
 

 

Combining Rational and Evolutionary Approaches to 
Optimize Enzyme Activity in Saccharomyces cerevisiae 

 

 
 

Thesis by  
Joshua Kieran Michener 

 
 
 
 
 

In Partial Fulfillment of the Requirements for the Degree 
of 

Doctor of Philosophy 
 
 
 
 

 

 

 

California Institute of Technology 
Pasadena, California 

2012 
(Defended May 7, 2012)



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2012 
Joshua K. Michener 
All Rights Reserved 



 iii 

Acknowledgements 
I was very fortunate during my graduate career to have been given the freedom to 

wend my way down a number of different paths, and I am grateful to my advisors for their 

support along the way. Professor Christina Smolke has been a constant source of advice and 

encouragement, and I am inspired by her dedication and insight. I always knew that I could 

count on Professor Frances Arnold to give me her unvarnished opinion, and I credit her for 

training me to critically analyze my research. Finally, I enjoyed working with Professor Jens 

Nielsen and am grateful that he gave me the opportunity to learn from him and his lab. 

I would also like to thank my committee members, Professors Richard Murray and 

Jared Leadbetter. I have enjoyed my opportunities to talk with and learn from Richard, and a 

comment of Jared’s eventually led to my time in the Nielsen lab. 

During my graduate career, I have had the opportunity to work with a number of 

amazingly talented people who have greatly influenced me. Specifically, I would like to thank 

the entire Smolke Laboratory Metabolic Engineering subgroup, for shared commiseration 

and troubleshooting; Joe Liang, Katie Galloway, and Dr. Chase Beisel, for an entertaining 

and stimulating laboratory environment; Andrew Sawayama and Mike Chen, for an 

introduction to directed evolution; and the Caltech Biocontrols group, particularly Fiona 

Chandra and Mary Dunlop, for consistently insightful and enjoyable discussions. 

Finally, I would like to thank Lloyd, Gwen, Becca, and Josie for their love and support. 



 iv 

Abstract 
Metabolic engineering has become an increasingly important tool for the production of 

bulk and fine chemicals. New biosynthetic pathways can be built in a tractable production 

host using enzymes from a wide variety of organisms. However, these enzymes did not 

evolve to function in their new host, and as a result their activity may be unacceptably low. 

Additionally, the host has not adapted to support this new pathway, and its response to any 

new stresses imposed by the pathway may further limit productivity. I describe two methods 

for optimizing the host-enzyme interface, using an evolutionary approach to adapt an 

enzyme to its new host and a rational approach to modify the host in response. Using a 

synthetic RNA switch to screen for improvements in enzymatic activity in vivo, I increased 

the activity of a model enzyme more than 30-fold. I then used a systems-level analysis of the 

host to identify a stress, heme depletion, that the enzyme placed on its host. Alleviating that 

stress increased the activity of an optimized enzyme by a further 2.3-fold. These results 

highlight the advantages of combining systems and synthetic biology during the construction 

of a metabolic pathway. I also consider options for extending the uses of synthetic RNA 

switches both earlier and later in the pathway development process. An RNA switch could 

first be used in a functional screen for enzyme discovery and then be used to adapt the 

newly discovered enzyme to its production host. Finally, a variant of that switch could be 

used to dynamically regulate a biosynthetic pathway and improve the pathway reliability. 
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1  Introduction 

1.1  Open challenges in metabolic engineering 

 Biological systems are amazingly adept at performing complex synthetic chemistry 

(Mizutani & Ohta, 2010; Walsh, 2008). Many of our dyes, fragrances, and pharmaceuticals 

are derived from natural products. However, producing such molecules at the necessary 

volume and cost can be difficult. Many useful compounds are produced at low concentration 

in their native host, necessitating the expense of growing large amounts of biomass followed 

by extensive purification of the desired compound. As an alternative to traditional 

production methods, researchers can move enzymes and pathways from their native hosts 

into new, more-tractable production organisms such as Escherichia coli or Saccharomyces 

cerevisiae. Freed from the constraints of the native context, we can optimize these engineered 

organisms to produce the precise compound desired, with high purity and yield (Keasling, 

2010). However, the construction of a new metabolic pathway still requires the investment 

of an enormous amount of time and money.  

There are several challenges preventing the efficient construction and optimization 

of biosynthetic pathways. First, the necessary enzymes must be identified. While 

improvements in sequencing technology have greatly simplified this process, the 

identification of a single enzyme can still require significant effort. Next, the pathway must 

be constructed and optimized. Ideally, this process would largely be a design challenge, and 

researchers would be able to predictably combine enzymes into a pathway that would behave 

the same way in a cell as it did in a computer. Unfortunately, our current abilities are far 

from this ideal. We lack the tools and understanding necessary for forward design of 

biological systems. In the absence of reliable design tools, we can instead turn to 
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evolutionary methods for pathway optimization. Nature has certainly proven that evolution 

can be an enormously powerful optimization tool. Unfortunately, here too our abilities are 

limited, largely by the paucity of general methods for quickly measuring pathway 

performance. 

However, while our current abilities are limited, new tools are rapidly being 

developed to overcome these challenges. In moving from a reductionist view of biology to a 

more-holistic perspective, recent advances in systems biology are improving our ability to 

measure and model biological processes. Similarly, synthetic biology is providing new tools 

to construct and control biological systems. Our challenge is to apply these new capabilities 

to metabolic engineering and thereby improve our ability to rapidly construct efficient 

metabolic pathways in microbes. 

 

1.1.1  Challenges in the predictable design of biological systems 

Our ability to modify organisms has grown enormously in recent years. Genomes 

can be constructed de novo (Gibson et al., 2010) or modified on a genome-wide scale (Wang 

et al., 2009; Warner et al., 2010). New tools are rapidly being developed to aid in the 

construction of genes (Gibson, 2011) and pathways (Shao & Zhao, 2009; Wingler & 

Cornish, 2011). Even the cost of direct gene synthesis is decreasing at an exponential rate 

(Carlson, 2009). Unfortunately, our ability to design biological systems has not kept pace. 

For example, the first fully synthetic genome was copied almost verbatim from a natural 

organism with only minor modifications. Even when we reduce the problem down to 

predicting the relationship between the sequence and function (protein expression level) of a 

simple genetic element such as a ribosome binding site, the best available computational 

design tool provides a 47% chance that the actual expression is within twofold of the desired 
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level (Salis et al., 2009). Moving to more-complicated systems, such as protein design, 

researchers have been able to computationally design functional enzymes (Jiang et al., 2008; 

Rothlisberger et al., 2008; Siegel et al., 2010). However, the initial designs have only been 

marginally active, and enzyme optimization required directed evolution (Khersonsky et al., 

2010). In particular, ligand binding seems to be a challenging problem to model 

computationally, as the KM for published examples of designed enzymes are typically in the 

range of several hundred μM (Schreier et al., 2009). Designing a multicomponent biological 

system (Tabor et al., 2009) or trying to predict the interactions between an engineered 

system and the host organism (Blazeck & Alper, 2010) is more challenging still. Such models 

are often able to explain observed behavior but are of limited predictive utility. 

There are a number of reasons that modeling multicomponent biological systems is 

difficult. A model is only as good as the underlying data and assumptions. In many cases, 

even when the biology has been well studied, one unknown interaction can invalidate a 

carefully constructed model. For example, the regulatory system controlling sugar 

consumption in yeast has been studied for decades. However, attempts to predict how yeast 

would respond to a sinusoidally varying glucose concentration were inaccurate (Bennett et 

al., 2008). Researchers eventually discovered previously unknown interactions between 

components of the system — a worthwhile result in itself, but one that illustrates the 

difficulty of constructing a predictive model. Similarly, when researchers attempted to use a 

model to inform their design of a genetic oscillator, they fortuitously found that the 

oscillator functioned under conditions that the model predicted would fail (Stricker et al., 

2008). Ultimately, this additional robustness was explained by an unexpected coupling of two 

components that were both degraded by the same proteasome (Cookson et al., 2011).  As 

before, the resulting knowledge was interesting, but the model was inaccurate until the new 
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biology was carefully analyzed. 

In other cases, we lack sufficient knowledge to even begin to model the desired 

system. Building a new metabolic pathway might involve the expression of multiple 

heterologous enzymes. Characterizing the performance and interactions of each enzyme in 

the new context requires an enormous amount of work before model building can even 

begin. The characterization process is not straightforward, and it is unclear exactly what 

information is needed in order to construct informative models. Once a set of enzymes is 

characterized in a particular host, the enzymes could perhaps be reused in a predictable 

fashion, for example, when combining two heterologous pathways in a single host. 

However, the current lack of consistent characterization, in addition to the uncertainty 

surrounding what exactly would constitute sufficient characterization, prevents the use of 

forward design in these situations.  

Even when potential pitfalls have been identified, integrating them into a design can 

be difficult. For example, high plasmid copy numbers have long been recognized as a 

potentially deleterious load (Jones et al., 2000) and the host can be modified to reduce the 

effects of this load (Flores et al., 2004). Still, small changes to the plasmid load in a cell can 

have an unexpectedly large effect on the output of an optimized pathway (Ajikumar et al., 

2010). Understanding that there might be a problem is mainly useful retrospectively, to explain 

why a process failed. Instead, we need consistent methods for measuring the ways in which 

heterologous pathways interact with their host and an explicit understanding of the ways in 

which these interactions may affect productivity. In the previous example, forward design 

would require a quantitative measure of the burden due to carrying the various plasmids, as 

well as a model explaining how changes to that burden would change the concentration of 

the final product. While the individual pieces of information are available, the lack of 
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consistent characterization standards means that combining them into a cohesive design 

model is still challenging. 

 

1.1.2  Challenges in the application of evolutionary methods 

Lacking the ability to reliably design biological systems that perform to specification, 

researchers commonly resort to constructing many variants of the desired system, followed 

by screening to identify the best version. However, there are few available screens that can 

match the scale of the recent techniques for pathway construction and modification 

(Dietrich et al., 2010). As a result, researchers are limited to processes that produce obvious 

phenotypes such as color (Wang et al., 2009) or can easily be coupled to growth (Warner et 

al., 2010).  

One alternative is to simplify the screening process by moving from whole cells to 

cell lysate. Without the complication of transport limitations or the need to consider toxicity, 

many more screening techniques become feasible (Arnold & Georgiou, 2003). 

Unfortunately, while these in vitro techniques solve some problems, they also introduce 

others. Many mutations that improve activity in vitro will not be beneficial in vivo (Fasan et al., 

2007). While false positives can be identified by rescreening in vivo, false negatives due to 

mutations that improve activity in vivo but are not beneficial in vitro will go undetected 

entirely. It would be preferable, therefore, to conduct the screening in vivo, in as close an 

approximation to production conditions as possible.  

Another option is to use a surrogate substrate that has been modified chemically to 

introduce a screenable phenotype. Dye molecules (Aharoni et al., 2006; Yang et al., 2010) or 

chemical groups with robust binding partners (Baker et al., 2002; Peralta-Yahya et al., 2008) 

can allow the use of simple screens for reactions that would otherwise be very difficult to 
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interrogate. However, these screening systems are often limited by the specific substrate or 

reaction chemistry or by the need to transport the surrogate into living cells. As a result, 

these techniques are only applicable to a subset of interesting metabolic pathways and 

reactions. More generally, the use of a surrogate substrate raises the possibility of finding 

variants that improve their activity towards the surrogate but not towards the authentic 

substrate (Aharoni et al., 2006). In addition to screening under conditions that closely 

approximate production conditions, screening should be performed with authentic 

substrates whenever possible. New tools will be necessary to allow such screens and 

selections. 

 

1.1.3  Challenges in discovering uncharacterized enzymes 

As sequencing costs decrease and sequenced genomes proliferate, both from isolated 

strains (Song et al., 2010) and complex uncultured mixtures (Warnecke et al., 2007), the 

challenge of enzyme discovery has switched from having too little data to having too much. 

Metagenomic sequencing is a powerful technique, but it can easily produce far more 

potential sequences than can be individually characterized. For example, a metagenomic 

library from the termite hindgut produced 700 putative carbohydrate-active enzymes 

(Warnecke et al., 2007), and a separate library from the cow rumen produced another 28,000 

(Hess et al., 2011). Similarly, while plant genomes and transcriptomes are being sequenced at 

an increasingly rapid pace, the sheer number and diversity of genes involved in secondary 

metabolism can confound traditional discovery methods. A single plant genome can contain 

more than 100 terpene synthases (Chen et al., 2011a) and ~ 1% of the genome can consist 

of P450 monooxygenases (Mizutani & Ohta, 2010). Dealing with the deluge of data will 

require a combination of computational techniques and new functional screens to reduce the 
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scale down to a level suitable for traditional characterization techniques. 

 

1.2  Tools from systems and synthetic biology 

 I have described above a number of areas in which current metabolic engineering 

efforts face serious challenges. However, recent progress in systems and synthetic biology 

has begun to overcome these obstacles. While our current understanding of natural systems 

might be insufficient to permit forward modeling of new metabolic pathways, new 

techniques for characterizing biological systems are narrowing this knowledge gap, and new 

tools for managing biological complexity are allowing us to produce increasingly reliable 

designs by reducing or accommodating unknown and undesired interactions. New small-

molecule screens and selections are enabling the high-throughput detection of authentic 

compounds in vivo using scalable screening platforms that can quickly be modified to 

recognize new targets. Finally, these screening tools, in combination with advances in 

sequencing and synthesis of DNA, are transforming the ways in which we discover new 

enzymes from nature. 

 

1.2.1  Characterization of biological systems 

When transplanted into a new organism, many heterologous enzymes function 

poorly or not at all. Understanding the reasons for this poor performance is the first step to 

rationally designing new metabolic pathways. However, in any given pathway there are many 

potential reasons, and identifying the most significant of these can be difficult. 

Some of these reasons are common among many heterologous proteins, and these 

are the areas in which we have made the most progress. If, for example, a protein requires 

accessory factors for proper folding and localization, a new environment might lead to 
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misfolding and low expression. In some cases, the protein folding machinery is sufficiently 

well understood as to allow rational modification of the host to accommodate the demand 

for additional chaperones (Shusta et al., 1998; Tokuriki & Tawfik, 2009). In other cases, the 

interactions between a heterologous protein and its host can be very complex, and we are 

only beginning to catalog all of the interactions (Geiler-Samerotte et al., 2011). This type of 

catalog is a necessary first step to understanding how a cell is trying to cope with expression 

of a new enzyme and ultimately to assisting the cell in this process. 

In other cases, the interactions between an enzyme or pathway and its new host can 

be unique to that system. In these cases, analysis tools are critical for understanding the 

mechanisms by which the pathway places stress on its host. Global measurements of RNA 

or protein levels can allow an unbiased appraisal of the various limitations that a host places 

on a heterologous pathway. Global analyses are often necessary simply to understand what a 

pathway is doing to its host. Seemingly minor perturbations can have effects on a wide range 

of host processes (Lee et al., 2009) or on seemingly unconnected pathways (Kizer et al., 

2008). Proteomics can be used in a similar fashion to identify proteins whose expression is 

changed due to the introduction of the heterologous pathway, presumably as the host tries 

to cope with the new stress (Xia et al., 2010). Additional expression of these genes may 

increase productivity. Finally, even when the broad outlines of the problem are known, such 

as a heterologous pathway inducing transcriptional feedback inhibition of an endogenous 

pathway, the specific targets of the feedback might be unclear. Researchers can use 

transcriptome analyses to identify these targets and then overexpress the relevant genes to 

increase the pathway output (Choi et al., 2003; Park et al., 2007).  

Ultimately, we hope that as we gather more examples of deleterious interactions, 

patterns will start to emerge. Perhaps some of these seemingly unique stresses will turn out 
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to be common, and we can describe standard protocols for characterizing them and their 

effect on the host (Canton et al., 2008). 

 

1.2.2  Managing biological complexity  

Rather than trying to accurately understand and model the complex interactions 

inherent in a biological system, an alternative approach is to minimize those interactions and 

thereby make the system more predictable. For example, synthetic systems might combine 

orthogonal mechanisms for transcription (An & Chin, 2009) and translation (Rackham & 

Chin, 2005) with an orthogonal genetic code (Neumann et al., 2010) to minimize 

interference with the analogous host processes. Additionally, enzymes could be localized to 

scaffolds (Dueber et al., 2009) or protein microcompartments (Bonacci et al., 2011; Fan et 

al., 2010), improving pathway productivity while preventing intermediates from diffusing 

away and interacting with the host. Protein scaffolds have been shown to reduce the enzyme 

loading required for a given level of pathway output, minimizing the burden on the cell 

(Dueber et al., 2009). In a similar vein, eukaryotes such as yeast could be modified with 

designer organelles to sequester heterologous pathways. By reducing the interactions 

between components of a biological system, these techniques would allow us to more fully 

understand and model the system. 

 As we gain a better understanding of the different mechanisms through which 

unexpected interactions arise (Ventura et al., 2010), we can modify our designs to minimize 

these effects (Del Vecchio et al., 2008). In metabolic pathways, retroactivity typically 

manifests itself though allosteric feedback control. This type of retroactivity can be 

eliminated through the use of feedback-insensitive enzyme variants or promoters (Lee et al., 

2007). In other cases, retroactivity might be unavoidable. For example, a metabolic pathway 
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in which a single compound is the substrate for multiple reactions (Nakagawa et al., 2011) 

would also demonstrate retroactivity, since modifications to the rate of one reaction would 

change the concentration of the joint substrate and therefore the rates of the other reactions. 

Similarly, appending a new reaction can cause a previously optimized pathway to fail, due to 

interference from a new plasmid (Ajikumar et al., 2010) or a new enzyme that competes for 

cofactors. While cofactor competition could, in theory, be avoided by reengineering one 

enzyme to use an alternate cofactor (Bastian et al., 2011) or by discovery of an alternative, 

non-cofactor-dependent enzyme (Gonzalez-Pajuelo et al., 2005), substrate competition is 

unavoidable. In these cases, minimizing retroactivity requires the introduction of feedback 

controllers (Figure 1.1). 

 
Figure 1.1 Feedback regulation allows a pathway to resist disturbances. (A) An engineered metabolic pathway 
produces a toxic intermediate (red). (B) An increase in the concentration of the substrate (black) can lead to 
accumulation of the intermediate, harming the host cell. (C) Feedback regulation allows the pathway to 
respond to this disturbance by reducing the expression of the upstream enzyme and keeping the concentration 
of the intermediate acceptably low. (D) Alternately, a pathway might contain a branch point, such as an 
intermediate used both for the desired product (yellow) and a necessary compound in the host metabolism 
(white). (E) Diversion of too much flux to the engineered pathway might deplete the cell of a necessary 
metabolite. (F) Feedback regulation would initially keep the upstream enzyme expression low. As the common 
intermediate (red) was depleted, the relief of that repression would lead to an increase in expression, thereby 
rebalancing the pathway. 
 

