ¢ = 0.43,

in Eq. (9):
bo= 0.193, (1+A)=4.0, and t /td= 0.01.
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(4)

(5)

Vacuum pump
Gas supply j &

\—(8)
N

(1)

(10) (7)

Fig. 2. Schematic diagram showing the apparatus
used for experimental measurements.

(1): reaction vessel; (2): de Laval nozzle; (3): rapidly
opening valve; (4): dump tank; (5). oscilloscope;

(6): Strain-gage pressure transducer; (7): heating or
cooling bath; (8): 100 mesh screen; (9): three-way
stopcock; (10): dry ice trap for removal of water.
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Experimental curve for t¥- 0.465 sec and P, = 745 mm HEJ
0.6 — initial temperature T = 229C.
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-
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i
0.4 —
Theoretical curve calculated by using
Eq. (6) with v_ = 1.34,
0.2 —]
1 | | | | | l
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*
T =t/t

*
Fig. 3. The reduced pressure p/po as a function of the reduced time T = t/t
for CO, discharging from a vessel containing no solid adsorbent.
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Experimental curve fort = 0.413 sec and P, = 746 mm Hg;
initial temperature T = 22°C.

N Theoretical curve calculated by using
A Eq. (6) with y_ = 5/3.
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N
\ —
~
N~~~
=
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0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.
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*x®
Fig. 4. The reduced pressure p/po as a function of the reduced time T = t/t

for Ar discharging from a vessel containing no solid adsorbent.
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*
0.6— Experimental curve for t = 0.131 sec and Py = 747 mm Hg]|
initial temperature T = 22°c. A
o
]
0.4 Theoretical curve calculated by using ]
N Eq. (6) with y_ = 5/3.
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The reduced pressure p/pO as a function of the reduced time tr = t/t for

Fig. 5.
He discharging from a vessel containing no solid adsorbent.
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*
Experimental curve for t = 0.242 sec and Py = 756 mm Hg;
initial temperature T = -36°C.
- ]
Calculated curve using Eq. (8) with bo = 0.684
]
®
v
]
| L 1 J I | |
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
L
T=t/t
*
Fig. 6. The reduced pressure p/po as a function of the reduced time T = t/t for
COz discharging from a vessel containing silica gel of mesh size 6-16.
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Py = 746 mm Hg;

1.0
Experimental curve for t‘ = 0,237 sec and
initial temperature 'I‘0 = -25°9C,
0.8
0.6 |—
Calculated curve using Eq. (8) with b, =0, 692.
o
a,
\
o
0.4—
0.2 —
0 | 1 1 | | 1 1
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
x
T=t/t

x
Fig. 7. The reduced pressure p/po as a function of the reduced time T = t/t for
CO2 discharging from a vessel containing silica gel of mesh asize 6-16.
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Experimental curve for t = 0,232 sec and P, = 743

initial temperature T, = -130C,

Calculated curve using Eq. (8) with b, = 0.669.

4-—-
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. 1 1 N s !
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T=t/t

®
Fig. 8. The reduced pressure p/po as a function of the reduced time T = t/t for
CO, discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve fort = 0.226 sec and P, = 745 mm Hg
initial temperature T _ = 1°C.
Calculated curve using Eq. (8) with b_ = 0.660. .
o
>
]
]
| | | 1 | | |
0.8 1.2 1.6 2.0 2.4 2.8 3.2
*
T=t/t

*
Fig. 9. The reduced pressure p/po as a function of the reduced time 7T = t/t for
CO, discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0.219 sec and P, = 746 mm Hg;

initial temperature T = 21°cC.
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—
\ \
— - —
t
Calculated curve using Eq. (8) with bo = 0,600, et
]
! ] N | ]
0.8 1.2 1.6 2.0 2.4 2.8 3.2
X
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*
Fig. 10, The reduced pressure p/po as a function of the reduced time T = t/t for

CIOZ discharging from a vessel containing silica gel of mesh size 6-16.
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741 mm Hg;

*
Experimental curve for t = 0,215 sec and
initial temperature T = 33°C.

