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Some realize the Supreme by meditating, by its aid, on the Self within, others by pure reason,

others by right action.

Others again, having no direct knowledge but only hearing from others, nevertheless worship, and

they, too, if true to the teachings, cross the sea of death.

— The Bhagavad Gita (13.25–26)

Forgotten rimes, and college themes,

Worm-eaten plans, and embryo schemes;–

A mass of heterogeneous matter,

A chaos dark, nor land nor water...

— An Inventory of the Furniture in Dr. Priestley’s Study (37–40),

Anna Lætitia Barbauld (1825)
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Abstract

In this thesis, we explore examples of each of the three primary strategies for the detection of particle

dark matter: indirect detection, direct detection, and collider production.

We first examine the indirect detection of weakly interacting massive particle (WIMP) dark mat-

ter via the gamma-ray photons produced by astrophysical WIMP annihilation. Such photons may

be observed by the Fermi Gamma-ray Space Telescope. We propose the gamma-ray-flux probabil-

ity distribution function (PDF) as a probe of the Galactic halo substructure predicted to exist by

N-body simulations. The PDF is calculated for a phenomenological model of halo substructure; it

is shown that the PDF may allow a statistical detection of substructure.

Next, we consider the direct detection of WIMPs. We explore the ability of directional nuclear-

recoil detectors to constrain the local velocity distribution of WIMP dark matter by performing

Bayesian parameter estimation on simulated recoil-event data sets. We discuss in detail how direc-

tional information, when combined with measurements of the recoil-energy spectrum, helps break

degeneracies in the velocity-distribution parameters. Considering the possibility that velocity struc-

tures such as cold tidal streams or a dark disk may also be present in addition to the Galactic halo,

we discuss the potential of upcoming experiments to probe such structures.

We then study the collider production of light gravitino dark matter. Light gravitino production

results in spectacular signals, including di-photons, delayed photons, kinked charged tracks, and

heavy metastable charged particles. We find that observable numbers of light-gravitino events may

be found in future collider data sets. Remarkably, this data is also well suited to distinguish between

scenarios with light gravitino dark matter, with striking implications for early-Universe cosmology.

Finally, we investigate the related matter of radiative corrections to the decay rate of charged

fermions caused by the presence of a thermal bath of photons. The cancellation of finite-temperature

infrared divergences in the decay rate is described in detail. Temperature-dependent radiative cor-

rections to the two-body decay of a hypothetical charged fermion and to electroweak decays of a

muon are given. We touch upon possible implications of these results for charged particles in the

early Universe.
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Chapter 1

Introduction

The problem of dark matter is surely one of the most exciting open questions in physics. The

discovery of dark matter followed in the vein of a historical tradition in astronomy — namely, the

revelation of hitherto unknown phenomena via their gravitational effects on visible matter.1 As

early as the 1920s, measurements of the vertical motions of stars near the Galactic plane implied

the gravitational influence of an unseen dark component [1]. In 1933, Fritz Zwicky deduced the

existence of a non-luminous constituent of the Coma cluster by observing the dynamics of the

galaxies contained therein, famously conferring upon it the name of “dark matter” [2].2

Evidence for dark matter from astrophysical and cosmological observations now abounds. The

astrophysical evidence includes the flattening of galactic rotation curves at radii beyond the visi-

ble edges of galaxies, studies of gravitational lensing — both strong and weak — in galaxies and

clusters, and so on. Meanwhile, cosmological observations of the cosmic-microwave-background

(CMB) anisotropies constrain the dark-matter density (in units of the critical density) of the Uni-

verse to be Ωdm = 0.222 ± 0.026 [4]. The constraint can be improved when taken in conjunction

with measurements of the local Hubble expansion rate calibrated using Cepheid variables [5], the

luminosity-distance–redshift relation determined from the light curves of Type Ia supernovae [6], and

baryon acoustic oscillations measured from large-scale galaxy surveys [7]. At the same time, these

measurements, as well as those of the chemical abundances of the light elements produced during

big-bang nucleosynthesis, also determine the density of baryonic matter to be Ωb = 0.0449± 0.0028.

Thus, that non-baryonic dark matter composes the majority — roughly 80–85% — of the matter

in the Universe, and approximately a quarter of the total matter-energy content, is overwhelmingly

suggested by both astrophysical and cosmological evidence (for a more comprehensive overview, see,

e.g., Ref. [8]).3

1The respective discoveries of Neptune and general relativity from the observed deviations of the orbits of Uranus
and Mercury from the predictions of Newtonian theory followed this pattern.

2The dynamics revealed “die Notwendigkeit einer enorm grossen Dichte dunkler Materie”, the need for an enor-
mously large density of dark matter. Interestingly enough, Zwicky also uses the phrase “dunkle (kalte) Materie” in
the paper, although the use of “cold” here presumably equates to “non-luminous” (and not the modern interpretation
of “nonrelativistic”). A brief overview of the historical development of dark matter is given in Ref. [3].

3The other possible explanation — a modification of the laws of gravity — is strongly disfavored, most convincingly
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However, despite this abundance of evidence for the existence of dark matter, the nature of

dark matter remains to be understood precisely. Perhaps one reason for this is that the pieces of

evidence accumulated so far are derived from the observation of gravitational effects, and do not

strongly preclude the possibility that dark matter interacts solely via the comparatively feeble force

of gravity. Conversely, the exciting possibility that dark matter has “stronger-than-gravitational”

interactions with everyday particles of the standard model, potentially allowing for detectable signals,

remains viable. Interestingly enough, this latter scenario is realized in numerous theories of particle

physics that resolve outstanding issues in the standard model. Many such extensions of the standard

model hypothesize the existence of new particles that may naturally be interesting dark-matter

candidates. That is, these particles are predicted to have properties that not only allow for them

to fulfill the astrophysical and cosmological roles that dark matter play gravitationally, but may

also allow them to be accessible experimentally. There is no shortage of well-motivated particle

candidates; sterile neutrinos, supersymmetric neutralinos and gravitinos, axions, and Kaluza-Klein

excitations in theories with extra dimensions number among the more commonly studied (reviews

are given in, e.g., Refs. [10–13]).

There are a number of basic criteria related to the fundamental, microphysical particle properties

of a dark-matter candidate that must first be satisfied if the particle is to successfully act out its

various gravitational roles in a straightforward and non-contrived manner [14]:

• Relic abundance: The aforementioned new theories of physics should become relevant at

energies greater than those previously explored by particle accelerators. Such energies may

have been accessed in the early moments of the Universe, during the hot big bang. It is

possible that dark-matter particles were produced then, by either standard thermal production

via scattering interactions in the thermal bath or nonthermal mechanisms, in quantities that

should be predictable given the new theory and its fundamental parameters. The parameters

of the theory — which in turn determine the dark-matter particle properties — and the early-

Universe conditions and production mechanisms must then conspire to produce the correct,

observed abundance of dark matter.

• Electromagnetic neutrality: The dark matter must be truly dark. That is, the electro-

magnetic interactions of dark-matter particles with photons must be much weaker than those

of conventionally charged particles. Limits on the strength of the electromagnetic interaction

can be expressed in terms of the fractional charge (with respect to the elementary charge) of

the dark-matter particle, and can be derived from the non-observation of the variety of astro-

physical effects charged dark-matter particles would engender. The strongest constraint comes

from the requirement that the dark matter not couple too strongly to photons during the

by observations of the Bullet galaxy cluster [9]. In this sense, the discovery of dark matter shares more in common
with that of Neptune than that of general relativity.
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recombination epoch (avoiding disruption of the CMB acoustic peaks), yielding an upper limit

on the fractional charge of ∼10−6 for GeV-mass particles, rising to ∼10−4 for 10-TeV–mass

particles [15]. Similarly, astrophysical constraints may be placed on the electric or magnetic

dipole moments of the dark-matter particle (see, e.g., [16, 17]).

• Interaction strength: Not only should the dark-matter particle not interact with photons

and electrically charged particles, it must also not couple too strongly to electrically neutral

standard-model particles. Again, one reason for this is the requirement that the dark matter

not couple too strongly to baryons during the recombination epoch, as this would also change

the CMB acoustic peaks. Significant coupling would also allow the baryon–dark-matter fluid

to radiatively cool via the baryons, affecting structure formation. Thus, the link between dark

matter and baryons must be relatively “weak” in strength, as a result of either a smallness of the

fundamental interaction coupling or by some other mechanism which suppresses the observable

consequences of “strong” interactions phenomenologically. Although this interaction between

dark matter and baryons need not necessarily be the weak interaction of the standard model,

many extensions of the standard model do generically predict the existence of new weakly

interacting massive particles (WIMPs) that couple to the weak gauge bosons. As it can

be shown that these WIMPs, if produced thermally in the early Universe, naturally have

the correct dark-matter relic abundance (a coincidence referred to as the “WIMP miracle”),

WIMPs are hence the most well-studied class of dark-matter candidates.

• Non-baryonic nature: In the same vein, the dark matter cannot be a non-exotic baryon

(here, we actually mean hadron, although the use of the word “baryon” thus far, and conven-

tionally in the literature, is as a misnomer that includes hadronic and leptonic matter). As

previously mentioned, this is required in order for the predictions of big-bang nucleosynthesis,

which are sensitive to the baryon-to-photon ratio, to be realized. Related to this criterion

is the fact that massive compact halo objects (MACHOs), which are dark baryonic objects

(including faint neutron stars, brown dwarfs, white dwarfs, planets, etc.) that were once a

possible solution to the dark-matter problem, are ruled out [18]. Strong constraints on a pos-

sible MACHO population can be deduced from the disagreement of the observed chemical

abundances with those expected to be produced by the evolution of stellar MACHOs [19], as

well as from searches for microlensing by MACHOs [20, 21]. These constraints indicate that

the dark matter may indeed be composed of elementary particles.

• Self-interaction strength: Furthermore, the self-interaction of the dark-matter particle

must be consistent with observations. Interestingly enough, dark matter with some degree of

strong scattering self-interactions (but negligible annihilation or dissipation interactions) may

alleviate some tensions between observations and collisionless-dark-matter simulations, such
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as those arising from the “missing satellite” problem and the issue of the central cuspiness of

dark-matter halos [22]. Several astrophysical constraints may be placed on self-interacting dark

matter. For example, observations of the aforementioned Bullet cluster place an upper limit on

the ratio of the self-scattering cross section to the dark-matter-particle mass σ/m . 1 cm2 g−1,

which must be satisfied if the dark-matter components of the two colliding clusters are to pass

through each other as implied by gravitational-lensing maps of the mass distribution.

• Temperature: As dark matter must be able to gravitationally collapse to form small-scale

structure after it has decoupled from the thermal bath and the Universe becomes matter

dominated, the dark-matter particles must have a small or nonrelativistic velocity at that time

if they are not to free stream out of density perturbations. The “temperature” of the dark

matter must then be fairly cold. At most, the dark matter may be “tepid” or “lukewarm”, with

free-streaming lengths on the order of galactic scales, if the correct matter power spectrum is

to be realized [23]. Neutrinos, the only standard-model particles that have heretofore satisfied

all of the above constraints, are then ruled out, as they decouple when they are relativistic and

thus compose hot matter. Mixed dark matter, composed of several distinct particle species with

different temperatures, may also be a possibility that can be constrained by such considerations.

These considerations then translate into constraints on both the mass of the dark-matter

particle and the details of its kinetic decoupling, the latter of which depends on the scattering

interactions of the dark-matter particle with particles in the thermal bath.

• Stability: The dark matter must be stable on cosmological timescales [24] if it is to produced

in the early Universe, affect the CMB anisotropies formed during recombination, and persist

to collapse to form structures present today. The avoidance of significant energy injection from

standard-model decay products after the epochs of big-bang nucleosynthesis and recombination

is also desirable. Scenarios in which a number of multiple dark-matter species exist and may

decay to the lightest among them at late times are also strongly constrained by the requirement

that the kicks given to the dark decay products not disrupt dark-matter-halo structure and

formation [25, 26]. At the microphysical level, stability is commonly effected by introducing

discrete symmetries, such that the dark-matter particle is the lightest of those particles that

carry a conserved quantum number not possessed by the particles of the standard model.

• Equivalence principle: There is no a priori reason that the dark matter should obey the

equivalence principle, even though ordinary matter does. For example, a violation of the equiv-

alence principle might arise if light particles mediate an additional long-range force between

dark-matter particles. However, observations of the dynamics of tidal tails in the Milky Way

strongly constrain such theories [27,28].

Certainly it is conceivable that some of these basic criteria might be relaxed in the context of a
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Figure 1.1: Three paths to particle dark matter. This diagram illustrates that stronger-than-
gravitational interactions between dark matter and standard-model particles may give rise to in-
teresting experimental signals. Reading the diagram in different directions yields the three primary
dark-matter search strategies: indirect detection, direction detection, and collider production.

sufficiently complex dark-matter scenario. Nevertheless, it is clear that there are a bevy of conditions

that the large-scale behavior of dark matter must meet — and hence, a number of constraints on

the fundamental parameters of the underlying theory — if a given dark-matter candidate is to be

consistent with astrophysical and cosmological observations.

It must again be emphasized that although such observations allow the measurement of inter-

esting large-scale quantities, such as the total density of dark matter, they do not allow for the

precise determination of the dark-matter particle properties (much less the fundamental theory pa-

rameters). This is essentially because such observations are viewed through the non-discerning lens

provided by the effects of gravitational-strength interactions on large scales. An allowed dark-matter

candidate thus becomes even more interesting if non-gravitational or enhanced-gravitational inter-

actions between dark-matter particles and standard-model particles allow for experimental signals

— resulting more directly and essentially from microphysical dark-matter interactions — to actu-

ally probe the dark-matter particle properties and the fundamental theory. Such interactions are

depicted schematically in Figure 1.1, and lead to experimental signals that may detected through

methods generally falling into one of three categories:

• Indirect detection: Dark-matter particles may annihilate (or decay, if stability constraints

are obeyed) to produce standard-model products — including charged particles, neutrinos, and

photons — the detection of which would constitute an indirect detection of dark matter. If the

mass of the dark-matter particle is relatively large (as is typically the case for WIMPs, which

may have weak-scale masses), these products might be energetic. Especially of interest is the

possibility that gamma-ray photons might be produced, since the travel of such photons across

astrophysical distances is relatively unimpeded and would allow the identification of annihila-
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tion sources. Such sources are provided by astrophysical concentrations of dark-matter, such

as may be found in the Galactic center, Galactic substructure, dwarf galaxies, extragalactic

dark-matter halos, and in clumps of dark matter that may have been captured in the center

of baryonic astrophysical objects. A wide array of cosmic-ray and gamma-ray observatories —

both in space and on the ground — are currently searching for indirect signals. A complete

understanding of the implications of such signals for the microphysical dark-matter properties

may inevitably require a parallel understanding of the distribution of dark matter on astro-

physical scales. Nevertheless, indirect-detection signals may ultimately yield measurements

of the dark-matter mass and the annihilation cross section and spectrum (or the equivalent

quantities for decay), providing some insight on the parameters of the underlying theory.

• Direct detection: It may also be possible to directly detect the local dark-matter particles

from our Galactic halo scattering off of ordinary nuclei. A variety of detectors designed to

be sensitive to the nuclear recoils induced by collisions with WIMPs are currently collecting

data, and have placed bounds on the WIMP-nucleon–cross section—WIMP–mass parameter

space. These studies also depend on astrophysical input (in particular, the local phase-space

distribution of dark-matter particles), a link that may lead to further insight on the role of

dark matter in structure formation.

• Collider production: Finally, particle accelerators collide together ordinary, standard-model

particles at tremendous energies, in the hopes that heretofore undiscovered particles will emerge

from the collisions. Such collisions may then produce dark-matter particles, in processes that

are the inverse of those that result in annihilation. With detailed studies of the production

rates and signals of any other predicted new particles, collider experiments may ultimately

result in the most complete picture of the underlying theory, if the relevant energies are acces-

sible. However, there is an epistemological subtlety: we cannot be sure that any given particle

observed at colliders is the astrophysical dark-matter particle, even if its properties are consis-

tent with the criteria listed above. Thus, the particle properties inferred from collider signals

must be cross-checked with those derived from signals arising from astrophysical sources in

order to resolve this issue.

Each chapter in this thesis focuses on a study that falls into one of these detection-method cat-

egories. The bulk of the presentation of these studies has been adapted from material, previously

published or forthcoming, of which I was the first author. However, portions of the pedagogical dis-

cussions that preface and motivate each study are original to this thesis, although they are largely

adapted from the sources referenced.

We begin Chapter 2 by discussing the indirect detection of WIMP annihilation, examining in
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some detail perhaps the best studied WIMP dark-matter candidate: the lightest neutralino of su-

persymmetry. We then focus on a study concerning gamma-ray photons resulting from WIMP

annihilation in a particular class of astrophysical sources — the dense dark-matter microhalos that

are thought to compose Galactic substructure, as predicted by N-body simulations. In particular, we

present a calculation of the gamma-ray-flux probability distribution function (PDF) for microhalos,

as might be observed by the Fermi Gamma-ray Space Telescope [29].

Material in this chapter was adapted from “The gamma-ray-flux PDF from Galactic halo sub-

structure”, by Samuel K. Lee, Shin’ichiro Ando, and Marc Kamionkowski [30]. The basic result of

this work can be easily summarized: If dark matter was uniformly distributed in our Galactic halo,

then the variation in the number of diffuse-background gamma-ray photons from one Fermi sky

pixel to another would arise only from Poisson fluctuations, giving rise to a Poissonian flux PDF.

However, if dark matter is indeed clumped into substructure, there will be additional flux variations

arising from the discrete nature of the halos, giving a PDF with a power-law tail at high fluxes.

This one-point statistic may allow the gamma-ray signal arising from annihilation in microhalos

— or other unresolved point-source populations — to be distinguished from the diffuse gamma-ray

background.

The idea of exploring the statistical signatures of WIMP annihilation in Galactic substructure

to which Fermi might be sensitive, focusing first on the one-point flux PDF for a simple halo-

substructure model and the case of monoenergetic annihilation to gamma-ray lines, was proposed

by Kamionkowski. After investigating similar and analogous calculations in the literature, I sug-

gested the application of the P (D) formalism as a means to this end, and worked out the calculation

of the PDF, guided by discussions with my coauthors. My coauthors also made some edits to the

manuscript. Following the remarks of an anonymous referee, I significantly expanded the work to

consider a more complex substructure model, as well as the specific case of neutralino annihilation

(which leads to a continuum, rather than monoenergetic, annihilation spectrum).

Also of note is the work “Can proper motions of dark-matter subhalos be detected?”, by Shin’ichiro

Ando, Marc Kamionkowski, Samuel K. Lee, and Savvas M. Koushiappas [31], which is not presented

in this thesis but was nevertheless completed concurrently with the study of the flux-PDF. In this

paper (authored by Ando), we reexamine the idea, originally proposed by Koushiappas in Ref. [32],

that microhalos might present as gamma-ray sources exhibiting proper motion. We point out that

existing limits on the integrated gamma-ray intensity from the Galactic center severely constrain

this possibility. The main argument is that only very nearby and luminous microhalos would be

observed as point sources with proper motions, given the point-source sensitivity and angular resolu-

tion of Fermi, thus requiring that either the microhalo number density or the microhalo luminosity

must be large. Hence, the integrated intensity of such a population of sources would exceed the
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aforementioned limits from the Galactic center.

Chapter 3 turns to direct detection, focusing on that of WIMP dark matter. A short primer

on the physics of direct detection is given. We then focus on a study of directional detection, as

may be carried out by experiments sensitive to not only the energy of nuclear recoils induced by

collisions with WIMPs incoming from the Galactic halo, but also their direction. Since the motion

of our Sun-Earth system through the galaxy causes a peak in the incoming dark-matter flux in the

direction of motion, this directional information may be crucial in distinguishing dark-matter recoil

events from background events of terrestrial origin (which should be isotropic).

The directional-detection study presented in Chapter 3 was adapted from “Probing the local

velocity distribution of WIMP dark matter with directional detectors”, by Samuel K. Lee and Annika

H. G. Peter [33]. In this paper, we use Bayesian likelihood analyses of simulated data to explore

the statistical power of directional-detection experiments. Besides allowing for simple background

discrimination, these experiments may additionally reveal interesting structures in the local dark-

matter velocity distribution, such as those arising from the dark-matter disks, tidal streams, and

debris flows predicted by N-body simulations. As such, these directional detectors — essentially,

dark-matter telescopes — may allow for the carrying out of “WIMP astronomy”, and may reveal

insights about structure formation on galactic scales via observations of the local dark-matter sky.

The result of the paper shows that dark-matter velocity structures present at the level indicated

by simulations may indeed be detectable with exposures of 30 kg-yr, given the specifications of

upcoming directional-detection experiments.

The idea of using Bayesian methods to study the local dark-matter velocity distribution was

suggested to me by Peter. Using previous results from the literature, I constructed the necessary

theoretical formalism and wrote computer codes to perform the likelihood analyses on simulated re-

coil events, which were generated for various velocity-distribution models. Peter provided guidance

and suggestions, and also assisted in the editing of the manuscript.

Chapter 4 examines the collider production of dark matter. Although collider searches for WIMPs

are underway, this thesis shall focus on the production of gravitinos, another dark-matter candidate.

Light gravitinos arise naturally in theories of supergravity with gauge-mediated supersymmetry

breaking (GMSB). Although gravitinos communicate with standard-model particles via interactions

that are fundamentally of gravitational strength (i.e., interactions suppressed by the Planck mass),

light gravitinos have interactions that are enhanced by a factor inversely proportional to the gravitino

mass. These “stronger-than-gravitational” interactions thus allow for the intriguing possibility of

observable light-gravitino phenomenology. These aspects of light gravitinos will be demonstrated in

a heuristic and pedagogical discussion.
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We then present a study of light-gravitino collider signals and their ramifications for early-

Universe cosmology. This study was originally published as “Light gravitinos at colliders and im-

plications for cosmology”, by Jonathan L. Feng, Marc Kamionkowski, and Samuel K. Lee [34]. In

this paper, we simulate the rate of various light-gravitino collider signals at the Tevatron and the

Large Hadron Collider (LHC), including relatively spectacular signals such as prompt di-photons,

delayed photons, kinked charged tracks, and metastable charged tracks. By examining the rates of

these various signals as a function of the gravitino mass, we demonstrate an intriguing coincidence

with current astrophysical constraints on the gravitino mass and the possible gravitino-dark-matter

scenarios allowed by these constraints. In particular, the observation of a large number of prompt

signals would indicate the gravitino is extremely light, implying that it could compose a warm frac-

tion of the dark matter and still be consistent with both small-scale structure constraints (from the

CMB anisotropies and observations of the Lyman-α forest) and the canonical cosmological thermal

history. However, nonprompt or metastable signals would indicate that the gravitino has an inter-

mediate or a relatively heavy mass, which would require a noncanonical thermal history in order

to be consistent with astrophysical observations. Thus, we argue that the observation of gravitino

collider signals might have profound implications for the physics of the early Universe.

The idea of exploring the collider phenomenology of gravitino dark matter was suggested jointly

by Feng and Kamionkowski. Although I oversaw development of the manuscript, Kamionkowski

first developed the argument for the thermalization of light gravitinos in Section 4.3 and Feng con-

tributed material in Section 4.4; both also assisted in the editing of the manuscript. I was responsible

for coding the collider simulations, with liberal suggestions and guidance from Feng. I also devel-

oped the central arguments pointing out the connection between collider and cosmological scenarios.

Finally, having explored examples from each of the three paths of particle-dark-matter detection

methods, we close with a slight detour. Chapter 5 explores a technical curiosity that arose during the

writing of the light-gravitino paper. Our paper relied on a previous calculation of the rate at which

gravitinos were produced via scattering interactions in the thermal bath of particles that existed after

the big bang. Upon examining these calculations, we discovered that some of the scattering rates

seemed to possess infrared divergences, curiously implying unphysical infinite gravitino production

rates!

As it turns out, these infrared divergences are not specific to gravitino production, and are in fact

rather generic in processes involving charged particles at finite temperature. Chapter 5 thus presents

a study of these processes, originally published as “Charged-particle decay at finite temperature”,

by Andrzej Czarnecki, Marc Kamionkowski, Samuel K. Lee, and Kirill Melnikov [35]. In this paper,

we demonstrate how the infrared divergences cancel, and discuss the possible implications of mass

singularities that may also appear in the finite-temperature rates. Consideration of these divergences
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may be important for understanding the production of charged particles in the early Universe, as

well as the impact such particles may have on cosmology. For example, these finite-temperature

effects may have implications for some proposed models in which charged particles decay or scatter

to produce dark matter.

I originally pointed out the problem of finite-temperature infrared divergences in gravitino pro-

duction to Feng and Kamionkowski during the writing of the light-gravitino paper. However, the

problem remained unsolved until Czarnecki and Melnikov brought to our attention their solution to

analogous infrared divergences in the process of 3-body muon decay. I then worked out the solution

for a more simple process — the 2-body decay of a charged fermion — with some assistance from

Melnikov. Although the original muon-decay results are briefly given, the paper mainly focuses on

a pedagogical discussion of the simpler 2-body decay.

We close this introduction by noting that a relatively recent collection of reviews on a wide

array of topics in particle dark matter may be found in Ref. [36], for example; we do not attempt a

comprehensive survey of particle dark matter and the current status of experimental searches in this

thesis. That such a survey would necessarily be quite long, and yet would quickly become outdated

— due to the rapid and exciting pace of new experimental and theoretical results in recent years

— attests to the breadth and profound importance of the problem of dark matter. With a large

number of space-based and ground-based observatories conducting indirect dark-matter-annihilation

searches, a plethora of direct-detection experiments searching for the elusive signatures of dark-

matter-induced nuclear recoils, and the LHC running smoothly and at ever-increasing energies in

the hope that production of dark-matter particles will be observed, that an imminent discovery of

particle dark matter might be just over the horizon cannot be ignored. Nevertheless, these three

paths will certainly require further exploration; whether they will converge at an understanding of

the underlying particle physics and cosmology that give rise to the dark matter — or if they will lead

us to theoretical landscapes richer and more complex than those previously envisioned — remains

to be seen.
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Chapter 2

Indirect detection: The
gamma-ray-flux probability
distribution function from Galactic
halo substructure

2.1 Motivation: Supersymmetric neutralinos as WIMP dark

matter

2.1.1 The WIMP miracle

Weakly interacting massive particles (WIMPs) are the most favored dark-matter candidate, as they

satisfy the astrophysical and cosmological criteria laid out in Section 1 yet still offer the possibil-

ity of detectable experimental signals. In particular, the annihilation of WIMPs with weak-scale

masses (∼100 GeV) should yield energetic standard-model particles, the observation of which would

constitute an indirect detection of dark matter.

Perhaps the most intriguing piece of cosmological evidence in favor of WIMP dark matter is that

thermally produced WIMPs naturally have a relic abundance close to that observed for dark matter.

We shall now show demonstrate this using simple arguments to calculate the WIMP relic abundance.

Consider a WIMP χ with mass mχ. In the early Universe, such a particle is in equilibrium at

temperatures T � mχ; equilibrium is maintained by χχ̄ annihilation processes to standard-model

particles and antiparticles — the same processes shown schematically in Figure 1.1 that allow for

the possibility of indirect detection — and their inverses.

If it is assumed that the standard-model annihilation products are also in equilibrium, the evo-

Material in Sections 2.2–2.7 was first published in “The gamma-ray-flux PDF from Galactic halo substructure,”
Samuel K. Lee, Shin’ichiro Ando, and Marc Kamionkowski, JCAP 0907, 007 (2009) [30]. Reproduced here with
permission, c©2009 by IOP Publishing Limited.



12

lution of the WIMP number density nχ is given by the Boltzmann equation

dnχ
dt

+ 3Hnχ = −〈σv〉
[
n2
χ − (nEQ

χ )2
]
, (2.1)

where H is the Hubble expansion rate, 〈σv〉 is the thermally averaged total annihilation cross sec-

tion, and nEQ
χ is the equilibrium WIMP number density. At temperatures at which Γ = nχ〈σv〉 & H

is satisfied, the WIMP annihilation rate Γ is sufficiently high enough to keep the WIMPs in equilib-

rium; WIMP annihilation is then balanced by the rate of WIMP-creating inverse processes, driving

nχ to nEQ
χ . However, as the Universe expands and its temperature falls, the number density of

WIMPs decreases, reducing the WIMP annihilation rate until it is smaller than the Hubble expan-

sion rate. The number-changing processes of WIMP annihilation and creation can then no longer

maintain chemical equilibrium; the WIMPs chemically decouple from the thermal bath, and the

WIMP number density is said to “freeze out”.

The temperature at which freeze-out occurs, Tf , is then roughly given by

Γ(Tf ) = nχ(Tf )〈σv〉(Tf ) ∼ H(Tf ) . (2.2)

We see that Tf depends on the annihilation cross section; we shall assume that the cross section is

sufficiently large, so that Tf < mχ. That is, WIMPs freeze out when they are nonrelativistic, at a

temperature where their equilibrium number density is Boltzmann suppressed and their velocity is

small,

nEQ
χ ∼ (mχTf )3/2 exp−mχ/Tf (2.3)

v ∼ (Tf/mχ)1/2 , (2.4)

where we have assumed that the chemical potential of the WIMPs vanishes.

Before continuing the calculation of the relic abundance, let us first show that a simple argument

confirms that nonrelativistic freeze-out is indeed realized for WIMPs. Consider a nonrelativistic

WIMP-annihilation process that occurs via a weak interaction, resulting in products of energy

E ∼ mχ. The amplitude for such a process is then M ∼ αmχE/M
2
W ∼ α, where α is the fine-

structure constant and MW ∼ 100 GeV is the energy scale of the weak interaction. We further

assume that the WIMP has a weak-scale mass mχ ∼ MW. This amplitude then gives a weak-scale

annihilation cross section on the order of a picobarn,

σ ∼ |M|2/m2
χ ∼ α2/m2

χ (2.5)

≈ 2 pb

(
100 GeV

mχ

)2

. (2.6)



13

Assuming that freeze-out occurs during the radiation-dominated era, during which

H ≈ 1.66g
1/2
∗ T 2/Mpl (2.7)

depends on the number of relativistic degrees of freedom g∗ and the Planck mass Mpl, the condition

Γ(Tf ) ∼ H(Tf ) then yields

mχ

Tf
∼ ln

[
〈σv〉(mχTf )3/2Mpl

T 2
f

]
(2.8)

∼ ln

(
α2Mpl

mχ

)
∼ 30 , (2.9)

so the assumption Tf < mχ is indeed self-consistent for WIMPs. Note that at such temperatures, the

rate of inverse WIMP-creating processes is also suppressed kinematically, since colliding standard-

model particles no longer have sufficient energy to create WIMPs. Thus, it is clear that processes

that change the number of WIMPs indeed freeze out at Tf ∼ mχ/30.

With the assumption of Tf < mχ and nonrelativistic freeze-out, the present-day WIMP num-

ber density nχ0 can then be derived. This is accomplished by numerically solving Eq. (2.1), using

the nonrelativistic equilibrium number density nEQ
χ as an initial condition at T ∼ mχ and evolv-

ing until the asymptotic value nχ∞ has been found [37]. Assuming s-wave annihilation (so that

〈σv〉 = σ0(T/mχ)n is temperature independent, with n = 0), this asymptotic value can be approxi-

mated by
nχ∞
sf
≈ Hm

〈σv〉msm

(
mχ

Tf

)
, (2.10)

where

sx =
2π2

45
g∗S,xT

3
x (2.11)

is the entropy density at temperature Tx, the values of variables evaluated at T = mχ are denoted

by a subscript m, and

g∗S,x =
∑

i=bosons

gi

(
Ti
Tx

)3

+
7

8

∑

i=fermions

gi

(
Ti
Tx

)3

. (2.12)

After the WIMP number density freezes out to this asymptotic value at Tf , its further evolution is

simply dictated by the expansion of the Universe. Hence, it scales as a−3 ∝ s ∝ g∗ST
3, where a is
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the scale factor. The end result is

nχ0 = nχ∞

(
s0

sf

)
(2.13)

≈ 104 cm−3

(
g

1/2
∗,m

g∗S,m

)(
mχ

Tf

)(
1

Mplmχσ0

)
. (2.14)

Here, the factors of g∗,m and g∗S,m account for the annihilation of particles with mass less than mχ

after WIMP freeze-out, which slows the decrease of T ∝ g−1/3
∗S a−1 to be slower than a−1.1 Since the

majority of the standard-model particles are still relativistic when WIMPs freeze out, typical values

are g∗,m ∼ g∗S,m ∼ 100.