Feedback regulation is a ubiquitous feature both in natural systems (Winkler et al., 

2004) and in other engineering disciplines, but is rarely added to heterologous metabolic 

pathways (Farmer & Liao, 2000). Including feedback regulation in biological designs could 

improve system performance (Dunlop et al., 2010) and reduce retroactivity. Researchers 

could intentionally build in excess capacity to synthesize cofactors or substrates and then 
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adjust the utilization of this spare capacity in response to changing demands. Introduction of 

a new enzyme that competes for a substrate would lead to increased synthesis of the 

substrate rather than undesirable retroactivity. Additionally, engineered microbes are 

expanding into less-predictable environments, such as open pond cultivation of engineered 

algae for biofuels (Scott et al., 2010) or the production of anticancer compounds inside 

tumors (Anderson et al., 2006). As a result, the ability to respond to environmental variation 

will become increasingly important. 

 

1.2.3  Small-molecule screens and selections 

 An ideal screening system would allow high throughput screening in vivo using a 

biosensor that is specific to the authentic compound desired (Figure 1.2). This ideal system 

would be easily reconfigured to recognize a new compound, independent of the specific 

functionality of the compound or the reaction chemistry of the associated pathway. While no 

current screen meets all of these goals, significant progress has been made (Michener et al., 

2012). 

 
Figure 1.2 Small-molecule screens and selections allow high-throughput screening in vivo. (A) In a simple 
sensor system, a promoter is initially inactive. Binding of a small molecule (white) to a transcriptional activator 
(grey) leads to gene expression from the associated promoter. (B) Depending on the details of the sensor and 
reporter, the screen could produce different transfer curves, such as a graded response (blue) or a cooperative, 
threshold response (green). (C) These sensors can be used to implement screens or selections. Cells containing 
highly active pathways will produce large amounts of the target molecule (white), while those with inactive 
pathways will not. In a selection, the cells with active pathways will grow more than cells without. In a screen, 
they will express more of an easily measured marker, such as GFP. 



 12 

 There are several possible platforms that could fulfill these requirements. Protein 

transcription factors naturally recognize a diverse range of small molecules. Expression of a 

screenable or selectable marker from the associated promoter would then allow high-

throughput assays in vivo (Mohn et al., 2006; Tang & Cirino, 2011; van Sint Fiet et al., 2006). 

However, there are many small molecules for which no specific transcription factor has been 

identified. In such a situation, development of a new screen would require modifying a 

transcription factor to recognize a new ligand, which can be a challenging task (Collins et al., 

2005; Collins et al., 2006; Tang & Cirino, 2010). Similarly, proteins can be modified to allow 

allosteric control of fluorescence (Fehr et al., 2002) or enzymatic activity (Edwards et al., 

2008; Guntas et al., 2005; Guntas & Ostermeier, 2004). Fluorescence is a directly screenable 

phenotype and the new allosteric enzyme, if it provides a phenotype such as antibiotic 

resistance, can readily be screened or selected. However, these sensors are artificial 

constructs combining unrelated domains for ligand binding and enzymatic activity. At best, 

development of a new sensor requires the time consuming integration of a new ligand-

binding domain. If no natural binding domain is available, an existing domain must be 

modified while still maintaining the allosteric linkage between ligand binding and enzymatic 

activity — certainly a difficult task. 

 RNA-based biosensors could also be used to sense and respond to small molecules. 

Synthetic RNA switches can regulate gene expression through a variety of mechanisms, 

including controlling transcription (Buskirk et al., 2004), mRNA stability (Win & Smolke, 

2007), and translation (Desai & Gallivan, 2004). Ligand-binding domains can be selected in 

vitro from random RNA pools (Jenison et al., 1994) and integrated into existing switch 

platforms (Win & Smolke, 2007). However, the chemical functionality of RNA is quite 

limited, given the similarities between the four available bases, and as a result there may be 
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entire classes of molecules to which no RNA binding domain can be selected. Still, these 

new techniques are moving us closer to a time when new high-throughput in vivo screens 

could rapidly be constructed for a wide range of small-molecule targets. 

 

1.2.4  New techniques for enzyme discovery 

 New sequencing techniques are producing an explosion in the available sequence 

information. As a result, computational techniques are becoming increasingly important 

tools for enzyme discovery. In some cases, such as polyketide and nonribosomal polypeptide 

synthases, conserved sequence signatures allow automatic identification of enzymes by 

genome mining (Kersten et al., 2011), and the consistent sequence-function relationship 

allows automated prediction of pathway assembly (Yadav et al., 2009). For other enzymes, 

comparing genomes of species known to perform a given reaction can allow identification of 

the associated enzymes (Balskus & Walsh, 2010). If all the species known to perform the 

desired reaction are closely related, in silico subtraction of a related but non-producing strain, 

either a mutant (Hagel & Facchini, 2010) or a close evolutionary relative (Schirmer et al., 

2010), can significantly narrow the list of potential targets. As DNA synthesis costs continue 

to drop, simply synthesizing and testing all available enzyme homologs can be an elegantly 

brute force solution to identifying the best enzyme variant for metabolic engineering (Bayer 

et al., 2009). Sequence information from formerly intractable organisms such as plants 

(Facchini et al., 2012; Fridman & Pichersky, 2005) is becoming increasingly available, further 

expanding the reach of computational techniques for enzyme discovery. 
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Figure 1.3 Functional screens complement computational methods for enzyme discovery. (A) Enzymes can be 
identified from a wide range of organisms (B) using DNA sequencing followed by (C) computational 
predictions of open reading frames to produce a pool of candidate enzymes. (D) Bioinformatics techniques, 
such as homology searches to known enzymes, can narrow down the pool of potential enzymes. (E) However, 
even focusing on a single enzyme family may produce too many enzymes to test individually. In these cases, a 
functional screen is necessary to identify the single best enzyme variant for the desired conditions. 
 

In many cases, however, enzyme discovery based on sequence homology is only the 

first step in identifying a promising enzyme for metabolic engineering. Narrowing the list of 

candidate enzymes to a single, highly homologous population may still produce too many 

candidates to exhaustively characterize (Hess et al., 2011). In cases such as these, functional 

screens become necessary to narrow the pool down to a scale that can be individually 

screened (Taupp et al., 2011). The tools described above for enzyme evolution can also 

readily be applied to screening metagenomic libraries, allowing the identification of enzymes 

that produce a specific product. Those same screening systems could then be used to 

optimize the enzyme to its new production host and to construct feedback control systems 

that allow predictable integration into an engineered pathway. 

 

1.3  Thesis overview 

In this thesis, I demonstrate the value of combining approaches from systems and 

synthetic biology to advance the metabolic engineering of S. cerevisiae. In Chapter 2, I 

consider a case where the problem, low activity from a specific enzyme, is clear but we lack 

the understanding to rationally solve the problem. While great strides have been made in 

computational enzyme design, enzyme optimization is beyond the scope of current 
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techniques. Instead, in these situations we turn to evolutionary approaches, since they 

require significantly less knowledge of the underlying biology. The challenge in using 

evolution to optimize a biological system lies in rarity of improvements produced through 

random mutation, at frequencies of 10-3 to less than 10-6. Therefore, the screening system 

used to identify improved variants is of critical importance. Currently, we have few general 

techniques for in vivo enzyme evolution. I describe the development of a new high-

throughput screen for enzyme evolution in vivo using a synthetic RNA switch. I apply this 

novel screen to the evolution of a model protein, a P450 monooxygenase, and ultimately 

produce a 33-fold improvement in the enzymatic activity and a 22-fold increase in the 

product selectivity. Finally, I compare my efforts to evolve an enzyme in vivo to a parallel 

evolutionary trajectory in vitro, highlighting the difficulties involved in screening in vitro when 

one desires activity in vivo. I also use the in vitro results to experimentally demonstrate the 

connection between an enzyme’s thermostability and mutational tolerance. 

Having demonstrated that the synthetic RNA switch could identify enzymes with 

caffeine demethylase activity in vivo, I next asked whether I could use that same screening 

technique to identify natural caffeine demethylases. In Chapter 3, I describe my efforts to 

construct and screen cDNA libraries from Coffea dewevrei, a species that produces naturally 

low-caffeine coffee beans. Previous research has demonstrated that the low caffeine content 

is due to rapid enzymatic demethylation of caffeine to theophylline, but the enzyme 

responsible for this transformation has not been identified. I successfully constructed cDNA 

libraries based on total RNA extracted from leaves of C. dewevrei, including a cDNA library in 

which I used subtractive hybridization with C. arabica RNA to enrich for differentially 

expressed cDNAs. Unfortunately, screening these libraries in S. cerevisiae did not identify any 

caffeine demethylases, and I discuss possible explanations for this negative result. 
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While evolutionary methods, like those described in Chapter 2, are very powerful, 

there are some situations in which such methods are not readily applicable. In Chapter 4, I 

move to a case where the bottleneck in the pathway is less obvious, namely the deleterious 

interactions between an engineered pathway and the cell in which that pathway resides. To 

apply evolutionary methods to such a situation, we must mutate every possible target, 

drastically reducing the frequency of beneficial mutations since most mutations would hit the 

wrong targets. Instead, the challenge is to narrow down the list of potential targets, at which 

point we can either modify the pathway to limit the stress it places on the host or engineer 

the host to accommodate that stress. I demonstrate that a comparative systems-level analysis 

of multiple pathway variants can help in identification of the major stresses that the pathway 

places on its host. For my model system, the same cytochrome P450 expressed in S. cerevisiae, 

I show that heme levels limit enzyme expression and, as a result, total enzyme activity. 

Overexpression of key genes in the heme biosynthetic pathway, in addition to feeding a 

heme precursor, increases the level of total heme by more than tenfold and the enzymatic 

activity by 2.3-fold. 

Finally, in Chapter 5, I consider further applications of synthetic RNA switches, 

focusing on their use for controlling metabolic pathways. I describe the design of synthetic 

feedback control systems to reduce the change in product concentration resulting from 

variations in the concentration of the substrate. I construct computational models of these 

controllers and explain the necessary design parameters for components used in such a 

controller. I also discuss possible methods for experimental validation of a feedback 

controller as well as applications of such a controller to provide greater composability in 

engineered metabolic pathways. 
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2  High-Throughput Enzyme Engineering Using 

    a Synthetic RNA Switch  
Portions of this chapter are adapted with permission from Michener JK and Smolke CD (2012) High-
throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng. Jul;14(4):306-
16. 
 

Metabolic engineering can produce a wide range of bulk and fine chemicals using 

renewable resources. These approaches frequently require high levels of activity from 

multiple heterologous enzymes. Directed evolution techniques have been used to improve 

the activity of a wide range of enzymes but can be difficult to apply when the enzyme is used 

in whole cells. To address this limitation, I developed generalizable in vivo biosensors using 

engineered RNA switches to link metabolite concentrations and GFP expression levels in 

living cells. Using such a sensor, I quantitatively screened large enzyme libraries in high 

throughput based on fluorescence, either in clonal cultures or in single cells by fluorescence-

activated cell sorting (FACS). By iteratively screening libraries of a caffeine demethylase, I 

identified beneficial mutations that ultimately increased the enzyme activity in vivo by 33-fold 

and the product selectivity by 22-fold. As aptamer selection strategies allow RNA switches to 

be readily adapted to recognize new small molecules, these RNA-based screening techniques 

are applicable to a broad range of enzymes and metabolic pathways. 

 

2.1  Introduction 

Recent advances in metabolic engineering have involved the construction of multi-

step enzymatic pathways to synthesize complex molecules, such as isoprenoids, 

benzylisoquinoline alkaloids, and steroids, from simple precursors (Hawkins & Smolke, 

2008; Ro et al., 2006; Szczebara et al., 2003). The enzymes responsible for these reactions 
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can be taken from a variety of sources and combined into a single production host, and as a 

result they often require modification before they function well in the new environment 

(Chang et al., 2007). Additionally, many natural biosynthetic pathways have uncharacterized 

reactions for which alternative enzymes must be identified (Yim et al., 2011) or engineered 

(Bastian et al., 2011) to reconstruct these pathways in synthetic hosts. Finally, once the 

pathway is constructed, enzyme activities must be balanced to optimize pathway productivity 

and yield (Ajikumar et al., 2010). Typically, each of these optimization steps involves the 

construction of many pathway variants followed by the identification of the best resulting 

pathway. Therefore, optimization requires the ability to measure the production of the 

desired metabolite at high throughput using an appropriate screen or selection (Dietrich et 

al., 2010). 

When measuring the productivity of a reaction or pathway, an ideal screening system 

would (a) function in vivo, so that screening is performed under the same conditions as 

production; (b) allow high-throughput analysis, enabling the characterization of large 

libraries of variants; (c) be scalable, or readily adapted to recognize new small molecules and 

discriminate between structurally similar compounds; (d) measure the specific reaction 

desired, without being limited to surrogate substrates or specific reaction chemistries; and (e) 

be parallelizable, and thus capable of simultaneously measuring multiple metabolites (Figure 

2.1A). No current small-molecule screening system meets all of these requirements. 
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Figure 2.1 Applications of high-throughput in vivo biosensors for metabolic pathway engineering. (A) The ideal 
biosensor platform would convert the concentration of the desired metabolite (not a surrogate) into an easily 
measured signal, be readily modified to detect new metabolites, and function in parallel to allow simultaneous 
measurement of multiple points in a metabolic pathway. Circles: metabolites; hexagons: enzymes; light bulbs: 
biosensor signals. (B) Synthetic RNA switches are built through the modular assembly of an input domain and 
an output domain. When properly folded, the input domain (encoded in an RNA aptamer, blue) binds the 
desired small molecule. If the output domain (encoded in a ribozyme, green) folds correctly, it cleaves itself. In 
an ON switch, the two domains are connected in such a way that only one domain can properly fold at any 
given time. (C) Engineered RNA switches act as programmable in vivo biosensors for desired metabolites. The 
RNA switch is placed in the 3’ untranslated region of a fluorescent reporter gene. If the output domain folds 
and cleaves, it removes the poly-A tail of the associated mRNA, leading to rapid degradation and low gene 
expression. Addition of the small molecule ligand favors the conformation where the input domain is properly 
folded and the output domain is misfolded. Therefore, increasing concentrations of ligand lead to lower 
cleavage rates and higher gene expression. 
 

Many enzymes can be assayed and evolved in vitro, where the reaction conditions may 

be more carefully controlled (Arnold & Georgiou, 2003). However, mutations that improve 

activity in vitro may be neutral or deleterious in vivo (Fasan et al., 2007), and mutations that 

improve activity in vivo may occur through mechanisms that are absent in vitro (Bulter et al., 

2003). While precise analytical techniques, such as liquid or gas chromatography coupled to 

mass spectrometry, are generally available to measure any desired small molecule, their slow 

speed limits the throughput of any resulting screen (Leonard et al., 2010). In some cases, the 

desired compound either produces (Wang et al., 2009) or can be linked to (Santos & 

Stephanopoulos, 2008) phenotypes, such as color, that are rapidly identifiable. These 

compounds can easily be screened in high throughput, but applications are limited by the 
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scarcity of such phenotypes among relevant compounds. Similarly, when the desired 

compound is required for cell growth, selections can be powerful tools for improving 

pathway yield (Pfleger et al., 2007). However, molecules linked to cell growth tend to be 

endogenous, so these auxotrophic selections are useful primarily for increasing substrate 

availability, rather than optimizing a heterologous pathway. In general, selection strategies 

allow larger libraries (effectively limited only by transformation efficiency (Peralta-Yahya et 

al., 2008)), but produce a threshold rather than graded response (Desai & Gallivan, 2004). 

Additionally, responding to multiple signals using a selection requires a genetic logic gate 

(Anderson et al., 2006) to integrate multiple signals into a single response (growth), while in 

a screen the researcher has greater flexibility to independently adjust the screening threshold 

for each signal. Other screening systems have been developed using transcription factors 

that respond to the desired product (Mustafi et al., 2012; Tang & Cirino, 2011; van Sint Fiet 

et al., 2006). While these assays can precisely report the concentration of the desired 

compound, their reuse for detection of even a slightly modified compound requires 

significant understanding and engineering of the associated biosensor (Tang & Cirino, 2011). 

The generation of a protein-based biosensor de novo is still challenging (Schreier et al., 2009). 

Finally, chemical complementation, a modified yeast three hybrid assay, has been used to 

screen enzyme libraries for a variety of different chemistries (Baker et al., 2002; Lin et al., 

2004; Peralta-Yahya et al., 2008). Unfortunately, the assay requires the use of extensively 

modified surrogate substrates, limiting the types of reactions that can be screened with this 

approach. 

Advances in synthetic biology have led to the design of modular, programmable, 

RNA-based control elements, or RNA switches (Figure 2.1B) (Win et al., 2009). RNA 

switches generally link an input domain (an RNA aptamer) to an output domain (an RNA 
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gene-regulatory component), resulting in a control element that regulates gene expression in 

response to binding of a ligand, such as a protein or small molecule (Figure 2.1C). Synthetic 

RNA switches responsive to exogenous small molecules have been constructed using a 

variety of output domains in a diverse range of hosts (Buskirk et al., 2004; Soukup & 

Breaker, 1999; Suess et al., 2004; Topp et al., 2010). When the input and output domains of 

an RNA switch are distinct, new input domains can be selected de novo (Jenison et al., 1994) 

and then readily integrated into existing switch platforms (Win & Smolke, 2007). As such, an 

in vivo screening system using RNA switches can be readily reconfigured to respond to new 

metabolites, providing a platform for the development of scalable, high-throughput, in vivo 

biosensors for metabolic and enzyme engineering (Desai & Gallivan, 2004). However, 

previous efforts using RNA switches in high-throughput screens have focused only on 

evolving improved switches (Fowler et al., 2008; Lynch & Gallivan, 2009). These screens can 

use saturating concentrations of an exogenous ligand and thereby take advantage of the 

entire dynamic range of the switch. In order to use RNA switches as a platform for 

screening enzyme libraries, the switches must accurately and precisely discriminate between 

small differences in the concentrations of heterologous metabolites. 

I have developed a generalizable in vivo screening strategy for product accumulation 

using engineered RNA switches as the key biosensor components. These novel biosensors 

link the concentration of a product metabolite to GFP expression levels in living cells. I use 

an RNA-based biosensor to quantitatively screen large enzyme libraries in high throughput 

based on fluorescence, either in clonal culture by flow cytometry or in single cells by 

fluorescence-activated cell sorting (FACS). I demonstrate that the RNA-based biosensor has 

sufficient precision to distinguish small changes in fluorescence and therefore identify 

relatively small improvements in activity. Additionally, the biosensor can be coupled to 
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FACS to allow screening of large enzyme libraries (~ 106). By iteratively applying this screen 

to libraries of a caffeine demethylase enzyme in yeast, I identified a series of beneficial 

mutations that ultimately increased the enzyme activity in vivo by 33-fold and the product 

selectivity by 22-fold. My work demonstrates that modular RNA switches provide a flexible 

screening platform for metabolic and enzyme engineering. 

