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Abstract

Many gene regulatory motifs in both prokaryotes and eukaryotes involve physical manipulations of

the genetic material, often on length scales short enough that the mechanical properties of the DNA

significantly impact gene expression. One class of such manipulations, called “action at a distance”,

includes transcription factor-mediated DNA looping, in which a binding site some distance away on

the DNA is brought into close proximity with the transcription machinery at the promoter. DNA

looping is a key component of several important regulatory systems in bacteria, and is crucial to

the combinatorial control that is common at eukaryotic promoters regulated by more transcription

factors than can physically bind adjacent to the promoter. Here we use a prototypical DNA looping

protein, the Lac repressor from E. coli, to explore questions regarding the role of DNA mechanics

in DNA looping and combinatorial control, particularly concerning the role of sequence flexibility

in short-length-scale looping. We combine a statistical mechanical model of looping by the Lac

repressor with a single-molecule technique called tethered particle motion that allows us to quantify

this looping, and the systematic tuning of four biologically relevant and experimentally tractable

parameters: loop length, loop sequence, repressor-DNA affinity, and repressor concentration. We

show that this combination is a powerful approach to measuring repressor-DNA binding affinities

and sequence-dependent DNA flexibilities in a way that is orthogonal, and therefore complementary,

to conventional ensemble assays. Our results show that the sequence dependence to looping is more

complicated than has been observed in other contexts, suggesting that “sequence flexibility” as a

general term is misleading, and, we argue, that the measurement of sequence flexibilities depend

more strongly than previously appreciated on the shape of the deformation used to make the mea-

surement. Finally, we present preliminary results with a more complicated system that is a case
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study for broader issues in combinatorial control, and a new hidden Markov model approach, based

on variational Bayesian inference, to analyze these more complicated systems, which we hope will

allow more precise dissections of, and more robust extraction of kinetic parameters from, tethered

particle motion assays.
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Chapter 1

Introduction

1.1 The importance of the physical state of the DNA to gene

regulation

The publication of the first draft of the sequence of the human genome in 2001 [1], a crucial moment

in an effort that began with the first complete genomic sequence of a free living organism (that of

the bacterium Haemophilus influenzae) in 1995 [2], and the publication of numerous other genomes

from mice [3] to platypus [4] since then, was in many ways one of the crowning achievements of

modern biology. To name two of many revolutionary changes brought about by these fully sequenced

genomes, the completion of the human genome ushered in an entirely new era of medical research—

for example, by streamlining the process by which disease genes of unknown biochemical function

are identified [1, 5]—and offered a clear path towards a not-so-distant future of highly personalized

medical treatment [6]. Fully sequenced genomes have also spawned a host of additional bioinformatic

databases that contain information related to, but a level above, the sequence of nucleotides in a

genome (e.g., RegulonDB [7] and EcoCyc [8] for E. coli), such as locations of binding sites for

transcriptional regulators.

As important as these advances to our understanding of the content of genomes have been, it has

become increasingly clear that genomic-sequence and protein-binding-site databanks do not contain

the sum total of the information content of a cell’s genome. Rather the mechanical properties of the

DNA polymer in which the genomic sequence information is encoded, and the physical state of the
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DNA in a cell, are known from many examples to play crucial roles in the regulation of the genetic

information encoded by the sequence. For example, cellular differentiation and tumorigenesis often

involve the rearrangement of chromatin (the packaged and organized DNA in eukaryotic nuclei),

indicating that the localization of a gene in a eukaryotic nucleus can control the level of its output

[9, 10, 11]. And it is now clear that mutations to DNA sequence alone cannot account for all aspects

of cellular progression from normal to cancerous, but instead that epigenetic changes—including

modifications to the structure and organization of the DNA in the cell—play significant roles in the

progression of many types of cancers [12].

Perhaps the most telling indicator that genome structure and the mechanical properties of DNA

are tightly controlled by cells is the fact that all domains of life express proteins whose sole function

seems to be genomic structuring. Eukaryotic genomes are tightly spooled around protein complexes

called histones [13], with the resulting DNA-protein complex, called a nucleosome, being the funda-

mental unit by which the approximately 3 gigabases of DNA (about 1 meter) are packaged into the

roughly 100 µm3 nucleus [14, 15, 16]. Nucleosomes play a crucial role in the regulation of transcrip-

tion as well [14, 15], with genes sequestered into nucleosomes expressed less than genes in the linker

DNA that connects adjacent nucleosomes. Bacteria express at least six kinds of “nucleoid-associated

proteins” (NAPs), which are thought to package the genome in a similar manner to nucleosomes [17].

Many of these NAPs are DNA-bending proteins—that is, they modify the flexibility of the genomic

DNA, not only its organization [17, 18]—and are known to influence gene expression [17, 19, 20].

Mitochondrial genomes (contained in structures called mt-nucleoids) are packaged and organized

by nonspecific DNA-bending proteins as well, and there is evidence that the organization of mt-

nucleoids changes with cellular metabolic demands [21]. Archea also express at least two kinds of

architectural proteins, called chromatin proteins, that compact the genome and probably also in-

fluence DNA metabolic processes; one class, called histones, is homologous to eukaryotic histones

[22, 23].

Cellular manipulation of the DNA polymer is not restricted to the structuring and packaging

of genomes, however. Instead DNA is subjected to a wide variety of physical manipulations in
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cellular processes as diverse as the looping events that occur during DNA replication [24, 25], the

bending of DNA during recombination [24, 25], and the physical rearrangements of genomic DNA

induced by transcription factors [24, 25, 26, 27]. In fact one of the most ubiquitous classes of

regulatory architecture found in all domains of life depends upon the physical manipulation of

the DNA polymer: so-called “biological action at a distance”, where proteins (often transcription

factors) bring two sites separated by some distance on the DNA into close proximity, thus looping

the intervening DNA [28, 29, 30].

Interestingly, many of the biological manipulations experienced by DNA, but especially many

cases of “action at a distance” in transcriptional regulation, involve bending and twisting the DNA

on length scales that are short in comparison with its natural scale of deformation, that is, the per-

sistence length (discussed in more detail below) [27, 31]. Eukaryotic DNA is subjected to enormous

deformations when packed in nucleosomes, with 147 bp of DNA (already smaller than the persis-

tence length) wrapped 1 3/4 times around the histone octamer [13, 26]. Similarly, in the context

of prokaryotic transcription factor-mediated DNA looping, not only are such lengths the default in

naturally occurring transcriptional networks, but the optimal in vivo lengths as determined by the

maximal regulatory effect are often at loop lengths smaller than 100 bp [27, 32, 33].

Here we examine the role of the mechanical properties of the DNA polymer, and especially the role

of sequence-dependent bendability, in the regulation of gene expression at the level of transcription.

We will focus on the short-length-scale bending that is so prevalent in cellular processes but that,

as will be described in more detail below, remains poorly understood. Although many aspects

of gene regulation involve such short-length-scale bending, we will focus on the process of DNA

loop formation by a prokaryotic transcription factor, with some reference as well to nucleosome

positioning, which impacts transcriptional output in eukaryotes, and to the DNA-bending proteins

that structure the genome in prokaryotes.



4

1.2 DNA looping and combinatorial control

DNA looping, in which two disparate sites on a single DNA molecule are brought together by a

single protein or protein complex, is one kind of biological “action at a distance” and occurs in both

prokaryotes and eukaryotes, though not necessarily by the same mechanisms in both [25, 26, 28,

29, 30]. The prevalence of loop formation in transcriptional regulation should not be surprising:

given the widespread occurrence of combinatorial control in both eukaryotes and prokaryotes (i.e.,

the fact that more than one transcription factor at a time often influences the regulatory state of

a promoter, as shown for a few key examples in Figs. 1.1(C) and 1.3), it is not surprising that

regulatory proteins must bind other sites besides those immediately adjacent to the promoter they

regulate [25, 34]. There is only space for one or two regulatory proteins to bind and “touch” the

transcription apparatus directly. The side effect of such distal binding is that the DNA has to loop

in some way to give access to the promoter of interest.

DNA looping was first discovered in the ara operon in E. coli [35], where it is mediated by a

protein called AraC that has two DNA binding domains in the same molecule. When these two

domains bind to two sites separated by some distance along the DNA, the intervening DNA is

looped out, and the genes of the ara operon are repressed [35, 36]. Such looping induced by a two-

headed DNA binding protein, with one binding site near the promoter of interest and the other some

distance away, has since been shown to play a key role in the regulation of several other operons in

E. coli, including the lac, deo, and gal operons [26]. It is also a key feature of a well-studied viral

protein called the lambda phage repressor, which was the first looping protein whose activity was

verified in vitro [26, 37]. In the case of these two-headed looping proteins, looping is thought not

only to enable combinatorial control, but also to contribute to efficient transcriptional control by

increasing the effective concentration of the transcription factor in the vicinity of the promoter [25].

If one head of a DNA looping transcription factor releases from the DNA, it is more likely to rebind

and reform the loop than to dissociate entirely from the DNA, as it is tethered near its binding site

by the second head. Additional implications for the role of looping in other aspects of fine-tuning

control of transcription continue to be suggested [38, 39].
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Figure 1.1: Action at a distance and combinatorial control in prokaryotes and eukaryotes. (A) Many promoters in E.
coli are regulated by one or more transcription factors that bind tens or even hundreds of base pairs away from the
promoter they regulate. Shown here are all known transcription factor binding sites in E. coli; many do bind adjacent
to the promoter, indicated by the blue box, but a significant number bind some distance away. Data from RegulonDB;
figure courtesy of Hernan Garcia (modified from [40], c©2010 Elsevier Ltd). (B) Even at promoters regulated by a
repressor (top) or activator (bottom) where that activator or repressor has only one binding site (a subset of the
data in (A)), that binding site can be up to 100 bp away from the transcription start site. These cases, even more
so than those that make up the rest of the distribution in (A), are suggestive of a key role for loop formation in
many regulatory systems. Data from RegulonDB; figure courtesy of Mattias Rydenfelt. (C) Combinatorial control
in eukaryotes. In these two well-known examples from Drosophila (top, adapted from [41]) and sea urchin (bottom,
adapted from [42]), not only are many binding sites up to several kilobases away from the promoters, but the inputs
from the binding of transcriptional regulators to all of these sites must be integrated to produce the observed output.
In the Drosophila example, gradients of several different transcription factors combine to produce the famous “eve
stripes” that establish the body plan during development. In the sea urchin example, the CyIIIa gene encodes a form
of cytoskeletal actin, and is tightly regulated both spatially and temporally during development by a set of at least
nine transcription factors, including both activators and repressors, and at least one putative DNA looping protein
(the SpGCF1 protein, red boxes) [42]. (D) In this classic example of the effect of loop length on repression of the
lacZ gene in E. coli (introduced in detail in Fig. 1.3), a significant modulation of gene expression is observed as a
function of the spacing of the binding sites (“operators”) that form the boundaries of the DNA loop. The spacings
between peaks in repression is roughly 10 bp, the helical repeat of DNA. Such modulation with 10 bp periodicity is
a signature of DNA looping. Figure adapted from [27], c©2006 Wiley Periodicals, Inc., by Hernan Garcia, based on
data from [32].
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DNA looping in transcriptional regulation is not limited to those cases in which a two-headed

protein is an activator or repressor of the gene. Many genes in E. coli are regulated by transcription

factors that bind tens or even hundreds of base pairs away, as shown in the histogram of E. coli

transcription factor binding sites in Fig. 1.1(A)), and in fact a significant fraction of these genes

seem to be regulated by a single activator or repressor with only a single binding site that is not

immediately adjacent to the promoter (Fig. 1.1(B)). Some of these belong to a class of promoters

in bacteria that are regulated by an enhancer-dependent mechanism similar to that of eukaryotes,

in which a loop forms between a distally bound activator and the promoter of the gene of interest,

the most well-known example being the nitrogen-assimilation genes regulated by NtrC [43]. The

implication with all of these promoters with distantly bound regulating transcription factors is that

they must involve some form of DNA looping to bring the regulatory factors in contact with the

transcription machinery at the promoter.

In higher eukaryotes non-adjacent binding sites for transcriptional regulators are the rule rather

than the exception, with regulatory sites often located kilobases away from the target promoter

[44]. Two well-known examples of eukaryotic promoter regions and their control factors are shown

in Fig. 1.1(C). It has long been postulated that these cases of truly long-range action-at-a-distance

involve some form of DNA loop formation [29], but it was only within the last decade that such loop

formation was demonstrated for eukaryotes in vivo [30, 45]. It appears that in eukaryotes, DNA

looping is most often effected not by two-headed looping proteins, as in bacteria, which have the

ability in and of themselves to loop DNA; rather, a looped complex is formed by the transcriptional

regulator, RNA Polymerase and linker proteins like Mediator or Cohesin [45]. (There are, however,

at least two single-protein, bidentate looping complexes in eukaryotes, both involved in cancer in

humans, RXR and p53 [46, 47].)

Loop formation is perhaps one of the clearest examples of the importance of DNA mechanics to

gene regulation. One of the classic signatures of looping is a modulation of regulatory activity as

the distance between the two binding sites for the activator or repressor is changed [25], as shown

in Fig. 1.1(D). Regulatory activity at loop lengths shorter than several hundred base pairs shows
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peaks and troughs with a periodicity of about 10–11 bp [32, 48], corresponding to the helical period

of double-stranded DNA. The interpretation is that minima of loop formation (in the example of

Fig. 1.1(D), indicated by troughs in repression) correspond to loop lengths for which the DNA has

to be twisted, in addition to being bent, in order for a loop to form [49, 32, 48, 50, 25]. That is, how

twistable the DNA of the loop is, or at least how much it must be twisted—a parameter that can

be modulated simply by the addition or removal of one or a couple base pairs in the loop—can have

very large effects on the ability of the transcription factor to either activate or repress the gene of

interest.

The example shown in Fig. 1.1(D) highlights an intriguing aspect of loop formation that is not

as yet thought to be well understood. As noted above, the default loop lengths in many prokaryotic

transcriptional networks, and the optimal in vivo loop lengths as determined by maximal regulatory

effect, as in the example in Fig. 1.1(D), are often shorter than 150 bp [27, 32, 33]. Even in eukaryotes,

where very long loops are more common, the behavior of short DNAs still plays a role in transcrip-

tional regulation, in the wrapping of 147 bp sections of the genome almost two full times around

the histone cores of nucleosomes. This prevalence of short loops is surprising, given our canonical

understanding of DNA as a semi-flexible polymer with a persistence length, a length over which the

DNA tends to be straight, of roughly 150 bp [31]. Generally speaking it should be energetically

costly to bend DNA at lengths shorter than 150 bp. In part because of the prevalence of short loops

and bends in vivo, however, this canonical behavior of DNA is still a highly controversial issue.

1.3 The controversial flexibility of DNA at short length scales

Despite the clear importance of the short-length-scale mechanical properties of DNA in loop forma-

tion as well as the many other cellular processes noted above, there remains both uncertainty and

controversy about the ease with which such short DNAs can be deformed [51], and also about the

role of sequence at these short scales, particularly in the context of protein-mediated bending or

looping [51, 52]. The controversy surrounding short-length-scale DNA bending has been reviewed

recently [51] but we will summarize the key points here.
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The classic conception of DNA as a semi-flexible polymer is usually encapsulated in the worm-

like chain (WLC) model [53], which describes DNA as relatively flexible at long length scales,

where entropy dominates the energetics of the polymer, but relatively stiff at short length scales,

where elasticity dominates [51]. The parameter that determines the length scale in question is the

persistence length, the length over which the polymer is relatively stiff. More precisely, the persistence

length is defined as the length over which the tangent vectors of two points on the molecule become

uncorrelated. Under typical conditions the persistence length of double-stranded B-DNA is 50 nm,

or 150 bp [31], which, as noted above, raises the question of how the short DNA loops and bends

that are so prevalent in biology form.

A number of experimental approaches are available for studying the flexibility of DNA [51], but

a particularly common one, especially for studying the behavior of DNAs on the order of one or a

couple persistence lengths, is ligase-mediated cyclization [54, 55]. In a cyclization reaction, a linear

DNA with complementary single-stranded overhangs on either end (“sticky ends”), is mixed with

DNA ligase and allowed to close into circles and to form dimers (or, with lower efficiency, higher-order

multimers). The activity of the DNA ligase effectively captures a sampling of the ring closure and

dimer formation, which are assumed to be fast compared to the activity of the ligase. The outcome

of a cyclization reaction is a parameter called the cyclization J-factor, the effective concentration of

one end of the DNA in the other, defined as the ratio of the rate of formation of ligated circles to

the rate of formation of ligated dimers [54, 56]. A higher J-factor indicates a more flexible DNA.

One reason cyclization assays have found such popularity for the study DNA flexibility is that

the molecular conformations of all of the players are known, and extensive theoretical work has

been done to predict cyclization J-factors as a function of DNA length based on our current models

of DNA flexibility. The Shimada-Yamakawa result [57] is one of the most widely used, and will

be the basis of comparison for our looping results in Chapter 4 (see Fig. 4.3). As we will see in

that chapter, our currently incomplete knowledge about the conformation of the DNA in a protein-

mediated loop, in contrast to the simpler case of a ligated DNA minicircle, prevents us from having

a similarly clean result for predicted looping J-factors. Nevertheless, the Shimada-Yamakawa result
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is the usual starting point for discussions of DNA flexibility; and in particular, it predicts that the

sub-persistence length loops that are so common in vivo should be so unfavorable as to form only

through the assistance of DNA-bending proteins (such as the architectural proteins discussed in the

first section above).

One of the first challenges to the applicability of the Shimada-Yamakawa result at short length

scales came from a study by Cloutier and Widom of short DNA fragments derived from the nucleo-

some affinity assays discussed in the next section [58]. Using in vitro cyclization studies (and thus in

the absence of any of the DNA-bending proteins present in vivo), they found the cyclization J-factors

for several sub-persistence-length DNAs to be several orders of magnitude higher than predicted by

the Shimada-Yamakawa theory. Cloutier and Widom’s result was disputed by Du and coworkers

for technical reasons [59], but has continued to inspire controversy and additional experimental and

theoretical efforts that attempt to explain the results of Cloutier and Widom (and the subsequent

work from others that either support or refute their initial results) [51, 60].

So the question of how short DNA loops and bends form in vivo, and, now, in vitro as well, remains

as yet unanswered. Some cases of tightly bent DNA have been solved to a greater extent than the

in vitro cyclization results discussed here: for example, the favorable interactions between the DNA

wrapped in a nucleosome and the histone proteins around which the DNA is wrapped are sufficient to

overcome the energy penalty of wrapping a persistence length of DNA one-and-three-quarters times

around the histone core [27]. We will return to this question of the bendability of DNA at short

lengths in the context of looping by the Lac repressor in Chapter 4, where we argue that the geometry

of a protein-mediated loop and/or flexibility of the looping protein can be sufficient to overcome the

energy penalty of bending sub-persistence lengths of DNA into transcription factor-mediated loops.

However we turn now to a less well-studied aspect of short transcription-factor mediated loops, that

of the role of sequence, though as we will see this aspect has already been studied, and generated

significant controversy of its own, in the context of the tight bends of eukaryotic histones.
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1.4 The role of sequence flexibility in transcriptional regula-

tion

Although it has been known since the 1980s that the sequence of DNA can impact its flexibility and

twistability [61], the implications of this sequence dependence to the mechanical properties of DNA

on transcriptional regulation have been studied only in a few select cases. It has been shown in vivo

that flexible or pre-bent sequences in (non-loop-forming) promoter regions can increase transcription

[62], and that the inclusion of phased A-tracts that introduce static curves into activation loops

(such as those mediated by NtrC) can increase transcription in vitro [63, 64] and in vivo [65], though

activation (and, presumably, loop formation) is surprisingly insensitive to the particular geometry

induced by such curved DNAs [63, 66]. In fact an intrinsically curved A-tract DNA is a natural part

of the nifLA promoter of Klebsiella pneumoniae, in a region that is thought to be looped out by NtrC,

and this curved DNA is essential for wild-type levels of transcription [65]. Phased A-tracts have

been used to examine the effects of intrinsically curved sequences on Lac repressor-mediated DNA

loops in vitro as well; similarly to NtrC loops, it appears that the Lac repressor can accommodate

multiple different loop geometries imposed by static bends, with these static bends inducing the

formation of hyperstable complexes that remain looped for days [67, 68, 69, 70]. While these studies

have provided valuable insights into the role of static bends and loop geometries in loop formation,

they have only brushed the surface of the question of what role sequence plays more generally in

DNA looping and transcriptional regulation in vitro or in vivo.

Though the role of DNA sequence has not been extensively studied in the particular case of

transcription-factor mediated looping, it has become a key parameter in the discussion of a different

mechanism of transcriptional regulation, that of nucleosome positioning in eukaryotes [14]. Nucleo-

somes do not have a defined binding site sequence and can form on any DNA of sufficient length; but

they do preferentially bind to some sequences over others. A number of sequences with very different

nucleosome affinities have been identified, some isolated from natural sources and others from nu-

cleosome affinity assays with synthetic sequences [14]. It has been argued for both classes that their
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Figure 1.2: Sequences with high nucleosome affinities also have high cyclization J-factors. (A) J-factors for two
different sequences, a putatively more flexible sequence called 601TA (red, here abbreviated “TA”) that has a high
affinity for nucleosomes, and a random sequence called E8 (black) which has a lower nucleosome affinity, as determined
by ligase-mediated cyclization assays. At all lengths tested, DNA minicircles composed of the TA sequence form more
readily than those of the E8 sequence. Adapted from [85]. (B) A sequence’s propensity to be wrapped in a nucleosome
(here represented by the energy of forming a nucleosome in vitro, ∆∆Gnucl) correlates with its propensity to form
DNA minicircles (here represented by the energy of forming these minicircles, ∆∆Gcyc). E8, E13, and E6 are all
synthetic random sequences; 5S is a strong natural nucleosome positioning sequence from sea urchin. Adapted from
[58].

nucleosomal affinities stem from different intrinsic flexibilities, and not in response to some other

in vivo condition or to a property specific to nucleosome binding [58, 71, 72]: because nucleosomes

involve tight bending of short DNAs, sequences with high intrinsic flexibilities are thought to de-

crease the energy of nucleosome formation, yielding the observed positioning preferences. Though a

corollary hypothesis, that sequence flexibility confers preferences for nucleosome positioning and/or

occupancy in vivo, is quite controversial [15, 73, 74, 75, 76, 77, 78, 79, 80], the original in vitro

claim has nevertheless led not only to many theoretical and experimental studies on the relationship

between sequence and flexibility [51, 52, 81, 82, 83, 84], but also to the elucidation of numerous

sequence “rules” that can be used to predict the likelihood that a nucleosome will prefer certain

sequences over others [14]. Algorithms that predict nucleosome positions based on these sequence

rules are highly predictive in vitro, even for sequences from organisms that do not themselves con-

tain nucleosomes [77]. The outstanding question in the field is how predictive these sequence rules,

and sequence effects in general, are of nucleosome positions in vivo, as compared to other potential

nucleosome positioning factors such as chromatin remodeling complexes [15, 78].
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More importantly for the purposes of this study, the claim that a sequence’s nucleosome affinity

stems from its degree of intrinsic flexibility has also led to the determination of certain sequences that

are claimed to be highly flexible in a general sense. For example, Cloutier and Widom characterized

a sequence selected from a chemically random pool of sequences, which they called 601TA, and

which they showed to have a significantly higher affinity for nucleosomes than a synthetic random

sequence called E8 [58, 85, 86]. In fact the 601TA sequence, which we will henceforth abbreviate

TA, is the strongest known nucleosome positioning sequence, either synthetic or natural [14, 86],

and is often used in in vitro assays to ensure the localization of nucleosomes at a precise, desired

position (e.g., [87]).

Like other previously-described nucleosome positioning sequences [71, 72], the argument that the

TA sequence’s high affinity for nucleosomes stems from a high intrinsic flexibility is based largely on

the results of in vitro ligase-mediated DNA cyclization assays (described in the previous section).

For short DNAs at least, relative to the persistence length of 150 bp, more flexible sequences should

cyclize more readily than other sequences, and therefore should have higher J-factors. Cloutier and

Widom showed this to be the case for the TA versus E8 sequences, as shown in Fig. 1.2(A), and

moreover they correlated the cyclization J-factors for a number of sequences with the energy required

to form a nucleosome with these sequences, as shown in Fig. 1.2(B) [58, 85].

It is generally assumed that cyclization assays are a useful tool for measuring sequence flexibility

in some general sense and for learning about DNA looping as well [29, 58, 84, 88], with an implication

that sequences that appear to be more flexible in cyclization assays might likewise lead to increased

loop formation, just as they have been found to increase nucleosome formation. That is, if TA

and E8 differ in mechanical bendability in some general sense, then TA should increase looping by

a bacterial transcription factor just as it increases nucleosome binding and cyclizes more readily

than E8. Therefore these sequences, which yield such strong sequence effects in two other in vitro

assays, should be ideal for addressing the question of how sequence affects DNA looping in vitro

and, perhaps, in vivo. As we will see, the question of a sequence’s flexibility is actually more subtle

than these nucleosome formation and cyclization assays reveal.
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1.5 The lac operon as a case study for measuring DNA flex-

ibility in the context of DNA looping, and for broader

questions of combinatorial control

In this work we exploit insights about DNA flexibility garnered from one class of genetic regulation

where it has been studied extensively, that of nucleosome formation, to make predictions about

how a different class of mechanical deformations in regulatory biology, that of DNA looping by a

prokaryotic transcription factor, will be altered by these same sequences. As described in the next

section, we test these predictions experimentally with a single-molecule assay in conjunction with

ideas from statistical mechanics for the case of one of the most well-known transcriptional regulators

in bacteria, that of the Lac repressor, though there are clear implications for other prokaryotic and

eukaryotic regulatory motifs as well.

The discovery in 1961 by Jacob and Monod of genes whose products regulated the transcription

of other genes [89] led to a restructuring of our understanding of both the content and management

of cells’ genomes. The lac operon in E. coli has since become a paradigm of genetic regulation at the

level of transcription initiation [90] and continues to be an area of intense research even after more

than 40 years (for just two of many examples that illustrate several outstanding questions about

this system, see the recent work of [38, 70]).

The lac operon, shown in Figure 1.3, encodes a set of three structural genes involved in the uptake

and metabolism of the sugar lactose, and one regulatory gene whose product controls transcription

initiation at the single promoter for the polycistronic mRNA encoding the three structural genes [91].

The product of the regulatory gene, called the Lac repressor or LacI, is a 154 kDa homotetramer

whose binding to a site on the DNA (the O1 operator) overlapping the lacZYA promoter (also called

Plac) prevents the binding of RNA Polymerase to the promoter, thereby decreasing transcription

[91, 95]. However, when lactose is present, a derivative of lactose binds to the repressor and changes

its conformation such that its affinity for O1 is significantly decreased. As a result the repressor no

longer out-competes the polymerase for binding to the promoter and transcription can readily occur
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Figure 1.3: Schematic of the lac operon. The three structural genes lacZ, lacY, and lacA are transcribed as a
polycistronic mRNA and encode the proteins β-galactosidase, lactose permase, and galactoside acetyltransferase.
These proteins break lactose into galactose and glucose, transport lactose into the cell, and acetylate galactosides
respectively [91] (the natural substrate(s) and specific role of galactoside acetyltransferase in the operon are unknown
[92]). The lacI gene, located upstream of the three structural genes and under the control of a separate promoter,
encodes the Lac repressor, which can bind to any two of the operators O1, O2, and O3 simultaneously (see also Fig. 1.4)
[93, 94, 32]. O1 overlaps the promoter for the three structural genes and impedes the ability of RNA polymerase to
transcribe the lacZ, lacY, and lacA genes [91]. The operon also contains a binding site for the CAP-cAMP complex, a
positive regulator of the operon, between O1 and O3 [91, 95]. Although the protein coding region for the Lac repressor
ends before O3, transcription of the lacI gene is known to continue into the regulatory region of the lacZYA promoter,
with the regulatory region of the lac promoter possibly serving as the terminator of transcription from Pi [96].

[38, 91]. Thus the function of the repressor is to coordinate the transcription of lactose-metabolizing

proteins with the presence of lactose as a carbon source.1 Additionally, a separate positive regulation

mechanism involving cyclic AMP (cAMP) and the CAP protein coordinates transcription of the lac

operon with the presence or absence of the preferred carbon source, glucose [90, 91].

After this elegant repressor-mediated model of transcriptional regulation was proposed, it was

determined that there are actually two additional Lac binding sites in the general region of the lac

promoter [97, 98] (Fig. 1.3). Originally termed “pseudo-operators” because they did not seem to

affect binding of the Lac repressor to DNA in vitro [99], it later became clear that both of these

auxiliary operators (as they are now known) and the main operator must be present for maximal

levels of transcriptional repression in vivo [93], a puzzle later solved by the discovery that each dimer

of the tetrameric repressor binds a separate site on the DNA, thereby forming a loop in the DNA

[49, 93, 94, 100]. Not only, as mentioned above, does such looping offer the advantage of increased

local concentration of the repressor, in the case of repression, as with the Lac protein, looping further

sequesters the polymerase binding site on a curved DNA fragment, enhancing the repressor’s ability

to prevent initiation [25].

The Lac repressor, because it has been so extensively studied, offers one of the best case studies

1Even when the repressor is fully active transcription of the operon is not completely inhibited, as small amounts
of β-galactosidase and lactose permease are necessary to produce the lactose derivative that inactivates the repressor
upon first exposure to lactose [91, 38].
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for examining the role of DNA mechanics in loop formation and transcriptional regulation. The

Lac repressor has been a popular choice in many studies with synthetic looping constructs, both

in vivo and in vitro, where the naturally occurring three-operator architecture is usually replaced

by synthetic two-operator versions, and often with completely non-natural sequences comprising the

intervening loop DNA (e.g., [32, 49, 50, 101]). Moreover, because the naturally occurring architecture

does in fact contain more than two binding sites, with the potential to form multiple loops, plus the

binding site for a transcriptional activator (CAP), the Lac repressor and the wild-type regulatory

region offer a convenient potential case study in broader studies of combinatorial control.

In this work we will use looping by the Lac repressor in a in vitro single-molecule assay, described

in the next section, as a tool to probe the role of DNA mechanics in loop formation, specifically

the role of the two DNA sequences described in the previous section, and to gain insight into the

interplay between sequence flexibility and transcriptional regulation by action at a distance both

in vitro and in vivo. The bulk of this work will make use of the kinds of synthetic two-operator

looping constructs that are typically used in studies with the Lac repressor. However, Chapter 6

will discuss the extension of our looping assay to the full, three-operator construct that forms the

natural architecture and demonstrate our ability to dissect more complicated architectures as well.

1.6 The single-molecule tethered particle motion assay for

studying DNA looping and questions of DNA bendability

Single-molecule biophysics has provided a new generation of insights into the molecular machines

that underlie cellular dynamics. One of the most important classes of such experiments has focused

on the interaction between DNA and its protein binding partners, as in the looping experiments

that we describe here. Many (though not all) of the single-molecule techniques that can be used

to monitor loop formation and other deformations in DNA in real time rely on the imaging of

microscopic reporter particles or “beads” which are attached through specific, non-covalent small-

molecule interactions to the DNA and/or to the protein of interest. These beads, which can be
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imaged under a microscope (while the molecular players cannot), act as reporters of the underlying

molecular dynamics.

In this work we use the single-molecule tethered particle motion (TPM) technique to study

looping by the Lac repressor [102, 103, 104, 105]. As shown schematically in Fig. 1.4(A), a TPM

experiment consists of a linear piece of DNA attached at one end to a microscope coverslip and

at the other to a microsphere. The dynamics of the microsphere then serve as a readout of the

hidden underlying dynamics of the DNA and its partner proteins. In the specific case of looping by

the Lac repressor that we are considering, when two operators are present on the DNA tether and

repressor is introduced into the sample, the repressor can bind the two operators simultaneously

and stabilize a loop in the tether. This loop reduces the effective length of the tether and so

reduces the extent of the bead’s Brownian motion. As a result, the formation and breakdown of

loops can be observed either directly, by measuring the bead’s distance from the coverslip [106], or

indirectly, as will be done here, by measuring the root-mean-squared motion of the bead in the plane

of the coverslip [102, 103]. These measurements result in a telegraph-like signal (see examples in

Appendix E) and can be converted into the probability of the system being in the looped state: one

useful definition of the looping probability is that it is the total time spent in the looped state divided

by total observation time. TPM has been used to examine processes ranging from DNA looping

by transcription factors [104, 107, 108, 109], as discussed here, to the dynamics of recombination

proteins [110, 111] and restriction enzymes [111], and other processes associated with translation

and DNA rearrangement [112]. Looping by the Lac repressor in particular has also been extensively

studied by TPM [104, 108, 109, 113, 114, 115, 116].

Here, however, we go beyond previous uses of TPM to study DNA looping by combining this

single-molecule experiment with a statistical mechanical model and the systematic variation of four

biologically relevant parameters (Fig. 1.4(B)): repressor-operator affinity, loop length, loop sequence,

and repressor concentration. In all previous Lac repressor studies with TPM, or other single-molecule

techniques such as FRET [67, 68, 69, 70], only one or a couple loop lengths, operators, and repressor

concentrations were studied. In many cases, therefore, the repressor-operator dissociation constants
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Figure 1.4: Schematic of the tethered particle motion (TPM) assay. (A) DNA looping is observed as a result of
changes in the Brownian motion of the tethered bead [102, 103, 104, 105]: looping decreases the effective length
of the DNA tether, which decreases the bead’s root-mean-squared (RMS) motion. Most of the work here will be
concerned with a parameter derived from the RMS motion, the looping probability, which we define as the time spent
in the looped state(s) divided by the total observation time. Chapter 5 looks at kinetic parameters that can also
be determined from the motion of the bead. (B) Four distinct tunable biological parameters: 1. Repressor binding
site, or operator. Most of the work here uses the strong, synthetic “Oideal” (Oid) operator, the strongest naturally
occurring O1 operator, and the weaker naturally occurring O2 operator (see Chapter 6 for studies that also involve
the weakest naturally occurring operator, O3). 2. Loop length. The wild-type lac operon contains the three operators
O1, O2, and O3, which have the potential to generate three loops of different lengths (see also Fig. 1.3): the O1-O2

loop is 380 bp, the O1-O3 loop is 71 bp (shorter than the persistence length of DNA), and the O2-O3 loop is 472
bp. In our synthetic constructs (see Chapters 3 and 4) we use two operators and systematically tune the distance
between them as shown in the figure. 3. Loop sequence. Most of the work discussed here will focus on two sequences,
“E8” and “TA”. “E8” refers to a synthetic random sequence, “TA” to a synthetic nucleosome positioning sequence
(part of the 601TA sequence [86]). The TA sequence has a higher cyclization J-factor than E8 and is wrapped into
nucleosomes in vitro more readily than E8 [58, 85]. See Section 4.5 for discussion of an additional sequence also related
to nucleosome formation, and Chapter 6 for a discussion of the sequences of the wild-type lac regulatory region. 4.
Lac repressor concentration. One of the key tools we will use in this work is the concentration titration, where the
looping probability is measured as a function of the repressor concentration. DNA constructs will be referred to with
the operator closest to the microscope slide listed first; operator and loop sequences are given in Appendix B. The
promoter-containing DNAs of Fig. 4.2 are identical to those shown here except that the O1 operator closest to the
bead has been replaced by O2, 36 bp of the loop closest to this O2 operator are replaced by the lacUV5 promoter
sequence, and the length of the flanking DNA between O2 and the bead is 139 bp rather than 172 bp. Fig. B.4 shows
the flanking regions of the three-operator constructs of Chapter 6.
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were assumed (as opposed to measured) in order for a looping J-factor to be calculated. Here

we are describing a new way of measuring both the operator dissociation constants and the relative

flexibilities of different DNA sequences as contained in the looping J-factor, by tuning both repressor

concentration and operator strengths, with a rigorous comparison between these experiments and

the theoretical models we have developed. We will argue here that only through this systematic

tuning of parameters and interplay between theory and experiment is it possible to uncover some

of the surprises, particularly about sequence-dependent flexibility in vitro and in vivo, that will be

detailed in the following chapters.

The most important of the parameters that we will tune in this study for the purpose of the

main goal of this work, that of investigating the role of sequence flexibility in loop formation, is the

flexibility of the DNA in the loop, which is captured in a parameter called the looping J-factor. The

looping J-factor is analogous to the cyclization J-factor, introduced above, obtained in the ligation-

mediated cyclization assays which are commonly used to measure DNA flexibility at short lengths,

and can be thought of as the effective concentration of one end of the loop in the vicinity of the

other [56, 57]. The J-factor therefore provides a measure of the energetics of bending the DNA into

the loop. The approach we have developed here allows us to measure these looping J-factors in a

way that provides quantitative insights into how each of the four biologically important parameters

we test affects DNA looping and permits us to contrast the role of sequence in DNA cyclization and

nucleosome formation with that of looping. As we will see, we find that the two sequences discussed

above, E8 and TA, which have significantly different propensities for forming DNA minicircles in in

vitro cyclization assays or for forming nucleosomes, create a more complicated sequence dependence

in the context of DNA loop formation than has been previously appreciated.

1.7 Structure of the thesis

The remainder of this thesis is organized as follows:

In Chapter 2 we develop the theoretical framework that both drives our experimental design and

allows us to interpret our experimental results. We begin by analyzing in detail the effects that
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Figure 1.5: Predictions of our statistical mechanical model (Eq. (2.1)) for the effect of intentionally or unintentionally
tuning various parameters of the system on the looping probability that we measure with TPM, described in more
detail in Chapter 2. One of the key experimental tools we will use in this work is the concentration titration,
in which the looping probability is measured as a function of repressor concentration, and so these concentration
titrations are the lens through which we view the predictions of the model as well. (A) Prediction of the model for
the effect of changing the affinity between the repressor and one of the operators, expressed as a change in one of
the two repressor-operator dissociation constants (K1). As will be demonstrated mathematically in Eq. (2.3) and
Eq. (2.5), decreasing the Kd of one operator both increases looping and shifts the maximum of looping to lower
repressor concentrations. (B) Prediction of the model for the effect of changing the J-factor of the loop, that is,
changing its flexibility. As derived in Eq. (2.5), increasing the J-factor leaves the maximum of looping unchanged but
increases looping at all concentrations. (C) In Chapter 2 we consider the effect not only of deliberately tuning the
four parameters of Fig. 1.4, as we show here in (A) and (B), but also of unintentional parameter “tuning” caused by
potential experimental artifacts. For example, we asked what a concentration titration would look like if there were a
discrepancy between the actual concentration of repressor in the TPM chamber, and the concentration we believed we
pipetted into the chamber. One example of how such a discrepancy could arise is the loss of repressor from solution
by adsorption to the chamber walls. We find that the effect of such a concentration titration is a simple horizontal
translation that leaves the relative values of the dissociation constants and J-factors unchanged, but does affect our
measurement of their absolute values. The possible loss of protein to chamber walls is tested explicitly in Chapter 3
and found to be negligible.

the four experimentally tunable parameters of Fig. 1.4 (repressor concentration, loop length, loop

flexibility, and operator strength) should have on the looping probability that we observe by TPM.

These predictions are summarized in Fig. 1.5(A–B). We then turn to consequences of potential but

unintended experimental effects on the looping probability, such as those caused by the adsorption

of protein to the TPM chamber walls, as shown in Fig. 1.5(C). The theoretical explorations of this

chapter make specific and testable predictions for the changes to the looping probability we might

observe through these intentional and unintentional experimental changes.

In Chapter 3 we relate the work presented here to previous work from the Phillips lab, describing

the improvements necessary to report accurate dissociation constants and J-factors, as will be done

in later chapters. We also present several experimental and computational controls and other veri-

fications of the validity of our combined theory plus TPM approach, most of which are motivated

by the considerations of Chapter 2 and are explicit tests of the predictions of that chapter. For

example, we designed an experiment to test whether we lose protein to the chamber walls, such that
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Figure 1.6: The sequence dependence of looping is more complicated than has been observed in cyclization and
nucleosome affinity assays, as suggested by these results from Chapter 4. (A) We first demonstrate the strength
of our combined statistical mechanical model and TPM approach for measuring biologically important parameters
such as dissociation constants and J-factors, by showing that the effect of changing the strength of one operator
agrees well with the theoretical predictions of Chapter 2, and that the dissociation constants we measure agree well
with values obtained from bulk biochemical assays. Shown here is the looping probability as a function of repressor
concentration, for 94 bp of the random E8 sequence flanked by three combinations of operators. As predicted in
Fig. 1.5(A), increasing the strength of binding to one of the operators increases looping and shifts the maximum of
looping to lower repressor concentrations. Curves are fits of Eq. (2.1) to the data, from which we obtain dissociation
constants for the operators and J-factors for the DNA in the loop. (B) Our model is also robust to changing the
J-factor: as predicted by Fig. 1.5(B), changing the sequence of the loop to the putatively more flexible sequence
TA does not change the dissociation constants or the location of the maximum, but does increase looping at all
concentrations. We find the J-factor for this 94 bp loop of TA to be about 10 times larger than that of a 94 bp
loop of E8, qualitatively consistent with our expectations from cyclization and nucleosome affinity assays that TA is
more flexible in some general sense than E8. (C) However, when we measure the looping probability of these two
sequences at fixed repressor concentration but varying loop length, we find a sequence dependence to looping only at
the 94 bp used in the concentration titrations, highlighting the importance of systematic experiments tuning several
experimental parameters in order to fully capture the behavior of the system. The red hatched region indicates a
prediction for where the TA data were to fall if the TA sequence were as much more flexible than E8 as measured in
cyclization assays. The sequence dependence to looping is actually more complicated than is captured by the data
here: we find that we can restore a sequence dependence to looping by the addition of the lacUV5 promoter to the
loop.

we would need to take into account the modified model shown graphically in Fig. 1.5(C). We verify

that our model in Eq. (2.1) is sufficient to account for our data and that the potential experimental

artifacts explored in Chapter 2 are not an issue in our experiments.

With a theoretical framework and validation of our approach in hand, in Chapter 4 we turn to

experimental results of the systematic tuning of the four parameters listed in Fig. 1.4(B), as well

as preliminary results with additional sequences and the relationship of the work presented here

to analogous in vivo studies. This chapter addresses the main question posed in this work, that

of the role of sequence-dependent flexibility in loop formation at short length scales, both in vivo

and in vitro, and touches briefly as well on the flexibility of short DNAs in the context of protein-

mediated loops. As summarized in Fig. 1.6(A–B), we find that our combined theory and TPM

approach is robust when confronted with the tuning of the four experimental parameters of Fig. 1.4,

and in particular we can obtain dissociation constants for three Lac repressor operators that agree
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well with literature values obtained using bulk biochemical techniques. However, as summarized in

Fig. 1.6(B–C), we find that the dependence of looping on the sequence of the loop is more complicated

than suggested by cyclization and nucleosome formation: in some settings, we find that having the

TA sequence in the loop leads to an increased looping probability compared to E8, but not always.

From a comparison between our results and previous results on cyclization and nucleosome formation

with these two sequences, we hypothesize that the shape of the deformation of a DNA sequence is

more important than has been previously appreciated when determining sequence flexibility. In

Section 4.6, we turn to the question of the role of sequence formation not in in vitro loop formation,

but in in vivo gene expression. We find that one of the nucleoid-associated proteins introduced above,

the nonspecific DNA-bending protein HU, apparently masks any sequence-dependence to looping in

vivo that we observe in vitro, raising questions about the importance of sequence flexibility to loop

formation in its biological context.