Calculated curve using Eq. (8) with bo = 0.593.

| 1 1
1.6 2.0 2.8

0.8 .
T= e/t
Fig. 11. The reduced pressure p/po as a function of the reduced time 7 = t/t* for
CO, discharging from a vessel containing silica gel of mesh size 6-16.
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Calculated curve using Eq. (8) with bo = 0.584,
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. | 1 ! 1 1 1
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*
Experimental curve fort = 0.215 sec and Py = 746 mm Hg;

*
Fig. 12. The reduced pressure p/po as a function of the reduced time T = t/t for
CO, discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0.206 sec and Py = 740 mm Hg;
initial temperature T = 60°C.
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Calculated curve using Eq. (8) with bo = 0.515.
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Fig. 13, The reduced pressure p/po as a function of the reduced time T = t/t for
COz discharging from a vessel containing silica gel of mesh size 6-16.
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P, = 736 mm Hg;

*
Experimental curve fort = 0.202 sec and
initial temperature To = 78°C.

Calculated curve using Eq. (8) with bo = 0.461.

o | | 1 | | | 1
0 0.4 0.8 1.2 1.6 . 2.0 2.4 2.8
T=t/t
*
Fig. 14. The reduced pressure p/po as 2 function of the reduced time T = t/t for
COZ discharging from a vessel containing silica gel of mesh size 6-16.
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p/p,

initial temperature T = 91°C.

Calculated curve using Eq. (8) with bo = 0.423,

*®
Experimental curve fort = 0,198 sec and P, = 743 mm Hg;

—

1 | 1 1 al | |
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.
»
T = t/t

*
Fig. 15. The reduced pressure ;:»/po as a function of the reduced time T = t/t for

COz discharging from a vessel containing silica gel of mesh size 6-16.
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] I | I I hl I

initial temperature To = 105°C.

Experimental curve for ¢ = 0.195 sec and P, = 730 mm Hg;

—

Calculated curve using Eq. (8) with b, = 0.379.
l | l l 1 | |
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.
]
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»
Fig. 16. The reduced pressure p/po as a function of the reduced time T = t/t for

CO2 discharging from a vessel containing silica gel of mesh size 6-16.
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P/p,

Experimental curve for t =0.192 sec and Py = 738 mm Hg;
initial temperature T_ = 117°C.

Calculated curve using Eq. (8) with b = 0,356,

| | | i 1 i l

0.4 0.8 1.2 1.6 2.0 2.4 2.8
3
T=t/t
]
Fig. 17. The reduced pressure p/po as a function of the reduced time T = t/t for

CO, discharging from a vessel containing silica gel of mesh size 6-16.
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»
Experimental curve for t =0.192 sec and Py = 737 mmm Hg;
initial temperature T = 117°C.

| ! | l J | I
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™
Fig. 18. The reduced pressure p/po as a function of the reduced time T = t/t for

CO, discharging from a vessel containing silica gel of mesh size 6-16.
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The reduced pressure p/po as a function of the reduced time T = t/t for

Fig. 19.
Ar discharging from a vessel containing silica gel of mesh size 6-16,
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Fig. 20, The reduced pressure p/po as a function of the reduced time T = t/t for
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Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 21. The reduced pressure p/p° as a function of the reduced time T = t/t for
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\ Experimental curve fort =0.207 sec and P, = 736 mm Hg;
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Fig. 22. The reduced pressure p/po as a function of the reduced time T = t/t for

Ar discharging from a vessel containing silica gel of mesh gize 6-16.
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Fig. 23.
Ar discharging from a vessel containing silica gel of mesh size 6-16
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Fig. 24. The reduced pressure p/po as a function of the reduced time T = t/t for

Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 25. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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The reduced pressure p/po as a function of the reduced time T = t/t for

Fig. 26.
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 27. The reduced pressure p/p° as a function of the reduced time ¥ = t/t for

Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 28 The reduced pressure p/po as a function of the reduced time T = t/t.I for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t =°0. 190 sec and P, = 741 mm Hg;
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Fig. 29. The reduced pressure p/po as a function of the reduced time 7 = t/t‘ for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 30. The reduced pressure p/po ag a function of the reduced time 7 = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16,
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Fig. 31. The reduced pressure p/po as a function of the reduced time 7 = t/t for
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Fig. 32. The reduced pressure p/po as a function of the reduced time 7 = t/t for

Ar discharging from a vessel containing silica gel of mesh size 6-16.



p/p,

L.