 

2.2  Results 

To demonstrate the RNA-based in vivo screening system, I studied the production of 

the purine alkaloid theophylline in Saccharomyces cerevisiae through the enzymatic 

demethylation of caffeine. Setting up a new screen required that I develop two components: 

(1) an appropriate biosensor that could precisely report the concentration of the product, 

theophylline, without interference from the substrate, caffeine; and (2) an enzyme that 

regiospecifically produces theophylline from caffeine in vivo. 

 

2.2.1  Development of the screening system 

Previous work in the Smolke Laboratory led to the construction of a theophylline-

responsive RNA switch to control GFP expression in S. cerevisiae, providing the basis for an 

in vivo screen (Win & Smolke, 2007). When fed increasing amounts of theophylline, ranging 

from 10 µM to 5 mM, the switch produces a graded increase in fluorescence. The input 

domain of this RNA switch is an aptamer that binds theophylline ~ 10,000-fold more tightly 

than it binds caffeine, making it an ideal biosensor for this screening strategy (Jenison et al., 

1994).  

However, the original switch was too noisy to be used as a screen for enzyme activity 

(Figure 2.2A). First, the biosensor construct was expressed from an inducible promoter, the 
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Gal1-10 promoter, that produced a bimodal induction profile. Even in the presence of 

saturating concentrations of the inducer, a sizable population of cells remained in the 

uninduced state. These cells would be false negatives in a positive screen and false positives 

in a negative screen, sufficient in either case to disrupt the screen. Second, the biosensor’s 

ratio of signal-to-noise was very low. The change in fluorescence due to the presence of the 

metabolite was significantly smaller than the variation in expression due to expression noise. 

As a result, screening in single cells would be extremely difficult, and even measuring 

population mean fluorescence would show significant culture-to-culture variability (Figure 

2.2B). Finally, the biosensor was expressed from a centromeric plasmid. In such a situation, a 

simple evolutionary solution to increase the mean fluorescence is to increase the plasmid 

copy number by disrupting the centromere (Hill & Bloom, 1987). Each of these problems 

needed to be addressed before the biosensor could be used for enzyme screening. 
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Figure 2.2 Optimization of the RNA switch for use in enzyme screening. (A) Single-color fluorescence 
histogram of yeast expressing the original RNA switch from an inducible GAL1-10 promoter on a centromeric 
plasmid, grown under the indicated theophylline concentration. The GFP fluorescence of each cell is 
normalized by the electronic volume (EV). The construct exhibits substantial noise in expression that makes 
the construct unsuitable as a biosensor for enzyme screening. (B) Decreasing the cell-to-cell variation also 
decreases the culture-to-culture variation. When screening by flow cytometry, screening efficiency is 
determined by the coefficient of variation (CV) between replicate cultures. For each of the screening 
constructs, replicate cultures (n=32) were grown in the presence of varying amounts of theophylline and the 
geometric mean fluorescence of each culture was determined by flow cytometry. The relative fluorescence is 
the ratio of the geometric mean fluorescence for a single culture relative to the average geometric mean for all 
32 uninduced cultures. For the original screening construct, the CV is 5.0%. (C+D) Modification of the 
biosensor to use a constitutive TEF1 promoter eliminated the uninduced population and narrowed the 
distribution of GFP expression, reducing the CV to 3.8%. (E+F) An RNA switch-based biosensor that can 
readily distinguish between small changes in fluorescence was developed by integrating the biosensor construct 
into the genome to further reduce variability in expression, ultimately lowering the CV to 2.7%. 
 

To eliminate the uninduced population, I replaced the GAL1-10 promoter with the 

strong, constitutive TEF1 promoter (Figure 2.2C–D). This change had the additional effect 

of moderately reducing both the cell-to-cell and culture-to-culture variability in expression, 

by approximately one third and one quarter, respectively. Next, the biosensor construct was 

integrated into the yeast chromosome in the lys2 locus to yield strain CSY492 (Figure 2.2E–
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F). The integration further reduced the cell-to-cell variability in expression by approximately 

twofold, presumably by avoiding variability in plasmid copy number, in addition to reducing 

the culture-to-culture variability by a further 30% and eliminating the potential for 

spontaneous loss of plasmid copy number control. The resulting biosensor strain shows 

clear separation between populations with and without theophylline and no response to 

caffeine (Figure 2.5A). 

 

2.2.2  Identification of a starting enzyme 

With a theophylline-responsive screening system in hand, the next challenge was to 

identify an enzyme capable of demethylating caffeine to theophylline. This demethylation 

reaction occurs in plants, but the enzyme has not been cloned (Mazzafera, 2004). Similarly, 

human liver P450 monooxygenases can catalyze the desired demethylation, but with poor 

product selectivity (Tassaneeyakul et al., 1994). I expressed CYP2D6 in S. cerevisiae, 

confirming both the presence of low levels of caffeine demethylase activity as well as the 

expected product promiscuity (Figure 2.3). In general, human liver P450s are difficult 

engineering substrates, as evolution has selected for both substrate and product promiscuity. 

 

Figure 2.3 Caffeine oxidation in S. cerevisiae using human cytochrome P450s. The enzymes showed the 
expected caffeine oxidation (to trimethyluric acid) and demethylation (to paraxanthine and theophylline). 
However, theophylline production was very low, and the enzymes showed high product promiscuity. 
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Lacking the native plant enzyme and preferring to avoid working with CYP2D6, I 

engineered an alternative reaction using the bacterial P450 monooxygenase CYP102A1 from 

Bacillus megaterium (Narhi & Fulco, 1986). This P450, known as BM3, is soluble, highly active, 

and, though its natural substrates are long chain fatty acids, can be readily evolved to accept 

a variety of novel substrates (Dietrich et al., 2009; Fasan et al., 2007; Kille et al., 2011; Lewis 

et al., 2009; Rentmeister et al., 2009). Since wild-type BM3 does not show activity on 

caffeine, I instead screened a collection of existing BM3 variants in vitro by HPLC to identify 

enzymes capable of regiospecifically demethylating caffeine to theophylline. The most active 

enzymes were then expressed in S. cerevisiae and assayed by HPLC for activity in vivo. When 

fed 1 mM caffeine, the cells produced low levels of theophylline in the media, as well as 

minor amounts of the side product paraxanthine. The best of these BM3 mutants, termed 

caffeine demethylase 1 or CDM1, was then yeast codon optimized to give the enzyme 

yCDM1. 
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2.2.3  Plate-based enzyme screening 

Figure 2.4 Workflow associated with a RNA switch-based screen for enzyme activity. (A) An enzyme library is 
constructed in yeast using either error-prone PCR or DNA shuffling strategies. The resulting library is 
transformed into yeast cells using a high-efficiency gap repair method. (B) The substrate molecule is added to 
the culture, and the enzymes convert it to product (black diamonds). Cells harboring more highly active 
enzymes will make more of the product molecule. (C) The product interacts with the RNA switch. Cells that 
make more product have a greater percentage of switches in the conformation where the output domain is 
misfolded and thus exhibit higher GFP fluorescence. (D) Cells can be screened by flow cytometry in clonal 
culture in 96-well plates. This screening method effectively limits library sizes to ~ 103, but can distinguish 
small changes in enzymatic activity. (E) Alternately, mixed cultures can be sorted by fluorescence-activated cell 
sorting (FACS). Using FACS, libraries of ~ 106–107 can be screened in a matter of hours, though with less 
precision than in 96-well plates. 

 

While yCDM1 produced theophylline, the enzymatic activity was low, making this a 

good model for a reaction in an engineered pathway that depends on an alternative enzyme 

reacting with a nonnative substrate. Therefore, I investigated whether the RNA-based 

biosensor would allow me to screen enzyme libraries in vivo by fluorescence and optimize the 

activity of the caffeine demethylase. Screening by fluorescence can be accomplished either in 

96-well plates or by FACS (Figure 2.4D-E). Screening in well plates is more precise, since 

many cells can be analyzed to determine the mean fluorescence of the population. When I 
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expressed yCDM1 in strain CSY492, a small but consistent increase in fluorescence was 

detected on addition of caffeine, indicating that the caffeine was demethylated to 

theophylline, which then activated the RNA switch and increased GFP expression (Figure 

2.4A-C and Figure 2.5B). Elimination of the catalytic activity of yCDM1 (Neeli et al., 2005) 

removed the fluorescence response to caffeine, demonstrating that the biosensor was 

specifically detecting the enzymatic production of theophylline (Figure 2.5B).  

 

Figure 2.5 One-color fluorescence response histograms. (A) Fluorescence histogram of CSY492 grown in the 
presence of theophylline, caffeine, or water. The screening strain has a graded response to theophylline and no 
response to caffeine. (B) Fluorescence histograms of CSY492 containing active (green) and inactive (blue) 
versions of yCDM1. The fluorescence increases when caffeine is added to cells containing the active enzyme 
but is unchanged when caffeine is added to cells with the inactive enzyme. (C) Fluorescence histograms of 
CSY492 containing yCDM1 (green) and yCDM6 (blue). The more-active enzyme produces a larger increase in 
fluorescence upon addition of caffeine. 
 

Because yCDM1 produced a very small change in fluorescence, I performed my 

initial screening in 96-well plates using flow cytometry. Measuring fluorescence by flow 

cytometry is a relatively slow process, potentially limiting the throughput of the resulting 

screen. In order to maximize the throughput, I streamlined the assay conditions by 

determining the optimal combination of cell density, flow rate, and acquisition time. Dense 

cell suspensions allow faster analysis but also increase the probability of clogs. Similarly, 

faster flow rates increase the analysis speed, but also raise the likelihood of analyzing 
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aggregates. Finally, I had to balance the need for accuracy, which required long acquisition 

times for precise population-level statistics, with the need for throughput. This optimization 

brought the assay time down to ~ 40 seconds per sample, compared to 7 minutes per sample 

for analysis by HPLC. Using these conditions, my library sizes were limited by the necessity 

of growing cells in 96-well plates rather than my ability to assay the cultures on the flow 

cytometer.  

Next, I generated a library of yCDM1 mutants by error-prone PCR and transformed 

them by gap repair into a high-copy expression plasmid in CSY492. Individual clones were 

selected from this library, grown in the presence of caffeine, and assayed for mean 

fluorescence and for theophylline production by HPLC analysis. A correlation was shown 

between the fluorescence change and theophylline levels (Figure 2.6A, inset), suggesting that 

screening by fluorescence would enrich the population for active enzymes. Therefore, I 

generated a new collection of ~ 800 yCDM1 mutants and measured the fluorescence of each 

mutant in the presence of caffeine. The brightest ~ 25% of the screened colonies were then 

assayed for theophylline production by HPLC analysis. The screened population showed a 

significant enrichment of active mutants relative to the unscreened library (Figure 2.6B). The 

enzyme variants with the highest activity were recloned to confirm activity, and the best 

validated mutants increased theophylline production by 50–80% relative to yCDM1. 
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Figure 2.6 Screening by fluorescence with an RNA-switch-based biosensor in 96-well plates enriches cells 
containing highly active enzymes. (A) Theophylline accumulation correlates to population mean fluorescence. 
Each point represents a single clonal culture from a population of random enzyme mutants, using either 
yCDM1 (blue) or yCDM6 (black) as the template. Inset shows only the data for the initial enzyme yCDM1. As 
the theophylline production increases, the fluorescence measurements become more discriminating. (B) 
Screening clonal cultures for high fluorescence levels allows enrichment of active enzymes. A library of random 
mutants of yCDM1 was constructed in yeast. The distribution of product accumulation (relative to yCDM1) 
was measured before (blue, 92 clones) and after (green, 208 clones) screening by fluorescence. Screening clonal 
cultures by fluorescence allows the identification of several enzymes with 50–80% improvements in 
accumulation. 
 

The improved mutants identified in the first screen encompassed a total of twelve 

amino acid mutations, which I randomly recombined to produce a new library and screened 

using the same criteria. I assayed ~ 1600 variants by fluorescence, and ~ 15% exhibiting the 

highest fluorescence levels were analyzed by HPLC. The best of the validated enzyme 

variants, a double mutant S72F/A603T identified as yCDM3, showed a 3.4-fold increase in 

theophylline production relative to yCDM1. The mutant yCDM3 was subjected to another 

round of random mutagenesis by error-prone PCR and shuffling of the resulting mutations, 

screening each library using the plate-based assay described above. This process yielded 

mutant yCDM5 with additional mutations Q27H, R47S, and F72I and an increase in 

theophylline production of 2.5-fold relative to yCDM3. However, attempts to identify 

further improved mutants of yCDM5 using flow cytometry-based screening in 96-well plates 

were unsuccessful, despite screening more than 5000 colonies. 
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2.2.4  Screening enzymes in single cells 

While screening by flow cytometry is significantly faster than screening directly by 

HPLC analysis, the throughput is still limited by the need to culture isolated colonies in 96-

well plates. Using such plate-based screening strategies, library sizes of ~ 103 are feasible, but 

even ~ 104 would be unwieldy. By moving to single-cell analysis and recovery with 

fluorescence-activated cell sorting (FACS), libraries of ~ 106–107 may be screened by 

fluorescence in a matter of hours (Chen et al., 2011b; Yang et al., 2010). However, single-cell 

measurements by FACS exhibit more variation than the population mean values collected 

through flow cytometry of clonal cultures. To minimize this variation, I used a modified 

screening system in which a constitutively expressed mCherry protein was used to normalize 

for extrinsic noise in gene expression (Liang JC, Chang AL, Kennedy AB, and CDS, in 

submission). This dual color screening system was integrated into the yeast chromosome to 

further reduce expression noise, yielding strain CSY820 (Figure 2.7A).  

 

Figure 2.7 Screening enzyme libraries by FACS allows significantly higher throughput. (A) A dual color 
biosensor allows screening by FACS. A second unregulated fluorescent reporter (mCherry) is used to normalize 
for the extrinsic expression noise, providing better resolution between cell populations exhibiting small changes 
in fluorescence. Fluorescence dot plots are shown for yeast harboring the two-color construct and expressing 
either active or inactive enzyme grown in 1 mM caffeine. (B) Screening single cells by FACS enriches for active 
enzymes. A library of random mutants of yCDM6 was constructed in yeast. The distribution of theophylline 
accumulation by members of the library were measured before sorting (blue), after a single positive sort (black), 
and after a total of three sorts (positive/negative/positive; green). Sorting virtually eliminated the inactive 
enzymes from the population and enriched for enzymes that are at least as productive as the parent. 



 32 

 
I constructed a library of yCDM5 mutants by error-prone PCR and transformed 

them into the dual color screening strain CSY820, producing ~ 106 transformants. This 

library was sorted three times: first, in the presence of caffeine and selecting for the brightest 

5% of cells by mCherry-normalized GFP fluorescence; second, in the absence of caffeine, 

selecting for the ~ 70% of cells that showed background levels of fluorescence; and third, in 

the presence of caffeine, selecting again for the brightest 0.5% of cells by normalized GFP 

fluorescence. Sorting by fluorescence reduced the library size from ~ 106 down to ~ 103. 

The resulting cells were isolated on agar plates and then screened by fluorescence in 96-well 

plates to further narrow the library. Screening ~ 750 colonies by flow cytometry and the top 

~ 250 by HPLC yielded mutant yCDM6, with a single additional mutation E435G and a 1.6-

fold increase in theophylline production relative to yCDM5.  
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Figure 2.8 Changing the plasmid copy number does not significantly affect enzymatic activity. (A) A Western 
blot demonstrates that total enzyme expression does not change as the DNA copy number is decreased. The 
enzyme contains a C-terminal V5 epitope, and the anti-actin antibody is used as a loading control. The relative 
expression values are calculated as the ratio of anti-V5 intensity/anti-actin intensity, normalized to yCDM6-
High. The blot shown is representative of three independent experiments. (B) Total theophylline production 
differs by less than 10% between yCDM6-High (green) and yCDM6-Low (blue). Theophylline elutes at 0.70 
minutes. (C) Fluorescence response histograms for yCDM6-High (green) and yCDM6-Low (blue). Despite the 
similar levels of theophylline production, the low-copy expression system shows a smaller change in 
fluorescence, presumably indicating lower theophylline per cell. (D) Growth curves for cells containing empty 
plasmid (black), yCDM6-High (green), yCDM6-Low (blue), or yCDM1 A264H (red). The curves are an 
exponential fit to the data. High-copy expression of yCDM6 causes a significant decrease in growth rate. 
Lowering the plasmid copy number relieves ~ 80% of the growth inhibition. While the cells with the low 
expression system may produce less theophylline per cell, they grow faster and therefore have more time to 
make theophylline, resulting in similar total production. 
 

While the FACS-based screen was successful, the sorts did not provide as strong an 

enrichment for active enzymes as I had expected. Upon further examination of the FACS 

protocol, I discovered that a subset of cells with inactive enzymes were growing significantly 

faster than those with active enzymes (Figure 2.8D). As a result, cells with inactive enzymes 

outcompeted the cells with active enzymes during the growth phases between sorting runs, 

thus limiting the enrichment from the FACS-based screen. This effect was not dependent on 



 34 

catalysis, as a catalytically inactive mutant still showed growth inhibition (Figure 2.8D). To 

relieve the stress associated with enzyme overexpression, yCDM6 was moved from a high-

copy 2μ plasmid to a centromeric plasmid. Despite the expected change in enzyme DNA 

copy number (~ 10x), the total enzyme expression did not change significantly (Figure 2.8A) 

and the supernatant theophylline concentration decreased by less than 10% (Figure 2.8B). 

However, lowering the enzyme expression increased the growth rate of cells with active 

enzyme near that of cells with an empty plasmid (Figure 2.8D). Using this new expression 

system, sorting by FACS was shown to enrich a library for active enzymes (Figure 2.7B). 

Two more rounds of random mutagenesis by error-prone PCR and FACS-based screening 

led to the identification of mutant yCDM8, with 1.7-fold higher theophylline production and 

additional A87S/I174V mutations relative to yCDM6. Overall, the theophylline production 

increased 23.2±2.5-fold relative to yCDM1 (Figure 2.9). I also calculated the ratio of 

apparent vmax to apparent KM for each enzyme (Figure 2.9A). This ratio increased by 33±4-

fold relative to yCDM1 (Figure 2.9B). 