The results of Chapters 2–4 focus on one kind of information that can be obtained through TPM

experiments, namely the looping probability. In Chapter 5, we discuss preliminary work on obtaining

kinetic parameters, instead of equilibrium looping probabilities alone, from TPM traces. We describe

two approaches to obtaining these kinetic parameters, schematized in Fig. 1.7(A–B): a half-amplitude

thresholding technique that is the standard in the field, and a new hidden Markov model (HMM),

based on variational Bayesian inference, as an alternative that we are developing which we hope will

provide more information than can be obtained through the standard thresholding method. This

HMM approach will be especially important for the analysis of the kinds of systems that we describe

in Chapter 6. Chapter 6 contains preliminary work extending our approach to more complicated

looping systems, using the wild-type version of the lac operon to examine broader questions of

combinatorial control and the role of the DNA-bending proteins in the natural functioning of the

operon. As shown in Fig. 1.7(C–D), we find a sharp contrast between our in vitro results, in which

the weakest third operator of the lac system has no effect on looping, and in vivo results from

other groups, in which the weakest operator is as important as the second weakest for wild-type

functioning of the system. We present results that suggest that specific or nonspecific DNA-bending
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Figure 1.7: A comparison of two methods for performing state identification and obtaining kinetic information from
TPM traces, described in more detail in Chapter 5. (A) A common technique for obtaining kinetic information
from TPM trajectories is based on thresholding each trajectory, after the user has decided how many states to divide
the trajectory into, and then collecting the lengths of the dwell times in each state into histograms. Fitting these
histograms to exponentials yields state lifetimes and other kinetic information. This method has the advantage of
being relatively straightforward and well established; however, it is subject to the temporal resolution of the smoothing
filter that is applied to the trajectory, and to user bias in determining state assignments. (B) We are developing a new
hidden-Markov-model-based approach to analyzing TPM data that overcomes some of the limitations of the method
described in (A). In a hidden Markov model, the x and y bead positions that are the raw observable in TPM (the
root-mean-squared bead position calculated from these raw data is shown as “〈R〉” in (A)) are generated by a series
of hidden states according to Markov process, where the hidden states in our case are the tether conformation (looped
or unlooped). Our HMM algorithm finds the best sequence of hidden states, as well as the best number of such states,
through a statistical analysis that removes some of the user bias in the method in (A). In (2) here we show one of the
outputs of the HMM analysis, the Viterbi path, which is the sequence of most likely states, here superimposed on a
TPM trace. (C) One kind of data for which an HMM analysis like that in (B) will be vital is that generated by looping
systems with more than two operators, and therefore multiple looped states, such as those examined in Chapter 6.
However, as described in that chapter, we find that the wild-type three-operator system of the lac promoter region,
diagrammed in Fig. 1.3, behaves identically to an analogous two-operator construct in which the weakest operator
has been removed. This is surprising because all three operators are necessary for wild-type gene expression levels in
vivo [93, 94]. (D) We speculated that nonspecific DNA-bending proteins, such as the nucleoid-associated protein HU,
could be causing the in vivo-in vitro discrepancy regarding the importance of the third operator, and so in Chapter 6
we present preliminary results in which we have added HU to a TPM assay with a three-operator DNA. We find that
the addition of HU does change the behavior of the three-operator system, by, for example, enabling long dwells in
one or more looped states, as shown here. An HMM approach to analyzing these data, with a statistical method for
determining the number of states, is vital, as it is difficult to threshold traces like these by eye.
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proteins may be vital for the wild-type behavior of the lac system.

Finally, in Chapter 7, we discuss future directions for furthering our understanding of the se-

quence dependence of loop formation in vivo and in vitro, and the role of DNA-bending proteins in

loop formation and gene expression. Materials and detailed methods can be found in the appendices

at the end of this work. The bulk of these appendices and Chapters 2 and 3 will be published as the

Supporting Information to [117], with the main text of that paper consisting of the first four sections

of Chapter 4 here. Section 4.5 of Chapter 4 will be part of a forthcoming collaborative paper with

Yi-Ju Chen of the Phillips lab; Section 4.6 of Chapter 4 appears in [118]; and Chapters 5 and 6 will

become part of a forthcoming collaborative paper with Martin Lindén of Stockholm University in

[119].
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Chapter 2

A statistical mechanical model of
the in vitro looping probability

In this chapter we sketch a statistical mechanical framework that allows us to see how the loop-

ing probability that we measure with TPM depends upon various tunable parameters such as the

strength of the repressor binding sites, the concentration of transcription factors and the length and

flexibility of the intervening DNA (see Fig. 1.4). The framework presented here builds on earlier

work in [115, 120], where a simple model for the looping probability was proposed. Here we move

beyond the simple model to examine the effect of tuning the various parameters of the model, and

to add complexity to the model that might be needed in order to capture intended or unintended

experimental modifications. These theoretical developments serve as an important conceptual frame-

work for making the TPM assay a precise measurement scheme for determining properties of the

DNA and of DNA-repressor interactions. However, this framework is neither specific to the Lac

protein nor to the TPM technique, but applies equally well to other DNA-protein interactions, and

to other single-molecule techniques that can detect DNA bending or looping as a function of protein

concentration, such as single-molecule FRET [69], or optical [121] and magnetic [122, 114] tweez-

ers. Further, the concepts presented here may ultimately help understand how looping in cells is

controlled by precisely the same parameters since similar statistical mechanical models have been

exploited in that setting as well [34, 123, 124, 118].

As we have found repressor concentration titrations, in which a series of TPM experiments are

performed at different repressor concentrations and the resulting looping probabilities are measured
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as a function of this concentration [115, 117], to be particularly useful tools for understanding DNA-

repressor interactions, and have used them extensively in the work detailed in Chapters 3, 4, and 6,

these titration curves will serve as the primary windows through which we will view TPM experi-

ments from a theoretical viewpoint. We first give a brief introduction to the statistical mechanical

model that characterizes such concentration titrations and examine how the three parameters of

the model (effective binding constants and J-factor) affect the looping probability. We then extend

this model to examine how the titration curves change when additional, experimentally important

complications are added: inactive fractions of repressor, dimers, and low repressor concentrations

relative to DNA concentration. We show that some of these effects distort the titration curves in

ways that can be recognized. However, there are also effects that only rescale certain parameters

without changing the qualitative shape of the curve. The latter is more insidious, as it leads to sys-

tematic errors which cannot be detected from within the context of the titration curves themselves.

The results of these sections are summarized in Fig. 2.1, which illustrates how the looping titration

curves are altered as a result of intentional parameter tuning and unintentional deviations from the

ideal case. Throughout this section we also make reference to the experimental results presented

in the next two chapters, some of which touch on these intentional and unintentional parameter

changes. Finally, we present a method by which J-factors for different constructs can be measured

without the need for the full concentration titrations that occupy the rest of this chapter, which will

be used extensively in Chapter 4.

2.1 Tuning the simple titration curve

We first analyze the shape of the ideal titration curve in some depth, in order to answer a variety of

questions.1 How do we expect the shape of the looping probability as a function of concentration,

ploop([R]), to change if we replace one of the operators with a repressor binding site of a different

affinity? What happens if we change the J-factor of the DNA by, for example, changing the distance

1Thanks to Martin Lindén for the mathematization of the effects of changing dissociation constants or J-factors
on the looping probability curve, and for the derivation of the effect in Fig. 2.1(C).
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between the operators (and therefore the length of the loop)? Do two identical operators produce

different titration curves than a pair of very different strengths?

We begin by summarizing the simple model derived previously in [115]. A repressor titration

curve has an intuitive, bell-shaped form. At low protein concentrations, we would expect the proba-

bility of forming a loop to be small. Similarly, at high concentrations, the looping probability is also

low, because the two operators are each occupied by separate transcription factors. At intermediate

concentrations, the looping state has its highest probability. These intuitions can be captured math-

ematically by statistical mechanical models that take into account all of the different ways that the

operators can be decorated with repressors. These models make very strict predictions about the

functional form of the looping probability curves as a function of the various biological parameters.

In the specific case we are considering here of a TPM experiment to study looping by a protein

such as the Lac repressor, the probability of the looped state can be expressed in terms of the

Boltzmann weights of each of the five states available to the system: nothing bound to the DNA,

one head of a repressor bound at one operator, one head of a repressor bound at the other operator,

two repressors bound with one attached to each operator, or one repressor with the two heads bound

to the two operators (the looped state). These states and their corresponding weights as derived

in [115] are diagrammed in Fig. 2.2(A). For concreteness here through Section 2.6 we will label the

operators Oid and O1, representing the strong, synthetic “ideal” operator and the strongest naturally

occurring operator O1. These operators form the example case to which all others are compared

in Fig. 2.1 and will be used as such throughout this section, though obviously these results apply

equally well to other choices of operators.

For a system that satisfies equilibrium conditions, the looping probability is given by the statis-

tical weight of the looped state divided by the sum of all the states in Fig. 2.2(A), or

ploop([R]) =
1
2

[R]Jloop
K1Kid

1 + [R]
K1

+ [R]
Kid

+ [R]2

K1Kid
+ 1

2
[R]Jloop
K1Kid

, (2.1)

where [R] is the repressor concentration, Kid and K1 are the dissociation constants for the Lac
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Figure 2.1: Effect of key parameters on the concentration dependence of the looping probability. Unless otherwise
indicated, Kid = 5.4 pM, K1 = 16 pM, and Jloop = 54 pM. These values for Kid and K1 are comparable to values
found in the literature for two of the known binding sites for the Lac repressor [125, 126]. (Note, however, that these
are not the values we report in Chapter 4, due to different experimental conditions, such as salt concentration.) Curves
with these default parameters are shown as dashed red lines for comparison across panels. (A) Effect of changing the
strength of one of the operators. (B) Effect of changing the flexibility of the DNA in the loop. (C) Effect of changing
the ratio K1/Kid when the concentration (K1Kid)1/2 at which looping is maximal is kept the same. (D) Extension of
the simple model to the case of two experimentally distinguishable looped states, which we model as having different
J-factors. Here the bottom state is one-third that of the default 54 pM, and the middle is two-thirds that of the
default (and the dashed red line shows the sum of the probabilities of the two states). (E) Effect of a discrepancy
between the presumed concentration of repressor and the actual concentration. (F) Effect of a constant fraction of
repressors that cannot dimerize and therefore cannot loop. (G) Effect of taking into account the dimer-to-tetramer
dissociation at various low concentrations, for varying values of the tetramer-to-dimer dissociation constant KDT .
(H) Effect of competition for Lac repressor binding between different tethers at low repressor concentrations. The
tether density [DNA] is defined as the number of tethers divided by total volume. Unlike those in (G) and (H), the
curves in panels (E) and (F) are indistinguishable in TPM experiments, since the parameters are rescalings of those
in the simple model.
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Figure 2.2: States and weights of the simple model. (A) Schematized states and Boltzmann weights for the simple
model (first derived in [115]). [R] is the repressor concentration, K1 and Kid are the dissociation constants for the
repressor binding to operators O1 or Oid, respectively, and Jloop is the looping J-factor of the DNA between the
operators. The looping probability is given by the weight of state (v) divided by the sum of all five states. (B)
Probabilities of all the states of the system as K1 is changed. This figure shows three of the curves of Fig. 2.1(A) but
includes not only the looping probability but also the probabilities of the four other states schematized in (A) here.
The different colors correspond to the five states as indicated in the legend. Dotted, dashed, or solid lines correspond
to K1 = 5.4 pM (in which case K1 = Kid), 16 pM, or 26 pM, respectively. For example, the solid dark blue and red
curves which overlap indicate that when K1 = 26 pM, there is an almost equal probability at all concentrations that
the system will be in the looped configuration (dark blue) or that K1 will be bound (red); whereas when K1 = 5.4 pM,
where the looped state is maximal (dark blue dotted line) the single-operator-bound states have very low probabilities
(green and red dotted lines, which here overlap completely because in this case K1 = Kid). These curves confirm the
intuition that looping is low at low concentrations because the predominant state is the one with no repressors bound
at either operator; however at high concentrations looping is also low, because the predominant state is the one in
which two repressors are bound to the two operators.
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repressor from the Oid and O1 operators, respectively, and Jloop is the sum of the individual J-

factors of all the possible DNA loop topologies. For the simplest case, the looping J-factor is related

to the free energy cost of bending the DNA into a loop through

Jloop = 1 M e−β∆Floop , (2.2)

where ∆Floop is the free energy of forming a loop, and β is 1/kBT . The units are concentration: the

J-factor can be thought of as the concentration of one binding site in the vicinity of the other [56, 57].

Its value depends on the length, phasing, and flexibility of the DNA, as well as the precise shape

of the looped complex, and any energetic contributions from the looping protein [127, 128, 129]. It

appears in Eq. (2.1) with a factor 1/2, which is a combinatorial factor that reflects the symmetry of

the Lac protein and the binding sites [115]. In Eq. (2.1), Jloop is the sum of the J-factors for each

of four possible loop configurations that have different DNA-binding orientations, as well as for any

additional loop conformations arising from protein flexibility (see Section 2.2 below). Combining

the different loop topologies together in a single state, as we have done here, is appropriate for

the situation where they cannot be distinguished experimentally. The generalization to several

distinctive looping states is discussed below.

The first observation one can make about the titration curves in Fig. 2.1 is that there is a peak in

the looping probability and that the distribution is symmetric (in log scale) around that peak. The

concentration at the maximum in the looping probability can be found by differentiating Eq. (2.1)

with respect to [R] and results in

[R]max =
√
KidK1. (2.3)

The symmetry of the titration curves around this point can be explained by observing that

ploop(10n[R]max) = ploop(10−n[R]max). (2.4)

Note also that the concentration at which the looping probability is maximized does not depend
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upon the DNA flexibility as captured in the parameter Jloop. The looping probability at [R]max is

given by

ploop([R]max) =
Jloop/2

Jloop/2 + (
√
Kid +

√
K1)2

. (2.5)

These results explain several features of the titration curves. As shown in Fig. 2.1(A), increasing the

binding strength of one of the operators, (i.e., decreasing the value of K1 or Kid) shifts the maximum

of the curve to the left and increases its amplitude; that is, stronger operators allow looping at

lower concentrations. However, increasing the J-factor (i.e., making the DNA more flexible), as in

Fig. 2.1(B), changes only the height of the curve, but not the concentration of repressor at which

looping is maximal. These qualitative predictions are borne out in the experimental data presented

in Fig. 4.1(D) and (E) in Chapter 4.

Finally, we can consider the behavior of the outer tails of the curves. As shown in Fig. 2.1(A),

changing the operator strengths changes the behavior at low concentrations, but not at high concen-

trations, where curves with different operators (but identical J-factors) fall off in the same fashion.

The behavior at high and low concentrations can be read off directly from Eq. (2.1). At high con-

centrations, the doubly-bound state dominates, which has a weight of [R]2/(K1Kid); therefore in

the high concentration limit,

lim
[R]�Jloop,K1,Kid

ploop([R]) ≈ Jloop

2[R]
. (2.6)

This shows that the binding constants drop out of the equation at high concentrations. In the limit

of low concentrations, the state with no repressors bound dominates, which has a weight of 1; that

is, in the low-concentration limit,

lim
[R]�Jloop,K1,Kid

ploop([R]) ≈ Jloop[R]

2K1Kid
=
Jloop[R]

2[R]2max

. (2.7)

These results reflect the different states that compete with the looped state in the two limits. At

high concentrations, the looped state is out-competed by the doubly occupied state, and since the
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weights of both states have the same dependence on operator strength, the outcome only depends

on the J-factor. At low concentrations, on the other hand, the looped state is out-competed by the

unoccupied state (with weight unity), and the outcome therefore depends on all parameters. (See

also Fig. 2.2(B) above.)

By way of contrast, changing the J-factor moves both tails in a symmetric fashion, as illustrated

in Fig. 2.1(B). This behavior is dictated by the symmetry property: since the peak position is

independent of J , changes in J have to influence the high- and low-concentration parts of the curve

equally. Likewise, both the high-concentration and low-concentration behaviors of the curve in

Eqs. (2.6) and (2.7) depend equally on the J-factor. From an experimental perspective this makes

data at concentrations near and below [R]max crucial for measuring dissociation constants. On the

other hand, if one is only interested in the J-factor, data at high concentrations is sufficient.

Since the high- and low-concentration limits (and therefore the width of the titration curve), as

well as the peak position, depend on the operator strengths only through [R]max, we can ask how

changing the relative strengths of the operators in a way that leaves [R]max unchanged affects the

looping probability. As shown in Fig. 2.1(C), if we change the operators in a way that leaves [R]max

unaffected, only the peak height changes, not the peak position or the width of the titration curve.

The peak looping probability, given by Eq. (2.5) above, can be rearranged in a way that separates

out the dependence on difference in operator strength from the other factors. Specifically, if we

define α = K1/Kid, Eq. (2.5) can be written as

ploop([R]max) =

J
2[R]max

J
2[R]max

+ (α1/4 + α−1/4)2
. (2.8)

Since α1/4+α−1/4 ≥ 2, with equality only ifK1 = Kid, this tells us that equal operators are “best” for

looping, in the sense that for given peak position and J-factor, equal operators maximize the looping

probability, as shown in Fig. 2.1(C). Further intuition about this behavior comes from considering the

competition of states illustrated in Fig. 2.2(B). The looping probability near the peak is dominated

by a competition between the looped state, and the singly occupied state with the repressor bound to
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the strongest operator. Changing the relative operator strength while keeping K1Kid, and therefore

[R]max, constant selectively strengthens that singly occupied state, and therefore poisons looping

near the peak. However, in the limits of high and low concentrations, the looped state is instead

out-competed by the doubly occupied and unoccupied state respectively, whose weights relative to

the looped state only depend on the average binding strength [R]max =
√
K1Kid, so these regimes

are not affected by changes in the relative operator strengths.

2.2 The case of multiple looped states

Interestingly, looping by the Lac repressor is more subtle than the simple model described so far.

Several studies have previously reported two looped states for the Lac repressor in the case of DNAs

with two operators [115, 68, 109, 114, 108, 67, 69, 70], and we observe these two states in the work

presented here as well (see Figs. 4.1(F), 4.2(B) and (E), and 4.3 in Chapter 4, and Appendix E).

These two looped states have been attributed to flexibility in the tetramerization domain of the

repressor and/or to superpositions of four DNA loop topologies [68, 109, 108, 127, 128, 129, 130, 70].

Regardless of their underlying physical origin, we and others model the two looped states as having

the same dissociation constants but different effective J-factors (see Fig. 4.1(F) in Chapter 4 for the

first, to our knowledge, experimental confirmation of this assumption). So the looping probabilities

of these two experimentally distinguishable states can be modeled as

ploop,1 =
1
2
RJloop,1
K1Kid

1 + R
K1

+ R
Kid

+ R2

K1Kid
+ 1

2
RJloop,1
K1Kid

+ 1
2
RJloop,2
K1Kid

(2.9)

ploop,2 =
1
2
RJloop,2
K1Kid

1 + R
K1

+ R
Kid

+ R2

K1Kid
+ 1

2
RJloop,1
K1Kid

+ 1
2
RJloop,2
K1Kid

. (2.10)

Note that Eqs. (2.9) and (2.10) sum to Eq. (2.1) with Jloop = Jloop,1+Jloop,2. Also note that the ratio

of Eqs. (2.9) and (2.10) is just Jloop,1/Jloop,2, which means that the titration curves of the two states

should have identical shape up to an overall scaling factor. This scaling can be seen in Fig. 2.1(D),

where Eqs. (2.9), (2.10), and (2.1) are plotted with Jloop = 54 pM, Jloop,1 = Jloop/3 (labeled the
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“bottom” state), and Jloop,2 = 2Jloop/3 (labeled “middle”), as well as in the experimental results of

Fig. 4.1(F) in Chapter 4.

2.3 Effect of an inactive fraction of repressor

One question that arises in thinking about actual TPM experiments is how should we expect

ploop([R]) to change if the concentration of repressor that is presumed to have been pipetted into the

TPM chamber isn’t the “real” concentration of repressor that contributes to the observed looping?

The most obvious way in which this could happen is by measurement errors when determining the

repressor stock concentration. Another possibility is that some repressor molecules cannot bind

DNA, for example due to misfolding that affects both DNA binding sites. Unless they interact in

some way with the functional repressor (e.g., via crowding effects at high concentrations) the effect

is the same as in the first case: the concentration of active repressors is lowered. A third case is

tested experimentally in the next chapter (Section 3.3.2): some protein may bind nonspecifically to

the TPM chamber walls and thereby not participate in observable looping. Note that in Section 2.4,

we will consider the case in which dimers poison looping, by binding one operator but not forming a

loop. Here, inactive repressors cannot bind DNA and so simply contribute to a discrepancy between

the real and presumed concentrations.

We can model these cases of inaccurate concentration by a fraction f , such that [R] is the

concentration we believe we flow into the chamber, but the concentration of active repressors that

contribute to looping is instead f [R]. Substituting [R]→ f [R] in Eq. (2.1) leads to

ploop, inactive fraction([R]) =
1
2
f [R]Jloop
K1Kid

1 + f [R]
K1

+ f [R]
Kid

+ (f [R])2

K1Kid
+ 1

2
f [R]Jloop
K1Kid

, (2.11)

which can be rewritten in the form

ploop, inactive fraction([R]) =

1
2

[R](Jloop/f)
(K1/f)(Kid/f)

1 + [R]
(K1/f) + [R]

(Kid/f) + ([R])2

(K1/f)(Kid/f) + 1
2

[R](Jloop/f)
(K1/f)(Kid/f)

. (2.12)
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This means that uncertainty about the overall repressor concentration affects all parameters equally,

by literally distorting the basic yardstick of the TPM titration assay. The effect on titration curves

is a simple horizontal shift, as shown in Fig. 2.1(E). The experimental implication is that one can-

not detect an inactive fraction from any distortion of the titration curve. On the other hand, the

parameters are rescaled equally, so ratios of fitted parameters are insensitive to this kind of ex-

perimental uncertainty. Section 3.2 discusses the impact of this potential source of error on the

fitted parameters for the experimental results presented in this work, and as mentioned above, Sec-

tion 3.3.2 describes an experimental control to test for one of the potential sources of a concentration

discrepancy, namely, loss of protein to the chamber walls.

2.4 Effect of the presence of dimers in solution

The Lac repressor is a dimer of dimers, with each dimer of the wild-type tetramer forming a single

DNA-binding domain [95]. Therefore only tetramers can loop DNA, having two DNA binding

domains in the same molecule; but dimers can bind individual operators. If a dimer binds one of

the operators of a DNA molecule, that DNA cannot form a loop even if a tetramer binds the other

site; thus dimers “poison” looping.

There are three conceivable scenarios that would lead to dimers in a solution of otherwise wild-

type tetrameric repressors. First, at very low repressor concentrations the tetramer is thought to

dissociate into its component dimers [131], a reaction governed by an equilibrium constant that we

will call KDT . A second possible scenario is one in which a fraction of repressors is damaged in some

way due to the purification, storage, or thawing process, leading to an inability of some repressors

to form tetramers. This will lead to a fraction of dimers that is constant with the total repressor

concentration. Third, a fraction of monomers could be damaged such that when incorporated into a

tetramer they result in a head that is unable to bind DNA. In this case, a fraction of tetramers would

be “dimers” in the sense that one head can bind DNA but the protein cannot loop the DNA; however

this would also result in a population of tetramers that cannot bind DNA at all. We will first discuss

ploop([R]) for the case where we consider the tetramer-to-dimer dissociation at low concentrations,
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Figure 2.3: Schematized states and Boltzmann weights for a model that includes dimers. Eq. (2.16) is obtained by
observing that since [R] = [T ] + [D]/2, states (ii) and (vii) combine to make the third term of Eq. (2.16), states (iii)
and (vi) to make the second term, and states (iv), (viii), (ix), and (x) to make the fourth term. Therefore the presence
of dimers affects only the looped state—all other states are insensitive to whether a dimer or a tetramer is bound at
each site.

and then comment on the case of a constant fraction of dimers. The third case will not be considered

but is well within the scope of scenarios that can be captured by the class of models presented here.

The most recent estimate of KDT for the Lac repressor from biochemical data claims an upper

bound in the femtomolar range [131]. This estimate is obtained in part from the fact that no dimers

have been observed at any concentrations used in biochemical experiments, which typically do not

examine concentrations below about 1 pM (since KDT is the concentration at which half of the

repressors in solution are dimers, KDT could be at most in the femtomolar or tens of femtomolar

range, in order for the fraction of dimers to be essentially zero at picomolar repressor concentrations).

Single-molecule techniques can, however, measure looping at concentrations below 1 pM, and in fact

these concentrations are crucial to the determination of the shape of the looping probability versus

concentration curve for some choices of operators and J-factors (see Fig. 2.1(A,B)). It is therefore

critical to determine the effect of KDT on the looping probability.

In contrast to the simple model, a model that takes into account dimers must have ten states,

five the same as those of the simple model and five that allow dimers or combinations of dimers

and tetramers to bind to the DNA. These ten states and their associated weights are diagrammed

in Fig. 2.3. To calculate the statistical weights of the dimer-containing states, we will assume that

dimers and tetramers have the same operator dissociation constants. This assumption is reasonable
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given experimental evidence that at least some forms of LacI mutants that cannot tetramerize

retain the same dissociation constants as wild-type repressor [132, 133, 134]. On the other hand,

this assumption is not critical to the calculation and the more general case is a simple extension of

the calculation presented here.

We also assume that the binding of a tetramer or dimer to a DNA tether does not affect the

equilibrium between tetramers and dimers in solution. This assumption is similar to that discussed

in Section 2.6 below, regarding the independence of different tethers in the same flow chamber.

Since it is believed that tetramers dissociate into dimers at low total repressor concentrations,

this is not obviously true; at low concentrations, one might indeed expect that single binding and

association/dissociation events affect the binding and dimerization equilibria. However, the results

of Section 2.6 show that low repressor concentration only affects the simple model for certain values

of operator binding strengths and DNA J-factors. Analogously, we expect the calculation in this

section to be reasonable for some parameter values, but note that the approach to low concentrations

discussed in Section 2.6 could be extended to include dimerization effects as well.

Finally, we define the total repressor concentration [R] such that

[R] =
[D]

2
+ [T ], (2.13)

where [T ] and [D] are the concentrations of tetramers and dimers, respectively. This definition

arises as follows: experimentally we measure the absorbance of purified repressor at 280 nm, and use

the monomer extinction coefficient to obtain a mass concentration of monomers (see Appendix C).

We then divide by the molecular weight of a tetramer, which is 4 times the molecular weight of a

monomer (since the Lac repressor is a homotetramer), to obtain what we call the concentration of

repressor that we flow onto the slide. Therefore we can say that this concentration, [R], is

[R] =
num. monomers

4× vol
. (2.14)
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Since a tetramer is four monomers and a dimer two monomers, we have

[R] =
2D

4× vol
+

4T

4× vol
, (2.15)

which simplifies to the equation above.

With these definitions and assumptions, we find that the partition function for the states schema-

tized in Fig. 2.3 can be written as

Zdimers = 1 +
[R]

Kid
+

[R]

K1
+

[R]2

K1Kid
+

[T ]Jloop

2K1Kid
. (2.16)

(A detailed derivation is given in Appendix A.) Note that the only state that has changed in the

dimers model, compared to the simple model, is the looped state. This makes sense because the

looped state is the only one in which it matters if a tetramer or a dimer is bound to the operators.

Finally, we make use of the definition of the tetramer-to-dimer dissociation constant for the

reaction T ⇔ 2D, which is

KDT =
[D]2

[T ]
. (2.17)

This allows us to eliminate [T ] from Eq. (2.16), leaving us with our final result in terms of [R] and

KDT :

ploop, dimers =

[R]Jloop
2K1Kid

(
1 + KDT

8[R] −
1
8

[(
KDT
[R]

)2
+ 16KDT[R]

]1/2)
1 + [R]

Kid
+ [R]

K1
+ [R]2

K1Kid
+

[R]Jloop
2K1Kid

(
1 + KDT

8[R] −
1
8

[(
KDT
[R]

)2
+ 16KDT[R]

]1/2) . (2.18)

We recover the simple model in the limit that KDT is zero, that is, when tetramers never dissociate

into dimers. Fig. 2.1(G) illustrates how the looping probability changes as KDT approaches the

Kd’s for the operators. The presence of dimers has two main effects. First, tetramer dissociation

breaks the symmetry of the titration curve (since it occurs only at low repressor concentrations),

and therefore is an effect that can, at least in principle, be detected in TPM experiments, in contrast

to an inactive fraction, which rescales all the parameters. Second, since tetramer dissociation only
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occurs at low concentrations, it will contribute mainly an uncertainty factor in the determination

of binding constants. The J-factor should be less affected, since it is strongly influenced by the

high-concentration data where dimerization is not an issue (see the discussion of Eqs. (2.6) and (2.7)

above). In Section 3.2 in the next chapter we discuss the relevance of this extension of the model to

our data and use numerical arguments to estimate the value of KDT for wild-type lac repressor.

We turn briefly to the case that involves the presence of a constant fraction of dimers at all

concentrations. We note that as in the previous derivation involving KDT , the only state that is

affected by the binding of a dimer versus a tetramer is the looped state. The weights of all other

states depend only on the total repressor concentration [R]. We can therefore start with Eq. (2.16),

but then define the concentration of repressors in tetrameric form, [T ], to be

[T ] = (1− ν)[R], (2.19)

where ν is the fraction that are dimers. Then because [D]
2 + [T ] = [R], we must define ν as

ν =
[D]

2[R]
, (2.20)

so that [D]/2+[T ] = 2ν[R]/2+(1−ν)[R] = [R]. We can now use this expression for [T ] in Eq. (2.16),

so that when we form the looping probability we obtain

ploop, const. dimers =

(1−ν)[R]J
2K1Kid

1 + [R]
Kid

+ [R]
K1

+ [R]2

K1Kid
+ (1−ν)[R]J

2K1Kid

. (2.21)

As with the case of an inactive fraction, this model involves only a rescaling of the parameters K1,

Kid, and Jloop, by a factor 1/(1− ν), and therefore cannot be distinguished from the simple model

in the absence of additional information. Fig. 2.1(F) above shows how a constant fraction of dimers

affects the looping probability as a function of concentration.



39

2.5 Effect of cooperative binding of repressor heads

In [115], and in all of the models presented here, it is assumed that the binding of the two heads

of the Lac repressor is independent, that is, that the binding of one head to DNA does not affect

the affinity of the other head for DNA. However, for at least some salt concentrations, the binding

of the second head has been found to be anticooperative [135]. We therefore ask what the effect of

such (anti)cooperativity would be.

We consider two mathematically equivalent but conceptually distinct definitions of cooperativity.

First, we note that we assume non-cooperative binding of the repressor heads in the simple model

by asserting that a free head in solution has half the energy of a full tetramer in solution [115]. If,

however, we do not make this assumption, but instead maintain the full definition in [115] that the

change in energy when a repressor binds to one of the operators is

∆εb = εb + εt − εsol, (2.22)

where εt is the energy of a head free in solution, then the looped state acquires an extra energy

term ω = e−β(εsol−2εt) which we will call the “cooperativity factor”. Note that if we re-introduce the

assumption that the energy of a head free in solution when the other is bound, εt, is equal to half

the energy of a repressor with both heads free in solution, εsol, then we recover the simple model

because this extra factor in the looped term goes to 1. The energy of a head free in solution might

change when the other head binds DNA if, for example, the unbound head binds nonspecifically to

non-operator DNA. (See also the discussion in Appendix A.)

This additional energy term in the looped state leads to a new looping probability that can be

expressed as

ploop, cooperative([R]) =
1
2

[R]Jloop
K1Kid

ω

1 + [R]
K1

+ [R]
Kid

+ [R]2

K1Kid
+ 1

2
[R]Jloop
K1Kid

ω
, (2.23)

where again ω measures the degree of cooperativity between heads. Binding is cooperative if ω is

greater than 1; binding is anticooperative if ω is less than 1; and binding is independent, as in the
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simple model, if ω = 1.

A second and distinct way to capture cooperative or anticooperative binding between the repres-

sor heads is by including an additional “interaction” energy, εint, in the weight of the looped state,

to capture changes in the affinity of the second head for operator DNA when the first head is bound.

Whereas the conceptual starting point for cooperativity described above focuses on the energetics

of a free head in solution when the first head is bound, here we focus on the energetics of binding

of one versus two heads. This second conceptual starting point is essentially that usually used of

allosteric interactions, for example in hemoglobin, where the binding of oxygen to one domain of

hemoglobin alters the affinity of the other sites for oxygen. In the case of the Lac repressor this could

happen if, for example, the repressor-operator dissociation constants are different in the looped state

than in the other states, because of strain on the DNA imposed by the loop shape that then affects

the affinity of the repressor for the (bent or otherwise strained or distorted) operator DNA. In this

second case of cooperativity, the looping probability becomes

ploop, cooperative([R]) =
1
2

[R]Jloop
K1Kid

e−βεint

1 + [R]
K1

+ [R]
Kid

+ [R]2

K1Kid
+ 1

2
[R]Jloop
K1Kid

e−βεint
. (2.24)

Despite their different conceptual starting points, Eqs. (2.23) and (2.24) are obviously mathemati-

cally equivalent, with ω = e−βεint .

More importantly, Eqs. (2.23) and (2.24) are also mathematically equivalent to the simple model

if we define an “effective J-factor” J ′loop = Jloopω. As with the case of an inactive fraction of repressor

or a constant fraction of dimers, Eqs. (2.23) and (2.24) represent a rescaling of the parameters of

the simple model, and therefore concentration titrations cannot detect cooperative binding in the

absence of prior knowledge about the J-factor. In particular, concentration titrations of the kind

discussed here in fact measure J ′loop, not simply Jloop, and all of the J-factors discussed in the next

chapters should be considered dependent not only on the mechanical properties of the DNA in the

loop, but also on parameters related to the looping protein, such as cooperative binding. As we

will see in Fig. 4.3 in Chapter 4, such repressor-dependent parameters can have large effects on the
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effective J-factors that are measured by looping assays.

2.6 Low repressor concentrations

A major assumption behind the simple titration curves featured throughout this work is that the

conformations of different tethers are independent, so that we only have to model one tether. How-

ever, a TPM chamber contains many tethers, and one of the ways they might interact is if binding

of repressor molecules at some tethers significantly decreases the number of repressors available for

binding to other tethers. Intuitively, we expect this to be an issue at low concentrations only, where

the total number of repressors is comparable to, or smaller than, the total number of tethers. In

that case, the number of repressors available for binding might become significantly less than the

total number of repressors, which lowers the looping probability. On the other hand, low concentra-

tions also increase the probability of the unoccupied state. These two trends compete, and in the

following, we will use a simple mean field analysis to estimate how these competing effects play out

at low repressor concentrations.2

The starting point for this analysis is the observation that the repressor molecules in the test

chamber are either bound to an operator, or free in solution and available for binding. (Here, as in

[115], we assume the binding of repressors to non-operator DNA is negligible, based on the relative

magnitudes of the non-operator DNA concentration in the chamber and the association constant of

repressor to non-operator DNA.) If we define a tether concentration [DNA] as the total number of

tethers divided by the total volume, and 〈n〉 as the average number of bound repressors per tether

(that is, n can be 0, 1, or 2, since each tether can have zero, one, or two repressors bound, and 〈n〉

is the average across all tethers in the sample), we can divide the total repressor concentration into

a free and a bound part according to

[R] = [R]free + [DNA] 〈n〉 , (2.25)

2Thanks to Martin Lindén for this derivation.
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where [R]free is the average concentration of free (unbound) repressors. Next, we make the approx-

imation that the tethers are in equilibrium with the average repressor concentration [R]free. This

means that we neglect both temporal and spatial fluctuations in repressor concentration, similar in

spirit to simple mean-field theories of spin systems [136], and simply substitute [R]→ [R]free in the

weights of the simple model of Fig. 2.2(A). We can then use these weights to write an approximate

expression for 〈n〉, by noting that 〈n〉 is the probability of having no repressors bound times zero,

plus the probability of having one repressor bound times one, plus the probability of having two

repressors bound times two. That is,

〈n〉 =

( [R]free
K1

+ [R]free
Kid

+ J[R]free
2K1Kid

)
+ 2

[R]2free
K1Kid

1 + [R]free
K1

+ [R]free
Kid

+ J[R]free
2K1Kid

+
[R]2free
K1Kid

. (2.26)

We now have two equations for the two unknowns, [R]free and 〈n〉. These can be solved numeri-

cally, but it is also instructive to study the behavior at high- and low-repressor concentrations ana-

lytically. Since 〈n〉 ≤ 2, and [DNA] is constant, the expected high-concentration limit [R]free ≈ [R],

i.e., the simple model, can be read off from Eq. (2.25). The low-concentration limit of Eq. (2.26),

which we get by retaining only the linear term in the numerator and the constant term in the

denominator, is

〈n〉 → [R]free

cT
, with

1

cT
=
K1 +Kid + J/2

K1Kid
. (2.27)

If we substitute this back into Eq. (2.25), we can solve for the fraction of free repressors at low

concentration,

[R]free

[R]
→
(
1 + [DNA]/cT

)−1
. (2.28)

At intermediate concentrations, this ratio interpolates smoothly between the high- and low-concentration

limits. The low-concentration limit is interesting for two reasons. First, we note that the ratio

[R]free/[R] in Eq. (2.28) becomes independent of [R]. This means that the low-concentration part of

the titration curve is simply shifted to the right, as illustrated in Fig. 2.1(H). Second, the magnitude

of the maximum shift depends on the tether properties, through the characteristic concentration
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cT : only if this concentration is low compared to the tether concentration [DNA] will the simple

model fail at low concentrations. A high J-factor, low peak concentration [R]max = (K1Kid)1/2,

and large variation in operator strength (for a given peak concentration) leads to a low cT . The

intuition here is that these features all lead to an increased tendency to have repressors bound at

low concentrations, which lowers the number of repressors in solution. Section 3.2.2 describes the

applicability of these low-concentration considerations to the data presented in this work.

2.7 Calculating relative J-factors

So far we have been modeling experiments in which we measure the looping probability at several

repressor concentrations, and have considered how such concentration titrations may change as we

tune the various parameters (e.g., operator strengths or J-factors.) In the following chapters we will

fit these concentration titration data to our model to measure J-factors in absolute units (see, for

example, Fig. 4.1(D–F) and Table 4.1). However, if we are interested only in the relative flexibilities

of two sequences, or if the J-factor for one construct is known and we wish to find the J-factor for a

construct with the same operators but a different loop (as in Fig. 4.2(C) and (F) in Chapter 4), our

model predicts that we can compute the ratio of the looping J-factors of two sequences based solely

on a single pair of looping probabilities, even if we do not know the values of the flanking operator

Kd’s.

We can do so by fixing the concentration of repressor and measuring the looping probabilities of

the two DNAs, and then computing the ratio

punloop/ploop

p′unloop/p
′
loop

=
J ′loop

Jloop
, (2.29)

where punloop for a sequence is 1− ploop. This result is obtained by starting with the probability of

being in the unlooped state,

punloop =
1 + R

Ki
+ R

Kii
+ R2

KiKii

1 + R
Ki

+ R
Kii

+ R2

KiKii
+ 1

2
RJloop
KiKii

. (2.30)
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We then construct the ratio of unlooping-to-looping probability for a single DNA. The ratio of punloop

to ploop is given by

punloop

ploop
=

(
1 + R

Ki
+ R

Kii
+ R2

KiKii

1 + R
Ki

+ R
Kii

+ R2

KiKii
+ 1

2
RJloop
KiKii

)(
1 + R

Ki
+ R

Kii
+ R2

KiKii
+ 1

2
RJloop
KiKii

1
2
RJloop
KiKii

)
(2.31)

which simplifies to

punloop

ploop
=

1 + R
Ki

+ R
Kii

+ R2

KiKii

1
2
RJloop
KiKii

. (2.32)

We form the same ratio p′unloop/p
′
loop for a second DNA. When we divide these ratios of unlooped-

to-looped probabilities for the two DNAs, we obtain

punloop/ploop

p′unloop/p
′
loop

=

(
1 + R

Ki
+ R

Kii
+ R2

KiKi

1
2
RJloop
KiKii

) 1
2

RJ ′loop
KiKii

1 + R
Ki

+ R
Kii

+ R2

KiKii

 . (2.33)

Note that the concentration dependence (as well as operator dependence) cancels. Fig. D.5(A)

in Appendix D.2.7 illustrates this key claim of our model, that the ratio of J-factors computed

from a pair of looping probabilities is independent of repressor concentration. We consider this

concentration independence to Eq. (2.29) to be an important test of the validity of our model

and also a reasonable basis for using single concentrations to measure relative J-factors. (We note,

however, that as is clear from Fig. D.5(A), some concentrations result in smaller measurement errors,

and would therefore be better choices for measuring relative J-factors.) Appendix D.2.7 discusses

how Eq. (2.29) was used in this work to calculate the J-factors presented in Fig. 4.2(C) and (F).

2.8 Conclusion

Many measurements of key biological parameters are reaching the point where they can be carried

out reproducibility and with high precision. As a result, it has become possible to expect (and

even demand) an interplay between theory and experiment where specific theoretical models can

be used as a conceptual foundation for various experimental techniques. Already in the field of

single-molecule biophysics, it has become routine to use the well-understood mechanical properties
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of DNA as a way to calibrate instruments such as optical and magnetic tweezers. Here we have

adopted a similar strategy in which it is shown that a statistical mechanical model of transcription

factor binding to DNA can be used as an intellectual filter for both interpreting tethered particle

experiments and more importantly, for extracting key parameters of biological interest from these

experiments.

In the context of the tethered particle motion assays one of the most useful tools for accessing

biologically interesting parameters is the concentration titration curve that explores the relevant

protein-DNA binding problem as a function of the transcription factor concentration. The key

question addressed here has been an analysis of how these concentration titration curves are altered

by various parameters such as the binding strengths of the transcription factor binding sites and

the length and flexibility of the DNA substrate, and by unwanted side effects such as an inactive

fraction of protein. The centerpiece of the analysis is provided in Fig. 2.1, which shows how both

intentional parameter variation and unintended artifacts can result in altering the useful titration

curves. Our analysis yields a simple conceptual picture of how both the peak positions and the peak

amplitude depend upon the DNA-protein binding constants and on the looping J-factor.

Another important result is that the shape of the titration curve predicted by the basic theory,

Eq. (2.1), is very robust. Several of the perturbations we study can be described within the simple

theory, as modifications to the parameters rather than as changes to the form of the expression.

This shows the robustness of our theory for data analysis, and also clarifies its limitations: some

effects simply cannot be detected from “within” a titration curve. Understanding which effects are

of this kind is critical, as indications of where further developments are needed, and as an integral

part of careful and critical data analysis. In the next chapter we will examine several of these effects

and their relevance for the measurements of J-factors and dissociation constants in Chapter 4.
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Chapter 3

Precision single-molecule
measurements of dissociation
constants and J-factors

As introduced in Chapter 1, we have developed a new way of measuring both operator dissociation

constants and the relative flexibilities of different DNA sequences as contained in looping J-factors,

by tuning the various parameters schematized in Fig. 1.4, with a rigorous comparison between TPM

experiments and the theoretical models presented in the previous chapter. Because this is the first

use of the TPM assay to make such systematic and quantitative measurements, in this chapter we

present a suite of experimental and computational controls that demonstrate the validity of our

theoretical framework and that test the impact of potential experimental sources of error on the

measurements we report in the next chapter.

The first section describes the relationship of this work to earlier efforts in [115, 120]. Although

the theoretical and experimental approaches that we test here were described in this earlier work,

which was crucial to laying the foundations for the work reported here, we consider the results

presented here to be the first successful test of their applicability to DNA looping experiments and

their robustness under numerous experimental variations, and discuss below several improvements to

the method that made a rigorous comparison between theory and experiment possible. The second

section details experimental controls that support the use of the simple model of Eq. (2.1), and

not any of the modifications described in the previous chapter (except the extension to two looped

states), in the following chapters.
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As described in Chapters 2 and 4, a key tool for making many of the measurements in this work

is the concentration titration: by tuning the repressor concentration and measuring the looping

probability, we can fit for other parameters that affect the looping probability, namely the operator

dissociation constants and, more importantly, the looping J-factors for different DNA sequences and

lengths. These concentration titrations will therefore be the lens through which all of the controls

presented here are viewed. All of the test titrations in this chapter will make use of one of the DNAs

introduced in Chapter 1 and discussed in more detail in the following chapter, Oid-E894-O1, as a

case study, though in some instances additional constructs from the next chapter will be referenced.

The particular identities of these DNAs are not relevant for the results here and so a more detailed

description of these constructs and a discussion of the significance of the results we obtained with

them will be deferred to the next chapter.