The WIMP relic abundance is then given by the present-day WIMP density in terms of the

critical density ρcr = 3H2/8πG ≈ 10−5h2 GeV/cm3,

Ωχh
2 =

mχnχ0

ρcr
≈ 0.1

(
g

1/2
∗,m/g∗S,m

0.1

)(
mχ/Tf

30

)(
pb

σ0

)
, (2.15)

where h = H/(100 km/ sec /Mpc) ≈ 0.7. This expression, despite being derived using rough argu-

ments and approximations, is nevertheless mostly correct; a calculation done with greater care gives

the more common form

Ωχh
2 ≈ 0.1

(
3× 10−26 cm3/sec

〈σv〉

)
, (2.16)

although this expression likewise assumes values for g∗,m and g∗S,m and also ignores logarithmic

corrections arising from the weak dependence of Tf on mχ.

We see that the final WIMP relic abundance is inversely proportional to the annihilation cross

section. This result is intuitively clear; the larger the annihilation cross section, the longer WIMPs

remain chemically coupled to the thermal bath and track the equilibrium number density, which

is falling as the Universe expands and cools. Most interestingly, a weak-scale annihilation cross

section naturally gives a thermally produced WIMP relic abundance that matches the observed

dark-matter relic abundance! This striking coincidence is known as the “WIMP miracle”, and is

the reason that WIMPs are attractive from a cosmological standpoint and are the best studied

dark-matter candidates.

2.1.2 Supersymmetry and neutralino dark matter

In turn, the lightest supersymmetric neutralino is the best studied WIMP, primarily because super-

symmetry not only yields the neutralino as a viable dark-matter candidate but is also independently

attractive from a particle-physics standpoint. Since being proposed in the 1970s, supersymmet-

1This is analogous to the effect of electron-positron annihilation on the ratio of the CMB-photon and neutrino
temperatures; the latter have a lower temperature, since they decouple before this annihilation occurs.
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ric theories have been thoroughly explored in the literature; we shall review only those aspects of

supersymmetry necessary to introduce the neutralino as a well-motivated dark-matter candidate. 2

Supersymmetry first arose as a result of investigations of the symmetries of the scattering matrix

of quantum field theory. It was shown that the group of the usual symmetries of a nontrivial

scattering matrix — which can be expressed as a direct product of the Poincarè group (which gives

the symmetries of Minkowski spacetime) and a group of internal symmetries — can be extended by

the introduction of anticommuting spinor generators QA, A = 1, . . . , N .3 These generators obey the

supersymmetry algebra

{QA, Q†B} = −2σµP
µδAB (2.17)

{QA, QB} = {Q†A, Q†B} = 0 (2.18)

[QA, Pµ] = [Q†A, P
µ] = 0 , (2.19)

where σµ are the Pauli matrices (with σ0 = I), Pµ is the 4-momentum, and the spinor indices on Q

and Q† have been suppressed. Just as the generators of the Poincarè and internal groups transform

states in spacetime (by Lorentz boosts, translations, or rotations) or internal spaces, respectively,

these spinor generators Q effect the aforementioned transformations between bosonic states |B〉 and

fermionic states |F 〉. Hence, in the same sense that the generators of the internal isospin symmetry

“rotate” neutrons and protons into each other, the generators of supersymmetry convert between

bosons and fermions; schematically,

Q|B〉 = |F 〉 (2.20)

Q|F 〉 = |B〉 . (2.21)

The simplest N = 1 supersymmetry is of primary interest, since it admits the existence of

chiral fermions. In such a theory, bosonic and fermionic are paired in supermultiplets, which are

irreducible representations of the supersymmetry algebra. We can further discern between chiral

supermultiplets, which consist of a spin-1/2 Weyl fermion and a spin-0 complex scalar sfermion,

and gauge or vector supermultiplets, which consist of a real spin-1 gauge field and a spin-1/2 Weyl-

fermion gaugino.4

Hence, supersymmetry is a symmetry that relates elementary particles that differ by a half unit of

2Additional details on supersymmetry may be found in Refs. [38–40], from which some of the material presented
here was adapted. The standard review of supersymmetric dark matter is given in Ref. [41]; more recent reviews are
given by, e.g., Refs. [42, 43].

3This is the Haag-Lopuszanski-Sohnius extension of the Coleman-Mandula no-go theorem.
4Specifically, this is true in the two-component spinor representation. Note that an “s-” prefix is added to the name

of a fermion to denote the fermion’s scalar superpartner (e.g., squark, slepton, stop, sbottom, selectron, sneutrino, etc.),
while an “-ino” suffix replaces the “-on” suffix in the name of a boson to denote the boson’s fermionic superpartner,
with some straightforward exceptions (e.g., photino, gravitino, zino, wino, higgsino, etc.).
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Name SM SUSY

Chiral supermultiplets spin 1/2 spin 0

quarks & squarks (uL dL) (ũL d̃L)

(3 generations) uR, dR ũR, d̃R

leptons & sleptons (eL νL) (ẽL ν̃L)

(3 generations) eR ẽR

Higgs & higgsinos (H+
u H0

u) (H̃+
u H̃0

u)

(H0
d H−d ) (H̃0

d H̃−d )

Gauge supermultiplets spin 1 spin 1/2

gluons & gluinos g g̃

W bosons & winos W±, W 0 W̃±, W̃ 0

B boson & bino B0 B̃0

Table 2.1: Particle content of the minimal supersymmetric standard model (MSSM). Standard-
model (SM) particles and their superpartners predicted by supersymmetry (SUSY) are listed. The
neutral higgsinos, wino, and bino mix to give the neutralinos χ0

i , i = 1, . . . , 4, while the charged
higgsinos and winos mix to give the charginos χ±i , i = 1, 2.

spin, which are termed superpartners. If supersymmetry is unbroken in a theory, this means that the

theory is invariant under transformations that convert between superpartner bosons and fermions;

these paired bosons and fermions must additionally have identical quantum numbers. Since the

known particles of the standard model cannot be paired as such, the existence of new particles

is required if supersymmetry is to be realized. In the minimal supersymmetric standard model

(MSSM), the addition of new particles is accomplished by pairing new bosons with the standard-

model matter fields in chiral supermultiplets and new fermions with the standard-model gauge fields

in gauge supermultiplets; a pair of chiral Higgs supermultiplets is also required if triangle gauge

anomalies are to avoided. The field content of the MSSM is shown in Table 2.1.

Unbroken supersymmetry further requires that the masses of these bosonic and fermionic super-

partners are identical. Since particles with such masses are not observed, supersymmetry must be a

broken symmetry at the known energy scales — that is, the masses of these new particles must be at

scales yet unexplored by colliders. Interestingly enough, if supersymmetric particles have weak-scale

(∼TeV) masses, several outstanding problems of the standard model may be resolved.

The first problem solved by weak-scale supersymmetry is the so-called “hierarchy problem”

involving stabilization of the Higgs potential and the energy scale of electroweak symmetry breaking,

which we now describe. The standard model may not be applicable at energies above the ∼TeV

scales explored thus far; it will certainly require modifications near the ∼1019-GeV Planck scale

of quantum gravity, but new physics may require extensions of the standard model even at some

intermediate energy scale Λ. It is then reasonable to impose Λ as an ultraviolet cutoff in momentum
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integrals, interpreting it as the scale at which the standard model ceases to be valid.

This cutoff then regularizes divergent loop integrals, such as those that enter in radiative cor-

rections to particle masses. Insensitivity to this cutoff is then a desirable feature in the theory.

Interestingly enough, in a theory without elementary scalars, the masses of fermions are protected

against large corrections — linear or quadratic in Λ — by chiral symmetry. Only at most loga-

rithmic corrections appear; for example, quantum corrections to fermion masses m are of the form

δm ∝ m ln(Λ/m), so no fine-tuning between the bare fermion masses appearing in the Lagrangian

and the physical fermion masses is needed — even if the cutoff scale Λ is large. Similarly, the

vanishing mass of the photon is exactly protected by gauge invariance.

However, the mass of the Higgs boson is not afforded any such protection, a feature that is

essentially due to the scalar nature of the Higgs. In the standard model, the classical potential of

the complex scalar Higgs SU(2)L doublet φ = (φ+ φ0) is given by

V = −µ2|φ|2 + λ|φ|4 , (2.22)

where vacuum stability requires λ > 0. By further requiring µ2 > 0, the minimum of the potential

and the corresponding vacuum state are shifted away from φ = 0. Electroweak symmetry breaking

is thus achieved via the Higgs mechanism, and the Higgs field is given a vacuum expectation value

(VEV) 〈φ〉 = (0 v/
√

2), where v =
√
µ2/λ. Essentially, the SU(2)L symmetry between the two

components of the doublet, which dictates that SU(2) “rotations” in the φ+-φ0 “space” leave the

theory invariant, is now broken by the VEV, which picks out a unique direction in this space. Thus,

SU(2)L × U(1)Y is broken to U(1)EM.

The tree-level mass of the physical Higgs boson (defined as the real scalar field H, such that

φ0 = (v +H)/
√

2, with mass term −m2
HH

2/2 appearing in the potential V ) is then

m2
H = 2v2λ = 2µ2 , (2.23)

and is not fixed by the theory or observations. In contrast, the physical masses of the electroweak

gauge bosons that couple to the Higgs are fixed by the theory and observations. For example,

the tree-level masses of the W and Z bosons are given by mW = vg2/2 ≈ 80.4 GeV and mZ =

v
√
g2

1 + g2
2/2 ≈ 91.2 GeV, where g1 and g2 are the U(1)Y and SU(2)L gauge couplings. From

the measurement of particle masses it is therefore experimentally known that v ≈ (
√

2GF )−1/2 ≈
246 GeV, where GF is the Fermi constant. A weak-scale Higgs mass is then expected at tree level

if λ ∼ 1.

The discussion thus far has been at tree level. Let us now consider quantum corrections, starting

with those arising from the coupling of the Higgs to fermions. A fermion f coupling to the Higgs
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f

f

φ φ

f̃

φ φ

Figure 2.1: Feynman diagrams showing the contributions to the Higgs self-energy from fermion
(left) and scalar (right) couplings. Separately, these diagrams yield quantum corrections to the
Higgs–mass-squared parameter µ2 that depend on the cutoff scale as Λ2. However, the quadratic
divergences cancel in the sum of the diagrams if the fermion and scalar have related couplings and
identical masses, yielding only a logarithmic correction ln Λ. This suggests that paired fermions and
scalars may stabilize the weak scale, solving the hierarchy problem.

via the Yukawa-interaction term −λfφf̄f has a tree-level mass

mf = vλf/
√

2 , (2.24)

since fermion mass terms are of the form −mf f̄f .5 However, this interaction also gives rise to

a leading-order quantum 1-loop correction to the µ2 parameter via the first diagram shown in

Figure 2.1,

δµ2 = −|λf |
2

16π2
Λ2 , (2.25)

which is quadratically sensitive to the cutoff scale Λ. Since the top quark is the heaviest fermion,

with a mass mt ≈ 173 GeV ≈ v/
√

2, its Yukawa coupling λt ≈ 1 then provides the largest correction.

Now, if the cutoff scale is indeed close to the Planck scale, such that Λ ∼ 1019 GeV, then this implies

that the quantum corrections δµ2 to the Higgs-mass–squared parameter µ2 are radically larger than

the classical weak-scale value. Put another way, if there is no new physics between the weak scale and

the Planck scale, maintaining the weak scales of the physical µ2 parameter and VEV v implied by

the weak–gauge-boson masses would require a cancellation between the bare µ2 parameter and these

quantum fermion-loop corrections δµ2 of approximately 1 in 1034! Similar quadratic corrections also

arise from the coupling of the Higgs to gauge bosons and self-coupling of the Higgs. Since the masses

of the other particles in the standard model also depend on the VEV v, they are likewise sensitive

to these corrections.

Clearly it is desirable to avoid such drastic fine-tuning. As such, several constructs have been

proposed to solve the hierarchy problem — supersymmetry among them. To see how supersymmetry

resolves the issue of sensitivity to quadratic corrections, consider now the 1-loop correction to the

5We schematically write the interaction as −λfφf̄f , although more rigorously one should perhaps write −λfφL̄fR+
h.c., where L is an SU(2)L doublet containing fL and fR is a singlet; here, f is a Dirac fermion and fL and fR are Weyl
fermions. In the interest of conciseness, the general level of rigor in our arguments here will be only that necessary
to motivate the basic ideas of supersymmetry. We shall also not take too much care with factors of order unity, for
example.
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µ2 parameter arising from the −λf̃ |φ|2|f̃ |2 coupling of the Higgs to a complex scalar particle f̃ , as

shown by the second diagram in Figure 2.1. Such a complex scalar would have a mass term −m2
f̃
|f̃ |2,

and hence a corresponding mass

mf̃ = v
√
λf̃/2 . (2.26)

The sum of the leading-order corrections from both the fermion and scalar couplings is then

δµ2 =
1

16π2

(
λf̃ − |λf |2

)
Λ2 . (2.27)

The relative minus sign between the fermion and scalar contributions arises because of the anticom-

mutation of the fermions in the fermion loop. We then see that the quadratic correction arising from

the coupling of the Higgs to a fermion f can be canceled by the contribution from a scalar f̃ if the

couplings obey

λf̃ = |λf |2 . (2.28)

Furthermore, this condition also implies that the masses of the fermion and the scalar should be

identical,

mf̃ = mf . (2.29)

Our result is then that the introduction of new complex scalars with related couplings and masses

identical to those of the standard-model fermions can stabilize the weak scale associated with the

Higgs mechanism against quadratic divergences. It can likewise be shown that quadratic corrections

arising from the coupling of the Higgs with gauge bosons can be canceled by the introduction of

new fermions with related couplings and identical masses. The introduction of superpartners with

identical masses in unbroken supersymmetry then realizes this scenario, removing the need for fine-

tuning.

Unfortunately, unbroken supersymmetry is not realized in nature. However, recall that it was

advertised that weak-scale broken supersymmetry — in which the masses of the superpartners are

not identical to those of the standard-model particles, but are instead at the weak scale — can still

solve the problems of the standard model. In particular, if supersymmetry is broken softly by adding

supersymmetry-violating mass terms and couplings with positive mass dimension to the Lagrangian,

then dimensional arguments show that the additional leading-order quantum corrections to µ2 will

be of the form

δµ2 ≈ m2
soft

[
g

16π2
ln

(
Λ

msoft

)]
, (2.30)

where g is representative of dimensionless couplings of order unity. Hence, fine-tuning can still be

avoided if the mass scale msoft of these terms is not too large. In particular, weak-scale values of

msoft ∼ TeV still avoid fine-tuning even if Λ ∼ Mpl. Furthermore, although the relation Eq. (2.28)
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between the couplings must still be satisfied to avoid quadratic divergences, soft supersymmetry

breaking yields mf̃ 6= mf ; the splitting between the standard-model and superpartner masses in-

duced by the soft breaking terms is then roughly msoft.

Thus, the key result of our arguments here is that weak-scale broken supersymmetry, which

predicts the existence of new particles with weak-scale masses, admits a solution to the hierarchy

problem. That weak-scale supersymmetry solves this issue in the standard model is perhaps its

greatest strength. However, another attractive feature of supersymmetry is that the inclusion of

superpartners in the renormalization-group equations for the evolution of gauge couplings yields

unification at high energies, which is not realized if only standard-model particles are accounted for.

Furthermore, supersymmetry favors a relatively light Higgs boson (in simple models, the lightest

supersymmetric Higgs should be less massive then ∼140 GeV), which is also preferred by electroweak

precision data. Moreover, another fascinating quality of supersymmetry is that theories that are

locally supersymmetric necessarily incorporate general relativity; gravity arises classically in theories

with local supersymmetry (albeit in a non-renormalizable, effective manner).6 Such supergravity

theories hint at the unification of general relativity and quantum field theories, and are generically

components of string theories.7

All of these features already indicate that weak-scale supersymmetry is extremely well motivated.

However, as previously indicated, the most attractive feature of weak-scale supersymmetry from the

viewpoint of cosmology is that it predicts the existence of WIMPs, which we have already shown to be

natural dark-matter candidates. Be that as it may, there are a few remaining issues to consider before

we can have confidence in the ability of supersymmetric WIMPs to play the role of dark matter.

The foremost of these is that supersymmetric theories do not generically yield WIMPs that are

stable. 8 Requiring invariance under supersymmetry restricts the form of terms in the Lagrangian,

but nevertheless generally allows for renormalizable interactions that violate baryon and lepton

number. Baryon-number and lepton-number processes that are strongly constrained by experiment,

e.g., proton decay, would then proceed via these interactions, mediated by superpartners. Such a

situation is undesirable, and is typically avoided by further imposing a discrete symmetry called

R-parity. This symmetry demands the conservation of the quantum number Rp ≡ (−1)3B+L+2s,

6This results because the generators Q of the supersymmetry transformations are intimately connected to the
generators Pµ of spacetime translations, as can be seen from the supersymmetry algebra given in Eq. (2.17).

7We shall further discuss supergravity in Chapter 4, in which we shall be concerned with the viability of the
gravitino — the existence of which is predicted by supergravity theories — as an interesting dark-matter candidate.

8Another issue is that the correct dark-matter relic abundance must also be obtained. Although we shall not
elaborate this point in detail, we mention that supersymmetric WIMPs are generally overproduced — indeed, detailed
calculations show that the predicted supersymmetric-WIMP relic abundances may differ from the observed dark-
matter abundance by several orders of magnitude, making the WIMP miracle somewhat less miraculous. Mechanisms
that effectively increase the rate of WIMP annihilation, such as coannihilation or resonances, are then necessary.
This requirement constrains the regions of supersymmetry parameter space that yield viable WIMP dark matter.
However, the dimensionality of this parameter space is quite large — even in the case of the MSSM, where there
are 120 free parameters (the majority of which specify the details of soft supersymmetry breaking). In practice, this
dimensionality is typically dramatically reduced by making further simplifying assumptions about the parameters.
Nevertheless, enough freedom exists to allow regions of parameter space where the correct relic abundance is produced.
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where B is baryon number, L is lepton number, and s is spin. All standard-model particles therefore

have Rp = 1, while their superpartners have Rp = −1 (since their spins s differ by 1/2). R-parity

conservation then implies that the lightest supersymmetric particle (LSP) is stable against decay to

solely standard-model particles (although annihilation of two LSPs to standard-model particles is

still allowed).

Depending on the supersymmetric-particle mass spectrum, the LSP may be an electrically neu-

tral WIMP, and hence may be a good dark-matter candidate. WIMPs predicted by supersymmetry

include the sneutrinos ν̃ (the superpartners of the neutrinos) and the neutralinos χ0 (linear combi-

nations of the neutral gauginos H̃0
u , H̃0

d , W̃ 0, and B̃0, which mix to give a total of 4 neutralinos).

As sneutrinos should have relatively large scattering cross sections and are thus strongly disfavored

by direct-detection experiments, we have finally reached the conclusion advertised at the outset: the

lightest neutralino is the most promising supersymmetric WIMP dark-matter candidate, and is well

motivated in the context of weak-scale supersymmetry.

As noted previously, the annihilation of WIMPs yields energetic standard-model products, giving

rise to the possibility of indirect detection. For example, neutralinos may self-annihilate 9 via weak

interactions to produce quarks, leptons, and gauge bosons, which may themselves then further decay.

In general, the end result of WIMP annihilation is then the production of cosmic rays and gamma-

rays. Gamma-rays are especially of interest — since they are not deflected by magnetic fields, unlike

charged cosmic rays, and point back to the astrophysical sources of WIMP annihilation — and may

be observed by the Fermi Gamma-ray Space Telescope.

We now turn to the study of a particular topic in indirect detection: the one-point statistics of the

gamma-ray flux from WIMP annihilation in Galactic substructure, which may be observed by Fermi.

We note that although the aim of the pedagogical introduction here has been to motivate neutralinos

as WIMP dark-matter candidates that may yield indirect detection signals — and indeed, one of the

models in the study focuses on a scenario with neutralino dark matter — the basic results presented

below are applicable to WIMPs in general.

2.2 Introduction

It has long been a goal of astrophysics and cosmology to determine the distribution and nature

of the dark matter that populates our Galactic halo. Only more recently have we begun to focus

on the possibility to detect substructures in the Galactic halo [44–55]. In hierarchical structure

formation, small gravitationally bound dark-matter systems form first and then merge to form

progressively more massive systems. In each stage, some of the earlier generations of structure may

9Since the neutralino is a Majorana fermion, it is its own antiparticle.
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remain intact after merging, and so the Milky Way halo may contain substructures over a wide

array of masses. Scaling arguments suggest that substructures may continue all the way down to

the smallest mass scales at which there is primordial power [56–62], although the precise details may

be uncertain [63–66]. If WIMPs [10, 41, 67] make up the dark matter, the cutoff mass should be in

the range 10−4–103M⊕ [68–70], and if axions [71–74] make up the dark matter, it may be as small

as 10−12M⊕ [75]. These mass ranges are determined by the temperature at which the dark-matter

particle kinetically decouples from the thermal bath; see Appendix A for more details.

If WIMPs make up the dark matter, there may be several avenues toward detecting them. With

the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) [29], however, there is now

particular attention being paid to detection of energetic gamma-rays from dark-matter annihilation

in the Galactic halo (see, e.g., Ref. [76] and references therein). While the diffuse flux from such

annihilation has long been considered [77–95], the possibility to detect substructure, through angular

variations in the background, is more recent [96–101]. It is possible that individual substructures

may be resolved [102]. Proper motions of the smallest microhalos have also been considered [31,103].

In this work, we propose the one-point gamma-ray-flux probability distribution function (PDF)

as a probe of halo substructure. If dark matter is smoothly distributed, then the variation in the

number of diffuse-background photons from one pixel to another should arise only from Poisson

fluctuations. If, however, there is substructure, there will be additional flux variations from pixel

to pixel. This may provide another route — an alternative to the angular two-point correlation

function [96, 97, 100, 101] — to detect substructure statistically, especially for the very smallest

microhalo mass scales.10 It may also allow measurement of the substructure mass function, under

certain model assumptions outlined below.

We illustrate with a phenomenological model for Galactic substructure in which a fraction f of the

halo is made of dark-matter microhalos with a power-law mass function (with a lower mass cutoff

Mmin) and a constant mass–to–gamma-ray-luminosity ratio Υ = Mmin/Lmin. The next section

introduces this model and discusses the constraints from the Energetic Gamma-Ray Experiment

Telescope (EGRET) [105] to the parameter space. In Section 2.4, we calculate the flux PDF for this

model and discuss the translation to a discrete distribution of counts in each Fermi pixel. We provide

in Section 2.5 numerical results for the PDF for an illustrative model. Section 2.6 determines the

regions of the parameter space in which the PDF of substructure can be distinguished from that of

a smoothly distributed background. In Section 2.7 we summarize and comment on additional steps

that must be taken to implement this probe.

10It has been similarly suggested [104] that background fluctuations may be used to learn about the traditional
astrophysical sources contributing to the diffuse background.
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2.3 Substructure/annihilation models and EGRET constraints

2.3.1 Halo model and microhalo mass function

We assume that a fraction f of the dark matter in the Galactic halo is composed of objects with a

power-law mass function dnh/dMh ∝ M−αh , independent of Galactocentric radius r. We shall take

α = 2 in this work when evaluating numerical results, but our approach will hold in general. The

mass function obeys the relation

fρ(r) =

∫ Mmax

Mmin

dMhMh
dnh
dMh

(r,Mh) ≡ 〈Mh〉nh(r), (2.31)

where ρ(r) is the density profile of the Milky Way halo, Mmin and Mmax are the masses of the

smallest and largest subhalos, and in the last equality we define the mean mass 〈Mh〉 as well as

spatial number density nh(r) of subhalos. From Eq. (2.31) and the assumed shape of the mass

function, we obtain

dnh
dMh

(r,Mh) =
fρ(r)

ln(Mmax/Mmin)
M−2
h , (2.32)

nh(r) =
fρ(r)

Mmin ln(Mmax/Mmin)
, (2.33)

〈Mh〉 = Mmin ln(Mmax/Mmin), (2.34)

where in Eq. (2.33), we assumed Mmin �Mmax. We use the NFW [106] profile,

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (2.35)

where ρs = 5.4× 10−3 M� pc−3 is the characteristic density, and rs = 21.7 kpc is the scale radius.

The density is set to zero beyond a cutoff radius rc = 10 rs, which is approximately the virial radius

(i.e., the concentration parameter is c ≡ rvir/rs ≈ 10). This normalizes the virial mass of the Milky

Way halo to be 1012M�, and gives ρ0 = 7× 10−3 M� pc−3 as the local density at the solar radius

(r0 = 8.5 kpc).

Following other studies [107], we normalize the mass function by using the results of simulations

[108] to fix the fraction of mass contained in high-mass microhalos. Specifically, we choose f such

that 10% of the total mass of the halo is contained in microhalos of mass 107–1010M�. We then

extrapolate the power-law mass function found by the simulations down to a cutoff mass Mmin below

the simulation resolution; taking Mmax = 1010M�, f then becomes a function of Mmin:

f(Mmin) = 0.10 log(Mmax/Mmin)/ log(Mmax/107M�). (2.36)
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We shall suppress the argument Mmin when referring to f below.

For a halo model with Mmin = M⊕, we find that approximately 52% of the total halo mass

is contained in roughly 4.8 × 1016 microhalos in the specified mass range. The number density of

microhalos in the solar neighborhood is about 34 pc−3. In this work, we will examine a class of halo

models in which Mmin is a free parameter, and falls in the range 10−4–103M⊕ predicted by WIMP

kinetic decoupling studies.

2.3.2 Microhalo annihilation models

Let us assume that the microhalos have NFW density profiles. The integrated number luminosity

Lh from WIMP annihilation in an microhalo with NFW profile parameters rs, c, and ρs is given by

Lh =
Nγ〈σv〉
m2
χ

∫

h

dV ρ2 ≡ a(c)KρsMh. (2.37)

Here, Nγ is the integrated number of photons per annihilating particle, 〈σv〉 is the thermally averaged

annihilation cross section multiplied by the relative velocity, and mχ is the mass of the WIMP. In

the second equality,

a(c) ≡ 1− 1/(1 + c)3

3[ln(1 + c)− c/(1 + c)]
(2.38)

is a numerical factor resulting from the volume integral (with a dependence on c), and we have

defined

K ≡ Nγ〈σv〉
m2
χ

=
〈σv〉
m2
χ

∫
dE

dNγ
dE

. (2.39)

Here, dNγ/dE is the photon spectrum per annihilating particle. For the Galactic halo, using the

NFW profile parameters defined in the previous section, we find that

LMW = 1.2× 109KM2
� pc−3 = 5.1× 1067K GeV2 cm−3. (2.40)

We now also assume that the integrated gamma-ray number luminosity Lh of each microhalo is

proportional to its mass Mh, with constant mass-to-light ratio Υ ≡ Mh/Lh. Then, the luminosity

function is dnh/dLh = Υ(dnh/dMh). Note that throughout this study, the luminosity is the number

(not energy) of photons emitted per unit time; similarly, we deal with number fluxes (fluences) and

intensities.

These assumptions are consistent with the results of simulations, which indeed roughly find that

Lh ∝Mh. In particular, Ref. [108] finds that

Lh
LMW

=

∫
h
ρ2dVh∫

MW
ρ2dVMW

≈ 3× 10−12

(
Mh

M�

)
(2.41)
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in the range of their simulation, which resolves subhalos down to Mh ≈ 4×106M�. We shall assume

this relation holds down to the microhalo masses under discussion in this study. Note that Eq. (2.41)

essentially relates the microhalo NFW profile parameters rs, c, and ρs (which may be complicated

functions of mass) to those of the Galactic halo, which were stated previously.

Combining Eqs. (2.37)–(2.41), we can now parameterize the magnitude of the annihilation signal

by the parameter K (or equivalently, Υ−1 = 3.6 × 10−3 K M� pc−3 = 0.14 K GeV cm−3 or

Lmin = Υ−1Mmin, which are both proportional to K). Given that our halo model and microhalo

mass function were parameterized by Mmin, we see that our overall model has two parameters. We

now discuss a constraint on this model, arising from an intensity limit observed by EGRET.

2.3.3 EGRET constraints

The gamma-ray intensity Ih(ψ) (units of photons cm−2 sec−1 sr−1) from microhalos along a line of

sight at an angular separation ψ from the Galactic center can be estimated as

Ih(ψ) =
1

4π

∫
dl

∫ Lmax

Lmin

dLh Lh
dnh
dLh

(r(l, ψ), Lh)

=
f

4πΥ

∫
dl ρ (r(l, ψ)) , (2.42)

where l is the distance along the line of sight; i.e., r2 = r2
0 + l2−2r0l cosψ. Compare Eq. (2.42) with

the intensity IG(ψ) from annihilation in the smooth component of the Galactic halo, which contains

a fraction 1− f of the total halo mass:

IG(ψ) =
K(1− f)2

4π

∫
dl ρ2 (r(l, ψ)) . (2.43)

Note that Ih and IG depend differently on ρ (r(l, ψ)), causing them to vary differently with ψ.

Current upper bounds to the diffuse gamma-ray background from EGRET place an upper limit

on Ih + IG. However, because of the lower energy range of EGRET, these upper limits apply to

energies in the range 0.1 GeV ≤ E ≤ 10 GeV. Fermi will be more sensitive to photons with energies

above 10 GeV (due to larger volume and better angular resolution at higher energies). For any

given annihilation model, we are thus interested in the signal of gamma-rays above 10 GeV, but

must also check to see that the constraint in the lower energy range is obeyed. We see that we must

examine the energy dependence of Ih + IG, and hence the annihilation photon spectrum dNγ/dE,

in order to properly apply these constraints. We shall consider the annihilation photon spectrum in

two different scenarios.

In the first scenario, we assume that the WIMP is a neutralino, resulting in a photon spectrum
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per annihilating particle fit by an analytic approximation given by Ref. [109]:

dNγ
dE

=
1

mχ

0.42e−8x

x1.5 + 0.00014
, (2.44)

where x ≡ E/mχ. For the neutralino particle properties, we choose typical values used in the

literature. We set 〈σv〉 = 3× 10−26 cm3 sec−1, which reproduces the observed dark matter density

if the WIMP is a thermal relic. We also choose mχ = 85 GeV; this choice maximizes K for photon

energies above 10 GeV, and hence maximizes the annihilation signal.

Along these lines, when discussing annihilation signals in this scenario, we shall redefine the

parameter K in all of the relevant preceding equations by using Eq. (2.44) in Eq. (2.39), and

integrating only over the energy range of interest to Fermi (E ≥ 10 GeV). Definitions for Υ, Lh,

Ih, etc. in this energy range follow. With these values, we find the annihilation parameter for the

neutralino model

KN = 4.2× 1028 pc3 sec−1M−2
� = 9.9× 10−31 cm3 sec−1 GeV−2. (2.45)

By choosing these properties, we fix the annihilation parameter K; our model then depends only

on the single parameter Mmin. Hereafter, we shall refer to our overall model in this scenario as the

“neutralino model”.

To constrain this model, we rule out values of Mmin that result in intensities exceeding up-

per limits on the diffuse gamma-ray background found by EGRET (see Ref. [110]). That is,

for a given Mmin, we require dIh/dE + dIG/dE ≤ dIobs/dE over the EGRET energy range.

Ref. [110] found that the gamma-ray background as observed by EGRET is roughly isotropic (af-

ter masking out the Galactic plane and center), and is suitably parameterized by dIobs/dE ≈
2.7 × 10−8 (E/6.5 GeV)−2.1 cm−2 sec−1 sr−1 GeV−1. For our choice of neutralino properties,

the relative shapes of the background and annihilation spectra are such that if the constraint

dIh/dE + dIG/dE ≤ dIobs/dE holds at 6.5 GeV, then it is also satisfied over the entire energy

range; thus, it suffices to check the constraint at this energy. We find that the constraint is satisfied

for all Mmin in the range 10−4–103M⊕ predicted by kinetic decoupling studies.

We plot in Figure 2.2 the angular dependence of the microhalo intensity Ih above 10 GeV for

a model in this scenario with fiducial cutoff mass Mmin = M⊕.11 We also plot IG, the angular

dependence of the intensity above 10 GeV from dark-matter annihilation from a smooth component

containing 1 − f of the total Galactic halo mass, in order to show that it varies more rapidly with

ψ than the angular dependence of the gamma-ray intensity from substructure. We also show the

intensity dIobs/dE of the gamma-ray background as measured by EGRET, integrated above 10 GeV.

11Note that if ρ(r) ∝ r−1 as r → 0, the intensity is formally infinite at ψ = 0. However, the flux from any finite-size
window about the Galactic center involves an integral over the intensity, and the divergence of I(ψ) at ψ = 0 is such
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Figure 2.2: The intensity Ih(ψ) above 10 GeV from microhalos as a function of the angle ψ the line of
sight makes with the Galactic center (solid) for the fiducial photon spectrum given by Eq. (2.44) (the
“neutralino model”) and a cutoff mass of Mmin = M⊕. We also plot (dashed) the angular variation
of the intensity IG(ψ) above 10 GeV from dark-matter annihilation of a smooth component that
contains 1 − f of the total halo mass. Note that the variation with ψ of the gamma-ray flux from
substructure is not as dramatic as that from annihilation in a smooth component. The intensity
dIobs/dE integrated above 10 GeV of the gamma-ray background as measured by EGRET (dotted)
is also indicated.