 

Figure 2.9 Screening by fluorescence repeatedly identifies improved enzyme variants. (A) Theophylline 
production as a function of substrate concentration for the evolved enzyme variants. Cells containing each 
enzyme were grown in the presence of a range of caffeine concentrations. The resulting data were fit to a 
Michaelis-Menten equation to determine the apparent KM and apparent vmax. The error bars show ± one 
standard deviation, calculated from three biological replicates. (B) Summary of improvements over the course 
of the evolution process. The data shown are the average of three biological replicates, with standard deviations 
listed in Table 2.4. 
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2.2.5  Characterization of improved mutants 

I next sought to understand the mechanism leading to the increased activity of the 

evolved enzymes. The RNA switch-based screening strategy identifies improved enzymes 

based on the final product concentration. In general, there are two paths through which 

product titers could improve: either by increasing enzyme expression or by increasing the 

specific activity of the enzyme. Western blot analysis indicates that total enzyme expression 

does not increase significantly over the course of the evolution (Figure 2.10A), although I 

cannot rule out an increase in the fraction of active, properly folded enzyme. However, the 

apparent KM decreases from 1.5±0.1 mM to 0.69±0.04 mM, and the product selectivity (the 

ratio of the desired product, theophylline, to the undesired side product, paraxanthine) 

increases from 10.3±0.5 to 230±20 (Figure 2.10B). There was no selective pressure for 

product selectivity applied over the course of the evolution; simply selecting for theophylline 

production appears to have imposed a selection against paraxanthine. The apparent KM 

stabilizes at ~ 700 µM, approaching the KM of 290 µM for the wild-type BM3 with one of its 

native substrates, lauric acid (Noble et al., 1999). Since the assays were conducted while 

feeding 1 mM caffeine, a mutant with lower apparent KM would not show significant 

enrichment, as the parent is already attaining 60% of vmax. Both of these measures, the 

apparent KM and product selectivity, suggest that the specific activity of the enzyme is 

increasing. 
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Figure 2.10 Enzyme characterization suggests that the screening strategy selected for improved catalysis. (A) A 
Western blot shows no significant increase in total enzyme expression over the course of the evolution process. 
The enzyme contains a C-terminal V5 epitope, and the anti-actin antibody is used as a loading control. The 
relative expression is reported as the ratio of anti-V5 intensity to anti-actin intensity, normalized to yCDM1. 
The blot shown is representative of three independent experiments. (B) As the theophylline production 
increases, the apparent KM decreases and the product selectivity (the ratio of the product theophylline to the 
side product paraxanthine) increases. The lines shown are a guide for the eye, and error bars show ± one 
standard deviation calculated from three independent experiments. (C) A homology model of yCDM1, 
indicating the initial mutations to yCDM1 (blue) and the new mutations in yCDM8 (green). Catalysis occurs at 
the upper face of the central heme group, and the substrate channel begins in roughly the upper-right corner. 
The mutations cluster around the active site and substrate channel. (D) Enzyme thermostability decreases as 
the enzymatic activity increases. The T50 measures the temperature at which a 10 minute incubation inactivates 
50% of the enzyme population in vitro. Previous studies have shown that when the thermostability drops below 
~ 44 oC (indicated by the red shading), further evolution becomes difficult. The T50 for wild-type BM3 is 
shown for comparison from previously published data (Fasan et al., 2007). The lines are a guide for the eye, 
and error bars show ± one standard deviation calculated from three independent experiments. 
 

I next examined the location of the mutations to determine whether they were 

consistent with an increase in catalytic efficiency. The heme domain mutations generally 

cluster around the substrate channel and enzyme active site (Figure 2.10C), as I would expect 

for mutations that improve catalysis on a new substrate. For example, R47 has been 

implicated in binding to the carboxylate of the native fatty acid substrate, a role that is no 

longer necessary with caffeine as the substrate (Graham-Lorence et al., 1997). Similarly, F87 
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sits at the other end of the substrate channel and controls the positioning of the substrate 

near the heme (Graham-Lorence et al., 1997). This residue was mutated twice: to alanine in 

yCDM1 and to serine in yCDM8. S72 forms a portion of the binding pocket surrounding 

the heme. The initial mutations in CDM1 (Table 2.3) radically restructured the binding 

pocket, and the series of mutations to S72, first to phenylalanine and then to isoleucine, 

represent further modifications to optimize the pocket. The location of the mutations, in 

combination with the increased affinity and selectivity of the enzyme, strongly suggest that I 

have selected for improved catalysis rather than increased expression in S. cerevisiae. 

The final caffeine demethylase, yCDM8, has a total of 14 mutations from wild-type, 

many of which are nonconservative. In general, most mutations are destabilizing (Bloom et 

al., 2006) and, as expected, the demethylase stability decreases during its evolution (Figure 

2.10D). Previous studies have suggested that enzyme stability must stay above a threshold 

value in order to properly fold (Bloom et al., 2006). When the enzyme stability drops too 

low, further evolution becomes extremely difficult since mutations must increase activity 

without decreasing stability. BM3 unfolds irreversibly, so standard measures of protein 

folding energy are inappropriate. Instead, we can quantify the protein stability by the 

temperature at which a 10 minute incubation causes 50% of the enzyme to unfold, known as 

the T50. For BM3, the threshold at which further evolution becomes difficult is estimated at a 

T50 of ~ 44 °C (Fasan et al., 2007). Starting with yCDM3, the thermostability of the evolved 

enzymes is sufficiently low as to restrict the accessible mutations. As long as the library sizes 

are limited by screening clonal populations in 96-well plates, low thermostability would 

require enzyme stabilization before further beneficial mutations are accessible (Fasan et al., 

2007). I believe that low thermostability explains my inability to find improved mutants of 

yCDM5 when screening in 96-well plates. However, since screening by FACS allows much 
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larger libraries to be investigated, increasingly rare beneficial mutations can still be identified 

even for an unstable enzyme. In support of this hypothesis, all of the mutations identified by 

the FACS-based screening strategy increase activity without decreasing stability. 

 

2.2.6  Comparison to in vitro evolution 

It was not initially evident that yCDM1 would produce sufficient theophylline to 

active the RNA switch in vivo. Therefore, in addition to screening variants of the caffeine 

demethylase in S. cerevisiae, I also attempted to evolve CDM1 in vitro, in E. coli cell lysate. 

While I ultimately wanted to increase the enzymatic activity in S. cerevisiae, established 

protocols were available for evolving the demethylase in vitro. I screened ~ 1,600 variants of 

CDM1 in vitro, identifying improved enzymes based on increased total turnover quantified by 

measuring the formaldehyde produced as a by-product of demethylation. I rescreened the 

top 35 hits in vitro in replicate, then cloned the best eight into a yeast expression vector to 

determine their activity in vivo. The best variant, a triple mutant K202Q/F331S/P346H 

denoted CDM2b, showed roughly a twofold increase in activity in vitro and a 1.3-fold 

increase in activity in vivo (Figure 2.11B). It is important to note that this mutant was 

identified as the best variant in vivo; there were enzyme variants that showed larger 

improvements in vitro, but these variants were less active in vivo than CDM2b (Figure 2.11A). 

Screening ~ 2,000 variants of CDM2b in vitro, rescreening 52 in vitro, and testing 7 in vivo 

identified a single additional beneficial mutation, N283I. The quadruple mutant, named 

CDM3b, showed an overall increase of 2.6-fold in vitro and 1.8-fold in vivo (Figure 2.11). 
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Figure 2.11 Summary of in vitro enzyme evolution. (A) Comparison of activity in vitro and in vivo  for mutants of 
CDM2b. Several enzymes that were more active than parent in vitro were not improved in vivo. (B) Caffeine 
demethylases were screened in E. coli cell lysate, then cloned into a yeast expression vector to assay activity in 
live S. cerevisiae. As expected, the activity increased faster in vitro than in vivo. 
 

These results illustrate a common difficulty in directed evolution, where a round of 

evolution improves the property that is screened for, rather than the property that is desired. 

I screened for activity in vitro but wanted activity in vivo. There is a correlation between those 

two properties, demonstrated by the presence of improved variants among the ~ 8 that I 

tested in vivo, but the correlation is poor. Many of the mutants that were improved in vitro 

were similar or worse than parent in vivo, and I undoubtedly missed many potential 

mutations that increased the enzyme activity in vivo but not in vitro (Figure 2.11A). The amino 

acid mutations that I identified in vitro do not overlap with the mutations identified by 

screening in vivo, consistent with the expectation that these two screening methods would 

select for traits that only partially overlap.  

 

2.2.7  Increasing thermostability also increases mutational tolerance 

While running further controls, I identified a serendipitous mutant that added two 

additional mutations, D80G/S332P, to CDM3b to yield CDM4b and a further 1.5-fold 

increase in activity in vivo. However, I was unable to find further mutations in this lineage 

that increased activity in vivo, despite screening ~ 4,000 variants among several different 
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libraries. I hypothesized that low thermostability was limiting the available mutations. 

Consistent with this hypothesis, measurements of the enzyme thermostability showed that 

CDM4b had a T50 of ~ 42.5 °C (Figure 2.12A), low enough to limit the utility of screening 

colonies in well plates. I used site-directed mutagenesis to introduce a collection of 

mutations that had been shown to be thermostabilizing in a different lineage of BM3 

mutants (Fasan et al., 2007). A combination of two additional mutations, adding 

I366V/E442K to produce CDM5b, increased the T50 from 42.5 °C to 47.0 °C, roughly the 

same T50 as CDM1 (Figure 2.11A).  

 

Figure 2.12 Increasing enzyme thermostability improves mutational tolerance in vivo. (A) T50 measurements for 
in vitro BM3 lineage. Enzyme evolution reduces the thermostability, but the rational introduction of 
I366V/E442K restores the initial stability. (B) Increasing thermostability increases mutational tolerance. A 
single mutagenic PCR was performed on residues 86-326 and transformed into three different vector 
backbones: CDM4b, CDM4b+E442K and CDM4b+E442K/I366V. 90 clones from each library were tested 
for activity relative to the unmutated backbone. Each point represents a single variant from the resulting 
library, rank ordered by relative activity. The stabilized enzymes can better tolerate mutations, reflected in the 
rightward shift of the distribution. 
 

I next tested whether the increase in enzyme thermostability would also increase the 

mutational tolerance. I performed a single mutagenic PCR on residues 86-326 and 

transformed the resulting library into S. cerevisiae in vivo using gap repair to replace residues 

86-326 of CDM4b, CDM4b+E442K, and CDM4b+I366V/E442K. I then measured the 

enzymatic activity of 90 members of each library, normalizing by the activity of the 

appropriate unmutated parent (Figure 2.12B). The distribution of mutations in each 
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population should be the same, since they all are derived from a single error-prone PCR. 

Differences in the resulting distribution of activities reflects the ability of the remaining 

portion of the enzyme to tolerate those mutations. The stabilized enzymes can better tolerate 

destabilizing mutations, and as a result the libraries built from these enzymes show more 

folded, active clones. Unfortunately, the I366V/E442K mutations did not stabilize the 

enzymes from the BM3 lineage that had been evolved exclusively in vivo, indicating that the 

stabilizing mutations compensated for disruptions due to the specific set of mutations 

accumulated in vitro. 

Finally, when I introduced further mutations to CDM5b, screening either in vitro or in 

vivo using well plates, I was unable to identify further improvements in vivo. I found mutants 

that showed improved activity in vitro, but despite the increased mutational tolerance of 

CDM5b none showed improved activity in vivo. Due to the success of the lineage screened 

exclusively in vivo, I chose to pursue that lineage instead. 

 

2.3  Discussion 

I have developed a novel high-throughput screen for enzyme activity in vivo. The 

core element of the in vivo screen is a synthetic RNA switch that connects the concentration 

of an enzymatic product to an easily screenable phenotype such as GFP fluorescence. Flow 

cytometry can then be used to distinguish small changes in fluorescence and therefore 

identify relatively small changes in activity. FACS allows screening of significantly larger 

libraries, ~ 107 rather than ~ 103, though with correspondingly lower accuracy. Using the 

two methods in combination allows efficient identification of improved mutants from a large 

library of enzyme variants. When this screening system was applied to optimize a novel 

caffeine demethylase, seven rounds of screening increased the enzyme activity in vivo by 33-
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fold and the product selectivity by 22-fold. 

It is important to note that, in contrast to many other screening platforms, this 

RNA-based screening system directly identified enzyme variants showing improved activity 

on the desired substrate and under the desired conditions. Since the RNA switch is highly 

specific for theophylline, I did not identify any false positive screening hits due to 

promiscuous production of the side product paraxanthine. Similarly, as the screening 

conditions are the same as the production conditions, potential screening hits need only be 

validated for consistency rather than tested with authentic substrates or new assay 

conditions. Correspondingly, the validation rate was extremely high; virtually all of the initial 

screening hits were at least as active as the parent enzyme, and the top enzyme(s) from the 

screening were typically the most improved variants after validation.  

Additionally, by performing the enzyme screening in vivo, I impose a selective 

pressure against deleterious interactions between the enzyme and the host cell. This selective 

pressure may explain the selection for improved catalysis rather than increased expression. 

Expression of the enzyme from a high-copy plasmid placed significant stress on the host 

cell, reflected in a lower growth rate. Any further increase in enzyme expression would be 

counteracted by an increase in the cellular stress, producing little or no improvement in the 

product concentration. If screening had not been performed under the same conditions as 

production, this additional selective pressure to keep enzyme expression low might have 

been lost, leading to the identification of enzyme variants that were improved under the 

screening conditions but not under the production conditions. Similarly, evolving the 

enzyme in vivo was significantly more efficient than evolving it in vitro. While the enzyme’s 

activity in vitro was correlated to its activity in vivo, the correlation was weak. I identified many 

false positives, where a mutation was beneficial in vitro but neutral or deleterious in vivo, and 
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undoubtedly missed many false negatives, mutations that were beneficial in vivo but neutral or 

deleterious in vitro. Finally, the in vitro evolution plateaued after a ~ 4 fold increase in activity, 

compared to 33-fold in vivo. While I cannot draw any conclusions from a single evolutionary 

trajectory in each situation, I have seen no benefit to screening in vitro when an in vivo screen 

is available. 

The in vivo biosensor is sensitive to a roughly 500-fold range of exogenous input 

concentrations, from ~ 10 µM to ~ 5 mM, though the output is no longer linear above ~ 1 

mM. However, if the parent enzyme produces metabolite concentrations outside this range, 

either above or below, the sensor will not be able to identify improved variants. If the 

product concentration is too high, further screening will require reduced enzyme levels 

(Neuenschwander et al., 2007), lower substrate concentrations, or a modified RNA switch 

with a different affinity for the ligand (Zimmermann et al., 2000). Similarly, low levels of 

enzymatic activity require high substrate concentrations and precise screening of smaller 

libraries with a flow cytometer. For example, in order to maximize the signal from the 

biosensor, I used a substrate concentration that is close to the upper limit at which toxicity 

effects are observed for yeast. However, as long as the initial enzyme activity provides a 

small signal from the biosensor, the evolution process can provide a beneficial cycle whereby 

increased enzymatic activity makes the screening process more powerful and better screens 

then allow the identification of mutants with further increases in activity. The choice of 

screening conditions will determine the final enzyme properties, such as the apparent KM 

and apparent vmax. For instance, screening at a lower substrate concentration will apply 

additional selective pressure to minimize the apparent KM. By varying the selection 

conditions, either by choice or necessity, researchers can tune the properties of the resulting 

enzymes.  
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Modular RNA switches provide a flexible and generalizable screening platform for 

performing directed evolution in vivo and, in the future, will be used to develop advanced 

metabolic pathway optimization strategies. Since the synthetic RNA switches are modular, 

aptamers to desired metabolites can be selected de novo and integrated into existing switch 

platforms. For example, the theophylline aptamer used in this work was replaced with an 

aptamer to the polyketide tetracycline (Berens et al., 2001) to produce a tetracycline-

responsive switch (Win & Smolke, 2007). While there are certain classes of molecules, such 

as short chain alkanes, that are unlikely to participate in specific binding interactions with 

RNA, aptamers have been selected against a wide range of metabolites and cofactors (Berens 

et al., 2001; Lorsch & Szostak, 1994; Mannironi et al., 1997; Sinha et al., 2010; Werstuck & 

Green, 1998; Win et al., 2006; Zimmermann et al., 2000), suggesting that there are many 

biosynthetic pathways to which this strategy may be applied. Additionally, since aptamers 

can be selected to discriminate between closely related molecules, multiple RNA switches, 

each responding to a different metabolite and controlling a different fluorescent reporter, 

could enable screening of several points along an engineered pathway or simultaneous 

screening for a desired product and against an undesirable side product.  

However, these future applications may be more effective if they incorporate 

biosensors with a higher signal-to-noise, either using RNA switches with a greater fold 

change in output or using a nonlinear amplifier (Karig & Weiss, 2005) to increase the output 

of an existing RNA switch. In addition, the broad application of RNA switches to metabolic 

pathways will benefit from improved methods for rapidly selecting aptamers to new small 

molecules of interest, particularly aptamers that can distinguish between families of 

metabolites that differ by small functional groups. Finally, once an RNA switch is 

constructed and used to increase the activity of a metabolic pathway, researchers can take 
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inspiration from natural riboswitches (Winkler et al., 2004) and adapt that same engineered 

RNA switch to dynamically regulate flux through the pathway in response to changing 

metabolite and cofactor levels by coupling the switch to the control of targeted pathway 

enzymes. Such dynamic control strategies can be used to design sophisticated synthetic 

metabolic networks that use cellular resources more efficiently (Chubukov et al., 2012; 

Zaslaver et al., 2004), minimize accumulation of toxic intermediates (Farmer & Liao, 2000), 

and improve the reliability of the engineered pathway (Bennett et al., 2008). 

 

2.4  Methods 

2.4.1  General molecular biology techniques 

Restriction enzymes, T4 DNA ligase, and other cloning enzymes were obtained from 

New England Biolabs (Ipswich, MA). PfuUltraII (Agilent Technologies, Santa Clara, CA) 

was used for high-fidelity PCR amplification. Oligonucleotides were synthesized by 

Integrated DNA Technologies (Coralville, IA) and the Stanford Protein and Nucleic Acid 

Facility (Stanford, CA). Standard molecular biology techniques were used for DNA 

manipulation (Sambrook & Russell, 2001). Ligation products were transformed into 

electrocompetent DH10B (Invitrogen, Carlsbad, CA; F-mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80dlacZΔM15 ΔlacX74 deoR recA1 endA1 araD139 Δ (ara, leu)7697 galU galK λ-rpsL 

nupG) using a Gene Pulser Xcell System (Bio-Rad, Hercules, CA). Individual plasmids were 

transformed into yeast using standard lithium-acetate methods (Gietz & Woods, 2002). 