3.1 Improvements over previous work

The three most significant improvements over the work in [115, 120] that allow us to make the

precision measurements discussed in the next chapter are: (1) the use of better quality protein

(Section 3.1.1); (2) evidence that one of the main constructs used in [115, 120] is most likely is faulty

in some way (Section 3.1.2); and (3) the use of global fits to multiple data sets in order to arrive at

best-fit dissociation constant parameters (Section 4.1 and Appendix D.2.6). We discuss these first

two improvements here, and the last in the next chapter.

3.1.1 Accurate measurements of dissociation constants and J-factors re-

quires protein purified in-house

As in [115, 120], we initially collected data with purified repressor that was kindly shipped to us from

the Kathy Matthews lab at Rice University. However, the fitted Kd’s with this protein were not

consistent with literature values (see Table 1 of [115] and Table 3.1 below); moreover, we could not

obtain consistent results with repressor shipped at different times from different purifications in the
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Figure 3.1: Reproducible looping probabilities obtained only with protein purified in-house. (A) Concentration
titrations with repressor from two different in-house purifications, “SJLacI” (black) and “SJLacI2” (magenta). The
black data are Oid-E894-O1 shown in Fig. 4.1(D–E) in Chapter 4; the black curve is the same solid black (global)
fit shown in Fig. 4.1(E). Protein from a second purification in magenta gives the same results as the black data. All
data in the rest of this work were obtained with SJLacI. (B) Concentration titrations with protein from two repressor
purifications shipped at different times from the Matthews lab (“KMLacI” and “KMLacI2”). Nonloopers have been
subtracted from these data as described in Appendix D.2.5 (as noted in the text there, we find roughly the same
proportion of tethers are “nonloopers” across all protein batches), and all data points include at least 20 beads, as
described in Appendix D.2.4. Note the significantly larger error bars with the shipped protein despite comparable
amounts of data. Data with SJLacI are shown in black for comparison. Unlike in (A), however, the black curve here is
the result of the individual fit to the SJLacI data alone (see Appendix D.2.6), since that should be a more equivalent
comparison for the individual fits shown to the other repressor batches. The fit parameters for KMLacI and KMLacI2
are shown in Table 3.1 (fitting procedures are described in Appendix D.2.6). We were unable to obtain the same
results with protein shipped to us as with protein purified in-house.

Matthews lab. Upon a suggestion from Kathy Matthews that shipping the protein on dry ice may

damage the protein, we purified two batches of protein in our lab, according to the Matthews lab

protocol and after extensive help from their lab (see Appendix C). As shown in Fig. 3.1(A), we were

able to obtain consistent results and reasonable parameter values with protein purified in-house, but

not with the shipped protein (Fig. 3.1(B)). Except where noted in Fig. 3.1(A), all data presented in

the rest of this work were obtained with the “SJLacI” batch.

We also tested the stability of the repressor protein over the course of a day of TPM experiments.

We routinely take at least 3 hours of data on a single chamber (in which repressor is at room

temperature), and 7 to 9 hours of total data in a day (that is, 2–3 chambers), diluting fresh protein

for each new chamber from a stock that remains on ice throughout the course of the experiments.

We computed the mean looping probability, with nonloopers subtracted, for a particular data set

(Oid-E894-O1, 50 pM LacI) for which we had at least 15–20 beads from each of 2 chambers that

represent a day’s worth of data. We find the mean looping probability after 1.5 hours of data taken at
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Data, Repressor Kid K1 Jloop

Oid-E894-O1 KMLacI∗ 20 (10, 130) 500 (± 300) 5000 (± 1000)
Oid-E894-O1, KMLacI2 1.5 (± 0.7) 300 (± 200) 800 (± 400)

Oid-E894-O1, SJLacI 3 (± 1) 90 (± 20) 350 (± 40)
Literature values 8.3±1.7 [125] 37±5 [137, 138, 139] -

Table 3.1: Fit parameters, in pM, for the fits to the “KLacI” and “KMLacI2” repressor batches shown in Fig. 3.1(B),
and the “SJLacI” batch purified in-house shown in Fig. 3.1(A). The “SJLacI” fit parameters are the same as in
Table 4.1 in Chapter 4. As in that table, 95% confidence intervals are reported where standard deviations of fit
parameters would generate negative values. The asterisk indicates that the distributions of fit parameters obtained
from bootstrapped data were multimodal. As shown graphically in Fig. 3.1(B), the fit parameters for KMLacI are not
within error of the individual fit parameters for “SJLacI”, nor are they within error of the global fit parameters shown
in Table 4.1 in Chapter 4, or of values found in the literature using bulk biochemical methods. The fit parameters for
KMLacI2 are barely within error of the individual fit parameters for SJLacI, but we still consider this protein batch
to be suspect. Mis-measurement of the dissociation constants leads to significant mis-measurement of the J-factor,
the parameter which we will attempt to measure as accurately as possible in the next chapter. As will be shown in
that chapter, the use of the “SJLacI” batch plus global fits to multiple data sets does result in dissociation constants
within error of those found in the literature, and therefore we are confident of the J-factors measured with this protein
purified in-house. Fitting procedures are described in Appendix D.2.6.

room temperature, with freshly diluted protein, to be 0.49±0.05, and after 3 hours to be 0.53±0.14;

and the mean looping probability after 1.5 hours at room temperature with protein that had been

on ice for 3 hours to be 0.53±0.05, and after 3 hours at room temperature (and 3 hours on ice) to

be 0.53±0.08. The looping probability computed over the entire day was 0.51±0.3. We therefore

detect no loss of protein activity over the course of a day of experiments.

3.1.2 The PUC306 construct exhibits anomalous behavior even in the

presence of protein purified in-house

The work in [115] relies heavily on looping data with a 306 bp loop derived from the pUC19 plasmid

and flanked by the Oid and O1 operators, in a 901 bp tether. This construct is especially interesting

because its two looped states are clearly separated and both well populated at certain concentra-

tions. It was used in proof-of-principle experiments in [115, 120] with what we now consider to

be “bad” protein (see the previous section). In Fig. 3.2 we show the looping probabilities for this

construct at several repressor concentrations, using repressor purified in-house, and with more data

per concentration and at more concentrations than in [115].

As can be seen in that figure and in the fit parameters listed in Table 3.2, despite this additional

data and fresh protein, the PUC306 construct is still not well fit by operator dissociation constants

that agree with those measured for the other constructs discussed in the next chapter, or with
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Data Kid K1 JPUC, M JPUC, B JPUC, all KDT

PUC, all∗ 8 (± 1) 8 (± 1) - - 390 (± 80) -
PUC, B&M global 8 (± 1) 8 (± 1) 240 (± 20) 190 (± 10) - -

Global Fit (with E8, TA) 5 (± 2) 36 (± 3) 380 (± 40) 300 (± 40) - -
Global Fit, dimers 1 (± 1) 24 (± 4) 360 (± 30) 290 (± 30) - 7 (1, 30)
Oid-E894-O1 alone 3 (± 1) 90 (± 20) - - - -

Global Fit, E8 & TA 12 (± 3) 44 (± 3) - - - -
Literature values 8.3±1.7 [125] 37±5 [137, 138, 139] - - - -

Table 3.2: Fit parameters for the PUC306 construct, in pM. The top row is an individual fit to the total looping
probabilities for PUC alone; the second row, a global fit to the bottom and middle looped states simultaneously,
according to the model in Section 2.2 (see also Fig. 4.1(F)); the third row is a global fit to the bottom and middle
PUC states, plus all three E8 data sets and the TA data set of Fig. 4.1(D–E) in the next chapter. The row labeled
“Global Fit, dimers” is the same global fit but where we take into account the dimer-to-tetramer transition at low
repressor concentrations, as discussed in Section 2.4. The last two rows are taken from Table 4.1 in the next chapter
and are shown for comparison: the second-to-last row is the parameters for the individual fit to the “SJLacI” batch
discussed in the previous section, and the last row is representative of what we consider to be the best parameter
values for our TPM assays.

literature values based on bulk biochemical assays. Because PUC306 exhibits additional anomalous

behavior (for example, the length of the unlooped state as a function of repressor concentration

does not decrease monotonically, as with the other DNAs in Fig. 4.6 in the Appendices of the next

chapter, but instead decreases and then increases again at high repressor concentration), we argue

that the PUC construct contains some aberrant feature that merits its exclusion from further study

(for example, perhaps an unidentified pseudo-operator). We note that the disagreement between this

901 bp construct and the 450 bp E8- and TA-containing constructs used elsewhere in this work is

probably not due to the difference in total tether length: Chapter 6 discusses two-operator constructs

that have total tether lengths of 735 bp, and those constructs are well fit by the Kd’s derived from

the 450 bp constructs. (With only three data points per curve, fitting those 735 bp constructs for

the Kd’s, without reference to the E8- and TA-containing constructs of Chapter 4, does not result

in well-constrained parameters. However the Kd’s from such a fit, K1 = 10 pM and K2 = 500 pM,

are not consistent with the trend that PUC shows, which is that longer constructs have Kd’s that

trend to lower values and/or more similar values for two different operators.)



51

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

0.2

0.4

0.6

0.8

1

LacI Concentration (M)

Lo
o
p
in

g
 P

ro
b
ab

il
it

y

 

 
O1-PUC306-Oid, All
O1-PUC306-Oid, M
O1-PUC306-Oid, B
Oid- E894- O1

(A)

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

0.2

0.4

0.6

0.8

1

LacI Concentration (M)

Lo
o
p
in

g
 P

ro
b
ab

il
it

y

 

 
O1-PUC306-Oid, All
O1-PUC306-Oid, M
O1-PUC306-Oid, B
Oid- E894- O1
O1-E894- O1
O2-E894- O1
Oid- TA94-O1

(B)

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

0.2

0.4

0.6

0.8

1

LacI Concentration (M)

Lo
o
p
in

g
 P

ro
b
ab

il
it

y

 

 
O1-PUC306-Oid, All
O1-PUC306-Oid, M
O1-PUC306-Oid, B
Oid- E894- O1
O1-E894- O1
O2-E894- O1
Oid-TA94-O1

(C)

Figure 3.2: Looping probability as a function of concentration for a 901 bp tether with a 306 bp loop, O1-PUC306-
Oid (green data), compared to Oid-E894-O1 (black data). (A) As with some lengths of the E8 and TA sequences
(discussed in the next chapter and in Section 2.2), the 306 bp PUC sequence results in two looped states with distinct
average RMS values, the shorter labeled “B” for “bottom” and the longer of the two “M” for “middle”. The green
dashed and dotted lines are the results of a global fit to the data for the bottom and middle looped states, where it is
assumed the two states have the same operator dissociation constants but different looping J-factors, an assumption
that is implicit in the model of Section 2.2 in the previous chapter, and validated in Fig. 4.1(F) of the next chapter.
The solid green line, which describes the total looping probability, is then given by the same dissociation constants,
and a J-factor that is the sum of the J-factors for the individual loops. The Oid-E894-O1 data and corresponding fit
(solid black line) are the same as in Fig. 4.1(E) in the next chapter and represents the best fit parameters we obtained
with TPM. The PUC306 construct is supposed to contain the same operators as the E8 construct shown here, such
that as in Fig. 2.1(B) the green and black curves should have maximal looping probability at the same concentrations.
As can be seen here, however, the maximum of looping for the PUC construct occurs at a lower concentration than
for E8, indicating that the two constructs cannot be fit with the same dissociation constants. (B) The results of a
global fit to the PUC data and the four data sets of Fig. 4.1(D–E). The E8 and TA data sets (described in the next
chapter) are all well described by the same parameter set; the PUC construct, however, is not, and inclusion of the
PUC data set in the global fits (with the assumption that it contains the Oid and O1 operators) decreases the fidelity
of the fits to all of the data sets. (C) A global fit that takes into account dimers as in Section 2.4, in the event
that the behavior of the PUC construct (and perhaps the TA construct as well—see discussion in the next section)
can be explained by the dissociation of repressor tetramers into dimers at low concentrations. As in (B), inclusion of
the PUC construct in the global fit, even with dimers allowed, decreases the fidelity of the fit for all constructs. Fit
parameters are given in Table 3.2.

3.2 Computational controls: Dimers at low concentration,

the active fraction of repressor, and low repressor con-

centrations

In this section we discuss several of the modifications to the simple model of Eq. (2.1) described

in the previous chapter and whether they are necessary for the analysis of the data described in

the next chapter. Specifically we address whether it is necessary to take into account the dimer-to-

tetramer transition at low repressor concentrations (Section 2.4), a discrepancy between the assumed

repressor concentration and the actual concentration (Section 2.3), or an excess of tethers relative to

repressors at low repressor concentrations (Section 2.6). Not only do we show here that the simple

model of Eq. (2.1) is sufficient to describe our experimental results, by examining the effects of these
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KDT or f Jloop, E8 Kid K1

1 fM 300 pM 9 pM 41 pM
5 fM 300 pM 10 pM 41 pM
10 fM 300 pM 10 pM 40 pM
50 fM 300 pM 11 pM 38 pM
100 fM 300 pM 12 pM 37 pM
500 fM 290 pM 18 pM 27 pM
1 pM 290 pM 24 pM 24 pM
5 pM 300 pM 29 pM 29 pM
10 pM 300 pM 32 pM 32 pM
97% 310 pM 9 pM 43 pM
95% 321 pM 9 pM 44 pM
93% 330 pM 10 pM 45 pM
90% 340 pM 10 pM 47 pM
80% 380 pM 11 pM 50 pM
70% 430 pM 13 pM 60 pM

(experimental) 330 (± 30) pM 12 (± 3) pM 44 (± 3) pM

Table 3.3: Fit parameters of the simple model (Eq. (2.1)) to data generated by a model that takes into account the
dimer-to-tetramer transition at low concentrations, or a potential inaccuracy in repressor concentration. The top
section gives the fit parameters for data generated by Eq. (2.18), with varying values of KDT ; the middle section, for
data generated by Eq. (2.12), with varying values of f ; and the last section gives the best-fit parameters to our real
data (row six of Table 4.1 in the next chapter), which were used as the inputs to generate the simulated data that was
fit to the simple model here. When KDT exceeds 50 to 100 fM, or f is smaller than at least 90%, the fit parameters
to the generated data cease to be within error of the fit parameters to real data.

potential sources of error on the values we measure, we can ask if it is possible from our data to

determine upper bounds on KDT , the dissociation constant for the tetramer-to-dimer transition,

or f , the fraction of repressor that contributes to looping. We note, however, that as derived in

Section 2, the dimer-to-tetramer transition and limiting repressors at low concentrations will affect

only our measured Kd’s, and not the crucial parameter discussed in the next chapter, the J-factor,

since low-concentration data are more important for measuring Kd’s than Jloop.

3.2.1 The dimer-to-tetramer transition, and the active fraction of repres-

sor

We chose a numerical approach to address the questions of the dimer-to-tetramer transition at low

concentrations, and a potential concentration uncertainty. We first chose a range of reasonable

values for KDT and for f , and then inserted these values along with the best-fit values for Kd’s and

one of the J-factors measured in the next chapter (row six of Table 4.1) into the modified models

of Eq. (2.12) (which includes an inactive fraction of repressor) and Eq. (2.18) (which includes a
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dimer-to-tetramer equilibrium at low concentrations) to generate looping probabilities at a range

of concentrations comparable to those used in our TPM assays. We then fit the original model of

Eq. (2.1) to these simulated data, and asked how closely the fitted parameter values matched to the

“true” values that were the inputs to the simulated data. The results are shown in Table 3.3.

In the first case, that of considering the tetramer-to-dimer transition at low repressor concentra-

tions, we find that the fit parameters to the data generated from the model with KDT (Eq. (2.18)),

but fit to the model without KDT (Eq. (2.1)), were within error of the fit parameters for real data

until KDT exceeded 50 to 100 fM. Therefore given the uncertainty in our experimental data, we

can put an upper bound on KDT in the tens of femtomolar range. This is in good agreement with

recent estimates of KDT from other techniques (see [131]), which put an upper bound on KDT in

the femtomolar range. Again we note that, as concluded in Section 2.4 above, if the true value of

KDT is above 50–100 fM but we do not take it into account in our fits, we would obtain systematic

errors in the fitted values for the dissociation constants but not the J-factor. Therefore regardless

of the actual value of KDT , our measurement of the J-factor remains the same.

On the other hand, in the second case, that of an inaccuracy in the assumed repressor concen-

tration, we find, as predicted in Section 2.3 above, that both the dissociation constants and the

J-factor are affected. However, we find that the assumed value of the repressor concentration could

vary by up to about 10% and we would obtain fit parameters within error of those we now have (or

within error of current literature values for the dissociation constants); and that within this range

our measurement of the J-factor would not change within experimental error.

Since the model that includes f is not an independent model but involves a rescaling of the

parameters of the original model in Eq. (2.1), it cannot be used to fit a concentration curve unless

one of the parameters (f , Ki, Kii, or Jloop) is known from another source. In principle, however, we

should be able to fit both the model with KDT and the model without KDT to any concentration

curve. A fit of the model that includes KDT to the three E8 data sets of Fig. 4.1(D) in the next

chapter, plus the TA data set of Fig. 4.1(E), yields Kid = 8±2 pM, K1 = 37±6 pM, K2 = 210±30

pM, Jloop, E8 = 300 ± 20 pM, Jloop, TA = 4600 ± 500 pM, and KDT = 0.8 (0.2, 20) pM. Here we
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report a 95% confidence interval for the error on KDT because the fit was not well constrained when

KDT was included. As noted above, the J-factors do not change appreciably compared to the fit

that does not include the dimer-to-tetramer transition; and in fact the fitted KDT is low enough

that the dissociation values do not change significantly either. We therefore conclude, as above, that

KDT is no larger than 100’s of femtomolar and is low enough to be irrelevant to our experiments.

3.2.2 Data analysis at low repressor concentrations

As noted in Section 2.6, the statistical mechanical model to which we fit concentration curves

depends on the assumption that tethers are independent, that is, that the binding or unbinding of

a repressor from one tether does not affect the binding or unbinding of repressors on other tethers.

This assumption rests in turn on the assumption that repressors are always in excess of the number

of tethers, so that the removal of one repressor from the solution when it binds to an operator does

not change the effective concentration of repressors that the other tethers “see”. This assumption

is valid at most concentrations that we use; however, it could be called into question at very low

repressor concentrations. To estimate when the assumption of an excess of repressors over tethers

fails, in this section we estimate the number of tethers per chamber and then compare to the numbers

of repressors per chamber as a function of concentration.

Our hand-made TPM chambers have volumes of about 40 µL, which means that at the lowest

repressor concentrations we use, there are on the order of 240,000 (at 10 fM) to 24 million (at 1

pM) repressors per chamber. To estimate a typical number of tethers per chamber, we note that

we usually see fewer than 50 tethers in a field of view, each of which is about 3× 109 nm2 in area,

corresponding to roughly 0.3 nL in volume, given the double-sided tape’s thickness of 100 µm. This

means that in a 40 µL chamber, there will be on the order of 7 million tethers. Even if the estimate

of tether density is an overestimate (given that 50 tethers per field of view is very high), 1 pM

repressor still seems to be the lower bound on concentrations we can use with our model for some

choices of operators and J-factors, below which the assumption of an excess of repressors over tethers

breaks down. In particular, according to Eq. (2.27) and the parameter values given in Table 4.1, the
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Figure 3.3: Effect of bead size and chamber surfaces on the measured looping probability. Halving the diameter of the
reporter bead (A) or linking two chambers to double chamber surface area (B) does not affect the looping probability
of Oid-E894-O1 in a way consistent with theoretical predictions of bead-size effects or loss of protein to channel walls
(see text for details). In both figures, the black data are the Oid-E894-O1 data shown in Fig. 4.1(D) in the next
chapter, and the black curve is the solid black (global) fit of Fig. 4.1(E).

Oid-TA94-O1 construct will be most sensitive to low-repressor-concentration effects. This perhaps

contributes to the large spread in looping probabilities at 250 fM and 500 fM for Oid-TA94-O1, as

evidenced by the much larger error bars on these data points than others.

3.3 Experimental controls: Different bead sizes and nonspe-

cific adsorption to chamber walls

3.3.1 Smaller beads result in similar looping probabilities

A common concern with single-molecule experiments such as TPM that use large particles as re-

porters of molecular dynamics is that the reporters affect the observed dynamics. In particular in

our TPM experiments, the 490 nm diameter bead is attached to a surface by a roughly 450 bp, or

150 nm, DNA tether, so it is reasonable to ask what the impact of excluded volume effects from

the bead may be on the observed looping. Segall and coworkers [140] explored these effects from a

theoretical standpoint and found in the regime applicable to our experiments that halving the bead

diameter would halve the force experienced by the tethered bead. We expect this force to affect
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primarily the measured J-factor: a smaller force would allow more looping and thereby increase the

measured J-factor.

We measured the looping probability of the Oid-E894-O1 construct with 270 nm diameter beads

in addition to the 490 nm diameter beads used in the rest of this work, and found that the mea-

sured looping probability was not within error of the 490 nm points at three out of five measured

concentrations (Fig. 3.3(A)). However the trend in these discrepant points are not consistent with

an increased effective J-factor (see Fig. 2.1(B)). The 270 nm beads are difficult to image and track

with the brightfield microscopy employed in this work, and we attribute discrepancies between the

looping probabilities with 270 nm beads compared to 490 nm beads to tracking inaccuracies with

the smaller beads, and not to an effect of bead size on the measured looping probability. (See also

recent work by Milstein and coworkers [116], who found that looping and unlooping rates varied by

only a factor of 2 between 800 nm and 50 nm reporter beads.)

3.3.2 No detectable loss of protein to chamber walls

Our ability to use our simple model (Eq. (2.1)) to obtain Kd’s and J-factors from concentration

titrations depends on our knowing the absolute concentration of repressor in the TPM chamber.

As described in Section 2.3 in the previous chapter and Section 3.2 in this chapter, if the actual

concentration of repressor in our sample is less than we assume, the parameters we measure will be

scaled by some constant relative to their true values. In particular, we will measure effective Kd’s

that are weaker than they should be, and J-factors that appear larger. We therefore asked if loss of

protein to the walls of the TPM chamber could be affecting our measurement, as one potential source

of a discrepancy between the assumed and actual concentration of repressor in our experiments. To

do so, we made a chamber as described in Appendix D.1, except no DNA was added to the 250

µL 3P introduced into the chamber after the anti-digoxigenin was washed out, and no beads were

added. We then attached the output of this empty chamber to the input of a chamber prepared

as usual. Repressor was introduced into the chamber with DNA via the empty chamber, and data

were taken on the DNA-containing chamber.
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The results of this “linked-channel” experiment, in which the surface area to which repressor

could adsorb is effectively doubled, are shown in Fig. 3.3(B). If protein is adsorbing to channel walls,

when the surface area is increased, data at lower concentrations than the maximum of looping (e.g.,

the 5 pM data in Fig. 3.3(B)) should have a lower looping probability than in the normal single-

channel experiment, and data at higher concentrations than the maximum (e.g., 100 pM and 500 pM)

should have higher looping probabilities. This is not what we observe, and so we cannot conclude

that increasing the surface area of the sample leads to a detectable change in looping probability. It

should be noted, however, that due to the error on each measured looping probability, the effective

repressor concentration in the linked chamber experiment would have to be significantly reduced,

compared to the usual single-channel concentration, to be detectable (see Fig. 2.1(E) and Section 3.2

above).

3.4 Conclusion

In this chapter we have shown the robustness of our combined theory plus TPM assay approach

when confronted with potential experimental complications such as different repressor purifications

(as long as the purification is done in-house), low repressor concentrations, discrepancies between

the assumed and actual repressor concentration, and the size of the reporter bead. In all cases we

found the simple model of Eq. (2.1) to be sufficient to describe our TPM data, and so that model will

be the main workhorse of the following chapters. In addition we were able to validate the combined

theory plus TPM experiment approach on which all of the work presented here is based, beyond

what was possible in earlier work [115, 120], setting the stage for the application of this approach to

the question of sequence flexibility and looping in the next chapter, and of multiple operator systems

in Chapter 6.
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Chapter 4

The sequence dependence of
transcription factor-mediated DNA
looping

With the theoretical framework of Chapter 2 and the validation of our approach in Chapter 3 in

hand, we now turn to the central question of this work, that of the role of sequence flexibility in

DNA loop formation by a prokaryotic transcription factor. The results presented here rely heavily on

the systematic tuning of the four biologically relevant parameters introduced in Fig. 1.4: repressor

concentration, operator binding strength, loop length, and loop sequence.

In the first two sections, where the roles of the first three of these parameters are examined,

we make use of the concentration titrations that figure prominently in the previous two chapters

to report new, single-molecule measurements of the dissociation constants for three of the known

binding sites for the Lac repressor, and the J-factors of 94 bp loops that contain either the random E8

sequence or the putatively more flexible, strong nucleosome positioning TA sequence (see Chapter 1).

We make explicit comparisons between theory and experiment that go beyond those already made

in the previous chapter, confirming that we are able to use TPM, in conjunction with our statistical

mechanical model, to obtain dissociation constants that are comparable to those measured in bulk

biochemical assays. Moreover, this explicit comparison to theory allows the extraction of the looping

J-factors for 94 bp loops with the E8 and TA sequences, which becomes especially important when

comparing to in vivo data as in Section 4.6. We then turn to the fourth tunable parameter introduced

in Fig. 1.4, that of loop length, and find that the looping probability depends on sequence and length
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in a more complicated way than would be assumed from the concentration titrations of Sections 4.1

and 4.2, or indeed from the cyclization and nucleosome positioning studies that inspired this work.

Tuning the length of the loop also yields insights into the two looped conformations that we observe,

and allows us to comment on the difference between short transcription factor-mediated loops versus

ligated DNA minicircles. Finally, we comment briefly on parallel in vivo experiments with the E8

and TA sequences, and the extension of the results presented here to additional sequences.

4.1 Effect of repressor concentration and operator strength

on the looping probability

We first explore from an experimental perspective how the Lac repressor concentration and its affinity

for several known binding sites alter the looping probability, and compare these experimental results

to the theoretical predictions of Chapter 2, finding good agreement between theory and experiment.

We also discuss in more detail than in the previous chapters how tuning the repressor concentration

and the operator strength may be used to extract the looping J-factor of the DNA, as well as

the repressor-operator dissociation constants. In fact we find that the most accurate and logically

consistent way of measuring both the J-factors and operator dissociation constants involves not

only a fit of our model to a particular concentration curve, but instead a global fit of our model to

multiple data sets with different combinations of operators simultaneously (see Appendix D.2.6 for

procedural details). As noted in the previous chapter, we consider the results presented here to be

the first rigorous and successful validation of our combined TPM plus statistical mechanical model,

a success which depends in part upon this operator tuning and global fitting procedure.

As described in more detail in Chapters 2 and 3, we can use the tools of statistical mechanics

to relate J-factors, operator dissociation constants, and transcription factor concentrations to the

experimentally observable looping probability through the expression

ploop([R]) =
1
2

[R]Jloop
KiKii

1 + [R]
Ki

+ [R]
Kii

+ [R]2

KiKii
+ 1

2
[R]Jloop
KiKii

, (4.1)
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Figure 4.1: Theoretical (A–C) and experimental (D–F) results for the looping probability as a function of operator
strength, loop sequence, and repressor concentration. In the theoretical predictions of (A–C) (which are the same as
panels (A), (B), and (D) of Fig. 2.1), Kid = 5.4 pM, K1 = 16 pM, and Jloop = 54 pM unless otherwise indicated; curves
with these default parameters are shown as dashed blue lines for comparison across panels. In the experimental results
of (D–F), errors are standard errors on the mean, and in these panels, unlike in (A–C), curves are fits to Eq. (4.1), not
predictions. (A) Theoretical prediction for the effect of changing the strength of one of the operators on the looping
probability as a function of repressor concentration. (B) Theoretical prediction for the effect of changing the flexibility
of the DNA in the loop. (C) Extension of the simple model to the case of two experimentally distinguishable looped
states (see Sections 2.2 and 4.3), which we model as having different J-factors. The two looped states are labeled
“middle” (“M”) and “bottom” (“B”) in reference to their relative tether lengths: the RMS of the middle state is
between that of the unlooped and the bottom state, and the RMS of the bottom state is such that it is the shortest
observed (non-sticking) state. Here the J-factor of the bottom state, JB , is one-third that of the default 54 pM,
and JM is two-thirds that of the default. The dashed blue line shows the sum of the probabilities of the two states,
which we refer to as the total looping probability. (D) Measured looping probabilities for 94 bp of the random E8
sequence, flanked by three different combinations of operators. Dashed lines indicate individual fits to each data set
as described in Appendix D.2.6; solid lines indicate a global fit to all three data sets simultaneously. The global fit,
which enforces identical values of the J-factor and O1 dissociation constant in all three data sets, describes the data as
well as the individual fits, demonstrating the consistency of the model when the operators are changed. (E) Looping
probabilities for the E8 (black) and TA (red) sequences as function of concentration. The Oid-E894-O1 data are the
same as in (D); the dotted black line is the result of the global fit shown in that panel as well. The dashed red line
represents an individual fit to the Oid-TA94-O1 data; the solid red and black lines are from a global fit to all three
E8 data sets in (D) plus this TA data. (The results of this global fit that includes the TA data for the O1-E894-O1
and O2-E894-O1 data sets are shown in Appendix D.2.6.) The TA data can be fit with the same Kd values as the E8
data, but have a significantly larger J-factor, or a more flexible sequence. Fit parameters for (D) and (E) are listed
in Table 4.1. (F) Looping probabilities for a DNA with two looped states, Oid-E8107-O1. As in (C), “B” refers to
the looped state with the shorter tether length, and “M” to the looped state with the longer tether length. Data
marked “B+M” are total looping probabilities, that is, the sum of the probabilities of the bottom and middle states.
Curves represent a simultaneous fit of the “B” and “M” data to Eqs. (2.9) and (2.10), using the values of Kid and
K1 from the global fit to all three E8 data sets in (D) and the TA data in (E). The procedure for determining the
errors on the fit follows the bootstrapping scheme used throughout this work and is described in Appendix D.2.6.
We find that the two looped states differ only in J-factor, as we and others [128, 129] assume in our models; that is,
that the binding affinity of the repressor for operator DNA does not change with the different loop and/or repressor
conformations that generate the two observed loop states. For this 107 bp loop, the “bottom” state has a J-factor
of 100 ± 40 pM, and the “middle” has a J-factor of 230 ± 40 pM. Note that the total J-factor of 330 pM obtained
from this concentration curve is within error of the J-factor of 280 ± 40 pM determined from only the 100 pM data
point shown in Fig. 4.2(C). Likewise the J-factors for the two looped states are within error of those determined from
the 100 pM data alone (JB = 80 ± 20 pM, JM = 190 ± 40 pM), using the method of relative J-factors described in
Section 2.7 and plotted for the two looped states in Fig. D.5(B) in Appendix D.2.7.
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which is Eq. (2.1) of Chapter 2, reprinted here for convenience. Although Chapter 2 discusses a

number of potential modifications to this model, we have found (here and in the previous chapter)

this expression for the looping probability to be sufficient to describe all of the experimental results

presented here.

As in Chapters 2 and 3, the main workhorse of our approach to testing this statistical mechanical

description of the looping probability is the repressor concentration curve, where we measure the

looping probability at different repressor concentrations, and then fit Eq. (4.1) to obtain dissociation

constants and J-factors. As derived in more detail in Chapter 2, Eq. (4.1) makes very specific and

falsifiable predictions for how these repressor concentration curves should change as the model pa-

rameters change (Fig. 2.1(A–C)). Figure 4.1 shows a subset of these previously untested predictions,

as well as the comparison of these predictions to experiment, which will be examined in more detail

below.

Figure 4.1(A) shows the prediction of our model for how the concentration curves should change

as the dissociation constant for one of the operators is varied: changing the strength of one of the

operators should change both the concentration at which looping is maximal, and the amount of

looping at that maximum, but the curves should overlap at high repressor concentrations. These

observations can be formalized by appealing to Eq. (4.1), as is done in more detail in Section 2.1. To

summarize the results of that section, the concentration at the maximum in the looping probability

Data Kid K1 K2 Jloop, E8 Jloop, TA

Oid-E894-O1 3 (± 1) 90 (± 20) – 350 (± 40) –
O1-E894-O1 – 47 (± 4) – 380 (± 30) –
O2-E894-O1 – 26 (11, 125) 300 (± 200) 320 (± 90) –
Oid-TA94-O1 10 (5, 46) 80 (± 40) – – 5500 (± 600)
Global Fit, E8 9 (± 1) 42 (± 3) 210 (± 40) 300 (± 20) –

Global Fit, E8 & TA 12 (± 3) 44 (± 3) 240 (± 50) 330 (± 30) 4200 (± 600)
Literature values 8.3±1.7 [125] 37±5 [137, 138, 139] 350±130 [137] – –

Table 4.1: Measured dissociation constants and looping J-factors, in pM, obtained by fitting Eq. (4.1) to the data
shown in Figs. 4.1(D) and (E). In most cases the best fit parameter, plus or minus the standard deviation of the
distribution of fit parameters from bootstrapped data, is reported; however in cases where the standard deviation
includes negative parameter values, a 95% confidence interval is reported in parentheses instead. The first four rows
are individual fits to the indicated data sets; the fifth row is a global fit to all three of the E8-containing data sets in
Fig. 4.1(D); and the sixth row is a global fit to these three E8 data sets and the TA data set in Fig. 4.1(E). Fitting
procedures are discussed in Appendix D.2.6.
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can be found by differentiating Eq. (4.1) with respect to [R] and results in

[R]max =
√
KiKii. (4.2)

Note that the concentration at which the looping probability is maximized does not depend upon

the DNA flexibility as captured in the parameter Jloop. The looping probability at this maximum,

however, does depend on Jloop, according to

ploop([R]max) =
Jloop/2

Jloop/2 + (
√
Ki +

√
Kii)2

, (4.3)

and will therefore be discussed in more detail in the next section where our measurements of the J-

factors of two different sequences are directly addressed. Finally, we note that at high concentrations,

Eq. (4.1) approaches the limit Jloop/(2[R]), which is independent of operator strength, explaining

why the curves in Fig. 4.1(A) overlap at high concentrations. As an experimental consequence, data

at low concentrations are essential for determining operator strengths, whereas high-concentration

data are sufficient for determining J-factors.

Figure 4.1(D) shows experimental results for a loop containing 94 bp of the synthetic random

sequence E8 [58, 85], flanked by three different combinations of the operators Oid, O1, and O2, which

are known to have distinct affinities for the Lac repressor. (See Appendix B for the sequences of the

loop regions and operators used in this chapter.) As predicted by our model, increasing the binding

strength of one of the operators (i.e., decreasing the value of one Kd) shifts the maximum of the

curve to the left and increases its amplitude: that is, stronger operators allow more looping at lower

concentrations. Similarly, since the J-factor is a property of the DNA loop length and sequence, we

would expect all three curves to be fit by the same J-factor, and for the fits to reflect the reality that

they share O1 as one of the operators. This is indeed what we find, as shown in the fit parameters

listed in Table 4.1: fits to the individual data sets (dashed lines in Fig. 4.1(D)) and a global fit to

all three data sets simultaneously (solid lines), where we have enforced the constraint that all three

data sets share the same J-factor and dissociation constant of the O1 operator, are comparable in
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their fidelity. We find that the fitted values for the Kd’s agree well with values in the literature

obtained through bulk biochemical techniques (see references cited in Table 4.1), as well as for the

most part agreeing between individual fits to different data sets; and that the fitted J-factor also

agrees well between data sets, with a value of about 300 ± 20 pM. We are therefore confident that

this combined concentration titration plus statistical mechanical model approach provides us with

reasonable parameter values for both dissociation constants and J-factors, and that the global fit

supplies the most reliable parameter estimates.

The looping J-factor for E894 is higher than the corresponding cyclization J-factor of 54 pM

reported in earlier work [85], and significantly higher than cyclization J-factors for other sequences

of similar lengths [59]. However, since the looped geometry imposes less stringent constraints on the

DNA than does cyclization (discussed in more detail below), we would expect the looping J-factor

to be larger than the cyclization J-factor.

4.2 Effect of sequence on the looping probability

As discussed in Chapter 1, we turned to the field of nucleosome positioning for inspiration for

sequences that might alter the behavior of transcription factor-mediated loops, because it has been

argued that at least in vitro, a sequence’s nucleosomal affinity stems from its intrinsic flexibility, and

not from a property specific to nucleosome binding [14]. We here discuss results with the strongest

known nucleosome positioning sequence, 601TA (abbreviated “TA” here and elsewhere in this work),

which has a significantly higher affinity for nucleosomes and a J-factor for cyclization 5 to 30 times

greater than the random E8 sequence described in the previous section, depending on the phasing

discussed in the next section [58, 85, 86]. If TA and E8 differ in mechanical bendability in some

general sense, as is assumed from nucleosome affinity and cyclization assays, then TA should increase

looping by a bacterial transcription factor just as it increases nucleosome binding and cyclizes more

readily than E8.

As derived in Eqs. (4.2) and (4.3) and shown graphically in Fig. 4.1(B), if the TA and E8 sequences

have different J-factors, then the concentration at which looping is maximal should be the same for
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both sequences, but looping should increase at all concentrations with the more flexible sequence.

This is indeed what we find experimentally in Fig. 4.1(E), which shows results for the looping

probability as a function of repressor concentration for a loop with 94 bp of a sequence derived from

TA, flanked by the Oid and O1 operators. In analogy with the case of different operators discussed

in the previous section, the agreement between the individual fit to the TA data (red dashed line)

and the global fit to both the E8 and TA data (solid lines) demonstrates that the two data sets

can be fit by the same operator dissociation constants but different J-factors (see Table 4.1). The

outcome of this measurement is a looping J-factor of 4.2 ± 0.6 nM for the TA sequence, about 10

times higher than the random E8 sequence. This is again higher than the cyclization J-factors in [85]

and [59] in terms of absolute magnitude, and significantly so: if we use Eq. (4.3) and the cyclization

J-factors of [85] to predict maximal looping probabilities, we would expect the maximal looping

probability for Oid-E894-O1 to be 0.25 ± 0.3 (compared to the experimentally observed 0.62 ±

0.01), for Oid-TA94-O1 to be 0.87 ± 0.2 (compared to 0.95 ± 0.01), and the O2-E894-O1 construct

to show essentially no looping at all. The looping J-factor we measure for the TA sequence is not,

however, as much higher than E8 as the 30-fold difference measured in cyclization [85], hinting that

the constraints imposed on the DNA in cyclization versus loop formation may lead to a different

dependence on sequence, as indeed we find below.

4.3 Effect of loop length on the looping probability

One of the signatures of looping by transcription factors both in vitro and in vivo is a significant

modulation of transcription factor activity as the distance between the transcription factor binding

sites is varied [25, 32, 49, 50]. A similar phasing effect has been observed in cyclization data with

the E8 and TA sequences [85]. Our experiments, in conjunction with our model that allows us to

extract J-factors, permit us to explore this phasing behavior for both of the sequences discussed in

the previous sections and to compare to several recent theoretical predictions of the looping J-factor.

In the spirit of the kinds of theoretical predictions of Fig. 4.1(B), we can use the cyclization

results of [85], which looked at the differences between E8 and TA across multiple DNA lengths,
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Figure 4.2: Looping probability as a function of loop length at constant repressor concentration. Surprisingly, the
sequence dependence of Fig. 4.1(E) for the 94 bp construct is absent at other loop lengths. However, the bottom panels
show data for constructs where 36 bp of either E8 or TA nearest O1 has been replaced with the lacUV5 promoter
sequence (and for technical reasons O1 has been replaced with O2, which should not affect our measurements of J-
factors as demonstrated by the data in Fig. 4.1(D)). The presence of this promoter restores a sequence dependence to
looping across several helical periods. (A) Total looping probabilities for the constructs Oid-E8-O1 and Oid-TA-O1,
at 100 pM repressor. The red hatched region represents a prediction for where the TA data should fall, assuming
the TA sequence has a J-factor anywhere from 5 to 30 times larger than the J-factor for the E8 sequence (a range
based on the cyclization J-factors of [85]). The lengths used in earlier cyclization assays [85] are a subset of those
shown in this figure. (B) Looping probabilities for the two looped states separately for the constructs in (A). The
two states alternate in likelihood: the bottom state predominates around 89 bp and 100 bp, but the middle state
around 94 bp and 106 bp. It is more clear in this panel than in (A) that E8 and TA are in phase with each other,
with a period close to the canonical period of 10 bp, everywhere except near 94 bp, where TA has a maximum that
is instead at 95–96 bp for E8. Therefore a simple offset in phase between the two sequences cannot account for the
behavior at 94 bp. (C) Looping J-factors for the constructs shown in (A). The J-factors for both E8 and TA span at
least an order of magnitude as a function of loop length, and the J-factors for the two looped states (see Fig. 4.3 and
Fig. D.5(B)) can also differ by an order of magnitude at a given loop length. However, as shown in Fig. 4.3, this degree
of modulation by operator phasing is less than might be predicted, depending on the assumptions made about Lac
repressor conformation and flexibility. (D) Looping probabilities for constructs where part of the looping sequence of
the constructs in (A) has been replaced with the 36 bp lacUV5 promoter. The red hatched region is the same kind of
cyclization-based prediction as in (A). In sharp contrast to the data in (A), with the promoter sequence in the loop,
TA loops as much or more than E8 at all lengths measured, as would be expected from cyclization and nucleosome
formation assays with the pure E8 and TA sequences. Note that because of the replacement of O1 by O2, the looping
probabilities for these constructs may not match those of (A) even when the J-factors for the loops, plotted in (F),
are the same (though as shown in Fig. 4.1(D) and derived in Eq. (2.6), at high concentrations curves with different
operators begin to overlap, and 100 pM is sufficiently high that the looping probabilities should in fact be similar).
(E) As in (B), here the two looped states have been separated out for the constructs in (D). With the promoter in
the loop, the two sequences have the same phasing even at 94 bp (and in fact share the same phasing as the pure
E8 constructs in (A)). Interestingly, the preferred looped state with the promoter is almost exclusively the middle
state at all lengths—note, for example, that at 107 bp without the promoter, the two looped states are comparable
in likelihood (see also Fig. 4.1(F)), but with the promoter at 107 bp only the middle state contributes to looping
(see also Fig. D.5(D) and (E)). (F) J-factors for the constructs in (D) (open circles), overlaid on the J-factors for the
no-promoter E8 construct shown in (C) (grayed-out closed circles). The addition of the promoter to the loop does
not appreciably change the J-factors for E8-containing loops, only those of the TA-containing loops. See Fig. D.5(C)
for the J-factors of the two states of (E). As in Fig. 4.1(D–F), errors in (A), (B), (D) and (F) are standard errors on
the mean; the calculation of looping J-factors and associated errors is described in Appendix D.2.7. Solid, dashed and
dotted lines in (A), (B), (D), and (E) are guides to the eye only, not theoretical predictions or fits. Their purpose is
to highlight general trends.
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to make a näıve prediction of how we would expect the sequence dependence to looping shown in

Fig. 4.1(E) to manifest as the loop length is changed. Such a prediction is shown as a red hatched

region in Fig. 4.2(A). However, as shown in that figure, to our surprise our experimental results

for the looping probabilities for the two sequences, at a constant repressor concentration of 100

pM, show no sequence dependence to looping, with the exception of one or two lengths around the

length shown in Fig. 4.1(B). The modulation of looping due to phasing is observed in both the E8-

and TA-containing sequences, and, with the exception of the 94 bp loop length, it appears that

this phasing is the same for both sequences. Yet again, surprisingly, not only does the nucleosome

positioning sequence not fall within the hatched predicted region, in fact the nucleosome positioning

sequence has comparable or smaller looping probabilities compared to the random sequence at most

loop lengths.

Even more surprising is that a difference in loopability between the E8 and TA sequences can be

restored when the last 36 bp of the loop is replaced with the bacterial lacUV5 promoter sequence, as

shown in Fig. 4.2(D). We were motivated to make this change since in parallel work (see Section 4.6

below) we have measured how this sequence-dependent looping affects gene expression in vivo and

the presence of the promoter is a natural part of the full regulatory network. Though these loops

contain 36 bp of the loop that are identical between the E8 and TA constructs, the TA-containing

DNAs now loop more than the E8-containing DNAs, and at some lengths are even as much more

flexible than the E8-containing DNAs as predicted based on cyclization assays, as shown by the

red hatched region in Fig. 4.2(D). Interestingly, the J-factors for the E8 sequence with and without

the promoter are comparable—that is, the inclusion of the promoter increases the flexibility of the

TA-containing loops only (Fig. 4.2(F)).