In the second scenario, we assume that WIMPs annihilate into monoenergetic gamma-rays of

energy E = 10 GeV. We leave KE as a free parameter. We approximate the upper limit from

Ref. [111] to the gamma-ray line intensity, averaged over the 10◦ × 10◦ region around the Galactic

center, by 2 × 10−6 (E/GeV)−1/2 cm−2 sec−1 sr−1 over the energy range 0.1 GeV ≤ E ≤ 10 GeV

(see also Ref. [112]), and we then derive an upper limit,

fΥ−1
E . 1029 fI,h,lM

−1
� sec−1 ≈ 9× 10−29 fI,h,E GeV−1 sec−1. (2.46)

Here, Υ−1
E = 0.14 KE GeV cm−3 is the light-to-mass ratio under the assumption of monoenergetic

annihilation. Also, fI,h,E ≡ Ih,E/(Ih,E + IG,E + Id,E) ≤ 1 is the fraction of the total gamma-ray

intensity at 10 GeV from the Galactic center arising from annihilation in microhalos, and depends on

the residual intensity Id,E from any astrophysical backgrounds that may not have been subtracted

in Ref. [111].

In the case Id,E is negligible (i.e., the line intensity limit is saturated, with the observed intensity

arising entirely from annihilation in the smooth halo and substructure), then fI,h,E depends only

on the halo model and is a function of Mmin. Using Eqs. (2.42) and (2.43), calculation shows that

that the flux is always finite.
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a good estimate is given by fI,h,E ≈ 0.086 (Mmin/M⊕)
−0.081

. For a given Mmin, the intensity limit

then provides an upper bound on KE ; using Eq. (2.46) gives

KE . 2× 10−29 (Mmin/M⊕)
−0.81

f(Mmin)
cm3 sec−1 GeV−2. (2.47)

Thus, in this scenario we shall consider models parameterized by Mmin and KE , constrained by this

limit. We shall refer to models in this scenario as “line models”. Comparing Eq. (2.47) to Eq. (2.45),

we note that these line models may have much larger fluxes than the neutralino model.

In Sections 2.4-2.5, we shall discuss the neutralino model, using the assumed form of the photon

spectrum to predict the PDF for this fiducial model. In Section 2.6, we shall examine how observation

of the PDF may place constraints on the KE-Mmin parameter space for line models.

2.4 Calculation of the PDF

The Fermi angular resolution at energies above 10 GeV is roughly 0.1◦; throughout this work we

shall assume square pixels of solid angle (0.1◦)2. This implies that the background flux will be

measured in ∼4 × 106 beams on the sky. One can then make a histogram of the number of counts

in each beam. Our goal here is to make predictions for the shape P (F ) for the distribution of these

fluxes, under the assumption that these photons come from dark-matter annihilation in a clumpy

Galactic halo.

Although P (F ) will in general be a function of the line-of-sight direction ψ, we shall suppress this

dependence in much of the presentation, reinserting it later when required for numerical results. We

also refer to all probability distribution functions as P (x); the particular function under discussion

should be clear from the argument x.

If the population of sources has a flux-density distribution P1(F ), then the probability P (F ) to

see a total flux F (integrated over all sources in the beam) in a given beam is [113]

P (F ) = F−1
{
eµ(F{P1(F )}−1)

}
. (2.48)

Here F{x} is the Fourier transform of x and F−1 its inverse, and the flux-density distribution P1(F )

is normalized to
∫
dF P1(F ) = 1. The quantity

µ(ψ) =
Ωbeamf

〈Mh〉

∫ lc(ψ)

0

dl′ l′2ρ(r(l′, ψ)), (2.49)

is the mean number of sources in each beam of solid angle Ωbeam (in sr). We reproduce in the

Appendix the derivation of Eq. (2.48) originally provided by Ref. [113] (see also [114–117]).
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2.4.1 Derivation of P1(F )

The first step is thus to find the flux-density distribution P1(F ) for individual sources in the beam.

This depends on the luminosity function and on the spatial distribution of microhalos. The lumi-

nosity function is P (Lh) ∝ L−αh , where again we take α = 2. The probability for an individual

microhalo to be at a distance l along a line of sight ψ is P (l, ψ) ∝ l2ρ(r(l, ψ)). We take a maximum

cutoff at lc(ψ), corresponding to a cutoff radius rc = r(lc(ψ), ψ).

We then find P1(F ) is given by

P1(F,ψ) =

∫
dl dLh P (l, ψ)P (Lh)δ

(
F − Lh

4πl2

)

∝
∫ lc(ψ)

0

dl l4ρ(r(l, ψ)) (l2F )−αθ
(
4πl2F − Lmin

)
θ
(
Lmax − 4πl2F

)

∝ F−α
∫ min[lc(ψ),l(Lmax,F )]

l(Lmin,F )

dl l4−2αρ(r(l, ψ)), (2.50)

where the step functions enforce the cutoffs in P (Lh), and l(Li, F ) ≡ (Li/4πF )1/2. Note also the

implicit cutoff in P1(F ) for F < Lmin/4πl
2
c . Eq. (2.50) can be evaluated numerically for a given

value of the parameter Lmin = Υ−1Mmin. The result is presented in Figure 2.3 for the neutralino

model, with the fiducial cutoff mass Mmin = M⊕.

Note that Eq. (2.50) yields the familiar P1(F ) ∝ F−5/2 (conventionally written as N (> S) ∝
S−3/2) for a homogeneous spatial distribution of sources with a general luminosity function, if the

condition lc(ψ) ≥ l(Lmax, F ) is satisfied over the range of F of interest. Under this condition, P1(F )

will also asymptote to F−5/2 at large F for a non-pathological spatial distribution. However, if

lc(ψ) < l(Lmax, F ) for values of F within the range of interest, then there will be a break in P1(F );

P1(F ) will tend to F−α at F for which the second condition holds, and will then tend to F−5/2 at

higher F .

For the problem under discussion, values of Lmax in the interesting regions of parameter space

are such that P1(F ) is negligible in the F−5/2 regime. Thus, the essential “large-F” dependence of

P1(F ) will be F−α.

2.4.2 Calculation of the counts distribution

The function P (F ) gives the probability to observe a flux F from annihilation in substructure.

Unlike the function P (FBG) giving the probability to observe a flux FBG from smoothly distributed

background sources (such as annihilation in the smooth component of the Galactic halo or other

diffuse backgrounds), P (F ) will not be a Poisson distribution.

We will observe these fluxes in terms of photons beam−1 year−1, or similar units. However, the

limits from EGRET require that the mean photon count per beam per year be less than one; thus,
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Figure 2.3: The flux-density distribution P1(F,ψ = 90◦), normalized to unity, for the flux from an
individual microhalo drawn from a population of microhalos with: (1) an NFW spatial distribution
and a luminosity function ∝ L−2

h , for a fiducial value of the minimum cutoff luminosity Lmin (solid);
(2) an NFW spatial distribution and uniform luminosity Lmin (dashed); and (3) a homogeneous
spatial distribution and uniform luminosity Lmin (dotted). Note that the first distribution follows
a power-law of F−2 in the probabilistically observable range of F (following the power-law of the
mass function), and then tends to F−5/2 at extremely large F . The last two distributions also tend
to F−5/2. We have assumed the neutralino model and a cutoff mass Mmin = M⊕.

even those beams with the highest photon counts will only observe some small integer number of

photons per year. It follows that we will need to discretize the continuous variables F and FBG.

Furthermore, emission of photons is a Poisson process. Thus, let the total number of photons

measured in a given beam over an observation period T be C ≈ E(F + FBG) ∈ N; here E is the

exposure in a beam given in units of cm2 sec, and is given by E ≈ AT , where A ≈ 2000 cm2 is the

area of the detector.

The discrete probability distribution P (C) is then given by the sum of Poisson distributions with

mean E(F + FBG) weighted by P (F ):

P (C) =

∫ ∞

0

dF P (F )℘(E(F + FBG), C), C ∈ N. (2.51)

The shape of the discrete distribution P (C) is generally very similar to that of the continuous

distribution P (EF ) and is only slightly modified at the low end.
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Figure 2.4: The angular-averaged discrete probability distribution function P (C) for the total photon
number C in a given beam (circles), for the neutralino model with a cutoff mass of Mmin = M⊕.
Angular bins with widths of ∆ψ = 20◦ were used in the averaging. Only counts from annihilation in
substructure and the smooth halo component have been included. An observation period of 10 years
has been assumed. The angular-averaged continuous P (F ) (solid) and a fitted Poisson distribution
(squares) are also plotted for comparison. We have normalized to Nbeam = 4π/(0.1◦)2 ≈ 4 × 106,
the number of beams at the angular resolution limit. Poisson error bars are also shown.
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Figure 2.5: The same as in Figure 2.4, but with an arbitrary diffuse background with intensity
Id = 10−7 cm−2 sec−1 sr−1 above 10 GeV added. This additional background adds a large Poisson-
like feature to P (C) at low C, which obscures the substructure power-law tail. This suggests that
the neutralino model may be just outside the range of P(D) analysis, if the diffuse background is
indeed this large.
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Figure 2.6: The same as in Figure 2.5, but for a line model with KE = 10KN , an observation
period of five years, and a background intensity Id,E = 10−7 cm−2 sec−1 sr−1 at 10 GeV. Note
that although the intensity from the diffuse background is still many orders of magnitude above
the mean expected intensity from annihilation in substructure, the substructure power-law tail is
detectable with high statistical significance. Furthermore, for these model parameters, there will be
no detectable individual microhalos. Thus, P(D) analysis may be useful in detecting substructure
even when individual point sources are not detected.

2.5 Numerical results

Figure 2.4 shows the results of numerical tabulation of the PDF P (F ) for the neutralino model with

a fiducial cutoff mass of Mmin = M⊕. The PDF has a peak at low F and a power-law tail at high

F . Here, only flux from dark matter annihilation in substructure and the smooth halo are included.

Figure 2.5 adds an additional diffuse background with intensity Id = 10−7 cm−2 sec−1 sr−1 above

10 GeV; in this case, flux from annihilation only comprises a small fraction of the total observed

flux, and the substructure PDF may be difficult for Fermi to detect within the mission lifetime.

If the mass-to-light ratio Υ is increased (equivalently, if K is decreased), with Mmin held fixed,

then the photon flux decreases. The entire distribution is then scaled down along the F -axis. If

Mmin is reduced, with Υ held fixed, then the relative width of the peak of the PDF decreases. This

behavior can be understood by considering the limit Mmin → 0; in this case, we should expect to

recover a smooth spatial distribution, resulting in a delta-function P (F ). Note that this dependence

on Mmin implies that the peak of the PDF must be resolved in order to measure Mmin; if the peak

is obscured by an extraneous diffuse background, as in Figure 2.5, then Mmin may be a degenerate

parameter.

The distribution P (C) for discretized counts C is also plotted in Figures 2.4 and 2.5, for a ten-

year Fermi exposure. Also plotted is the Poisson distribution for a smoothly distributed diffuse
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background of the same mean flux. As the figures indicate, the large-F power-law tail of the PDF is

qualitatively different from the exponential falloff of the Poisson distribution with F . Thus, detection

of substructure amounts to detection of such a power-law tail.

Furthermore, the power-law tail of P (F ) follows the power-law tail of P1(F ). This is simply

because single bright sources dominate beams with high F . However, as discussed in Section 2.4.1,

the power-law tail of P1(F ) in turn follows the power-law of the mass function. For example, the

power-law tail in Figure 2.4 indeed follows an F−2 dependence. Thus, P (F ) not only provides a

method of substructure detection; it can also reveal the substructure mass function.

2.6 Detectability

Figures 2.4 and 2.5 are plotted for the neutralino model in which a fiducial value of K is chosen.

This model predicts a mean flux far below the EGRET continuum limit; even Fermi may have to

observe for a period of at least ten years in order to detect significant numbers of photons in beams

in the substructure power-law tail. However, the constraint on line models given by Eq. (2.46) allows

for choices of the parameters KE and Mmin that result in mean fluxes much closer to the EGRET

line intensity limit. Line models that saturate the limit will produce signals that could be easily

detected by Fermi within a year. Figure 2.6 plots the PDF for a fiducial line model.

Of course, Fermi will also be sensitive to a range of line models predicting fluxes below the

EGRET bound. However, for line models with mean fluxes below a certain level, the amplitude

of the substructure power-law tail will so reduced that it will be impossible to detect, as it was

for the neutralino model in Figure 2.5. In this section, we determine the regions of the line model

parameter space in which the PDF can be distinguished from the Poisson distribution expected for

a completely smooth or diffuse background of the same mean flux, over an observation period of five

years. Combined with the EGRET limit, this analysis will show the region of allowed parameter

space that can be probed by study of the PDF.

We determine the signal-to-noise with which the PDF P (C) can be distinguished from the Poisson

distribution ℘ (〈C〉, C) with the same mean count rate 〈C〉. The null hypothesis of no substructure

can be eliminated at the 3σ level if S/N > 3, where

S

N
=

√√√√∑

ψi

Nbeam,bin(ψi)

(
S

N

)2

ψi

, (2.52)

and (
S

N

)2

ψi

=

Cmax(ψi)∑

C=0

[P (C,ψi)− ℘ (〈C〉ψi , C)]
2

℘ (〈C〉ψi , C)
. (2.53)

Here, we label the angular bins by the central value of the bin ψi. The quantity Nbeam,bin(ψi) is
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Figure 2.7: The KE-Mmin parameter space for the line models. On the vertical axis, KE is scaled
by KN , the annihilation parameter for the neutralino model given by Eq. (2.45). We indicate the
region that is already ruled out by the EGRET upper limit to the diffuse background; where there
will be & 1, & 10, and & 100 detectable point sources with flux greater than the five-year point-
source sensitivity of Fermi; and where measurements of the flux PDF cannot be distinguished from a
Poisson distribution, for an observation period of five years. Angular bins with widths of ∆ψ = 20◦

were used in the calculation of S/N, and regions near the Galactic center (ψ ≤ 30◦) were masked.

the number of beams contained in each bin, Cmax(ψi) is the highest count observed in each bin,

and 〈C〉ψi is the mean of the best-fit Poisson distribution in each bin. Eq. (2.52) then quantifies

the difference between the discrete probability distributions P (C,ψ) and ℘ (〈C〉ψ, C), comparing the

substructure PDF with the Poissonian distribution expected from a diffuse background (which may

have angular dependence). In Figure 2.7, we plot the regions of the KE-Mmin parameter space in

which the value of S/N indicates that substructure can be detected. Also plotted are the regions of

the parameter space ruled out already by the current EGRET upper limit to the diffuse background.

Note that in Figure 2.7, models fall in the Poissonian regime when the substructure power-law tail

at high C is obscured by the Poisson-like feature at low C; in this regime, P(D) analysis cannot be

used. Since the Poisson-like feature arises from the flux from extraneous diffuse backgrounds (from

sources other than dark matter annihilation in substructure and the smooth halo), the demarcation

of the Poissonian regime is ultimately determined by the level of these backgrounds. In determining

the Poissonian regime, we have conservatively assumed an arbitrary diffuse background of Id,E =
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10−7 cm−2 sec−1 sr−1; in this case, the EGRET intensity limit is severely unsaturated, and only a

small fraction of the observed diffuse background arises from dark matter annihilation in substructure

and the smooth halo. In practice, the actual level of these diffuse backgrounds will determine the

Poissonian regime, which may then cover a smaller region of parameter space than the conservative

estimate presented in Figure 2.7.

Of course, detection of a nontrivial PDF is also intimately related to the criteria for detection of

point sources. The number of sources observed with flux greater than F is given by

N(≥ F ) = 2π

∫
dψ sinψ

∫
dLh

∫ l(Lh,F )

0

dl l2
dnh
dLh

(r(l, ψ), Lh). (2.54)

Examining this equation shows that N(≥ F ) is only weakly dependent on the cutoff mass Mmin.

Furthermore, since the observed microhalos essentially comprise a volume-limited sample, for KE

in the range of interest N(≥ F ) ∝ KE (at lower KE , N(≥ F ) ∝ K
3/2
E as expected for a flux-

limited sample). Numerical calculation of dN(≥ F )/dM shows that the observed microhalos will

predominantly be those of higher mass & 103 M�; although lower-mass microhalos are far more

numerous, Fermi will not be sensitive enough to detect them individually [31].

In certain regions of the parameter space for which Figure 2.7 indicates a nontrivial PDF, sub-

structure will be detectable via detection of individual microhalos, even without a detailed analysis

of the PDF. We plot these regions, taking the Fermi five-year 5σ point-source sensitivity at 10 GeV

of F ≈ 2× 10−10 cm−2 sec−1 [29] (note that this sensitivity assumes the same background level as

in our determination of the Poissonian regime). The advantage of the full PDF, however, is that

substructure can be detected even in regions of parameter space where individual microhalos elude

detection. Measurement of the detailed shape of the PDF can also provide more information on the

microhalo mass function and/or spatial distribution in the halo than would be obtained simply by

point-source counts; e.g., the slope of the power-law tail in the PDF depends upon the slope of the

mass function.

Note that we could have done a similar analysis for a more general WIMP and substructure

model in which some of the parameters (e.g., annihilation cross section and spectrum, or subhalo

concentration/boost parameters) were allowed to vary. The EGRET continuum constraint allows

for a large range of such models. However, for simplicity we have only considered the parameter

space of line models and the specific substructure model assumed in Section 2.3.

2.7 Conclusions

We have proposed that the distribution of fluxes measured in individual Fermi pixels can be used to

probe the existence of substructure in the Galactic halo to very small mass scales. By characterizing
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fluctuations in the diffuse gamma-ray background in this way, the existence of Galactic substructure

may be inferred statistically even if individual halos cannot be detected. This statistical approach

should be viewed as complementary to the use of an angular correlation function [96, 97, 100, 101].

Since the PDF is a convolution of the microhalo mass function and spatial distribution, constraints

to the parameters of these distributions may be obtained by measuring the PDF.

The full PDF we have calculated may be useful even in situations where individual microhalos

can be detected. For example, the flux in a pixel with a 3σ excess which is interpreted as detection

of a single point source may actually be due to several point sources; the probability that this is so

may be inferred from the PDF.

We have illustrated the PDF that results in a phenomenological model for substructure param-

eterized a microhalo mass cutoff Mmin, and a mass-to-light ratio Υ. This is almost certainly an

oversimplification. In more realistic models, the mass function may differ from the particular power

law we have assumed. The mass-to-light ratio may depend on the microhalo mass, and there may

even be a spread of luminosities for each mass. The spatial distribution of microhalos may not

trace the Galactic halo. Similarly, contributions to the PDF from astrophysical backgrounds (e.g.,

from cosmic-ray spallation or extragalactic sources) may need to be considered before a complete

comparison of our model predictions with data can be made [118].

In our P(D) analysis, we did not consider the dependence of the angular resolution on the

photon energy. Furthermore, we have also assumed here that each microhalo will fall within a

single resolution element of Fermi. Taking into account the finite angular size of each microhalo

will reduce the length of the power-law tails in the PDF, and will decrease the region of parameter

space in which the PDF can probe substructure. However, note that individual extended sources

will also be more difficult to detect than point sources. A generalization of Eq. (2.54) will give a

smaller number of detectable extended sources; the corresponding lines in Figure 2.7 will also shift

upwards. Thus, there will still be an appreciable region of parameter space in which the PDF can be

used to detect substructure even if individual sources cannot be detected. Moreover, a conservative

rough estimate of the size of these microhalos can be found by approximating the microhalo mass

density ρh, assuming a formation redshift of z ≈ 100 and a concentration parameter of c ≈ 1 [52].

A simple calculation then gives the angular size of the closest and most extended microhalos as

θ ≈ (fρ0/ρh)
1/3 ≈ 4◦f1/3. Thus, if the beam size is increased such that the majority of extended

microhalos fall within a single beam, then the point source P(D) formalism presented here is roughly

valid. A more careful generalization may be required for comparison to data.

We leave the inclusion of these additional levels of complication to future work. In addition to

these future directions, one may also consider going further by combining the angular-correlation

and PDF approaches. For example, the full two-point flux probability distribution function can

be calculated and may provide additional observables with which to constrain the models or to
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distinguish a dark-matter background from other astrophysical backgrounds. Again, this is left for

future investigation.
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Chapter 3

Direct detection: Probing the local
velocity distribution of WIMP
dark matter with directional
detectors

3.1 Motivation: The directional recoil spectrum from WIMP-

nucleus collisions

WIMPs such as the supersymmetric neutralino investigated in Section 2.1 will have weak-scale

interactions with standard-model quarks. As discussed in the previous chapter, these interactions

may allow the indirect detection of WIMPs via observation of the decay products of quarks produced

in WIMP annihilation; however, as can be seen from Figure 1.1, these interactions also imply the

possibility of the scattering of WIMPs off of the quarks contained in the nucleons within nuclei.

If the dark-matter Galactic halo of our Milky Way is composed of WIMPs, then the flux of these

WIMPs may be detected by experiments sensitive to the recoils induced by WIMP-nucleus collisions,

yielding a direct detection of dark matter.1

3.1.1 Simple estimates for direct detection

It should be emphasized that the feasibility of direct detection of WIMPs is precisely due to the fact

that the interactions and mass of the WIMP are of the weak scale. To demonstrate this, let us first

Material in this chapter was first published in “Probing the local velocity distribution of WIMP dark matter with
directional detectors,” Samuel K. Lee and Annika H. G. Peter, JCAP 1204, 029 (2012) [33]. Reproduced here with
permission, c©2012 by IOP Publishing Limited.

1Another implication of WIMP-nucleus scattering is that WIMPs should be gravitationally captured in the center
of astrophysical bodies, for example the Sun and the Earth. These concentrations of WIMPs may annihilate to
neutrinos that then escape, providing sources for indirect-detection studies. Since it can be shown that a steady state
— in which the respective capture and annihilation rates are equal — should typically be achieved, limits on the flux
of neutrinos also give constraints on the WIMP-nucleus cross section. Again, more details can be found in Ref. [41]
or more recent studies.
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estimate the energy deposited in a detector by a WIMP-induced nuclear recoil. Since the detector

moves (roughly) with our local standard of rest (LSR), which has a velocity vLSR ∼ 220 km/s

through the Galactic halo, the momentum of an incoming WIMP is roughly p ∼ mχvLSR. The

energy imparted to a nucleus with atomic mass A and mass mN ≈ Amp is then approximately

E ∼ p2/2mN ∼ 25 keV, if A ∼ 100, mχ ∼ 100 GeV ∼ mN, and the scattering is elastic.2 Energies

of this magnitude are accessible to detectors, via the signals that result as the recoiling nucleus

distributes its energy to the rest of the detector; such signals include ionization, scintillation, and

phonon signatures. Thus, WIMPs with weak-scale masses indeed offer the possibility of direct

detection via nuclear recoils.

However, that the energies of such recoils are detectable is moot if the recoils do not occur at an

appreciable rate; accordingly, let us now estimate the event rate of WIMP-induced nuclear recoils.

Consider the event rate observed in a detector of total mass M , composed of a total number N of

nuclei with mass mN. The WIMP number flux at the Earth is approximately ρ0vLSR/mχ, where

ρ0 ≈ 0.3 GeV/cm3 is the typical value for the local dark-matter density. Defining R as the total

event rate per detector mass M = NmN and σN as the WIMP-nucleus scattering cross section, we

then have

RM ∼ ρ0σNvLSRN

mχ
(3.1)

→ R ∼ ρ0σNvLSR

mχmN
(3.2)

∼ 10 kg−1yr−1

(
ρ0

0.3 GeV/cm3

)(
σN

pb

)(
100 GeV

mχ

)(
100

A

)
. (3.3)

Thus, we see that the event rate is non-negligible for detectors of reasonable mass if both the

WIMP mass and WIMP-nucleon scattering cross section are indeed of the weak scale. 3

2Inelastic dark matter has also been investigated [119], primarily as a possible explanation for the annual-
modulation signal (which should occur as a result of the variation in the WIMP flux caused by the orbit of the
Earth around the Sun) seen at high significance in the DAMA/LIBRA experiment [120]. However, models with
inelastic dark matter seem to be in tension with other experiments [121], although there is still some uncertainty.

3However, we note that it is actually the fundamental WIMP-quark interactions, which give rise to these cross
sections, that should be of weak-scale strength. The relations between the WIMP-nucleon cross sections σp,n, the
WIMP-nucleus cross sections σN, and the fundamental WIMP-quark cross sections depend on whether the WIMP-
quark interaction is spin-dependent or spin-independent. More importantly, these relations also require some consid-
eration of nuclear physics — essentially, since the WIMP is nonrelativistic, its de Broglie wavelength may be large
enough to probe the entire nucleus, leading to coherent-scattering effects. For example, WIMP-nucleus cross sec-
tions σN scale with A2 for a spin-independent interaction, and so heavier target nuclei are generally used to increase
sensitivity; however, this effect is balanced by the loss of coherence as the nucleus increases in size, which results in
form-factor suppression. Since such nuclear effects vary for different target nuclei, results in the literature are typically
stated in terms of the WIMP-nucleon cross sections σp,n to ease comparisons. For example, typical WIMP-nucleon
spin-independent and spin-dependent cross sections for MSSM neutralinos may be as large as ∼10−5 pb and ∼10−3 pb,
respectively, although the predictions span several orders of magnitude. Current limits from direct-detection experi-
ments constrain the former to be less than ∼10−8 pb, although corresponding constraints on the latter are relatively
weak; however, as will become clear, these constraints rely on astrophysical inputs. Cross section constraints from
WIMP capture in the Sun and colliders are comparatively stringent, but are also accompanied by assumptions.
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Figure 3.1: The elastic scattering of a WIMP off of a nucleus initially at rest

3.1.2 The directional recoil spectrum

These encouraging estimates suggest that the direct detection of WIMPs merits a more rigorous

investigation. We thus proceed to more carefully rederive the nuclear-recoil event rate per detector

mass R — and in particular, its dependence on the recoil energy and direction — guided by our

arguments in the previous section.4

Let us first reexamine the kinematics of the scattering process, which is shown in Figure 3.1. In

the lab frame, we assume that the initial velocity of the nonrelativistic WIMP is v and that the

target nucleus is initially at rest. We then define the final velocity of the WIMP to be v′ and the

final recoil momentum of the nucleus to be q. We let the angle between v and q be θ and the angle

between v and v′ be θ′. Assuming elastic scattering, conservation of energy and momentum then

requires that v, v′, and q lie in a plane, and further, that

1

2
mχv

2 =
1

2
mχv

′2 +
q2

2mN
(3.4)

mχv = mχv
′ cos θ′ + q cos θ (3.5)

0 = mχv
′ sin θ′ − q sin θ . (3.6)

Solving these equations gives the condition on the recoil momentum

q = 2µNv cos θ, 0◦ ≤ θ ≤ 90◦ , (3.7)

where

µN ≡
mχmN

mχ +mN
(3.8)

4The directional dependence of the WIMP signal was first discussed in Ref. [122]. The formalism presented here
for the calculation of the event rate induced by WIMPs with a given velocity distribution was worked out in Ref. [123].
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Figure 3.2: Due to the kinematics of elastic WIMP-nucleus scattering, observation of a nuclear-recoil
momentum q implies that the incoming-WIMP velocity vector v must point to a position on the
plane P, where P is perpendicular to q and lies at the distance vq = q/2µN from the origin; vq is
then the minimum velocity the incoming WIMP may have had.

is the reduced mass of the WIMP-nucleus system. The recoil energy of the nucleus is then

E =
q2

2mN
=

2µ2
Nv

2 cos2 θ

mN
. (3.9)

We thus see that in order to induce a recoil of energy E, an incoming WIMP must have at least a

velocity

vq ≡
q

2µN
=

√
EmN

2µ2
N

, (3.10)

and that this lower bound is saturated in the forward-scattering case θ = 0◦ This is clear, since an

incoming WIMP that scatters a nucleus at more oblique angles needs to be moving with a greater

velocity if it is to impart the same energy to the nucleus as in the forward-scattering case.

Equivalently, another way to understand these relations is illustrated in Figure 3.2. This figure

shows that given an observed nuclear recoil with energy E and momentum q, it is then known from

the kinematics that the incoming WIMP must have had an initial velocity vector v that points to a

position on the plane P, where the plane P is perpendicular to q and lies a distance vq away from

the origin. All of this can be succinctly summarized by the condition v · q̂ = vq that defines the

plane P.

Having reexamined the kinematics, we now turn to a more rigorous derivation of the event rate
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as a function of recoil energy and direction. It is clear that the energy and direction dependence will

be dictated partially by the kinematics; however, the dependence of the WIMP flux on energy and

direction will also be important. In our previous estimate of the WIMP flux, we simply assumed

that all of the incoming WIMPs had speeds roughly that of the LSR; we now relax this assumption.

Let the distribution of WIMP velocities vg in the Galactic rest frame be given by fg(vg). If we

neglect the gravitational influence of solar-system bodies, the distribution of WIMP velocities v in

the lab frame moving with velocity vlab with respect to the Galactic frame is then

f(v) = fg(v + vlab) , (3.11)

since the various velocities are related by v = vg − vlab.

We may then rewrite the simple expression in Eq. (3.2) as

dR =
ρ0

mχmN

(
dσ

dEdΩq
(v)dEdΩq

)(
vf(v)d3v

)
, (3.12)

making explicit the energy and direction dependence. We can further write

dσ

dEdΩq
(v) =

dσ

dE

1

2π
δ

(
cos θ − q

2µNv

)
(3.13)

=
dσ

dE

v

2π
δ (v · q̂− vq) , (3.14)

where the delta function fixes the angle θ such that it respects the kinematics, and the factor of

1/2π is simply from the symmetry in the azimuthal angle. It can then be shown that the directional

recoil rate is given by
dR

dEdΩq
=
ρ0σNS(q)

4πmχµ2
N

f̂(vq, q̂) . (3.15)

Again, R is the number of events per exposure (detector mass multiplied by time), ρ0 is the local

WIMP density, µN = mχmN/(mχ +mN) is the reduced mass of the WIMP-nucleus system, q = qq̂

is the lab-frame nuclear-recoil momentum, E = q2/2mN is the lab-frame nuclear-recoil energy, and

vq = q/2µN is the minimum lab-frame WIMP speed required to yield a recoil energy E. Furthermore,

we have written the WIMP-nucleus elastic cross section as dσ/dq2 = σNS(q)/4µ2
Nv

2 (where S(q) is

the nuclear form factor), and

f̂(vq, q̂) =

∫
δ(v · q̂− vq)f(v) d3v (3.16)

is the Radon transform of the lab-frame WIMP velocity distribution. In practice, it is often easier
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to take the Radon transform of the Galactic-frame velocity distribution, and then use the relation

f̂(vq, q̂) = f̂g(vq + vlab · q̂, q̂) (3.17)

in Eq. (3.15) to find the directional recoil spectrum. In this work, we shall assume that the velocity of

the lab frame is given by that of the LSR; i.e., we take vlab = (vLSR, lLSR, bLSR) = (220 km/s, 90◦, 0◦)

in Galactic coordinates [124]. We shall ignore both the motion of the Earth around the Sun and the

rotation of the Earth.

Having derived the directional recoil rate, we shall now turn to a investigation of the statistical

power of experiments that may be able to measure it.

3.2 Introduction

Solid-state and liquid WIMP-dark-matter detectors designed to measure the energy of nuclear recoils

from WIMP collisions are entering maturity on both theoretical and experimental fronts. Indeed,

a large number of theoretical studies have investigated the statistical power of these experiments

to characterize WIMP dark matter [125–132]. Furthermore, a variety of experiments [133–143]

are currently running, with a few tantalizing signals already observed [144–146]. In contrast, gas

detectors with sensitivity to the nuclear-recoil direction via the measurement of ionization tracks are

still relatively nascent. Nevertheless, some theoretical studies on directional dark-matter detection

have likewise been conducted [147–162], and a small number of directional detectors are currently

under development [163–168].

A primary advantage of these directional detectors is that they allow the possibility of easily

distinguishing between terrestial background events (which should be isotropic) and WIMP-induced

recoil events (which should be non-isotropic, due to our motion through the Galactic halo, and

should additionally have diurnal and annual modulations, due to the rotation of the Earth and the

orbit of the Earth around the Sun, respectively). Perhaps even more intriguing is the possibility that

directional detectors may allow the details of the local WIMP velocity distribution to be inferred.