Escherichia coli were grown in LB media (BD, Franklin Lakes, NJ) with 100 µg/mL 

ampicillin (EMD Chemicals, Gibbstown, NJ). Yeast were grown in YPD or appropriate 

dropout media (Clontech, Mountain View, CA) with 2% glucose. Plasmids were prepped 

from overnight cultures of E. coli and S. cerevisiae using Spin Columns (Epoch Biolabs, 
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Missouri City, TX) and Zymoprep Yeast Plasmid Miniprep II kit from Zymo Research 

(Irvine, CA), respectively, according to the manufacturers’ instructions. Sequencing was 

performed by Laragen Inc. (Los Angeles, CA) and Elim Biopharmaceuticals (Hayward, CA). 

Caffeine, theophylline, and paraxanthine were obtained from Sigma-Aldrich (St. Louis, MO). 

 

2.4.2  In vitro enzyme screening 

In vitro enzyme screening in E. coli cell lysates was performed as described previously 

(Peters et al., 2003). I began with a panel of 95 enzymes that had been semi-rationally 

designed for hydroxylation of short chain alkanes (Chen et al., 2012). The original enzyme 

library had been tested for activity on caffeine during the initial screening. The subset of 95 

enzymes used in this work had shown measurable caffeine demethylase activity in vitro. 

Cleared lysates were incubated with 10 mM caffeine and 2 mM NADPH (Gevo, Englewood, 

CO). The enzymatic products were assayed using HPLC to confirm that demethylation 

occurred at the 7-position to produce theophylline. Top hits were cloned into the high-copy 

2µ S. cerevisiae expression vector for in vivo characterization of activity. 

 

2.4.3  Construction of the S. cerevisiae enzyme expression vectors 

The original BM3 variants were present on the E. coli expression vector pCWori. The 

coding regions were amplified by PCR using primers BM3-FromWori-FWD and BM3-

FromWori-REV. The BM3 mutants were cloned between the EcoRI and NotI sites of a 2μ 

shuttle plasmid containing a URA marker (Hawkins & Smolke, 2008). Each gene was placed 

between a strong mutant TEF promoter (mutant #6) (Nevoigt et al., 2006) and a CYC1 

terminator. Enzyme yCDM1 was generated by synthesis of a yeast codon optimized version 

of the CDM1 enzyme (GENEART, Regensburg, Germany). A V5 epitope tag and an 
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additional six histidines were added to the C terminus of the synthesized enzyme for blotting 

and purification experiments. The synthesized enzyme was then cloned between the same 

EcoRI and NotI sites as CDM1. Enzyme yCDM6 was amplified from the 2μ shuttle plasmid 

using primers TEF-FWD and yCDM-CEN-REV and cloned between the EcoRI and AvrII 

sites in the centromeric (CEN6/ARSH4) shuttle plasmid pCS1585 (Liang JC, Chang AL, 

Kennedy AB, and CDS, in submission). During the recloning process, the CYC1 terminator 

was replaced with the ADH1 terminator. Plasmid maps for representative constructs used in 

this study are provided in Figure 2.13. 
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Figure 2.13 Plasmid maps. (A) pCS2223, the single-color integration vector used to construct CSY492. (B) 
pCS2224, the dual color integration vector used to construct CSY820. (C) pCS2172, the E. coli expression 
vector with yCDM1, used for T50 measurements. (D) pCS2155, the high-copy yeast expression vector with 
yCDM1. (E) pCS2167, the low-copy yeast expression vector with yCDM6. (F) The sequence and predicted 
structure of L2B8 (adapted from Win and Smolke, 2007) 
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2.4.4  Product biosensor yeast strain construction 

The theophylline-sensing yeast strain CSY492 was constructed from W303α (MATα 

leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15). Previous work used a theophylline-

responsive ON switch L2b8 behind yEGFP under the control of a GAL1/10 promoter in a 

centromeric plasmid (Win & Smolke, 2007). I first cloned the constitutive TEF1 promoter 

between EcoRI and SacI, replacing the GAL1/10 promoter. This expression construct, 

PTEF1-GFP-L2B8-ADH1T, was then cloned between the SacI and KpnI sites of the 

pIS385 yeast disintegrator vector (Sadowski et al., 2007). The resulting plasmid, pCS2223, 

was used to integrate the RNA switch-GFP construct into the lys2 locus of W303 and then 

remove the URA-selectable marker as previously described (Sadowski et al., 2007), 

producing strain CSY492. Alternately, I used a construct containing pTEF-mCherry-CYC1T 

upstream of the RNA switch-GFP expression cassette, pCS1748 (Liang JC, Chang AL, 

Kennedy AB, and CDS, in submission). This dual fluorescence construct was cloned into the 

disintegrator plasmid, resulting in pCS2224, and integrated into the W303 chromosome, 

using the same methods as before, producing strain CSY820. 

 

2.4.5  Random mutagenesis 

Briefly, error-prone PCR (epPCR) was performed using the GeneMorphII kit 

(Agilent Technologies). Libraries that were screened in vivo used primers yMutF and yMutR, 

while those screened in vitro were constructed using Heme MutF and Heme MutR. Typically, 

four epPCR reactions were performed for each library to produce a range of mutation rates.  

For the in vivo screening, epPCR products were treated with DpnI, purified, and 

reamplified in 2x100 μL reactions per template using Pfu. For each epPCR, 1 μg of recipient 

vector was linearized with EcoRI, MscI, and AleI. Insert and vector were combined, 
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phenol/chloroform extracted, ethanol precipitated, and then electroporated into CSY492 

(Chao et al., 2006). Each transformation was plated at a range of dilutions to determine the 

transformation efficiency.  

For FACS screening, the initial epPCR products were split. One fraction was 

amplified by PCR using Pfu, transformed by gap repair into CSY492, and 46 clones per 

epPCR were screened in 96-well plates using HPLC analysis. The epPCR product that 

produced the best distribution of activities, aiming for ~ 20% active enzymes, was then 

reamplified into 8x100 μL PCR reactions using Pfu and transformed by gap repair into 

CSY820. The remaining portion of the selected epPCR was then reamplified in 8x100 μL 

PCR reactions and transformed into CSY820, using the same method as described earlier, to 

construct the final sorting library. 

For the in vitro screening, the epPCR reactions and pCWori-CDM1 plasmid were 

digested overnight with BamHI and SacI. The plasmid was treated with calf intestinal 

phosphatase and gel purified. The digested PCR products were cleaned up on a PCR column 

(Qiagen). The resulting insert and vector were ligated together and transformed into 

ElectroMax electrocompetent E. coli (Invitrogen). The resulting libraries were screened as 

described previously.  

 

2.4.6  Library shuffling 

Mutations from four round 2 variants (Supplementary Table 3) were shuffled to 

produce the round 3 library. These mutants encompassed a total of 12 mutations. Primers 

were designed that bound in the regions separating each adjacent mutation (Primers 30F 

through 663F, Supplementary Table 2). These primers, as well as their reverse complements 

(Primers 30R through 663R) were synthesized. For each mutation, the primers bracketing 
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that mutation (for example, 30F and 60R) were used to amplify either the mutant template 

or parent. The resulting PCRs were cleaned up and mixed at a 2:1 ratio of parent to mutant 

fragment. The fragments were then stitched together by overlap PCR, amplified using 

yMutF and yMutR, and transformed into yeast as described above. In addition, mutations 

from four round 4 variants, comprising 9 mutations (Table 2.3), were shuffled together using 

a similar strategy to produce the library from which yCDM5 was identified. 

 

2.4.7  Growth conditions for liquid culture S. cerevisiae assays 

Yeast cultures were grown in 96-well plates (BD Falcon) using AeraSeal film (Excel 

Scientific, Victorville, CA) to allow for thorough aeration. Colonies were picked from agar 

plates with toothpicks, inoculated into 400 μL of SD-Ura media, and grown for 24 hours in 

a Kuhner LT-X plate shaker at 30 ºC, 480 RPM, a 1.24 cm orbital diameter, and 80% 

humidity. The cultures were subsequently backdiluted 100x into fresh SD-Ura with or 

without 1 mM caffeine and regrown for an additional 24 hours.  

 

2.4.8  Flow-cytometry-based library screening 

At the beginning of each screen, four libraries were constructed and tested to 

identify the library with the appropriate mutation rate. In these initial tests, 46 clones per 

transformation were grown as described previously and assayed for fluorescence and 

theophylline production. Based on the apparent mutation rates evident from the activity 

distribution of the populations one transformation was chosen for further screening, 

typically aiming for 50% of the population to retain significant activity.  

When screening enzyme libraries, transformants were grown in 96-well plates and 

assayed for fluorescence. Yeast cultures harboring the enzyme expression vectors and 
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integrated metabolite-sensing device were diluted 4x into water and assayed for fluorescence 

in 96-well plates on a Beckman Quanta flow cytometer. Cells were excited at 488 nm and 

GFP fluorescence was measured at 525 nm. Samples were gated first by electronic volume 

and side scatter to capture the cell population and then by fluorescence to remove the 

outliers with significantly low fluorescence. Approximately 8,000 cells were analyzed for each 

culture. The geometric mean fluorescence, normalized by the electronic volume, was then 

compared to the parental control. The brightest clones were selected for further screening by 

HPLC analysis. After a library was screened by both methods, the clones with the highest 

theophylline production (typically 10–35) were rescreened in triplicate by fluorescence, both 

with and without caffeine, and assayed for theophylline production. Consistent hits were 

sequenced and recloned by gap repair into fresh vector backbone to confirm that changes in 

activity were enzyme dependent. The top hit(s) after recloning were chosen as the template 

for the next round of evolution or shuffling as appropriate.  

 

2.4.9  FACS-based library screening 

Immediately following the gap repair transformation, the FACS library was diluted 

into 250 mL of SD-Ura. Dilutions of the transformation culture were plated on SD-Ura 

plates to determine the library size. The library culture was diluted into fresh SD-Ura every 

24 hours. The initial dilution factor was tenfold, increasing to 30-fold and then 100-fold for 

the final presort dilution 24 hours prior to sorting. In a positive sort, caffeine was added to 

the growing culture to a final concentration of 1 mM during the final back-dilution. In a 

negative sort, the culture was grown in the absence of caffeine. Immediately prior to sorting, 

cells were centrifuged at 6,000 g for 5 minutes at 4 °C. The supernatant was discarded, the 

cells were resuspended in 1x phosphate buffered saline + 1% bovine serum albumin 
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(Fraction V, EMD Chemicals), stained with DAPI (Invitrogen), and filtered through a 40 μm 

cell strainer (BD Falcon). The cells were sorted using a BD Aria II sorter at the Stanford 

Shared FACS Facility. GFP was excited at 488 nm and captured by a 505 nm beam splitter 

and a 525/20 nm bandpass filter. mCherry was excited at 532 nm and captured by a 600 nm 

beam splitter and a 610/20 bandpass filter. DAPI was excited at 355 nm and captured by a 

450/50 bandpass filter. Viable cells were isolated by gating on forward vs. side scatter, 

followed by a viability gate for DAPI negative cells. The cells resulting from one sort were 

grown overnight, then back-diluted 100-fold into the appropriate media (with or without 

substrate) and grown for 24 hours before the next sort. 

 

2.4.10  HPLC methods 

During screening, metabolite analysis was performed on an XDB-C18 2.1 x 50 mm, 

3.5 μm column (Agilent Technologies). I injected 5 μL of sample onto the column. The 

mobile phase was 0.35 mL/min of 15% methanol/85% water with 0.1% acetic acid. 

Theophylline eluted at 1.65 minutes and was detected by UV absorbance at 274 nm. Culture 

supernatant from wild-type W303 showed no detectable peak. I switched to a Poroshell 120 

SB-C18 2.1 x 50 mm, 2.7 μm column (Agilent) for the final two rounds of screening and the 

enzyme characterization, since the Poroshell column allowed shorter HPLC runs. The 

mobile phase was 0.50 mL/min of 20% methanol/80% water with 0.1% acetic acid. Using 

the Poroshell column, theophylline eluted at 0.70 minutes. For each sample, 3 μL was 

injected onto the columns. The identity of the theophylline peak was confirmed with each 

assay by the use of an authentic standard (Sigma-Aldrich), and the concentration of 

theophylline in each sample was determined by comparison to a series of reference 

standards. 
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2.4.11  Thermostability assays 

Mutant CDM enzymes were moved from the S. cerevisiae expression vectors into 

pCWori for protein expression in E. coli. Enzymes were PCR amplified from the appropriate 

yeast vectors using primers yCDM-ToWori-FWD and yCDM-ToWori-REV and cloned 

between the BamHI and EcoRI sites of pCWori. Lysates of E. coli cells expressing the 

mutant CDM enzymes were prepared in the same fashion as for in vitro screening. Cleared 

lysate was incubated for 10 minutes at temperatures ranging from 30 °C to 55 °C and then 

cooled on ice. Reactions were set up with 140 μL of heat-treated lysate, 20 μL of 20 mM 

NADPH (Sigma), and 40 μL of 25 mM caffeine, incubated for 2 hours at room temperature, 

and centrifuged at 16,000 g for 10 minutes at 4 °C. The reactions were then assayed by 

HPLC for residual enzymatic activity. T50 values were calculated as the temperature at which 

50% of the residual theophylline production remained following the 10 minute heat 

inactivation. Three technical replicates were conducted at each temperature for each enzyme. 

Each inactivation curve was fit to an Arrhenius model, and the fit was used to calculate the 

T50. This entire process, beginning with fresh lysate, was performed three times. The 

reported T50 values are the average of the three independent measurements. 

 

2.4.12  Determination of apparent kinetic constants 

To determine the apparent KM of the enzymes, each enzyme was grown overnight in 

5 mL of SD-Ura. They were then backdiluted 100-fold into 96-well plates containing 400 µL 

of fresh SD-Ura with a range of caffeine concentrations (0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0 

mM) and grown for 24 hours. Three biological replicates were performed at each substrate 

concentration. A Michaelis-Menten curve was fit to the data using MATLAB (MathWorks, 
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Natick, MA) to determine the apparent KM and apparent vmax. This process, beginning with 

fresh overnight cultures, was performed three times and the reported kinetic constants are 

the average of the three independent measurements. 

 

2.4.13  Western blots 

Yeast strains harboring the appropriate enzyme expression constructs were grown 

overnight in 5 mL of SD-Ura. Protein extraction was carried out using 0.1 M NaOH 

(Kushnirov, 2000) followed by lysis in protein loading buffer (Invitrogen). Samples and 

ladder (New England Biolabs P7711S) were resolved on 4–12% Bis-Tris SDS-PAGE gels in 

1x MOPS (Invitrogen). Protein was transferred to a nitrocellulose membrane using semidry 

transfer (Bio-Rad) in 2x NuPAGE transfer buffer (Invitrogen) + 10% MeOH. After 

transfer, the membrane was cut in half at ~ 55 kDa. Both membrane halves were blocked in 

5% BSA for 1 hour. The membrane with higher-molecular-weight proteins was blotted with 

an anti-V5 HRP antibody according to the manufacturer’s instructions (Invitrogen). The 

membrane with lower-molecular-weight proteins was blotted with a mouse anti-actin 

antibody (Abcam 8224, Cambridge, UK) and a rabbit anti-mouse HRP (Abcam 6728) 

according to the manufacturer’s instructions. Both HRP antibodies were detected by 

chemiluminescence, following the manufacturer’s instructions, (Pierce, Rockford, IL) using a 

Chemi-Doc XRS imager (Bio-Rad). Blots were analyzed using the QuantityOne analysis 

software (Bio-Rad).  

 

2.4.14  Enzyme stabilization 

Site directed mutagenesis was used to introduce potentially stabilizing point 

mutations into CDM4b. Three mutations previously shown to be stabilizing (L52I, I366V, 
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E442K) and one reversion (H346P) were introduced singly and in combination using the 

Quikchange mutagenesis method with PfuUltra (Agilent) and the appropriate primers listed 

below. Mutagenesis was confirmed using the respective screening primer, designed to have 

the 3’ base match the newly mutated residue. Each PCR screening reaction was optimized to 

ensure that unmutated DNA gave poor or no amplification while the correct mutated 

residue was more strongly amplified.  