Before discussing the implications of these complex sequence dependencies, we note several ad-

ditional features of these length data in light of recent theoretical works on the length dependence

of Lac repressor-mediated looping, which are plotted in Figure 4.3. As introduced in Section 2.2, we

and others observe two looped states with any pair of operators, which have been hypothesized to

arise from the four distinct topological states of the looped DNA and/or several distinct repressor



67

conformations schematized in the legend of Fig. 4.3 [130, 109, 114, 108, 115, 67, 68, 69, 127, 141, 70].

Regardless of their underlying molecular origins, in Fig. 4.1(F) we show that the two looped states

we observe can be modeled as differing only in effective J-factor. We find that the J-factors for

these two states have opposite phasings, at least without the promoter, as shown in Fig. 4.2(B), and

this phasing does not change between sequences except near 94 bp. Such out-of-phase behavior for

two different loop structures has been observed for other DNA looping proteins [142], and has been

used to explain key features of in vivo repression data [143]. However it is not captured by all of

the theoretical models in Fig. 4.3 (e.g., the “va” and “e” states of [128]). Intriguingly, the promoter

changes the relative probabilities of the two looped states: as shown in Fig. 4.2(E), the promoter-

containing constructs result almost exclusively in the middle state, whereas without the promoter,

the two looped states alternate in prevalence (Fig. 4.2(B)). As these measurements represent the

first single-molecule study on the phasing of these two looped states at single base-pair resolution,

over two helical periods of DNA, at the short loop lengths where the models in Fig. 4.3 show the

most pronounced differences in J-factors due to repressor and loop conformations, we hope that our

data will help shed light on the molecular origins of the two looped states.

4.4 A need to revisit our understanding of sequence flexibil-

ity

We have shown here that the looping J-factors for 94 bp of a random sequence and a nucleosome

positioning sequence differ by an order of magnitude, with the nucleosome positioning sequence being

more flexible than the random sequence, as expected based on previous cyclization and nucleosome

formation assays. To our surprise, however, this sequence dependence occurs only at 94 bp, unless

a bacterial promoter sequence is added to the loop, in which case a consistent length-independent

sequence dependence is restored.

We hypothesize that the sequence-dependent free energy of bending a DNA depends more

strongly than has been previously appreciated upon the specific details of how the DNA double
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Figure 4.3: Theoretical predictions of the length dependence of the looping J-factor. Elasticity theory with “canonical”
values for the stiffness of random DNA sequences, in conjunction with various models of the geometric and mechanical
constraints imposed by the Lac repressor tetramer, have been used to compute the looping J-factor [115, 127, 128, 129].
The model of [115, 127] also explicitly includes the boundary conditions of a TPM experiment, with a bead on one
end of the DNA and a surface on the other. The assumed constraints can be roughly grouped into V-like repressor
conformations, similar to the shape seen in the crystal structure 1LBI [95] (“P1” and “P2”, indistinguishable unless
as in TPM there are symmetry-breaking boundary conditions, and therefore collapsed into one state, “vp”, in [128];
and “A1” and “A2”, collapsed into “v” or “va” in [128, 129]); and more extended repressor conformations (“e”),
which are favored by the DNA mechanics. These conformations are indicated schematically in the legend; for the
case of [115, 127], the blue operator has been chosen to be Oid, that is, the operator closest to the surface. The
prediction for the extended conformation of [128] is a range of values, reflecting estimated uncertainty in the free
energy costs of opening the repressor tetramer. Details of how these curves were obtained are given in Section 4.A.2
below. Our experimental measurements for the two looped states of the no-promoter E8 sequence (“Oid-E8-O1, M”
and “Oid-E8-O1, B”), as well as the cyclization result of Shimada and Yamakawa [57, 115] (“cyclization”) have been
included for comparison. It is to our looping J-factors for the two looped states separately that we compare the
theoretical results, as each of the theoretical results shown here make assumptions about the loop conformation that
surely must differ between the two looped states we observe. We caution the reader that a detailed direct comparison
between these theoretical predictions and with our data may not be possible for several reasons: (1) assumptions
about experimental conditions, such as salt concentrations, differ between references and from the conditions in this
work; (2) it is possible, as argued in [115, 127], that the experimentally observed states correspond to superpositions
of two or more theoretically predicted states for different loop topologies and/or repressor conformations; and (3)
as suggested by FRET data [68, 70] (though see also [130]), TPM with cross-linked repressor [108], and molecular
dynamics simulations [144], the protein conformation in both states may involve some degree of rearrangement relative
to the V-like conformation observed in the crystal structure (at the least, rotation of the DNA binding domains, as
in [144]). In these cases our data would not align with any single theoretical curve presented here. However, we do
make some general observations about the relationship of our data to these theoretical models in Section 4.A.2, and
hope that these data will help shed light on the origins of the two looped states.
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helix is deformed when forming loops versus nucleosomes versus DNA circles. Drew and Travers

argued that a DNA minicircle formed by cyclization shares structural similarities with the DNA

wrapped around a histone octomer [145], explaining the usefulness of cyclization assays for under-

standing the sequence preferences of nucleosome formation. Cyclization has often been cited as a

model by which to understand looping as well [29, 58, 84, 88]. However, as diagrammed in Fig. 4.3,

for DNA loop formation by the Lac repressor, there are multiple looped configurations allowed for

a given loop length, most of which are probably quite far from circular as a result of the distinct

boundary conditions imposed by repressor binding, and which should have large effects on the as-

sociated looping J-factor. We argue that although DNA cyclization may share characteristics with

DNA looping such as length-dependent phasing, it apparently does not share other characteristics

such as trends in sequence-dependent flexibility, possibly because of this difference in boundary con-

ditions. We also suspect that the strong sequence dependence at 94 bp without the promoter, and

with the promoter at all lengths, is due to a change in the preferred loop conformations of these

constructs, compared to the majority of the no-promoter constructs. Indeed, the change in the

predominant looped state (the “bottom” and “middle” states alternating without the promoter, but

the “middle” state predominating at all lengths with the promoter) supports this hypothesis that

the promoter alters the preferred conformation of the loop (see also Fig. D.5(D) and (E)). To further

unravel these subtleties and to elucidate the sequence rules of loop formation, as has already been

done for nucleosome formation [14, 52], we believe a more thorough search of sequence space using

the Sort-Seq and high-throughput TPM approaches described in Chapter 7 will be necessary. We

also hope that additional theoretical analyses, perhaps involving the observed tether lengths of the

looped state with and without the promoter given in Section 4.A.1 below, may shed further light on

the conformations of looping for these different sequences.

As discussed in Chapter 1, the mechanics of loop formation at these short loop lengths that

are so prevalent in cellular processes is a subject of much debate, regardless of their sequences

[27, 51]. However, the question of how flexible we expect short DNAs to be is more complicated

to answer in the case of protein-mediated DNA looping than in the case of cyclization. As shown
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in Fig. 4.3, varying the boundary conditions of the loop or the assumed protein flexibility can lead

to enormous differences in predicted looping J-factors. Some of these predicted J-factors, using

canonical assumptions about DNA flexibility, are in fact consistent with the J-factors we measure,

so perhaps it should not be surprising that short transcription factor-mediated loops can form readily

in vitro.

4.5 Preliminary results with additional sequences

A key question raised by the results of the previous sections is how general the conclusions are

for other potential looping sequences. Is there no sequence dependence to looping in vitro, unless

the lacUV5 promoter is added to the loop, or is this result peculiar to the E8 and TA sequences

examined here? Is the ability to restore sequence dependence specific to the lacUV5 promoter, or do

other bacterial promoters yield the same results? What about other looping proteins such as GalR

or AraC [26]?

As mentioned in the previous section and described in more detail in Chapter 7, the question

of whether any sequences alter loop formation in the absence of the lacUV5 promoter will most

likely require a broad search of sequence space through a combination of the Sort-Seq method and

high-throughput TPM. However, we have begun to address this question of the generality of our

results by again turning to sequences studied in the context of nucleosome formation, this time to

sequences known to disfavor nucleosomes, a class of sequences that are rich in long stretches of A

and T base pairs.1

Such poly(dA:dT) sequences are overrepresented in eukaryotic (but not prokaryotic) genomes

[146], with beginnings and ends of promoter regions in eukaryotes often especially highly enriched

in these sequences [75]. It has been shown both in vivo [147, 148, 75, 149] and in vitro [150, 151,

152] that poly(dA:dT) sequences disfavor nucleosome formation, and their presence at promoters

and the ends of genes has been correlated with increased gene expression levels [153, 147] and

1This poly(dA:dT) project is an equal collaboration with Yi-Ju Chen in the Phillips lab and was suggested to us
by Jon Widom.
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decreased transcriptional noise [75]. In fact, it has been argued that poly(dA:dT) tracts are the

major determinants of nucleosome positions in vivo, rather than nucleosome-preferring sequences

such as TA [15].

However, the mechanism by which poly(dA:dT) tracts exclude nucleosomes and influence tran-

scription in vivo is as yet unclear [148]. It is known that DNA polymers with 4 or more A nucleotides

in a row show unique structural and dynamical properties in a variety of assays [148], and generally

it is thought that long stretches of poly(dA:dT) are relatively straight and inflexible in vitro [154]

(though see [61] for experimental evidence that poly(dA:dT) is more flexible, not less; and also it

should be noted that the phased A-tracts discussed in Chapter 1 are known to induce intrinsic bends

into DNA [155], rather than be intrinsically straight). A leading hypothesis for why poly(dA:dT)

tracts disfavor nucleosome formation, then, is that their unique structural and dynamic properties

lead them to be especially resistant to the deformations that are required for DNA wrapped in a

nucleosome [148]. That is, just as the TA sequence favors nucleosome formation because of a high

intrinsic flexibility (at least with regards to certain deformations), poly(dA:dT) has a high intrinsic

inflexibility relative to the deformations involved in nucleosome formation. Again this high inflexibil-

ity is thought not to arise from any particular stiffness to AA dinucleotide steps but rather from the

special structures known to form when more than two AA steps are found in a row [148]; nevertheless,

they should look “stiff” under comparable deformations to those required in a nucleosome.

To test this hypothesis that poly(dA:dT) tracts disfavor nucleosome formation because of a high

intrinsic inflexibility in the context of nucleosome-like deformations (regardless of the molecular

origin of this stiffness), and also to test the generality of our results with E8 and TA, we chose

a poly(dA:dT)-rich promoter region from S. cerevisiae that was shown to exclude nucleosomes in

vivo by microarray analysis [149], and inserted this sequence into both the no-promoter and with-

promoter loops described in the previous sections. (See Fig. B.3 and Appendix B.2 for details of

these sequences.) If the results from the E8- and TA-containing loops hold more generally, and

poly(dA:dT) sequences disfavor nucleosomes due to a high intrinsic inflexibility in the context of

nucleosome-like shapes, then we would expect these poly(dA:dT) sequences to yield the same amount
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Figure 4.4: Looping probabilities as a function of loop length for a poly(dA:dT)-rich sequence known to exclude
nucleosomes in yeast, superimposed on the E8 and TA data of Fig. 4.2, both with and without the promoter. (A)
Total looping probabilities for the no-promoter constructs, as in Fig. 4.2(A). Data at additional loop lengths with
the poly(dA:dT) sequence will be necessary to draw definite conclusions, but it appears that the poly(dA:dT) has a
different period than the E8 and TA data, and that, in contrast to the E8 and TA data, the poly(dA:dT) sequence
may alter the amount of looping compared to E8, even without the promoter. (B) Looping probabilities for the
two looped states separately, as in Fig. 4.2(B), for the constructs in (A) here. Interestingly, even though the periods
of these three sequences seem to be different, the pattern of which looped state predominates at a given length is
consistent between all three sequences: note especially the 107 and 108 bp lengths. (C) J-factors corresponding to
the total looping probabilities in (A). One of the poly(dA:dT) loops is almost as flexible as TA94, which is surprising
given that we expected, based on nucleosome affinity assays, that poly(dA:dT) might be less flexible. (D) Total
looping probabilities for the with-promoter constructs, as in Fig. 4.2(D). As with the data in (A), it appears that the
poly(dA:dT) sequence has a different period relative to E8 and TA, so the conclusions we can draw from only four
data points are limited. However, it seems that, unlike with E8 and TA, with the promoter in the loop the sequence
dependence of poly(dA:dT) may not follow that of nucleosome formation, at least relative to E8: the TA sequence,
which nucleosomes preferentially bind to over the random E8 sequence, loops more than E8; but the poly(dA:dT)
sequence, known to exclude nucleosomes from a promoter region in vivo, loops as much as E8 (though still less than
TA) at some lengths. (E) Looping probabilities for the two states separately, for the constructs in (A). As was
observed for the E8 and TA constructs in Fig 4.2(E), with the promoter in the loop, the middle state predominates at
all four lengths, whereas without the promoter in (B), the bottom state is equally or more dominant at 107 and 108
bp. (F) J-factors for the constructs in (D). The presence of the promoter decreases the J-factor of the poly(dA:dT)
sequence relative to the no-promoter constructs, though not to a value less than that of E8, contrary to what we
would expect from nucleosome formation assays.
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of looping as the E8 and TA sequences without the promoter, but for the with-promoter loops

to follow the same sequence dependence as nucleosome formation, that is, with the poly(dA:dT)

sequences looping less than E8 and TA.

As shown in Fig. 4.4, this is not what we find. As our preliminary results include only four

loop lengths with and without the promoter, we can at the moment draw only limited conclusions.

But the most striking feature of the poly(dA:dT) data is that it appears the period of looping

(that is, at what lengths looping is maximized or minimized), is different for the A-tract containing

DNAs compared to that of E8 or TA. This is perhaps unsurprising, given that A-tract-containing

DNAs are thought to adopt unique structures, and in fact some A-tract-containing DNAs have been

shown to have shorter periods than other sequences [148]. What is also striking, however, is how

flexible both the no-promoter and with-promoter poly(dA:dT)-containing loops appear to be: the

105 bp loop without the promoter is almost as flexible as the TA94 sequence (Fig. 4.4(C)), and even

without the promoter the poly(dA:dT) loop is at least as flexible as E8 loops of comparable (though

not identical, due to the period offset) lengths. Indeed, it appears that, in contrast to the results

with E8 and TA, the poly(dA:dT) loop does show a sequence dependence in the absence of the

promoter, as well as with the promoter, in that its looping probability is different from that of E8

in both cases. One aspect of the data is consistent across all three sequences, though: the relative

probabilities of the different looped states. Without the promoter, the two looped states alternate

in prevalence, including for the poly(dA:dT) constructs, but with the promoter, the middle looped

state predominates.

We argued in the previous section that we suspect that whether or not there is a sequence de-

pendence to looping depends strongly on the shape of the loop, with the promoter altering the

preferred conformation such that the promoter-containing loops are more similar in shape to nu-

cleosomes than the no-promoter loops, and therefore the patterns of sequence dependence seen in

nucleosome formation hold only for promoter-containing loops, and not the no-promoter loops. We

have now shown that that is not generally the case: if the with-promoter DNAs followed the sequence

preferences of nucleosomes, then the poly(dA:dT) sequence with the promoter should have looped



74

less than E8 regardless of the period offset. However, the fact that now neither the with-promoter

nor no-promoter constructs follow the sequence dependence trends of nucleosomes underscores even

further our argument that“sequence flexibility” is not a general term.

We maintain our original hypothesis that the notion of sequence flexibility needs to be linked to

the shape of the deformation induced to measure such flexibility. Because poly(dA:dT) tracts are

known to possess unique structural properties, the fact that the poly(dA:dT)-containing loops do

not match the sequence-dependence trends of E8 and TA is perhaps further evidence that the shape

of the loop plays a large role in the observed flexibility trends. If that were the case, it would also

demonstrate that the Lac repressor can accommodate a range of different looped structures, based

on the deformation-dependent flexibilities of the loop sequence. Indeed, Haeusler and coworkers

have recently shown that the Lac repressor can accommodate a surprisingly large range of designed

loop topologies (made with phased A-tracts that introduce static bends in the DNA) [70]. We

anticipate that the poly(dA:dT) loops form yet an additional shape, beyond the different shapes we

have postulated for with-promoter versus no-promoter E8- and TA-containing loops, because of the

unique structural requirements of A-tract DNAs.

As will be described in Chapter 7, rigorous testing of our deformation-dependent hypothesis will

require testing a broader region of sequence space than can be accomplished by picking and choosing

from sequences studied in the context of nucleosome formation, which addresses only a limited region

of shape space (roughly circular) that is probably inaccessible to looping. We will therefore propose

a de novo search of sequence space to try to identify sequences that are especially good or especially

poor looping sequences, to try to build up rules for the sequence dependence to loop formation, as

has already been done with nucleosomes [14]. More importantly, as will be seen in the next section,

the question of whether sequence flexibility is a “knob” that tunes loop formation in vivo remains a

very important and outstanding one that cannot, we will argue, necessarily be addressed by in vitro

techniques alone.
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4.6 The masking of sequence effects in vivo by nonspecific

DNA-bending proteins

The ability of the Lac repressor to form the loops that we have been studying here is crucial for

its function as the negative regulator of the lac operon in vivo [93, 94, 32], with any increases in

looping leading, presumably, to an increase in repression of gene expression. As we have shown that

sequence can in some cases contribute to significant increases in looping probability in vitro, it is

important to ask if these increases in looping probability are translated into an increased amount of

repression in vivo.

Figure 4.5 shows results of in vivo repression assays in which the same promoter-containing

constructs as were examined in vitro in Fig. 4.2(D–F) were integrated into the E. coli genome, such

that the lacUV5 promoter drives the expression of a fluorescent reporter gene (YFP) [118].2 The

activity of the Lac repressor manifests as a decrease in YFP expression: repression is defined as

the amount of YFP expression in an E. coli strain in which the Lac repressor is not expressed and

therefore YFP expression is constitutive and maximal, divided by the amount of YFP expression in

the presence of the Lac repressor. That is,

Repression =
YFP([R] = 0)

YFP([R] 6= 0)
. (4.4)

Therefore when repression is 1, transcription is unregulated; repression greater than 1 indicates the

Lac repressor has decreased YFP expression (and so the denominator of Eq. (4.4) decreases).

The same statistical mechanical approach that was used to derive an expression for the looping

probability measured by TPM as a function of key tunable parameters can be used to derive a similar

expression for the repression of gene expression measured in vivo. In terms of statistical mechanics,

2The in vivo model and data in this section are the work of James Boedicker and Hernan Garcia in the Phillips
lab.
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Figure 4.5: The nonspecific DNA-bending protein HU masks sequence-dependent looping in vivo. (A) Prediction of
the effect that having TA instead of E8 in the loop should have on the observed repression, based on Eq. (4.5) and a
difference of either 1 (blue) or 2 (red) kBT in the Floop for E8 versus TA. (B) In sharp contrast to the prediction of
(A), no sequence dependence to repression is observed in vivo: E8- and TA-containing loops yield the same amount
of repression. (Note that these are the promoter-containing loops that do show a sequence dependence in vitro in
Fig. 4.2(D–F)). The length-dependent modulation (phasing) that is a signature of looping (see Fig. 1.1(D)) is, however,
still observed for both sequences. (C) Some sequence dependence to repression is restored when the genes for HU
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thereby increases repression. (D) Difference in observed free energies between E8 and TA in vivo with and without
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more readily at some lengths, though not to the degree observed in vitro (blue). HU is not the only DNA-bending
protein in E. coli and it is likely that these other bending proteins contribute to the residual discrepancy between the
in vivo and in vitro measurements. Adapted from [118].
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then, Eq. (4.4) can be rewritten as

Repression =

1 + 2R
NNS

(e−β∆εrad + e−β∆εrmd) + 4R(R−1)
N2
NS

e−β(∆εrad+∆εrmd) + 2R
NNS

e−β(∆εrad+∆εrmd+∆Floop)

1 + 2R
NNS

e−β∆εrad
, (4.5)

where R is the number of repressors in the cell, NNS is the number of nonspecific binding sites

(roughly 5 × 106, the number of base pairs in an E. coli genome), ∆εrmd is the binding energy of

the repressor to the operator overlapping the promoter, ∆εrad is the binding energy of the repressor

to the other (distal) operator, and β is the reciprocal of the temperature times the Boltzmann

constant [118]. Most importantly, the flexibility of the sequence in the loop should be captured by

the parameter ∆Floop, related to the J-factors that we measure with TPM according to Eq. (2.2) in

Chapter 2; and even small (one or two kBT ) changes to ∆Floop should manifest as large effects on the

fold-change (Fig. 4.5(A)). The differences in J-factors we measured with TPM for the with-promoter

E8 and TA sequences should easily be large enough to be observed as a change in gene expression

in vivo (Fig. 4.5(D)).

However, to our surprise, we find no sequence dependence to repression in vivo with the promoter-

containing loops for which there is a strong sequence dependence in vitro (Fig. 4.5(B)). The cause of

this lack of sequence dependence appears to be the action of one or more nonspecific DNA-bending

proteins that organize the E. coli genome [17]: it is possible to restore at least some sequence

dependence if the genes for one of these proteins, HU, are knocked out (Fig. 4.5(C–D)). Previous

experiments on cyclization with intrinsically curved sequences in the presence of DNA-bending

proteins, and some limited complementary in vivo experiments, are suggestive of a similar effect in

eukaryotic cells [156, 157]. It remains to be seen if there are any sequences that can overcome this

masking effect of HU in bacteria, or if sequence flexibility is not a parameter that either prokaryotic

or eukaryotic cells tune to regulate gene expression.
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4.7 Conclusion

Here, we have presented experimental results from a combined single-molecule-plus-modeling ap-

proach that allows us to explore how the transcription factor-mediated loops that are a common

motif in both bacteria and prokaryotes are influenced by four distinct, tunable biological parameters:

transcription factor binding site strength, transcription factor concentration, DNA loop length, and

DNA loop sequence. We have demonstrated that this approach explains how the looping probability

depends upon the strength of the operator dissociation constants and that our measured Kd’s agree

well with values previously obtained by bulk biochemical methods. Further, our model accounts well

both quantitatively and qualitatively for the effects of varying the loop flexibility, as well as for details

of our single-molecule looping experiments such as the presence of two looped states. Our method

provides a way of measuring J-factors that is orthogonal to, and therefore complementary to, current

methods in use, which we argue has led to important new insights into the role of sequence in DNA

flexibility. In particular we have argued here that the sequence-dependent free energy of bending a

DNA must depend more strongly than has been previously appreciated upon the specific details of

how the DNA double helix is deformed when forming loops versus nucleosomes versus DNA circles.

It is not the case that the TA sequence can be claimed to be more flexible in some general sense,

nor the poly(dA:dT) inflexible in some general sense; nor can cyclization and nucleosome affinity

assays be used to determine DNA flexibility for all biological contexts, as we have shown here that

loop formation does not necessarily follow the same sequence rules as cyclization and nucleosome

formation. We hope that the measurement of looping J-factors for many more sequences, especially

those that are not derived from nucleosome affinity assays but from other biological or synthetic

contexts, will begin to elucidate the rules of the sequence dependence to loop formation that we

have only begun to glimpse here.

The in vivo results of Section 4.6 reveal both the power and limitation of in vitro assays such as

TPM. On the one hand it is clear that the complex environment of the cell, and particularly the

many proteins that structure the genome in vivo, creating a context far removed from the naked,

linear DNAs of TPM, make it difficult to generalize from TPM results to biological impacts in cells.
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In fact, in Chapter 6 we will present another example of a system that may also require architectural

proteins to replicate in vivo results in vitro. On the other hand, without the TPM data we present

here, it would not have been possible to claim that HU masks sequence dependence: we would

not have demonstrated that the E8 and TA sequences can result in different amounts of looping,

as previously they had been studied only in the context of cyclization and nucleosome formation.

Furthermore, contact between the in vivo and in vitro worlds is only possible through our statistical

mechanical models, which allow the extraction of looping free energies and J-factors, and allow us

to predict if the differences in J-factor we observe in TPM should be sufficient to affect repression

detectably in vivo. We therefore believe that this three-pronged approach of theory, in vitro, and in

vivo experiments offer the best path towards dissecting the role of DNA mechanics in gene regulation.
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4.A Appendices to Chapter 4

4.A.1 RMS of the unlooped and looped states as a function of concen-

tration and of loop length

We hope that the data presented in this work will aid in future attempts to model the interactions

of the Lac repressor with DNA, and to that end in this section we comment on the tether lengths

of the unlooped and two looped states that we observe with TPM. In this work we have focused

on using tether length as an indicator of the state (looped or unlooped) of the system, which in

turn enables us to calculate looping probabilities; however we recognize that tether lengths contain

additional information about the underlying conformation of the tethered DNA. For example, in

Fig. 4.6(A) we discuss an effect that may be indicative of the bending of the operator DNA by

bound Lac repressor, seen in the crystal structure of [95].

The tether lengths we observe in populations of otherwise identical tethered DNAs vary notice-

ably (see the black horizontal dashed lines in Figs. E.1 and E.2(A–B)), which we suspect arises at

least in part from variations in bead diameter (the manufacturer reports a coefficient of variation

of 1% in the base polystyrene particle, which should correspond roughly to a standard deviation in

bead diameter of about 5 nm). Therefore what we report on the y-axes in Fig. 4.6 is the average

tether length relative to the “no lac” length; that is, the average difference between a bead’s un-

looped or looped state(s) and the length of that particular tether recorded before repressor has been

introduced into the TPM flow chamber. This allows us to resolve small but detectable changes in

tether length in the presence versus the absence of repressor which would otherwise be obscured by

the larger bead-to-bead variation in diameter. The improvement in resolution that we obtain by

this method is perhaps one reason why we see evidence for operator bending where previous TPM

experiments with the Lac repressor has not [109].
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Figure 4.6: The effect of increasing repressor concentration or loop length on observed tether length. As noted in the
text, due to initial tether length variability, we here report average RMS motion relative to the RMS in the absence of
repressor. The tether length of each state was determined by the thresholding method described in Appendix D.2.3
(even for constructs whose looping probabilities were determined by Gaussian fitting); the average tether length of
the state was taken to be a weighted average of RMS values within the threshold limits. The average tether length of
the DNAs with 94 bp loops in Fig. 4.1(D–E) in the absence of repressor is about 147 nm; the average tether length of
the DNA with a 107 bp loop in Fig. 4.1(F) is comparable (150 nm). (A) The average relative RMS of the unlooped
state as a function of concentration, for the five DNAs in Fig. 4.1(D–F), plus two DNAs which are missing one (“No
Oid”, which is (noOid)-E872-O1) or both (“No operators”, (noOid)-E872-(noO1)) of the operators. These DNAs
with missing operators are slightly shorter than the others in this figure, with average tether lengths in the absence of
repressor of about 140 nm. For the two-operator DNAs, as the amount of repressor increases, the RMS of the unlooped
state decreases. We suspect this shortening is due to the bending of the operator DNA by a bound repressor; in the
crystal structure in [95], a repressor bound to the Oid operator produces a 45◦ bend. At low repressor concentrations,
the unlooped state that we observe in TPM is mostly composed of the state where nothing is bound to the DNA
(state (i) of Fig. 2.2(A)), and so little operator bending is observed. However, at high concentrations, the unlooped
state is composed mostly of the doubly occupied state (state (iv) of Fig. 2.2(A)), and so the tether length shortens
significantly. The addition of repressor has no effect on DNA with no operators at high repressor concentrations,
suggesting that the shortening we observe is not due to nonspecific binding of the repressor to non-operator DNA.
Note that the observed reduction in tether length for two operators will not necessarily be double the shortening of
tether length for a single operator, depending on the phasing of the two bend angles. (B) Average relative RMS
for the middle and bottom looped states as a function of concentration, for the constructs of Fig. 4.1(D–F). Unlike
the unlooped state, the looped states are invariant with concentration. (C) Average relative RMS for the unlooped
and looped states as a function of increasing loop length, for the E8-containing DNAs whose looping probabilities are
shown in Fig. 4.2(A) (no promoter, closed circles) and Fig. 4.2(D) (with promoter, open circles) in Chapter 4. Note
the shortening of the unlooped state that we attribute to operator bending, since these data are taken at 100 pM
repressor. The contour lengths of the with-promoter DNAs are slightly shorter than the no-promoter DNAs, with
an average RMS in the absence of repressor of about 143 bp at a 94 bp loop length. (D) Same as (C) but for the
TA-containing DNAs.
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4.A.2 Compiling looping predictions from several recent theoretical anal-

ysis

Cyclization free energies according to the Shimada and Yamakawa approximation [57] were taken

from [115, 127].3 Predictions of the looping free energy of various looped conformations from [128,

129] were digitized with Enguage Digitizer (http://digitizer.sourceforge.net/). From [128], looping

free energies of the V-like conformations P1 and A1 (called “vp” and “va” in Fig. 4.3 in this work)

and the extended conformation P1E (“e” in Fig. 4.3) are taken from Fig. 4 of [128]. The extended

conformation free energy of [128] contains a contribution that describes the cost of opening the

Lac repressor tetramer to the extended conformation. This term was estimated with an interval,

reflected by the upper and lower edges of the gray polygon in Figure 4.3 in this work. From [129],

looping free energies of the V-like conformation LB and extended conformation SL are taken from

Fig 3(B) of that work. 20.5 bp was subtracted from the DNA length values used in that figure in

order to convert it to the loop length convention used in [115, 127, 128], and in this work. Ref. [129]

also discusses loop conformations similar to that labeled “vp” for [128]; these results were excluded

for clarity, as they (and the “vp” conformation for [128] shown in the figure) contribute very little

to the total J-factor.

As noted in the caption to Fig. 4.3, detailed comparisons between these theoretical predictions

and with our data may not be possible. However, we do make the following observations: first, the

most striking feature of our data not consistently captured by all of the models summarized here is

that the two looped states we observe can have comparable J-factors at some lengths—that is, the

curves for JB and JM intersect, at least without the promoter. This is surprising if one postulates

that one of the two looped states corresponds to a V-like protein conformation and the other to a

more extended protein conformation, as in [109], as computational analyses usually find the extended

protein conformation to be so favorable in terms of the DNA mechanics as to generate a J-factor

orders of magnitude larger than any V-like conformations at the lengths we examined (e.g., [129]).

Second, the “B” and “M” states are out-of-phase with each other, much as the “v” and “e” states of

3Thanks to Martin Lindén for compiling these theoretical results.
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[129] or the “A1” and “A2” or “P1” and “P2” states of [115, 127], but not the “va” and “e” states

of [128]. Finally, as discussed in more detail in the next chapter, we observe direct interconversion

between the two looped states, which would suggest that they differ in protein conformation and

not loop topology; however, it is possible, given the 4 second Gaussian filter applied to our data,

that we are smoothing out short transitions to the unlooped state. In the next chapter we discuss

preliminary attempts to quantify the possibility that the apparent direct interconversions are a result

of filtering.
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Chapter 5

A kinetic analysis of looping by the
Lac repressor

In the preceding chapters we have used the looping probability measured with TPM to gain insight

into several important aspects of the short-length-scale mechanics of different DNA sequences in

the context of loop formation. However, the RMS-versus-time trajectories that we obtain in TPM

contain additional information about looping, namely kinetic information. For example, as shown in

Fig. 5.1, two repressor concentrations may lead to comparable looping probabilities for a particular

construct, and therefore would look the same in the analyses of the previous chapters; but the

dynamics of looping at these concentrations can be very different. Another example of the kinds of

insights that are available only from kinetic analyses of TPM data relates to the origins of the two

looped states that we and others observe with the Lac repressor (see Section 2.2, Section 4.3, and

Fig. 4.3): one of the distinguishing predictions of the two classes of models used to explain these

states (two configurations of repressor versus four DNA binding orientations) is whether or not the

two states should be able to directly interconvert.

In this chapter we will examine these and similar questions through the use of two different

methods to obtain rate constants and state lifetimes from TPM data. The first of these methods,

half-amplitude thresholding combined with dwell time histogram analysis, is a classic method first

used to analyze single ion channel recordings [158], and is one of the most commonly used methods

to obtain kinetic information from TPM [104, 109, 111, 113, 159] as well as from other single-

molecule data such as FRET [160]. As described in more detail in the Appendix to this chapter
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Figure 5.1: An example of the additional information that a kinetic analysis can yield, beyond that provided by an
equilibrium analysis of the looping probability. The blue data show the Gaussian-filtered, root-mean-squared motion
of 4 different beads tethered by a 450 bp construct with 94 bp of the E8 sequence flanked by the Oid and O1 operators,
in the presence of 1 pM (top) or 500 pM (bottom) Lac repressor. The looping probabilities for this DNA at 1 pM
and 500 pM are comparable, as can be seen in the histograms of the RMS motion to the right of each trace (looping
probability is defined as the area under the looped peak in the histogram, divided by the area under both the looped
and unlooped peaks; see also Fig. 4.1(D)); but the lifetimes of the unlooped and looped states at these two repressor
concentrations are very different. At 1 pM, bursts of looping are interspersed between long dwells in the unlooped state,
whereas at 500 pM, the dwell times in the unlooped state are more uniform. We interpret this difference according to
the predictions for the probabilities of each state of the system according to our model, shown in Fig. 2.2(B): at low
repressor concentrations, the unlooped state is primarily composed of the state with no repressors bound or a repressor
bound at Oid; so the long unlooped dwells may be times when no repressor is bound, and represent the waiting time
for another repressor to bind one of the operators. However at high repressor concentrations, the unlooped state is
primarily composed of the state with both operators bound by separate repressors, and so the lengths of the unlooped
dwells depend on the dissociation of one of the bound repressors so that a loop can form. (These same four traces are
shown in Fig. E.1 in Appendix E.)

and shown schematically in Fig. 5.2(A), this approach consists of thresholding the RMS-versus-time

trajectories to assign a state (looped or unlooped) to each time point, histogramming the resulting

dwell times in each state, and fitting exponentials to these dwell-time histograms. This method has

the advantage of being relatively easy to implement, but it is subject to several serious limitations.

Since the thresholding must be done on smoothed data (e.g., via a Gaussian filter as in this work

(Section D.2)), the temporal resolution of this approach is limited by the dead-time of the filter and

misses short-lived events. Moreover, the choice of filter width can significantly affect the calculated

rate constants (though procedures have been suggested to correct for these filter effects) [113]. To

overcome these limitations, hidden Markov models (HMM) [161, 162] and other maximum likelihood

approaches such as the “change-point” algorithm [159] have been developed. Here we will introduce

a new hidden Markov model-based approach, shown schematically in Fig. 5.2(B), that we believe

to be easier to use and more reliable than previously described alternatives, as it does not require

training data as does the HMM algorithm of [161, 162], and uses an entire trajectory, not just local

information, to compute the most likely sequence of states, in contrast to the change-point algorithm
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Figure 5.2: Two methods for obtaining kinetic information from TPM data. (A) Half-amplitude thresholding and
dwell time analysis. In this approach, Gaussian-filtered root-mean-squared (here called 〈R〉) versus time traces are
thresholded (solid green lines) to turn the noisy signal into a step function: in the example here, RMS values between
the top threshold and the middle threshold are assigned to the unlooped state, and RMS values between the middle
threshold and the bottom one are assigned to the looped state. The thresholds are usually chosen at the minima
between two Gaussians fit to the trace histogram (red lines on the right). After every point has been assigned as
either unlooped or looped (see Section 5.A.1 below for details on how to deal with spurious events, that is, time points
whose RMS is above the top threshold or below the bottom threshold), the lengths of the dwells in each state are
histogrammed, as in the bottom panel (blue points, here for the unlooped state). These histograms are made from
dwell times aggregated over all the traces in a data set, not on a trace-by-trace basis. Single or double exponentials
are fit to this histogram (red line, here a single exponential), which yield a time constant τ (or two time constants
for a double exponential fit) that represents the mean lifetime of the state (in this case, the τ from the fit would
represent the mean lifetime of the unlooped state). The results of these fits can then be used to calculate missed
short-lived events, rate constants, and other information. (B) Our hidden Markov (HMM) approach begins not with
Gaussian-filtered RMS data but with drift-corrected x and y bead positions (red and blue data in the top panel).
The eventual state assignment from the HMM algorithm is given above this panel; note that without the Gaussian
filtering step, it is difficult to detect looped versus unlooped states by eye. The removal of the Gaussian filtering step
improves the temporal resolution of the data, though the need to drift correct still leads to some filtering artifacts,
such as the slow trend towards the origin during the sticking event that occurs near 50 seconds in this trace. This
filtering artifact leads the HMM algorithm to assign two distinct spurious states (“Sp. 1” and “Sp. 2”) to the sticking
event. The x and y positions in the top panel, the observables, are assumed to arise from an underlying Markovian
process represented by the sequence of hidden states in the middle panel. These hidden states correspond to the
state of the tether (looped, unlooped, stuck) that we cannot directly observe. The matrix A contains information
about the transition rates between the hidden states; the K and B parameters characterize the distribution of bead
parameters that arise from a given hidden state and lead to the observed bead positions. The HMM algorithm finds
the most likely number of states in the observed x and y data, as well as the most likely A and the most likely K
and B for each hidden state, and computes both a most likely state for each time point, and a most likely sequence
of states (called the Viterbi path) for the entire trajectory. The Viterbi path for a particular trajectory is shown in
orange in the bottom panel, superimposed on the 〈R〉 trace that is the easiest way for us to visualize the trajectory
(even though that information is not used in HMM). Colored horizontal lines indicate the < R > values calculated
from the K and B parameters (see Section 5.A.3) for each genuine state detected; gray lines correspond to spurious
events such as the sticking event shown in the top panel.
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[159].1 This HMM analysis will be a key component of the work in the next chapter, as it facilitates

the identification of states in trajectories with more than two looped states (especially in cases where

it is not known how many states to expect a priori).

5.1 Kinetics of looping by the Lac repressor by conventional

methods

We begin by calculating state lifetimes by the conventional thresholding method, schematized in

Fig. 5.2(A), and discuss what these lifetimes tell us about the number of short-lived events that

we miss and the possibility of direct interconversions between looped states. The details of this

approach are given in Section 5.A.1. In Section 5.2 we will then consider the hidden Markov model

analysis which we believe will be an improvement over the thresholding method.

5.1.1 State lifetimes and missed events

As shown in Fig. 5.2(A), after traces are thresholded, the next step is usually to create dwell time

histograms for each state and fit for the time constant τ , which is taken to represent the mean lifetime

of the state. However, we have found it informative to also calculate the simple mean value of all

the dwell times for a state, as an alternate way of defining the average state lifetime. The difference

between these two approaches can be seen by comparing Fig. 5.3(A) versus (C), and (B) versus (D).

The mean dwell times for the unlooped states for the E8- and TA-containing DNAs of Fig. 4.1(D–E)

are plotted as a function of repressor concentration in Fig. 5.3(A), and the τ parameters from single

exponential fits to the corresponding dwell time histograms are shown in Fig. 5.3(B). The values of

τ and of the mean dwell time are comparable at high repressor concentrations for most of the DNAs;

but the mean dwell time is significantly higher than τ at low repressor concentrations. We believe

this is due to the two populations of unlooped states that we see at low repressor concentrations,

examples of which are shown in the top traces of Fig. 5.1. The decay constants to the exponential

1The HMM analysis described here was begun by Martin Lindén while he was a postdoctoral scholar in the Phillips
lab, in collaboration with Chris Wiggins’ group at Columbia University, and is continuing to be developed by Martin
Lindén, now at Stockholm University.



88

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

200

400

600

800

1000

1200

LacI Concentration (M)

M
ea

n
 d

w
el

l 
ti

m
e 

(s
ec

)

 

 

Oid-E894-O1, U 

O1-E894-O1, U 

O2-E894-O1, U 

Oid-TA94-O1, U 

Oid-E8107-O1, U 

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

200

400

600

800

LacI Concentration (M)

M
ea

n
 d

w
el

l 
ti

m
e 

(s
ec

)

 

 
Oid-E894-O1, M
O1-E894-O1, M
O2-E894-O1, M
Oid-TA94-O1, M
Oid-E8107-O1, M
Oid-E8107-O1, B

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

200

400

600

800

1000

1200

LacI Concentration (M)

τ 
(s

ec
)

 

 

Oid-E894-O1, U

O1-E894-O1, U

O2-E894-O1, U

Oid-TA94-O1, U

Oid-E8107-O1, U

(A) (B)

10-15 10 -13 10 -11 10 -9 10 -7 10 -5
0

200

400

600

800

LacI Concentration (M)

τ 
(s

ec
)

 

 
Oid-E894-O1, M
O1-E894-O1, M
O2-E894-O1, M
Oid-TA94-O1, M
Oid-E8107-O1, M
Oid-E8107-O1, B

(C) (D)

Figure 5.3: Mean state lifetimes and exponential decay constants from dwell time histogram fits for the constructs
whose looping probabilities are shown in Fig. 4.1(D–F). (A) Mean dwell time of the unlooped state, as a function
of concentration, calculated as a simple mean of all the observed unlooped dwell times for the indicated DNAs. The
mean dwell time of the unlooped state varies with repressor concentration, as we might expect, because the probability
of entering the looped state should depend on how many free repressors are available to bind. (B) Mean dwell time
of the middle and bottom looped states as a function of concentration. Unlike the unlooped state, the mean dwell
times for the looped states are roughly constant with concentration, as might be expected because the rate of exiting
the looped state should not depend on the repressor concentration (except for the TA construct, which is discussed
in the text). (C) Decay constants τ from single exponential fits to dwell time histograms for the unlooped states of
the indicated DNAs, another way of defining the average dwell time. At high concentrations, the mean dwell time
as calculated in (A) and the decay constants from the fits are comparable; but at low concentrations the mean dwell
time is significantly larger than τ . This is because at low concentrations short bursts of looping and unlooping events
are interspersed with long dwells in the unlooped state, presumably where no repressors are bound to the DNA (see
Fig 5.1), leading to two populations of unlooped dwell times. Exponential fits are sensitive mostly to short events and
not the long dwell times in the tails of the distribution (see also Fig. 5.8 below). Less variation with concentration is
observed for τ for the unlooped state, indicating that during the bursts of looping at low concentration, the kinetics of
the unlooped state are roughly the same as those of the unlooped state at high concentrations. (D) Decay constants
for single exponential fits to the middle and bottom looped states. τ agrees well with the mean dwell time calculated
in (B), again with the exception of TA, discussed in the text.
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fits describe mostly the short dwell lifetimes (since, as noted in Section 5.A.1 below, we obtained

the best fits with single exponentials for all dwell time histograms, including for the unlooped state

at low repressor concentrations); but the mean dwell time accounts also for the very long dwells in

the unlooped state that occur at low repressor concentrations. The fact that τ is roughly constant

with concentration for the unlooped states indicates that the looping dynamics for the short-lived

unlooped state at low concentrations is comparable to the dynamics of the unlooped state at high

concentrations, which supports our hypothesis that the long-lived unlooped dwells at low repressor

concentrations occur when no repressor is bound and a new repressor must diffuse onto the DNA,

whereas the short-lived unlooped dwells at low repressor concentrations, with transitions to the

looped state interspersed between them, are composed of the state with one operator bound by a

repressor. (Another piece of evidence for this hypothesis is given in Section 5.2.2 below.)

On the other hand, both the mean dwell time and τ for the looped states for most of the constructs

are roughly constant with repressor concentration, which makes sense as the time spent in the looped

state should depend only on the stability of the loop, which is independent of how many repressors

are in solution. The data for the Oid-TA94-O1 construct are an obvious exception. We suspect that

the behavior of the TA data stems from its large J-factor, which leads to long dwells in the looped

state, which is especially problematic at low concentrations because a single hour-and-a-half long

trajectory may show only one transition from looped to unlooped or vice-versa (see the examples

in Fig. E.1 in Appendix E). This leads to poor statistics on the dwell time lengths, especially since

we discard the first and last dwells of any trajectory (since we cannot know their true length, as

we do not know when they began or ended aside from the limitations of the observation time). At

mid-range concentrations, most of the TA trajectories are entirely in the looped state, which again

leads to poor statistics. Probably the mean dwell times and τ ’s at high concentrations are the only

meaningful ones for this construct.