Theoretical expectations and N-body simulations of the Galactic halo both give us reason to believe

that even if the local spatial distribution of dark matter might be expected to be relatively smooth,

the velocity distribution may possess interesting structure. Possibilities include cold tidal streams

passing through the local solar neighborhood, a dark-matter disk aligned with the stellar disk, and

warm debris flows [169–184]. Directional-detection experiments may confirm this picture, perhaps

shedding light on not only the local velocity distribution but also the process of structure formation

on galactic scales. Furthermore, a better understanding of the dark-matter velocity distribution will
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yield improved constraints on the particle properties of the dark matter — in particular, the WIMP

mass and the WIMP-nucleon cross section.

In this study, we explore the statistical ability of directional detectors to constrain the local WIMP

velocity distribution. The organization of the study is as follows. In Section 3.3, we discuss how a

binned likelihood analysis of the directional recoil-event data may be used to estimate the parameters

of the velocity distribution. In Section 3.4, we perform parameter estimation on simulated data sets

to demonstrate the power of these methods. We consider three specific distributions as examples: (1)

the standard halo model, (2) a halo model with an additional cold dark-matter stream component,

and (3) a halo model with an additional dark-matter disk component. We discuss implications for

future directional dark-matter-detection studies and give our conclusions in Section 3.5.

Due to their large sizes, several of the remaining tables and figures in this chapter have been

placed at the end of the chapter.

3.3 The binned likelihood function

Our ultimate goal will be to investigate the degree to which a binned likelihood analysis of observed

recoil events might recover the parameters of the dark-matter velocity distribution. Given a number

of observed events, we may construct a sky map of the data by binning both signal and background

events into Npix pixels (we shall use the pixels of equal angular area given by HEALPix [185] in

this work), as well as binning events in each pixel into Nbins energy bins (we shall also assume the

energy bins are of equal width). That is, the sky map specifies the number of observed signal and

background events Mij in the i-th pixel of solid angle dΩi and the j-th energy bin of width ∆Ej

for all Npix pixels. We use pixels and bins as a proxy for finite angular and energy resolution in the

detectors.

We would then like to construct a likelihood function that may be used to compare the observed

sky map to the predicted sky map. The predicted sky map can be specified by the total number

of events Ntot, which are observed over the energy-sensitivity range [Emin, Emax], as well as the

normalized distribution P (q̂, E) in angle and energy of these events. These quantities are simply

related to the direction recoil spectrum via

λNtotP (q̂, E) = E dR

dEdΩq
, E ∈ [Emin, Emax] . (3.18)

Here, λ is related to the background-rejection power of the experiment, defined so that the number

of signal events is Nsig = λNtot and the number of background events is Nbg = (1 − λ)Ntot. The

effective exposure E gives the fraction of the total exposure Etot arising from the total mass of target

nuclei; we have implicitly assumed the detector acceptance is not energy dependent.
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Note that the predicted angular distribution of signal events is then given by a normalized integral

over the energy-sensitivity range

P (q̂) =

∫ Emax

Emin
dE dR

dEdΩq∫
dΩq

∫ Emax

Emin
dE dR

dEdΩq

=

∫ vq,max

vq,min
dvqvqS(2µNvq)f̂(vq, q̂)

∫
dΩq

∫ vq,max

vq,min
dvqvqS(2µNvq)f̂(vq, q̂)

, (3.19)

where Emin = 2v2
q,minµ

2
N/mN and Emax = 2v2

q,maxµ
2
N/mN. The energy distribution P (E) of signal

events is similarly given by a normalized integral over all angles.

For a given velocity distribution, we see that the predicted mean number of signal and isotropic

background events in the i-th pixel (centered at the direction q̂i) and j-th energy bin is then given

by

M̄ij = Ntot

∫

dΩi

dΩ

∫

∆Ej

dE [λP (q̂, E) + (1− λ)
PB(E)

4π
]

≈ NtotdΩi

∫

∆Ej

dE [λP (q̂i, E) + (1− λ)
PB(E)

4π
] , (3.20)

where PB(E) is the energy distribution of the isotropic background events, normalized to unity over

the recoil-energy sensitivity range. The approximation in the second line (which approximates the

angular integral over each pixel with the value of the integrand at the center of each pixel multiplied

by the pixel size) holds in the limit that Npix is large. In each energy-binned pixel, the number

of events is Poisson distributed, so a suitable likelihood function is given by the product of the

distributions in each energy-binned pixel

L =

Npix∏

i=1

Nbins∏

j=1

℘(Mij |M̄ij) , (3.21)

where ℘(Mij |M̄ij) is the Poisson distribution function for the random variable Mij (the observed

number of events) with mean M̄ij (the predicted number of events, which depends on the velocity

distribution fg and the experimental conditions).

Let us now assume that the Galactic-frame velocity distribution fg depends on the model pa-

rameters θk, the measurement of which is of interest. Then the Radon transform f̂(vq, q̂) of the

lab-frame velocity distribution also depends on θk. From Eq. (3.17), we see it further depends on

vlab, which may be treated as three additional model parameters {vlab, llab, blab} (in Galactic coor-

dinates). Thus, it is clear that P (q̂, E) depends on θk and vlab. Furthermore, examining the form of

P (q̂, E) in Eq. (3.18), we see from Eq. (3.15) that P (q̂, E) additionally depends on µN (explicitly, as

well as implicitly through the dependence on vq). Therefore, it depends on the known target-nucleus
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mass mN and the unknown WIMP mass mχ, the latter of which may be treated as yet another model

parameter we would like to measure. However, the direct dependence of P (q̂, E) on mχ weakens

at high values of mχ, since the dependence of µN on mχ is also weak at such values. Finally, the

background-rejection power of the detector may not be well known, so we may also treat λ as a

model parameter.

The likelihood function L can therefore be written in terms of the functions and parameters speci-

fying both the velocity distribution and the experimental conditions as L[mχ,λ,vlab,llab,blab,θk,S(q);

mN,Emin,Emax,Npix,Nbins,Ntot,PB(E)]. By assuming the forms of S(q) and PB(E), a likelihood

analysis of observed data can then be done to estimate the parameters that are unknown. In this

work, we shall take S(q) = 1 and assume that PB(E) = 1/(Emax − Emin) is a flat spectrum for

simplicity.

Note that in this treatment, we have folded all the dependence of the amplitude of the signal

Nsig = λNtot into λ. However, from Eqs. (3.15) and (3.18), it is clear that Nsig will itself depend

not only on the exposure Etot, but also on the additional, totally degenerate parameters ρ0 and

σN. If one is more interested in the particle properties of the WIMP, the usual procedure is to fix

ρ0 ≈ 0.3 GeV/cm3 (the standard estimate of the local dark-matter density, although various means

of measurement yield slightly different values [186–191]) and to treat σN as the parameter of interest.

In fact, more often the focus is placed on the WIMP-nucleon cross section σp,n; for a spin-dependent

interaction, this is related to the WIMP-nucleus cross section via

σN

σp,n
=

4

3

µ2
N

µ2
p,n

J + 1

J

(ap〈Sp〉+ an〈Sn〉)2

a2
p,n

, (3.22)

where µp,n is the WIMP-nucleon reduced mass, J is the nuclear spin, ap,n are the effective nucleon

coupling strengths, and 〈Sp,n〉 are the expectation values of the spin content of the nucleon group

[41,192].

However, it can be argued that the typical value of ρ0 ≈ 0.3 GeV/cm3 usually assumed may not

even be relevant for direction-detection experiments; it is simply a large-scale average of the dark-

matter density at the Galactic radius of the Sun r0 ≈ 8.5 kpc, and does not account for the possible

existence of substructure in the immediate neighborhood of the Earth [61, 174]. The assumption

of this typical value then strongly colors any conclusions drawn about the estimated value of σp,n.

Thus, perhaps a more assumption-independent approach would be to ask: if we have observed a

given number of events Ntot, how well can the parameters of an assumed velocity distribution be

estimated using only the distribution P (q̂, E) of these events? In this way, we will sidestep the issues

introduced by the degeneracy of ρ0 and σN, which are now subsumed into the single parameter λ.
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3.4 Likelihood analyses of simulated data

We shall now explicitly demonstrate the feasibility of estimating the parameters of the velocity

distribution by performing likelihood analyses on simulated data sets. We shall consider three

parameterized velocity distributions: 1) the standard halo model, 2) a halo model with an additional

cold stream component, and 3) a halo model with a disk component. The method of analysis is as

follows. Assigning fiducial values for the velocity-distribution and experimental parameters, we first

randomly generate a number of recoil events using the procedure described in appendix C. We then

bin the simulated events in angle (using HEALPix) and in energy to create a simulated sky map.

We then use this to calculate the likelihood function, employing MultiNest [193,194] to sample the

likelihood function within the model parameter space, assuming flat priors. The getdist routine

from the CosmoMC package [195] is then used to calculate the 1D and 2D marginalized posterior

probability distributions. We also calculate the minimum credible intervals (MCIs) (as defined

in [196]) of the posterior probability distributions, and examine how well the fiducial parameters

have been recovered.

The fiducial values chosen for the velocity-distribution parameters will be discussed below for

each of the three cases. However, let us first motivate the choice of the values for the experimental

parameters. We shall perform the analyses assuming that the simulated data were collected by a

CF4 MIMAC-like experiment [163, 197–199]. That is, we assume the target nucleus is 19F , and

that the relevant WIMP-nucleus interaction is spin-dependent and can be modeled using J = 1/2,

and assuming a pure proton coupling with ap = 1, an = 0, and 〈Sp〉 = 0.5. Furthermore, we

take the energy-sensitivity range to be 5–50 keV. This range corresponds to that quoted by the

MIMAC collaboration; the 5-keV threshold arises from the ionization threshold (taking into account

quenching), while the upper bound is chosen to limit contamination from background events that

dominate the signal at higher energies. We shall take a fiducial value of mχ = 50 GeV, so we

see that the 5-keV recoil-energy threshold corresponds to a sensitivity to WIMP velocities down to

∼150 km/s.

The experimental parameters also include the angular and energy resolution. In all of the anal-

yses below in which we use directional information, we shall take the number of pixels to be the

same, setting Npix = 768 (i.e., HEALPix order 8). This roughly corresponds to the ∼10◦ angular

resolution expected to be attained by a MIMAC-like experiment. 5 On the other hand, we shall

investigate the effect of varying the energy resolution by considering different numbers of energy

bins Nbins for each analysis, which will be given in detail below. For now, we note that the bin

widths we shall assume are relatively large and conservative, considering that the energy resolution

5This is the expectation in the long term, and will be sufficient to begin to characterize the dark matter. However,
such angular resolution is not required for the near-term exclusion or discovery of dark matter. In that case, angular
resolutions of ∼20◦–80◦ might be sufficient, even if only axial directional data (without ionization-track head-tail sense
discrimination) is available [200].
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model Npix Nbins
Emin Emax Nsig Nbg Ntot

Etot Rbg
(keV) (keV) (kg-yr) ([kg-yr]−1)

halo-only 768 10
5 50 100 0 100 4.4 0(mχ fixed) (or 1) (or 1)

halo-only 768 10
5 50 100 0 100 4.4 0(mχ flat prior) (or 1) (or 1)

halo-only 768
10 5 50 100 100 200 4.4 23(6 parameters) (or 1)

halo+stream 768 20 5 50 650 300 950 28.9 10.4
halo+disk 768 36 5 50 541 272 813 20 15
halo+disk

768 40 0 50 900 300 1200 20 15(zero threshold)

Table 3.1: Experimental parameters used to simulate data for each analysis. The quoted values of
Etot and Rbg assume a CF4 detector and the typical values ρ0 ≈ 0.3 GeV/cm3 and σp,n ≈ 10−3 pb.

of the micromegas detectors used in the MIMAC experiment is expected to be ∼15%. In any case,

the exact values assumed for the angular and energy resolutions do not have a large effect on the

quality of the parameter estimation, and it can be shown that unbinned likelihood analyses yield

similar results.

Finally, there remains the question of the number of signal and background events we should

examine for each analysis. We will assume various values of Nsig and Nbg for each case, as will be

discussed and motivated below.

Values for the experimental parameters used for each analysis are summarized in Table 3.1.

Fiducial values for the velocity-distribution parameters and the flat prior ranges are summarized

in Table 3.2; we shall proceed to discuss the choice of these fiducial parameters for each velocity

distribution in detail.

3.4.1 Halo-only model

For simplicity, we shall first consider a Galactic dark-matter halo with a velocity distribution that

may be locally approximated as an isotropic Maxwellian with velocity dispersion σH, truncated at

the Galactic escape speed vesc. This truncated-Maxwellian distribution is generally referred to as

the standard halo model, and is of the form

fTM
g (vg;σH, vesc) =

1

Nesc(2πσ2
H)3/2

exp

(
− v2

g

2σ2
H

)
θ(vesc − vg) , (3.23)

where

Nesc(σH, vesc) = erf

(
vesc√
2σH

)
−
√

2

π

vesc

σH
exp

(
− v

2
esc

2σ2
H

)
. (3.24)
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The Radon transform of this distribution is given by

f̂TM
g (w, ŵ;σH, vesc) =

∫
δ(vg · ŵ − w)fTM

g (vg;σH,vesc) d3vg (3.25)

=
1

Nesc(2πσ2
H)1/2

[
exp

(
− w2

2σ2
H

)
− exp

(
− v

2
esc

2σ2
H

)]
θ(vesc − w) . (3.26)

The lab frame moves with respect to this velocity distribution with a velocity vlab, so as in Eq. (3.17)

we may find the Radon transform of the velocity distribution in the lab frame

f̂H(vq, q̂) = f̂TM
g (vq + vlab · q̂, q̂;σH, vesc) , (3.27)

which yields the directional recoil spectrum via Eq. (3.15).

Note that integration of f̂H(vq, q̂) over angles gives the recoil spectrum in the usual way; this

integral takes the simple analytic form [201]

dR

dE
∝
√
π

2
√

2

σH

vlab

{
erf

[
vq(E) + vlab√

2σH

]
− erf

[
vq(E)− vlab√

2σH

]}
− exp

(
− v

2
esc

2σ2
H

)
, (3.28)

which approaches a falling exponential in the limit that vlab → 0 and vesc →∞.

For the standard halo model, we see that the set of parameters determining the Galactic-frame

velocity distribution is simply θk = {σH, vesc}. Here and afterwards, we shall assume vesc = 550 km/s

is known independently (and in practice, the energy-sensitivity range is such that the analysis is not

sensitive to the exact value of vesc). In total, there are then six parameters {mχ, λ, vlab, llab, blab, σH}
that will determine the energy and angular distribution of events. In the following analyses, we shall

consider a standard halo model with fiducial parameter values {mχ = 50 GeV, vlab = 220 km/s,

llab = 90◦, blab = 0◦, σH = vlab/
√

2 = 155 km/s}. Note that the choice of σH = vlab/
√

2 yields a ve-

locity distribution corresponding to a singular isothermal sphere, with halo profile ρ(r) ≈ ρ0(r0/r)
2.

3.4.1.1 vlab-σH analyses

To first gain a qualitative and intuitive understanding of the additional power that directional

information provides, let us perform a simple illustrative exercise. Using the fiducial parameter values

defining the standard halo model above, we generate Nsig = 100 signal and Nbg = 0 background

events (i.e., we take Ntot = 100 and λ = 1). The spectrum and recoil map for these events is shown

in Figure 3.3.

We then further assume that the values of the parameters {mχ, λ, llab, blab} are known exactly, so

that only {vlab, σH} are unknown and remain to be estimated. Sampling the likelihood function over

the 2D {vlab, σH} parameter space using MultiNest (assuming flat priors over the ranges given

in Table 3.2), we then perform three separate likelihood analyses of these 100 events. For the first
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analysis, we use only the energy information of the recoil events, accomplished by setting Npix = 1

and Nbins = 10. For the second analysis, we use only the directional information, setting Npix = 768

and Nbins = 1. Finally, we analyze the data using both direction and energy information, setting

Npix = 768 and Nbins = 10. Doing these three separate analyses allows us to study exactly how the

direction and energy information translate into information about vlab and σH.

The results of the three analyses are presented in the top row of Figure 3.4. We see that the

energy-only analysis yields contours for the 2D marginalized posterior probability distribution in

vlab-σH space that indicate that vlab and σH are anti-correlated. This can be understood simply by

noting from Eq. (3.28) that the dependencies of the shape of the energy spectrum on vlab and σH are

similar. Increasing the value of either vlab or σH results in a larger fraction of recoil events at higher

energies, with both actions flattening out the exponentially falling recoil spectrum; this behavior is

illustrated in Figure 3.5. Thus, the free parameters vlab and σH can only vary in a roughly inverse

manner with each other if the observed shape of the spectrum is to be maintained.

On the other hand, the direction-only analysis yields contours that indicate vlab and σH are

correlated. Again, this can be easily understood by considering the dependence of the directional

recoil map on vlab and σH, illustrated in Figure 3.6. Note that in the limit that vlab vanishes, the

recoil map becomes isotropic; conversely, it is clear that increasing the value of vlab makes the map

more anisotropic and asymmetric by increasing the enhancement in one hemisphere due to forward

scattering by incoming particles from the “WIMP wind”. In contrast, the recoil map becomes more

isotropic as σH increases and becomes much larger than vlab, since the number of incoming WIMPs

arriving in the opposite direction from the WIMP wind is then increased. We see that vlab and σH

must vary in a roughly proportional manner with each other if the observed large-scale anisotropy

of the recoil map is to be maintained.

Thus, the energy-only and direction-only analyses provide orthogonal sets of information on the

velocity and dispersion parameters. It is then easy to see how combining both sets of information

in the direction+energy analysis yields contours that demonstrate that vlab and σH are relatively

uncorrelated.

We can repeat this exercise using the same recoil-event data set, this time relaxing the assumption

that the WIMP mass mχ is known independently. We now allow mχ to be an additional free

parameter to be estimated, assuming a flat prior as shown in Table 3.2 and sampling over the 3D

{mχ, vlab, σH} parameter space. The results of the energy-only, direction-only, and direction+energy

analyses are shown in the bottom row of Figure 3.4. Interestingly, we see that the quality of the

contours in the energy-only analysis is severely degraded compared to the case where the mass

is known exactly, with a long, flat tail in the σH direction appearing in the posterior probability

distribution. This can be explained in a similar manner as before; allowing for decreased values

of mχ is only possible if increased values of either vlab and σH compensate to fix the observed
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fraction of events at high energies. However, the slope of the spectrum is slightly more sensitive to

changes in σH than to changes in vlab, as can be shown by examining Eq. (3.28) (in particular, by

considering the absolute magnitude of the derivatives of dR/dE with respect to vlab and σH in the

relevant regions of parameter space). Thus, small values of mχ are more easily compensated for by

increasing σH, so a long tail appears in the σH direction.

It is notable that the analyses incorporating directional information are relatively insensitive to

the lack of prior knowledge of the WIMP mass. This again demonstrates the power and robustness

of combining directional and energy information to fix parameters of the velocity distribution.

3.4.1.2 6-parameter analyses

We now proceed to perform likelihood analyses over the full 6D standard-halo-model parameter space

of {mχ, λ, vlab, llab, blab, σH}. Using the same fiducial values for the velocity-distribution parameters

as before, we simulate a total of Ntot = 200 events and take λ = 0.5, corresponding to Nsig = 100

and Nbg = 100. For a MIMAC-like experiment with 10 kg of target mass, assuming a WIMP mass

mχ = 50 GeV, a typical local density ρ0 ≈ 0.3 GeV/cm3, and a spin-dependent WIMP-nucleon cross

section of σp,n ≈ 10−3 pb (consistent with current observational limits from both direct-detection

and neutrino experiments [202–204]), this number of signal events roughly corresponds to a 5-month

observation period. The number of background events then corresponds to the assumption of a

relatively high background event rate of ∼23/kg/yr (in comparison, it may be reasonable to expect

background event rates as low as 10/kg/yr [160]). We again take Npix = 768, and bin events into

Nbins = 10 energy bins. The recoil spectrum and binned recoil sky maps for the simulated data are

shown in Figures 3.7 and 3.8, respectively.

We shall perform both an energy-only (Npix = 1) analysis and a direction+energy analysis. The

results of the parameter estimation are shown in the triangle plots of the 1D and 2D marginalized

posterior probability distributions in Figures 3.9 and 3.10. Note that the 68% MCIs for each pa-

rameter are plotted there, and are also given in Table 3.2 along with the 1D marginal posterior

modes.

From the triangle plots, it is clear that the analysis incorporating the directional information is

able to recover the parameters with greater fidelity than the energy-only analysis. Not only does this

information allow for the direction (llab, blab) of the lab frame to be recovered quite accurately, it also

allows a rough measurement of the background-rejection power λ from the data itself. That is to

say, the directional information indeed allows the isotropic background component to be separated

from the anisotropic signal component. In contrast, the energy-only analysis is unable to recover

λ correctly. As we saw above, flattening of the exponentially falling spectrum may be caused

by variations in the other parameters, and cannot be easily separated from the introduction of a

truly flat background spectral component using only the energy information (at least, not without
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improved statistics from a larger number of events).

Note also that the estimate of mχ is quite poor for both analyses, with a long tail extending to

large values of mχ. This partially stems from the fact that we are only using information from the

distribution of the events, which only has weak dependence on mχ as mχ increases, as discussed

previously. Since there is some additional dependence of the amplitude of the signal on mχ, as can be

seen from Eq. (3.15), making the aforementioned assumptions about the additional amplitude-fixing

parameters ρ0 and σN can greatly improve these estimates of mχ.

Finally, from examination of the plots for vlab and σH in Figures 3.9 and 3.10, we see that the

intuitive results about the ability to constrain these parameters from the simple 2-parameter and

3-parameter analyses are basically borne out even in the full 6-parameter analysis. However, we note

that the presence of a flat isotropic background at this level does degrade the ability to pin down

σH, even with directional information, as is evident from the long tail in the marginalized posterior

probability distribution for σH. This tail may likewise be reduced by improved statistics or better

background rejection.

To summarize, for the standard halo model, the measurement of 100 signal events (which might

be observed in a 5-month period, if the cross section is sufficiently large) recovers the direction of

the LSR and allows rough constraints to be placed on the velocity and dispersion of the Galactic

halo, the presence of a non-negligible background notwithstanding. Of course, the results may be

improved simply by lengthening the observation period; a 3-year observation period resulting in a

30-kg-yr exposure might be expected. In such a period, for the fiducial parameter values we have

assumed for the standard halo model and WIMP properties, one would expect ∼650 signal events

within the energy-sensitivity range 5–50 keV (and ∼900 total events down to zero threshold). It

is then interesting to ask whether or not any interesting structure in the local dark-matter velocity

distribution, such as cold streams or disk components, may be detected with a comparable number

of events. We shall proceed to investigate this question in the subsections to follow.

3.4.2 Halo+stream model

Motivated by the results of the simulations mentioned in Section 3.2, we next consider a model with

a local dark-matter stream in addition to the dark-matter halo. We shall assume that the velocity

distribution in the Galactic frame of a stream component is given by

fS
g (vg) = fTM

g (vg − vS;σS, vesc) , (3.29)

where the velocity vector of the stream in the Galactic frame is vS (and may be indicated by its

magnitude vS and its direction (lS, bS) in Galactic coordinates) and the velocity dispersion σS is small

for a cold tidal stream. We further assume that the dark-matter particles in the stream consist of a
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fraction AS of the total particles in both the halo and the stream locally. Using the linearity of the

Radon transform and Eq. (3.17), we find

f̂H+S(vq, q̂) = (1−AS)f̂TM
g (vq +vlab · q̂, q̂;σH, vesc)+ASf̂TM

g (vq +(vlab − vS) · q̂, q̂;σS, vesc) , (3.30)

which yields the directional recoil spectrum via Eq. (3.15).

We shall assume the fiducial values of the parameters {mχ, vlab, llab, blab, σH} determining the

halo component of the distribution are identical to those used in the halo-only model above. For

simplicity, we shall further assume that the parameter vlab = vLSR = 220 km/s is known exactly,

so that the halo component is specified by 4 free parameters. This is done simply to differentiate

between the two Maxwellian components of the velocity distribution within the likelihood analysis,

which would otherwise be arbitrarily assigned. By fixing vlab, we can identify the “halo” as the

Maxwellian component that moves with mean velocity vlab with respect to the lab frame, while the

“stream” is identified as the secondary component. For the 5 stream parameters, we shall take the

fiducial values {AS = 0.1, lS = 65◦, bS = 25◦, vS = 510 km/s, σS = 10 km/s}. Including λ, the

halo+stream model is specified by 10 parameters in total.

For this halo+stream model, we shall perform only a direction+energy analysis, assuming we

have observed an number of events comparable to that expected in the baseline halo-only scenario

with a 30 kg-yr total exposure. For the experimental parameters, we adopt {Npix = 768, Nbins = 20,

Ntot = 950, λ = 650/950 ≈ 0.684}. This yields Nsig = 650 and Nbg = 300, roughly corresponding

to an exposure of 28.9 kg-yr and background rate of 10.4/kg/yr. These values are close to those in

the baseline model, since the 10% stream component is merely a small perturbation of the standard

halo-only model.

The recoil spectrum and sky maps for the simulated data are shown in Figures 3.11 and 3.12,

respectively. The triangle plot of the posterior probability distributions resulting from the direc-

tion+energy analysis is shown in Figure 3.13, and the posterior modes and MCIs are given in

Table 3.2. The quality of parameter estimation is quite good; with the exception of mχ, all the

parameters are recovered accurately without bias and with a low degree of correlation.

This seems to suggest that streams may be detectable with a MIMAC-like experiment. However,

let us note that we have adopted a somewhat unrealistically high stream fraction AS here (solely

for illustrative purposes, e.g., to make visible in the recoil maps in Figure 3.12 the feature arising

from the stream). More realistically, simulations suggest that typical stream fractions are more

likely at the ∼1% level, and furthermore, that the probability that a tidal stream dominates the

local neighborhood of the Sun (averaged on kpc scales) is less than 1% [174, 180]. Nevertheless,

our analysis here serves as a proof of principle for the possibility of detecting structure in the

velocity distribution beyond the standard halo model and using directional information to constrain
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parameters. Furthermore, for a more realistic stream fraction of AS ∼ 1%, one might expect

only a ∼
√

10 reduction in statistical power when constraining the stream parameters. Finally, this

result suggests that one would expect comparable — or even improved — statistical power when

constraining warm debris flows, which may have similarly large mean velocities but are thought to

compose a more significant fraction (tens of percent, becoming dominant at large velocities) of the

local dark-matter density.

3.4.3 Halo+disk model

Finally, we consider a Galactic model with a dark-matter-disk component in addition to the dark-

matter halo [173, 205]. We assume that disk rotates such that local particles in the disk move with

some average velocity vD with respect to the halo/Galactic frame; this velocity may be specified by

its magnitude vD and its direction (lD, bD) in Galactic coordinates. We shall take vD to be parallel

to vLSR, so that these particles lag the LSR by vlag = vD − vLSR; typical values from simulations

are vD ≈ 170 km/s and vlag ≈ −50 km/s, such that the dark disk rotates more slowly than the

stellar disk. We again assume that the local velocity distribution of the disk component is also a

truncated Maxwellian with dispersion σD and that particles in the disk compose a fraction AD of

the local particles, so that the disk velocity distribution is identical to that of halo+stream model

for {AS, vS, σS} → {AD, vD, σD}.
We again use the fiducial values of the halo component parameters, assuming vlab = vLSR =

220 km/s is known as before. For the disk parameters, we shall take the fiducial values {AD = 0.5,

lD = 90◦, bD = 0◦, vD = 170 km/s, σD = 100 km/s}.6

It is clear that detecting nuclear recoils from collisions with low-velocity WIMPs in the disk

component may be challenging, since the average lab-frame speed vD = 170 km/s for such WIMPs

is close to the ∼150 km/s velocity threshold (corresponding to the 5-keV energy threshold, with our

fiducial values for mN and mχ). Therefore, to investigate the effect of the energy threshold on the

parameter estimation, we shall perform two direction+energy analyses: the first with a zero-energy

threshold, and the second with a 5-keV threshold as before.

Again, we would like to evaluate the statistical power of our halo+disk analysis, assuming we

have observed an number of events comparable to that expected in the baseline halo-only scenario

with a 30-kg-yr exposure. As mentioned previously, this baseline scenario would yield ∼900 signal

events in the 0–50-keV range, along with 300 background events (assuming the expected rate of

10/kg/yr). We therefore adopt we adopt {Npix = 768, Nbins = 40, Ntot = 1200, λ = 0.75} for the

first zero-threshold analysis. For the second analysis, we then make a cut of all events below the

6Disk fractions as high as AD = 0.5 have indeed been suggested by galactic-scale simulations [173, 205], although
recent results find that the disk fraction in the Milky Way should be smaller (AD . 0.2) [206,207]. We take the value
AD = 0.5 here in order to investigate the difficulty of detecting a signal even in this optimistic case; as with the stream
fraction, a reduction of the disk fraction would likely result in a

√
N reduction in statistical power in recovering the

disk parameters.
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5-keV threshold, resulting in {Nbins = 36, Ntot = 813, λ = 541/813 ≈ 0.665}. Worth mentioning

here is the fact that simulations show that the presence of a disk component enhances the local

dark-matter density over that from the halo alone, so that ρ0 → ρ0/(1−AD). This correspondingly

decreases the amount of exposure needed to reach the baseline of 900 signal events, and also allows

for a larger background rate.

The recoil spectrum and sky maps are shown in Figures 3.14 and 3.15, the triangle plots for the

zero-threshold and 5-keV-threshold analyses are shown in Figures 3.16 and 3.17, and the posterior

modes and MCIs are again given in Table 3.2. From the triangle plots, it is immediately clear that

the finite energy threshold severely restricts the ability to constrain the disk-component parameters,

even leading to multimodal posterior probabilities for some of the parameters. Even in the idealized

case of zero threshold the parameter estimation is imperfect, as is evidenced by the amount of bias

in the estimation of the disk fraction AD. Although these results may be improved with better

statistics or reduced background, it is clear that measurement of the parameters of a dark-matter

disk will be challenging with current energy thresholds, if predictions of the disk parameters from

N-body simulations are indeed valid.

3.5 Conclusions

Using binned likelihood analyses of simulated WIMP-nucleus recoil events, we have demonstrated

how detectors with directional sensitivity may place constraints on the parameters of the local

dark-matter velocity distribution. Directional sensitivity allows isotropic background events to be

distinguished from signal events, but more interestingly, it also helps to break degeneracies in the

velocity-distribution parameters that cannot be broken with spectral information alone. As an illus-

trative example, we examined the case of a Maxwellian standard-halo-model velocity distribution.

By comparing the statistical power of energy-only, direction-only, and direction+energy analyses,

we demonstrated how the degeneracy in the standard halo model between the velocity vlab of the

Earth through the halo and the halo velocity dispersion σH is broken with directional information.

If the local dark-matter density is indeed ρ0 ≈ 0.3 GeV/cm3, for a 50-GeV WIMP and a WIMP-

nucleon spin-dependent cross section of 10−3 pb, a MIMAC-like, 10-kg CF4 directional dark-matter

detector might observe several hundred WIMP-nucleus recoil events in an observation period of

3 years. With 650 signal events, the presence of a cold stream composing a fraction of the local

dark-matter density may be detected, and its properties measured with relatively good accuracy.

However, the detection of a dark-disk component requires sensitivity to WIMPs moving at relatively

low velocities, and may only be feasible if energy thresholds are improved.