0.

0.6

0.

8 —

2

. »
Experimental curve for t = 0. 183 sec and P, = 743 mm Hg;
initial temperature T, = 46°C.

Vi
-801-

Calculated curve using Eq. (8) with bQ = 0.169.

1 |
2.4 3.2

v
[o2]

| |

1 |
0.4 0.8 1.2 1.6 2.
3
T=t/t

#
Fig. 33. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.



p/p°

I.

0.

0.

0.

8

2

*
Experimental curvebr t = 0.182 sec and P,= 739 mm Hg;
initial temperature T = 52°C.

/
- 501~

Calculated curve using Eq. (8) with bo = 0.170.
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Fig. 34. The reduced pressure p/po as a function of the reduced time T = t/t for

Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t =0.179 sec and P, = 743 mm Hg;
initial temperature T = 60°C.
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Fig., 35. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 36, The reduced pressure p/po as a function of the reduced time 7 = t/t for

Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0.176 sec and P, = 739 mm Hg;
initial temperature T = 72°C.
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Fig. 37 The reduced pressure p/po as a function of the reduced time 7 = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0,174 sec and P, = 739 mm Hg;
initial temperature To = 80°C.
N
N —
\ t
AN\ —
AN v
N
~
~ —
~
~
~~
~3
~~
~
—_— =
Calculated curve using Eq. (8) with b, = 0.152.
il L l | | | |
0.8 1.2 1.6 2.0 2.4 2.8 3.2

*
T=t/t
*
Fig. 38. The reduced pressure p/po as a function of the reduced time 7 = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t =0.174 sec and P, = 743 mm Hg;

initial temperature T = 80°C.

Calculated curve using Eq. (8) with bo = 0.142.
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Fig. 39. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 40. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 41. The reduced pressure p/po as a function of the reduced time T = t/t f{for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve fort = 0.168 sec and P, = 745 mm Hg;

initial temperature To = 105°C.

N
N
AN
AN
N
N
~
\ —
~
~
~
~—
\
—
T
Calculated curve using Eq. (8) with bo = 0. 147.
1 | i | | | |
0.8 1.2 1.6 2.0 2.4 2.8
®
T=t/t

0.4
»
Fig. 42. The reduced pressure p/po as a function of the reduced time T = t/t
for Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 43. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 44. The reduced pressure p/po as a function of the reduced time 7T = t/t for

Ar discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t =0.069 sec and P, = 739 mm Hg;
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Fig. 45. The reduced pressure p/po as a function of the reduced time T = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0.067 sec and Py = 739 mm Hg;
initial temperature T = -36°C.
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Fig. 46. The reduced pressure p/po as a function of the reduced time T = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 47. The reduced pressure p/po as a function of the reduced time T = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 48. The reduced pressure p/po as a function of the reduced time T = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0,062 sec and P, = 736 mm Hg;
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Fig. 49. The reduced pressure p/po as a function of the reduced time T = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t =°0. 060 sec and P, = 747 mm Hg;
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Fig. 50. The reduced pressure p/po as a function of the reduced time T = t/t for
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Experimental curve for t = 0.058 sec and Py = 743 mm Hg;
initial temperature T = 51°C.
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Fig. 51. The reduced pressure p/po as a function of the reduced time T = t/t for

He discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 52. The reduced pressure p/p as a function of the reduced time T = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve for t = 0.054 sec and p_ = 746 mm Hg;
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Fig. 53. The reduced pressure P/po as a function of the reduced time T = t/t for

He discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 54. The reduced pressure p/p_as a function of the reduced time 7 = t/t for
He discharging from a vessel containing silica gel of mesh size 6-16.
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Fig. 55. The reduced pressure p/po as a function of the reduced time T = t/t for
C.OZ discharging from a vessel containing 12-mesh quartz sand.
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Fig. 56. The reduced pressure p/po as a function of the reduced time T = t/t for
Ar discharging from a vessel containing 12-mesh quartz sand.



l.

p/p,

0.