In addition to information about the average lifetimes of each state, the exponential fits to the

dwell time histograms also give us information about how many short-lived events we miss due to the

limited time resolution of our Gaussian-filtered data. As described in more detail in Section 5.A.1
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below, following the convention of the field we define our temporal resolution as twice the dead time

of the Gaussian filter. That means that for the 4 second Gaussian filters we use, we cannot resolve

events shorter than 11 seconds. However, we know (or at least, we assume) the dwell times for

a given state are exponentially distributed, so we can calculate how many events shorter than 11

seconds we should have observed, given the exponential fit to the rest of the dwell time histogram.

Following [109], we define the fraction of missed events, F , as

F = 1− e−tmin/τ , (5.1)

where tmin = 11 seconds (see Section 5.A.1 for details). The calculated fraction of missed events

in the unlooped and looped states is shown in Fig. 5.4(A) and (B) for the constructs whose mean

lifetimes were considered in Fig. 5.3. Fig. 5.4(C) shows looping probabilities corrected for these

short-lived missed events, compared to the uncorrected looping probabilities that were presented in

the previous chapter.

As can be seen in Fig. 5.4(C), the corrected and uncorrected looping probabilities are mostly

within error of each other at high repressor concentrations, but deviate significantly at low repressor

concentrations, leading to a loss of the inverse-U curve predicted by our model. We do not believe

this deviation is due to the fact that we calculate more missed events, at least in the unlooped

state, at low concentrations (Fig. 5.4(A)). Rather we believe that the correction scheme that we

followed based on [109], which was applied in that work to the high-concentration regime, does not

take into account the population of very long-lived dwells in the unlooped state that we see at low

concentrations (Fig. 5.1). In Section 5.A.1 below we discuss a modification to the way that corrected

looping probabilities are calculated, which takes into account some of these longer dwells. The result

of this correction is shown in Fig. 5.4(D), which shows that accounting for some of the longer dwells

restores some but not all of the inverse-U shape to the curve, by decreasing the looping probability

at low concentrations (while leaving the high-concentration results the same).

As discussed in Section 2.1, data at low concentrations is important for determining dissociation
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Figure 5.4: Missed events and corrected looping probabilities for the constructs whose (uncorrected) looping probabil-
ities are shown in Fig. 4.1(D–F). (A) The fraction of missed short-lived unlooped events. The missing TA point is due
to a fit for τ that did not converge. (B) The fraction of missed short-lived events for the middle and bottom looped
states; again the missing point (for O2-E894-O1) is due to a fit that did not converge. (C) Looping probabilities
corrected for the missed events in (A) and (B), according to the scheme in [109] (open circles for middle states, and
“+”’s for the bottom state of Oid-E8107-O1), as compared to the probabilities quoted in Chapter 4 (Fig. 4.1(D–F))
(closed circles for middle states, and “x”’s for the bottom state of Oid-E8107-O1). The errors on the corrected looping
probabilities are obtained from an error propagation formula as in [109] (rather than being the standard error on the
mean of the distribution of looping probabilities for each concentration, as for the uncorrected looping probabilities).
Dashed lines are not fits but are to show general trends; for clarity the fits to the uncorrected looping probabilities that
are shown in Fig. 4.1(D–F) are not shown here, nor is the total looping probability for Oid-E8107-O1. The corrected
looping probabilities are within error of the uncorrected probabilities at high repressor concentrations, but diverge
sharply from the uncorrected values at low repressor concentrations. In fact the corrected looping probabilities do not
show the inverse-U trend predicted by the model, but instead level out at low repressor concentrations. We believe
these corrected looping probabilities at low repressor concentrations to be overestimates, caused by neglecting the
long-lived population of dwells that we observe (see Fig. 5.1). (D) Corrected looping probabilities that account for
more of the long-lived dwells at low repressor concentration. Here missed events were calculated as in (A) and (B), but
the time in each state was supplemented by the time spent in the longest dwells (see Section 5.A.1 for details). The
corrected looping probabilities at high concentrations remains relatively unchanged, but the looping probabilities at
low concentrations decrease, bringing them into better agreement both with the uncorrected values and the inverse-U
curves predicted by our model. We suspect that we still have not accounted for all of the long-lived dwells at low
concentrations, and so we trust our uncorrected looping probabilities more than the corrected looping probabilities.
(See text for details.)
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constants from concentration curves, whereas the J-factor is determined by data at high concen-

trations. The fact that the corrected and uncorrected looping probabilities are comparable at high

concentrations means that the J-factors we calculated from high-concentration data are not affected

by the temporal resolution of the experiment. Moreover, we have reason to trust the uncorrected

looping probabilities at low concentrations more than the corrected probabilities: we show in Chap-

ter 4 that the dissociation constants we measured with the uncorrected data agree well with literature

values (determined from ensemble biochemical assays that are not subject to the same temporal lim-

itations as TPM). The “corrected” probabilities in either Fig. 5.4(C) or (D) would not yield values

for the dissociation constants that would agree well with literature values. Therefore we conclude

that, since in the regime where we trust the results of the missed-events correction the corrected

and uncorrected looping probabilities are comparable, the lifetimes of the states generated by the

constructs we studied here are sufficiently long enough, compared to our time resolution, to make a

correction for short-lived events unnecessary.

5.1.2 Looping rate constants

The τ ’s that were calculated in the previous section are related to the rate constants for transitions

between states, though not always through a simple expression. Consider a simplified looping

reaction in which we allow there to be only one unlooped state and one looped state, with rate

constants kloop and kunloop for the transitions between the states. The dwell times for each of the

two states will be exponentially distributed, and the decay constants τloop and τunloop that we would

obtain from fitting single exponentials to histograms of these dwell times would be related to the

rate constants by kloop = 1/τloop and kunloop = 1/τunloop.

As shown in Fig. 5.5, however, the looping systems that we have considered in this work are

generally more complicated than the simple two-state system described above, particularly because

we cannot differentiate between each microstate of the system: we know there can be up to four

unlooped microstates that generally are indistinguishable in the TPM assay (as they have the same

RMS, aside from the DNA bending in the doubly bound state described in Section 4.A.1), and
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Figure 5.5: A kinetic scheme for looping by the Lac repressor. The six states shown here are the five states in
Fig. 2.2(A), but with the two experimentally observed looped states separated out, and with the two operators
labeled more generically as O and O′. Though the two looped states are distinguishable in TPM, here they have been
drawn schematically the same, as we do not yet know the underlying molecular configurations of these states (see
Sections 2.2 and 4.3). The boxes indicate microscopic states that correspond to the three experimentally observed
states: for the most part we cannot distinguish the various unlooped states (though see Section 4.A.1 of the previous
chapter and Section 5.2.2 below). It is likely that one or both of the looped states contains multiple molecular
configurations as well (see the caption to Fig. 4.3). Transition rates between states are labeled as kon and koff , for
the association of and dissociation to the O operator respectively, or k′on and k′off for the O′ operator; kloop,1 and

kunloop,1 for the looping and unlooping rates associated with loop state 1, and likewise for loop state 2; and finally,
kloop12 and kloop21, transition rates between the two looped states. In Section 5.1.3 below we address the question
of whether or not a kinetic scheme for the Lac repressor should allow such interconversion between the two looped
states.

moreover we suspect there may be at least four loop configurations depending on the directions the

operators are bound (see legend to Fig. 4.3) that may or may not correspond to the two looped

states we observe. Even though we find single exponentials to fit best to our data (see Section 5.A.1

below), in reality we should find the unlooped state at least, and possibly the looped states as well,

to be best fit by a mixture of exponentials characterized by up to four decay constants, if we had

perfect temporal and spatial resolution. The decay constants we would obtain (even if we could

obtain all four) would no longer be simply the inverses of the rate constants that we wish to find.

Attempts have been made to numerically simulate and/or fit for all of the rate constants in

Fig. 5.5, at least for somewhat simpler constructs where O = O′ [109]. However most often hidden

Markov model-based techniques are used to obtain rate constants for these more complicated schemes

[111, 120]. Here we will simply note that there may be cases in our data in which the decay constants

from the dwell time histogram fits are the inverses of the rate constants. Those cases are for the O1-

E894-O1 construct at high (≥ 100 pM) repressor concentrations, where according to our statistical
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mechanical model the unlooped state should consist primarily of the doubly occupied state, and

there is only one looped state (the “middle” looped state). (It is possible that we might be able

to perform this simplification for the other middle-state-only constructs as well, at sufficiently high

concentrations; the convenience of the O1-E894-O1 construct is that both operators are the same,

collapsing two of the unlooped states in Fig. 5.5 into one.) If this simplification is valid, then kunloop

and kloop for O1-E894-O1 are both about 0.01 per second at 100 pM, and kunloop = 0.005 s−1 and

kloop = 0.02 s−1 at 500 pM to 1 nM. These rates are in remarkably good agreement with those

calculated by Wong and coworkers [109], for a construct that also has two O1 operators (but a

longer loop of a different sequence), at 5.4 nM: they found kloop ≈ 0.02 s−1 and kunloop ≈ 0.007 s−1.

5.1.3 Direct interconversions between looped states?

As noted in the introduction to this chapter, one of the questions we would like to address through

a kinetic analysis of looping by the Lac repressor is whether or not the two looped states we see

with some constructs directly interconvert, or whether transitions occur only between each looped

state and the unlooped state. If we observe direct interconversions between the two looped states,

it is more likely that the two looped states correspond to two different conformations of the Lac

repressor, rather than different loop topologies, as converting between loop topologies should require

at least one repressor head to unbind from an operator and rebind in a different orientation. If a

repressor unbinds from an operator, the system will necessarily pass through the unlooped state

before entering the other looped state.

One approach to assessing direct interconversions between the looped states is to calculate the

partition ratios for the two states [109]. The partition ratio for one of the looped states (say, the

middle looped state) is defined as the fraction of transitions from the middle looped state to the other

looped state, divided by the fraction of transitions from the middle looped state to the unlooped

state. A partition ratio of 1 would indicate equal preference for transitioning to either the other

looped state or the unlooped state; a partition ratio of zero would suggest no direct interconversions;

and a partition ratio greater than 1 would indicate that direct interconversions between looped states
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1 pM 5 pM 25 pM 100 pM 1 nM
PMtoB/MtoU 0.45 ± 0.08 0.32 ± 0.05 0.38 ± 0.06 0.29 ± 0.05 0.19 ± 0.05
PBtoM/BtoU 1.4 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.0 ± 0.2 0.79 ± 0.3

Table 5.1: Partition ratios for the Oid-E8107-O1 construct, which has both the bottom and middle looped states, as a
function of repressor concentration. A partition ratio significantly greater than zero indicates direct interconversions.
These partition ratios have been corrected for short-lived missed events in both the unlooped and looped states,
according to the scheme of [109]; in all but two cases (at 1 nM) the corrected partition ratios differed from their
uncorrected values by less than 7%, and by less than 20% at 1 nM.

are favored.

Following the approach of [109], we calculated partition ratios for the Oid-E8107-O1 construct

that has both the middle and bottom looped state, as a function of concentration. We corrected

these partition ratios for missed short-lived events in both the unlooped and looped states, because

our limited temporal resolution means that even though it looks in the RMS traces like the middle

and bottom looped states directly interconvert, we could be missing short excursions to the unlooped

state in between these transitions. (Unlike with the looping probabilities, here we must perform the

correction for short-lived events; and the long-lived dwells at low concentrations do not come into

this calculation and so the method of [109] should work equally well at all the concentrations we

studied.)

The resulting corrected partition ratios are given in Table 5.1. Although all of the ratios are larger

than zero, none of them are significantly larger than one, suggesting that direct interconversions could

be occurring but they are not preferred. Our results are in quantitative disagreement with those

of Wong and coworkers in [109], who found that direct interconversions between the looped states

were not only possible but preferred. This discrepancy may be due to the fact that the looping

probability for our E8107 construct, and especially the probability of the bottom looped state, is

much lower than the slightly longer constructs that Wong and coworkers used. A low probability

of the bottom looped state means that we do not observe many occurrences of that state, so our

statistics are much lower than those of Wong and coworkers. A potentially more informative case

study for assessing the potential of direct interconversions between the looped states might be some

of the three-operator constructs in the presence of the DNA-bending protein HU described in the

next chapter, which not only have much higher looping probabilities but clearly have long dwells that

appear to involve direct interconversions between two or more looped states. It will be interesting to
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see if missed short-lived events in the unlooped state are sufficient to account for these apparently

direct interconversions or not.

5.2 Preliminary results with a hidden Markov model analysis

We are developing a hidden Markov model (HMM) based on variational Bayesian inference for

obtaining kinetic information from TPM data, based on the work of (and done in collaboration

with) Chris Wiggins and coworkers [163]. Details of our method will be published in Ref. [119];

a main difference between our algorithm and that of Wiggins and coworkers is in how we model

the observable of the system (in our case, the motion of the bead), and so we discuss our model

in some detail here and in the appendices to this chapter. In the first section below we present an

overview of our approach (see also Fig. 5.2(B)) that we hope will serve as a general “users manual”

for understanding the graphical user interface (GUI) that we will make available with our HMM

algorithm and that we describe in the second section below. That section also presents an example

of the kinds of analyses that we hope our approach will facilitate (another is given in Chapter 6).

5.2.1 Overview of a variational Bayesian hidden Markov model analysis

of TPM data

The question we wish to address is: given a series of observations (bead positions as a function of

time), what is the most likely series of underlying “states” that generated those observations? The

states here can be thought of as the conformation of the DNA tether (looped, unlooped, etc) that

leads to the observed bead positions.

A useful way to model such time-series data is as a hidden Markov process [164]. The process

is “hidden” because we cannot directly observe the state of the DNA tether, only the output bead

position; and while bead position and DNA conformation are certainly related, there is not a one-

to-one correspondence between the two. We discuss this point in more detail in Appendix 5.A.3,

but intuitively, a given state (e.g., a looped state) will generate a distribution of bead positions, not
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a single bead position; and the distributions of observed bead positions for different states overlap

[105, 140]. The process is Markovian because the hidden state (looped, unlooped, etc) at time t

depends only on its position at the time t−1. (We note that the simplest class of Markovian processes

are not actually valid for our system: first, the time series of observed bead positions is dependent

not only on the underlying state at time t but also is itself a Markovian process, dependent on the

bead’s position at time t− 1, because the bead can only react so fast to changes to the underlying

tether conformation. Therefore we have in fact implemented an autoregressive HMM, in which the

bead’s position depends not only on the hidden state but on the position at time t−1, as can be seen

in Eq. (5.2). Second, the hidden state is not independent of the observed bead position: for example,

the distribution of potential observed bead positions for the unlooped state includes positions where

the tether is maximally extended and from which it is physically impossible for a loop to form at

the next time increment. We do not address that critique of TPM as a hidden Markov process here.

See [162] for a “diffusive” hidden Markov (dHMM) approach to solving some of these problems.)

HMMs are a class of stochastic processes that can generate data of the kind we are interested in

analyzing, namely, TPM time-series data. For the purpose of the discussion here we will consider a

particular HMM to be of a specific size that corresponds to the number of hidden states it allows,

and a set of three parameters listed below. One of the improvements of our HMM algorithm over

previous ones [161, 162] is that we need not specify the number of hidden states at the outset; rather

our approach will both pick the best number of hidden states, and the best HMM given that number

of states. It is therefore a “maximum evidence” approach, as opposed to a “maximum likelihood”

one, in which the goal is to select the most likely parameter values given an HMM of a particular size

(number of states). Not only does this maximum evidence approach (algorithmically determining

the number of states as well as the best parameter values) eliminate some user bias in determining

the appropriate number of states, but it also avoids the over-fitting that is common to maximum

likelihood [163]: in maximum evidence, overly simplistic models are unlikely because they cannot

describe the data well, but overly complex models are also unlikely because there are too many data

sets that could come from a too-complex model, and so the probability that this particular data were
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generated by a particular model decreases. In contrast, the maximum likelihood always improves

with more states.

A particular HMM with N hidden states will consist of the following three components, which

we will collectively call the parameters of the HMM, ~θ:

(1) A transition matrix A, which is an N -by-N matrix where element ai,j is the probability of ending

in state j if the previous hidden state was state i (that is, ai,j = p(gt = j|gt−1 = i), where gt is the

hidden state at time t). Each row of A is normalized such that the probability of transitioning to

some state at the next time point is one; that is,
∑
j Ai,j = 1.

(2) A distribution of initial conditions—that is, the probability that the first hidden state is any one

of the N possible states, or p(g1 = j).

(3) A set of parameters (called emission parameters) that describe the probability distribution

of observed bead positions given a hidden state gt. The physical model of the bead’s motion that

we use is described in detail in Section 5.A.3 below; here we will mention its main features briefly.

We model the motion of the tethered bead with a term related to having a particle diffusing in a

harmonic well, and a term that adds Gaussian (white) noise, and parameterize the distribution of

the bead’s position with two emission parameters Kj and Bj for a given hidden state j. Specifically,

if ~xt is the bead’s position at time t (consisting, as above, of an x-coordinate and a y-coordinate),

then we model the bead’s position as related to the position at time t− 1 as

~xt = Kj~xt−1 +
~wt√
2Bj

, (5.2)

where Kj (unitless) and Bj (units of nm−2) relate the bead’s position to gt = j, and ~wt is a

two-dimensional vector whose elements are drawn from a Gaussian distribution with mean 0 and

variance 1. The term with Kj corresponds to a particle diffusing in a harmonic well: the values
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that Kj adopts are between 0 and 1, such that successive time points are forced closer to the origin

(because after each time point, the bead’s position is multiplied by some fractional value, less than

1). The term with Bj is the noise term. As we derive in Section 5.A.3, Kj and Bj are related to

the root-mean-squared motion and the correlation time (a measure of the time it takes the tether

to explore its configurational space) of the tether by

〈~x2
t 〉 =

1

Bj(1−K2
j )

(5.3)

and

τc,j =
−δt

lnKj
, (5.4)

respectively. As can be seen from Eq. (5.4), Kj increases with longer tether lengths; the relation-

ship between Bj and tether length is more complicated to derive, but generally Bj decreases with

increasing tether length.

If we have an HMM (that is, a transition matrix, initial conditions, and parameters that describe

the distribution of observables for every hidden state), we can then obtain the most likely sequence

of hidden states given a data set of observed outcomes. This is a process called inference (or, in

the language of our forthcoming paper on this HMM approach [119], the “VBE step” (variational

Bayes-Expectation step)). On the other hand if we were to somehow know the underlying sequence

of hidden states for a given data set, it would be a simple matter of standard parameter fitting

(called learning in this context, or again in the notation of [119], the “VBM step” (variational

Bayes-Maximization step)) to obtain the best HMM (the transition matrix and other parameters

contained in ~θ) that could generate that sequence of hidden states and corresponding observables.

Of course at the outset we know neither the hidden state sequence nor the HMM, and so we

use an iterative process to obtain both given only the data to start with. In our case, we begin by

assuming a large number of states, far more than we know should exist—say, 50 hidden states.2 We

2In contrast to other approaches of this kind, our algorithm easily handles spurious events such as the transient
sticking event shown in Fig. 5.2(B), where the bead has temporarily and nonspecifically adsorbed to the surface, the
DNA has adsorbed to the bead, or the DNA has adsorbed to the surface. Our algorithm detects such events and
assigns a hidden state to them, as with any genuine state, with some Kj and Bj parameters. As will be discussed in
Section 5.2.2, K and B parameters for spurious states tend to be so different from those of genuine states that they
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then initialize an HMM with “guesses” for the parameters ~θ, and use inference to obtain the hidden

state sequence, given this initial HMM. Next we use an iterative process to learn a new HMM, given

that hidden state sequence, then infer a new hidden state sequence, then learn an new HMM, and

continue until the parameters of the model change on a new iteration by less than some tolerance

(which is called convergence). At the end of this iterative process we will have a best guess for

a 50 state HMM, along with an estimate of how well it describes the data. We then remove the

least populated state from this 50 state model, and begin the iterative process again, until removing

additional states does not improve how well we believe we are modeling the data.

For the purpose of introducing some important terminology, we note that the process of finding

the best-sized model (the optimal number of states) is done by maximizing the evidence, or the

probability of the data given a model, p(~x1:T |N), where ~x1:T represents the entire time trace (that

is all ~xt for t = 1 to t = T ). We express the evidence in terms of the likelihood and the prior.

The likelihood is the probability of the data and the number of hidden states given a particular

model and the parameters of this model, p(~x1:T , g1:T |~θN , N), where g1:T is the sequence of hidden

states for the entire trajectory. The prior contains our previous beliefs about the probability of a

particular model and particular parameters ~θ before we have seen the data, p0(~θN , N |u), where u

are the hyperparameters that characterize the prior distribution (e.g., a mean and a variance if we

assume the prior distributions are Gaussian). These hyperparameters are chosen by the user at the

start of the process. The evidence that we maximize, in terms of the likelihood and the prior, is

evidence = p(~x1:T |N) =

∫
dN~θN

∑
g1:T

(likelihood)(prior). (5.5)

The process of summing/integrating over all parameter values and all possible trajectories of hidden

states is called “marginalization;” it represents the fact that instead of trying to guess values for

the parameters and hidden state sequence, which we do not know, we sum over all possible values.

are easily discarded. This saves the user a significant amount of pre-processing time, since spurious events need not
be removed beforehand; also, our algorithm can detect very short-lived sticking events that are not readily detectable
in the RMS traces and that would be difficult to remove beforehand anyway (but would nonetheless interfere with
the detection of genuine states). This does mean, however, that even in cases where we assume there should be only
three hidden states—unlooped and two looped states—the number of states that we need to use in our HMM might
be larger, to allow for spurious states as well, which can increase the computation time.
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The process of determining the most likely parameters for a given HMM with N states is done by

finding the posterior probability distribution, the probability of a sequence of hidden states and a

set of parameters, given the data and a model, or p(g1:T , ~θ|~x1:T , N). However the expression for the

posterior distribution is generally intractable computationally, and so the result is instead derived

by optimizing a trial distribution that approximates the “real” distribution [163].

At the end of the iterative process described above, we will have (1) the optimal number of

(both genuine and spurious) states to explain the data; (2) for each hidden state, parameters that

best describe the distribution of observed bead positions given each hidden state (the Kj and Bj

parameters); and (3) a transition matrix for the probability of transitioning from one state to

any other state. We will also have the probability of the observed data at any time point being

generated by a particular hidden state. From this we can obtain the sequence of most likely states;

or, alternatively, the Viterbi path, the most likely sequence of states, which tends to be a better

way to model the trace (than the sequence of most likely states) because it uses information across

the entire trajectory, instead of only at each point. Often the transition rate matrix can be used

directly to obtain rate constants; but in cases like the set of multiple unlooped microstates shown in

Fig. 5.5 above that generate one distribution of observables, the Viterbi path may be used to make

dwell time histograms and obtain lifetimes as we did above with the thresholding method. As we

will see in the next section, our HMM approach may be able to distinguish some of the unlooped

microstates that we believe should be present.

5.2.2 Examples of results

In addition to the code for our HMM analysis of TPM data, we will be making available a graphical

user interface (GUI) that allows the user to visualize the results and to perform some post-processing,

such as making or modifying state assignments (e.g., identifying “bottom” versus “middle” looped

states, which is not currently automated).3 In this section we describe some of the key features of

the GUI and show some examples of results from the analysis of some of the data discussed earlier

3All of the HMM code, including the GUI, was written by Martin Lindén.
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Figure 5.6: Emission parameters K and B for genuine (colored shapes) versus spurious (gray circles) states, for
about 50 trajectories. K and B describe the distribution of bead positions that can be observed from a particular
hidden state (looped, unlooped, stuck, etc). Though we represent the bead’s motion as being described by these two
parameters, there is in fact only one independent parameter, the bead’s distance from its anchoring point that we
measure. So it is unsurprising that for genuine states (looped or unlooped), the K and B parameters are linearly
related and cluster along a line in K-B space. Spurious states, on the other hand, have different relationships between
the K and B parameters than genuine states (for example, because the effective anchoring point may move during a
sticking event); and so the spurious states scatter around the line that the genuine states form. (In this example from
Oid-E8107-O1 at 25 pM Lac repressor, there are many more spurious states that fall outside this field of view).

in this chapter.

As mentioned above, even when we expect only two or three hidden states (corresponding to the

unlooped state and one or two looped states), the best HMM found by our algorithm usually has

five to ten states, because of the presence of spurious events in the trajectory, due to, for example,

sticking events in which the bead (or the DNA) transiently and nonspecifically adsorbs to the surface

(or the DNA to the bead, or to the surface). Fig. 5.2(B) shows a short-lived sticking event, most

likely undetectable in the RMS trace, that nevertheless is best described by emission parameters

that differ from the genuine states that precede and follow it.

The emission parameters for such spurious states are generally so different from those of genuine

states that in fact they can be easily annotated. Fig. 5.6 shows the emission parameters for the

genuine states and a subset of spurious states for the Oid-E8107-O1 construct at 25 pM repressor,

in which the genuine states fall on a line in K-B space while the spurious states scatter around that

line. In fact we have shown with other data that the line that genuine states cluster along is the same

line that a set of “calibration” data, bead positions measured for constructs of varying DNA contour

length in the absence of any Lac repressor, form in K-B space [119]. This tells us first of all that
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Figure 5.7: An example from the GUI that presents the HMM data. On the left is a particular trajectory from this
data set (Oid-E8107-O1 with 1 pM Lac repressor). The RMS-versus-time data (not used in the HMM algorithm
but as a visual aide) is shown in black, with the most likely sequence of states (the Viterbi path) superimposed
in orange. Dashed horizontal lines indicate the calculated RMS for the hidden states identified by the algorithm:
spurious states are in gray, the “calibration” state (obtained from data on this tether without Lac repressor) is shown
in a thick green line, the bottom looped state in bright blue, and the middle looped state in magenta. In this case the
algorithm identified two unlooped states, shown as red and black horizontal dashed lines, that correspond to the two
kinds of unlooped dwells described in Fig. 5.1. The unlooped state that predominates during the long dwells between
looping events has a longer RMS than the unlooped state that occurs during the bursts of looping, which we might
expect because we see a reduction in RMS in the presence of bound Lac repressor that we attribute to bending of the
operators (see Section 4.A.1). On the right is a plot of emission parameters, here the RMS and correlation time for
each hidden state calculated from Eqs. (5.3) and (5.4), normalized to the corresponding values for the calibration data,
to remove the bead-to-bead tether length variability we observe (see Section 4.A.1). This allows a clearer visualization
of the clustering of K-B parameters for the different trajectories: the left-most light blue cluster corresponds to all the
bottom looped states (the highlighted and numbered one corresponds to the parameters for the bead whose trajectory
is shown to the left), the middle magenta cluster to the middle looped states, and the rightmost orange cluster to the
unlooped states. The radio buttons to the right of the emission parameter plot allow the user to change the assigned
state for any of the 10 identified hidden states for this trajectory.

looped states can be well described by emission parameters for an equivalent unlooped construct

but with a shorter overall tether length. Second of all, it allows us to automate the identification

of spurious states, so that when the data are presented to the user in the GUI, the user must only

assign “bottom” versus “middle” looped states.

Fig. 5.7 shows how the GUI allows the user to assign states, by selecting radio buttons to the

right of a plot of the emission parameters for either a single trajectory or all of the trajectories in

a set. This emission parameter plot can show the K and B values for each state, or the RMS and

correlation times for each state calculated from Eqs. (5.3) and (5.4). The low-concentration data

set shown in Fig. 5.7 is particularly interesting because in some trajectories the HMM algorithm

identified two unlooped states, with similar but not identical K and B parameters. One of these

states characterizes the long dwells in the unlooped state introduced in Fig. 5.1 at the beginning of

this chapter, and the other characterizes the unlooped dwells that intersperse the bursts of looping.
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These two unlooped states have different calculated RMS values, with the one during the longer

dwells having an RMS closer to that of the tether in the absence of protein; given that we believe we

can see operator bending when a repressor is bound (Section 4.A.1), this supports our hypothesis

that the long unlooped dwells correspond to periods where no repressor is bound, and that bursts

of looping occur when a repressor has bound one operator (and ends when the repressor diffuses

away again). The example in Fig. 5.7 also exhibits the two looped states that may or may not

interconvert. Not only can we measure, as we did with the thresholding approach, how many (if any)

direct interconversions between the two looped states are in the Viterbi path, but we are also working

on a modified algorithm that specifically allows or disallows direct interconversions, by altering the

prior distributions, so that we can assess how well an HMM with or without direct interconversions

describes the data. We are hopeful that our HMM approach will be able to shed additional light on

the dynamics of subpopulations of unlooped states, and the question of interconversion between the

two looped states.

5.3 Conclusion

In this chapter we have looked at TPM data from a different standpoint than that of the previ-

ous chapters, namely from the standpoint of kinetics rather than looping probabilities alone. We

presented two methods for obtaining kinetic information from TPM data: a thresholding approach

that is commonly used in the field, and a newly developed variational Bayesian hidden Markov

model analysis. In both cases we have focused our preliminary work on the two topics raised in

the introduction to this chapter, the dynamics of the two populations of unlooped states that we

observe at low repressor concentrations, and whether or not the two looped states interconvert. In

the case of the former, we find that our HMM algorithm does in some cases identify two unlooped

states, and that when it does, the long-lived unlooped state has a longer RMS, consistent with

the long-lived state corresponding to having no repressor bound at either operator, whereas the

shorter-lived unlooped state has a shorter RMS which is consistent with a repressor bound at an op-

erator and inducing bending. In the case of the latter issue of direct interconversion between looped
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states, although the thresholding analysis indicates that direct interconversions could be occurring,

the looping probability, especially for the bottom state, is low enough to make gathering enough

statistics for a solid conclusion difficult.

In the next chapter we present data on a more complicated, three-operator system, and will

argue that an approach like that of HMM not only facilitates the data analysis but is necessary to

identify how many looped states we observe in each trajectory. Some of the data in Chapter 6 not

only show behavior suggestive of direct interconversions between two looped conformations that are

longer-lived (and hence easier to study) than the E8107 states discussed in this chapter, but that

are perhaps also suggestive of the direct interconversion among loops formed by different operators.
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5.A Appendices to Chapter 5

5.A.1 Obtaining kinetic information from dwell time histograms

Trajectories were thresholded as described in Section D.2.3, which allowed every time point in an

RMS trace to be assigned a state: “U”, unlooped; “M”, middle looped state; “B”, bottom looped

state; or “Sp”, spurious. Time points were labeled spurious where the RMS value exceeded the

highest threshold (and was therefore most likely due to a tracking error), or where it fell beneath

the bottom threshold (and was therefore most likely due to a sticking event). If a spurious state

was preceded and followed by the same genuine state, then we assumed the underlying genuine state

of the system did not change during the spurious event and considered the flanking dwells plus

the time spent in the spurious state to be one long dwell time. If the flanking states were not the

same, however, we counted half the spurious event’s duration towards the preceding event, and half

towards the succeeding event.

Following the convention in the field [104, 109, 113, 165], we ignored any dwells shorter than

twice the dead time of the filter (defined in the next section), treating them as we did spurious

events: if a transition occurred to a state whose duration lasted shorter than 11 seconds, and the

states just before and just after this too-short dwell were the same, we counted the flanking dwells

plus the time in the too-short dwell as one long dwell time in the flanking state. If a transition

occurred to a third state after the too-short dwell, however, we split the too-short dwell between the

preceding and succeeding dwells. Transitions that did not result in dwells longer than twice the dead

time of the filter were not counted in the transition count matrix. Excluding too-short dwells was

performed before the removal of spurious states (so too-short spurious states, as well as too-short

genuine states, were ignored).

The result of this thresholding and dwell time calculation procedure on a given data set was a

vector of dwell times for each state, and a transition count matrix, where each row corresponded

to a pre-transition state, and each column to a post-transition state. The off-diagonal elements of

this matrix, then, were the number of times a transition occurred from the state indexed by the
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Figure 5.8: Sample dwell time histograms for the construct Oid-E894-O1 at two concentrations. Red curves are single
exponential fits. Notice the right-most bin in the top-left histogram (unlooped state for 1 pM) has many more counts
than those in the rest of the tail; these are due to the very long dwells in the unlooped state that we observe at low
repressor concentrations (see Fig. 5.1).

row to the (different) state indexed by the column; the diagonal elements were simply the sum of

the dwell times in each state (because the diagonal elements count transitions from state i at time

t to the same state i at time t + 1). We normalized each row of this transition count matrix by

the sum of the row, and multiplied by 30 frames per second to obtain the number of transitions per

second. The off-diagonal transition count matrix elements are then used as the uncorrected Ca→b

(in the notation of [109]) that are used (along with the fraction of missed events, described below)

to calculate the partition ratios for the number of transitions from a looped state to another looped

state, versus from the looped state to the unlooped state (Section 5.1.3).

We followed the procedure of [109] to plot dwell-time histograms and obtain time constants

for exponential fits to these histograms. Unlike in [109], however, our bin sizes were uniformly 15

seconds (instead of variable based on the construct). Also unlike in [109], we obtained the best fits

to all distributions with single exponentials; in particular, the distribution of unlooped state dwell

times from our data were not well fit by a double exponential. (The poor fit quality was obvious,

as the double exponential fit usually resulted in a decay constant similar to that from the single

exponential fit, and a second decay constant that was approximately zero and had a 95% confidence
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interval of (−∞,+∞)).

Following [109], we define the fraction of missed events in a given state, Fi, as

Fi = 1− e−tmin/τi , (5.6)

where tmin = 11 seconds (twice the dead time of the filter). Wong and coworkers then calculate the

corrected time in a given state, Di as

Di =
τiNi

1− Fi
, (5.7)

where Ni is the total number of dwells in state i and τi is the decay constant for the exponential fit

to the dwell time histogram of state i. We can then calculate the looping probability, corrected for

missed short-lived events, as the corrected time in the looped state(s) divided by the corrected time

in all states.

However, as shown in Fig. 5.4(C), we believe that these corrected looping probabilities over-

estimate the probabilities at low repressor concentrations because they neglect the population of

long-lived dwells that we observe in the traces. As a simple initial attempt to correct for these long-

lived dwells, we added the weight of the dwell time histogram bin with the longest lifetime to the Di

calculated above. That is, we added a term to Di that included the time spent in the very longest

dwells. As shown in Fig. 5.4(D), this modification to the approach of [109] brought the corrected

looping probabilities into better (but we think still imperfect) agreement with the inverse-U curve

predicted by our model. The weight of the bin with the longest lifetime obviously depends on how

many bins of size 15 seconds we have; if we were to include fewer bins, more of the long-lived dwells

would be included in the weight of the largest bin, and the added term to Di would have a larger

value. We believe that there should be a better way to handle this double unlooped population than

the simplified modification presented here.
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5.A.2 Calculating the dead time of a filter

The “dead time” of a filter refers to the duration of an event (looping or unlooping) that gives a

half-amplitude response from the filter [158, 159]. The convention in the field is then to assume that

the temporal resolution is twice the dead time [104, 109, 113, 165], that is, events shorter than twice

the dead time cannot be resolved as true transitions between states instead of noise. In this section

we will derive an expression for that dead time for the Gaussian filters that we use in this work (see

Section D.2).4

In this derivation we will consider the true signal from TPM to be a step function, and neglect

the noise that is superimposed on this signal (though that noise also contributes to the temporal

resolution of the experiment, it is ignored when calculating the filter dead time). For simplicity

consider a two-state system, and let state 1 be at RMS = 0, and state 2 at RMS = A. For an event

from state 1 to state 2 back to state 1, where the dwell in state 2 lasts time T and is centered at

t = 0, we can write the corresponding TPM trace as A · sT (t), where sT (t) is 1 between t = −T/2

and t = +T/2, and zero elsewhere.

If we apply a Gaussian filter g(t) with some standard deviation σg to the step-function “trace”,

the sharp transitions from states 1 to 2 at t = −T/2 and from state 2 to 1 at t = T/2 will be

smoothed, with the maximum of the filtered signal at t = 0, when the filter and underlying trace are

aligned. We want that maximum value to become A/2 (a half-amplitude response from the filter).

So the definition of the dead time of the filter, Tdead, becomes the condition that when the length

of the dwell T = Tdead, ∫ +∞

−∞
g(τ) ·A · sT (τ)dτ =

A

2
. (5.8)

Note that A can be canceled from both sides, so the dead time is independent of the signal’s

amplitude. That is, the dead time of the filter does not depend on the difference in RMS between

states.

4Thanks to Matt Johnson for the outline of this derivation.
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Since sτ (τ) is zero except between −Tdead/2 and Tdead/2, Eq. (5.8) becomes

∫ +
Tdead

2

−Tdead2

g(τ)dτ =
1

2
(5.9)

where we have already canceled A from both sides.

Because g(τ) is a Gaussian, we can rewrite the integral on the left-hand side of Eq. (5.9) in terms

of the cumulative distribution function of a Gaussian, usually given the variable Φ, where

Φ(x) =

∫ x

−∞
g(t)dt, (5.10)

and whose solution is given by

∫ x

−∞
g(t)dt =

1

2

[
1 + erf

(
x√
2

)]
. (5.11)

Note that Φ is defined for a Gaussian whose standard deviation is 1; but we are considering a

Gaussian with standard deviation σg. So when we write the integral in Eq. (5.9) in terms of Φ(x),

we must write it as

∫ Tdead
2

−∞
g(τ)dτ −

∫ −Tdead
2

−∞
g(τ)dτ = Φ(Tdead/(2σg))− Φ(−Tdead/(2σg)), (5.12)

expressing Tdead in terms of the σg of our filter. Given the solution to Φ(x) above, we have our final

result for the condition on Tdead,

Φ

(
Tdead

2σg

)
− Φ

(
−Tdead

2σg

)
=

1

2

[
1 + erf

(
Tdead/(2σg)√

2

)]
− 1

2

[
1 + erf

(
−Tdead/(2σg)√

2

)]
=

1

2
,

(5.13)

which simplifies to [
erf

(
Tdead/(2σg)√

2

)]
−
[
erf

(
−Tdead/(2σg)√

2

)]
= 1. (5.14)

We can look up that the solution to this expression involving the error function (erf(x)) happens



111

when Tdead

2σg
≈ 0.67, or that

Tdead ≈ 2 · 0.67 · σg. (5.15)

Eq. (5.15) now gives us an expression for the dead time in terms of the standard deviation of the

Gaussian filter. In Eq. (D.5) we relate this standard deviation to the cutoff frequencies we choose

during our data analysis. Given the 0.0326 Hz cutoff frequency at which we analyze most of our

data (and all the data discussed in this chapter), we can calculate that the dead time of our filter is

5.5 seconds.

5.A.3 A physical model for the observable distributions

In most hidden Markov analyses, including in the work by Bronson and coworkers on which our

algorithm is based [163], it is assumed that the output observables (in our case, bead positions)

for a given hidden state are Gaussian distributed and independent of observables at previous times.

Therefore the emission parameters, the parameters that describe these observable distributions, are

typically a set of means and variances for the Gaussians that characterize each hidden state. In our

case, however, we know that the distribution of bead positions for a given hidden state, corresponding

to a particular effective tether length, is not a Gaussian, because the restoring force from the DNA

tether is not well characterized as that of a linear spring at short DNA lengths [105, 140, 162].

Because the emission parameter distributions we use are non-standard, and also because the K and

B parameters that characterize these distributions are presented to the user in the GUI described

in Section 5.2.2, we discuss the emission parameter model in some detail here, and develop some

intuitions about the relationship of the K and B parameters to the observed motion of the bead.

What we want to obtain is a physical model of the bead’s position for a given tether length,

which will allow us to parameterize the observable distributions in a way that includes more details

of the bead’s motion than by simple time-independent Gaussians. Because in our TPM experiments

we image the tethered beads from the top down, and so only track the beads in two dimensions, we

will model only the bead’s x and y positions; that is, the data to which we apply the HMM analysis

will consist of a time series of two-component vectors, ~xt = (xt, yt), that measure the bead’s distance
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from the anchoring point at every time point t.

We model the motion of the tethered bead with a term related to having a particle diffusing in

a harmonic well, and a term that adds Gaussian (white) noise. The term related to a particle in a

harmonic well accounts for the restoring force of the tether bringing the bead back to the anchoring

point; and the noise term randomizes the bead’s position [140, 166]. Although an improvement over

modeling the emission probability distribution as purely Gaussian, we note here that this model still

does not capture the true motion of the bead—for example, there is not a positive probability of the

bead’s position being more than some distance (determined by the length of the fully extended DNA

tether) from the origin [162, 167]—but the approximation presented here was deemed sufficient.

If ~xt is the bead’s position at time t (consisting as above of an x-coordinate and a y-coordinate),

then we will model the bead’s position as related to the position at time t− 1 as

~xt = Kj~xt−1 +
~wt√
2Bj

, (5.16)

where Kj (unitless) and Bj (units of nm−2) are the emission parameters that relate the bead’s

position to the underlying hidden state j at time t (that is, gt = j), and ~wt is a two-dimensional

vector whose elements are drawn from a Gaussian distribution with mean 0 and variance 1. The

term with Kj corresponds to a particle diffusing in a harmonic well: the values that Kj adopts are

between 0 and 1, such that successive time points are forced closer to the origin (because after each

time point, the bead’s position is multiplied by some fractional value, less than 1). The value of K

depends on j, that is, the hidden state or effective tether length, because in the low-force regime of

TPM, the DNA tether can be modeled as a spring with a linear restoring force in tether length. The

term with Bj is the noise term, again dependent on the hidden state j, though not as intuitively as

Kj (see discussion at the end of this section).

To gain insight into how Kj and Bj relate to aspects of the bead’s motion that are more familiar

to us, we next derive the mean-squared motion of the bead based on this model (the square of the

RMS motion that is plotted elsewhere in this work, e.g., in the sample trajectories in Appendix E
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and Fig. 5.1), and the correlation time of the bead, for a given hidden state j. That is, for the

purposes of these calculations, we will assume that the hidden state does not change. We will see

that Kj is related to the correlation time of the bead, and a combination of Kj and Bj gives us the

RMS motion of the bead.