We have focused on an approach that seeks to maximize the amount of information about the

velocity distribution, while minimizing the number of assumptions about the particle properties of
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the WIMP or the local density of dark matter. The only assumptions of our approach are: 1) the

form of the velocity distribution is known and can be parameterized, 2) the background is flat and

isotropic. Future work might consider the relaxation of these assumptions. Furthermore, the analyses

presented in this work simply provide a proof of principle, showing that the parameter estimation

might be feasible in cases of interest. However, a more in-depth study of how the statistics of the

parameter estimation improve as the experimental conditions are varied might be warranted, with

the goal of finding the best balance between directional sensitivity and the overall event rate. In the

event that directional detectors do indeed detect WIMP-induced recoil events, such studies will be

crucial in forming a complete picture of the dark-matter particle and the structure of the Galactic

halo.
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Figure 3.3: Left: Simulated recoil spectrum for the halo-only 2-parameter and 3-parameter analyses
in Section 3.4.1.1, with binned signal events. The halo-only spectrum calculated from the fiducial
values is also plotted, and is shown in solid black inside the energy sensitivity range. Right: Simulated
recoil map for these analyses, in Mollweide projection. The black dot indicates the direction of the
LSR, given in Galactic coordinates by (lLSR, bLSR) = (90◦, 0◦).
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Figure 3.4: Top row: Contour plots for the 2D posterior probability distribution in vlab-σH space,
for the halo-only 2-parameter analyses with fixed mχ in Section 3.4.1.1. Analyses using energy-
only, direction-only, and direction+energy information are shown. Red square markers indicate the
fiducial values used in simulating the data. Black dots indicate the values used to generate the
spectra and maps in Figures 3.5 and 3.6. The marginalized posterior probability is shaded blue,
with contours indicating 68% and 95% confidence levels. Bottom row: The same for the 3-parameter
analyses assuming a flat mass prior. Note that the energy-only contours are larger in the σH direction
when only a flat prior on mχ is known instead of the exact value; in contrast, the direction+energy
contours are relatively insensitive to lack of knowledge about mχ.
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Figure 3.5: Recoil spectra showing the energy distribution (normalized to unity) of events in the
energy range of 5–50 keV for a halo-only model, for the values of vlab and σH indicated by the black
dots in Figure 3.4. The similarity of some of the spectra here leads to the parameter degeneracy in
the energy-only analysis shown in that figure.
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Figure 3.6: Recoil maps showing the angular distribution (normalized to unity) of events in the
energy range of 5–50 keV for a halo-only model, for the values of vlab and σH indicated in Figure 3.4.
Note the correspondence between the similarity of some of the maps and the parameter degeneracy
in the direction-only analysis. Note also that as vlab increases, a deficit of events at the usual peak
of the distribution appears, since the most energetic foward-scattering events have energies greater
than 50 keV at large vlab. See also the discussion in Ref. [208].
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Figure 3.7: Simulated recoil spectrum for the halo-only 6-parameter analysis in Section 3.4.1.2, with
binned signal and background events. The fiducial halo-only spectrum with a flat background is
also plotted.

Figure 3.8: Simulated recoil maps for the halo-only 6-parameter analysis in Section 3.4.1.2. Maps
of the signal events due to WIMP-induced recoils in 5 different energy bins are shown, along with
a map including both signal and background events. Note that the clustering of events tightens as
their energy increases because of the kinematics of the scattering process.
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Figure 3.9: Triangle plot showing 1D and 2D posterior probability distributions over the full prior
ranges, for the halo-only 6-parameter analysis using only energy information in Section 3.4.1.2. Red
lines and square markers indicate the fiducial parameter values used in simulating the data. On the
1D plots, 68% minimum credible intervals are shaded in blue. Parameter estimation is relatively
poor.
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Figure 3.10: The same as Figure 3.9, but for the halo-only 6-parameter analysis using direc-
tion+energy information in Section 3.4.1.2. Parameter estimation is much improved over the energy-
only analysis.
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Figure 3.11: Simulated recoil spectrum for the halo+stream analysis in Section 3.4.2. The fiducial
halo+stream spectrum with a flat background is also plotted.

Figure 3.12: Simulated recoil maps for the halo+stream analysis in Section 3.4.2, as in Figure 3.8.
Black dots indicate the direction of the LSR and the stream. The cluster of stream events is most
easily seen in the top-right panel, although it is slightly visible as a wider ring-like feature at lower
energies.



66

0
20

0
40

0

0
0.

5
1

−
10

0
0

10
0

−
50

0
50

0
20

0
40

0
60

0

0
0.

5
1

−
10

0
0

10
0

−
50

0
50

0
50

0
10

00

0
20

40
σ S

 (
km

/s
)

λ

0
20

0
40

0
0

0.
51

llab (°)

0
20

0
40

0

−
10

00
10

0

blab (°)

0
20

0
40

0

−
50050

σH (km/s)

0
20

0
40

0
0

20
0

40
0

60
0

AS

0
20

0
40

0
0

0.
51

lS (°)

0
20

0
40

0

−
10

00
10

0

bS (°)

0
20

0
40

0

−
50050

vS (km/s)

0
20

0
40

0
0

50
0

10
00

m
χ (

G
eV

)

σS (km/s)

0
20

0
40

0
02040

0
0.

5
1

−
10

00
10

0 0
0.

5
1

−
50050

0
0.

5
1

0

20
0

40
0

60
0 0

0.
5

1
0

0.
51 0

0.
5

1

−
10

00
10

0 0
0.

5
1

−
50050

0
0.

5
1

0

50
0

10
00

λ
0

0.
5

1
02040

−
10

0
0

10
0

−
50050

−
10

0
0

10
0

0

20
0

40
0

60
0

−
10

0
0

10
0

0

0.
51

−
10

0
0

10
0

−
10

00
10

0

−
10

0
0

10
0

−
50050

−
10

0
0

10
0

0

50
0

10
00

l la
b (

°)
−

10
0

0
10

0
02040

−
50

0
50

0

20
0

40
0

60
0

−
50

0
50

0

0.
51

−
50

0
50

−
10

00
10

0

−
50

0
50

−
50050

−
50

0
50

0

50
0

10
00

b la
b (

°)
−

50
0

50
02040

0
20

0
40

0
60

0
0

0.
51 0

20
0

40
0

60
0

−
10

00
10

0 0
20

0
40

0
60

0

−
50050

0
20

0
40

0
60

0
0

50
0

10
00

σ H
 (

km
/s

)
0

20
0

40
0

60
0

02040

0
0.

5
1

−
10

00
10

0 0
0.

5
1

−
50050

0
0.

5
1

0

50
0

10
00

A
S

0
0.

5
1

02040

−
10

0
0

10
0

−
50050

−
10

0
0

10
0

0

50
0

10
00

l S
 (

°)
−

10
0

0
10

0
02040

−
50

0
50

0

50
0

10
00

b S
 (

°)
−

50
0

50
02040

v S
 (

km
/s

)
0

50
0

10
00

02040

F
ig

u
re

3.
13

:
T

ri
an

gl
e

p
lo

t
fo

r
th

e
h

al
o+

st
re

am
a
n

a
ly

si
s

in
S

ec
ti

o
n

3
.4

.2
,

u
si

n
g

d
ir

ec
ti

o
n

+
en

er
g
y

in
fo

rm
a
ti

o
n

.
P

a
ra

m
et

er
es

ti
m

a
ti

o
n

is
re

la
ti

ve
ly

g
o
o
d

.



67

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Energy HkeVL

E
ve

nt
s
�

1.
25

ke
V

Figure 3.14: Simulated recoil spectrum for the halo+disk analyses in Section 3.4.3. The fiducial
halo+disk spectrum with a flat background is also plotted. The shaded light-blue bars indicate the
binned events below the 5-keV energy threshold included in the second 0–50-keV analysis.

Figure 3.15: Simulated recoil maps for the halo+disk analyses in Section 3.4.3, as in Figure 3.8.
Black dots indicate the common direction of the LSR and the disk. Events over the full 0–50-keV
energy range are shown.
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Chapter 4

Collider production: Light
gravitinos at colliders and
implications for cosmology

4.1 Motivation: Supergravity and the gravitino

Stabilization of the weak scale and solving the hierarchy problem were given as the primary motiva-

tions for supersymmetry in Section 2.1. However, it was mentioned that another promising aspect

of supersymmetry is that gravity naturally arises in the theory when supersymmetry is promoted

to a local (or gauge) symmetry. We shall now heuristically examine the super-Higgs mechanism by

which this occurs.1 Interestingly enough, we shall see that a new dark-matter candidate also arises

in some theories of supergravity as the LSP — the gravitino.

4.1.1 A local U(1) symmetry

We first start with a discussion of the promotion of global symmetries to local symmetries. Before

examining how this occurs in the case of supersymmetry, let us begin by studying the more simple

case of the U(1)EM symmetry in electromagnetism. Consider the theory of a free, massless Weyl

fermion χ, which has the Lagrangian

LM = ı̇χ†σ̄µ∂µχ . (4.1)

Material in Sections 4.2–4.6 was first published in “Light gravitinos at colliders and implications for cosmology,”
Jonathan L. Feng, Marc Kamionkowski, and Samuel K. Lee, Phys.Rev. D82, 015012 (2010) [34]. Reproduced here
with permission, c©2010 by the American Physical Society.

1Our presentation will be largely pedagogical, relatively elementary, and rather non-rigorous, and is based in part
on Refs. [39] and [209] (and references therein).
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This Lagrangian is invariant under a global U(1) transformation of χ; that is, a transformation that

multiplies χ by a complex phase, with the form

χ→ e−ı̇ε χ (4.2)

δχ = −ı̇ε χ , (4.3)

leaves the Lagrangian unchanged, with the vanishing variation

δLM = 0 . (4.4)

Here, the infinitesimal parameter ε parameterizes the symmetry transformation and is a dimension-

less constant.

Let us attempt to promote this U(1) global symmetry to a U(1) local symmetry, by allowing this

parameter to depend on the spacetime position x; that is, we promote ε→ εx in Eqs. (4.2) and (4.3).

However, the Lagrangian is not invariant under this local transformation (since the derivative acting

upon χ in Eq. (4.1) also acts upon εx), and we now have an additional term in the variation,

δLM = 0 + ∂µεx J
µ , (4.5)

where the current Jµ multiplying the derivative of the transformation parameter is given by

Jµ ≡ χ†σ̄µχ . (4.6)

Note that this current is invariant under the transformation of Eqs. (4.2) and (4.3), since the complex

phases acting on χ and its Hermitian conjugate cancel, so that

δJµ = 0 . (4.7)

Furthermore, by considering the Euler-Lagrange equations of motion it can also be shown that this

current is also conserved, so that ∂µJ
µ = 0.

Since now δLM 6= 0, promoting the global symmetry to a local symmetry has broken the in-

variance. However, we may restore the invariance by adding to the Lagrangian a real, vector gauge

field Aµ that couples to the current with an interaction strength determined by the dimensionless

coupling constant g,

LM = ı̇χ†σ̄µ∂µχ− gAµJµ . (4.8)

Using the product rule, we see that the interaction term −gAµJµ then gives rise to two additional
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terms in the variation,

δLM = 0 + ∂µεx J
µ

− g δAµ Jµ − g Aµ δJµ︸︷︷︸
0

, (4.9)

where the last term vanishes as in Eq. (4.7). We also note here that the second-to-last term may be

viewed as arising from the variation of the Lagrangian with respect to the field Aµ,

∂LM

∂Aµ
δAµ = −g δAµ Jµ . (4.10)

It is now clear that invariance can be restored in Eq. (4.9), provided the gauge field Aµ also

transforms as

Aµ → Aµ +
1

g
∂µεx (4.11)

δAµ =
1

g
∂µεx . (4.12)

Indeed, this is just the familiar gauge transformation of the scalar and vector potentials allowed in

electromagnetism; the gauge field Aµ is simply the photon, and the addition of its usual kinetic term

− 1
4FµνF

µν , which is invariant under the gauge transformation, to the Lagrangian yields Maxwell’s

equations. However, note that the mass term proportional to m2
AAµA

µ for the photon is not

invariant; hence, such a mass term is not allowed in the Lagrangian, requiring that mA = 0 and that

the photon is massless. Further note that the presence of the derivative acting on the parameter

εx in the above transformation implies that the spin of the gauge field is a unit larger than that of

the parameter itself; here, the gauge field is a spin-1 vector, since the parameter is a spin-0 scalar.

From this example, we thus glean the basic principle of the “Noether method”: in order to maintain

invariance under local symmetry transformations, one may add massless gauge fields which couple

to currents in the theory so that the variation of the Lagrangian vanishes.

4.1.2 From local supersymmetry to gravity

The promotion of global supersymmetry to local supersymmetry follows analogously; we will see that

the gauge fields that must be added are the gravitino and the graviton. Let us examine the simplest

supersymmetric Lagrangian, the non-interacting Wess-Zumino model of a free, massless complex

scalar φ (with mass dimension [M ]1) and a free, massless Weyl fermion χ (with mass dimension

[M ]3/2):

LM = −∂µφ† ∂µφ+ ı̇χ†σ̄µ∂µχ . (4.13)
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We also note that the mass dimensions of LM and the derivative operator are [M ]4 and [M ]1,

respectively.

This Lagrangian is globally symmetric under a supersymmetric transformation that rotates the

bosonic φ and fermionic χ into each other, which takes the infinitesimal form

δ


φ
χ


 =


 0 ε

−ı̇σµε†∂µ 0




φ
χ


 , (4.14)

where the infinitesimal parameter ε is a fermionic (anticommuting) Grassmann constant spinor with

mass dimension [M ]−1/2 and spin-1/2. The variation of the Lagrangian under this transformation

is a total derivative, so the theory is indeed globally supersymmetric. Thus, φ and χ are members

of a chiral supermultiplet.

Let us now promote the supersymmetry to a local symmetry, by again allowing the parameter ε to

be a function of space time and letting ε→ εx in Eq. (4.14). As before, as a result of the derivatives

in the Lagrangian acting on this spacetime dependence, the variation of the Lagrangian then picks

up a nonvanishing term that is proportional to the derivative of the transformation parameter,

δLM = tot. der. + (∂µεx S
µ + h.c.) , (4.15)

where the supercurrent Sµ is given by

Sµ ≡ σν σ̄µχ∂νφ† . (4.16)

Note that the supercurrent has mass dimension [M ]7/2; furthermore, it is not invariant under the

supersymmetry transformation, as some algebra shows that

δSµ 6= 0 . (4.17)

We will shortly see that both of these facts have important consequences for the interpretation of

the locally supersymmetric theory as a theory of gravity.

Again, we try to restore invariance by adding a gravitino gauge field ψ̃µ that couples to the

supercurrent.2 As we saw in the U(1) example, the spin of the gauge field must be a unit larger

than that of the transformation parameter εx. As a result, since εx is a spin-1/2 spinor, ψ̃µ is

then a fermionic, spin-3/2 vectorial spinor; furthermore, since we expect ψ̃µ to be a propagating

fermionic field, it should have mass dimension [M ]3/2. Accordingly, we couple the gravitino to the

2We shall also refer to the gravitino as G̃ below.
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supercurrent by adding a term to the Lagrangian

LM = −∂µφ† ∂µφ+ ı̇χ†σ̄µ∂µχ−
(
κ ψ̃µS

µ + h.c.
)
, (4.18)

where the coupling κ is required to be dimensionful, with mass dimension [M ]−1, due to the mass

dimensions of ψ̃µ and Sµ. We will see shortly that κ is related to the reduced Planck mass

M∗ = Mpl/
√

8π = (8πG)−1/2, showing the connection of this theory to gravity. Indeed, gravity

is known to be non-renormalizable, as are theories with couplings of negative mass dimension such

as we have found here.

However, the similarities to gravity do not end here. We can see this by noting that the variation

of the Lagrangian does not completely vanish, even with the addition of the gravitino gauge field.

This is precisely because the supercurrent is not invariant under the supersymmetry transformation,

as claimed in Eq. (4.17), so the variation of the Lagrangian is

δLM = tot. der. + ∂µεx S
µ

− κ δψ̃µ Sµ − κ ψ̃µ δSµ︸︷︷︸
6=0

+h.c , (4.19)

which may be contrasted with the analogous expression for the U(1) example given by Eq. (4.9).

Thus, even when we set the transformation of the gravitino gauge field to cancel the original non-

vanishing term in the variation [as we did for the photon field in Eq. (4.12)],

δψ̃µ =
1

κ
∂µεx , (4.20)

the nonvanishing of the supercurrent variation δSµ prevents the restoration of local invariance.

A hint to the resolution of this problem can be found by explicitly working out the form of δSµ,

starting from Eqs. (4.14) and (4.16). To do so requires some nontrivial algebraic manipulations, but

schematically, the basic result is

−κ ψ̃µ δSµ ∼ κ ψ̃µσνε†xT̂µν + . . . , (4.21)

where we have omitted some terms for brevity. Here, T̂µν is a spin-2 field with mass dimension [M ]4;

further manipulations show that T̂µν can in fact be related to the canonical energy-momentum tensor

Tµν for the fields φ and χ arising due to invariance under translations in flat spacetime,

T̂µν ∼ Tµν ≡ ∂LM

∂(∂µφ)
∂νφ+

∂LM

∂(∂µχ)
∂νχ− ηµνLM , (4.22)

up to numerical factors and divergenceless terms that may be added to ensure T̂µν is symmetric and
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invariant (so that δT̂µν = 0 to leading order).

This suggests that the solution is to add another massless gauge field that couples to the energy-

momentum tensor T̂µν , with an interaction term whose variation can cancel the contribution from

the supercurrent variation. This gauge field will necessarily be a spin-2 field; we shall name it gµν ,

in anticipation that it may play the role of a dynamical metric for a curved spacetime. Adding this

metric (by adding a factor of the square root of the metric determinant and promoting derivatives

∂µ to covariant derivatives ∇µ with respect to the metric) and a term coupling it to the energy-

momentum tensor to the Lagrangian, we then have

LM√−g ∼ −∇µφ
†∇µφ+ ı̇χ†σ̄µ∇µχ−

(
κ ψ̃µS

µ + gµν T̂
µν + h.c.

)
. (4.23)

The variation of this Lagrangian is then, schematically,

δLM√−g ∼ tot. der. +∇µεx Sµ

− κ δψ̃µ Sµ − κ ψ̃µ δSµ︸︷︷︸
6=0

+
1√−g

∂LM

∂gµν
δgµν − gµν δT̂µν︸ ︷︷ ︸

=0

+h.c. , (4.24)

where we have already written the term −δgµν T̂µν (arising from the variation with respect to gµν)

as 1√
−g

∂LM

∂gµν
δgµν , analogously to Eq. (4.10). This variation now has sufficient freedom to allow it

to vanish at leading order in κ, provided the correct transformation laws are chosen for both gauge

fields ψ̃µ and gµν . We can see this by examining Eq. (4.21), and noting that the variation vanishes

for

−δgµν T̂µν =
1√−g

∂LM

∂gµν
δgµν = κ ψ̃µ δS

µ ∼ −κ ψ̃µσνε†xT̂µν + . . . . (4.25)

We should therefore choose the transformation laws

δψ̃µ =
1

κ
∇µεx (4.26)

δgµν = κ ψ̃µσνε
†
x + . . . . (4.27)

Examining Eq. (4.25), we see that this choice will yield the relation

T̂µν ∼ − 1√−g
∂LM

∂gµν
, (4.28)

which we know correctly defines the energy-momentum tensor in general relativity. Since we found

that T̂µν was indeed related to the canonical energy-momentum tensor in the special case of a flat

spacetime, this again suggests the connection between local supersymmetry and gravity.
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Furthermore, note that we can view Eqs. (4.26) and (4.27) as a supersymmetry transformation

relating ψ̃µ and gµν , parameterized by εx as before; compare to Eq. (4.14). In particular, we may

introduce a propagating spin-2 graviton field hµν (i.e., one of mass dimension [M ], as appropriate

for propagating bosonic fields), defined perturbatively such that

gµν = ηµν + κhµν . (4.29)

In a sense, this graviton field, which should mediate the force of gravity, is then the superpartner of

the gravitino field ψ̃µ; both fields can be placed in a supergravity multiplet.3

Let us summarize the progress so far. We have shown that the addition of both a spin-3/2

gravitino and a spin-2 graviton gauge field can maintain invariance under local supersymmetry. We

just showed that if the graviton is viewed as a dynamical metric, then the relation between the

Lagrangian and the energy-momentum tensor that arises is that expected from general relativity.

Earlier, we also showed that the gravitino couples to the supercurrent with an interaction strength

determined by the dimensionful coupling κ, noting that this interaction is non-renormalizable —

as we know gravitational interactions to be — due to the negative mass dimension [M ]−1 of κ.

However, we have not yet demonstrated that κ is related to the Planck mass that determines the

strength of the gravitational interaction.

This final piece of the puzzle falls into place as follows. We recall that we were allowed to add a

kinetic term for the photon gauge field to the Lagrangian in the U(1) example, since such a term was

gauge invariant. We may now add similar kinetic terms for the gravitino and the metric. For the

metric, the appropriate kinetic term is given by the usual Einstein-Hilbert action of gravity; for the

gravitino, which is a spin-3/2 fermion, the appropriate kinetic term is given by the Rarita-Schwinger

action [210]. This yields the gravitational part of the Lagrangian

LG = LEH + LRS =
1

16πG

√−gR+ εµνρσψ̃†µσ̄ν∇ρψ̃σ , (4.30)

where R is the Ricci scalar for the metric gµν and the covariant derivative acting on ψ̃ includes

a spin-connection term. It is precisely the requirement that the variation of this Lagrangian also

vanish under the transformations for the gravitino and graviton given in Eqs. (4.26) and (4.27) that

sets the coupling constant

κ =
1

M∗
=
√

8πG . (4.31)

The total Lagrangian including both the gravitational and matter components

L = LG + LM (4.32)

3More precisely, it is the vierbein eµa, related to the metric by gµν = ηabeµ
aeνb, that appear in the supergravity

multiplet, along with auxiliary fields.
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then gives rise to the celebrated Einstein field equation

Gµν = Rµν −
1

2
gµνR = 8πGT̂µν (4.33)

through the usual procedure, firmly establishing the connection between local supersymmetry and

gravity.4

4.1.3 The super-Higgs mechanism

We have shown how local supersymmetry gives rise to gravity, via the introduction of massless gauge

fields — including the spin-3/2 gravitino. However, we have not yet explained how the gravitino

acquires its mass, thereby allowing it to be a dark-matter candidate. We may roughly explain the

super-Higgs mechanism by which this occurs using an analogy to the familiar Higgs mechanism that

is responsible for imparting mass to the weak gauge fields (as well as the other particles in the

standard model).

The matter Lagrangian of the electroweak theory (containing massless fermions) has a global

SU(2)L × U(1)Y symmetry that can be made local by the introduction of massless weak gauge

fields, which couple to the matter fields with interaction strengths g1,2. As we saw in Section 2.1,

we may also introduce the Higgs-field doublet and the Higgs potential. Due to the shape of the

potential, one component of the Higgs doublet then gets a weak-scale VEV v that spontaneously

breaks the local SU(2)L×U(1)Y electroweak symmetry down to U(1)EM. This produces three spin-0

Goldstone bosons, the degrees of freedom of which three of the massless spin-1 weak gauge fields

“eat” to acquire masses. This results in the massive Z and W± bosons, which thereby gain masses

that are proportional to both the interaction strengths and the VEV,

MZ,W ∼ g1,2v . (4.34)

This is the standard Higgs mechanism, by which local electroweak symmetry is spontaneously broken

and the electroweak bosons and the other particles of the standard-model acquire mass, despite the

fact that gauge-field mass terms are not allowed by the requirement of local invariance.

Analogously, as we saw in the previous section, the matter Lagrangian of a globally supersymmet-

ric theory (containing massless scalars and fermions in chiral supermultiplets) can be made locally

invariant by the introduction of a massless gravitino gauge field, which couples to the matter fields

with interaction strength suppressed by the reduced Planck mass as 1/M∗. Let us now introduce

a chiral supermultiplet of fields, one of which obtains a VEV F in superspace due to the shape of

4Again, our presentation here has been largely heuristic. To rigorously demonstrate the invariance of the total
Lagrangian (including gauge supermultiplets) under local supersymmetry transformations by deriving the correct
transformation laws for the fields using the Noether method iteratively — while also maintaining covariance under
general coordinate transformations — is a formidable task, well beyond the pedagogical scope of this section.
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Electroweak SU(2)L × U(1)Y Supergravity

Local symmetry
δ

(
νe

e−

)

L

= ı̇
(
g1ε1x + g2ε

k
2xσk

)
(
νe

e

)

L

δ

(
φ

χ

)
=

(
0 εx

−ı̇σµε†x∂µ 0

)(
φ

χ

)

transformation

Massless
Bµ and W k

µ (spin-1) ψ̃µ (spin-3/2) and gµν (spin-2)
gauge fields

Local Higgs: vev v super-Higgs: vev F

SSB 3 spin-0 Goldstone bosons eaten spin-1/2 goldstino fermion eaten

Massive
Zµ and W±µ with MZ,W ∼ g1,2v ψ̃µ with mG̃ ∼ 1

M∗
F

gauge fields

Table 4.1: We may understand the super-Higgs mechanism by an analogy to the familiar Higgs
mechanism, since both mechanisms exhibit general characteristics of spontaneous symmetry breaking
(SSB).

the potential of these fields; schematically, the VEV picks out a direction in the “boson-fermion”

space upon which supersymmetry transformations act.5 This spontaneous supersymmetry breaking

produces a spin-1/2 goldstino (a Goldstone fermion) with two degrees of freedom, which the massless

spin-3/2 gravitino gauge field eats to acquire mass. In analogy to Eq. (4.34), we may guess that the

mass of the gravitino is likewise proportional to the interaction strength and the VEV,

mG̃ ∼
F

M∗
. (4.35)

This indeed happens to be the case when worked out in detail. This is therefore known as the

super-Higgs mechanism, by which local supersymmetry is broken and the gravitino acquires mass.

The analogy is summarized in Table 4.1.

Just as the VEV v sets the energy scale for electroweak symmetry breaking and the mass scale

of the particles in the weak sector, the VEV F (which has dimensions of [M ]2) sets the energy scale
√
F for supersymmetry breaking and the mass scale of the superpartners, msoft. However, the exact

relation between F and msoft depends on how the supersymmetry-breaking field communicates with

the superpartners. For various reasons, in the MSSM, this field cannot be one of the MSSM fields;

most likely, it should instead be a gauge singlet that does not directly (or strongly) communicate

with the fields of the standard model. Many models of supersymmetry breaking thus place the

supersymmetry-breaking field in a “hidden” sector; supersymmetry is first broken in this sector, and

5This is a rough description of simple “F -term” breaking. In F -term breaking, the VEV is actually given to an
auxiliary field in the supermultiplet, not the complex scalar or the Weyl fermion. Such auxiliary fields are introduced
to close the supersymmetry algebra off-shell (where the Weyl fermion gains two extra degrees of freedom), such that
the numbers of bosonic and fermionic degrees of freedom remain equal. Auxiliary fields also appear in the superfield
and superspace formulations of supersymmetric theories. Also note that “D-term” breaking, where a VEV is given
to a auxiliary component of a gauge supermultiplet, is also possible, as well as some combination of both F -term and
D-term breaking.
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then this is communicated to the MSSM via interactions common to both the hidden and MSSM

sectors.

These interactions must avoid increasing the amount of flavor violation in standard-model pro-

cesses, since flavor violation is strongly constrained by experiments. The two obvious possibilities

are gravitational interactions and the standard-model gauge interactions, since these are both indeed

flavor blind. The first possibility is thus called gravity-mediated supersymmetry breaking. Since we

require msoft to vanish in the limits F → 0 (where supersymmetry is restored) and M∗ →∞ (where

gravity is negligible), by dimensional analysis, the superpartner masses in such models must be

msoft ∼
F

M∗
∼ mG̃ , (4.36)

which can be compared to the gravitino mass found in Eq. (4.35). Since the superpartner masses

should be at the weak scale, the energy scale of supersymmetry breaking is relatively high in these

models,
√
F ∼ 1010–1011 GeV. Furthermore, the mass of the gravitino would also be at the weak

scale and would be comparable to the masses of the superpartners; it is thus possible that the

gravitino is not the LSP in such scenarios, possibly ruling it out as a dark-matter candidate.

However, in the second possibility, supersymmetry breaking is communicated by the ordinary

standard-model gauge interactions, which also avoids flavor violation [211–216]. In such models,

mediating fields that couple the supersymmetry-breaking field in the hidden sector and also have

standard-model gauge interactions communicate the supersymmetry breaking radiatively via loop

diagrams. These “messenger” fields may have masses Mmess �M∗, leading to superpartner masses

msoft ∼
αi
4π

F

Mmess
, (4.37)

where αi/4π is a loop factor arising from the loop diagrams involving gauge interactions. Again

requiring weak-scale superpartner masses, we see that the energy scale of supersymmetry breaking
√
F may be low if Mmess is small; in fact, it may be as low as

√
F ∼ 104 GeV, if

√
F and Mmess

are comparable. Comparing with the gravitino mass given by Eq. (4.35), we see that gravitino

masses as small as an eV are possible! Thus, mG̃ � msoft may be realized in such gauge-mediated

supersymmetry breaking (GMSB) scenarios, and the gravitino may indeed be the LSP — and hence,

a dark-matter candidate.

4.1.4 Gravitino interactions

Let us now discuss the interactions between gravitinos and other particles in the MSSM. One intuitive

way to understand the interactions can be gleaned from a discussion of how supersymmetry relates

standard-model interaction vertices to their “supersymmetrized” analogues. An example of this
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f

f

γ

QED Vertex

−→ f̃

f

χ̃0

SUSY Vertex
Figure 4.1: Supersymmetrization of the gauge vertex for quantum electrodynamics (on the left)
implies a coupling between a neutralino, a charged fermion, and a charged sfermion (on the right).
This is achieved by exchanging the photon and one of the fermions in the gauge vertex with their
superpartners.

supersymmetrization is shown in Figure 4.1. The basic gauge vertex, which couples the gauge field

to the matter current via a gauge-field–fermion–fermion interaction, is shown on the left; specifically,

we show the basic vertex of quantum electrodynamics (QED), which couples charged fermions to

photons. In general, supersymmetry implies that there are supersymmetrized versions of such gauge

vertices, with similar coupling strengths, which may be found by exchanging in the gauge vertex

two of the legs with their superpartners. On the right of Figure 4.1, both the gauge boson and one

of the fermions have been exchanged, yielding a supersymmetrized vertex that implies a gaugino-

fermion-sfermion coupling; in particular, the supersymmetrized QED vertex shown here implies that

a coupling between a neutralino, a charged fermion, and a charged sfermion exists.6

Thus, to find the gravitino interactions, we may similarly use this supersymmetrization procedure

on interactions involving gravitons, such as those shown on the left in Figure 4.2. Although the

complete quantum field theory involving gravitons is not known, if they are to serve as the gauge

fields that mediate the force of gravity between other particles, the effective vertices coupling the

graviton to both matter fermions and gauge bosons shown in this figure should exist, with couplings

suppressed by the Planck mass. The supersymmetrized versions of these vertices then yield the

gravitino interactions; as can be seen, the interactions are of the form gravitino-partner-superpartner,

and should also be of gravitational strength.

More rigorously, these properties of the gravitino interactions can be straightforwardly read off

from the interaction terms we derived previously. Recall that an interaction term coupling the

gravitino to the supercurrent was added to the Lagrangian to partially restore local supersymmetry

invariance. Examination of the form of the supercurrent Sµ, given in Eq. (4.16), shows that it

contains both χ and φ — i.e., both partner and superpartner; similarly, if gauge supermultiplets are

also properly accounted for, the supercurrent will also include terms containing both the gauge-boson

6Taking the rule strictly, one might take that the coupling here is to the superpartner of the photon (i.e., the
photino), but there are in fact such couplings for neutralinos in general.
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Gravity Vertex

−→ f̃

f

G̃

Supergravity Vertex

γ

γ

G

Gravity Vertex

−→ χ̃0

γ

G̃

Supergravity Vertex
Figure 4.2: Examples of graviton (represented here by G) and gravitino (G̃) couplings. Top row:
Supersymmetrization of the graviton-fermion coupling implies a gravitino-fermion-sfermion interac-
tion. In GMSB models, this leads to τ̃ → τG̃ decays. Bottom row: Supersymmetrization of the
graviton-photon coupling implies a gravitino-photon-neutralino interaction. In GMSB models, this
leads to χ̃0 → γG̃ decays.

partners and gaugino superpartners. It is then clear that interactions of the form gravitino-partner-

superpartner should indeed arise from the gravitino-supercurrent coupling. Furthermore, since the

coupling occurs with strength κ = 1/M∗, we should expect these gravitino interactions to be Planck-

suppressed along with the analogous graviton interactions.

One might expect that the suppression of these gravitino interactions by their Planck-mass-

scale couplings dims the prospects for interesting gravitino phenomenology. However, a subtlety

prevents the complete Planck suppression of the gravitino interactions, giving rise to the possibility

of “stronger-than-gravitational” interactions. This subtlety stems from the details of the super-

Higgs mechanism. Recall that the gravitino acquires its mass by eating the spin-1/2 goldstino

fermion G̃ that arises when supersymmetry is broken by a field that gains a VEV F [217–220].

Another consequence of this mechanism is that an effective goldstino interaction term appears in

the Lagrangian,

LG̃ = − 1

F
G̃∂µSµ + h.c. (4.38)

=
1

F
∂µG̃Sµ + h.c. + tot. der. , (4.39)

which exhibits a derivative coupling between the goldstino and the supercurrent; this implies in-

teractions of the form goldstino-partner-superpartner — similar to that of the gravitino interac-
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tions — should exist. Furthermore, we see that although the strength of the coupling given by

1/F ∼ 1/M∗mG̃ is Planck-suppressed, it is also enhanced by a factor inversely proportional to the

gravitino mass. Thus, when the gravitino eats the two degrees of freedom of the goldstino in order

to acquire mass, it inherits the stronger-than-gravitational interactions of the goldstino components.

Light gravitinos — such as those that arise in GMSB models — may then have phenomenology that

is experimentally accessible.