Once the mutants were constructed, error-prone PCR was conducted on a single 

CDM4b template using primers Stability TestF and Stability TestR to mutate residues 86-

326. The resulting PCR product was then transformed into each mutant backbone in S. 

cerevisiae using gap repair as described previously. 90 members were picked from each library 

and compared to the respective unmutated backbone (e.g., the CDM4b+E442K library was 

compared to the CDM4b+E442K parent). The distribution of activities in the resulting 

library showed the extent to which the mutations increased the enzyme’s mutational 

tolerance in vivo. 
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2.5  Tables 

Table 2.1 Primers used in this chapter 

Primer Name Primer Sequence 

BM3-FromWori-
FWD 

5’-TATAGAATTCGATATCAAGCTTGGAGATCTAAAAGAA 
AACAATGACAATTAAAGAAATGCCTCAG-3’ 

BM3-FromWori-
REV 

5’-CTATGCGGCCGCTCACCCAGCCCACACGTCTTTTG-3’ 

TEF-FWD 5’-ACTTCTTGCTCATTAGAAAGAAAGC-3’ 
yCDM-CEN-REV 5’-TATACCTAGGCTTCAATGGTGGTGGTGATGG-3’ 
yCDM-ToWori-
FWD 

5’-AATTGGATCCATCGATGCTTAGGAGGTCATATGTCTAT 
CAAAGAAATGCCAC-3’ 

yCDM-ToWori-REV 5’-TAATGAATTCTCAATGGTGGTGGTGATGGTG-3’ 
yMutF 5’-TCTTGCTCATTAGAAAGAAAGCATAGCAATCTAATCTAAG 

TTTTAATTAC-3’ 
yMutR 5’-AATCTAGCAGTAACTCTGTTGACGATACCTTCGTAGTTT 

CTTGGAATAAC-3’ 
30R 5’-CTTAAAGATTTCACCCAATTCGTCAGCAATTTTCATC-3’ 
30F 5’-GATGAAAATTGCTGACGAATTGGGTGAAATCTTTAAG-3’ 
60R 5’-CAAGTTCTTGTCGAATCTAGATTCATCACAAGCTTCC-3’ 
60F 5’-GGAAGCTTGTGATGAATCTAGATTCGACAAGAACTTG-3’ 
61R 5’-CAAGTTCTTGTCGAATCTAGATTCATCACAAGC-3’ 
61F 5’-GCTTGTGATGAATCTAGATTCGACAAGAACTTG-3’ 
85R 5’-CAGTTCTTTTCGTGGGTCCAGGAAGTGGCCAAACCG-3’ 
85F 5’-CGGTTTGGCCACTTCCTGGACCCACGAAAAGAACTG-3’ 
216R 5’-GGAGGCCTTTCTGTCAGCGATGATCTTGTCAAC-3’ 
216F 5’-GTTGACAAGATCATCGCTGACAGAAAGGCCTCC-3’ 
329R 5’-GTGTCTTCCTTAGCGTACAAAGAGAACCATGG-3’ 
329F 5’-CCATGGTTCTCTTTGTACGCTAAGGAAGACAC-3’ 
341R 5’-CACCCTTTTCCAATGGGTATTCACCACCCAAG-3’ 
341F 5’-CTTGGGTGGTGAATACCCATTGGAAAAGGGTG-3’ 
396R 5’-GCGAATTGTTGACCGATACAGGCTCTTTGACCG-3’ 
396F 5’-CGGTCAAAGAGCCTGTATCGGTCAACAATTCGC-3’ 
481R 5’-CCATGTTAGAACCGTACAAAACCAACAATG-3’ 
481F 5’-CATTGTTGGTTTTGTACGGTTCTAACATGG-3’ 
535R 5’-GCGTTATCTGCTGGATGACCGTTGTAGG-3’ 
535F 5’-CCTACAACGGTCATCCAGCAGATAACGC-3’ 
570R 5’-CCCAGTTTTTATCACCA-3’ 
570F 5’-TGGTGATAAAAACTGGG-3’ 
586R 5’-CACCCTTAGCAGCCAAAGTTTCGTC-3’ 
586F 5’-GACGAAACTTTGGCTGCTAAGGGTG-3’ 
663R 5’-CAATTCCTTGGAGGCAACGACGTTGGTAGAG-3’ 
663F 5’-CTCTACCAACGTCGTTGCCTCCAAGGAATTG-3’ 
Heme MutF 5’- CACAGGAAACAGGATCCATCGTGCTTAGG-3’ 
Heme MutR 5’-CTAGGTGAAGGAATACCGCCAAGCGGA-3’ 
Stability TestF 5’-AAGAACTTGTCTCAATGGTTGAAGTTCATTAGAGG 

TTTCTTGGGTGACGG-3’ 
Stability TestR 5’-CCCAAGACAGTGTCTTCCTTAGCGTACAATGGGGACC 

ATGGGAAAGTTGG-3’ 
L52I SDM FWD 5’-ccaggtagagttaccagatacAtCtcttcccaaagattgattaagg-3’ 
L52I SDM REV 5’-CCTTAATCAATCTTTGGGAAGAGATGTATCTGGTAAC 
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TCTACCTGG-3’ 
H346 SDM FWD 5’-ctgtcttgggtggtgaataccCAttggaaaagggtgacgaattg-3’ 
H346P SDM REV 5’-CAATTCGTCACCCTTTTCCAATGGGTATTCACCACCCAAGACAG-3’ 
I366V SDM FWD 5’-cacaattgcacagagacaaaaccGtctggggtgacgatgttg-3’ 
I366V SDM REV 5’-CAACATCGTCACCCCAGACGGTTTTGTCTCTGTGCAATTGTG-3’ 
E442K SDM FWD 5’ggaaaccttgaccttaaaaccaAaGggtttcgttgtcaag-3’ 
E442K SDM REV 5’-CTTGACAACGAAACCCTTTGGTTTTAAGGTCAAGGTTTCC-3’ 
L52I cPCR FWD 5’ccaggtagagttaccagatacAtC-3’ 
H346P cPCR FWD 5’ggtggtgaataccCA-3’ 
I366V cPCR FWD 5’-cacagagacaaaaccG-3’ 
E442K cPCR FWD 5’-cttgaccttaaaaccaAaG-3’ 
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Table 2.2 Plasmids and strains constructed in this chapter 

Strain Genotype 

W303 MATα leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

CSY492 W303 lys2::PTEF-GFP-L2Bulge8-ADH1T 

CSY820 W303 lys2:: PTEF-mCherry-CYC1T-PTEF-GFP-L2Bulge8-ADH1T 

pCS2155 2μ URA PTEF-yCDM1 

pCS2156 2μ URA PTEF-yCDM2a 

pCS2157 2μ URA PTEF-yCDM2b 

pCS2158 2μ URA PTEF-yCDM2c 

pCS2159 2μ URA PTEF-yCDM2d 

pCS2160 2μ URA PTEF-yCDM3 

pCS2161 2μ URA PTEF-yCDM4a 

pCS2162 2μ URA PTEF-yCDM4b 

pCS2163 2μ URA PTEF-yCDM4c 

pCS2164 2μ URA PTEF-yCDM4d 

pCS2165 2μ URA PTEF-yCDM5 

pCS2166 2μ URA PTEF-yCDM6 

pCS2167 Centromeric URA PTEF-yCDM6 

pCS2168 Centromeric URA PTEF-yCDM7 

pCS2169 Centromeric URA PTEF-yCDM8 

pCS2170 2μ URA PTEF-yCDM1 (A264H) 

pCS2172 pCWori + yCDM1 

pCS2173 pCWori + yCDM3 

pCS2174 pCWori + yCDM5 

pCS2175 pCWori + yCDM6 

pCS2176 pCWori + yCDM7 

pCS2177 pCWori + yCDM8 

pCS2223 pIS385 + PTEF-GFP-L2Bulge8-ADH1T 

pCS2224 pIS385 + PTEF-mCherry-CYC1T-PTEF-GFP-L2Bulge8-ADH1T 
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CSY821 CSY492+pCS2155 

CSY822 CSY492+pCS2160 

CSY823 CSY492+pCS2165 

CSY824 CSY492+pCS2166 

CSY825 CSY492+pCS2167 

CSY826 CSY492+pCS2168 

CSY827 CSY492+pCS2169 

CSY828 CSY492+pCS2170 

CSY829 CSY492+pCS2171 

CSY830 CSY492+pCS4 (empty centromeric plasmid) 

CSY831 CSY492+pCS31 (empty 2μ plasmid) 
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Table 2.3 Mutations in the BM3 enzyme variants generated in this chapter 

Enzyme Mutations 

yCDM1 A74W, V78I, A82L, F87A, M185V, L188W, A328F, A330W 

yCDM2a yCDM1 + I58T, P461L, A575V 

yCDM2b yCDM1 + N522S, C569Y 

yCDM2c yCDM1 + T22R, D194N, Q387R, A603T 

yCDM2d yCDM1 + S72F, P301L, G457D 

yCDM3 yCDM1 + S72F, A603T 

yCDM4a yCDM3 + M354L, T576R, Q673K 

yCDM4b yCDM3 + F72I, T339I 

yCDM4c yCDM3 + R47S 

yCDM4d yCDM3 + Q27H, G660D 

yCDM5 yCDM3 + Q27H, R47S, F72I 

yCDM6 yCDM5 + E435G 

yCDM7 yCDM6 + I174V 

yCDM8 yCDM7+A87S 

CDM2b CDM1 + K202Q, F331S, P346H 

CDM3b CDM2b + N283I 

CDM4b CDM3b + D80G, S332P 

CDM5b CDM4b + I366V, E442K 
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Table 2.4 Summary of functional characterization data for enzyme variants 

Enzyme Relative 

vmax, app/KM, app 

KM, app (mM) T50 (°C) Selectivity 

yCDM1    1.0 1.5   ±0.1 47.0 ± 0.6    10.3 ±  0.5 

yCDM3  3.9 ±0.4 1.1 ±0.1 42.9 ± 0.9    14 ±  1 

yCDM5  12.2 ±1.0 0.75 ±0.10 41.5 ± 1.3    23 ±  3 

yCDM6  22.1 ±1.6 0.59 ±0.01 42.8 ± 1.0  100 ±25 

yCDM7  26.6 ±3.1 0.74 ±0.02 42.1 ± 1.3  175 ±  4 

yCDM8  33.0 ±4.2 0.69 ±0.04 43.1 ± 0.7  230 ±20 
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 3  Use of a Synthetic RNA Switch for Enzyme    

    Discovery 

 
Many biosynthetic pathways, including those of medically relevant small molecules, 

contain reactions for which no enzyme has yet been identified. Even after an enzyme has 

been identified to catalyze a particular reaction, further enzyme discovery might produce a 

new enzyme with better properties for use in a heterologous pathway. Advances in DNA 

sequencing and synthesis mean that it will become increasingly easy to identify and express 

candidate enzymes. However, the sheer volume of the resulting candidates will overwhelm 

our ability to characterize all of the potentially relevant enzymes. New functional screens will 

be necessary to sort through the list of candidate enzymes to identify the best variant. In this 

chapter, I describe the use of synthetic RNA switches to perform functional screening of a 

plant cDNA library. The plant, Coffea dewevrei, is known to enzymatically demethylate caffeine 

to theophylline. I used a theophylline-responsive RNA switch to screen for members of a C. 

dewevrei cDNA library that were capable of producing theophylline when heterologously 

expressed in S. cerevisiae and fed the substrate, caffeine. Unfortunately, I was unable to 

identify any candidate enzymes, and I discuss possible reasons for this lack of success. 

 

3.1  Introduction 

Caffeine is a classic example of a plant-derived natural product and has been in 

common use, mainly in the form of coffee and tea, for centuries. The typical commercial 

coffee species, Coffea arabica, has been bred for its caffeine production and can accumulate 

caffeine in its mature fruit to ~ 1% by dry weight (Ashihara et al., 1996). However, 
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decaffeinated coffee has claimed a significant fraction of the coffee market, and as a result 

there is now interest in developing naturally decaffeinated species of coffee (Ogita et al., 

2003). In addition to reducing caffeine content by decreasing the rate of caffeine synthesis, 

the same result could be achieved by increasing the rate of caffeine catabolism. However, in 

C. arabica the rate of caffeine catabolism is very low (Ashihara et al., 1996). Several coffee 

species, such as Coffea dewevrei (Mazzafera et al., 1994) and Coffea eugenioides (Ashihara & 

Crozier, 1999), have naturally low caffeine concentrations in the mature fruit due to rapid 

catabolism of caffeine, with demethylation of caffeine to theophylline thought to be the rate-

limiting step. While caffeine degradation can readily be shown to occur in these species, the 

enzyme responsible for the catabolism has not been identified. If the relevant enzyme could 

be identified, overexpression of the associated gene in C. arabica could further lower the 

caffeine concentration in transgenic plants. 

Unfortunately, sequencing-based approaches for enzyme discovery from plants can be 

difficult. First, plant genome sequencing can be difficult, owing to the size and repetitive 

structure of many plant genomes (Feuillet et al., 2011). Instead, researchers often must turn 

to lower-quality EST libraries (Facchini et al., 2011; Mondego et al., 2011). Second, plant 

genomes often contain multiple members of a given enzyme family, complicating attempts 

to screen by sequence homology. For example, approximately 2% of the coding sequences 

from an EST library of C. arabica consist of members of the P450 superfamily (Mondego et 

al., 2011). Finally, the biochemical evidence is often inconclusive. The available evidence 

suggests that caffeine is demethylated in Coffea species by a P450 monooxygenase 

(Mazzafera, 2004). However, other studies using selective enzyme inhibitors point towards a 

flavin monooxygenase as the relevant enzyme (Paulo Mazzafera, personal communication). 

Without a precise identification of the gene family, the search must be broadened to other 
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enzyme classes, reducing the utility of the sequence-based approach. When sequence-based 

approaches are ineffective, functional screening of cDNA libraries can be used for enzyme 

discovery (Uchiyama & Miyazaki, 2009). 

We have previously demonstrated our ability to screen large enzyme libraries in S. 

cerevisiae to identify enzyme variants capable of demethylating caffeine to theophylline. The 

same screening platform can be used for functional screening of a cDNA library, simply by 

replacing the library of enzyme mutants with a cDNA pool (Figure 3.1). S. cerevisiae is a good 

host organism for heterologous screening of plant cDNA libraries, as it has the appropriate 

membranes for proper expression of membrane-bound proteins. Total RNA samples from 

the leaves of C. arabica and C. dewevrei were provided by researchers at the Campinas State 

University in Brazil. cDNA library construction went smoothly, and sequencing results 

confirmed the presence of full-length C. dewevrei cDNAs. However, screening three separate 

cDNA libraries failed to identify a caffeine demethylase. There are several possible reasons 

for this lack of success, including the difficulty of functional expression of plant P450s, the 

limitations due to scaling problems involved in constructing and screening cDNA libraries, 

and the sensitivity of the RNA switch used in the screen. 
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Figure 3.1 Overview of the enzyme discovery process. mRNA is extracted from plant samples, reverse 
transcribed into cDNA, and transformed by gap repair into S. cerevisiae. As described in Chapter 2, the resulting 
cDNA library can be functionally screened for caffeine demethylase activity using a theophylline-responsive 
RNA switch.  

 

3.2  Results 

3.2.1  cDNA library construction 

Total RNA from C. arabica and C. dewevrei were provided by Professor Paulo Mazzafera 

at the Campinas State University, Brazil. Poly-A+ mRNA was purified from the C. dewevrei 

sample using oligo-dT magnetic beads. The poly-A+ mRNA was then reverse transcribed 

using a template switching technique to enrich for full-length cDNAs (Zhu et al., 2001b). 

The forward and reverse primers included homology to the yeast expression plasmid to 

facilitate cloning by gap repair. The first strand cDNA was amplified using PCR (Figure 3.2). 

The PCR products were transformed into a yeast expression vector in S. cerevisiae, producing 

~ 104 clones. 
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Figure 3.2 cDNA library construction. Poly-A+ RNA was purified from C. dewevrei total RNA. A template-
switching reverse transcriptase was used to selectively amplify full-length mRNA templates. The resulting first-
strand cDNA was amplified using PCR to add homology regions that allowed gap repair library construction in 
S. cerevisiae. The distinct band at ~ 1 kb likely corresponds to the cDNA of a highly expressed chitinase. L = 
DNA ladder. S = cDNA sample 
 

Twelve members of the cDNA library were randomly selected and sequenced. Of the 

twelve, four showed neither an open reading frame nor a poly-A tail. Two showed 

significant homology to a C. arabica chitinase known to be highly expressed as a fungal 

defense mechanism (Guerra-Guimarães et al., 2009). The remaining six sequences were full-

length cDNAs that showed homology to plant genes, frequently with Vitis vinifera as the 

nearest homolog (Mondego et al., 2011). The cDNAs consisted of two separate ribosomal 

proteins, a dehydrogenase, a histone, a transcription factor, and a lipid transferase. The 

sequencing results confirmed that the library contained full-length cDNAs from C. dewevrei. 

 

3.2.1  In vivo cDNA screening 

After optimization of the cDNA construction process, a new library of 105 clones was 

transformed into the screening strain CSY820. As described in section 2.2.4, this strain 

expresses GFP under the control of a theophylline-dependent RNA switch as well as 

constitutively expressing mCherry. Theophylline production can be detected in vivo at the 

single-cell level using FACS to identify cells with an increase in the ratio of GFP to mCherry 

fluorescence. 2x106 cells were screened by FACS in the presence of 1 mM caffeine, selecting 
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for the top 1% by normalized fluorescence. The resulting population was grown in the 

absence of caffeine and sorted for the ~ 20% of the population with background levels of 

fluorescence. These cells were split and grown in both the presence and absence of 1 mM 

caffeine. Comparing the resulting fluorescence distributions, the population grown in 1 mM 

caffeine showed a slight increase in normalized GFP fluorescence (Figure 3.3). The culture 

grown in 1 mM caffeine was sorted again to collect the top 1% by normalized fluorescence. 

Cells were isolated on agar plates, picked into liquid culture in a 96-well plate, and assayed 

for theophylline production in the presence of 1 mM caffeine. None of the 92 cultures 

showed any theophylline production. 

 
Figure 3.3 Fluorescence histograms of the cDNA library. After two rounds of sorting (one positive, one 
negative), the resulting library was grown in the presence (green) and absence (blue) of caffeine. The culture 
grown with caffeine showed a slight increase in fluorescence, possibly indicating the presence of a caffeine 
demethylase in the cDNA library. 
 

Expecting that the caffeine demethylase mRNA might constitute a small fraction of 

the total mRNA in C. dewevrei, I constructed a new cDNA library using on-bead subtractive 

hybridization to enrich for mRNAs overexpressed in the high-theophylline C. dewevrei 

relative to the low-theophylline C. arabica (Figure 3.4A). After transformation into S. cerevisiae, 

the resulting library of ~ 105 clones was screened as before. Again, the final sorting library 

showed an increase in fluorescence when grown in the presence of caffeine (Figure 3.4B). 
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368 colonies from the unsorted library and 1104 from the sorted library were assayed for 

fluorescence in 96-well plates using flow cytometry. Any clone that showed an increase in 

fluorescence relative to the negative control was measured for theophylline production by 

liquid chromatography. None of the assayed clones produced theophylline. 

 
Figure 3.4 Construction and screening of a cDNA library after subtractive hybridization. (A) After subtractive 
hybridization, the cDNA library has a large population of short (< 500 bp) fragments. A size-exclusion column 
is used to selectively eliminate these fragments while retaining the longer (full-length) fragments. (B) After two 
rounds of sorting (one positive, one negative), the resulting library was grown in the presence (green) or 
absence (blue) of caffeine. The culture grown in caffeine showed an increase in fluorescence, suggesting the 
presence of theophylline-producing enzymes. After a further positive sort, the cells were isolated on agar plates 
and screened in clonal culture. 
 

Hypothesizing that the caffeine demethylase might be a cytochrome P450, I tested a 

version of CSY820 with an integrated copy of the Arabidopsis thaliana cytochrome P450 

reductase. I synthesized fresh cDNA, again using subtractive hybridization to enrich for 

mRNAs that were overexpressed relative to C. arabica, and produced a library of ~ 105 clones 

in S. cerevisiae. The library was sorted as described previously. Approximately 1,400 of the 

sorted clones were rescreened by fluorescence in 96-well plates. As before, any clone 

showing an increase in fluorescence was assayed for theophylline production by liquid 

chromatography, but no theophylline production was observed. 
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3.3  Discussion 

Despite carefully screening three separate cDNA libraries, I was unsuccessful in 

identifying a caffeine demethylase. There are several potential explanations for this lack of 

success. The obvious explanation is that the enzyme simply was not present in the libraries 

that I screened. Sequencing results suggested that a majority of the cDNAs in the 

unsubstracted library were full length, though similar sequencing was not performed on the 

subtracted cDNA library. However, particularly large or small cDNAs might have been lost 

during the library construction process. Additionally, the PCR amplification process 

introduces a bias into the resulting library. If the caffeine demethylase was poorly amplified, 

it might be absent from the resulting library. Finally, the library sizes of 105 might have been 

insufficient to cover the C. dewevrei cDNA population. I used subtractive hybridization in an 

attempt to reduce the cDNA library diversity to a level suitable for screening. However, 

there are drawbacks to the use of subtractive hybridization. Perhaps mRNA expression of 

the caffeine demethylase is similar in C. arabica and C. dewevrei, and the difference in caffeine 

demethylase activity is due to post-transcriptional control or specific enzyme activity. In that 

case, subtractive hybridization would simply remove the demethylase mRNAs and screening 

would be unsuccessful. 