By definition the mean-squared motion of the bead is 〈~x2
t 〉, or

〈~x2
t 〉 =

〈(
Kj~xt−1 +

~wt√
2Bj

)2〉
, (5.17)

which we can expand to

〈~x2
t 〉 = K2

j 〈~x2
t−1〉+

2Kj√
2Bj
〈~wt · ~xt−1〉+

1

2Bj
〈~w2

t 〉, (5.18)

where we have moved constants out of the averages. Next we note that 〈~wt · ~xt−1〉 = 0 because

~wt and ~xt−1 are independent; that 〈~xt−1〉 = 〈~xt〉 and 〈~x2
t−1〉 = 〈~x2

t 〉, because the hidden state does

not change and so the average behavior of ~xt is independent of time (the process is “stationary”);

and that 〈~w2
t = 2〉 because ~wt is a two-dimensional vector whose components are Gaussian variables

with variance 1, and are independent both of each other and of components at previous times, so

that ~w2
t = w2

x,t + w2
y,t = 1 + 1 = 2. Therefore Eq. (5.18) simplifies to

〈~x2
t 〉 = K2

j 〈~x2
t 〉+

1

Bj
, (5.19)

which we rearrange to solve for the mean-squared motion of the bead,

〈~x2
t 〉 =

1

Bj(1−K2
j )
. (5.20)

The correlation function of the time series is, again by definition, given by 〈~xt · ~xt−1〉, which we
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can write in terms of Eq. (5.16) as

〈~xt · ~xt−1〉 =

〈(
Kj~xt−1 +

~wt√
2Bj

)
· 〈~xt−1〉

〉
, (5.21)

and which we then expand to

〈~xt · ~xt−1〉 =

〈
Kj~x

2
t−1 +

~wt√
2Bj

~xt−1

〉
. (5.22)

As before we recognize that 〈~wt · ~xt−1〉 = 0 and 〈~x2
t−1〉 = 〈~x2

t 〉, and also that we have an expression

for 〈~x2
t 〉 in terms of Kj and Bj in Eq. (5.20), so the correlation function becomes

〈~xt · ~xt−1〉 =
Kj

Bj(1−K2
j )
. (5.23)

By comparing Eq. (5.23) with Eq. (5.20), we can see that we can rewrite Eq. (5.23) as

〈~xt · ~xt−1〉 = 〈~x2
t 〉Kj . (5.24)

By another definition of the correlation function, we can write the right-hand side of this equation

in terms of an exponential,

〈~xt · ~xt−1〉 = 〈~x2
t 〉e−δt/τc,j , (5.25)

where δt is the time between measurements (30 ms in our experiments) and τc,j is the correlation

time. Since we know 〈~x2
t 〉 in terms of Kj and Bj from Eq. (5.20), and 〈~xt · ~xt−1〉 in terms of Kj and

Bj from Eq. (5.23), we can solve for the correlation time,

τc,j =
−δt

lnKj
. (5.26)

Intuitively we know that the correlation time should increase with longer tethers, because the cor-

relation time is a measure of the time required to explore the configuration space of the tether (and
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this space is bigger for longer tethers). So Kj increases with longer tethers. Bj has a more compli-

cated relationship with the tether length, related to motional blur from the camera and the effect

of hydrodynamic interactions with the wall on the drag on the bead. We note here simply that Bj

tends to decrease with increasing tether length.
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Chapter 6

The three operators of the
wild-type lac system: A case study
in combinatorial control

In the preceding chapters we have examined synthetic constructs that contain two binding sites

for the Lac repressor, and have either unnatural or non-native sequences in the loop. While such

constructs have provided important insights into the sequence dependence to short-length loop

formation and the dynamics of the looping process, there in fact remain outstanding questions about

the wild-type lac operon that these synthetic constructs cannot address (some of which are discussed

below). In this chapter we will apply our combined TPM plus statistical mechanical model/kinetic

analysis approach to the study of a set of constructs derived from the wild-type system (introduced

in Chapter 1 in Section 1.5 and in Fig. 1.3), which include three operators rather than two, and

contain the natural sequences in the loops. 1

Looping between two Lac operators as a function of interoperator spacing (i.e., loop length) as

well as other parameters, both in vivo and in vitro, has been extensively studied (e.g., [32, 49, 50, 67,

68, 69, 70, 100, 101, 104, 108, 109, 113, 114, 115, 116]). However, few studies have been performed

on systems containing all three operators, and none in vitro, where looping can be observed directly,

instead of indirectly through its effects on gene expression. Two-operator studies have led to many

hypotheses regarding the advantage conferred by two operators and therefore the ability for loops

to form in transcriptional regulation (some of which are described in Chapter 1), but only one

1This project was suggested by Jon Widom.
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Figure 6.1: Wild-type levels of repression observed only with all three operators, as measured by in vivo β-galactosidase
assays. In the DNA schematics to the left, the light green box that overlaps O1 is the lac promoter (related to the
lacUV5 promoter used in Chapter 4); the arrow labeled “Plac” indicates the direction of transcription of the operon
genes and roughly the start site. The dashed, right-pointing arrow labeled “lacI” indicates that the gene that encodes
the Lac repressor terminates near O3 (see Fig. 1.3). The orange box labeled “CAP” indicates the binding site for the
catabolite activator protein which is the activator for this system, and is also known to bend the DNA of its binding
site [168]. CAP was present in the experiments that are summarized by the data on the right. Repression of the
expression of β-galactosidase (the product of the lacZ gene in Fig. 1.3) was measured in an E. coli strain harboring
on average 50 Lac repressor molecules, as a function of the combinations of operators present (see Section 4.6 for a
quantitative definition of repression). In a completely wild-type E. coli there are roughly 10 repressors per cell (see
[93] for repression in the presence of wild-type levels of Lac repressor). Deletion of either auxiliary operator reduced
the measured repression by one-quarter to three-quarters of its wild-type value. Moreover, as shown by the last
row, wild-type levels of repression require the particular operator strengths of the wild-type system and (as shown
in other data in [94] not shown here) their particular arrangement: for example, switching which operator overlaps
the promoter in the third construct reduces repression by half. Note that repression is defined as the amount of gene
expression in the absence of repressor divided by expression in the presence of repressor; therefore a repression of 1
(second to last row) is essentially no effect compared to the unregulated promoter. The error on these measurements
is roughly 30%. Adapted from [94].

auxiliary operator, not two, is required for looping. Yet it has been shown by Oehler and coworkers,

as demonstrated by the summary of their data in Figure 6.1, that both auxilliary operators as well as

O1 are required for maximal repression by the lac operon in vivo [94]. In fact, not only the presence

but the specific arrangement of all three operators has been shown to be necessary for wild-type

repression: Oehler and coworkers demonstrated that, in the absence of O2, having two O1 operators

instead of O1 and O3 leads to unnaturally high levels of repression (see the last row of Fig. 6.1).

Why this system should have evolved to contain not just one but two auxiliary operators, with their

specific strengths and arrangement, remains a puzzle and outstanding question in the field regarding

the wild-type lac system [39].
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Several recent experimental and theoretical works have speculated on the role of the two auxiliary

operators in the lac system. The most explicitly stated hypothesis about the presence of three oper-

ators is from Li and coworkers, who argued that auxiliary operators and DNA loop formation reduce

the search time for transcription factors to find their specific binding sites on the E. coli genome

[39], which can in turn contribute to a more efficient response in gene regulation to environmental

cues. In their model, the presence of a single auxiliary operator can decrease target search time

by a factor of 2 for low-copy transcription factors (which would include the Lac repressor, which is

present in roughly 10 copies in the cell [90]); a second auxiliary operator decreases the search time

by a factor of 3. This “antennae” effect mediated by DNA looping from auxiliary sites, as a means

of increasing binding at the main operator, is preferential to simply increasing the number of Lac

repressors in the cell and having only one binding site at the promoter, because of the crowding and

road-blocking effects that result from having too many DNA binding proteins bound nonspecifically

along the genome. Other recent theoretical and experimental studies have focused on the cooper-

ativity between the Lac repressor and the CAP activator protein, known to bind in and bend the

loop region between O1 and O3 (and thereby presumably to enhance the formation of the O1-O3

loop) [169, 170], suggesting a special function of the O1-O3 loop in allowing cross-talk between the

activation and repression pathways of the operon.

The approach that we have developed here is particularly well suited to testing the predictions

of these models for the role of two (rather than one) auxiliary operators in the lac operon. Not only

do we employ an in vitro technique, which as noted above allows us to separate loop formation from

its downstream effects on gene expression, but our technique is also a single-molecule one, by which

we can resolve the loops that form between different combinations of operators, something that is

difficult to do with other in vitro techniques such as gel shift assays. For example, the “antennae”

model of Li and coworkers predicts a reduction in target-search time only if the rate of loop formation

from both auxiliary sites is fast relative to other parameters of the system, something that we can

explicitly test.

Beyond the particular question of the role of the three operators in the case of the lac operon,
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we aim here also to begin to build up a model for how combinatorial control functions in other,

more complicated systems. As discussed in Chapter 1, multi-loop regulatory regions are the rule

rather than the exception in eukaryotic genes, and are probably common in prokaryotes as well

(Fig. 1.1(A) and (C)). The lac operon is a particularly good initial case study for questions of

combinatorial control. Not only does it have three binding sites for the Lac repressor, but it is also

regulated by an activator, CAP, which as noted above is thought to cooperatively enhance looping

by the Lac repressor, and thereby increase the sensitivity of the response of the Lac repressor to the

inducer that removes it from the main operator so that transcription can occur [169]. We will show

here that TPM, especially when combined with the hidden Markov model analysis of the previous

chapter, should be able to dissect more complicated looping systems than the two-operator systems

for which it is usually used.

As in previous chapters we begin by deriving a statistical mechanical model for a three-operator

system, which in this case allows us not only to measure various parameters of the system through

the concentration curves that are the main focus of Chapters 2, 3, and 4, but also to predict how

looping in this system would change as we vary the Kd’s and J-factors away from their wild-type

values. We then turn to experimental results with a three-operator DNA created directly from

the regulatory region of the lac operon, as described in Appendix B.3. Finally, we use our model

and some preliminary experiments with DNA-bending proteins to speculate on a surprisingly large

difference between the in vitro results we present here and the classic in vivo work of Oehler and

coworkers [94].

6.1 A statistical mechanical model of the wild-type lac sys-

tem

A model that accounts for a three-operator construct can be derived in a manner analogous to that

of [115] and Chapter 2. (See also Appendix A for a detailed derivation of another of this class

of statistical mechanical models, and Ref. [170] for a similar three-operator statistical mechanical
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Figure 6.2: Schematized states and thermodynamic weights for a model that includes three operators. The nomen-
clature follows that of Fig. 2.2, although here, since there are three loops and therefore three J-factors to discriminate
between, the J-factors are labeled with subscripts indicating the operators that a repressor must bind to form the
corresponding loop (e.g., Jloop,12 is the J-factor for the loop between O1 and O2). Note that these are total J-factors,
but each loop has the potential to form two looped states (depending on the phasing of the operators at these lengths,
as shown in Fig. 4.2), so there are actually six J-factors for this system and more than fourteen states. A model that
separates out all of these looped states is a simple extension of the one presented here and is analogous to that of
Section 2.2.

model applied to the in vivo data of Refs. [93] and [94] summarized in Fig. 6.1.) As with all of the

models in this work, we start by enumerating the states that the system can be in, and deriving their

corresponding weights, in terms of thermodynamic constants such as J-factors and Kd’s, as shown

schematically in Fig. 6.2. With three operators in the system, there are now fourteen states, instead

of the five states of the simple model. (As noted in the caption to Fig. 6.2, there are actually more

than fourteen if the two looped states that can form from any given pair of operators are included

as well, but we will not consider those here.)

We would next like to determine the three Kd’s and three J-factors for this system. To do

so we note first that K1 and K2 are known already from the E8 and TA concentration curves of

Chapter 4. To find K3 and the J-factors for these loops, we constructed two-operator derivatives

of the full three-operator construct (Appendix B.3), in which binding at either O1, O2, or O3 was

abolished. In principle, concentration titrations with these two-operator derivatives would have
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allowed us to fit for K3 and the three J-factors, using the method that we established in Chapters 3

and 4.

In practice, however, we found that we obtained no looping with either of the two-operator

derivatives that contained O3 as one of the two operators. This is perhaps not surprising: we can

estimate the in vitro value of K3 by noting that although absolute values of the in vivo Kd’s for these

operators are quite different from their in vitro values (see Fig. 2 of [171], where in vivo Kid ≈ 130

pM, K1 ≈ 0.6 nM, K2 ≈ 2.7 nM, and K3 ≈ 200 nM), the ratios of any two Kd’s are roughly the

same in vivo and in vitro. Therefore by comparing Fig. 2 of [171] and Table 4.1 of this work, we

can estimate the in vitro value of K3 in our TPM experiments to be roughly 10–20 nM.2 Even if we

attempt to obtain K3 by measuring the looping probability at [R]max with a construct containing

O3, Oid (the strongest known operator) and TA94 (which has one of the largest looping probability

of the sequences we have examined), from Eq. (2.5) we predict a maximal looping probability of

only 0.1, barely detectable in our assay.

This is already an important result. Note from Fig. 6.1 that all three operators, including O3,

are necessary for obtaining wild-type levels of repression from the operon. Even with the O1-O3 loop

alone, which does not form in our in vitro assay, in vivo repression drops only by about a quarter

compared to wild-type levels. The O2-O3 loop apparently does not form in vivo [93]; but the O1-O3

and O1-O2 loops are roughly comparable in their contributions to looping (see Fig. 6.1, rows 2 and

3, and also [93]). We will return to this discrepancy between our in vitro data and the in vivo data

of [93, 94] in the next section.

We can still obtain the J-factors for all three loops by replacing O3 with O1 in the various two-

operator derivatives. We then know all of the parameters of these two-operator systems except the J-

factors, since they contain only O1 and/or O2. Although in principle data at only one concentration

are sufficient for measuring J-factors, when both operators are known, in all but one case three

concentrations were measured for each two-operator construct in order to reduce the error on the

2O3 is difficult to measure in vitro because it is so weak, but its in vitro value has been estimated as 16 to 1000
times weaker than O1 [99, 172, 173]. By that measure K3 would be about 0.7–5 nM in our assay; 0.7 nM is too low
of an estimate, because loops containing O3 would be visible in our assay if K3 were that low. It is possible that O3

is closer to 5 nM than 10 nM, however, and so we use an estimate of 5 nM in some of the predictions in this chapter
where a lower estimate of K3 allows a better visualization of the predictions of the model.
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Figure 6.3: Looping with the three-operator, wild-type lac operon DNA, and with two-operator derivatives. (A)
Schematic of the TPM construct. The linear DNA for these TPM constructs was extracted from E. coli directly
by PCR (see Appendix B.3). As in Fig. 6.1, the light green box that overlaps O1 is the lacZYA promoter; the
dashed, left-pointing arrow labeled “lacI” indicates that the gene that encodes the Lac repressor terminates near O3
(see also Fig. 1.3); and the orange box labeled “CAP” indicates the binding site for the CRP protein (not present
in any of the work discussed here). (B) Concentration titrations with the three-operator construct in (A) (black),
and two-operator derivatives, shown schematically in the legend (see Appendix B.3 for how these derivatives were
obtained). The two-operator derivatives were used to obtain the J-factors for the various loops, and to examine the
effect of having the O3 operator present or absent. Three concentrations each were measured to obtain Jloop,12 (red)
and Jloop,23 (blue). Only one concentration, however, was used to determine Jloop,13 (green), at the maximum of
looping as predicted by Eq. (2.3). This loop is so short (71 bp), relative to the total length of the tether (735 bp), as
to be nearly undetectable, even at the maximum of looping; data at additional concentrations with even less looping
would be difficult to obtain and probably not helpful in reducing the error on the J-factor for this loop. The J-factor
obtained from this point should be considered an estimate only. Dashed lines indicate a global fit to the red, green
and blue data simultaneously, enforcing the values of K1 and K2 from Table 4.1 obtained with the E894 and TA94
DNAs. The J-factors that result from these fits are given as total J-factors for simplicity, though we believe (see
Fig 6.4) all three of these loops do show both looped states. With the results of these concentration curves here, all
parameters of the three-operator model of Fig. 6.2 are known except K3. The solid black line in this figure is not a fit
but a prediction of the three-operator model with all of the known Kd’s, and assuming K3 = 15 nM (using K3 = 10
nM or even 5 nM produces only a very small difference). Surprisingly, given the in vivo data of Fig. 6.1, the presence
(black data) or absence (red data) of O3 makes no detectable difference on looping in vitro. All looping probabilities
were calculated by the thresholding method described in Appendix D.2.3, and nonloopers were subtracted according
to Appendix D.2.5.
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Figure 6.4: Representative examples of looping with the three-operator, wild-type construct and two operator deriva-
tives, in the absence of HU. The plots are the same kind as in Figs. E.1 and E.2 in Appendix E; in particular, the
black dashed line indicates the length of the particular tether in the absence of Lac repressor. Schematics to the left
show which operators are present. Two looped states are clearly visible in all of the constructs except the one with
the 71 bp loop; in the case of that very short loop, we expect, based on the phasing of E8 and TA near this length
(see Fig. 4.3), that two looped states are present, but we probably cannot resolve the two given the long overall tether
length, at least without employing the HMM approach discussed below and in Chapter 5. Sometimes, but not often,
the two looped states in the other constructs are distinguishable in the histograms to the right of each trace. All of
these DNAs were thresholded to obtain the looping probabilities in Fig. 6.3. The trace at the bottom demonstrates
that binding at the O1 operator has not been completely abolished in the “noO1” constructs (as has been claimed
elsewhere for this deletion [170]); there are rare but noticeable trajectories in which the 71 bp loop—which, if the
original O1 operator is still present, is now flanked by two O1 operators—is visible. However these data are easily
discardable from our results.

J-factor measurements.

The results of these 3-point concentration titrations are shown in Fig. 6.3, which also shows

the total (all possible loops) looping probability for the full-three operator construct at three con-

centrations. Figure 6.4 shows representative examples of TPM data with these constructs. Not

surprisingly, given that any two-operator construct with O3 shows no looping, the three-operator

construct (black data in Fig. 6.3) exhibits only the O1-O2 loop, and is indistinguishable in our as-

say from the two-operator derivative that is missing O3 (red). The J-factors we obtain with these

DNAs are all roughly the same as that of E894 (see Table 4.1), which could be an interesting re-

sult especially for the 71 bp O1-O3 loop. A 71 bp loop is probably one with mostly out-of-phase
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operators, consistent both with an extension of the data in Fig. 4.2(A) down to 71 bp, assuming a

10 bp periodicity, and with the observation that we believe we see two looped states at 71 bp with

a preliminary HMM analysis of this construct (see also example traces in Fig. 6.4), whereas only

one state predominates with fully in-phase or fully out-of-phase operators, if “in-phase” is defined

by maximal looping probability (Fig. 4.2(B)). However with the E8 and TA no-promoter constructs

discussed in Chapter 4, a 71 bp loop should have a J-factor almost an order of magnitude less than

that of E894 (Fig. 4.3). Although this could indicate that the wild-type sequence of the O1-O3

loop is a more flexible looping sequence than E8 or TA—or that the wild-type lac promoter induces

a sequence dependence just like the synthetic derivative lacUV5 does—data with a shorter overall

tether length to better resolve this 71 bp loop will be necessary before any definite conclusions can

be drawn. The value of J13 in Fig. 6.3 is currently an estimate only.

6.2 DNA-bending proteins may be essential elements of the

lac regulatory system

If we are to comment on the models of Li and coworkers and others, it is necessary first to be able

to reproduce, at least qualitatively, in vivo results such as those of Oehler and coworkers [93, 94].

So far, however, we have not done that: we have found in vitro that the O3 operator has no effect

on looping, and that the three-operator construct behaves the same as a two-operator derivative

with O1 and O2 only. We speculated that either nonspecific bending proteins such as HU, or

specific bending proteins such as the CAP activator, might enhance looping in vivo and cause the

discrepancy between the in vivo and in vitro results. We therefore asked from both a theoretical

and an experimental perspective what the effects of proteins like HU and/or CAP might have on

this three-operator system. (Other cellular factors such as the supercoiled state of the DNA could

also be contributing to this in vivo-in vitro discrepancy; in fact it has been shown in vitro that

supercoiling greatly stabilizes the loop between O1 and the auxiliary operators [175, 176]. These

other potential contributing factors also need to be considered, though we will have not done so here
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Figure 6.5: Predictions of effect of nonspecific or specific bending proteins such as HU or CAP on looping by the Lac
repressor in the presence of three operators. The legend in the center shows schematics for which states of Fig. 6.2 are
plotted; looped states versus states with a loop and the third operator bound by a separate repressor are probably not
distinguishable in our assay and so are plotted together. They are not equally likely, however: for example, in (A), at
repressor concentrations where the O3-O2 loop forms, O1 will also be bound (that is, the state with an O3-O2 loop
without O1 also bound separately has zero looping probability at all concentrations). (A) Predictions of the model of
Fig. 6.2 for the probabilities of the various looped states in the presence of some amount of HU, if we assume that HU
does not change the repressor-operator dissociation constants but only increases all of the J-factors by some amount
(here, we assume it increases all J-factors by a factor of 4, consistent with the results presented in the text here in the
presence of 500 nM HU; see also [143], where HU increases looping for 60–100 bp loops by a factor of up to 6 in vivo).
The amount by which HU increases a loop’s J-factor may actually depend on length, such that, for example, longer
loops would on average have more HU molecules bound and so would increase more in apparent flexibility, but we
neglect such potential effects here. In these predictions we have used K3=5 nM to make the trends more noticeable.
(B) Predictions of the model of Fig. 6.2 for the probabilities of the various looped states in the presence of some
amount of CAP, if we assume that CAP increases the J-factor for the O1-O3 loop alone by a factor of 10, a value
consistent with the -1.4 kBT to -2.4 kBT stabilization found by biochemical assays [174]. Unlike the addition of HU
as shown in (A), the addition of CAP to the TPM assay could bring our in vitro results into better alignment with
vivo results in which O3 is an essential component of the system, particularly if K3 is closer to 5 nM than the 15 nM
used here. It is also possible that CAP increases the J-factor of the O2-O3 loop as well, but given the data in [93],
in which repression in the absence of O1 (but the presence of the other two operators) is negligible, it is reasonable
to assume that CAP stabilizes only the O1-O3 loop. Of course it is likely that in vivo both HU and CAP influence
looping in the lac operon.

in these preliminary results.)

HU is known from both in vitro [177] and in vivo [19] studies to increase the flexibility of DNA,

and to enhance DNA looping by the Lac repressor in vivo [19] and by the Gal repressor in vitro

[122, 178]. Other nucleoid-associated proteins like IHF have also been shown to enhance looping

by the Lac repressor in vitro, at least in some regimes [179]. As will be discussed in more detail in

Chapter 7, more rigorous in vitro studies with HU and the Lac repressor must be done to precisely

quantify the effects of HU on looping by the Lac repressor. However, Fig. 6.5(A) shows the prediction

of our model for the simplest effect HU might have on looping, in which we assume that HU increases

the J-factors for the three loops, leaving the dissociation constants unchanged. The result is that for

reasonable values of the amount by which the J-factors might increase in the presence of HU (based
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on the literature cited in the figure caption and on our results presented below), the effect of the O3

operator are still negligible.

On the other hand, the CAP protein, which as noted above bends the DNA between the O1

and O3 operators [168] and stabilizes the loop between these two operators [174], might enhance

looping between the O1 and O3 operators but not between the other operators, leading to a larger

contribution of the O1-O3 loop relative to the others in vitro. Fig. 6.5(B) shows the predictions of our

model for the effect CAP might have on our TPM results, again assuming that CAP increases the

J-factor for the O1-O3 loop by an amount consistent with literature values, leaving the dissociation

constants unchanged. The value of K3 in that prediction is the relatively conservative value of 15

nM; particularly if K3 is closer to 5 nM, CAP could make the stability of the O1-O3 loop comparable

to that of O1-O2 at high repressor concentrations, potentially bringing the TPM results into better

qualitative agreement with in vivo work where O3 and O2 are both important to the wild-type

function of the system.

HU and CAP have both been purified and used in in vitro studies before (e.g., [122, 168, 177]),

and so it should be feasible to add HU and/or CAP to our TPM assay and ask what their effects

on looping with the wild-type three-operator lac system and its two-operator derivatives are. In

Fig. 6.6 we show preliminary experimental results of the effect of adding HU to a TPM Lac repressor

looping assay.3 HU alone compacts the DNA tethers, as has been observed previously using magnetic

tweezers [177] (Fig. 6.6(A)); and, as we expect from in vivo assays [19], HU increases looping by the

Lac repressor when both HU and Lac are present (compare Figure 6.4 and Fig. 6.6(B–E)). We can

quantify the amount by which HU increases looping by the Lac repressor, again assuming that HU

affects only the J-factor and not dissociation constants, by thresholding the traces from the data set

represented by Fig. 6.6(B) (the two-operators-only construct that is missing O3) to obtain a looping

probability at 1 nM Lac repressor and 500 nM HU of 0.59±0.3. This looping probability corresponds

to a J-factor for the O1-O2 loop that is roughly 4 times higher than the J-factor determined without

3Purified HU was a kind gift from Remus Dame at Leiden University in the Netherlands, and was sent in a buffer
of 25 mM Tris (pH 8.0), 200 mM NaCl, 1 mM EDTA, 5 mM β-mercaptoethanol, and 10% glycerol. The stock
concentration is 94 µM, so 500 nM HU, the concentration used in our assays, is only a 100- to 200-fold dilution into
the Lac repressor buffer. Future work with HU and the Lac repressor should ensure that the small but significant
amount of this HU buffer, particularly the glycerol, does not alter the activity of the Lac repressor.
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Figure 6.6: The DNA-bending protein HU increases looping by the Lac repressor and may lead to an observable effect
from the O3 operator in vitro. The format for the sample traces in (B–E) is the same as in Fig. 6.4, which shows
representative traces for the constructs shown here but in the absence of HU. (A) The RMS motion of a tether in
the absence of Lac repressor decreases with increasing HU. This result is comparable to that of [177], especially given
the difference in salt concentrations between the two experiments (HU is sensitive to salt). Note that these data
are for a shorter construct that in (B–E). (B) Sample trajectories with the construct that contains only the O1 and
O2 operators (same construct as the red data of Fig. 6.3), in the presence of 500 nM HU and 1 nM Lac repressor.
Stretches of long dwells as in the top trace are rare without the third operator, but do occur. The bottom trace
is more representative of this data set, especially in that it looks like there might be more than two looped states.
It is unclear if this is a real result or an artifact (two operators should yield only two looped states, according to
the results of preceding chapters, though if these two looped states are superpositions of the four underlying loop
topologies of Fig. 4.3, it is possible that HU changes how many different tether lengths the four states collapse into.
Some traces without HU for this construct may also exhibit more than two looped states, though without HU the
looping probability is so low as to make distinguishing looped states difficult. It is also possible that the deletion of
O3 was incomplete, as is probably the case for the deletion of O1 (see caption to Fig. 6.4)). The black dashed line in
this and (C–E) represents the length of the particular tether in the absence of both HU and Lac repressor; note the
compaction of the tether in the presence of HU, in that the unlooped state of the blue data is well below the black
dashed line. (C) Sample trajectories with the construct that contains only the O1 and O2 operators, in the presence
of 500 nM HU and 10 nM Lac repressor. (D) Sample trajectories with the full three-operator construct (black data
in Fig. 6.3), in the presence of 500 nM HU and 1 nM Lac repressor. The top two traces are the most representative
of this data set and are not obviously different than those in (B) that lack the third operator; however the bottom
two traces show long dwells in one or more looped states that are more common than in the data set in (B), and
may indicate the formation of the O2-O3 loop. (E) Sample trajectories with the full three-operator construct in the
presence of 500 nM HU and 10 nM Lac repressor. The top trajectories show the long dwells that are common at this
repressor concentration, and are suggestive of both the O1-O2 and O2-O3 loops forming (and, interestingly, possibly
directly interconverting). The bottom two traces look similar to those in (C) that lack the third operator.
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HU (see Fig. 6.3(B)). As shown in Fig. 6.5(A), even if K3 is as low as 5 nM, an increase in J-factors

for all of the loops by a factor of 4 should still not allow us to reliably detect loops with O3, nor

should we observe a difference between the full three operator construct versus the one that lacks

O3.

As suggested by the examples in Fig. 6.6(B–E), there is a large bead-to-bead variation in looping

behavior in the presence of HU, especially when all three operators are present, and so more data

will be necessary to differentiate spurious behavior from real results before conclusions can be drawn

about the effect of HU on this three-operator system. More importantly, a quantitative analysis and

objective state identification is crucial, which we believe will be best accomplished by the hidden

Markov model analysis discussed in the previous chapter. However, from the trajectories in Figs. 6.4

and 6.6(B–E) it does appear that the presence of the O3 operator, with HU in the sample, alters

the dynamics of looping: with HU and O3, long dwells in one or more looped states are observed,

some of whose lengths are suggestive of the formation of the O2-O3 loop, and possibly its direct

interconversion with the O1-O2 loop. Some traces also appear to have states at RMS values that

would correspond to the O1-O3 loop. It will be exciting to see if these trends hold with more data

and a more rigorous analysis.

6.3 Conclusion

In this chapter we have presented preliminary results with a TPM construct derived from the wild-

type lac operon, which unlike most previously studied looping constructs (by our lab and others), has

three operators instead of two. Not only do we hope with this naturally derived construct to address

some outstanding questions about the lac operon that are difficult to address by in vivo, rather than

single-molecule in vitro, assays, but we also hope to set the stage for systematic dissections of other,

more complicated cases of combinatorial control in transcriptional regulation.

However, one of our key preliminary findings is that unlike the in vivo repression data of Oehler

and coworkers, as well as others, summarized by Fig. 6.1, in vitro we find that the O3 operator has

no detectable effect on looping. That is, the three-operator wild-type construct behaves identically
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to a two-operator construct that lacks the weakest O3 operator.

We have already shown in Chapter 4 (Section 4.6) that the non-specific DNA-bending protein

HU masks a potential sequence dependence in vivo that we observe in vitro. We likewise suspect

that the in vivo wild-type behavior of the lac operon depends strongly on the presence of HU or

other DNA-bending proteins in the cell (and/or other cellular conditions such as the supercoiled

state of the DNA), and that the absence of these proteins (or other conditions) in our experiments

leads to the discrepancy we observe between our in vitro results and the in vivo results of [93, 94]

and others. HU (or other DNA-bending proteins) is an essential component of the Gal looping

system [180, 178]; although unlike the Gal repressor, the Lac repressor readily forms loops in vitro,

its wild-type function may in fact depend more strongly than has been previously appreciated on

interactions with other DNA binding proteins such as HU.

To begin to explore this hypothesis of the importance of proteins like HU to the wild-type

function of the lac system, we have presented preliminary results from both theoretical (Fig. 6.5)

and experimental (Fig. 6.6) approaches on the effect of HU on looping by the Lac repressor with

the wild-type three-operator system. Although more data and more rigorous analysis are necessary

before definite conclusions can be drawn, our preliminary results suggest that with the three-operator

construct, the presence of HU leads to long dwells in one or more looped states, which do not occur

without O3. Although according to our theoretical predictions with an estimated value of K3 of 5

nM (Fig. 6.5(A)), neither of the loops containing O3 should form to a detectable degree even in the

presence of HU, nevertheless it appears (Fig. 6.6(E)) that we see more looped states with the third

operator than without it.

This three-operator plus HU data is a clear example of the kind of data that the hidden Markov

model analysis presented in the previous chapter are better suited to analyzing than the conventional

thresholding method. The thresholding method requires the user to identify how many states are in

a trajectory, while the HMM algorithm uses a more objective maximum likelihood approach, based

on a physical model of the bead’s motion (see Chapter 5), to determine how many states there are in

a trajectory and what the most likely state at each time point is. An example of an HMM analysis
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Figure 6.7: A screen shot from the graphical user interface (GUI) from our hidden Markov analysis code (see Sec-
tion 5.2.2), showing a preliminary HMM analysis of a particular multi-state trajectory for the three-operator construct
in the presence of 500 nM HU and 10 nM Lac repressor. This is the same trace as the top left trajectory of Fig. 6.6(E).
In the left-hand plot, the thick dashed green line is the RMS motion of the tether in the absence of Lac and HU, the
same as the black dashed line in Fig. 6.6(E). The other horizontal dashed lines indicate states found by the HMM
algorithm: the unlooped state is in red, genuine looped states in green, and spurious states (corresponding to tracking
errors or sticking events, or events with otherwise anomalous emission parameters) are in black. The Viterbi path
represents the most likely sequence of states; the “argmax p(st)” indicates the most likely state at any time point t.
The right-hand plot shows the emission parameters K and B (related to the RMS and correlation time of the bead;
see Chapter 5) for the current trajectory as well as for all genuine states from all trajectories: the looped states for
this particular trajectory are shown as filled green squares, for all other trajectories as outlined green squares, the
unlooped state for this trajectory as a filled red triangle, and for all other trajectories as outlined red triangles, and
spurious states for this trajectory are black dots (not all are within the field of view). The blue “calibration” circles
indicate the K and B parameters for all trajectories in this set in the absence of HU and Lac. Radio buttons to the
left allow the user to alter the automatic state assignments from the algorithm (in this example, the user can assign
states as “spurious”, “unlooped”, “looped”, or “never looped” (“NL”); the GUI has the option of allowing additional
state assignments as well, such as identities of particular loops). As discussed in more detail in Chapter 5, genuine
states fall on a line in K-B space, whereas spurious states do not. Therefore even though by eye it looks like there
is an additional looped state with an RMS around 135 nM, the HMM analysis identifies this state as anomalous.
Similarly, though it is difficult to objectively identify how many looped states are in this trajectory by eye (as would
be the case for the thresholding analysis used in the rest of this work), the HMM analysis identifies five looped states
with different enough emission parameters that it classifies them as different states.
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of the three-operator-plus-HU data is shown in Fig. 6.7, for one of the cases where it is difficult to

threshold the trace by eye. We hope that further analysis with this HMM approach, especially of

the kinetics of looping in the presence of two versus three operators, will shed more light on the role

of the weakest operator on looping in vitro, and more generally on its role in gene expression in vivo.
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Chapter 7

Conclusion

It is becoming increasingly apparent that the mechanical properties of the DNA polymer and its

physical organization in cells are crucial to the regulation of the genetic information that the DNA

encodes, but precisely what these mechanical properties are, especially at short length scales, and

how they interact with the various proteins that decorate the DNA in vivo, are still open questions.

Here we present a new way of measuring the J-factors that capture the mechanical properties of

protein-mediated DNA loops, through a combination of careful single-molecule measurements and

rigorous comparison to statistical mechanical theories, and have applied this technique primarily to

the question of how sequence affects looping in vitro and in vivo. We have argued that “sequence

flexibility” as a general term is misleading, and that both the shape of the deformation induced to

measure sequence flexibility as well as other proteins that can interact with DNA in vivo play larger

roles than previously anticipated on looping. Finally we also describe here a new hidden Markov

model based on variational Bayesian inference for extracting kinetic information from our single-

molecule data, which should be particularly important for dissecting more complicated multi-loop

systems such as the wild-type lac operon that we describe in Chapter 6.

A key component of our approach has been a systematic dissection of single-molecule looping

experiments, by varying the four key parameters shown in Fig. 1.4, both from theoretical (Chapter 2)

and experimental (Chapters 3, 4, 5, and 6) standpoints. We have found such a systematic variation

of biologically relevant parameters to be a powerful technique for measuring not only the J-factors

that were a main focus of this work, but also other important features of the systems we discuss here,
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such as repressor-operator dissociation constants, kinetic parameters, and even the effects of potential

experimental artifacts. Moreover this systematic dissection, in conjunction with extensive dialogue

between experiments and theory, have allowed us to make quantitative contact with parallel in vivo

experiments. Indeed a quantitative comparison between our in vitro and in vivo experiments was

made possible only by concrete theoretical frameworks for both systems in terms of experimentally

tractable parameters. We have shown that such a quantitative comparison revealed an important

discrepancy between the conclusions we would have drawn from either experimental system alone.

Namely we found in vitro that two sequences with very different affinities for nucleosomes showed

a significant sequence dependence to looping that followed the trends observed with nucleosomes, if

a bacterial promoter sequence was present in the loop, as it is in our in vivo assay. We determined

using our models for the in vitro and in vivo assays that the range of this sequence effect would

be large enough to be detectable in in vivo repression assays. However, in vivo the nonspecific

DNA-bending protein HU (and possibly others) masks any sequence dependence to repression that

we might otherwise observe.

A key corollary experiment that must be done to fully understand how HU can mask this sequence

dependence to looping, without abolishing the phasing (length dependence) that is a hallmark of

loop formation, is to add purified HU to the TPM assay and quantify the effects of HU both

on repressor-operator dissociation constants and on the J-factors of the E8, TA and poly(dA:dT)

sequences that we examined here. In Chapter 6 we presented preliminary data with HU and the

Lac repressor, demonstrating that HU affects both looping probabilities and dynamics. However a

more systematic dissection of the role of HU in Lac repressor-mediated looping remains is warranted.

For example, in Fig. 6.5(A) we assumed that HU alters only the J-factor and not the dissociation

constants, but this is an assumption that has not yet been validated. Likewise, we assumed that HU

increased the J-factors of each loop by the same factor, but it is plausible that the length of the loop,

and therefore the number of (nonspecific) binding sites for HU, affects the amount by which HU

increases the J-factor. HU is known to bind preferentially to distorted DNA structures [17]; it may

therefore bind with higher probability to certain sequences, and thereby affect some J-factors more
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than others, even at constant loop length; or HU may preferentially stabilize the structures of, for

example, in-phase loops, or one looped state over the other, such that even single base-pair changes

in loop length would be a factor in the effect of HU. Moreover, studies with the Lac repressor and

a similar DNA-bending protein, IHF [17, 179], have shown at least two regimes to the effects of

IHF on looping by the Lac repressor, one in which IHF inhibits looping and the other in which it

enhances looping. HU may have similarly complex interactions with the Lac repressor.

Our combined statistical mechanical model plus concentration titration approach is ideally suited

to answering these questions. By measuring repressor titration curves in the presence of varying

amounts of HU, and by systematically tuning loop length, loop sequence, and operator strength as

we have here, we can begin to fill in the gaps in our knowledge of how HU affects looping by the Lac

repressor. Again, as we have shown in Sections 4.6 and 6.2, the picture emerging from our work is

that DNA-bending proteins such as HU play crucial roles in loop formation in vivo, and we will not

fully understand gene regulation in vivo until we understand the interactions between transcription

factors and these architectural proteins both in cells and in isolation in vitro.

While the combined theory, in vivo, and in vitro approach presented here was able to resolve the

apparent in vivo/in vitro sequence-dependence discrepancy by identifying the crucial role of HU in

masking sequence dependence in vivo, we have not so far solved the mystery of the complex sequence

dependence to looping observed in vitro. Namely we have shown here that two sequences with very

different affinities for nucleosomes behave the same in the context of looping, unless a bacterial

promoter sequence is added to the loop, in which case there is a significant sequence dependence to

looping that follows the trends observed with nucleosomes. Moreover, a third sequence that contains

poly(dA:dT) tracts does not follow the trends either of the E8 and TA loops or of the nucleosome

formation assays that inspired our use of all three kinds of sequences. An important next step in

understanding this complex sequence dependence will be to ask how general these trends are in

terms of the protein that mediates the loop, or the promoter included in the loop. Do other looping

proteins, such as the lambda repressor, which might impose different boundary conditions on the

loop and so might change the resulting loop shape, show the same sequence-(in)dependent trends
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as the Lac repressor? Are the promoter-dependent sequence effects that we observe peculiar to the

lacUV5 promoter only? We hope that future work with additional looping proteins and promoters

will shed light on the property of the promoter sequence that causes the sequence effects that we

observe, and how robust our loop-shape hypothesis is when confronted with different loop boundary

conditions.

An equally intriguing question hinted at by some of the work presented here is whether or not

there are in fact sequences that do alter the looping probability in vitro even in the absence of the

lacUV5 promoter (the poly(dA:dT) sequence of Chapter 4 being a potential candidate), or in vivo

even in the presence of HU. The sequences we have studied here are all derived from nucleosome

affinity assays; however if our shape-dependent hypothesis is correct, then “better” looping sequences

will most likely not be found by attempting to adapt additional nucleosome-favoring sequences to

looping, but rather by accessing entirely new regions of sequence space. Indeed, there are hints

that especially favorable or unfavorable looping sequences do exist even in vivo: as discussed in

Chapter 1, A-tracts are known to affect NtrC-mediated activation loops in bacteria [65, 66], and

phased A-tracts create hyperstable Lac repressor loops in vitro [67, 68, 69, 70].

To more efficiently explore sequence space and address these questions of whether or not optimal

and sub-optimal looping sequences exist in vivo, we are developing a high-throughput approach based

on a newly described technique called “Sort-Seq” from Justin Kinney and coworkers [181]. Sort-Seq

was originally designed to identify important regulatory regions of promoters such as transcription

factor binding sites, as well as the sequence-dependent binding energies and interaction energies of

transcription factors and polymerases, and relies on the simple premise that mutations to protein

binding sites will result in larger effects on gene expression than mutations to other sites on the

DNA. In a Sort-Seq experiment, random mutations are introduced into the region of a promoter

that has been altered to drive a fluorescent reporter gene instead of its natural product, and cells

containing these mutations are sorted by FACS (fluorescence-activated cell sorting, a kind of flow

cytometry) according to the level of expression of the fluorescent reporter. The promoter regions of

the sorted cells are sequenced and correlated to the expression levels measured in the FACS sorting.
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More precisely, the mutual information between a particular mutation at a particular site and the

level of gene expression resulting from that mutation is calculated. Important regions of a promoter,

such as binding sites for transcription factors, are highly informative about gene expression levels,

whereas other sites are not.

A key aspect of this Sort-Seq approach is its high-throughput nature. Many (on the order of

ten thousand) data points on the relationship between sequence and gene expression are obtained

in one experiment, through the use of both high-throughput sequencing and a large initial library

of randomized constructs. Such a high-throughput approach is ideal for searching sequence space

for sequences that are particularly good or particularly bad at loop formation. We are therefore

developing a modified Sort-Seq for looping, with the eventual goal of determining the “rules” that

govern the sequence dependence to loop formation just as studies of nucleosome preferences have

resulted in the establishment of a set of sequence rules that predict nucleosome affinity [14].

In this modified Sort-Seq experiment, we will produce a library containing a large number of

randomly chosen sequences for a loop region, and then measure gene expression with these randomly

chosen loops in cells harboring the Lac repressor. By comparing the FACS profile generated by these

new looping sequences to that generated by the E8 or TA sequences in one of the constructs whose

repression level we have already measured, we will be able to identify any sequences that alter gene

expression (presumably by altering looping), in a way that E8 versus TA does not. A population

of cells containing one of the E8 (or, equivalently in the absence of HU, TA) loops that we discuss

in Chapter 4, when sorted by FACS, will generate a relatively narrow distribution of fluorescence

levels centered on the mean value for that construct shown in Fig. 4.5. If the pool of new, randomly

chosen looping constructs contains any sequences that are better or worse for looping in vivo than

E8/TA, they will lead to a broadening of the distribution of fluorescence compared to that of E8/TA.

That is, sequences that are poorer loop formers than E8/TA will show a higher fluorescence in the

FACS sorting than E8/TA (because they will lead to less repression), and sequences that are better

loop formers will show lower fluorescence. By sequencing the strains that appear in the tails of this

broadened distribution, we can identify those sequences that are particularly good or particularly
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bad at loop formation, and thereby begin to develop the rules that govern ease of loop formation in

vivo.

We suspect that any such interesting looping sequences will be rare in the pool of randomly

selected sequences, and so we plan to collect cells that fall in the tails of the distribution, grow

these cells overnight, and re-sort them, to enrich the FACS profile in any rare but very good or very

poor looping sequences. We can also subject the sequences in the tails of the distribution to error-

prone PCR, thereby exploring sequence space around these slightly better or slightly worse loopers,

much as in the SELEX experiment that led to the determination of the strongest known nucleosome

positioning sequence [86]. Even so, we do not expect randomly chosen sequences of lengths on the

order of 100 bp to effectively explore very much of sequence space, and so we also anticipate needing

to bias our search by starting from sequences that we have reason to believe might have high or

low looping probabilities compared to E8/TA. For example, sequences enriched in dA-dT steps are

thought to be especially flexible, so we can design our randomly selected starting sequences to have

more dA and dT nucleotides than the other 3 bases. (The TA sequence, though already one such

dA-dT enriched sequence, has these A-T steps precisely spaced in a way that may not be optimal

for looping, though it is optimal for nucleosome formation.) Alternatively, because the removal of

HU allows a sequence dependence to repression to appear for the E8 versus TA sequences, we also

can construct a pool of sequences mutagenized around the TA sequence and sort them in an HU

deletion strain.

In parallel we plan to use our single-molecule TPM assay to measure the in vitro looping free

energies of any interesting sequences that arise from the Sort-Seq experiment, to further our efforts to

understand how sequence governs DNA flexibility in the context of loop formation in the absence of

complicating factors such as the DNA-bending proteins present in vivo. However, a high-throughput

screen for interesting sequences will necessitate an equally high-throughput single-molecule assay by

which to measure the in vitro J-factors of these sequences. To that end we have begun a collaboration

with the group of Laurence Salomé at the Université de Toulouse in France, who have developed a

high-throughput tethered-particle technique which allows the observation and tracking of up to 500
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tethers at once [182].