Let us summarize our motivations from particle physics for considering the light gravitino as

a dark-matter candidate: Weak-scale supersymmetry is one of the most promising ideas for new

physics beyond the standard model. Supersymmetric theories that incorporate local supersymmetry

(or supergravity) predict the existence of the gravitino, the spin-3/2 superpartner of the graviton.

When supersymmetry is broken, the gravitino acquires a mass through the super-Higgs mechanism,

eating the spin-1/2 goldstino, the Goldstone fermion associated with spontaneously broken local

supersymmetry. In contrast to other superpartners, the gravitino can have a mass mG̃ that is

not at the weak scale, and viable models exist for gravitino masses as low as the eV scale and as

high as 100 TeV. In this work, we specifically consider light gravitinos, with mass in the eV to

MeV range. Such gravitinos are highly motivated in particle physics, as they emerge in models

with gauge-mediated supersymmetry breaking, in which constraints on flavor violation are naturally

satisfied. Furthermore, the interactions of such light gravitinos with other particles in the MSSM are

enhanced such that they are stronger-than-gravitational, giving rise to the possibility of interesting

phenomenology.

We now turn to a study of the collider phenomenology of light gravitinos and the cosmological

implications that observation of gravitino signals might have for the early Universe.

4.2 Introduction

Although highly motivated from a particle-physics standpoint alone, light gravitinos with mass

in the eV to MeV range also have cosmological motivations. In particular, they are the original

supersymmetric dark-matter candidate [221]. Assuming a high reheating temperature, gravitinos

are initially in thermal equilibrium and then freeze out while still relativistic. As we discuss in detail

below, their resulting relic density is

ΩG̃h
2 ≈

[ mG̃

1 keV

] [106.75

g∗S,f

]
, (4.40)

where g∗S,f is the number of relativistic degrees of freedom at freeze-out, and has been normalized

to the total number of degrees of freedom in the standard model. When originally proposed in
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the 1980s, uncertainties in h and the total matter relic density allowed mG̃ ∼ keV. This led to a

simple and attractive gravitino-dark-matter scenario, consistent with standard big bang cosmology,

in which the Universe cooled from some high temperature, and keV gravitinos froze out and now

form all of the dark matter.

In the intervening years, however, a variety of astrophysical constraints have greatly complicated

this picture. First, the dark-matter relic density is now known to be ΩDMh
2 ≈ 0.11. Second,

constraints on structure formation, as probed by galaxy surveys and Lyman-α forest observations,

require that the bulk of dark matter be cold or warm [222]. As we will discuss more fully below,

this leads to three scenarios of interest:

1. mG̃ . 15–30 eV: Gravitinos are produced by the standard cosmology leading to Eq. (4.40);

they are hot dark matter, but their contribution is small enough to be consistent with the

observed small-scale structure. Some other dark-matter particle is required.

2. 15–30 eV . mG̃ . few keV: Nonstandard cosmology and a nonstandard gravitino production

mechanism are required, both to avoid overclosure and to cool the gravitinos to satisfy small-

scale-structure constraints. Some other dark-matter particle may be required.

3. mG̃ & few keV: Nonstandard cosmology is required to dilute the thermal relic density of

Eq. (4.40). Gravitinos produced by thermal freeze-out are cold enough to be all of the dark

matter.

Note that the original “keV gravitino” scenario, previously favored, is now the most disfavored, in

the sense that it is excluded by both overclosure and small-scale-structure constraints. All of the

possibilities are rather complicated, however, as in each case, some additional physics is required,

either to provide the rest of the dark matter or to modify the history of the early Universe to allow

gravitinos to be all of the dark matter.

In this study, we discuss how collider data may help clarify this picture. Light gravitinos are

primarily produced at colliders in the decays of the next-to-lightest supersymmetric particle (NLSP).

It is a remarkable coincidence that modern particle detectors, with components placed between 1 cm

to 10 m from the beamline, are beautifully suited to distinguish between the NLSP decay lengths

predicted in scenarios 1, 2, and 3. For example, the decay length of a bino NLSP decaying to a

gravitino is [223]

cτ ≈ 23 cm
[ mG̃

100 eV

]2 [100 GeV

mB̃

]5

. (4.41)

This implies that scenarios 1, 2, and 3 make distinct predictions for collider phenomenology, and the

identification of the gravitino collider signatures realized in nature may have far-reaching implications

for the early Universe.

Of course, this requires that gravitinos can be produced in sufficient numbers and distinguished

from standard-model backgrounds. In this work, we determine event rates for a variety of signatures,
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including prompt di-photons and delayed and nonpointing photons (relevant for neutralino-NLSP

scenarios), as well as kinked charged tracks and heavy metastable charged particles (relevant for

stau-NLSP scenarios). We present results for an assumed final Tevatron dataset (20 fb−1 of 2 TeV

pp̄ collisions), an early LHC dataset (1 fb−1 of 7 TeV pp collisions), and a future LHC dataset

(10 fb−1 of 14 TeV pp collisions). We find that the final Tevatron and early LHC data have roughly

equivalent sensitivity to these events, with both capable of seeing hundreds of distinctive light-

gravitino events. The full LHC data greatly extends the reach in parameter space, and may also

allow precision measurements of NLSP lifetimes and gravitino masses.

We begin in Section 4.3 by reviewing the cosmological bounds on light gravitinos and discussing

how these bounds are relaxed in early-Universe scenarios that differ from the canonical one. In Sec-

tion 4.4 we then discuss NLSP decays to gravitinos, GMSB models, and current collider constraints.

In Section 4.5 we present our results for the number of light-gravitino events at colliders, based on

collider simulations, and discuss the cosmological implications. We summarize our conclusions in

Section 4.6.

Due to their large sizes, several of the remaining figures in this chapter have been placed at the

end of the chapter.

4.3 Light-gravitino cosmology

4.3.1 Canonical scenario

4.3.1.1 Relic abundance

In the currently canonical scenario, after inflation, the Universe is reheated to a temperature TR that

is assumed to be far higher (e.g., 1012 or 1015 GeV) than the weak scale. During this phase, inelastic

scattering processes and decays can convert standard-model particles in the thermal bath into grav-

itinos [224–228]. The rate CG̃ per unit volume for production of light gravitinos (strictly speaking,

only the spin-1/2 goldstino components) can be calculated by considering all such processes, which

primarily involve strong [229] and electroweak gauge bosons [230, 231], as well as top quarks [232].

The total result, valid in the limit T � mSUSY, where mSUSY is the scale of the superpartner masses,

is [232]

CG̃ ≈ 15
m2
g̃

m2
G̃

T 6

M2
pl

, (4.42)

where Mpl ≈ 1.2× 1019 GeV is the Planck mass. Here we have assumed that the gaugino masses

mg̃,1, mg̃,2, and mg̃,3 and the trilinear scalar coupling At are at a common mass scale. For simplicity,

we have set them equal to a universal gaugino mass mg̃.

The evolution of the gravitino number density nG̃ via these production processes, and their
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inverses, is governed by the Boltzmann equation

dnG̃
dt

+ 3HnG̃ = CG̃ − ΓnG̃ , (4.43)

where H is the Hubble expansion rate and Γ is the rate of processes that annihilate gravitinos. The

3HnG̃ term accounts for dilution of the number density due to cosmological expansion. If Γ � H,

gravitinos are in thermal equilibrium, ΓnG̃ = CG̃, and their number density (the solution to the

Boltzmann equation) is

neq

G̃
= g

3ζ(3)

4π2
T 3 ≈ 0.18T 3 . (4.44)

Here we used g = 2, since it is primarily the spin-1/2 goldstino components that are produced

thermally. 7

The rate Γ at which a given gravitino is destroyed in the plasma is then

Γ =
CG̃
neq

G̃

≈ 80
m2
g̃T

3

m2
G̃
M2

pl

. (4.45)

Since Γ ∝ T 3 and H ∝ T 2, the ratio Γ/H ∝ T is largest at the highest temperatures. Thus, if

Γ(TR) & H(TR) at reheating, then gravitinos come into thermal equilibrium shortly after reheating.

During this era, the expansion rate is given by H ≈ 1.66 g
1/2
∗ T 2/Mpl; assuming reheating tempera-

tures TR � TeV, at which all particles in the minimal supersymmetric standard model (MSSM) are

relativistic, we set the number g∗ of relativistic degrees of freedom to g∗(TR) ≈ 228.75. Comparing

Γ(TR) and H(TR), we then see that if the reheating temperature satisfies

TR & Tf ≡ 4 GeV
[mG̃

keV

]2 [TeV

mg̃

]2

, (4.46)

then gravitinos come into thermal equilibrium after reheating. Recalling that the production rate,

Eq. (4.42), used here is valid only for T � mNLSP (i.e., T & 10 TeV), we conclude that for weak-scale

gluino masses, light gravitinos with mG̃ . MeV will come into thermal equilibrium if the reheating

temperature is TR & 4× 106 GeV.

The creation/annihilation rates for gravitinos at temperatures T . 10 TeV have not yet been

calculated, and so the precise temperature at which gravitinos freeze out (which occurs when Γ ≈ H)

cannot yet be determined. Still, gravitinos are produced and destroyed individually, requiring (from

R-parity conservation) that each creation/destruction is accompanied by creation/destruction of

some other supersymmetric particle. Therefore, the freeze-out temperature Tf cannot be much

lower than the mass mNLSP of the NLSP, as the equilibrium abundance of SUSY particles then

7This expression has been corrected from the published version, where the number density n = gζ(3)T 3/π2 ≈
0.24T 3 for relativistic Bose-Einstein particles was mistakenly used (and a typo added an extra factor of 2 in the first
equality). This also results in minor corrections to the numerical prefactors that follow.
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decreases exponentially. We thus conclude that the freeze-out temperature for light gravitinos falls

roughly in the range 10 GeV . Tf . 10 TeV.

With this range of freeze-out temperatures, Tf � mG̃, so gravitinos are relativistic when they

freeze out. The relic gravitino density is then [221]

ΩG̃h
2 ≈ 0.1

[ mG̃

100 eV

] [106.75

g∗S,f

]
, (4.47)

the standard result for hot relics with g = 2, where g∗S,f is the number of relativistic degrees of

freedom when the gravitinos freeze out. If gravitinos freeze out when all of the MSSM degrees of

freedom are relativistic, Tf � mSUSY, and g∗S,f = 228.75. However, it is more likely that freeze-out

occurs at T ∼ mNLSP ∼ 100 GeV, when g∗S,f ∼ 100 [233].

4.3.1.2 Cosmological constraints

Given that current cosmic-microwave-background and structure-formation measurements constrain

the density of dark matter to be ΩDMh
2 ≈ 0.11, Eq. (4.47) implies an upper bound mG̃ . 200 eV.

The upper limit mG̃ ≈ 200 eV is saturated if the gravitino makes up all of the dark matter and freeze-

out occurs when g∗S,f = 228.75 is the maximum value allowed in the MSSM. However, a gravitino

of this mass would be hot dark matter. It would smooth density perturbations on scales probed

by galaxy surveys and the Lyman-α forest to a degree that is highly inconsistent with data. As

mG̃ is reduced from this upper limit, the smoothing scale is increased (the gravitinos get “hotter”),

but the gravitino abundance is reduced, thus making the magnitude of the smoothing smaller. A

combination of data from the cosmic microwave background, galaxy surveys, and the Lyman-α

forest constrain the contribution of a hot component of dark matter to be . 15% [222], implying

for g∗S,f ≈ 100 that mG̃ . 15 eV. This suggests that the most conservative upper bound is given

by mG̃ . 30 eV, in the case that g∗S,f ≈ 200 approaches the maximal value allowed in the MSSM.

Therefore, in this canonical scenario, thermal gravitinos with mass less than 30 eV make up only a

fraction of the dark matter, thus requiring some other particle to be the cold dark matter. This is

the first cosmological scenario listed in Sec. 4.2.

We conclude by noting that future astrophysical data are likely to improve. And while the

current sensitivity is to gravitino masses as small as 15–30 eV, it is forecast that next-generation

experiments may be sensitive to gravitino masses as small as 1 eV [234]. A collider detection of a

gravitino in the mass range mG̃ = 1–30 eV would thus lead to testable consequences in forthcoming

cosmological data.
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4.3.2 Nonstandard early-Universe scenarios

There are several ways in which the early-Universe production of relic gravitinos could differ from

the canonical scenario outlined above. Thus, there are scenarios in which a gravitino of mass

mG̃ & 30 eV, ruled out in the canonical model, could be cosmologically consistent or, better yet,

completely compose the dark matter.

Let us first consider scenarios in which the gravitinos reach thermal equilibrium in the early

Universe, since most observational constraints are strictly valid only under this assumption. As

mentioned above, if we only consider particles in the MSSM, then g∗S,f ≤ 228.75, and Eq. (4.47)

suggests an upper limit of mG̃ . 200 eV from the relic abundance constraint. One way to evade this

limit is to simply consider higher values of g∗S,f ; i.e., gravitinos decouple and freeze out earlier than

in the canonical scenario. This may be possible in models with more degrees of freedom than the

MSSM. More massive gravitinos that decouple earlier may then be viable, if they have an abundance

that obeys the constraint ΩDMh
2 . 0.11.

It is possible that this constraint is saturated and that these heavier gravitinos entirely com-

pose the dark matter. Of course, we must still require that these heavier gravitinos are not so

hot as to erase structure to a degree that contradicts observations. The same combination of

cosmic-microwave-background, galaxy-survey, and Lyman-α–forest data that was used to constrain

mG̃ . 30 eV in the canonical scenario can also be used to constrain the gravitino mass in this early-

decoupling scenario, assuming that thermal gravitinos make up all of the dark matter. With this

assumption, Ref. [222] finds mG̃ & 550 eV, using a selection of Lyman-α data. The same authors

later find a stronger constraint, mG̃ & 2 keV, with SDSS Lyman-α data [235, 236], a result slightly

weaker than a bound on warm dark-matter models obtained by Ref. [237]. A number of other

small-scale observations also seem to support that mG̃ & few keV under these assumptions [23].

We thus conclude that if 30 eV . mG̃ . few keV, then thermal gravitinos are too warm to be the

only component of the dark matter, regardless of whether or not they have the correct abundance.

Gravitinos in this mass range would only be viable if some other nonstandard early-Universe process

cools them, or if there is an additional cold component. This is the second scenario mentioned in

Sec. 4.2. However, if mG̃ & few keV, then gravitinos may be sufficiently cold, and may in early-

decoupling scenarios have the right abundance, to be the dark matter. This is the third scenario

outlined in Sec. 4.2.

Of course, aside from early decoupling, there are other nonstandard mechanisms that can reduce

the gravitino abundance. For example, recall that we have no empirical constraints to the early

Universe prior to the epoch of big-bang nucleosynthesis (BBN), at which T & few MeV [238]. Thus,

some entropy-producing process prior to BBN could also dilute the gravitino abundance. It is

possible that there may be some exotic early-Universe physics that conspires to produce the same

effect. One relatively simple possibility is that the reheating temperature is low. If the reheating
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temperature is smaller than the freeze-out temperature, then gravitinos will never come into thermal

equilibrium, and their relic abundance will thus be accordingly smaller [239–245]. The only catch

is that for the light gravitinos we consider here, the reheating temperature must be unusually low

for this to occur. For example, if mG̃ = keV and mg̃ = 300 GeV, then Eq. (4.46) suggests that

the reheating temperature must be TR . 40 GeV. However, recall that this estimate may not be

strictly valid at T . 10 TeV, as we have already noted. Thus, a more careful calculation of the

production rate of light gravitinos at low reheating temperatures may be necessary. Nevertheless,

such low reheating temperatures have been considered [246], and Ref. [247] has examined an explicit

low-reheat scenario in which a gravitino of mass mG̃ = 1–15 keV can have the right abundance to

be the dark matter.

Finally, we also note that there may be additional mechanisms affecting the generation of graviti-

nos. For example, in our discussion we have neglected the nonthermal contribution to the gravitino

abundance from out-of-equilibrium decays of other supersymmetric particles. There may also be

other significant modes of gravitino production or dilution, including processes involving the messen-

ger particles responsible for GMSB [248–253], nonthermal production via oscillations of the inflaton

field [254], Q-ball decays [255], and various other mechanisms [256]. There may thus be other reasons

why the gravitino abundance or temperature differs from those in the canonical thermal-production

scenario; this may be true even if mG̃ . 30 eV.

To summarize, in the canonical model, gravitinos are required to have mass mG̃ . 30 eV and

form only a fraction of the dark matter. Gravitinos with mass range mG̃ & 30 eV would require non-

standard physics or cosmology to reduce their abundance or temperature to agree with observations.

Below we discuss collider signatures of light gravitinos. We close here by noting that such collider

data may, if gravitinos are discovered, thus help discriminate between the diversity of early-Universe

scenarios for gravitino production.

4.4 Light gravitinos at colliders

4.4.1 Mass and interactions

As discussed in Section 4.1, the gravitino mass is determined by the super-Higgs mechanism. In

simple models, it is given in terms of the supersymmetry-breaking scale F , which has mass dimension

2, as

mG̃ =
F√
3M∗

≈ 240 eV

[ √
F

103 TeV

]2

, (4.48)

where M∗ ≡Mpl/
√

8π ≈ 2.4× 1018 GeV is the reduced Planck mass.

The interactions of weak-scale gravitinos are of gravitational strength, as expected since they

are the superpartners of gravitons. However, as discussed previously, the couplings of the goldstino
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are proportional to 1/F [257, 258]. The interactions of light gravitinos are therefore dominated by

their goldstino components, and may be much stronger than gravitational. Decays to gravitinos are

faster for light gravitinos.

For reasons to be discussed below, we will focus on cases where the NLSP is either the neutralino

or the stau. The interactions of these NLSPs with the gravitino were previously shown in Figure 4.2.

For a neutralino NLSP that is dominantly a bino, the decay widths to gravitinos are [223,259]

Γ(B̃ → γG̃) =
cos2 θWm

5
B̃

16πF 2
(4.49)

Γ(B̃ → ZG̃) =
sin2 θWm

5
B̃

16πF 2

[
1− m2

Z

m2
B̃

]4

, (4.50)

where θW is the weak mixing angle. For mB̃ . mZ , decays to Z bosons are negligible or kinematically

forbidden, and the corresponding decay length is

cτ ≈ 23 cm
[ mG̃

100 eV

]2 [100 GeV

mB̃

]5

. (4.51)

For heavier neutralinos, the Z mode may be significant; for very heavy binos, the branching ratio

for this mode is B(Z) ≈ sin2 θW ≈ 0.23. Decays to l+l−G̃, where l = (e, µ, or τ) is a charged lepton,

and hG̃ may also be possible; however, these modes have branching ratios of ∼0.01 and ∼10−6,

respectively.

For stau NLSPs, the decay width is [260]

Γ(τ̃ → τG̃) =
m5
τ̃

16πF 2
, (4.52)

corresponding to a decay length

cτ ≈ 18 cm
[ mG̃

100 eV

]2 [100 GeV

mτ̃

]5

. (4.53)

As anticipated, in both the neutralino-NLSP and stau-NLSP scenarios, the decay lengths for

gravitinos in the cosmologically interesting range correspond to distances that bracket the size of

collider detectors.

4.4.2 GMSB models

Light gravitinos are expected to be dominantly produced at colliders in the cascade decays of strongly

interacting superpartners, such as squarks and gluinos. Collider constraints therefore depend on the

full superpartner spectrum, and so are model dependent. Following most of the literature, we will

work in the framework of minimal GMSB, and so we briefly review its features here.
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Typical GMSB models are characterized by a hidden sector, a messenger sector, and a visible

sector, the MSSM. Supersymmetry breaking is triggered by a hidden-sector gauge-singlet superfield

S acquiring the vacuum expectation value S = M + θ2FS . This then generates masses for the

messenger-sector fields Mmess = λM , where λ is a coupling in the superpotential. These in turn

generate masses for the visible-sector superpartners that are roughly a loop factor times Λ ≡ FS/M ,

and so Λ ∼ 100 TeV. Note that Mmess > Λ is generally assumed.

In the minimal GMSB framework, the entire superpartner spectrum is specified by the parameters

Λ, Mmess, N5, tanβ, sgn(µ), cgrav . (4.54)

Here, Λ and Mmess are as described above; masses and couplings are generated at Mmess and then

evolved to the weak scale via the renormalization group. The number of messenger superfields is

given by N5, the effective number of 5 + 5̄ representations of SU(5). The Higgs sector is specified

by the usual parameters tanβ and sgn(µ). The last parameter is

cgrav ≡
F

λFS
, (4.55)

where F = (F 2
S +

∑
i F

2
i )1/2 is the total supersymmetry-breaking vacuum expectation value, which

appears in Eq. (4.48). These relations imply

mG̃ = cgrav
MmessΛ√

3M∗
. (4.56)

We expect cgrav & 1, since F ≥ FS and λ . 1, and in the minimal case that there is only one nonzero

F -term, we expect cgrav ∼ 1.

The superpartner masses are determined by the parameters of Eq. (4.54); for details, see Ref. [40].

Here we note only two things. First, the superpartner masses are determined by gauge couplings.

Thus, although, for example, chargino [261] and sneutrino [262] NLSPs have been considered, the

canonical NLSP candidates are those with only hypercharge interactions, namely, the bino and

right-handed sleptons. Among the right-handed sleptons, the stau is typically the lightest, as

renormalization-group evolution and left-right–mixing effects both decrease the stau mass relative to

the selectron and smuon, and so we will focus on the bino-NLSP and stau-NLSP scenarios.8 Second,

the bino and stau masses are proportional to N5 and
√
N5, respectively. For N5 = 1, the NLSP

is the bino in minimal GMSB, but for N5 > 1, the stau may also be the NLSP; see, for example,

Figure 1 of Ref. [260].

Thus, to study the bino-like neutralino-NLSP scenario, we will choose N5 = 1; likewise, we choose

8Note that in the “slepton co-NLSP” scenario, where the three charged sleptons are degenerate to within the mass
of the tau, the number of ẽ→ eG̃ and µ̃→ µG̃ decays may be comparable to that of the τ̃ → τG̃ decay that usually
dominates gravitino production.
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N5 = 4 to study the stau-NLSP scenario. For both scenarios, we fix tanβ = 20, µ > 0, and cgrav = 1.

We let Λ and Mmess be free parameters. Note that the overall mass scale of the supersymmetric

partners is roughly proportional to Λ, while the gravitino mass depends on both Λ and Mmess as in

Eq. (4.56). Thus, scanning over the free GMSB parameters will allow us to explore collider signals

for a range of masses. We shall now examine the existing collider constraints on the parameter

spaces of these two scenarios.

4.4.3 Current collider constraints

The high-energy collider signals of GMSB and gravitinos are well studied [259, 260, 263–277]; for a

review of current bounds, see Ref. [278]. Here we summarize the most relevant results for the models

and signals we consider below.

We shall discuss GMSB signals in more detail below, but we summarize them briefly here. In the

neutralino-NLSP scenario, there are several possible signals. For short-lived neutralinos, nearly all

supersymmetry events include two prompt high-energy photons. For longer-lived neutralinos that

travel a macroscopic distance before decaying to photons in the detector, delayed or nonprompt

photons are possible. The stau-NLSP scenario may also lead to a variety of signatures, depending on

the stau lifetime, including acoplanar leptons, tracks with large impact parameters, kinked charged

tracks, and heavy metastable charged particles.

Several studies have attempted to place constraints on GMSB models by searching for these

signals. Given that we will scan over a large range of the GMSB parameter space, we are primarily

interested in constraints that are generally valid over this entire range. We shall thus focus on

limits from LEP studies, based on an integrated luminosity of 628 pb−1 at center-of-mass energies

of 189–209 GeV, which combined searches for both GMSB and neutral-Higgs signals [279,280]. The

relevant results for our models are the lower limits of Λ & 70 TeV for our neutralino-NLSP model,

and Λ & 20 TeV for our stau-NLSP model; see Figure 6 of Ref. [279]. These constraints on Λ are

valid for all values of Mmess we include in our scan. Therefore, the allowed region of Mmess-Λ

parameter space is constrained by these LEP bounds.

However, there are also a number of studies that focused on constraining specific benchmark

models [281], which occupy certain points or lines in the GMSB parameter space. Although these

constraints cannot be directly applied to our models, we discuss them to get an idea of the robustness

of the LEP bounds on our parameter space.

Of these benchmark-model constraints, the best collider bounds on di-photon events are from

the Tevatron, including a D0 search based on an integrated luminosity of 1.1 fb−1 [282] and a

CDF search based on 2.6 fb−1 [283]. The D0 and CDF bounds, when interpreted assuming the

benchmark GMSB model SPS 8 from Ref. [281], lead to lower bounds on the bino mass of 125 GeV

and 150 GeV, respectively. For longer-lived neutralinos that travel a macroscopic distance before
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decaying to photons in the detector, a CDF search for delayed photons, based on 570 pb−1 of data,

established lower bounds on mB̃ from 70 to 100 GeV for neutralino decay lengths between 20 cm

and 6 m, again when interpreted in the context of SPS 8 [284].

Searches for heavy metastable charged particles have also been performed at D0 [285], assuming

the benchmark GMSB model SPS 7 from Ref. [281]. A similar search was performed at CDF [286],

but did not interpret results in the context of GMSB models. Based on ∼ 1 fb−1 of data, and

assuming only Drell-Yan slepton production, the constraints resulting from these two searches are

not competitive with the LEP bounds stated previously.

Thus, we shall take the more general LEP bounds as constraints on the two models we consider

in this work, and shall further take only conservative values of the lower limits. For the neutralino-

NLSP model, we shall only scan the parameter space with Λ ≥ 80 TeV, which should be comfortably

allowed by the LEP bounds. However, we acknowledge that it is possible that the Tevatron data

may exclude a small range of NLSP masses within this parameter space comparable to that ruled

out in the benchmark model (i.e., . 150 GeV), should this data be reanalyzed in the context of our

models. For the stau-NLSP model, we shall scan over Λ ≥ 30 TeV. Given that the current Tevatron

constraints are not competitive with the LEP bounds, all of this parameter space should be allowed.

As we will see, hadron colliders have bright prospects for probing the parameter spaces of these

models.

4.5 Tevatron and LHC prospects

4.5.1 Gravitino signals

The collider signal of a supersymmetric particle decaying to a gravitino can be classified by (1) the

distance from the interaction point at which the decay occurs, and (2) the nature of the accompanying

standard-model decay products. The former is determined by the gravitino mass and the masses

of the decaying supersymmetric particles, as well as the speed with which the decaying particles

are produced. The latter is determined primarily by the nature of the NLSP. We shall define and

investigate the following categories of events:

1. Prompt di-photons (in neutralino-NLSP models): Events in which two photons are produced

(via a pair of neutralino decays to gravitinos) within dpr of the interaction point. We take

dpr = 1 cm as a conservative estimate of the distance to which the origin of any photon can

be resolved in detectors at the Tevatron and the LHC. Note that here and below, we cut on

the total distance traveled by the NLSP before it decays, not its (transverse) distance from

the beamline when it decays.

2. Nonprompt photons (neutralino NLSP): Events in which at least one photon is produced at
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a mid-detector distance ddecay away from the interaction point, where dpr ≤ ddecay ≤ dnp, and

dnp is the maximum distance from the interaction point at which a photon can be observed.

We conservatively take dnp = 3 m, roughly the outer radius of the hadronic calorimeters at

both the Tevatron and the LHC. (Note that although the calorimeters in the ATLAS detector

at the LHC actually extend to ∼4 m, those in the CMS detector only extend to ∼3 m; we

have thus taken the more conservative 3 m as our cut.) Photons may also convert and be seen

in the muon chambers, extending the sensitivity to decays ∼10 m from the interaction point,

but we neglect this possibility here. Here we also take dpr = 1 cm.

Note that this category of events encompasses both nonpointing photons and delayed

photons. A nonpointing photon is simply a photon that does not spatially point back to

the interaction point. A delayed photon has the further distinction of being produced only

after a significant temporal delay following the time of the initial collision. This may occur

when the particle that decays to the photon is produced with a low speed, so that it takes a

non-negligible amount of time to travel away from the interaction point before it decays. If

this amount of time is comparable to the time between collision events, it may be difficult to

properly identify the delayed photon with its originating event.

3. Nonprompt leptons (stau NLSP): Events in which at least one charged lepton is produced (via

charged-slepton decays to gravitinos) at a mid-detector distance ddecay, where dpr ≤ ddecay ≤ dnp

as before. We take dnp = 5 m and dnp = 7 m as the outer radii of the muon chambers in the

detectors at the Tevatron and the LHC, respectively. (As above, although the muon chambers

in the ATLAS detector at the LHC extend to ∼10 m, those in the CMS detector only extend

to ∼7 m; we take the more conservative 7 m as our cut.) We again take dpr = 1 cm. Each of

these events produces a distinctive charged track with a kink due to the momentum carried

away by the gravitino.

As above, both nonpointing and delayed events are included in this category. Furthermore,

we include all generations (e, µ, and τ). As mentioned previously, the stau is generally the

lightest slepton, and hence we expect the majority of the decays in the stau-NLSP scenario to

be of the form τ̃ → τG̃. Although the heavier sleptons l̃ = (ẽ or µ̃) may also decay to lG̃, the

branching ratio of this decay is generally suppressed compared to the decay to a lepton and a

neutralino, i.e., lχ̃0. If the latter is kinematically forbidden, then the 3-body decays to lτ−τ̃+

or lτ+τ̃− dominate instead. However, as the mass splitting between the stau NLSP and the

heavier sleptons decreases, these 3-body decays become less dominant (becoming kinematically

forbidden if the mass splitting becomes less than the tau mass). The decays to lG̃ may then

occur if the heavier sleptons l̃ are produced at the end of a decay chain.

4. Metastable sleptons (stau NLSP): Events in which at least one charged slepton passes through

the entire detector before decaying to a charged lepton and a gravitino. That is, the gravitino
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is produced at ddecay ≥ dms, where dms is the distance to the outer edge of the detector. We

take dms = 5 m and dms = 10 m as conservative estimates of the sizes of the detectors at the

Tevatron and the LHC, respectively. All generations (ẽ, µ̃, and τ̃) are included. These events

will produce charged tracks with a relatively large radius of curvature.

For this category, we impose a further cut, requiring that the speeds β of the sleptons

satisfy the criteria βlower ≤ β ≤ βupper. The lower cut removes slower sleptons, which may be

identified with the incorrect collision event. The higher cut removes faster sleptons, which

may be misidentified as muons. We take typical values βlower = 0.6 and βupper = 0.8. Note,

however, that Ref. [277] suggests a new search strategy that may be sensitive to even higher

values of β.

All of these events will also be distinguished by missing energy and momentum carried away

by the gravitinos. Note that these categories are chosen to be illustrative of the variety of signals

that may be observed, and that they are not comprehensive — we do not investigate prompt di-

lepton events or neutralino decays to Z bosons, for example. Furthermore, the categories are not

mutually exclusive; for example, one may easily have a single event in which both a nonprompt

lepton and a metastable slepton are produced. It is also clear that the relevant detector systematics

and backgrounds will also be different for each category. Finally, note that axino-LSP scenarios may

have signals that are qualitatively similar to the very long-lived signatures discussed here; however,

the gravitino-LSP and axino-LSP scenarios may be distinguished quantitatively by detailed studies

of 3-body decay rates [287].

This categorization of events is somewhat oversimplified, as it is based primarily on cuts on the

decay length. Certainly, additional cuts will be required in a realistic analysis, possibly reducing the

number of detected signals. However, we shall soon see that these simple categories align with the

three cosmological scenarios outlined previously.

4.5.2 GMSB scan and collider simulations

We now calculate the event rates for these gravitino signals in a parameterized GMSB model. A

large number of programs have been written for the numerical computation of the mass spectra

and collider predictions for parameterized supersymmetric models [288, 289]. In this work, we use

ISAJET 7.80/ISASUSY [290] to generate mass spectra and decay branching ratio tables. ISASUSY

properly includes a number of 3-body decay processes relevant for gravitino phenomenology that are

missing in other branching ratio programs.

ISAJET/ISASUSY takes values of the GMSB parameters listed in Eq. (4.54) as input. As

discussed previously, here we focus on parameterizations that fix a subset of the GMSB parameters,

resulting in either a neutralino or a stau NLSP. We then scan over Mmess and Λ (requiring that
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Figure 4.3: Plots showing the mapping between the mG̃-mNLSP and the Mmess-Λ GMSB parameter
spaces, for the neutralino-NLSP scenario with N5 = 1 (left) and stau-NLSP scenario with N5 = 4
(right), where we fix tanβ = 20, µ > 0, and cgrav = 1 in both cases. Contours of constant
Mmess/Λ (dashed black) and Λ (dashed-dotted black) are shown. The region in the upper-left
corner is disallowed by theory, while the region at the bottom is excluded by experiment (using the
conservative constraints mentioned in the text).