An alternate possibility is that the desired enzymatic activity is not actually present in 

C. dewevrei. While the available evidence suggests that the primary pathway for caffeine 

catabolism in Coffea proceeds through theophylline (Suzuki & Waller, 1984), the evidence is 

not conclusive. Plant secondary metabolism is perhaps better viewed as a network than a set 

of discrete pathways, making analysis difficult. If, for example, the primary catabolic pathway 

is to demethylate caffeine to theobromine, no cDNA would be capable of theophylline 

production.  
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Finally, there is a strong suspicion that the first demethylation is catalyzed by a P450 

monooxygenase (Mazzafera, 2004). Heterologous expression of P450 monooxygenases from 

plants is particularly difficult, as these enzymes are typically membrane associated and 

require the presence of an additional reductase domain (Mizutani & Ohta, 2010). While S. 

cerevisiae is a preferred host for heterologous plant P450 expression (Urban et al., 1994), 

functional expression can still be difficult. The P450 may not express well or may not 

efficiently receive electrons from the native yeast reductase partner. While I screened the 

cDNA library in a strain that overexpresses the A. thaliana P450 reductase, the caffeine 

demethylase might be specific for its native C. dewevrei reductase. The detection limit for the 

RNA switch that I used in this work is ~ 10 μM in well plates and ~ 100 μM for FACS. The 

target enzyme might be both present and active, but simply not sufficiently active to be 

detected in my screen. 

Despite my inability to isolate a caffeine demethylase, I have successfully developed 

procedures for the functional screening of cDNA libraries in S. cerevisiae using a synthetic 

RNA switch. Aside from the theophylline aptamer used in the RNA switch, nothing in this 

method is specific for this organism or reaction, so I expect that the same procedure could 

be used for enzyme discovery of other uncharacterized enzymatic activities. There are 

several potential changes to my procedure that might improve the future chances of success. 

The most important would be to target enzymes with a high probability of functional 

expression in S. cerevisiae. Yeast are the best available host for heterologous P450 expression, 

but even still many P450s fail to show significant activity.  

Additionally, there is a trade-off between the sensitivity of screening in well plates and 

the speed of screening in single cells. Plate-based screening can detect enzymes with low 

activity, but requires small libraries and therefore an enrichment technique like subtractive 
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hybridization. Unfortunately, subtractive hybridization might erroneously eliminate the target 

enzyme from the library. Avoiding subtractive hybridization would require screening larger 

libraries in order to identify rare cDNAs without prior enrichment. FACS-based screening 

can easily screen libraries of 107 and could be extended to libraries of 108 if needed. My 

library sizes were typically in the range of 105, so the library construction process would need 

to be optimized in order to cover the full range of cDNAs. However, the use of a FACS-

based screen requires either that the enzyme display a higher level of heterologous activity or 

the use of more-sensitive switches. Switch optimization could greatly improve the efficacy of 

a function screen (Figure 3.5). Decreasing the EC50 of the switch would directly increase the 

sensitivity of the screen. Similarly, the dynamic range of the switch determines the 

relationship between the EC50 and the minimum detectable concentration. A switch with a 

larger dynamic range can detect lower concentrations, relative to the switch EC50, than a 

switch with a smaller dynamic range. Combining a more-tractable target, a more-sensitive 

switch, and an optimized library construction protocol would greatly increase the chances of 

success.  
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Figure 3.5 A schematic of the effect of switch optimization on metabolite detection. The switch output is 
plotted as a function of the ligand concentration (given in arbitrary units). A given screen has a detection limit, 
below which the noise in the sensor prevents differentiation of active and inactive enzymes. The characteristics 
of the switch will determine the concentration at which this detection limit is crossed. Starting from an initial 
switch (black), decreasing the EC50 (blue) or increasing the dynamic range (green) would produce a switch that 
crosses the detection limit at a lower concentration of the target molecule. Therefore, these improved switches 
would be capable of detecting enzymes with lower levels of activity. 
 

The main limitation of this technique is the requirement for an RNA sensor to the 

desired enzymatic product. Existing RNA selection strategies require significant quantities of 

the target molecule, and many metabolic intermediates are not commercially available. In 

some cases, the desired intermediate may be available. In other cases, this strategy might be 

more easily applied to identify replacement enzymes in a pathway that shows limited, but 

nonzero, activity. For example, a promiscuous and marginally active enzyme, like CYP2D6 

(Hawkins & Smolke, 2008), might be used to construct an initial pathway and produce 

enough of the target molecule for sensor construction. The sensor could then be used to 

screen cDNA libraries to identify enzymes from the native pathway that show higher activity 

and selectivity. 

Functional screens for enzyme activity remain an important avenue for further 

research. Despite recent improvements in computational prediction of enzyme activity and 
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specificity (Lukk et al., 2012), accurately predicting the substrate of an arbitrary enzyme is an 

uncertain proposal requiring significant effort. While my attempt to use a functional screen 

to identify a caffeine demethylase from a low-caffeine strain of Coffea was unsuccessful, I 

believe that the fundamental process was valid and could be successful on a more-tractable 

target. 

 

3.4  Methods 

3.4.1  cDNA synthesis 

Total RNA extracted from C. dewevrei and C. arabica leaves was shipped from Brazil 

precipitated in ethanol at room temperature. Agarose gel electrophoresis confirmed that the 

samples contained clean rRNA bands. Poly-A+ mRNA was purified using a Dynabeads 

mRNA Direct kit (Invitrogen) according to the manufacturer’s directions. The beads were 

washed twice to remove rRNA contamination and eluted into 10 μL of the appropriate 

buffer. For first strand synthesis, 3 μL of RNA were combined with 1 μL of each 12 μM 

primer (cDNA-FWD 5’- tgctcattagaaagaaagcatagcaatctaatctaagttttaattac rG rG rG-3’ and 

cDNA-REV 5’- AAAATCATAAATCATAAGAAATTCGCTTATTTAGAAGTGGT31VN 

-3’). The mixture was heated to 72 °C for 2 minutes then cooled on ice for 2 minutes. Next 2 

μL of first strand buffer, 1 μL of 20 mM DTT, 1 μL of 10 mM dNTPs, and 1 μL of 

SMARTScribe (Clontech, Mountain View, CA) were added to the reaction mixture. The 

reaction mixture was heated to 42 °C for 1 hour, then cooled on ice. 1 μL of 25 mM NaOH 

was added to the mixture, and the mixture was incubated at 68 °C for 30 minutes to degrade 

the RNA. For second strand synthesis, 71 μL of water, 10 μL 10x PfuUltraII buffer, 2 μL 10 

mM dNTPs, 2 μL each 10 mM primer, and 2 μL PfuUltraII (Agilent) were added to the 

mixture. The reaction was amplified by 25 cycles of PCR with an annealing temperature of 
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56 °C and a 10 minute extension time. The resulting cDNA library was cleaned up on a 

commercial column (Qiagen) and then used as a template for 8x100 μL PCRs, run as before 

except substituting Pfu for PfuUltraII. The resulting ~ 40 μg of cDNA was then ready for 

gap repair transformation into S. cerevisiae. 

Gap repair transformations were performed using the method of Chao et al. (Chao et 

al., 2006). Briefly, 6 μg of the destination vector, a centromeric yeast shuttle vector with a 

uracil marker named pCS1585, was linearized with EcoRI and AvrII overnight. The cDNA 

and destination vector were extracted with phenol/chloroform and coprecipitated with 

ethanol. The resulting DNA was then electroporated into the screening strain CSY820. 

 

3.4.2  Subtractive hybridization 

To perform subtractive hybridization, C. arabica total RNA was purified using 

Dynabeads. The resulting poly-A+ mRNA was left hybridized to the beads and resuspended 

in 10 μL 10 mM Tris, pH 7.5. On-bead first strand synthesis was performed by adding 4 μL 

of first strand buffer, 2 μL of 20 mM DTT, 2 μL of 10 mM dNTPs, and 2 μL of 

SMARTScribe and incubating at 42 °C for 1 hour. The mRNA was eluted of the beads, the 

beads were washed with Buffer 2 (NEB), and resuspended in 50 μL Buffer 2, 1x BSA, with 1 

μL 10 mM dNTPs and 1 μL T4 polymerase (NEB). 

Next, C. dewevrei total RNA was hybridized to the beads. After hybridization, the 

supernatant was removed and saved. The beads were washed once with Buffer B 

(Invitrogen), then eluted with 200 μL 10 mM Tris, pH 7.5. The beads were regenerated 

according to the manufacturer’s instructions, and the entire cycle was repeated for a total of 

three times. The supernatant resulting from the third annealing was then annealed to fresh 

poly-T beads, and first and second strand synthesis were performed as described previously. 
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After second strand synthesis, short cDNA fragments (< 500 bp) were removed using a 

ChromaSpin TE+400 size exclusion column (Clontech) according to the manufacturer’s 

instructions. After size exclusion, the resulting cDNA was reamplified by PCR to the 

appropriate volume for gap repair library construction. 

 



 77 

3.4.3  Growth conditions for liquid culture S. cerevisiae assays 

Yeast cultures were grown in 96-well plates (BD Falcon) using AeraSeal film (Excel 

Scientific, Victorville, CA) to allow for thorough aeration. Colonies were picked from agar 

plates with toothpicks, inoculated into 400 μL of SD-Ura media, and grown for 24 hours in 

a Kuhner LT-X plate shaker at 30 ºC, 480 RPM, a 1.24 cm orbital diameter, and 80% 

humidity. The cultures were subsequently backdiluted 100x into fresh SD-Ura with or 

without 1 mM caffeine and regrown for an additional 24 hours.  

 

3.4.4  Flow-cytometry-based library screening 

When screening enzyme libraries, transformants were grown in 96-well plates and 

assayed for fluorescence. Yeast cultures harboring the enzyme expression vectors and 

integrated metabolite-sensing device were diluted 4x into water and assayed for fluorescence 

in 96-well plates on a Beckman Quanta flow cytometer. Cells were excited at 488 nm and 

GFP fluorescence was measured at 525 nm. Samples were gated first by electronic volume 

and side scatter to capture the cell population and then by fluorescence to remove the 

outliers with significantly low fluorescence. Approximately 8,000 cells were analyzed for each 

culture. The geometric mean fluorescence, normalized by the electronic volume, was then 

compared to the parental control. The brightest clones were selected for further screening by 

HPLC analysis.  

 

3.4.5  FACS-based library screening 

Immediately following the gap repair transformation, the FACS library was diluted 

into 250 mL of SD-Ura. Dilutions of the transformation culture were plated on SD-Ura 

plates to determine the library size. The library culture was diluted into fresh SD-Ura every 
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24 hours. The initial dilution factor was 10-fold, increasing to 30-fold and then 100-fold for 

the final presort dilution 24 hours prior to sorting. In a positive sort, caffeine was added to 

the growing culture to a final concentration of 1 mM during the final back-dilution. In a 

negative sort, the culture was grown in the absence of caffeine. Immediately prior to sorting, 

cells were centrifuged at 6,000 g for 5 minutes at 4 °C. The supernatant was discarded; the 

cells were resuspended in 1x phosphate-buffered saline + 1% bovine serum albumin 

(Fraction V, EMD Chemicals), stained with DAPI (Invitrogen), and filtered through a 40 μm 

cell strainer (BD Falcon). The cells were sorted using a BD Aria II sorter at the Stanford 

Shared FACS Facility. GFP was excited at 488 nm and captured by a 505 nm beam splitter 

and a 525/20 nm bandpass filter. mCherry was excited at 532 nm and captured by a 600 nm 

beam splitter and a 610/20 bandpass filter. DAPI was excited at 355 nm and captured by a 

450/50 bandpass filter. Viable cells were isolated by gating on forward vs. side scatter, 

followed by a viability gate for DAPI negative cells. The cells resulting from one sort were 

grown overnight, then back-diluted 100-fold into the appropriate media (with or without 

substrate) and grown for 24 hours before the next sort. 

 

3.4.6  HPLC methods 

During screening, metabolite analysis was performed on an XDB-C18 2.1 x 50 mm, 

3.5 μm column (Agilent Technologies). I injected 5 μL of sample onto the column. The 

mobile phase was 0.35 mL/min of 15% methanol/85% water with 0.1% acetic acid. 

Theophylline eluted at 1.65 minutes and was detected by UV absorbance at 274 nm. Culture 

supernatant from wild-type W303 showed no detectable peak. The identity of the 

theophylline peak was confirmed with each assay by the use of an authentic standard (Sigma-

Aldrich). 
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4  Identifying and Alleviating Stress from 

Monooxygenase Overexpression 

Portions of this chapter are adapted with permission from Michener JK, Nielsen J, and Smolke CD (2012) 
Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 
monooxygenases. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1212287109 
 

Recent advances in metabolic engineering have demonstrated that novel biosynthetic 

pathways in microbes can provide a viable alternative to chemical synthesis for the 

production of both bulk and fine chemicals. The introduction of a new biosynthetic pathway 

typically requires the expression of multiple heterologous enzymes in the production host, 

which can place severe stress on the host cell. The host has not evolved to deal with the 

specific stresses of the engineered pathway, and the cell’s response to the new stress may 

limit pathway productivity. Unfortunately, analysis and treatment of the host stress response 

can be difficult, as there are many sources of stress that may interact in complex fashions. I 

used global transcript measurements to identify heme depletion as the major source of stress 

resulting from overexpression of a lineage of evolved heterologous P450 monooxygenases in 

Saccharomyces cerevisiae. Heme depletion leads to low enzyme expression due to increased 

protein degradation. I further demonstrate that this stress decreases during rounds of 

evolution when the enzyme is highly expressed and increases during rounds when the 

expression is low. Overexpression of a rate limiting enzyme in the heme biosynthetic 

pathway alleviates this stress, increasing the enzymatic activity of the P450 by 2.3-fold. Heme 

overexpression can also increase the expression of a cytosolic heme-containing catalase but 

not a membrane-bound P450, implying that other factors may limit expression of some 

hemoproteins. This work demonstrates the utility of combining systems and synthetic 

biology to analyze and optimize heterologous biosynthetic pathways in microorganisms.  
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4.1  Introduction 

The burgeoning field of metabolic engineering offers the promise of efficient, 

controlled, scalable production of both fine and bulk chemicals (Atsumi et al., 2008; 

Hawkins & Smolke, 2008; Ro et al., 2006; Yim et al., 2011). This approach is particularly 

useful when synthesizing complex molecules with defined stereochemistry, as such 

molecules are difficult to synthesize chemically. For example, plant secondary metabolites 

are a rich source of pharmaceuticals, such as the antimalarial isoprenoid artemisinin and the 

analgesic benzylisoquinoline alkaloid morphine. However, there are significant limitations to 

the industrial production of these compounds. The total chemical synthesis of complex 

metabolites is prohibitively costly (Rice, 1980) and the extraction from plants can be 

unpredictable, as it depends on complicated environmental and human factors (Hale et al., 

2007). Additionally, evolution has optimized plants for the production of a final product; if 

the desired product is an intermediate, accumulation of sufficient quantities may be 

infeasible.  

Microbial production of plant secondary metabolites offers a powerful alternative to 

traditional extraction methods (Ro et al., 2006). Microbes can produce specific molecules in 

a cost-effective manner, and the pathway can be tailored to produce a wide range of natural 

(Hawkins & Smolke, 2008) and nonnatural (Runguphan et al., 2010) compounds. However, 

these biosynthetic pathways can be very complex and therefore require the simultaneous 

expression of many heterologous enzymes in the production host. For example, the 

complete synthesis of morphine from tyrosine requires a total of 14 separate enzymatic 

reactions (Liscombe & Facchini, 2008). These enzymes can potentially interact with each 

other and with the host cell in deleterious ways (Ro et al., 2008), and the longer the 

biosynthetic pathway the more opportunities arise for such interactions. Understanding and 



 84 

alleviating these harmful interactions can significantly improve the pathway productivity and 

yield (Lee et al., 2007; Park et al., 2007). 

However, there are many different potential stresses resulting from heterologous 

pathway expression. These stresses range from predictable, including the common stresses 

of heterologous protein production (Goff & Goldberg, 1985) and by-product toxicity (Zhu 

et al., 2002; Zhu et al., 2001a), to the novel, such as the overexpression of spider silk in 

Escherichia coli leading to the specific depletion of glycyl-tRNA (Xia et al., 2010). Individually 

analyzing each source of stress would be a lengthy process requiring an exhaustive and 

accurate list of potential stresses. As an alternative to such bottom-up approaches, we can 

instead use global analyses to identify the host cell’s response to the induced stress looking, 

for example, at changes in transcript (Kizer et al., 2008) or protein levels (Han et al., 2001). 

Top-down approaches rely on the crucial assumptions that (a) the heterologous stress will 

trigger an endogenous response and (b) the endogenous response will produce a change in 

protein or RNA levels. These assumptions are generally valid, but as a result it is often easier 

to demonstrate that a particular stress is present than to conclusively rule out a potential 

source of stress. 

Once the stresses are identified, the next step is to increase pathway productivity by 

treating the stresses, either by eliminating the source of the stress or by augmenting the cell’s 

ability to respond to the stress. For example, after glycyl-tRNA depletion was identified as a 

cause of low expression of spider silk in E. coli, researchers modified the host to 

accommodate the demand for glycyl-tRNA by overexpressing both the tRNAGly and the 

glycine biosynthetic pathway (Xia et al., 2010). Alternatively, when the by-product glycerol-3-

phosphate was shown to inhibit the production of 1,3-propanediol, a glycerol kinase 

knockout prevented by-product formation and increased the 1,3-propanediol yield (Zhu et 
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al., 2002). 

In this chapter, I considered the stress due to heterologous overexpression of a P450 

monooxygenase in S. cerevisiae.  P450s are an important class of enzymes in plant secondary 

metabolism, participating in the biosynthesis of metabolites ranging from alkaloids and 

terpenoids to hormones and lipids (Mizutani & Ohta, 2010). There are many potential 

sources of stress resulting from heterologous overexpression of a P450 in yeast: the enzyme 

binds heme as a cofactor, sequestering it from other endogenous enzymes. The 

monooxygenase consumes NADPH and may produce toxic reaction by-products such as 

formaldehyde. The enzyme may be uncoupled, so many of the electrons taken from 

NADPH are not transferred to the substrate but instead produce reactive oxygen species 

(ROS) (Fasan et al., 2008). Additionally, the relaxed substrate selectivity of the 

monooxygenase may allow it to oxidize endogenous compounds, consuming important 

metabolites and producing potentially toxic side products.  