Though we believe a deeper understanding of the complex relationship between DNA sequence

and mechanical properties that such studies will provide is vital, we are ultimately interested in

whether such mechanical properties are in fact a “knob” that bacteria tune to control gene expres-

sion in vivo. Therefore regardless of what our Sort-Seq search of sequence space reveals, whether or

not we find a set of sequences that are particularly good or particularly bad at Lac repressor-mediated

looping in vitro and/or in vivo, it will be even more informative to compare whatever results we ob-

tain to the sequences that are found in naturally occurring bacterial loops—for example, those of the

wild-type lac operon discussed in Chapter 6. A bioinformatics approach to comparing the sequences

of the loops of the lac operon and those of other bacterial transcription factor-mediated loops may

hint at common sequence motifs that we could exploit to enhance our search for particularly good

or bad looping sequences, with the caveat that if different looping proteins impose different bound-

ary conditions on the loops they form, there may not be any universal looping sequence rules to

discover. But at least for the case of the lac operon we have already presented preliminary results

on the J-factors of those natural loops, and though more careful studies will be necessary in order

to draw conclusions about the flexibilities of these loops compared to the E8 and TA loops that we

have focused on so far, the pieces are all in place for such a study. Indeed, the pieces are all in place

for a thorough exploration of many of the ways in which the mechanical properties of DNA impact

the regulation of the genetic information it encodes, and we anticipate a proliferation of quantitative

and physics-minded approaches, such as those described here, to tackle this new way of thinking

about the chief information molecule of the cell.
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Appendix A

Detailed derivation of the model
that includes the
dimer-to-tetramer transition

In this Appendix we describe in greater detail the derivation of the looping probability as a function

of repressor concentration with a mixture of dimeric and tetrameric repressors present, summarized

in Section 2.4. We first describe the assumptions about dimeric Lac repressor made in this deriva-

tion, and then derive a model that takes into consideration the dimer-to-tetramer transition at low

repressor concentrations. In the last part we consider the case where there is a constant fraction of

dimers due not to low concentration but to damaged protein. Figure A.1 summarizes the derivation

and the variables which will be used throughout (the same notation is used as in [115]).

A.1 Assumptions

First, in order to write the statistical weights of states that include a dimeric form of the Lac

repressor, we must define the energies associated with the dimeric form. The equilibrium constant

associated with the dissociation of tetramers into dimers, KDT , is thought to occur at such a low

concentration of repressors that it has not been measured in vitro [131]. However, several mutant

forms of the Lac repressor have been developed that are unable to form tetramers. Although some of

these dimeric forms bind DNA less tightly than the tetrameric form, others have operator dissociation

constants comparable to that of the wild-type tetramer [132, 133, 134]. Here we will assume that the
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Figure A.1: States and weights for a model which includes the presence of dimers. The left-hand column diagrams
the ten different states of the system, the first five of which are the same as the simple model with just tetramers
and the last five of which involve dimers binding to one or both operators. The middle column shows the statistical
weights for each of the ten states in the language of statistical mechanics: here T and D are the number of tetramers
and dimers in solution, Ω is the number of lattice sites assigned to the solution, β is the reciprocal of the Boltzmann
constant times the temperature, εsol/2 is the energy of a repressor head in solution, ε1 and εid the energies of a
repressor head bound to the O1 operator or the Oid operator, ∆Floop is the energy cost of deforming the DNA into a
loop, and δω is an infinitesimal angle, such that 8π2/δω are the rotational degrees of freedom of a tetramer or dimer
in solution (4π for the directions a dimer or tetramer can point on the unit sphere, and 2π for the rotation around
a dimer’s or tetramer’s axis). The left-hand column shows the statistical weights of the ten states in the language
of thermodynamics: here [T ] and [D] are concentrations of tetrameric and dimeric repressor, Kid and K1 are the
dissociation constants for a dimer or tetramer bound to one of the operators, and Jloop is the looping J-factor (defined
in terms of ∆Floop in the text).
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binding constants for both nonspecific DNA and operator DNA have values which are independent

of whether the repressor is in dimeric or tetrameric form. Note that this assumption results in a

larger perturbation to the simple model in which dimers are not considered, compared to the case

where dimers bind more weakly than tetramers (and therefore have less of an effect on looping).

The derivation in [115] assumes a tetramer in solution has total energy εsol, and a tetramer with

one head bound has total energy εb + εsol
2 , where εb is the energy of one head bound to an operator.

It is implied, then, that the remaining free head in solution has energy εsol
2 . Therefore we assume

a dimer free in solution has energy εsol
2 (and εb when bound to an operator), since it only has one

binding head. Second, we assume that tetramers and dimers have the same number of rotational

configurations in solution, or 8π2

δω per dimer.

The previous two points contain an implicit assumption that the unbound head of a tetramer

does not bind nonspecifically to non-operator DNA when the other head is bound to an operator;

otherwise dimers and tetramers would have different dissociation constants, either through a change

to the energy of the one-head-bound state for tetramers, or through the restriction of the entropy

of tetramers with one head bound compared to dimers bound to an operator. This assumption

about nonspecific binding of free heads is a reasonable first approximation, particularly given the

equivalence of the dissociation constants for some dimeric mutants and wild-type tetramers described

above. However, these kinds of simplifications can all be relaxed if desired without changing the

essence of the calculations.

Finally, as discussed in more detail in Section 2.4, we assume that the binding of repressors to

DNA does not affect the equilibrium between dimers and tetramers in solution.

A.2 Derivation of ploop([R]), taking into account T ⇔ 2D

We start by enumerating the possible states of the system and their Boltzmann weights, and summing

the weights to obtain the partition function. We will do this first in terms of numbers of dimers

and tetramers (D and T , respectively), and then use the equilibrium constant for the dissociation

reaction of tetramers into dimers, KDT , to write the partition function in terms of KDT and the
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total concentration of repressor [R].

When dimers are present in solution, there are 5 new states that the system can be in, in

addition to the 5 states of the simple model that does not include dimers. All 10 states are shown

schematically in Fig. A.1, along with the statistical weights which we will now derive.

To construct the weight of each state, we first note that the energy of each state is εsol/2 times the

number of tetramer heads in solution, plus εsol/2 times the number of dimers free in solution, plus

εid per dimer or tetramer bound to the Oid operator, plus ε1 per dimer or tetramer bound to the O1

operator, plus ∆Floop if a loop is formed. So, for example, if a tetramer is bound at Oid and a dimer at

O1, as in state (viii), the argument of the exponential is −β[(T−1)εsol+(D−1)εsol/2+ε1+εid+εsol/2],

where β is the reciprocal of the Boltzmann constant times the temperature.

The multiplicity of each state consists of three parts. First, as in the simple model of [115]

(and, implicitly, of Chapter 2), there are 8π2

δω rotational configurations per repressor in solution; so,

for example, in the state where their are neither dimers nor tetramers bound to the DNA (state

(i)), there are T tetramers and D dimers in solution, or
(

8π2

δω

)T+D

total rotational configurations.

Second, since each tetramer head has 2 orientations in which it can bind to the DNA and each

tetramer has 2 heads, a tetramer bound at an operator contributes a factor of 4 to the multiplicity

(2 heads times 2 configurations per head). However a dimer bound at either operator contributes

a multiplicative factor of 2, since each dimer has only one binding domain. Finally we account for

the ways of arranging the tetramers and dimers in solution by using a lattice model to describe the

solution, as in [115]. The lattice has Ω lattice sites, so for example in state (viii), with a tetramer

bound at Oid and a dimer bound at O1, there are Ω!
(T−1)!(D−1)!(Ω−T−D−2)! ways of arranging the

remaining T − 1 tetramers and D − 1 dimers in solution.

We next apply some simplifications. If we assume a dilute solution, such that Ω� T +D, then

Ω!

(Ω− (T +D))!
≈ ΩT+D (A.1)

and likewise for similar terms. The parts of the multiplicities of each state that correspond to the
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ways of arranging the dimers and tetramers in solution then become:

(i)
Ω!

T !D!(Ω− T −D)!
→ ΩT+D

T !D!
(A.2)

(ii), (iii)
Ω!

(T − 1)!D!(Ω− T −D + 1)!
→ ΩT+D−1

(T − 1)!D!
(A.3)

(iv)
Ω!

(T − 2)!D!(Ω− T −D + 2)!
→ ΩT+D−2

(T − 2)!D!
(A.4)

(v)
Ω!

(T − 1)!D!(Ω− T −D + 1)!
→ ΩT+D−1

(T − 1)!D!
(A.5)

(vi), (vii)
Ω!

T !(D − 1)!(Ω− T −D + 1)!
→ ΩT+D−1

T !(D − 1)!
(A.6)

(viii), (ix)
Ω!

(T − 1)!(D − 1)!(Ω− T −D + 2)!
→ ΩT+D−2

(T − 1)!(D − 1)!
(A.7)

(x)
Ω!

T !(D − 2)!(Ω− T −D + 2)!
→ ΩT+D−2

T !(D − 2)!
(A.8)

where the Roman numerals correspond to the numbering of the states in Fig. A.1.

Next we divide each weight by the weight of state (i) so that the weights of the 10 states become:

(i)→ 1 (A.9)

(ii)→ 4

(
8π2

δω

)−1(
ΩT+D−1

(T − 1)!D!

T !D!

ΩT+D

)
e−β[(T−1)εsol+D

εsol
2 +ε1+

εsol
2 −Tεsol−D

εsol
2 ] (A.10)

= 4

(
8π2

δω

)−1
T

Ω
e−β(ε1−

εsol
2 ) (A.11)

(iii)→ 4

(
8π2

δω

)−1(
ΩT+D−1

(T − 1)!D!

T !D!

ΩT+D

)
e−β[(T−1)εsol+D

εsol
2 +εid+

εsol
2 −Tεsol−D

εsol
2 ] (A.12)

= 4

(
8π2

δω

)−1
T

Ω
e−β(εid−

εsol
2 ) (A.13)

(iv)→ 16

(
8π2

δω

)−2
T 2

Ω2
e−β[Tεsol−2εsol+D

εsol
2 +2

εsol
2 +ε1+εid−Tεsol−D

εsol
2 ] (A.14)

= 16

(
8π2

δω

)−2
T 2

Ω2
e−β(ε1+εid−2

εsol
2 ) (A.15)

(v)→ 8

(
8π2

δω

)−1
T

Ω
e−β[Tεsol−εsol+D

εsol
2 +ε1+εid+∆Floop−Tεsol−D

εsol
2 ] (A.16)

= 8

(
8π2

δω

)−1
T

Ω
e−β(ε1+εid+∆Floop−2

εsol
2 ) (A.17)
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(vi)→ 2

(
8π2

δω

)−1(
ΩT+D−1

T !(D − 1)!

T !D!

ΩT+D

)
e−β[Tεsol+D

εsol
2 −

εsol
2 +ε1−Tεsol−D

εsol
2 ] (A.18)

= 2

(
8π2

δω

)−1
D

Ω
e−β(ε1−

εsol
2 ) (A.19)

(vii)→ 2

(
8π2

δω

)−1(
ΩT+D−1

T !(D − 1)!

T !D!

ΩT+D

)
e−β[Tεsol+D

εsol
2 −

εsol
2 +εid−Tεsol−D

εsol
2 ] (A.20)

= 2

(
8π2

δω

)−1
D

Ω
e−β(εid−

εsol
2 ) (A.21)

(viii), (ix)→ 8

(
8π2

δω

)−2(
ΩT+D−2

(T − 1)!(D − 1)!

T !D!

ΩT+D

)
e−β[Tεsol−εsol+D

εsol
2 −

εsol
2 +ε1+εid+

εsol
2 −Tεsol−D

εsol
2 ]

(A.22)

= 8

(
8π2

δω

)−2
TD

Ω2
e−β(ε1+εid−2

εsol
2 ) (A.23)

(x)→ 4

(
8π2

δω

)−2(
ΩT+D−2

T !(D − 2)!

T !D!

ΩT+D

)
e−β[Tεsol+D

εsol
2 −2

εsol
2 +ε1+εid−Tεsol−D

εsol
2 ] (A.24)

= 4

(
8π2

δω

)−2
D2

Ω2
e−β(ε1+εid−2

εsol
2 ). (A.25)

Finally we define ∆ε1 ≡ ε1− εsol
2 and ∆εid ≡ εid− εsol

2 . (Note that this is the same convention as

in [115]: there ∆ε ≡ εb + εt − εsol, where εt is the energy of the unbound head in solution, and then

it is assumed that there is no cooperativity to the binding of the second head, such that εt = εsol/2,

as we have assumed here.) Note that in the arguments of the exponentials there is always an εsol
2

to go with each εid and ε1, so all the εsol’s disappear and all ε1, εid become ∆ε1,∆εid.

We can now write the total partition function as

Z = 1 + 4

(
8π2

δω

)−1
T

Ω
e−β∆ε1 + 4

(
8π2

δω

)−1
T

Ω
e−β∆εid + 16

(
8π2

δω

)−2
T 2

Ω2
e−β(∆ε1+∆εid) (A.26)

+ 8

(
8π2

δω

)−1
T

Ω
e−β(∆ε1+∆εid+∆Floop) + 2

(
8π2

δω

)−1
D

Ω
e−β∆ε1 + 2

(
8π2

δω

)−1
D

Ω
e−β∆εid

+ 16

(
8π2

δω

)−2
TD

Ω2
e−β(∆ε1+∆εid) + 4

(
8π2

δω

)−2
D2

Ω2
e−β(∆ε1+∆εid)

where we have combined states (viii) and (ix) into one term since they are mathematically identical.

To convert from numbers of dimers and tetramers to concentrations, we start by defining the
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total amount of repressor in the TPM sample, [R], as

[R] =
[D]

2
+ [T ], (A.27)

as in Chapter 2. As in [115], we will define [T ] and [D] in terms of the number of lattice sites as

[T ] ≡ T

Ωv
and [D] ≡ D

Ωv
, (A.28)

where v is the size of each lattice site, chosen such that

1

v

8π2

δω
= 1M. (A.29)

Also in keeping with [115] we define the dissociation constants as

Kd ≡
1

4v

8π2

δω
eβ∆ε, (A.30)

where ∆ε is either ∆εid or ∆ε1. In units of concentration this becomes

Kd =
1 M

4
eβ∆ε. (A.31)

Finally we define the J-factor as

Jloop ≡
1

v

8π2

δω
e−β∆Floop , (A.32)

or in units of concentration,

Jloop = 1 Me−β∆Floop . (A.33)

We can now write the partition function in terms of [T ], [D], Kid, K1, and Jloop. Consider first

the looped state (state (v)),

8

(
8π2

δω

)−1
T

Ω
e−β(∆ε1+∆εid+∆Floop). (A.34)
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If we replace T/Ω with [T ]v and group terms that can be combined into J-factors and dissociation

constants we can rewrite Eq. (A.34) as

8

(
8π2

δω

)−1
T

Ω
e−β(∆ε1+∆εid+∆Floop) = [T ]

(
8v

(
8π2

δω

)−1

e−β∆ε1

)(
e−β∆εid

4v
8π2

δω

)(
8π2

δω

4v
e−β∆Floop

)
.

(A.35)

Then replacing grouped terms with Jloop or the appropriate Kd yields

[T ]

(
8v

(
8π2

δω

)−1

e−β∆ε1

)(
e−β∆εid

4v
8π2

δω

)(
8π2

δω

4v
e−β∆Floop

)
= [T ]

2

K1

1

Kid

Jloop

4
, (A.36)

which is the same as in the original model, with [R] replaced by [T ] (which makes sense since only

tetramers can form loops). Similar manipulations can be applied to the rest of the states, yielding

a new partition function of

Z = 1 +
[T ]

K1
+

[T ]

Kid
+

[T ]2

K1Kid
+

[T ]Jloop

2K1Kid
+

[D]

2K1
+

[D]

2Kid
+

[T ][D]

K1Kid
+

[D]2

4K1Kid
(A.37)

= 1 +
2[T ] + [D]

Kid
+

2[T ] + [D]

K1
+

[T ]2 + [T ][D]

K1Kid
+

[T ]Jloop

2K1Kid
+

[D]2

4K1Kid
. (A.38)

Since [D]/2 + [T ] = [R] (Eq. (A.27)),

Z = 1 +
[R]

Kid
+

[R]

K1
+

[R]2

K1Kid
+

[T ]Jloop

2K1Kid
, (A.39)

which is the same as Eq. (2.16) in Chapter 2.

Finally we will use KDT , the equilibrium constant for T ⇔ 2D, to express [T ] in terms of [R]

and KDT . We start with the definition of KDT :

KDT =
[D]2

[T ]
, (A.40)

or

[T ] =
[D]2

KDT
. (A.41)
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Substituting this into Eq. (A.27) yields

[D]

2
+

[D]2

KDT
= [R], (A.42)

which we can solve for [D]:

[D] =
1

4

(
−KDT +

√
K2
DT + 16KDT [R])

)
(A.43)

where the positive root is chosen because [D] must be positive and the discriminant is always positive.

However we want [T ], not [D]; so we again use Eq. (A.27) to say that

[T ] = [R]− [D]

2
= [R]− 1

8

(
−KDT +

√
K2
DT + 16KDT [R])

)
. (A.44)

By substituting this into Eq. (A.39) we obtain our final partition function of

Z = 1 +
[R]

Kid
+

[R]

K1
+

[R]2

K1Kid
+

[R]Jloop

2K1Kid

(
1− 1

8[R]

(
−KDT +

√
K2
DT + 16KDT [R])

))
. (A.45)

Since the looping probability is the weight of the looped state divided by the partition function, we

have our final result that

ploop, dimers =

[R]Jloop
2K1Kid

(
1 + KDT

8[R] −
1

8[R]

√
K2
DT + 16KDT [R])

)
1 + [R]

Kid
+ [R]

K1
+ [R]2

K1Kid
+

[R]Jloop
2K1Kid

(
1 + KDT

8[R] −
1

8[R]

√
K2
DT + 16KDT [R])

)
.

(A.46)

A.3 Dimers due to damaged protein

A mixture of dimeric and tetrameric repressors could be present in a TPM experiment for two

different reasons. The first, already discussed in the previous section, stems from the use of such

low concentrations of repressor that the tetramer-to-dimer dissociation reaction needs to be taken

into consideration. A second case is one in which a fraction of the repressors is damaged in some

way due to the purification, storage, or thawing process, leading to an inability of some repressors
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to form tetramers. This will lead to a fraction of dimers, ν, that is constant with the total repressor

concentration [R]. (As noted in Chapter 2, we could consider a third case, in which a fraction of

monomers that are damaged such that when incorporated into a tetramer they result in a head that

is unable to bind DNA. We will not consider this case here but it is well within the scope of scenarios

that can be captured by the class of models presented here.)

Note that since we assumed in the previous section that the binding of dimers and tetramers to

the DNA did not affect the equilibrium reaction between tetramers and dimers in solution, we can

start with Eq. (A.39), since the derivations for the two cases are the same up to this point.

We will define the concentration of repressors in tetrameric form as

[T ] = (1− ν)[R], (A.47)

where ν is the fraction that are dimers. Again we are considering here the case where the dimeric

fraction is constant with the total concentration. Then because [D]
2 + [T ] = [R], we must define ν as

ν =
[D]

2[R]
, (A.48)

so that [D]/2+[T ] = 2ν[R]/2+(1−ν)[R] = [R]. We can now use this expression for [T ] in Eq. (A.39),

so that when we form the looping probability we obtain

ploop, dimers =

(1−ν)[R]J
2K1Kid

1 + [R]
Kid

+ [R]
K1

+ [R]2

K1Kid
+ (1−ν)[R]J

2K1Kid

. (A.49)

Note that this is the same result we obtained in the previous section, if we use the expression for

[D] in Eq. (A.43) in the definition of ν as [D]
2[R] , except that here ν is a scalar, not a function of [R].
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Appendix B

DNAs

B.1 Constructs containing E8 and 601TA

The E8- and TA-containing constructs discussed in Chapters 3 and 4 are PCR products of plasmids

pZS25’ Oid-E/T(89-116)-O1−45-YFP, where “E/T(89-116)” indicates that the sequence of the loop

is either from the random E8 sequence or the 601TA sequence from [85] and has a length of 89

to 116 bp. The original constructs used in [115] and [120] (lengths 89, 94, and 100 bp) were

constructed by site-directed mutagenesis as described in [115]. Jonathan Widom kindly provided

the E8 and TA sequences used in [85], which are a subset of those used here and from which the

other E8 and TA lengths were derived. QuikChange site-directed mutagenesis (Agilent Technologies)

was used to make the operator changes Oid to O1 and Oid to O2, additional loop lengths, and the

promoter-containing constructs. Linear labeled DNAs used in tethering assays were created by PCR

with primers labeled at the 5’ ends with digoxigenin (forward primers) or biotin (reverse primers)

(Eurofins MWG Operon); a PCR of the pZS25’ plasmids resulted in approximately 450 bp tethers

Name Sequence
O1 AATTGTGAGCGGATAACAATT
O2 GGTTGTTACTCGCTCACATTT
O3 GGCAGTGAGCGCAACGCAATT
Oid AATTGTGAGCGCTCACAATT

Table B.1: Sequences of the three naturally occurring Lac repressor operators O1, O2, and O3, and of the synthetic
Oid (“Oideal”) operator. All sequences are 5´ to 3´ and are from [94]. Note that Oid is perfectly symmetric about its
midpoint, whereas the naturally occurring, weaker operators are only pseudo-symmetric, with O1 being the strongest,
O2 weaker, and O3 the weakest. In this work, the loop is to the 3´ end of the appropriate (Oid/O1/O2) operator
sequence shown here; the O1 that is constant in all constructs (nearest to the bead) has the loop 5´ to the sequence
given here.
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E89:	  	  	  	  GGCCG–––	  –––	  –––GCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGAC	  –––	  –––	  –––	  –––	  –––	  –––	  C	  
E90:	  	  	  	  GGCCG–––	  –––	  ––TGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGAC	  –––	  –––	  –––	  –––	  –––	  –––	  C	  
E91:	  	  	  	  GGCCG–––	  –––	  –CTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGAC	  –––	  –––	  –––	  –––	  –––	  –––	  C	  
E92:	  	  	  	  GGCCG–––	  –––	  –CTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACG––	  –––	  –––	  –––	  –––	  –––	  C	  
E93:	  	  	  	  GGCCG–––	  –––	  –CTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGT–	  –––	  –––	  –––	  –––	  –––	  C	  
E94:	  	  	  	  GGCCG–––	  –––	  –––	  ––TGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCC	  ––	  –––	  –––	  –––	  C	  
E95:	  	  	  	  GGCCGG	  –––––GCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGT–	  –––	  –––	  –––	  –––	  –––	  C	  
E96:	  	  	  	  GGCCG	  ––––AGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGT–	  –––	  –––	  –––	  –––	  –––	  C	  
E97:	  	  	  	  GGCCG	  ––––AGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTC–––	  –––	  –––	  –––	  –––	  C	  
E98:	  	  	  	  GGCCG	  ––––AGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCC––	  –––	  –––	  –––	  –––	  C	  
E99:	  	  	  	  GGCCG	  –––GAGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCC––	  –––	  –––	  –––	  –––	  C	  
E100:	  GGCCG	  –––GAGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCG–	  –––	  –––	  –––	  –––	  C	  
E101:	  	  GGCCG	  –––	  –––	  –––	  GCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCG–––	  –––	  C	  	  
E102:	  GGCCG	  –––	  –––	  –––	  GCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGA––	  –––	  C	  	  
E103:	  GGCCG	  –––	  –––	  –––	  GCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGAC–	  –––	  C	  	  
E104:	  GGCCG	  –––	  –––	  –––	  GCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACG–––	  C	  	  
E105:	  GGCCG	  –––	  –––	  ––TGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACG–––	  C	  
E106:	  GGCCG	  –––	  –––	  –CTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACG–––	  C	  
E107:	  GGCCG	  –––	  –––	  GCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACG–––	  C	  
E108:	  GGCCG	  –––	  ––	  GGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACG–––	  C	  
E109:	  GGCCG	  –––	  –AGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACG–––	  C	  
E116:	  GGCCGGCGGAGGCTGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACGTCCGCCAGCCGACGACGC	  
	  
T89:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  –––	  –GGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGT––	  –––	  –––	  –––	  –––	  C	  
T90:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  –––TGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGT––	  –––	  –––	  –––	  –––	  C	  
T91:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  ––TTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGT––	  –––	  –––	  –––	  –––	  C	  
T92:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  ––TTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC–	  –––	  –––	  –––	  –––	  C	  
T93:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  –––	  –GGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCT–	  –––	  –––	  –––	  C	  
T94:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  –––	  –GGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTA–––	  –––	  –––	  C	  
T95:	  	  	  	  –––	  –––	  –––	  –GGCCG–––	  –ATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTC––	  –––	  –––	  –––	  C	  
T96:	  	  	  	  –––	  –––	  –––	  –GGCCG–––AATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTC––	  –––	  –––	  –––	  C	  
T97:	  	  	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTC––	  –––	  –––	  –––	  C	  
T98:	  	  	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCT–	  –––	  –––	  –––	  C	  
T99:	  	  	  	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTA–––	  –––	  –––	  C	  
T100:	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAG––	  –––	  –––	  C	  
T101:	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGG–	  –––	  –––C	  
T102:	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGC	  –––	  –––C	  
T103:	  	  –––	  –––	  –––	  –GGCCG––TAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCA––	  –––	  C	  
T104:	  	  –––	  –––	  –––	  –GGCCG–TTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCA––	  –––	  C	  
T105:	  	  –––	  –––	  –––	  –GGCCG–TTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCAC–	  –––	  C	  
T106:	  	  –––	  –––	  –––	  –GGCCG–TTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCACG	  –––	  C	  
T107:	  	  –––	  –––	  –––	  –GGCCG–TTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCACGT––	  C	  
T108:	  	  –––	  –––	  –––	  –GGCCG–TTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCACGTG–	  C	  
T109:	  	  –––	  –––	  –––	  –GGCCG–TTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCACGTGTC	  
T116:	  CCGGTGCTAAGGCCGCTTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGGCAC––––C	  
	  
601TA:	  ctggagatacCCGGTGCTAAGGCCGCTTAATTGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTCTCTAGG	  
CACGTGT–aagatatatacatcctgtgcatgta	  

Figure B.1: Sequences of the no-promoter E8 and TA constructs used in this work (Fig. 4.2(A–C)). All sequences
are 5´ to 3´ and are listed such that the Oid operator (or O1 or O2 operator in the case of the E894 sequence) is
immediately 5´ of these sequences, and O1 is immediately 3´. Bolded sequence labels indicate constructs examined
by cyclization in [85], which were incorporated into the pZS25’ plasmid by Hernan Garcia; the rest were designed and
created by Stephanie Johnson. In the top section containing the E8 sequences, dashes indicate bases missing relative
to the 116 bp E8 sequence listed at the bottom of that section. In the bottom section containing the TA sequences,
dashes indicate bases missing relative to the full 154 bp 601TA sequence (provided to us by Jon Widom; see also [86])
listed below the TA sequences; in that 601TA sequence, the dash indicates where a C has been inserted at the end of
all of the TA sequences used in both cyclization [58, 85] and in the looping work presented here. Upper-case letters
in the full 601TA sequence indicate the region from which all TA sequences in this work were derived. The 601TA
sequence is so named because of the TA dinucleotide steps which occur every 10 bp and which are thought to confer
its affinity for nucleosome formation [14]; these TA steps have been highlighted in red. Note that the E8 sequence
also has several TA steps spaced 10 bp apart; however this pattern does not repeat across the entire sequence as it
does in the 601TA sequence, nor does the E8 sequence have other characteristics of the 601TA sequence such as GC
pairs between the TA pairs which are also supposed to be important for its particular properties [14, 52].
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E92:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –CTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E93:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  CCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E94:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  ––GCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E95:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –CGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E96:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  TCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E97:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  ––ATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E101:	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –ATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E103:	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  ––TTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E105:	  ––	  –––	  –––	  –––	  –––	  –––	  –––TTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E114:	  ––	  –––	  –––	  –––	  TAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E115:	  ––	  –––	  –––	  ––GTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E116:	  ––	  –––	  –––	  –CGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E117:	  ––	  –––	  –––	  GCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E118:	  ––	  –––	  ––TGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E119:	  ––	  –––	  –CTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E120:	  ––	  –––	  GCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E121:	  ––	  ––GGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E122:	  ––	  –CGGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E123:	  ––	  CCGGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
E124:	  G–CCGGCTGCGTAGAACTACTTTTATTTATCGCCTCCACGGTGCTGATCCCCTGTGCTGTTGGCCGTGTTATCTCGAGTTAGTACGACC	  
	  
T92:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –ACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T93:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  AACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T94:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  ––AAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T95:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –TAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T96:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  TTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T97:	  	  	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  ––CTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T101:	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  –––	  –ACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T103:	  ––	  –––	  –––	  –––	  –––	  –––	  –––	  ––GCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T105:	  ––	  –––	  –––	  –––	  –––	  –––	  –––TAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T106:	  ––	  –––	  –––	  –––	  –––	  –––	  ––CTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T107:	  ––	  –––	  –––	  –––	  –––	  –––	  –TCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T108:	  ––	  –––	  –––	  –––	  –––	  –––	  CTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T114:	  ––	  –––	  –––	  –––	  AGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T115:	  ––	  –––	  –––	  ––TAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T116:	  ––	  –––	  –––	  –GTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T117:	  ––	  –––	  –––	  CGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T118:	  ––	  –––	  ––	  TCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T119:	  ––	  –––	  –GTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T120:	  ––	  –––GGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T121:	  ––	  ––GGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T122:	  ––	  –CGGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T123:	  ––	  CCGGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  
T124:	  G–CCGGGTCGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCTACCGCGTTTTAACCGCCAATAGGATTACTTACTAGTC	  

Figure B.2: Sequences of the with-promoter E8 and TA constructs used in this work (Fig. 4.2(D–F)). All sequences
are 5´ to 3´ and are listed such that the Oid operator is immediately 5´ of these sequences, and O2 is immediately 3´
(but O2 is the reverse complement of the sequence given in Table B.1). The lacUV5 promoter is to the 3´ end, before
the O2 operator; its sequence is TTTACAATTAATGCTTCCGGCTCGTATAATGTGTGG. As in Fig. B.1, TA steps
have been highlighted in red. Dashes indicated bases missing from the 89 bp no-promoter equivalents shown in the
previous figure.
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PolyA105:*************ACCTTGTATTGTATTTCCTTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGAC–gtgctgatcccctgtgc––*
PolyA106:*************ACCTTGTATTGTATTTCCTTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGAC–gtgctgatcccctgtgct–*
PolyA107:*************ACCTTGTATTGTATTTCCTTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGACggtgctgatcccctgtgct–*
PolyA108:*************ACCTTGTATTGTATTTCCTTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGACggtgctgatcccctgtgctg*
*
PolyA105(prom):*–––*–––*–––*–––*–––*–––*–TTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGAC*
PolyA106(prom):*–––*–––*–––*–––*–––*–––*TTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGAC*
PolyA107(prom):*–––*–––*–––*–––*–––*––CTTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGAC*
PolyA108(prom):*–––*–––*–––*–––*–––*–CCTTTGCGTGATGAAAAAAAAACTGAAAAAGAGAAAAATAAGAAAATCTTCTAGAACGTTCCGAAACAGGAC*
*
*
Figure B.3: Sequences of the poly(dA:dT)-rich sequences used in Chapter 4, which are derived from the nucleosome-
free region of the S. cerevisiae promoter given in Fig. 4E of [149]. This 88 bp poly(dA:dT)-rich sequence is shown in
capital letters, with stretches of more than four consecutive A’s highlighted in green, where we have chosen to define
an A-tract as 4 or more A’s in a row because this is the shortest length that shows special structural properties under
a variety of methods [148]. The top section lists no-promoter sequences; the bottom section, sequences to which the
36 bp lacUV5 promoter was added to the loop as in Fig. B.2. As in that figure and Fig. B.1, the Oid operator is to
the left of all of these sequences, and the O1 operator (for the no-promoter sequences) or the promoter and then O2

(for the with-promoter sequences) to the right. The DNA flanking the loop region are the same as those for the E8
and TA constructs (lengths given in Fig. 1.4). As the poly(dA:dT)-rich region of [149] is only 88 bp, the no-promoter
constructs were padded with a portion of the E8 sequence (which should be a random sequence); these bases are
shown in lower-case letters. Dashes in the no-promoter construct indicate where bases were removed relative to the
108 bp construct. In the with-promoter construct, dashes indicate bases removed relative to the 88 bp sequence from
[149].

(see Fig. 1.4 for flanking DNA lengths). Primer sequences can be found in Table 3 of [115]. The

PCR product was gel purified using a QIAquick Gel Extraction Kit (Qiagen), and the concentration

determined by quantitative gel electrophoresis.

Table B.1 gives the sequences of the three naturally occurring operators of the lac operon and

the strong synthetic operator Oid used in some of the work discussed here. Figures B.1 and B.2

shows the E8 and TA sequences that form the loops in the constructs discussed in Chapters 3 and 4.

All constructs were verified by sequencing (Laragen).

B.2 Constructs containing poly(dA:dT)

The poly(dA:dT)-rich sequence used in Section 4.5 was taken from the top row (the S. cerevisiae

sequence) of Fig. 4E of [149], and ligated into the AatII and EcoRI restriction sites that fall

just outside the operators of the pZS25’ plasmids described in the previous section. The 106 bp

no-promoter and with-promoter sequences given in Fig. B.3, plus the sequences of the relevant

operators (and promoter, if applicable), and the restriction sites were ordered as single-stranded

oligonucleotides from IDT. The oligonucleotides were annealed and then ligated into one of the

pZS25’ plasmids which had been doubly digested with AatII and EcoR1 (NEB) and gel purified.

Successful ligation was confirmed by sequencing (Laragen), and the approximately 450 bp dig- and
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5’#–#GACTGTCCTGGCCGTAACCGACCCAGCGCCCGTTGCACCACAGATGAAACGCCGAGTTAACGCCATCAAAAATAATTCGCGTCTGGCCTTCCTGTAGCCAGCTTTCATCAACATTAAATGTG#
AGCGAGTAACAACCCGTCGGATTCTCCGTGGGAACAAACGGCGGATTGACCGTAATGGGATAGGTCACGTTGGTGTAGATGGGCGCATCGTAACCGTGCATCTGCCAGTTTGAGGGGACGACGA
CAGTATCGGCCTCAGGAAGATCGCACTCCAGCCAGCTTTCCGGCACCGCTTCTGGTGCCGGAAACCAGGCAAAGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGG
GCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATCCGTAATCATGGT
CATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATT↵CCACAC#aacata#CGAGCCGGAAGCATAAAG#tgtaaaGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTG%
CGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCAC#–#3’#
#
#
Figure B.4: Sequence of the region of the lac operon amplified by colony PCR for the three-operator (and derivative
two-operator) constructs in Chapter 6. Note that this sequence is shown such that, as with all the other sequences
in this section, the left-most end of the sequence would be attached to the surface in the TPM assays, and the
right-most end to the bead. This is reversed, however, from the way promoter regions are usually presented, with the
downstream (coding regions) of the gene to the right and the upstream (regulatory) regions to the left (see Fig. 6.1).
Here, transcription would occur right to left, beginning at the arrow next to O1. Colors are the same as in the
schematics of Chapter 6: O1 is shown in purple, O2 in green, and O3 in blue. The -10 and -35 regions where RNA
Polymerase binds are shown in lower-case dark green letters. The CAP binding site is in orange.

biotin-labeled TPM construct created by PCR as described for the E8- and TA-containing constructs

in the previous section. As PCRs often introduce mutations into repetitive sequences (such as these

AT-rich DNAs), the TPM constructs were again confirmed by sequencing (Laragen). Additional

lengths were created via site-directed mutagenesis (Qiagen).

B.3 Constructs derived from the naturally occurring lac operon

The three-operator, wild-type construct used in Chapter 6 was derived from a colony PCR of MG1655

E. coli followed by a second PCR with digoxigenin- and biotin-labeled primers. The colony PCR

consisted of the dilution of a single colony from an overnight growth on an LB plate into 20 µL water;

1 µL of this mixture was then used as the template in a 25 µL PCR reaction performed using an

AccuPrime Pfx SuperMix kit (Invitrogen), with 200 nM of each of the primers “wtLac extract fwd”

and “wtLac extract rev” (Table B.2). The cycling parameters were: 5 minutes initial denaturation

at 95◦ C, and 35 cycles of: 15 seconds denaturation at 95◦ C, 30 seconds annealing at 60◦ C,

and 1 minute extension at 68◦ C. The ∼1 kb product of this colony PCR was purified with a

QIAquick PCR Purification Kit (Qiagen), and 80 ng of this product were used in a second, 50

µL PCR to add the digoxigenin and biotin printers, with 2.5 U Taq DNA Polymerase (Roche), 1x

PCR Reaction Buffer with 15 mM MgCl2 (Roche), 20 µM of each of the “TPM wtLac fwddig” and

“TPM wtLac revbio primers” (Table B.2), and 10 mM each dNTP. The cycling parameters were: 5

minutes initial denaturation at 94◦ C, 10 cycles of: 30 seconds denaturation at 94◦ C, 45 seconds

annealing at 58◦ C, and 1 minute extension at 72◦ C, and a final 10 minute extension at 72◦ C. The
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Primer Name Sequence
wtLac extract fwd CACGGAAAATGCCGCTCATC
wtLac extract rev GGGATACGACGATACCGAAGACAG
TPM wtLac fwddig Dig-GACTGTCCTGGCCGTAACCGACC
TPM wtLac revbio Bio-GTGAAAAGAAAAACCACCCTGGCG
wtLac noO1 rev cgtatgttgtgtggGATTGTTAGCGGAGAAGAATTtcacacaggaaacagc
wtLac noO2 rev cccacggagaatccgacgGGGTGCTATTCATTAACATTCaatgttgatgaaagctggc
wtLac noO3 rev ggtttcccgactggaaagcgAACCTCGAGCTCAACGCAATTaatgtgagttagctcac
wtLac O3toO1 rev ggtttcccgactggaaagcgAATTGTGAGCGGATAACAATTaatgtgagttagctcac

Table B.2: Sequences of the PCR primers used to create the TPM constructs based off of the wild-type, three operator
lac promoter. Mutagenesis primers were obtained from IDT and were based on [94, 93]; bases that form the operators
are shown in capital letters, with bold indicating mutated bases (compare Table B.1). Dig- and bio-labeled primers
were obtained from MWG Biotech. All sequences are 5´ to 3´. Only reverse primers are needed for the megaprimier
mutagenesis that was used to eliminate operators and change O3 to O1.

735 bp resulting PCR product was gel purified as described above for the E8- and TA-containing

constructs. Its sequence is shown in Fig. B.4.

The region of the E. coli genome containing the three Lac operators is difficult to clone (K.

Matthews, personal communication), so the additional two-operator constructs discussed in Chap-

ter 6 derived from the wild-type operon were created through a process called megaprimer mutagen-

esis [183, 184, 185, 186, 187], which, unlike site-directed mutagenesis, does not require the insertion

of the DNA to be modified into a plasmid. The standard megaprimer mutagenesis method was mod-

ified such that the final product was dig- and bio-end-labeled as necessary for TPM. The megaprimer

method consists of two PCR reactions.1 The first reaction uses a forward primer (digoxigenein la-

beled in our case) that anneals to one end of the template to be mutated, and another primer that

anneals to the middle of the template and that carries the mutation to be introduced. This first PCR

creates a double-stranded “megaprimer” identical to roughly half of the template, except where the

mutation has been introduced. The second PCR then involves this double-stranded “megaprimer”,

purified by gel extraction, the original template, and a reverse primer that anneals to the opposite

end of the original template (biotin labeled). Only one strand of the mutation-carrying megaprimer

can be used for extension, thus the dominant product of this second PCR is a double-stranded

DNA molecule of the same length as the original product but containing the desired mutation in

1Ling and Robinson [183] as well as others have proposed “one-tube” or “one-step” megaprimer procedures that
greatly expedite the process, mostly by eliminating the megaprimer purification step. However since the single-
molecule TPM assay is very sensitive to even small amounts of contaminants, the original method was used to ensure
the minimal amount of original, unmutated template would be present in the TPM sample.
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the middle. Both PCRs were performed in 50 µL reactions in the presence of 2.5 U of PfuUltra

Hotstart DNA Polymerase (Stratagene). The first reaction amplified 5 ng DNA and contained 0.2

mM each dNTP (Stratagene), 125 ng each “TPM wtLac fwddig” and the mutation-carrying primer

(Table B.2), and 1x PfuUltra HF buffer (Stratagene). Cycling parameters were: 95◦C 30 seconds,

and 30 cycles of: 95◦C 30 seconds, 55◦C 1 minute, 68◦C 1 minute. The second reaction again

amplified 5 ng of the original template and contained the same amounts of dNTPs and buffer;

however, the primers for this reaction were 156 ng “TPM wtLac revbio” and 20 µL (≈ 240 ng) of

the “megaprimer” generated by the first PCR. Cycling parameters were: 94◦C 3 minutes, 94◦C 2

minutes, 60◦C 2 minutes, 66◦C 2 minutes, 72◦C 6 minutes, and 30 cycles of: 94◦C 30 seconds, 58◦C

30 seconds, 72◦C 50 seconds. The final product was gel extracted and sequenced (Laragen), and the

concentration determined by quantitative gel electrophoresis.
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Appendix C

Lac repressor purification

As discussed in Section 3.1.1, we obtained reproducible TPM results only with Lac repressor purified

in-house. Our purification protocol was modified from one received from the Kathy Matthews lab

in May 2009, similar to that described in [188]. Plasmid pJC1 containing the gene for wild-type,

tetrameric LacI was transformed into E. coli lacI− BLIM cells (both cells and plasmid were kind gifts

from the Matthews lab). Cultures were propagated in successively larger LB cultures supplemented

with 0.05 µg/mL ampicillin for either one or two days, after which they were grown in 3 L 2x YT

medium (16 g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl) with ampicillin for 20–24 hours at

37oC with shaking. The cells were collected by centrifugation, resuspended in ∼45 mL cold Breaking

Buffer (0.2 M Tris-HCl, pH 7.6, 0.2 M KCl, 0.01 M magnesium acetate, 5% (w/v) glucose, 0.3 mM

DTT, and 50µg/L PMSF), supplemented with 0.5 mg/mL lysozyme (Sigma), and frozen at -20oC

for at least 12 hours.

The cells were slowly thawed on ice, then cold Breaking Buffer with fresh DTT but without

PMSF was added until the total volume of the cells was ∼75 mL. 120 µL DNaseI (Sigma), at 2000

Kunitz units/mL in 0.15 M NaCl, and 3 mL 1 M MgCl2 were added to the thawed cells, which

were allowed to sit on ice for ∼1 hour. Cell debris was pelleted by centrifugation at 14,784 rcf for

45 minutes at 4oC, then ammonium sulfate was slowly added to the supernatant at 4o to a final

level of 37% saturation to precipitate the protein. After 1 hour, the precipitate was collected by

centrifugation at 7700 rcf for 40 minutes at 4oC, and the pellet resuspended in 20 mL cold 0.09 M

KP buffer (0.09 M potassium phosphate, pH 7.5–7.6, obtained from 0.015 M monobasic potassium
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phosphate and 0.075 M dibasic potassium phosphate, 5 % (w/v) glucose, 0.3 mM DTT). The protein

was dialyzed in a Spectra/Por RC membrane with MWCO 12-14,000 (Spectrum Labs) against 2 L

0.09 M KP buffer for ∼4 hours at 4oC, then against a fresh 2 L of 0.09 M KP buffer overnight, then

against 1 L fresh 0.09 M KP buffer for several hours the following morning.

The dialysate was spun at 7700 rcf for 30 minutes at 4oC and the supernatant purified over a

phosphocellulose (Whatman P-11 Phosphocellulose) gravity-flow column equilibrated with 0.09 M

KP buffer. The phosphocellulose had been charged by first suspending 12.5 g phosphocellulose in

750 mL water, letting the resin settle, pouring off the supernatant, and repeating for a total of 6

washes. The resin was then resuspended in 750 mL 0.5 M NaOH, incubated at room temperature

for 5 minutes, then washed with ddH2O in a Buchner funnel with Whatman #541 filter paper until

the pH reached neutral. The resin was then suspended in 750 mL 0.5 M HCl, incubated for 5

minutes, and washed with water until the pH reached that of the water (pH ∼5). Finally the resin

was suspended in ∼300 mL 0.09 M KP buffer without DTT, allowed to settle for 10–20 minutes,

washed in the Buchner funnel with 0.09 M KP buffer until the pH of the resin was that of the 0.09

M KP (pH 7.5), resuspended in 125 mL 0.09 M KP buffer without DTT, and stored at 4oC.