Mmess > Λ), resulting in spectra with a range of gravitino and NLSP masses. The correspondence

between the Mmess-Λ scan and the resulting mG̃-mNLSP parameter space is shown in Figure 4.3.

We then take the spectra and decay tables output by ISAJET/ISASUSY and use them as input

for the Monte Carlo event generator PYTHIA 6.4.22 [291], including all supersymmetric processes

available therein. For a given center-of-mass energy, PYTHIA can simulate a given number of

collision events, giving a complete record of the various decay chains and final products generated

in each event and an estimation of the various production cross sections. From this record, we

can identify the supersymmetric “mother” particles that decay to directly produce gravitino and

standard-model “daughter” particles in each individual event. We can also find the decay length

ddecay away from the interaction point that each mother particle travels before decaying to produce

a gravitino. Thus, for any number of simulated events, we can find the fraction that fall into each

of the above categories. The expected number of signals from each category is then given by the

respective fraction multiplied by the total number of supersymmetric events. We can also calculate

the average 〈ddecay〉 of the decay length, taken over all supersymmetric events.

4.5.3 Cosmological implications

The results of the scan are shown in Figures 4.4–4.7. We can see that the simple categorization

of collider signals by decay-length cuts corresponds surprisingly well with the categorization of

cosmological scenarios outlined previously. For example, Figure 4.4 shows that the observation of
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hundreds of prompt events suggests that the first cosmological scenario (mG̃ . 30 eV) is likely to

be valid. Likewise, the second cosmological scenario (30 eV . mG̃ . few keV) will be implied by

the observation of a large number of nonprompt events, as demonstrated by Figures 4.5 and 4.6.

Finally, that the observation of a large number of metastable sleptons supports the third cosmological

scenario (mG̃ & few keV) can be seen in Figure 4.7. We emphasize that this correspondence is not

strongly dependent on our specific choice of GMSB models. It is indeed a remarkable coincidence

that theoretically motivated supersymmetric and gravitino-mass scales, the physical sizes of collider

detectors, and gravitino cosmology all conspire to allow this correspondence.

Note also that we find that the number of gravitino events produced during the initial run of

the LHC (center-of-mass energy of 7 TeV and integrated luminosity of 1 fb−1) may be comparable

to that produced during an extended run of the Tevatron (center-of-mass energy of 2 TeV and

integrated luminosity of 20 fb−1). This is true in regions of parameter space where large numbers

of signals are expected. However, the higher center-of-mass energy of the LHC allows it to access

regions of parameter space where mSUSY is larger; this is especially evident in the neutralino-NLSP

scenario, as can be seen by comparing the left and middle panels in both Figures 4.4 and 4.5.

If the distribution of mother-particle decay lengths can be measured with sufficient accuracy

along with the total signal rate, then it may be possible to gain some information on the masses of

the mother particles and the gravitino. To do so, it will be important to understand the distribution

of energies and speeds with which mother particles are produced, since this will directly affect the

distribution of decay lengths via dilation of the mother-particle lifetimes. In Figure 4.8, we show

some examples of probability distribution functions for the speed β and the Lorentz factor γ of

mother particles that decay to gravitinos, for various collider scenarios.

4.6 Conclusions

Light gravitinos in the mass range eV to MeV appear in GMSB models that naturally avoid flavor

violation. We have examined the decay of supersymmetric particles to light gravitinos at colliders

such as the Tevatron and the LHC. These decays will give rise to dramatic signatures, such as prompt

di-photons or nonprompt photons, if the NLSP is a neutralino, or kinked charged tracks or heavy

metastable charged particles, if the NLSP is a stau (or some other charged particle). We find large

regions of the gravitino-mass–NLSP-mass parameter space in which the rate for such events may

be appreciable at the Tevatron and LHC and which are consistent with current null supersymmetry

searches.

Given that mG̃ � mNLSP for these events, the decay kinematics of individual events cannot be

used to determine the gravitino mass. However, the event rate and the distribution of decay locations

may be used to narrow the range of NLSP and gravitino masses. Information about the nature of
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the NLSP may also be gleaned from the standard-model decay products.

One of the attractions of supersymmetry has been its ability to provide a natural candidate

for the cold dark matter required by a wealth of cosmological observations. Unfortunately, despite

being well motivated in GMSB models, the canonical light-gravitino scenario does not provide a

natural cold dark-matter candidate. Nevertheless, this canonical scenario does allow gravitinos with

masses mG̃ . 30 eV that compose a fraction of the total dark matter, as determined by current

astrophysical constraints on the relic abundance and small-scale structure. Given that upcoming

structure-formation observations are expected to probe hot dark-matter masses as low as mG̃ ∼ eV,

detection of a gravitino in the mass range eV . mG̃ . 30 eV via prompt signals at colliders would

have implications for future small-scale-structure measurements. And although masses mG̃ & 30 eV

are disfavored, they may still be possible if the pre-BBN history was different than in the canonical

scenario. Detection of gravitinos in this mass range via nonprompt and metastable signals at colliders

would thus have serious implications for early-Universe cosmology, and may provide some insight

into the reheating and inflationary eras. And who knows? There may indeed be new early-Universe

physics that results in a gravitino that has the right cosmological abundance and temperature to be

the dark matter.
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Figure 4.8: Simulated probability distribution functions for the speed β (top panels) and Lorentz
factor γ (bottom panels) of mother particles decaying to gravitinos, plotted for the three collider
energies of interest, in the neutralino-NLSP (left) and stau-NLSP (right) scenarios. We have cho-
sen models with mNLSP = 150 GeV for both NLSP scenarios (this was accomplished by choosing
Λ = 115 TeV in the neutralino-NLSP scenario and Λ = 40 TeV in the stau-NLSP scenario, as well as
setting Mmess/Λ = 103 in both scenarios). The area under each curve has been normalized to unity.
As expected, increasing the center-of-mass energy results in the production of faster mother particles.
Note also that even though mNLSP is identical for both of these scenarios, the staus are produced
with slightly higher speeds. This is because the squark masses (which increase with increasing Λ) in
the stau-NLSP scenario happen to be slightly lighter than those in the neutralino-NLSP scenario,
for these choices of GMSB parameters.
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Chapter 5

A detour: Charged-particle decay
at finite temperature

5.1 Introduction

Precise predictions for decay rates of charged particles might be of interest in a variety of cosmological

contexts that introduce long-lived particles with electric charge. These include scenarios for modified

big-bang nucleosynthesis [292–298] and small-scale-power suppression [299–301] and mechanisms for

dark-matter detection wherein a charged quasistable heavier particle is produced [302–310].

In the early Universe, decays of charged particles occur in a thermal bath whose very presence

seems to affect decay rates in a peculiar way. Indeed, consider the decay of a hypothetical charged

particle ψ to two lighter particles χ and φ. The leading-order Feynman diagram is shown in Fig-

ure 5.1. In a thermal bath of photons, the process γψ → χφ also occurs and modifies the vacuum

decay rate. Hence, the vacuum decay rate of a particle ψ must be augmented in the cosmological

context by the inclusion of the rate for the “induced” decay wherein the unstable particle absorbs

a thermal photon (see Figure 5.2). It is easy to see that a naive computation of the diagrams in

Figure 5.2 leads to a divergent result. This divergence is of the infrared type — it appears when

the energy of the absorbed photon becomes very small. In this work we discuss in detail how, when

all possible processes that modify the vacuum decay rate are taken into account, the infrared di-

vergences cancel out. This is a finite-temperature analog of the celebrated cancellation of infrared

divergences in QED pointed out by Bloch and Nordsieck long ago [311].

Although thermal effects have been computed for static thermodynamic quantities such as the

effective potential, the free energy, the pressure, and so on [312], sometimes to very high orders

in the perturbative expansion in QCD and QED (for recent reviews, see Refs. [313, 314]), less is

known about finite-temperature corrections to cross sections and decay rates. Radiative corrections

Material in this chapter was first published in “Charged-particle decay at finite temperature,” Andrzej Czarnecki,
Marc Kamionkowski, Samuel K. Lee, and Kirill Melnikov, Phys.Rev. D85, 025018 (2012) [35]. Reproduced here with
permission, c©2012 by the American Physical Society.



104

ψ

φ

χ

Figure 5.1: The diagram for the decay ψ → φχ. Note that we shall distinguish between the ψ and
χ particles in the diagrams below by representing them with thick and thin solid lines, respectively.

to dynamical scattering and decay processes at a finite temperature T are peculiar for three reasons.

First, as pointed out already, if T 6= 0, new processes involving absorption and emission of particles

from the heat bath contribute to cross sections and decay rates. The second complication is that

the preferred reference frame defined by the heat bath spoils Lorentz invariance. Third, thermal

averages and loop integrals over Bose-Einstein distributions introduce infrared divergences that are

powerlike, rather than logarithmic.

Pioneering studies of radiative corrections to neutron β-decays at finite temperature were first

described in Refs. [315–318], in the context of big-bang nucleosynthesis. In Ref. [319], the finite-

temperature decay rate of a neutral Higgs boson into two charged leptons was first computed.

These and subsequent papers [320–333] illustrated the cancellation of infrared divergences and clar-

ified many important features of radiative corrections. They also discussed the issue of radiative

corrections that are enhanced by the logarithms of small masses of final-state charged particles.

Such terms are known to cancel in total decay rates at zero temperature [334], but the situation at

finite temperature is less clear.

Most of the papers just described dealt only with a neutral initial state; in such a case, the

problem of an infinite decay rate induced by absorption of very soft photons by the initial state

does not occur. Here we discuss the calculation of radiation corrections for a charged initial state,

where this issue can not be avoided. For simplicity, we begin by considering a toy model of charged-

fermion decay and focus on the low-temperature case. We introduce the toy model in Section 5.2

and calculate the decay rate induced by real-radiation scattering processes in the thermal bath (i.e.,

absorption and emission of photons), showing how infrared divergences arise. In Section 5.3, we

compute the virtual radiative corrections to the decay rate. In Section 5.4, we sum the real and

virtual corrections to find the total finite-temperature decay rate, and demonstrate the cancellation

of the divergences at first order in perturbation theory. We carry out an analogous analysis for muon

decay in Section 5.5.

We conclude and consider the implications for charged particles in the early Universe in Sec-

tion 5.6.
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s− channel u− channel

Figure 5.2: The two diagrams via which absorption of a photon can lead to induced ψ decay (or χ
and φ production)

5.2 Toy model

We shall first discuss a simple model to illustrate the nature of the infrared divergences and their

cancellation. Consider the process ψ → χφ, the decay of a heavy charged fermion ψ to a light

charged fermion χ and a massless neutral scalar φ via the interaction

L ⊃ gφψ̄Lχ+ h.c. , (5.1)

depicted in Figure 5.1. Here L = (1 − γ5)/2. We shall assume that the charge of both fermions is

the elementary charge e =
√

4πα, and that the mass ratio ε ≡ mχ/mψ is small.

At T = 0, the tree-level amplitude for the decay ψ → χφ is given by

Mtr = gūχLuψ . (5.2)

This amplitude gives the O(g2α0) zero-temperature decay rate,

Γ̃0 = Γ0(1− ε4) , (5.3)

where we have defined Γ0 ≡
g2

32π
mψ. We will state our subsequent results for the temperature-

dependent decay rate in terms of Γ0.

On account of radiative corrections and finite-temperature effects, the decay rate can be written

as a triple series in τ = T/mψ, ε = mχ/mψ, and the fine-structure constant α. Unless explicitly

stated otherwise, we work in the low-temperature approximation τ � ε� 1. Our goal is to compute

relative corrections to the decay rate that scale as ατ2. In those terms, we shall set ε → 0. Note

that terms of the form τ/ε do not appear in the total decay rate.



106

5.2.1 Photon absorption

We now consider the process γψ → χφ, the induced decay of ψ in a thermal bath of photons.

This process can occur via the two diagrams shown in Figure 5.2. For a photon with 4-momentum

k = (ω,k), where ω = |k|, the tree-level amplitudes for these channels are

Mabs,s =
eg

s−m2
ψ

ūχL(/pψ + /k +mψ)/εγuψ , (5.4)

Mabs,u =
eg

u−m2
χ

ūχ/εγ(/pχ − /k +mχ)Luψ, (5.5)

giving the total amplitude Mabs = Mabs,s +Mabs,u. We use the amplitude to compute the cross

section for γψ → χφ by the standard procedure. We assume that the ψ particle is at rest with

respect to the photon bath and express the result in terms of the energy of the photon w ≡ ω/mψ.

1 We find

σabs(w) ≡ 1

2mψ

1

2|ω|

∫
dLIPSχφ (2π)4δ4(pψ + k − pχ − pφ)〈|Mabs(k)|2〉

= Γ0
απ

m3
ψw

3
ρ(w) , (5.6)

where

ρ(w) ≡
(
1 + 2w + 2w2

)
ln

1 + 2w

ε2
−
(
2 + 4w + 3w2

)
, (5.7)

at leading order in ε. Note that ρ ∝ w0 and σabs ∝ w−3 as w → 0.

To compute corrections to the decay rate of a particle ψ due to the absorption of thermal photons

from the heat bath, we need to integrate the cross section σabs(w) in Eq. (5.6) multiplied with the

average occupation number for thermal photons. We find

ΓTabs =

∫
dw

dnγ
dw

(w)σabs(w)

= gγ

∫
d3k

(2π)3
fB(ω)σabs(w)

=
α

π
Γ0

∫ ∞

0

dw

w
fB(ω)ρ(w) , (5.8)

where fB(ω) = 1/(eω/T − 1) = 1/(ew/τ − 1) is the Bose-Einstein distribution function and gγ = 2 is

the number of independent photon polarizations. Since fB ∝ w−1 and ρ ∝ w0 as w → 0, we see that

the integrand in Eq. (5.8) is proportional to w−2 as w → 0, and hence ΓTabs indeed has a powerlike

infrared divergence, implying an infinite decay rate.

1We are implicitly considering a cosmological scenario in which the heavy ψ particle has decoupled from the thermal
bath and is out of equilibrium. Furthermore, we assume that the massless φ particle is also not thermalized in the
bath (which may be the case if the coupling g is very weak and ψ decay is the dominant mode of φ production, for
example). Similar assumptions will also be made in the case of muon decay discussed in Section 5.5.
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Figure 5.3: The diagrams for radiative ψ-decays. Note that the topologies of the diagrams are
identical to those for absorption in Figure 5.2, with the exception of the photon line placement.
This results in the relation given in Eq. (5.9).

As in the case of infrared divergences at zero temperature, the infinite rate is unphysical. We

arrived at this unphysical result because we considered only the photon absorption process γψ → χφ

in the calculation of the finite-temperature ψ decay rate. However, as we shall demonstrate, we

cannot consider this absorption process independently of other processes that also result in ψ decay.

In particular, we must also take into account the finite-temperature rates of the radiative decay

process ψ → γχφ and the decay process ψ → χφ. At finite temperature, the emission of photons in

the first process is stimulated by the presence of photons in the thermal bath. At the same order in

α, the second process is affected by T -dependent additions to the virtual-photon propagator. When

all of these processes are included in the calculation, all T -dependent infrared divergences cancel to

yield a finite rate. The nature of this cancellation is similar to zero-temperature cancellations of

infrared divergences in QED, as described in a classic paper by Bloch and Nordsieck [311]. We shall

now demonstrate this cancellation to O(g2α).

5.2.2 Photon emission

We begin by considering the photon-emitting radiative decay process ψ → γχφ. The two contribut-

ing diagrams are shown in Figure 5.3. Comparing these diagrams to those in Figure 5.2, we see that

the amplitudes for emission are formally equivalent to those for absorption given in Eq. (5.4) if we

make the substitutions k ↔ −k and εγ ↔ ε∗γ . This crossing symmetry gives the photon-emission

amplitude from the photon-absorption amplitude,

〈|Mem(k)|2〉 = gγ〈|Mabs(−k)|2〉 , (5.9)
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where the factor of gγ arises because we do not average over photon polarizations on the left-hand

side. The O(g2α) T -dependent part of the rate for this process is then given by

ΓTem =
1

2mψ

∫
dLIPSγχφ fB(ω)(2π)4δ4(pψ − k − pχ − pφ)〈|Mem(k)|2〉 , (5.10)

where the factor of fB(ω) comes from the T -dependent part of the (1+fB) Bose-enhancement factor

for the final-state photons. Comparing Eq. (5.10) to Eq. (5.8), and using Eqs. (5.6) and (5.9), it can

be shown that the expression for the emission rate is very similar to that for the absorption rate

given in Eq. (5.8),

ΓTem =
α

π
Γ0

∫ 1/2

0

dw

w
fB(ω)ρ(−w) . (5.11)

We see that the only differences are ρ(w) → ρ(−w), arising from the k → −k substitution used to

switch the absorbed photon to an emitted photon, and the limits of integration. The upper limit

reflects that the emitted photon is limited by the kinematics to have w < 1/2 in the final state,

whereas an absorbed photon is allowed to have any energy in the initial state. Note that this is

further reflected in the fact that ρ(w) is defined only for −1/2 < w <∞.

5.2.3 Real-radiation corrections

We are now in position to calculate the total rate of ψ decay due to processes involving either the

absorption or emission of real photons,

ΓTreal = ΓTabs + ΓTem =
α

π
Γ0

∫ ∞

0

dw

w
fB(ω)ρreal(w) , (5.12)

where ρreal(w) = ρ(w) + θ(1/2 − w)ρ(−w). Exact integration over w in the above formula is com-

plicated because of the Bose-Einstein factor. However, if we consider the low-temperature case

τ � 1, then fB(ω) is only non-negligible for w . τ � 1/2. We can thus use the approximation

θ(1/2−w)→ 1 and integrate Eq. (5.12) by expanding ρreal(w) in a Taylor series in w. This approx-

imation picks up all the terms that are suppressed by powers of τ , but it misses the exponentially

suppressed terms of O(e−1/τ ). The O(g2α) result is then

ΓTreal =
α

π
Γ0

[(
−4− 4 ln ε+O(ε2 ln ε)

)
J−1 +

(
−2− 8 ln ε+O(ε2)

)
J1τ

2 +O(τ4, e−1/τ )
]
, (5.13)

where we have defined the integrals

Jn ≡ lim
x0→0

∫ ∞

x0

dxxnfB(xT )θ(x− x0) . (5.14)
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k = −2πgµνfB
(
|k0|
)
δ
(
k2
)

Figure 5.4: The T -dependent part of the photon propagator

Note that for n > 0, Jn = Lin+1(1)Γ(n+ 1) is finite2. The infrared-divergent part of the decay rate

due to real-radiation processes is thus given by the J−1 term in Eq. (5.13); we shall now proceed to

show that it is canceled by corresponding terms in the virtual corrections to the decay rate.

5.3 Virtual corrections

As previously mentioned, the rate of the decay process ψ → χφ is affected by T -dependent additions

to the virtual corrections that enter at O(g2α). These affect both the vertex correction shown in

Figure 5.5 and the charged-fermion self-energies shown in Figure 5.6. At finite temperature, the

bare propagator for the virtual photons that appear in these diagrams is modified compared to the

zero-temperature case,

− igµν
k2 + i0

→ −gµν
[

i

k2 + i0
+ 2πfB

(
|k0|
)
δ
(
k2
)]

. (5.15)

The first term in this equation is the usual T = 0 photon propagator; its effects are accounted for

in conventional zero-temperature perturbation theory. The second term in the right-hand side of

Eq. (5.15) leads to temperature-dependent corrections to the decay rate (see Figure 5.4). We note

that the temperature-dependent contribution to the photon propagator accounts for interactions of

real, on-shell photons from the thermal bath with the charged fermions in the initial and final states.

In particular, it represents processes in which a photon from the thermal bath is absorbed by either

of the fermions, while simultaneously another photon is emitted by either of the fermions with the

exact same momentum and polarization as the initial photon.3

5.3.1 Vertex correction

We first consider the T -dependent part of the O(α) correction to the vertex, shown in Figure 5.5.

The T -dependent part of the relevant amplitude is given by

MT
vert = −e2g

∫
d4k

(2π)3
F (k0,k)fB(|k0|)δ(k2) , (5.16)

2A few terms read J1 =
π2

6
, J3 = π4

15
, J5 = 8π6

63
, J7 = 8π8

15
.

3We can see how the term arises by expanding the photon field in terms of creation and annihilation operators in
the usual manner. At T = 0, aa† terms generate the usual propagator, but the a†a terms proportional to the particle
number vanish. At finite temperature, the latter terms are instead proportional to the occupation number fB and
hence are nonvanishing.
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k

ψ

φ

χ

Figure 5.5: The diagram contributing to the T -dependent part of the O(α) correction to the vertex

where

F (k0,k) ≡
ūχγ

µ(/pχ − /k +mχ)L(/pψ − /k +mψ)γµuψ
[
(pχ − k)2 −m2

χ

] [
(pψ − k)2 −m2

ψ

] . (5.17)

We may use the properties of the gamma matrices to simplify this expression. Integration over k0

removes δ
(
k2
)
,

MT
vert = −e2g

∫
d3k

(2π)32ω
[F (ω,k) + F (−ω,k)] fB(ω) , (5.18)

where ω = |k|. Now, by changing the variable of integration from k→ −k in the second term in the

sum enclosed in brackets, the sum becomes [F (k) + F (−k)]. Examining Eq. (5.17), we see that the

numerator of this sum is then independent of k, since k2 = 0 and terms that are linear in k cancel.

However, the denominator of the sum retains its quadratic dependence on k, since it is proportional

to (pχ · k)(pψ · k). By counting powers of ω and recalling that fB ∝ ω−1 at small values of ω, we

observe that the integral in Eq. (5.18) indeed has a powerlike divergence.

We can then take the interference of this amplitude with the tree-level amplitude given in

Eq. (5.2). The T -dependent part of the vertex correction to the decay rate then follows by tak-

ing the usual spin-sum average and evaluating the resulting integral over k, using the appropriate

kinematics of the 2-body decay in the rest frame of the ψ particle. Writing the result in terms of

the integrals Jn as before, we find at O(g2α)

ΓTvert =
α

π
Γ0

[(
4 ln ε+O(ε2 ln ε)

)
J−1

]
. (5.19)

Comparing to the decay rate due to real-radiation processes in Eq. (5.13), we see that part of the

divergent J−1 term is indeed canceled.

5.3.2 Self-energy corrections

The remaining part of the infrared divergence is canceled by the T -dependent corrections to the

fermion self-energy ΣT (p), which enter via the virtual photon propagator in Figure 5.6 and lead

to T -dependent contributions to the full (dressed) fermion propagator STF (p). At T = 0, these
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p + k

−k

p p

Figure 5.6: The diagram contributing to the T -dependent part of the fermion self-energy

self-energy contributions are conveniently treated through the mass shift δm, and the wave-function

renormalization factor Z2. The wave function renormalization factors are usually obtained as deriva-

tives of the self-energy Σ with respect to p, evaluated on the mass shell p2 = m2. This treatment

relies on the fact that at T = 0, Σ depends only on the momentum of the particle p. Unfortunately,

this feature is violated at finite temperature because the thermal bath introduces a preferred ref-

erence frame. As a result, the self-energy of a particle at rest and the self-energy of a particle in

motion are not related in an obvious way.

We will need expressions for the self-energy of both the ψ and χ fermions. We can consider

more generally the T -dependent part of the self-energy ΣT (p) of a fermion with electric charge e and

T = 0 physical mass m. This calculation has been discussed extensively in the literature; below, we

loosely follow the formalism laid out in Ref. [335]. Our ultimate goal will be to use the expression

for ΣT to show that, in the limit p2 → m2
T , the full finite-temperature fermion propagator takes the

form

STF (p) = ZT2
i
∑
s u

T
s (p)ūTs (p)

p2 −m2
T

. (5.20)

That is, the pole of the propagator is shifted to the finite-temperature physical mass mT , and the

fermion wave functions are given by Ψs(p) =
√
ZT2 /2p

0uTs (p)e−ip·x, where ZT2 and uTs (p) are the

finite-temperature wave-function renormalization factor and the finite-temperature spinor, respec-

tively.4 This form implies that self-energy corrections to the decay rate will follow from three distinct

sources: (1) matrix elements will be multiplied by a factor of ZT2 for each external fermion line, (2)

the shift in the physical mass, which will effectively modify the fermion phase-space, and (3) the

spinor completeness relation will be modified, affecting the evaluation of spin sums.

To this end, we start by finding the self-energy ΣT at O(α). We take p to be the off-shell fermion

momentum and −k to be the momentum of the photon in the loop, as shown in Figure 5.6. The

self-energy reads

ΣT (p) = 2e2

∫
d4k

(2π)3

/p+ /k − 2m

(p+ k)2 −m2
fB(|k0|)δ(k2) . (5.21)

4Note that we assume that renormalization has already been carried out at T = 0.
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It is convenient to decompose ΣT (p) as

ΣT (p) = /pcB(p)− 2mcB(p) + /K(p) , (5.22)

where

cB(p) ≡ 2e2

∫
d4k

(2π)3

fB(|k0|)δ(k2)

(p+ k)2 −m2
, (5.23)

Kµ(p) ≡ 2e2

∫
d4k

(2π)3
kµ

fB(|k0|)δ(k2)

(p+ k)2 −m2

→
p2=m2

α

π
J1
T 2

|p|

(
Lp,

p

|p|

[
p0

|p|Lp − 2

])
, (5.24)

and Lp = ln
p0 + |p|
p0 − |p| . We can now use these results for ΣT to find the full (dressed) finite-

temperature fermion propagator STF (p) at O(α) in the usual way,

STF (p) =
i

/p−m− ΣT

=
i[/p(1− cB) +m(1− 2cB)− /K]

p2(1− 2cB)−m2(1− 4cB)− 2p ·K +O(α2)
. (5.25)

Examining the denominator of Eq. (5.25), we see that it can be simplified by defining

δm2
T ≡ 2e2

∫
d4k

(2π)3
fB(|k0|)δ(k2)

=
2π

3
αT 2. (5.26)

Also, since −2p · k = −[(p+ k)2 −m2] + (p2 −m2) + k2, we can write

−2p ·K = −δm2
T + (p2 −m2)cB . (5.27)

Finally, we can expand in (p2 −m2) around the on-shell momentum p̂ (which satisfies p̂2 = m2) by

writing

cB(p) = ĉB + (p2 −m2)ĉB
′
+O

(
(p2 −m2)2

)
, (5.28)

where ĉB ≡ cB(p̂) = 0 and

ĉB
′ ≡ dcB

dp2
(p̂)

= −2e2

∫
d4k

(2π)3

fB(|k0|)δ(k2)

((p̂+ k)2 −m2)2

(
1 +

d(2p · k)

dp2
(p̂)

)

= −α
π

J−1

m2
. (5.29)
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We note that the vanishing of the ĉB coefficient follows from the antisymmetry of the integrand for

cB in Eq. (5.23) at p = p̂ w.r.t. k → −k; for the same reason, the derivative term in the integrand

in Eq. (5.29) vanishes as well.

We are now in position to recover the form of the propagator advertised in Eq. (5.20), by using

Eqs. (5.27) and (5.28) in Eq. (5.25), and keeping only O(α) terms there. We find the result

STF (p) = (1− 2m2ĉB
′
)
i(/p+m− /K)

p2 −m2 − δm2
T

. (5.30)

Comparing this expression with Eq. (5.20) and using Eqs. (5.26) and (5.29), we obtain

ZT2 = 1− 2m2ĉB
′

= 1 + 2
α

π
J−1 , (5.31)

m2
T = m2 + δm2

T

= m2 +
2π

3
αT 2 , (5.32)

∑

s

uTs (p)ūTs (p) = /p+m− /K(p) , (5.33)

where in the last expression the momentum-dependent results of Eq. (5.23) are to be used in evalu-

ating spin sums. These finite-temperature relations affect the decay rate in the three aforementioned

ways; we shall now calculate each of their contributions separately.

First, the finite-temperature wave-function renormalization factor ZT2 simply affects the tree-

level decay rate Γ̃0 of Eq. (5.3) as an overall multiplicative factor; one factor enters for each external

fermion line. This yields the O(g2α) temperature-dependent contribution

ΓTZ2
=
α

π
Γ0

[(
4 +O(ε4)

)
J−1

]
. (5.34)

Combining this with Eqs. (5.13) and (5.19), we see that this contribution cancels the remaining

infrared-divergent J−1 part of the total decay rate.

Second, Eq. (5.32) results in a shift of the pole of the fermion propagator to p2 = m2
T . Since the

pole masses of the fermions define the leading-order rate, the mass shifts ∆mi ≡ mT,i −mi ≈ δm2
T,i/2mi

lead to the following O(g2α) “phase-space” correction

ΓTph =
∂Γ̃0

∂mψ
∆mψ +

∂Γ̃0

∂mχ
∆mχ

=
α

π
Γ0

[(
2 +O(ε2)

)
J1τ

2
]
. (5.35)

Finally, the finite-temperature spin-sum relation found in Eq. (5.33) modifies the calculation of
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matrix elements. Note from Eq. (5.23) that the relation is actually momentum-dependent, and must

be computed for both the ψ particle (at rest) and the χ particle (with energy p0 = mψ(1+ε2)/2). The

leading-order contribution to the decay rate is then found by using the finite-temperature spin-sum

relation in the tree-level calculation, giving the O(g2α) temperature-dependent part,

ΓTK =
α

π
Γ0

[(
−2 + 8 ln ε+O(ε4)

)
J1τ

2
]
. (5.36)

The totalO(g2α) self-energy correction is then given by the sum of these three effects [Eqs. (5.34)–

(5.36)],

ΓTΣ = ΓTZ2
+ ΓTph + ΓTK

=
α

π
Γ0

[(
4 +O(ε4)

)
J−1 +

(
8 ln ε+O(ε2)

)
J1τ

2
]
. (5.37)

5.4 Total decay rate in the toy model

We are now in position to present the final formula for the decay rate of the hypothetical fermion ψ

in a thermal bath. We consider the low-temperature limit T � mψ,mχ and include contributions

from processes involving both real photons and virtual photons; the latter category includes the

vertex correction and corrections arising from the self-energy of charged fermions. The total decay

rate is the sum of these contributions given in Eqs. (5.13), (5.19), and (5.37). We remind the reader

that our calculation is performed in the approximation τ � ε� 1 and that we are interested in the

leading O(ατ2) temperature-dependent correction to the rate. We find

ΓTtot = ΓTreal + ΓTvert + ΓTΣ

= −απ
3
τ2Γ0 +O(τ2ε4, τ4, e−1/τ ) . (5.38)

We see that all the infrared-divergent terms proportional to the integrals J−1 cancel out in the total

rate. We note that this statement remains valid if exact ε-dependence of the rate is restored. Further-

more, we find in Eq. (5.38) that all the terms that contains logarithms of the mass ratio ln ε cancel

in the correction to the total rate, in contrast to individual contributions in Eqs. (5.13) and (5.36).

Cancellation of such terms in the zero-temperature case follows from the Kinoshita-Lee-Nauenberg

theorem [334,336]. We are not aware of a general proof of a similar cancellation at a finite temper-

ature, so it is important to watch for such terms in explicit T 6= 0 computations.
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5.5 Muon decay µ→ eνµν̄e

In this section, we present the temperature-dependent correction to the muon decay rate at low

temperature. The details of the calculation are similar to the preceding discussion of the toy model.

The main difference is that the muon decay is a three-body process, so that integration over the

phase-space of final-state particles is more complex.

The muon decay to electron and neutrinos is described by an effective Lagrangian

L ⊃ 4GF√
2
ēγρLνe ν̄µγρLµ, (5.39)

where GF is the Fermi constant. The leading-order, zero-temperature decay rate reads

Γ̃0 = Γ0

(
1− 8ε2 − 24ε4 ln ε+ 8ε6 − ε8

)
, (5.40)

where now Γ0 ≡
G2
Fm

5
µ

192π3
and ε ≡ me/mµ. Similar to the toy-model case, the radiative corrections to

the rate are given by the sum of real photon emission/absorption corrections, the vertex corrections

and the self-energy corrections. For future reference, we show those corrections separately.

The contribution to the decay rate from real photon emission/absorption reads

ΓTreal =
α

π
Γ0

[(
−17

3
− 4 ln ε

)
J−1 +

(
−70

3
− 32 ln ε

)
J1τ

2

]
. (5.41)

Note that here and below we keep only the leading term in ε for each power of τ ≡ T/mµ, and

consistently neglect all powers of τ beyond τ2. The result for the vertex correction reads

ΓTvert =
α

π
Γ0

[(
5

3
+ 4 ln ε

)
J−1

]
. (5.42)

We note that the temperature dependence in Eq. (5.42) is exact and that higher-order terms in τ

do not appear there.