8

0.6

.2

{ | | I | |

Calculated curve using Eq. (8) with b_= 0.016. -
] )
Experimental curve for £ = 0 069 and p, = 743 mm Hg; o
initial temperature T = 24°C, b

—
| | l | | |
0.4 0.8 1.2 1 6 * 2.0 2.4 2.8 3.2
= t/t
*
Fig., 57. The reduced pressure p/po a2# a function of the reduced time 7 = t/t for
He discharging from a vessel containing 12-mesh quartz sand.
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Experimental curve for He with t = 0. 069 and
P, = 743 mm Hg; initial temperature T = 249C,

Experimental curve for CIO2 with t*= Q250 and
P, = 741 mm Hg; initial temperature T = 239C.
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Experimental curve for Ar witht = 0.219 and
P, = 744 mm Hg; initial temperature T = 24°C.
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Fig. 58, The reduced pressure p/po as a function of the reduced time 7 = t/t for
COZ' Ar and He discharging from a vessel containing 12-mesh quartz sand.
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Fig. 59.
and He dischargiong from a vessel containing silica gel of mesh size
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Fig. 60. Rzpresentatwe experimental curves showing the dimenaxonless desorption
rate b = m,t"/m, as a function of the reduced time T = t/t* for gases
discharging from a vessel containing silica gel of mesh size 6-16.
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Experimental curve fort =0.212 sec and P, = 740 mm Hg;

initial temperature T = -34°C,

Theoretical curve calculated by using Eq. (9) with
0.0002, (1+A)=41, (1 —b°)= 0.72, and

t*/t . =
be(f-r)/f = 2.6,

Theoretical curve calculated by using Eq. (9) with

~./ t*/tg=0.02, (1+A)=2.3, (1-bg) = 0.85, and
~ be(1-f)/f = 2. 6. °
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o= 744 mm Hg;
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Experimental curve for t = 0.168 sec and p
= 105°C.
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61. The dimens&onless desorption rate b = m .t /m0 as a function of the reduced
for Ar discharging from a vessel containing silica gel of

time T = t/t
mesh size 6-16,
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Experimental curve for t = 0.060 sec and Py = 747 mm Hg;
initial temperature T = 23°C.
0.3 °
o
g
*: '
’E'o 0.2 'I‘*heoretical curve calculated by using Eq. (9) with E
t /tg=0.058, (1+A)=1.1, (1 -bg)=0.89, and )
i be(1-f)/f=2.6.
o
0.
0 | I ] ] 1 | I 1
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
T=t/t

Fig. 62.

.
The dimensignless desorption rate b= m .t /mo as a function of the reduced
for He discharging from a vessel containing silica gel of

time T = t/t
mesh size 6-16,



Theoretical curve calculated by using Eq. (B-21)
(1-bp)=0.40, and

\J with (t /td)% (1+A)= 2.1,
\ 6e(1-1)/f=2.6.

/
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5 S,
Experimental curve for t =0.219 sec and p_= 746 mm Hg;
initial temperature T = 21°cC,
0.4 b— Theore’&xcal curve calculated by using Eq. (B-21)
\J with (t /td)5(1+A)-08 (1- b)- 0.64, and \
be(1-f)/f=2.6. =
s
/ ®
0.3 }—
0.2} .
Experimental curve for t = 0,192 sec and Py = 738 mm Hg;
initial temperature T = 117°C
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=/t
Fig. 63. The dimensionless desorptxon rate b = mgt /m as a function of the
reduced time T = t/t* for CO;, discharging from a vessel

containing silica gel of mesh size 6-16
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Fig.

65. The logarithm of (a)é(l + A) as a function of the reciprocal

temperature 1/T for CO, .