After the dialysate supernatant had been loaded onto the phosphocellulose column and washed

with 0.09 M KP buffer to re-establish the baseline, loosely bound proteins were washed off the

column with 0.12 M KP buffer (0.12 M potassium phosphate, pH 7.5–7.6, obtained from 0.02 M

monobasic potassium phosphate plus 0.1 M dibasic potassium phosphate, 5% (w/v) glucose, 0.3 mM

DTT) until the baseline was re-established, and then LacI was eluted from the column with a 140

mL linear gradient formed from equal amounts of 0.12 M KP buffer and 0.3 M KP buffer (0.3 M

potassium phosphate, pH 7.5–7.6, obtained from 0.05 M monobasic potassium phosphate plus 0.25

M dibasic potassium phosphate, 5% (w/v) glucose, 0.3 mM DTT). 5 mL fractions were collected;

LacI eluted over ∼10–15 fractions around 0.18 M KP, with the peak concentration between 1 and

2 mg/mL, using a monomer extinction coefficient of 0.6 (mg/mL)−1cm−1 [189]. The protein was

≥99% pure by SDS-PAGE. In one case some repressor was also purified over a Superdex 200 10/300

GL size-exclusion column (GE Healthcare) using an AKTA system and eluted as a single peak at a
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molecular weight corresponding to the expected weight of a LacI tetramer. 5.5–6 µL aliquots were

made from the peak fraction(s) and stored immediately at -80oC. Once removed from -80oC LacI

aliquots were stored at -20oC for not more than two weeks and were thawed not more than 3 times

in total.
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Appendix D

Tethered particle motion: Methods

D.1 TPM sample preparation

D.1.1 Method summary

The DNA tethering protocol used for this work was essentially that of [115], with the following

modifications (a full detailed protocol follows below): (1) 0.2% Tween-20 (Sigma) was added to

the PTC buffer (called “TBP” in [115]) that some batches of beads were washed in, to reduce

aggregation and nonspecific binding. (2) Unless otherwise indicated, the beads used in this work

were 0.49-µm-diameter, streptavidin-coated polystyrene beads (Bangs) at 1.5 × 1011 beads per mL

and with a binding capacity of 1.14 or 1.8 µg biotin-FITC/mg microspheres. For some controls in

Chapter 3, 0.27-µm-diameter beads from Indicia Biotechnology, at 9.24 ×1011 per mL, were used

instead.

D.1.2 Detailed protocol

A 1.55 mm, plated-diamond flat-tip drill bit (CRLaurence) was used to drill either two or four holes

in a glass microscope slide. Slides and 24x60 mm No. 1.5 coverslips were plasma cleaned on high for

2 minutes, after which 0.02 in. ID/0.06 in. OD tygon microbore tubing (Cole-Parmer) was threaded

through the holes in the slides and epoxied to the slides. One or two rounded-edge rectangles were

cut out of 0.12-mm-thick double-sided tape (Grace Bio-Labs) and secured to the slide. Two-chamber

slides formed this way had the chambers parallel to each other along the long axis. The chambers
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were sealed with a coverslip and heated for about 30 seconds at 130oC to firmly adhere the tape to

the glass. Flow chambers were prepared not more than 1 day in advance for optimal tether density.

To construct tethers, 50 µL of 20 µg/mL polyclonal anti-digoxigenin from sheep (Roche) in

MgCl2- and CaCl2-free Dulbecco’s PBS (Sigma) were flowed into a chamber and incubated at room

temperature for 25 minutes. The chamber was then washed with 750 µL of PTC buffer (20 mM Tris-

acetate, pH 8.0, 130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA, 20 µg/mL acetylated BSA

[Sigma], and 80 µg/mL heparin sodium salt [Sigma]), and then with 750 µL of PTC supplemented

with 3 mg/mL biotin-free casein (RDI-Fitzgerald). DTT was added fresh each day to all buffers

used that day, from a 0.1 µM stock in Tris-EDTA, pH 7.4 made that day. 250 µL of approximately

1 pM DNA in PTC with 3 mg/mL casein were then flowed into the chamber and incubated for 1

hour. DNA concentration was optimized empirically for each construct to maximize tether density

while not creating substantial amounts of multiple tethers.

The beads to be added to the slides were first washed to exchange the storage buffer and to

remove any free streptavidin. Unless otherwise indicated, the beads used in this work were 0.49-

µm-diameter, streptavidin-coated polystyrene beads (Bangs) at 1.5x1011 beads per mL and with

a binding capacity of 1.14 or 1.8 µg biotin-FITC/mg microspheres. Where indicated, 0.27-µm-

diameter beads from Indicia Biotechnology, at 9.24x1011 per mL, were used. To wash the beads, 6

µL of the 0.49-µm-diameter beads or 12–24 µL of the 0.27-µm-diameter beads were first diluted to 30

µL in PTC with 3 mg/mL casein. Some lots of the 0.49 µm beads had improved performance when

0.2 % (v/v) Tween-20 (Sigma) was added to the wash buffer. The beads were centrifuged for 3 (0.49

µm) or 5 (0.27 µm) minutes to pellet the beads, resuspended in PTC with 3 mg/mL casein (and

Tween-20 when needed), and centrifuged again for a total of 3 spins. The final resuspension was in

50 µL PTC with 3 mg/mL casein (and Tween-20 when needed) for the 0.49 µm beads, and 30 mL

for the 0.27 µm beads. After the DNA incubation, excess DNA was removed from the chamber by

washing with 750 µL PTC with 3 mg/mL casein, and then all 50 or 30 µL of beads were introduced

into the chamber and incubated for 20 minutes. Excess beads were removed by washing with 500

µL PTC with 3 mg/mL casein.
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Immediately prior to the start of the data acquisition, chambers were washed with 500 µL of LRB

buffer (10 mM Tris-HCl, pH 7.4, 200 mM KCl, 0.1 mM EDTA, 0.2 mM DTT, 5% [v/v] DMSO, and 1

mg/mL casein). All dilutions of the protein stock were into LRB. After an initial 500 seconds of data

were obtained in the absence of protein, as described below, LacI at the desired concentration was

then flowed into the chamber, and beads were tracked for about 1.5 hours. All data were obtained

at 22–24 oC.

D.2 TPM data acquisition and analysis

D.2.1 Acquiring data

Data acquisition essentially followed that of [115], with the following modifications: (1) Tethers

were imaged using brightfield microscopy, instead of differential interference contrast (the results

are equivalent), on inverted Olympus IX71 microscopes with either a 100x oil objective (as in [115]),

or a 60x oil objective with a 1.6x magnifier (again the results are equivalent). (2) A Basler A602f

camera was used to acquire images at a native frame rate of 60 frames per second; however for

consistency with previous results [115], every other frame was dropped for a final frame rate of 30

fps but an exposure time of 10 ms per frame. (3) Improvements to the speed of the acquisition code

that allowed up to 45 beads to be tracked at once, which corresponds to the maximal tether density

obtainable in the field of view of the camera without a significant number of multiply tethered

particles. (4) In addition to the symmetry-of-motion and length-of-motion checks that were used

as initial screens for acceptable tethers in [115], data were first acquired for 500 seconds in the

LRB buffer but in the absence of protein, in order to characterize each tether in the unlooped

state. Not only does this allow a more rigorous screening of tethers for anomalous behavior (e.g.,

unphysically short or long lengths, non-uniformity of tether length over time) but it also records

the unlooped length of each individual bead, which allows easier identification of looped states,

especially in DNAs with short loops that have high looping probabilities. This must be done on

a tether-by-tether basis due to the significant variability of tether lengths that we see, and allows
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us to observe small differences in tether length in the presence versus absence of looping, which we

attribute to operator bending (see Section 4.A.1).

D.2.2 Particle tracking and calculation of the root-mean-squared motion

of the bead

As in [115], beads were tracked with custom Matlab code by cross-correlating each frame with the

initial frame in a time series on a bead-by-bead basis. This results in “raw” x and y positions of

each bead, relative to the tethering point, as a function of time. Drift was removed from these raw

data as in [115], by subtracting the results of a low-pass first-order Butterworth filter with a cutoff

frequency fcB = 0.05 Hz for the 0.49 µm beads or fcB = 0.07 Hz for the 0.27 µm beads. The

root-mean-square motion was obtained by applying a Gaussian filter with a -3 dB frequency of fcG

= 0.0326 Hz for the 0.49 µm beads or fcG = 0.461 Hz for the 0.27 µm beads, corresponding to a 4

second or 2.8 second standard deviation of the filter, to the mean-squared displacement of the data

(that is, to the quantity (~x2 + ~y2)). The root-mean-squared (RMS) motion of the bead is then the

square root of the result of the convolution of (~x2 + ~y2) and the Gaussian filter.

More precisely, filters were applied in Fourier space (so that convolutions become simple mul-

tiplication). This means for both the drift-correction and the Gaussian filter smoothing, we first

Fourier transformed the data (which in the case of the Butterworth, applied separately to the x and

y position coordinates, means we Fourier transformed the raw ~x and ~y position data; whereas the

Gaussian filter is applied to the transform of (~x2 + ~y2)), multiplied by the appropriate filter, and

then inverse Fourier transformed the result. In frequency space the Butterworth filter takes the form

B(f) =
1

(1 + (f/cfB)2n)
, (D.1)

where f is frequency, n = 1 so that this is a first-order filter (which determines the sharpness of the

transition at the cutoff frequency), and cfB is a rescaled cutoff frequency of the filter based on how

we define our frequency axis. We choose to establish our frequency axis from −num. frames/2 to
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+num. frames/2, where “num. frames” is the number of image frames in a trajectory. If we want a

cutoff frequency for the filter at fcB = 0.05 Hz, then we must define

cfB =
num. frames

fps× f−1
c

, (D.2)

where fps is the frame rate of the camera (30 Hz in our case). This is essentially a unit conversion,

since our frequency axis is unitless but fc is in Hz. Note that now the units work out, because

the Matlab command that Fourier transforms the data (the fft function) returns a vector the same

length as the input vector, in frequencies from 0 to fps/2.

In the case of the Gaussian filter, the filter has the form in Fourier space of

G(f) = e−0.3466(f/cfG)2 . (D.3)

The factor of 0.3466 in the exponent is chosen to give 3 dB of attenuation at the cutoff frequency

[158]. That is, when f = cfG, the attenuation is half (3 dB corresponds to a change in power ratio of

a factor of 2). For this to be the case, we must have a pre factor in the exponent of ln 2/2 = 0.3466.

As with the Butterworth filter, here we also have the problem of needing a unit conversion between

fcG, which is in Hz, and cfG. This conversion is the same as in Eq. (D.2) because we define the f

axis for the Gaussian filter in the same manner as for the Butterworth.

Finally we note that the Fourier transform of a Gaussian is a Gaussian, so in time space the

Gaussian filter defined in Eq. (D.3) becomes

g(t) =
1√

2πσg
e
− t2

2σ2g , (D.4)

where σg defines the width of the filter and is related to fcG by [158, 120]

σg =

√
ln 2

2πfcG
. (D.5)
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Therefore the 0.0326 Hz Gaussian filter we apply to most of our data corresponds to a Gaussian-

shaped smoothing profile with a 4 second standard deviation in time space, and the 0.461 Hz filter

applied to the smaller beads results in a 2.8 second smoothing window. The choice of σg is directly

related to the temporal resolution of our analysis, as discussed in Section 5.A.2.

D.2.3 Determining the looping probability for each trajectory

For the constructs of Chapter 3 and Fig. 4.1(D–E) in Chapter 4 (the constructs with 94 bp loops,

which have primarily only the “middle” looped state; or in Chapter 3, the PUC306 construct),

data for each tether were histogrammed separately and fit to one (all looped or unlooped), two

(unlooped and one looped state), or three (two looped states and an unlooped state) Gaussians.

The looping probability was determined as the area under Gaussian(s) corresponding to the looped

state(s) divided by the sum of the areas under all the Gaussians. This was done on a tether-by-tether

basis and the mean looping probabilities and standard errors on these means for a population of

tethers were reported.

However, for the predominantly three-state DNAs in Fig. 4.1(F), Fig. 4.2, Fig. 4.4, and Chapter 6

(excluding the three-operator constructs), the two looped states were often not well described by

Gaussians (see Figs. E.1 and E.2 for examples). We therefore investigated a thresholding approach to

calculating each bead’s looping probability [158, 113, 109, 104, 111]. Threshholding was performed

subsequent to the Gaussian-fitting method described above. The intersection points of the fitted

Gaussians were used to identify initial threshold values, which were adjusted manually as needed,

such that the thresholds split the trajectories into the unlooped state and any looped state(s). A

threshold above which data were excluded was set to the mean RMS of the tether in the absence

of repressor plus three times the standard deviation of the no-repressor RMS; data above this point

were usually due to tracking errors or free beads in solution temporarily entering the field of view.

An empirically determined lower bound was set at 80 nm to exclude sticking events. The looping

probability was then determined as the number of data points between the thresholds that delineated

looped state(s), divided by the total number of points in the trajectory below the topmost threshold
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and above the sticking-state threshold. For traces with well-separated and well-populated states, the

looping probabilities calculated by this thresholding method were comparable to those calculated

by the Gaussian fitting method; where they differed, we believe the thresholding method to better

represent the behavior of the trajectory. Therefore all looping probabilities for the constructs in

Fig. 4.1(F), Fig. 4.2, Fig. 4.4, and Chapter 6 were obtained by this thresholding method. As with

the Gaussian fitting approach, where this thresholding method was used, it was done on a tether-by-

tether basis and the mean looping probabilities and standard errors on these means for a population

of tethers were reported.

D.2.4 Minimum number of trajectories and minimum observation time

In order to make our measurements of dissociation constants and J-factors as precise as possible,

we considered how many trajectories needed to be included in each population mean looping prob-

ability, and how long each trajectory needed to be, in order to obtain reproducible mean looping

probabilities. We will briefly summarize our methods and conclusions here.

The minimum number of trajectories needed to measure the mean looping probability of a

population of tethers under a given set of conditions depends both on intrinsic tether-to-tether

variation in looping probability, and on the minimum observation time discussed below. With

regards to the latter: consider, for example, a case where it takes 2000 seconds to obtain an accurate

measure of a tether’s looping probability. Only 20 trajectories may be needed to sample the intrinsic

spread in looping probabilities in a population of tethers; but if trajectories that only last 1000

seconds are also included, those trajectories will increase the spread of the data and more than 20

tethers will be needed to accurately measure the mean.

Our approach to choosing a minimum number of trajectories is depicted in Figure D.1. After

histogramming the set of looping probabilities for a population of tethers under certain conditions of

repressor concentration, etc. (Fig. D.1(A)), we chose, with replacement, progressively larger subsets

of these looping probabilities and recalculated the mean looping probability and the standard error

of this mean, repeating this procedure 104 times per subset size (Fig. D.1(B,C)). If very few tethers
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Figure D.1: Distribution of looping probabilities obtained with Oid-E894-O1 at 10 pM repressor, as representative of
the issues discussed in Sections D.2.4 and D.2.5. (A) Histogram of looping probabilities of all trajectories that lasted
at least 3000 seconds, normalized by the total number of tethers included in the distribution. Black vertical dashed
line is the mean of the distribution; solid black vertical line is the mean not including tethers that have zero looping
probability (the “nonloopers” discussed in Section D.2.5). (B) Mean looping probability as a function of the number
of tethers included in the mean, resampled with replacement 104 times per number included (that is, there are 104

blue points per x-value). Solid horizontal black line is the mean of the distribution that includes all 39 tethers in the
distribution in (A) (so it is the same as the vertical dashed line in (A)); dashed lines here indicate the mean plus
or minus the standard error of the distribution with all tethers. (C) Standard errors of the resampled distributions
whose means are plotted in (B); that is, there is a red “x” for every blue circle. Horizontal dashed line indicates the
standard error with all tethers included; green curve is the standard deviation of the 104 blue points at each x-value
tested (so it is a measure of the vertical spread of the blue points in (B)).

are used to calculate the mean, the mean fluctuates wildly between resamplings (indicated by the

vertical spread in the blue points); but as the number of tethers included in the mean surpasses 20,

the spread in the blue points remains constant, suggesting we need about 25 beads to accurately

calculate the true mean. Similarly, as the number of trajectories included exceeds 20–25, the standard

error of the distribution decreases until it reaches a constant value, which is the error associated

with intrinsic tether-to-tether variation in looping probability and will not decrease with more data.

We found this number of 20–25 tethers to be consistent across repressor concentrations and DNA

constructs, and so all reported means and standard errors in this work are obtained from sample

sizes of at least 20 tethers.

As mentioned above, we asked not only how many trajectories were needed, but also how long

each trajectory needed to be in order to be included in the analysis. As discussed in the next

section, we considered several schemes for calculating the mean looping probability for a population

of tethers. Most of these methods, and the analysis in [115], involved weighting each tether’s looping

probability equally in the calculation of the population mean (the other strategy, discussed below,

is to weight each tether’s looping probability by the observation time). For the schemes in which

each tether was weighted equally, it is important to include in the population mean only those that
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Figure D.2: Looping probability and observation time, method one. Means and standard errors of looping probability
distributions as a function of minimum observation time for (A) Oid-E894-O1 and (B) Oid-TA94-O1. The legends
indicate the minimum observation time for a bead to be included in the corresponding data point; for example, “>1000
seconds” means all trajectories at least 1000 seconds long. For the majority of these points it does not matter how
strict the minimum observation time is—all of the means are within error of each other at all concentrations. Note
that these data have not had “nonloopers” subtracted (Section D.2.5).

have been observed long enough to obtain an accurate measure of their looping probability.

We took two approaches to analyzing the minimum observation time. The first is analogous to

the approach used to determine the minimum number of trajectories: the mean and standard error

for sets of looping probabilities with successively stricter minimum observation requirements were

calculated, to determine at what cutoff the mean and standard error of the distributions converges

to a constant (Fig. D.2). We found these calculated means and standard errors to be surprisingly

insensitive to minimum observation time, except at very low repressor concentrations where looping

events are rare. We therefore considered a second approach, in which we considered each tether’s

trajectory individually, and asked how its individual mean looping probability varied as data were

removed from the end of the trajectory (Fig. D.3). Here again we found the looping probabilities for

individual tethers to be surprisingly insensitive to observation time; where they did vary, an ideal

minimal observation time (above which a tether’s looping probability generally remained constant)

was about 3000 seconds. Therefore all tethers included in the analyses in this work lasted at least

3000 seconds.
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Figure D.3: Looping probability and observation time, method two. The looping probabilities of individual beads
are shown as a function of how much of the trace is included in calculating the looping probability, for Oid-E894-O1
at (A) 500 fM LacI and (B) 500 pM LacI. Each blue line corresponds to a different bead. Each bead’s looping
probability was calculated by Gaussian fitting (Section D.2.3) including successively more 500 second intervals of its
total trajectory, starting at 1000 seconds, then 1500, etc., until the bead breaks (blue points). Solid red line is the
mean of all the beads’ looping probabilities at each time interval; dashed lines are the mean plus or minus the standard
error. Note that in neither (A) nor (B) does the mean include more than 20 beads past about 5500 seconds, and is
therefore unreliable past this point as an accurate estimate of the true looping probability (see previous section). Note
also that to eliminate user oversight, the Gaussian fit parameters for each bead’s total trajectory were used as the
starting point to this analysis, and at each other time point, only the amplitude of the Gaussian fit to each (looped
or unlooped) state, not the mean value or the width, was refit; therefore in a small number of cases the re-fitting was
suboptimal and the looping probability should be considered an estimate in all cases. There is no clear minimum
observation time after which each bead’s looping probability remains constant, though it is clear that 1000–2000
seconds is too short a minimum, and it is also clear that lower repressor concentrations (e.g., (A)) require longer
observation times before the majority of beads’ looping probabilities cease to change dramatically. Note that the red
line, the mean looping probability over all beads, remains roughly constant, even at 1000–2000 seconds.

D.2.5 Calculating the average looping probability for a set of trajectories

The histogram of looping probabilities in Fig. D.1(A) illustrates an aspect of our data that is

not captured by the simple mean and standard error of a distribution, namely, the clustering of

the looping probabilities of most trajectories around a single peak but a substantial fraction of

trajectories that have zero looping probability. We see this bi-modal behavior, with a fraction

of trajectories with no looping activity, at all concentrations where the rest of the distribution is

sufficiently nonzero, for all DNAs derived from the low-copy pZS25 plasmid used in this work (that

is, E8 and TA of all lengths and with various operators). However we do not see this nonlooping

population with DNAs derived from the high-copy pUC19 plasmid used in [115] and discussed

in Section 3.1.2. Moreover we observe the same fraction of these “nonloopers” with the different

repressors batches discussed in Section 3.1.1 in Chapter 3. We therefore suspect that these nonloopers
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are caused by multiple DNAs tethering one bead, defects in a DNA tether, or some other DNA-

specific factor.

As a result, we investigated several methods of describing the average behavior of the distribution

of looping probabilities that involved different ways of handling the nonlooper population. If we

assume the nonloopers to be DNA-specific but concentration independent, then for the concentration

titrations of Fig. 4.1(D–F), we can calculate the average number of nonloopers at concentrations

where most trajectories have significantly nonzero looping probabilities, and subtract this average

fraction from the distributions at all concentrations. The problem with this method is the relatively

small number of concentrations at which the nonloopers are sufficiently well separated from the rest

of the distribution from which to calculate the average. We found a more robust method to be to

remove all trajectories with zero looping probability for those samples where the nonloopers were well

separated from the rest of the distribution; and then to use the average number of these nonloopers

(about 10% for most constructs) for distributions with significant weight near zero. We find that

subtracting nonloopers using this second approach results in a mean parameter that best represents

the distribution of looping probabilities; and, moreover, it results in fitted operator dissociation

constants that agree well with values found in the literature—while including nonloopers does not

(see Table D.1). Therefore this second method was used for all data reported in this work. (We

note here two cases in which the approach had to be modified: first, in the case of O2-E894-O1, no

concentration resulted in a mean looping probability significantly above zero to completely separate

the nonloopers. We therefore calculated the average fraction of nonloopers between 50 pM and 500

pM, where the zero bin was clearly in the tail of the distribution, and subtracted this average from

all concentrations. Second, for the length series shown in Fig. 4.2 in Chapter 4, where we do not

have multiple concentrations for each construct, we applied the same approach but as a function of

loop length: all nonloopers were subtracted from those lengths with clearly separated nonloopers,

and an average number derived from these clear cases were subtracted from the rest.)

We note here an alternate approach to calculating the population mean (applicable when non-

loopers have been kept or excluded): weighting each tether’s looping probability by the amount of
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time it was observed, so that longer trajectories contribute more to the calculation of the mean,

and to calculate the errors on each mean by bootstrapping the distribution (similar to the process

described in Section D.2.7 below). If all tethers are drawn from the same population, that is, if

all tethers behave the same way, then observing many tethers for shorter amounts of time should

be equivalent to observing only a few tethers for longer times. This method could be particularly

relevant at low repressor concentrations, which may require very long observation times to measure

the equilibrium looping probability due to the limiting amount of repressor. However, we found that

weighting by observation time, versus weighting all tethers equally, has no statistically significant

effect on the calculation of the mean.

D.2.6 Fitting concentration curves

One of the assumptions behind Eq. (2.1) is that binding and looping are independent, i.e., that

the binding constants do not depend on the DNA outside the operator sites, and that the looping

J-factor does not depend on the operator sites. Hence, we should be able to model all our data for

the TA and E8 sequences with three binding constants, K1, K2, and Kid, and two J-factors, Jloop,TA

and Jloop,E8.

To see that this is indeed possible, we fit Eq. (2.1) to looping data in two different ways. “Indi-

vidual fits” involved independent parameters for each data set (we only used one binding constant

if both operator sequences were the same), while “global fits” involved fitting several data sets si-

multaneously with the five parameters mentioned in the previous paragraph. That is, an individual

fit to Oid-E894-O1 had three free parameters, Kid, K1, and Jloop, E8; but a global fit to the three

E8-containing data sets has only four, because it requires that all three data sets be fit with the

same J-factors and the same K1, reflecting the reality of the DNA constructs.

Fitting was performed in Matlab using custom routines with a weighted nonlinear least-squares
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method,1 which means that we minimized

χ2 = min
θ

n∑
k=1

(
ploop,k − pk(θ)

σk

)2

(D.6)

with respect to the free parameters θ (which would include dissociation constants and J-factors). In

Eq. (D.6), n is the number of data points to fit (i.e., concentrations and, in the case of the global

fits, DNAs as well), ploop,k is the mean looping probability for one DNA at one concentration, σk is

the standard error of ploop,k, and pk(θ) is the theoretical prediction (using Eq. (2.1)) for data point

k.

Fig. D.4 shows the results of individual versus global fits for all of the constructs in Fig. 4.1(D–E)

in Chapter 4. Fit parameters, plus or minus the standard errors described in the next paragraph,

are given in Table D.1. The difference in looping probability titration curves from the individual

and global fits are within the experimental uncertainty almost everywhere, which indicates that the

different data sets are indeed consistent with a single set of parameters.

We estimated the standard errors of the fit parameters using a bootstrap method [190], in which

we constructed 104 resampled data sets (with replacement) at each concentration, computed the

mean and standard error of the looping probability for each of these resampled sets, and redid both

the individual and the global fits for each set. We then estimated the standard error of the fit

parameters by the standard deviation of the bootstrap parameters.

As noted in Chapter 4, we privilege the global fits over the individual fits, for several reasons:

they better reflect the physical reality of the DNA constructs, they better constrain the parameter

values in many cases, and they match more closely with values in the literature obtained through

traditional bulk biochemical assays (see Table D.1). For similar reasons, we consider the subtraction

of some fraction of nonloopers to be justified; as noted in the previous section, we suspect these

nonloopers to be experimental artifacts derived from the DNAs.

The Oid-E107-O1 concentration curve shown in Fig. 4.1(F) in Chapter 4 was fit separately from

the other concentration curves, assuming the values of Kid and K1 obtained from the global fit to

1Thanks to Martin Lindén for help developing these fitting routines and the bootstrapping error method.
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Figure D.4: Comparison of individual and global fits to E894 and TA94 data, and of the effect of excluding some
fraction of “nonloopers” (see Section D.2.5). (A) Looping probabilities and individual and global fits for all data
(that is, nonloopers included) for the constructs shown in Fig. 4.1(D–E) in Chapter 4. (B) Same as (A), but with
some nonloopers excluded, according to the scheme (see Section D.2.5 for details) where all nonloopers were discarded
for concentrations where they are clearly separated from the rest of the distribution, and a constant fraction of
nonloopers were discarded for the other concentrations. The data in this panel are the same as in Fig. 4.1(D) and
(E) in Chapter 4. In (A) and (B) here, the dotted lines represent individual fits to the data set of the corresponding
color; the dashed lines correspond to a global fit with the three E8 data sets only; and the solid lines to a global fit
to all 4 data sets simultaneously. Fit parameters are given in Table D.1. For all data sets aside from Oid-E894-O1,
the global fits with and without the TA data are essentially indistinguishable from the individual fits. (C) Ratio of
J-factors as a function of concentration including nonloopers, shown for completeness with Fig. D.5(A) below. See
the caption of that figure for details.

the three E894 data sets and the TA94 data set (minus nonloopers). The looping probabilities for

the two looped states were fit simultaneously, like the global fits above, but to Eqs. (2.9) and (2.10)

in Section 2.2, assuming the two looped states have the same Kd’s and differ only in J-factor. The

errors were computed according to a similar bootstrapping method as that used above: data at each

concentration were resampled with replacement 104 times, and then the 104 Kd’s obtained from the

global fits to the other concentration curves were used to refit the 104 new Oid-E107-O1 data sets.

As above, we estimated the standard error of the fitted J-factors for the two states by the standard

deviation of the bootstrap parameters.

D.2.7 Calculating J-factors without concentration curves for each con-

struct

This section describes the use of the theoretical results presented in Section 2.7 above to calculate

absolute J-factors for the DNAs in the length series presented in Fig. 4.2(C) in Chapter 4. First,

however, the validity of Eq. (2.29) was examined by using it to calculate a ratio of J-factors as a

function of concentration for the Oid-E894-O1 and Oid-TA94-O1 data in Fig. 4.1(E) in Chapter 4. If
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Figure D.5: Relative J-factors and the J-factors for the two looped states, with and without promoter. (A) Ratio of J-
factors for the Oid-TA94-O1 and Oid-E894-O1 data shown in Fig. 4.1(E) in Chapter 4, as a function of concentration,
calculated from Eq. (2.29); the errors are bootstrapped as described in the text here. The solid horizontal line
corresponds to the ratio of J-factors obtained from the global fit to the concentration titrations in Fig 4.1(E) (that
is, the ratio of the Jloop,TA to the Jloop,E8 given in row six of Table 4.1 in Chapter 4); the dashed lines are this ratio
plus or minus a bootstrapped error, described in the text here. Note that it is necessary if Eq. (2.29) is to hold that
the ratio of J ’s is constant across all concentrations: that is, it does not matter at what concentration we measure the
looping probabilities for the two sequences, we will still obtain the same ratio of J-factors. It is clear, however, that
some concentrations are better choices than others—for example, where both constructs show looping probabilities
not too close to 0 or 1. (B) J-factors for the two looped states separately for the no-promoter constructs shown in
Fig. 4.2(A–C) in Chapter 4. Because of the results in (A) here, we can use Eq. (2.29) to compute absolute J-factors
from J-factor ratios, when one of the two components of the ratio is known. The result of using Eq. (2.29) to calculate
J-factors for the E8 and TA constructs of varying lengths (without a concentration curve for each construct) is shown
in Fig. 4.2(C) in Chapter 4; here we show J-factors for the two looped states of these constructs separately. The
computation of these J-factors and associated errors are described in the text here. The E8 J-factors shown here are
the same as are plotted in Fig. 4.3 in Chapter 4 in comparison with theoretical results for the looping J-factor. (C)
J-factors for the two looped states separately for the with-promoter constructs shown in Fig. 4.2(D–F) in Chapter 4.
Here we cannot use Eq. (2.29) because these constructs have a different combination of operators than any of the
constructs used in the concentration titrations of Fig. 4.1. However, we can use the fitted parameters for K2 and
Kid obtained from those data to calculate total J-factors for the with-promoter constructs, as shown in Fig. 4.2(F)
in Chapter 4, or J-factors for the two states separately (described in the text here). (D) The fraction of the total
J-factor that is contributed by the J-factor of the middle state for E8, with and without the promoter. If only the
middle state is occupied at a certain loop length, this fraction is 1; if only the bottom state is occupied, this fraction
is 0. Where this ratio is not already close to 1, the addition of the promoter shifts it closer to 1 at most lengths,
meaning that the promoter increases the probability that the middle looped state, rather than the bottom looped
state, will form. (E) Same as (D) but for the TA constructs.
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Data Kid K1 K2 Jloop, E8 Jloop, TA

Oid-E894-O1 3 (± 1) 130 (± 30) - 320 (± 50) -
O1-E894-O1 - 50 (± 4) - 350 (± 30) -
O2-E894-O1∗ - 20 (8, 130) 300 (80, 1500) 200 (100, 600) -
Oid-TA94-O1∗ 5 (2, 50) 200 (± 100) - - 4400 (± 700)
Global Fit, E8 12 (± 2) 42 (± 3) 310 (± 70) 260 (± 20) -

Global Fit, E8 & TA 14 (± 4) 44 (± 4) 340 (± 70) 280 (± 20) 3000 (± 600)

Oid-E894-O1 3 (± 1) 90 (± 20) - 350 (± 40) -
O1-E894-O1 - 47 (± 4) - 380 (± 30) -
O2-E894-O1 - 26 (11, 125) 300 (± 200) 320 (± 90) -
Oid-TA94-O1 10 (5, 46) 80 (± 40) - - 5500 (± 600)
Global Fit, E8 9 (± 1) 42 (± 3) 210 (± 40) 300 (± 20) -

Global Fit, E8 & TA 12 (± 3) 44 (± 3) 240 (± 50) 330 (± 30) 4200 (± 600)
Literature values 8.3 ± 1.7 [125] 37 ± 5 [137, 138, 139] 350 ± 130 [137] - -

Table D.1: Fit parameters for individual and global fits, in pM, with and without nonloopers subtracted. “Global fit,
E8” includes only Oid-E894-O1, O1-E894-O1, and O2-E894-O1; “Global fit, E8 & TA” includes these three data sets
and Oid-TA94-O1 as well. The top section is with all data (Fig. D.4(A)); the bottom is with nonloopers subtracted
(Fig. D.4(B)) and is the same as Table 4.1 in Chapter 4 (shown here for comparison). The last row here is the same
as the last row of Table 4.1 as well. An asterisk (∗) indicates that the distributions of fit parameters obtained from
bootstrapped data were multimodal. In most cases, the best fit parameter plus or minus an error that is the standard
deviation of the fit parameters to bootstrapped data is reported, as described in the text; however, for those cases in
which the standard deviation includes negative parameter values, a 95% confidence interval is reported in parentheses
instead.

Eq. (2.29), and our theoretical framework in general, are to hold, then the ratio of J-factors calculated

from Eq. (2.29) should be independent of concentration, and, moreover, should be consistent with

the ratio of J-factors for E894 and TA94 obtained from the global fits to the concentration titrations.

This is indeed what we find. The J-factor ratios computed from Eq. (2.29) are plotted in Fig. D.5(A),

along with a solid horizontal line that indicates the ratio of J-factors obtained from a global fit to

the E8 and TA data. The errors on the ratios were calculated using a bootstrap method similar to

that described for fitting concentration curves in Section D.2.6 above: the distribution of looping

probabilities for each DNA at each concentration was resampled with replacement 104 times. After

each resampling, a new mean looping probability was computed, and then a new ratio of J-factors was

computed from these new means, for each E8-TA concentration pair. This resulted in a distribution

of 104 new J-factor ratios. The error was taken to be the standard deviation of this distribution. A

similar procedure was used to compute the horizontal dashed lines in Fig. D.5(A), which represent

the error on the ratio of J-factors obtained from the global fit. As described in Section D.2.6 above,

these global fits were performed on bootstrapped data (resampled with replacement 104 times),

which yielded distributions of 104 J-factor values for Oid-E894-O1 and Oid-TA94-O1. From each

of the 104 rounds of fitting, a new ratio of the fitted J-factors for TA and E8 were computed. The
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error plotted as horizontal dashed lines in Fig. D.5(A) is the standard deviation of these 104 ratios.

We now turn to the use of Eq. (2.29) to compute J-factors for the constructs plotted in Fig. 4.2(C)

in Chapter 4, for which we do not have concentration titrations. The absolute J-factors in that

figure were obtained from ratios with the 94 bp E8 construct whose J-factor is known from the

concentration titrations of Fig. 4.1(D–E); that is, Eq. (2.29) was used with DNA i being one of the

E8 or TA constructs of variable loop length whose looping probability is given in Fig. 4.2(A), and

DNA ii being the 94 bp E8 construct used in the concentration titrations of Fig. 4.1(D) and (E).

However, instead of using the measured looping probability for Oid-E804-O1, we used the looping

probability predicted for 100 pM based on the global fit to the three E8 data sets plus the TA data.

We thereby obtained the ratio of the J-factor for the sequences in Fig. 4.2(A) to the J-factor for

Oid-E894-O1 given by the global fit; and since this latter J-factor is known, we could then calculate

J-factors for the other E8 and TA lengths.

To estimate the errors on these length-series J-factors, we bootstrapped the 4 sets of data used in

the global fit for the Oid-E894-O1 J-factor, as well as the looping probabilities for each length-series

construct in Fig. 4.2(A). This resulted in 104 new sets of predicted looping probabilities for Oid-

E894-O1 at 100 pM, and 104 new looping probabilities for each loop lengths in Fig. 4.2. For each of

the 104 new values, we computed absolute J-factors for the E8 and TA length series, as described in

the previous paragraph, and then took the standard deviation of these new absolute J-factors. This

standard deviation became the errors plotted in Fig. 4.2(C). We note that it is equally possible to use

the looping probability for Oid-TA94-O1 as the reference instead of Oid-E894-O1; however, doing so

results in much larger errors on the calculated J-factors, probably because the looping probability

for the TA-containing sequence is very close to 1.

The J-factors shown in Fig. 4.2(C) in Chapter 4 are for both looped states combined. It is also

possible to calculate the J-factors separately for each of the two looped states (see Section 2.2 above).

To do so we note that the sum of J-factors of the two looped states is the total J-factor calculated in

the previous paragraph; and that the ratio of the J-factors of the two looped states is simply the ratio

of their looping probabilities (which can be seen if Eq. (2.10) is divided by Eq. (2.9)). Fig. D.5(B)
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shows the result of this calculation. The errors in Fig. D.5(B) follow the usual formulation: for each

DNA construct, the pair of looping probabilities corresponding to the two states was resampled with

replacement 104 times (that is, the resampling was done in such a way that the looping probability

for the bottom looped state for one bead was not severed from the looping probability for the middle

state for that particular bead), and 104 new J-factors were calculated in the same way as each state’s

mean J-factor. The error was then the standard deviation of these 104 J-factors.

In the case of the promoter-containing constructs of Fig. 4.2(D–F) in Chapter 4, the change of

operator precluded the use of the above procedure for calculating either total or separate looping

probabilities. However the dissociation constants for both Oid and O2 are known from the concen-

tration curves of Fig. 4.1(D), and so the total J-factors for each of the constructs in Fig. 4.2(D) could

be calculated directly from their looping probabilities by solving Eq. (2.1) for Jloop. Then the errors

were computed using a bootstrapping procedure similar to that described above, utilizing the 104

bootstrapped fit values for K2 and Kid from the concentration curve fits. Finally the J-factors for

the two looped states separately were computed by taking advantage, as in the no-promoter case,

of the fact that the ratio of the J-factors for the two states is the ratio of their looping probabilities;

and the errors were again bootstrapped. Fig. D.5(C) shows these with-promoter J-factors.



178

Appendix E

Representative traces

Figures E.1 and E.2 give representative examples of RMS motion versus time for the constructs

used in Chapters 2–5 of this work. (See Fig. 6.4 in Chapter 6 for examples of the three-operator

constructs.) Fig. E.1, which shows examples from different repressor concentrations, illustrates

several points mentioned elsewhere in this work: the presence of two experimentally distinguishable

looped states at some loop lengths and concentrations (see also Fig. E.2(A)); the difficulty of using a

Gaussian-fitting method to obtain looping probabilities for some of these three-state trajectories (see

Section D.2.3 and Fig. E.2(B)); and the shortening of the unlooped state observed at high repressor

concentrations, discussed in Section 4.A.1. We note here also the difference in looped and unlooped

state lifetimes at low and high repressor concentrations, even when a low concentration and a high

concentration result in almost equal looping probabilities (compare Oid-E894-O1 at 1 pM and at

500 pM), discussed in more detail in Chapter 5: at low concentrations, long dwells in the unlooped

state are interspersed with bursts of looping transitions (or long dwells in the looped state, as for the

Oid-TA94-O1 data at 500 fM), whereas there are more transitions and shorter dwell times at higher

concentrations. We attribute the larger error bars on low-concentration data for some constructs to

finite observation time combined with few transitions between states, which leads to larger tether-

to-tether variability in looping probability (see also Section 3.2.2). Finally we note that it appears

that the two looped states can directly interconvert, which suggests that the two states differ in

repressor conformation instead of operator binding orientation; however these trajectories have been

downsampled to reduce file size (in addition to being Gaussian filtered), and so it is possible that
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very short transitions to the unlooped state between looped state interconversions are not visible.

(See the discussion in Section 5.1.3.)

Figure E.2 shows representative examples of DNA constructs with only the bottom state (to

complement the middle-state-only and both-states examples in Fig. E.1), trajectories without clearly

separated states, and distributions of looping probabilities. In Fig. E.2(B), the top two trajectories

illustrate a behavior observed in a minority of Oid-E894-O1 and O1-E894-O1 tethers: instead of the

clear two states seen for most tethers with these constructs (see representative examples in Fig. E.1),

the looped and unlooped states have such similar RMS motions that they overlap in the histograms

to the right of each trace. It is unclear what causes this behavior. The middle two trajectories

in Fig. E.2(B) illustrate a similar behavior that is more prevalent in the O2-containing construct,

which we attribute to the shorter looped-state lifetimes with this weaker operator compared to

constructs with O1 or Oid. The bottom two trajectories in (B) illustrate the kinds of Gaussian fits

to poorly separated looped states that motivated a thresholding method, instead of a Gaussian-fitting

method, for calculating the looping probabilities of the three-state DNAs in Figs. 4.1(F) and 4.2 in

Chapter 4 (see Section D.2.3). We were also interested in assessing whether thresholding the length

series data of Fig. 4.2 would reduce the spread in the distributions of looping probabilities obtained

from populations of otherwise identical tethers, shown in Fig. E.2(C). All of the distributions of

looping probabilities for the middle-state-only constructs used in the concentration titrations of

Fig. 4.1(D–E) in Chapter 4, for most of the with-promoter constructs of Fig. 4.2(D–F), and for

some of the bottom-state only or both-states no-promoter constructs of Figs. 4.1(F) and 4.2(A–C),

showed a clustered set of looping probabilities with a clear peak, as with the Oid-E8103-O1 example

here. However, many of the no-promoter constructs in Fig. 4.2(A–C) in Chapter 4 showed broad

distributions of looping probabilities, as with the Oid-TA106-O1 example here, and for a minority

of constructs the distribution was so broad as to include almost all probabilities from 0 to 1, as

with Oid-E109-O1. In some cases, the spread was reduced when the two states were histogrammed

separately, as with Oid-E898-O1. The thresholding method, as compared to the Gaussian fitting

method, reduced the spread in some but not all looping probability distributions. We note that
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Figure E.1: Representative examples of the Gaussian-filtered root-mean-squared motion (“<R>”) of selected tethers
as a function of time, for several of the DNA constructs shown in Fig. 4.1(D–F) in Chapter 4, at several Lac repressor
concentrations. To the right of each <R>-vs.-time trajectory is a histogram showing the probability of finding a given
<R> over the whole trajectory. Red lines on this histogram show the results of a Gaussian fit, one way of determining
the looping probability (see Section D.2.3). The horizontal black dashed line in the plots of <R>-vs.-time indicate
the average length of that particular tether in the absence of repressor. Excursions to RMS values less than about
80 nm are attributed to non-specific, transient adsorption of the bead to the surface, the DNA to the surface, or the
DNA to the bead (“sticking” events); excursions to RMS values well above the horizontal black dashed lines are due
to tracking errors (e.g., due to free beads in solution transiently entering the field of view). No trajectories for the
O1-E894-O1 or O2-E894-O1 constructs are shown because they are essentially the same as those for Oid-E894-O1
(but see Fig. E.2 for difficulties particular to the O2-E894-O1 construct).
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(C) Looping probability histograms
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Figure E.2: Representative examples of (A) DNA constructs with only the bottom state (to complement the middle-
state-only and both-states examples in Fig. E.1), (B) trajectories without the clear states shown in (A) here and
in Fig. E.1, and (C) distributions of looping probabilities. The plots in (A) and (B) are of the same kind as in
Fig. E.1 (see the caption of that figure for description). In (C), unnormalized looping probability histograms show the
distributions of total (“M+B”) looping probabilities, or the probabilities of the bottom (“B”) or middle (“M”) looped
states, for four different DNA constructs at 100 pM repressor. The dashed line shows the mean looping probability
with nonloopers included (see Section D.2.5); the solid line shows the mean looping probability with nonloopers
subtracted, which is the mean looping probability reported in the figures in Chapter 4. In each “B” and “M” panel,
the number of tethers that never loop at all are shown as a black bar in the zero bin; a blue or red bar above the
black bar in the zero bin indicates the number of tethers that show no “B” state in the “B” panel, or no “M” state
in the “M” panel.
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even in cases where the looping probability distributions for the no-promoter constructs were very

broad, the E8 and TA histograms were still so similar that we could conclude there was no sequence

dependence to looping at those lengths.

Figure 6.4 in Chapter 6 shows representative examples of trajectories with the DNA constructs

derived from the wild-type three-operator lac operon regulatory region, and whose looping proba-

bilities are shown in Fig. 6.3.
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