The self-energy correction to the fermion propagator was discussed in the previous section and

much of that discussion remains valid. For this reason, we just summarize the result. The total

self-energy correction is given by

ΓTΣ =
α

π
Γ0

[
4J−1 +

(
64

3
+ 32 ln ε

)
J1τ

2

]
. (5.43)

The final result for temperature-dependent radiative corrections to the muon decay is given

by the sum of the three contributions of Eqs. (5.41)–(5.43). Including also the T = 0 radiative
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corrections [337,338], we find the final O(α, τ2, ε0) result

Γµ→eνν̄ = Γ0

{
1 +

α

π

[(
25

8
− π2

2

)
− π2

3
τ2

]}
. (5.44)

We note thatO(ατ2) correction to the rate for the muon decay is identical to the analogous correction

to the two-body fermion decay rate in the toy model, suggesting the possibility of deriving and

understanding this result in a simpler fashion. We also note that our result Eq. (5.44) disagrees with

the one given in Ref. [339].

Part of the discrepancy can be traced to the issue of mass singularities. Indeed, in Ref. [339], the

ln ε terms are present even at O(ατ2) contributions to the rate but, as follows from our analysis, such

terms cancel when all contributions are taken into account. Nevertheless, as pointed out already,

whether mass singularities cancel in the rate if higher-order terms in τ are accounted for is an open

question. When we extend the calculation of the muon decay rate to include O(ατ4) terms, we find

that Eq. (5.44) is modified by

∆Γµ→eνν̄ = −α
π

Γ0
64π4τ4

45

(
2 ln ε+

1

3

)
, (5.45)

which shows the logarithmic sensitivity to the electron-to-muon mass ratio. In the low-temperature

regime τ � ε� 1 that we consider in this work, there exist more important corrections to Eq. (5.44)

than the ones displayed in Eq. (5.45). However, most of the “more relevant” corrections involve

powers of the mass ratio ε, while Eq. (5.45) shows logarithmic sensitivity to ε, a unique feature in

the low-temperature regime. It is interesting to point out that by relaxing the relationship between

the temperature T and the mass of the charged particle in the final state (the electron), we obtain new

sources of mass logarithms related to the thermal Fermi-Dirac distribution of fermions in the heat

bath. Complete analysis of the corrections to the muon decay rate for the intermediate-temperature

regime me � T � mµ — where proper interplay of bosonic and fermionic temperature-dependent

corrections becomes important — is beyond the scope of the present discussion, but some details of

the calculation are given in Appendix D.

5.6 Conclusions

Long-lived charged particles appear in a variety of scenarios for early-Universe physics and dark

matter. In all cases, these long-lived particles are bathed for a long time in a gas of photons, giving

rise to the possibility of induced decays through processes such as those shown in Figure 5.2. If

the rate of this induced process is large, then the cosmological effects of these long-lived charged

particles may be substantially modified.

A naive evaluation of the rate for these induced decays leads to a result which diverges as



117

the frequency of the photon in the heat bath that induces the decay vanishes. As with infrared

divergences at zero temperature, a proper calculation of the decay rate requires accounting for all

degenerate processes. Once this is done, the infrared divergences cancel, leading to small correction to

the decay rate. By considering a simple toy model with a two-body final state and a realistic process

— muon decay — with a three-body final state, we found a universal leading finite-temperature

correction δΓ/Γ0 = −α
π

π2T 2

3m2
, where m is the mass of the decaying particle.

In this study, we focused on discussing infrared divergences in decays of charged particles in

the thermal bath. This issue can be sharply defined by considering temperatures that are small

compared to masses of decaying particles and their decay products. An interesting set of questions

arises if we depart from the low-temperature regime and consider the “intermediate”-temperature

scenario, where the mass of the decaying particle is large and masses of decay products are small,

compared to the heat-bath temperature. In such a case, radiative corrections enhanced by the

logarithms of the mass ratios can become numerically important in the context of a variety of

scenarios that occur in the early Universe. For example, light gravitinos that arise in theories of

supergravity with gauge-mediated supersymmetry breaking may be produced by the decay of short-

lived charged staus to taus [211–216]. Temperatures greater than the tau mass will then fall into

the “intermediate”-temperature scenario. If mass-enhanced corrections are indeed present, large

modifications of the stau decay rate and the production rate of light gravitino dark matter become

conceivable. Such modifications may affect the early-Universe thermal history and have implications

for collider phenomenology [34].

Furthermore, in some regions of the supersymmetric parameter space, the process of coannihila-

tion is important in the determination of the dark-matter relic abundance after freeze-out [340,341].

Freeze-out occurs roughly at temperatures T ∼ mSUSY/20 that may be greater than the masses of

some of the products of supersymmetric particle decay, so this indeed presents another intermediate-

temperature scenario. Finite-temperature effects and mass singularities may then become important

in determining the individual scattering and decay rates for charged particles, which would be impor-

tant if one is interested in the detailed thermal history of these particles. However, note that the final

dark-matter relic abundance is most likely not strongly affected by finite-temperature effects, since

only the coannihilation rates (and not other scattering or decay rates) enter the calculation [342]. For

example, in Ref. [343] it was found that finite-temperature corrections to coannihilation occur only

at the 10−4 level. Finite-temperature effects may also affect neutrino decoupling [344]. It has also

been suggested that the original calculations of temperature-dependent corrections to neutron decay

are incomplete [345]. Clearly, there remains much work to be done concerning finite-temperature

effects in the early Universe.
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Appendix A

Kinetic decoupling

The kinetic-decoupling temperature Tkd at which the dark matter WIMPs χ decouple from the

radiation in the early Universe sets the small-scale cutoff in the power spectrum and determines

the mass of the first collapsed structures. An estimate in Ref. [49], which considers effects of free-

streaming and acoustic oscillations, gives the relation between the Tkd and the mass of the first

collapsed structures as

Mc ≈ 33.3 (Tkd/10MeV)
−3
M⊕. (A.1)

The kinetic decoupling process thus links the microscopic scales of particle physics to the macroscopic

scales of astrophysics.

Before deriving the kinetic-decoupling temperature, let us first reexamine the process of chemical

decoupling. Recall that the number of dark matter WIMPs in the early Universe is regulated by

self-annihilation. As we saw in Section 2.1, we can define the chemical-decoupling temperature at

freeze-out by

H(Tcd) = Γan(Tcd). (A.2)

Using the expression for the Hubble expansion rate during the radiation-dominated era, we can write

g
1/2
∗ T 2

cd/Mpl ∼ nχ〈σanvχ〉. (A.3)

Assuming that the WIMPs are nonrelativistic, we can use the thermal equilibrium relations

nχ ∼ (mχT )3/2e−mχ/T (A.4)

vχ ∼ (T/mχ)1/2. (A.5)

With a weak-scale annihilation cross section σan ∼ |M|2/m2
χ ∼ α2/m2

χ, using these relations in

This chapter contains previously unpublished work, which was completed in collaboration with Marc
Kamionkowski and Stefano Profumo.
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Eq. (A.3) gives the approximation

mχ

Tcd
∼ 30. (A.6)

Let us now examine the process of kinetic decoupling of the WIMPs. After the WIMPs fall out of

chemical equilibrium, they can nevertheless remain in kinetic equilibrium via elastic collisions with

the lighter relativistic particles that compose the radiation. That is, although Eq. (A.4) does not

hold as the temperature of the Universe decreases, Eq. (A.5) may still hold, provided that the rate

of elastic collisions is sufficiently high. When the collision rate falls below that required to maintain

kinetic equilibrium, then the WIMPs are said to be kinetically decoupled from the radiation. We

see from Eq. (A.6) that this happens at a temperature that is at most a few GeV.

To first approximation, we can define the kinetic-decoupling temperature Tkd via an analogue

of Eq. (A.2). However, there is a crucial difference: elastic collisions, unlike annihilations, do not

destroy the particles involved. Thus, a WIMP may collide with multiple relativistic particles in

order to maintain Eq. (A.5). The relevant rate to compare to the Hubble expansion rate is then the

relaxation rate, i.e., the inverse of the timescale for Ncol collisions, the number required to maintain

kinetic equilibrium, to occur. That is, Tkd satisfies

H(Tkd) = Γrlx(Tkd) = N−1
col

∑

f

nf 〈σfχ〉, (A.7)

where nf ∼ T 3
kd is the thermal equilibrium comoving number density of the relativistic species f ,

σfχ is the cross section for elastic scattering of f particles from the WIMP, and the sum is taken over

all species of light particles that are relativistic at Tkd. Again, all of the variables in this expression

are functions of temperature.

We can estimate Ncol by assuming that a WIMP undergoes a random walk as it scatters off

multiple light particles [60]. The relaxation timescale is then the amount of time needed for the

WIMP to undergo a total momentum change ∆pχ on the order of its own momentum pχ ∼ (mχT )1/2

[given by Eq. (A.5)], thus maintaining kinetic equilibrium. Since the momentum imparted by each

collision is on the order of the momentum of the light particle, ∆p ∼ pf ∼ T for each collision. Then

the total momentum change of the WIMP after Ncol collisions is ∆pχ ∼ N1/2
col ∆p ∼ N1/2

col T . Kinetic

equilibrium is thus established when ∆pχ ∼ pχ, or after Ncol ∼ mχ/T collisions.

Using these results, we arrive at an analogue to Eq. (A.3) that serves to define the kinetic-

decoupling temperature Tkd:

1.66g
1/2
∗ T 2

kd/Mpl = (Tkd/mχ)
∑

f

nf 〈σfχ〉. (A.8)
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f̃L or f̃R

χ, 1

f, 2

χ, 3

f, 4

s-channel sfermion exchange

Z

χ, 1

f, 2

χ, 3

f, 4

t-channel Z-boson exchange

f̃L or f̃R

χ, 1

f, 2

f, 4

χ, 3

u-channel sfermion exchange

Figure A.1: Feynman diagrams for scattering of a fermion f by a neutralino χ. Double arrows
indicate that the neutralinos are Majorana spinors.

Here, we include a degeneracy factor in the comoving number density nf to account for the multi-

plicity of particle, antiparticle, and spin states. Accordingly, we take σfχ to be the spin-averaged

cross section. Since σfχ will be a function of the energy of the light particles, E ∼ T , the quantity of

interest is 〈σfχ〉, the average of the cross section over the thermal distribution of the light particles.

Note that more exact definitions of Tkd have been formalized; these treatments utilize the Boltz-

mann equation to define more rigorously the conditions at which kinetic decoupling can be said

to occur. Solving Eq. (A.8) nevertheless gives an approximation for Tkd. However, in order to do

this we must first find 〈σfχ〉 as a function of Tkd; i.e., we must calculate cross sections for elastic

scattering of various light particles from WIMPs.

A.1 Elastic-scattering cross sections

We wish to calculate the cross section for elastic scattering between the light relativistic particles

comprising the radiation and the WIMPs, which we take to be the neutralino of the minimally su-
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persymmetric standard model (MSSM). Since the neutralino is weakly interacting, we are primarily

interested in scattering of light fermions (e.g., quarks and leptons); scattering of photons is sup-

pressed. Since the neutralinos are nonrelativistic and much more massive than these light fermions,

we can also evaluate the cross sections in the fixed-target limit. This approximation should suffice

for the simplified model of kinetic decoupling implied by Eq. (A.8); however, note that the more

rigorous treatments mentioned above can accommodate more sophisticated calculations of the cross

sections.

Let us examine the various ways in which scattering of fermions by neutralinos can occur. The

relevant interaction Lagrangian terms are

Lf̃fχ = f̃Lf̄(gL
f̃Lfχ

PL + gR
f̃Lfχ

PR)χ

+ f̃Rf̄(gL
f̃Rfχ

PL + gR
f̃Rfχ

PR)χ+ h.c.

≡ f̃Lf̄KLχ+ f̃Rf̄KRχ+ h.c. (A.9)

LZff = Zµf̄γ
µ(gLZffPL + gRZffPR)f + h.c.

≡ Zµf̄Lµf + h.c. (A.10)

LZχχ =
1

2
Zµχ̄γ

µ(gLZχχPL + gRZχχPR)χ+ h.c.

≡ Zµχ̄Mµχ+ h.c. (A.11)

Here, γµ are the Dirac matrices and PL and PR are the projection matrices; we have also defined

the matrices KL, KR, Lµ and Mµ. The Lorentz indices on Mµ and Lµ follow the Einstein sum-

mation convention, treating the set of Dirac matrices γµ as a 4-vector. The metric is given by

η = diag(1,−1,−1,−1) in this section.

These interactions allow scattering of a fermion f by a neutralino χ by either Z-boson exchange

or sfermion exchange (f̃L or f̃R). The corresponding tree-level Feynman diagrams are shown in

Figure A.1.

These diagrams represent the amplitudes

Ms =
1

s−m2
f̃L

+ ıΓf̃Lmf̃L

(ū4KLv3)(v̄1K̄Lu2)

+ (L→ R) (A.12)

Mt = − 1

t−m2
Z

(ū4L
µu2)(ū3Mµu1) (A.13)

Mu =
1

u−m2
f̃L

(ū4KLu1)(ū3K̄Lu2)

+ (L→ R). (A.14)
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Here, s, t, and u are the Mandelstam variables, C is the charge conjugation matrix, and the u-

spinors and v-spinors are the free-particle and free-antiparticle spinor wave functions. We have also

used the standard Breit-Wigner prescription for s-channel resonances, i.e., Γf̃ is the decay rate of

the sfermion f̃ . Furthermore, we take the low-energy limit of the Z-boson propagator. The total

amplitude M for scattering is given by the sum of these amplitudes; note that

|M|2 = |Ms|2 + |Mt|2 + |Mu|2

+ 2< (MsM∗t +MsM∗u +MtM∗u) . (A.15)

From Eqs. (A.12)–(A.14), we can compute and average the spin sums of each term of Eq. (A.15)

(using the completeness relations of Majorana free-particle spinor wave functions). The averaged

spin sums of the individual terms in Eq. (A.15) are given by:

〈|Ms|2〉 =
S

(s−m2
f̃L

+ ıΓf̃Lmf̃L
)(s−m2

f̃R
− ıΓf̃Rmf̃R

)

× Tr
(

(/p4
+m4)KL(/p3

−m3)K̄R

)
Tr
(

(/p2
+m2)KR(/p1

−m1)K̄L

)

+ (L↔ R) + (L→ R) + (R→ L) (A.16)

〈|Mt|2〉 =
S

(t−m2
Z)

2 × Tr
(

(/p4
+m4)Lµ(/p2

+m2)L̄ν
)

Tr
(

(/p3
+m3)Mµ(/p1

+m1)M̄ν

)
(A.17)

〈|Mu|2〉 =
S

(u−m2
f̃L

)(u−m2
f̃R

)

× Tr
(

(/p4
+m4)KL(/p1

+m1)K̄R

)
Tr
(

(/p3
+m3)K̄L(/p2

+m2)KR

)

+ (L↔ R) + (L→ R) + (R→ L) (A.18)

〈MsM∗t 〉 =
S

(s−m2
f̃L

+ ıΓf̃Lmf̃L
)(t−m2

Z)

× Tr
(

(/p4
+m4)KL(/p3

−m3)(CM̄µTC−1)(/p1
−m1)K̄L(/p2

+m2)L̄µ

)

+ (L→ R) (A.19)

〈MsM∗u〉 =
S

(s−m2
f̃L

+ ıΓf̃Lmf̃L
)(u−m2

f̃R
)

× Tr
(

(/p4
+m4)KL(/p3

−m3)KR(/p2
−m2)K̄L(/p1

+m1)K̄R

)

+ (L↔ R) + (L→ R) + (R→ L) (A.20)

〈MtM∗u〉 = − S

(t−m2
Z)(u−m2

f̃L
)

× Tr
(

(/p4
+m4)Lµ(/p2

+m2)KL(/p3
+m3)Mµ(/p1

+m1)K̄L

)

+ (L→ R) (A.21)
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Here, (L↔ R) indicates an exchange of indices in the original term, while (L→ R) and (R→ L)

indicate a replacement of indices in the original term. We also use the standard Feynman slash

notation /a ≡ aµγµ. The Lorentz indices on Mµ and Lµ follow the Einstein summation convention,

treating the set of Dirac matrices γµ as a 4-vector. The metric is given by η = diag(1,−1,−1,−1).

One can also note that CM̄µTC−1 = −ηµνMν† in Eq. (A.19); the placement of indices here is

intended, since γµ is not a true 4-vector. The factor S accounts for the average over the final spin

states, and is given by the reciprocal of the multiplicity of the final spin states; e.g., S = 1/4 for

electron-neutralino scattering, and S = 1/2 for neutrino-neutralino scattering.

We can now find the spin-averaged cross sections for elastic fermion-neutralino scattering. Since

the neutralino is relatively massive, we can approximate the elastic cross sections in the frame of

the neutralino in the limit that the fermions are massless and that the recoil of the neutralino is

negligible. That is, we use the expression

dσfχ
dΩ

=
|M|2f

(8πmχ)2
. (A.22)

We can also assume that the particles have the following four-momenta before and after the collision:

p1 = (mχ, 0, 0, 0) (A.23)

p2 = Ef (1, 0, 0, 1) (A.24)

p3 = (mχ, 0, 0, 0) (A.25)

p4 = Ef (1, cos θ, 0, sin θ). (A.26)

Note that this implies that the Mandelstam variables are given by

s = (p1 + p2)2 ≈ m2
χ + 2mχEf (A.27)

t = (p1 − p3)2 ≈ 0 (A.28)

u = (p1 − p4)2 ≈ m2
χ − 2mχEf . (A.29)

Using these momenta in the expressions given by Eq. (A.16)-A.21 in the Appendix, we can explicitly

compute the traces. Thus, we have all the components needed to evaluate Eq. (A.22), and can find

the spin-averaged cross section for each fermion species.

Finally, we need to compute the thermal average 〈σfχ〉. Since we find that σfχ ∝ E2
f (ignoring

corrections of order Ef/mχ), we make the approximation

〈σfχ(Ef )〉 ≈ σfχ(
√
〈E2

f 〉). (A.30)
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For a distribution of relativistic fermions at temperature T , we have

√
〈E2

f 〉 ≈ 3.60T. (A.31)

Using this in Eq. (A.30), we find the thermally averaged spin-averaged cross section for fermion-

neutralino elastic scattering as a function of temperature. We can now solve Eq. (A.8) to find the

kinetic-decoupling temperature for a given parameterization of the MSSM.

We have merely outlined the calculation of the kinetic-decoupling temperature and the microhalo

cutoff mass here; a more rigorous presentation and complete results are presented in Ref. [70]. For

the MSSM, typical values are Tkd ∼ MeV–GeV and Mmin ∼ 10−11–10−3 M�.
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Appendix B

Derivation of P (F )

Here we derive the relation between the flux-density distribution P1(F ) and the flux PDF P (F ). Such

a calculation is termed “P (D) analysis” in the literature, as it was first performed for observations

of faint radio sources that produced “deflections” of the measuring apparatus. This P (D) analysis

is useful in determining if an observed diffuse background is actually composed of numerous faint

point sources. If this is the case, then there will be fluctuations in the diffuse signal from the

random Poisson clustering of point sources in each beam. The shape of P (F ) thus depends not only

on P1(F ), but also the mean number µ of sources [Eq. (2.49)] in each beam.

We wish to find the probability distribution for a total flux F in a beam, given that it is the

sum F =
∑k
i Fi of the fluxes Fi from individual microhalos. Each of the Fi is a random variable

with probability distribution P1(Fi). Furthermore, the number k of fluxes Fi entering into the sum

is itself a random variable given by a Poisson distribution with mean µ. Let us call Pk(F ) the

probability that k random variables Fi sum to F ; i.e., the probability that k microhalos emit a total

flux F . Then

P (F ) =

∞∑

k=0

℘ (µ, k)Pk(F ), (B.1)

where ℘ (µ, k) is a Poisson probability distribution for k with mean µ.

It now remains to determine Pk(F ). For k = 0, it is clear that P0(F ) = δ(F ); P1(F ) is given.

For k > 1, Pk(F ) is given by

Pk(F ) =

∫ ∞

0

dF1 . . .

∫ ∞

0

dFk

(
k∏

i=1

P1 (Fi)

)
δ(F −

k∑

i=1

Fi). (B.2)

The easiest way to compute Eq. (B.2) is to note that the Dirac delta function transforms the

Material in this chapter was first published in “The gamma-ray-flux PDF from Galactic halo substructure,”
Samuel K. Lee, Shin’ichiro Ando, and Marc Kamionkowski, JCAP 0907, 007 (2009) [30]. Reproduced here with
permission, c©2009 by IOP Publishing Limited.



126

integral into a convolution [104,113]. To see this, let us examine the integral for k = 2:

P2(F ) =

∫ ∞

0

dF1

∫ ∞

0

dF2 P1(F1)P1(F2) δ(F − (F1 + F2))

=

∫ ∞

0

dF1 P1(F1)P1(F − F1)

= (P1 ∗ P1)(F ). (B.3)

It follows that Pk(F ) = (Pk−1 ∗ P1)(F ); then by induction, Pk(F ) is given by P1(F ) convolved (or

autocorrelated) with itself k times. Using the convolution theorem, it then follows that

Pk(F ) = F−1
{
F{P1(F )}k

}
, (B.4)

where F denotes a Fourier transform. Note that Eq. (B.4) also holds for k = 0 (and trivially for

k = 1).

Inserting Eq. (B.4) into Eq. (B.1) and using the linearity of the inverse Fourier transform, we

find

P (F ) =

∞∑

k=0

e−µµk

k!
F−1

{
F{P1(F )}k

}

= e−µF−1

{ ∞∑

k=0

(µF{P1(F )})k
k!

}

= F−1
{
eµ(F{P1(F )}−1)

}
. (B.5)

Eq. (B.5) gives the desired relation for P (F ) in terms of P1(F ) and µ. Although the presence of the

inverse Fourier transform prevents further analytic simplification in general, this expression can be

computed numerically using fast Fourier transforms on a discretized P1(F ).
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Appendix C

Generation of directional-detection
events

For simple velocity distributions, Eq. (3.15) may be used to generate random scattering events and

their corresponding nuclear-recoil momentum vectors directly from the analytic form of the recoil

spectrum. However, for more general velocity distributions, an analytic form for the Radon transform

may not be easily found. In such a case, it is then easier to use the velocity distribution to generate

random incoming-WIMP velocity vectors, and then to randomly generate the corresponding nuclear-

recoil momentum distribution by noting that the elastic scattering is isotropic in the center-of-mass

frame of the WIMP-nucleus system.

We first note that the rate for scattering by a WIMP with velocity v is proportional to vf(v),

as can be shown from Eqs. (3.15) and (3.16). We thus draw randomly generated incoming-WIMP

velocity vectors from the distribution proportional to vf(v). This is done using the method given

in Section 7.3 of Ref. [346]. That is, we uniformly sample points in the 4-dimensional space (v, g),

where the range of sampled velocity vectors v is determined by the truncation by the escape speed,

and g ∈ [0,max(vf)] is at most the maximum value of vf(v). If a sampled point fails to satisfy the

criteria vf(v) ≥ g, then the sampled velocity vector v is discarded; otherwise, it is retained. The

retained velocity vectors will then be distributed according to vf(v), as was desired.

We then use these generated incoming-WIMP velocities to generate the corresponding nuclear

recoil momenta. We first note that the recoil direction angular distribution is isotropic in the center-

of-mass frame for nonrelativistic elastic scattering events; however, this clearly implies that that the

lab-frame recoil direction distribution is anisotropic, and will be a function of the incoming velocity

v. To be specific, it is the distribution of the angle between v and q̂ that is anisotropic in the lab

frame. Thus, we could determine the appropriate distribution for each generated v, and then draw

the recoil directions from these anisotropic distributions. However, it is easier to simply randomly

Material in this chapter was first published in “Probing the local velocity distribution of WIMP dark matter with
directional detectors,” Samuel K. Lee and Annika H. G. Peter, JCAP 1204, 029 (2012) [33]. Reproduced here with
permission, c©2012 by IOP Publishing Limited.
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draw the recoil direction from the isotropic center-of-mass frame distribution, and then transform it

to the lab frame appropriately.

Let the direction v̂ of the incoming-WIMP lab-frame velocity vector be given by the spherical

coordinates (θv, φv). Furthermore, let the angle between v̂ and the nuclear recoil direction q̂ be θ

in the lab frame, and θCM in the center-of-mass frame; these angles are related by

cos θ =
1√
2

(1 + cos θCM)1/2. (C.1)

Isotropic scattering in the center-of-mass frame implies that cos θCM is uniformly distributed in

the range [−1, 1]; the distribution for cos θ then follows. However, it also implies that the angle φ

between the plane defined by the lab-frame z-axis and v̂ and the scattering plane (defined by q̂ and

v̂) is uniformly distributed in the range [0, 2π].

Thus, we determine q̂ by first randomly generating the vector q̂0 with spherical coordinates

given by (θv + θ(θCM), φv), which lies in the ẑ − v̂ plane and forms an angle θ with v̂. Rotating

q̂0 by the randomly generated angle φ around the v̂ axis then gives q̂ with a distribution that is

kinematically consistent with the incoming-WIMP velocity v. That is, q̂ = R(φ, v̂)q̂0, where in

Cartesian coordinates

R(φ, v̂) =




cosφ+ v̂2
x(1− cosφ) v̂xv̂y(1− cosφ)− v̂z sinφ v̂xv̂z(1− cosφ) + v̂y sinφ

v̂xv̂y(1− cosφ) + v̂z sinφ cosφ+ v̂2
y(1− cosφ) v̂y v̂z(1− cosφ)− v̂x sinφ

v̂xv̂z(1− cosφ)− v̂y sinφ v̂y v̂z(1− cosφ) + v̂x sinφ cosφ+ v̂2
z(1− cosφ)


 .

(C.2)

Finally, the nuclear-recoil momentum q = 2µ cos θ is given by the kinematics. Thus, we have

shown how to randomly generate the recoil momentum vectors q = qq̂ corresponding to randomly

generated incoming-WIMP velocity vectors v drawn from a given velocity distribution f(v).
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Appendix D

Mass singularities and thermal
fermionic corrections

At zero temperature, mass singularities from real-radiation, vertex, and self-energy diagrams all

cancel [337]. Whether the same is true at finite temperature is still an interesting open question.

As mentioned above, we find in Eq. (5.38) no mass singularities.1 However, we have not yet

proven that the decay rate remains finite in the ε→ 0 limit of a massless χ particle. This is because

we assumed T � mχ � mψ, so that only the photons had a non-negligible thermal distribution

fB . Again, factors of fB entered into the calculation of the decay rate in two places: (1) in the

calculation of the real-radiation corrections, via the thermal average for absorbed photons and

the Bose-enhancement factor for emitted photons, and (2) the modification of the bare photon

propagator given in Eq. (5.15).

However, at higher temperatures the thermal fermion populations may also be non-negligible. To

illustrate their effect, we return to discussion of the toy model. Let us assume that the temperature

satisfies mχ � T � mψ, as will be the case in the massless limit under discussion.2 At these

“intermediate” temperatures, we must then consider the Fermi-Dirac distribution for the χ particles,

fF (Eχ) =
1

eEχ/T + 1
. (D.1)

Factors of fF for the χ particle will then enter the calculation of the decay rate similarly in two

places.

First, a (1 − fF ) Pauli-blocking term for the final-state χ particles will be present, since the

This chapter contains previously unpublished work, which was completed in collaboration with Marc
Kamionkowski and Kirill Melnikov.

1Note that at this order in perturbation theory, the virtual corrections can only contribute at up to O(τ2), and
therefore can only cancel out infrared divergences and mass singularities from the real corrections that appear at this
order in the temperature. We do not explicitly give the real corrections at O(τ4) and higher, but they appear to
be free of infrared divergences and mass singularities for the toy model under consideration. However, preliminary
calculations show that this does not appear to be the case for muon decay.

2At even higher temperatures satisfying T � mψ , the Fermi-Dirac distribution of the ψ particles would also be
non-negligible. In this case, the O(α0τ) correction to the decay rate due to time dilation caused by the thermal
motion of the ψ particles would dominate over the thermal corrections under discussion [347].
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p
= −2π(/p+m)fF

(
|p0|
)
δ
(
p2 −m2

)

Figure D.1: The T -dependent part of the fermion propagator

emission of χ particles will be reduced by the presence of the χ particles in the thermal bath. For

our toy model, the effect of this additional term will be exponentially suppressed for the decay and

absorption rates (since there, the χ energy is fixed by the kinematics to be Eχ ≈ mχ/2 � T , so

that 1−fF (Eχ) ≈ 1). However, for the emission rate, the (1−fF ) Pauli-blocking term will multiply

the (1 + fB) Bose-enhancement term for the final-state photons, leading to two new temperature-

dependent pieces. The cross-term piece that goes as fB(ω)fF (Eχ) will be suppressed, which again

follows from the kinematics (since ω/T will be relatively large whenever Eχ/T is small). However,

the term that goes as fF (Eχ) will introduce contributions to the real radiation rate that depend on

integrals of the Fermi-Dirac distribution.

Second, the bare fermion propagator will be modified by the addition of a temperature-dependent

part,
i(/p+m)

p2 −m2
→ i(/p+m)

p2 −m2
− 2π(/p+m)fF (|p0|)δ(p2 −m2) , (D.2)

which we will represent by the fermion line shown in Figure D.1. This propagator will enter the real

corrections via the diagrams shown in Figure D.2. By similar kinematical arguments, we see that

the contribution from the absorption process is again exponentially suppressed, and that only the

emission contribution is non-negligible.

The modified fermion propagator will also enter via the vertex and self-energy corrections as

shown in the diagrams in Figure D.3. These diagrams will then introduce additional virtual correc-

tions that depend on Fermi-Dirac integrals. Notably, the relations given in Eqs. (5.31)–(5.33) for

ψ

k

φ

χ

ψ

φ

χ

k

Figure D.2: The additional diagrams (appearing at temperatures mχ � T � mψ) that contribute
to the T -dependent part of the real corrections, including the thermal corrections to the bare fermion
propagator. The absorption contribution is exponentially suppressed.
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k

ψ

φ

χ

p + k

−k

p p

Figure D.3: The additional diagrams (appearing at temperatures mχ � T � mψ) that contribute
to the T -dependent part of the virtual corrections, including the thermal corrections to the bare
fermion propagator.

the fermion self-energy corrections will now have additional terms,

ZT2 = 1− ĉF − 2m2(ĉB
′ − ĉF ′) , (D.3)

m2
T = m2(1 + 2ĉF ) + δm2

T , (D.4)
∑

s

uTs (p)ūTs (p) = /p+m− /K(p) , (D.5)

where now

δm2
T ≡ 2e2

∫
d4k

(2π)3

[
fB(|k0|)δ(k2) + fF (|k0|)δ(k2 −m2)

]
, (D.6)

K(p) ≡ 2e2

∫
d4k

(2π)3
k

[
fB(|k0|)δ(k2)

(p+ k)2 −m2
− fF (|k0|)δ(k2 −m2)

(p− k)2

]
, (D.7)

ĉF ≡ 2e2

∫
d4k

(2π)3

fF (|k0|)δ(k2 −m2)

(p̂− k)2
, (D.8)

ĉF
′
(p) ≡ −2e2

∫
d4k

(2π)3

fF (|k0|)δ(k2 −m2)

((p̂− k)2)2

(
1− d(2p · k)

dp2
(p̂)

)
. (D.9)

Hence, to find the corrections to the χ propagator in the diagrams in Figure D.3, we take m = mχ

in the above, and the kinematics of the decay give the derivatives of the off-shell χ momentum p,

dp0

dp2
(p̂) = −d|p|

dp2
(p̂) =

1

2mψ
, (D.10)

to be used in the evaluation of ĉF
′
(p) in Eq. (D.9).3

Since these Fermi-Dirac integrals are relatively nontrivial, we leave their evaluation (and hence,

the determination of the finite-temperature decay rate at intermediate temperatures obeying mχ �
T � mψ) to future work. However, we note that similar calculations have been carried out in the

literature for neutral initial-state particles. For example, the thermal fermionic corrections to the

H0 → e+e− decay rate have been found. Furthermore, Ref. [323] found that mass singularities

3In our case, ĉF
′(p) is independent of the momentum since mφ = 0, but this is not true in general.



132

from the fermionic contributions do not completely cancel out at these intermediate temperatures,

leading to corrections to the decay rate as large as O(10%) when me/T ≈ 5%. Still, a considerable

body of subsequent work has found that mass singularities cancel, even at finite temperature, in a

variety of processes, and it suggests — though by no means proves — that they may always cancel.

If this speculation is correct, then the result of Ref. [323] would need to be revisited.

For the case of muon decay, we find that mass singularities cancel at O(ατ2). This disagrees with

Ref. [339], which found mass singularities at this order from the low-temperature thermal photonic

corrections alone, and claimed that these were cancelled by thermal fermionic corrections at high

temperature. Again, the cancellation of mass singularities in this process needs further investigation.
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