In order to narrow down this list of potential stresses, I first used DNA microarrays to 

identify the major stresses involved. However, global analysis methods often identify many 

different cellular responses, and selecting the stresses that are the best targets for treatment 

can be difficult, requiring either a lengthy search of the potential targets (Lee et al., 2007) or 

intuition about the likely targets (Choi et al., 2003). Instead, I took inspiration from inverse 

metabolic engineering, where researchers frequently compare multiple strains with varying 

levels of productivity to identify the components responsible for the observed variation in 

productivity (Askenazi et al., 2003; Bro et al., 2005). The monooxygenase used in this study 

had been evolved in vivo to improve the enzyme’s ability to demethylate caffeine to 

theophylline. As a result, I had an entire lineage of enzyme mutants with a range of different 

activities. Enzyme overexpression places a significant stress on the cell, reflected in a 
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reduced growth rate, and that stress produces a selective pressure during the evolutionary 

process. As a result of this selective pressure, I expected the stress to change as the enzyme 

is evolved. Additionally, I varied the expression level of the mutant enzymes, further 

modulating the cellular stress. By tracking the changes in stress as the enzyme evolves and 

the expression level is changed, I can better identify the relevant stresses. 

My global analysis indicated that enzyme overexpression starves the cells for heme, 

leading to a significant change in the host physiology. The lack of heme also causes the P450 

to misfold, reducing the expression of active enzyme and consuming cellular resources to 

degrade the misfolded protein. Overexpression of three rate limiting steps in heme 

biosynthesis, in addition to feeding iron and the heme precursor δ-aminolevulinic acid, 

increased the heme level by up to 90-fold and the product concentration by 2.3-fold. 

Additionally, while enzyme overexpression led to an increase in proteasomal activity, 

concomitant overexpression of heme biosynthesis reduced proteasomal activity to 

background levels. These results demonstrate that systems and synthetic biology can be 

successfully combined to analyze the stress due to heterologous enzyme expression, identify 

the most significant sources of stress, and alleviate those sources of stress to ultimately 

increase pathway productivity. 

 

4.2 Results 

The caffeine demethylase that I evolved in Chapter 2 placed a significant stress on the 

cell, reflected in a decreased growth rate. When I investigated the activity of several enzyme 

variants under conditions different from those in which the variants were selected, I found 

evidence that the stress produced by the enzyme was changing as the enzyme was evolved, 

and the conditions of the evolution determined the selective pressure on the enzyme-
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dependent stress. 

 

4.2.1 Improvements at low copy do not translate to high copy 

 The original caffeine demethylase underwent five rounds of evolution while expressed 

from a high-copy plasmid, producing enzyme yCDM6, followed by two further rounds of 

evolution on a low-copy plasmid to give yCDM8. yCDM6 exhibited similar levels of activity 

when expressed from high- and low-copy plasmids. However, when I expressed the entire 

lineage of mutant enzymes from both high- and low-copy plasmids, I found that yCDM7 

and yCDM8, the enzymes that were evolved at low copy, were only marginally more active 

than yCDM6 expressed from a high-copy plasmid (Figure 4.1). In contrast, the enzymes that 

were evolved on high-copy plasmids, yCDM2 through yCDM6, were equally active at high- 

and low-copy conditions. I hypothesized that the later enzymes, yCDM7 and yCDM8, were 

placing a stress on the cell that was tolerable when the enzyme was expressed at low levels 

but deleterious when the enzyme expression was increased. However, there were too many 

potential sources of stress to exhaustively verify each one. 
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Figure 4.1 Comparison of theophylline accumulation for high- and low-copy enzyme expression. The early 
enzymes, through yCDM6, were identified based on activity when expressed from a high-copy plasmid in yeast. 
The last two enzymes, yCDM7 and yCDM8, were evolved on a low-copy plasmid backbone. Cells containing 
each of the enzymes developed in Chapter 2 were grown in the presence of caffeine. Theophylline 
accumulation was assayed after 24 hours. The data are all normalized to yCDM1 at high copy (relative 
accumulation = 1.0). The error bars show ±1 standard deviation, calculated from three biological replicates, 
and the lines are a guide for the eye. 
 
4.2.2 Microarrays identify heme depletion as the major cellular stress 

Rather than individually testing each possible stress, I instead used DNA microarrays 

to identify the source of this stress by analyzing the global transcriptional response to 

monooxygenase overexpression. I selected a total of eight strains for analysis: (1–6) yCDM1, 

yCDM6, and yCDM8, each expressed from high- and low-copy plasmids; (7) the catalytically 

inactive variant yCDM1-A264H (Neeli et al., 2005) expressed from a high-copy plasmid; and 

(8) an empty high-copy plasmid. Each strain was assayed in triplicate. I then used principal 

component analysis (PCA) to identify common patterns in expression across the different 

samples. 

Critically, in my application of PCA I treated the samples as variables and the genes as 

observations (Raychaudhuri et al., 2000), while previous metabolic engineering analyses have 
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done the reverse. Using PCA in this fashion allowed me to identify profiles of gene 

expression across the samples (expression is high in sample A, low in sample B, etc.) that 

explain the observed variation in gene expression. By looking at the genes that are most 

strongly associated with a given pattern of gene expression, I could identify the specific 

stresses that elicited the pattern. Ultimately, then, this pattern can be interpreted as a 

measure of the magnitude of the associated stress. 

 

Figure 4.2 Microarray analysis identifies heme depletion as the major cellular stress. (A) The loadings for the 
first principal component are plotted for each of the six enzymes assayed. The dotted line denotes the loading 
for the no enzyme control. The error bars show ±1 standard deviation, calculated from three biological 
replicates. (B) mRNA levels, relative to the no enzyme control, are shown for three iron- and heme-regulated 
genes (FIT2, HEM13, and ARN2). The three genes are repressed by heme and/or iron, so the pattern in the 
mRNA levels is the inverse of the pattern in the loading. The error bars show ±1 standard deviation, calculated 
from three biological replicates. 
 

The loadings for the first principal component, shown in Figure 4.2A, identify a 

pattern of expression that explains ~ 53% of the variability between samples. Next, the 

genes are given scores that indicate how well the observed expression matches this pattern 

of expression. I analyzed the genes with the highest magnitude scores to identify 

transcription factors that were likely involved in coordinating the response (Oliveira et al., 

2008). The transcription factors identified in this analysis included Rcs1, which responds to 

iron starvation, as well as Hap1 and Rox1, which regulate genes in a heme-dependent 

manner. Indeed, a closer look at several Rcs1-, Rox1-, and Hap1-dependent genes shows a 

similar pattern to the loadings of the first principal component (Figure 4.2B), suggesting that 
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the loadings may be interpreted as a measure of heme and iron levels, with lower values of 

the loading correlating to lower intracellular levels of heme. 

 

4.2.3 Increased heme biosynthesis raises the intracellular heme level 

Having implicated heme limitation as the major source of cellular stress, I next sought 

to restore the intracellular heme concentration to its native level. In bacteria, the first 

committed step in heme biosynthesis, producing δ-aminolevulinic acid (ALA), is limiting and 

feeding additional ALA can increase the expression of functional hemoproteins (Kraus & 

Kery, 1997). Previous efforts to expand the pool of heme available for P450 expression in 

yeast have produced modest increases in enzymatic activity by feeding iron and ALA (Jiang 

& Morgan, 2004). However, ALA synthesis is not the rate limiting step in heme biosynthesis 

(Hoffman et al., 2003). Therefore, I simultaneously overexpressed three rate limiting 

enzymes - HEM2, HEM3, and HEM12 - in addition to feeding iron(II) and ALA. I 

compared total cellular levels of heme and the heme intermediate porphyrins in cells with 

different levels of heme overexpression and heme usage. This assay that I used does not 

distinguish between free and protein-bound heme, so free heme levels must be inferred from 

observing the response of genes that are regulated in a heme-dependent manner.  

For a given level of heme usage, increasing the capacity of the heme biosynthetic 

pathway led to an increase in the total heme concentration. However, I only observed large 

increases in total heme content when heme biosynthesis and usage were both elevated 

(Figure 4.3A). As expected, increasing the capacity of the initial stages of heme biosynthesis 

led to accumulation of biosynthetic intermediates (Figure 4.3B). However, strong 

overexpression of a heme-containing enzyme led to lower porphyrin levels, suggesting that 

the cell is actively controlling the conversion of porphyrins to heme, presumably by 
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transcriptional regulation of HEM13 in response to increasing levels of free heme. To test 

this theory, I measured HEM13 mRNA levels by qRT-PCR. HEM13 expression is repressed 

by free heme, so high levels of HEM13 mRNA correspond to low levels of free heme. 

HEM13 expression increased as the P450 expression did, and decreased below background 

levels when both the P450 and HEM3 were highly expressed (Figure 4.3C). These results are 

consistent with my hypothesis that P450 overexpression starves the cell of free heme but 

overexpression of the heme biosynthetic pathway can restore the free-heme level. 

 
 

4.2.4 Heme limits the activity of cytosolic hemoproteins 

Having shown that increasing the cells’ capacity to produce heme leads to an increase 

in the total heme level, I next considered the effect this extra heme has on theophylline 

accumulation. The connection is not obvious: while the evidence suggests that heme is 
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limiting in cells that overexpress CYP102A1, total product accumulation depends on a large 

number of factors. Heme is costly to produce, and free heme is toxic to the cell. The reward 

of alleviating the heme stress may be outweighed by the burden of producing the necessary 

heme.  

When I increased the cells’ capacity to produce heme, I observed an increase in the 

amount of theophylline produced, averaging a 2.3-fold improvement at the optimal heme 

level (Figure 4.4A). Unfortunately, the experiments showed significant day-to-day and 

culture-to-culture variability, likely a result of varying copy numbers of the two plasmids. 

There is a selective pressure to maintain both plasmids at some nonzero copy number, but 

the copy number of each plasmid is likely to vary across cells and across time. Replicate 

cultures may have different relative copy numbers and therefore different phenotypes.  

Additionally, while the cells overexpressing heme biosynthesis produced more 

theophylline relative to the empty plasmid control, the absolute theophylline production with 

two plasmids (high-copy CDM plasmid and high-copy empty plasmid) was lower than the 

single-plasmid control (high-copy CDM plasmid, Figure 4.1), likely due to the burden of 

carrying an additional plasmid (Figure 4.4B and Figure 2.8D). I discovered that cells 

expressing both the enzyme and the heme overexpression constructs grew more slowly than 

cells with the enzyme and an empty plasmid (Figure 4.4B). However, the burden appears to 

be associated with the expression of the heme biosynthetic enzymes rather than the 

production of heme. The growth rate was similar for cells overexpressing HEM3, 

overexpressing HEM2/3/12, or overexpressing HEM2/3/12 and fed ALA. Therefore, I can 

conclude that caffeine demethylase activity is heme limited, the cost of overexpressing heme 

biosynthetic genes is significant, and the benefits of producing more heme are greater than 

the cost. 
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Figure 4.4 Increasing the total cellular heme level leads to an increase in total enzymatic activity at the cost of 
slower growth. (A) Cells expressing yCDM8 from a high-copy plasmid were cotransformed with high-copy 
plasmids overexpressing HEM3 or HEM2/3/12. Cultures were grown in the presence of caffeine and varying 
amounts of iron and ALA. After 48 hours, the theophylline concentration was measured in the supernatant and 
the cell pellets were assayed for heme content. Each point represents the average of three biological replicates, 
and error bars show ±1 standard deviation. The data shown are concatenated from four separate experiments 
to account for day-to-day variability. (B) Growth curves were measured for cells expressing yCDM8 from a 
high-copy plasmid in combination with heme overexpression. The heme overexpressing cultures grow more 
slowly than cultures that carry a similar plasmid but do not overexpress heme. The curves are an exponential fit 
to the data. 
 

Given the stress associated with heme overexpression, I next sought to tune the 

overexpression constructs to minimize this stress. I integrated the heme overexpression 

constructs into the yeast genome, eliminating the need to maintain a high-copy plasmid 

while also presumably lowering the expression of the genes. Unexpectedly, I found that cells 

with the integrated copies of the overexpression constructs produced more heme than cells 

with those same constructs on high-copy plasmids. The strain with HEM2, HEM3, and 

HEM12 integrated simultaneously grew very slowly (Figure 4.5B) and produced enormous 

quantities of heme (> 90-fold more than the control, data not shown). However, the strain 

with only HEM3 integrated showed no growth defect (Figure 4.5B) and produced the 

highest theophylline titers yet seen, reaching 42% conversion (Figure 4.5A). Notably, HEM3 

overexpression had no effect on theophylline production, either positive or negative, when 

yCDM8 was expressed from a low-copy plasmid, demonstrating that integrated HEM3 does 

not have an inherent deleterious effect and that the benefits of heme overexpression are 

dependent on the simultaneous overexpression of the hemoprotein yCDM8. 
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Figure 4.5 Integrated HEM3 overexpression improves theophylline production from highly expressed P450. 
(A) Cells expressing yCDM8 from either a high- or low-copy plasmid were transformed into strains with and 
without an integrated HEM3 expression construct. Adding ALA to either the WT or HEM3 strains did not 
affect activity. After 48 hours, the theophylline concentration was measured in the supernatant. The error bars 
show ±1 standard deviation calculated from three biological replicates. (B) Growth curves were measured for 
cells expressing yCDM8 from a high-copy plasmid in combination with integrated heme overexpression. 
Integrating HEM2/3/12 led to very slow growth. The curves are an exponential fit to the data. 
 

Finally, I asked whether the expression of other hemoproteins was limited by heme 

biosynthesis. I tested two representative enzymes: a membrane-associated P450, CYP2D6 

(Hawkins & Smolke, 2008), and a cytosolic catalase, CTT1. In contrast to the soluble 

CYP102A1, CYP2D6 was not heme limited and showed a slight decrease in activity with 

increasing concentrations of heme (Figure 4.6A). I expect that CYP2D6 expression is limited 

instead by the ability of the cell to accommodate large quantities of functional membrane 

proteins (Schunck et al., 1991). However, the soluble catalase CTT1 exhibited nearly twice 

the activity when both heme and enzyme are overexpressed (Figure 4.6B). For comparison, 

previous work overexpressing HEM2 alone led to a 20–40% increase in activity (Mattoon & 

Bajszar, 1998).  
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Figure 4.6 Heme overexpression increases the activity of soluble, but not membrane-associated, 
hemoproteins. (A) Cells expressing membrane-associated CYP2D6 from a high-copy plasmid were 
cotransformed with high-copy heme overexpression plasmids. Cultures were grown in the presence of 
norlaudanosline and varying amounts of iron and ALA. After 48 hours, the salutaridine concentration was 
measured in the supernatant and the cell pellets were assayed for heme content. Each point represents the 
average of three biological replicates with error bars showing ±1 standard deviation. (B) Cells expressing CTT1 
from a high-copy plasmid were cotransformed with heme overexpression plasmids. Cultures were grown to 
midexponential phase (OD ~ 0.4) and lysed with glass beads. Catalase activity was determined by monitoring 
the degradation of H2O2 in vitro. Heme content was measured as described previously. Each point represents a 
single biological replicate and the error bars show ±1 standard deviation calculated from technical replicates. 
 

These results demonstrate that heme overexpression is not a general solution to 

increase the functional expression of a hemoprotein. Cytosolic hemoproteins may be heme 

limited, but membrane hemoproteins are likely to be limited by other factors. The 

complicated interactions underlying an apparently simple process of cofactor production 

highlights the importance of my microarray analysis. Lacking the systems-level analysis, each 

potential source of stress would need a separate method of characterization and rules 

predicting when the stress was likely to occur. In contrast, the microarray analysis allowed 

me to directly identify a limiting stress. 

 

4.2.5 Heme depletion limits total enzyme expression 

I previously demonstrated in Chapter 2 that total CDM expression was roughly 

constant, irrespective of the enzyme generation or the plasmid copy number. I hypothesized 

that most of the additional proteins produced from the high-copy plasmid were misfolding, 

leading to increased rates of protein degradation and equivalent steady-state protein levels. 
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To test this hypothesis, I measured the proteasomal activity of cells expressing high or low 

levels of the final enzyme yCDM8 (Figure 4.7A). Cultures that express yCDM8 from a high 

copy plasmid showed increased levels of proteasomal activity, in contrast to cells expressing 

the same enzyme from a low-copy plasmid. However, when we increased the heme levels, 

the proteasomal activity decreased to background levels (Figure 4.7B) and the total CDM 

expression increased (Figure 4.7C).  

 

4.3 Discussion 

In the past, systems biology has generally been applied to metabolic engineering in two 

distinct fashions. When used for forward metabolic engineering, researchers typically 

consider a single strain, the best producer, and ask how that strain differs from a control. 

The difficulty of a using a global analysis is the sheer volume of data that can be obtained. In 
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one of my engineered strains, for example, the transcription of 953 genes was significantly 

different than the control (p < 0.001), and greater than 20% of the genes measured showed 

statistically significant variation in at least one of the seven experimental strains. In inverse 

metabolic engineering, researchers deal with this problem by constructing many variant 

strains and then looking for consistent patterns between the variants. However, this 

approach has not previously been used for forward engineering. In this chapter, I 

successfully applied the techniques of inverse metabolic engineering to a forward engineering 

problem, quickly narrowing my focus to those genes that show consistent patterns of 

expression across the variants tested and then to the transcription factors that produce the 

coordinated response. 

Based on my global transcript analysis, I propose that the overexpression of a heme-

containing monooxygenase depletes the intracellular pool of heme and the resulting lack of 

heme places a stress on the cell that limits the total enzymatic activity. High-copy expression 

of the enzyme sequesters more heme and therefore produces a greater stress than low-copy 

expression. Evolution of the enzyme on a high-copy plasmid reduced the stress, suggesting 

that the stress imposed a selective pressure to minimize the deleterious effects. However, 

decreasing the enzyme copy number removed both the stress of heme depletion and the 

selective pressure to minimize that depletion. Further evolution of the enzyme on a low-

copy plasmid led to an increase in enzymatic activity when expressed at low-copy, but also to 

greater heme usage by the monooxygenase. As a result, the enzymes that show improved 

activity under low-copy expression conditions do not show corresponding increases in 

activity when expressed from a high-copy plasmid. 

Heme depletion has several effects on the cell. First, lack of heme disrupts the host 

metabolism. Without heme, the cells show gene expression profiles consistent with 
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anaerobic growth, despite the presence of sufficient oxygen. For example, transcription of 

heme-dependent genes such as mitochondrial cytochromes is significantly reduced. Second, 

low heme levels limit the production of active P450. When heme levels are low, additional 

nascent peptides are unable to properly bind heme and, as a result, misfold. The misfolded 

proteins are then degraded by the proteasome. Disruption of aerobiosis, in addition to the 

additional burden of recycling misfolded protein (Geiler-Samerotte et al., 2011), would tend 

to reduce the host’s growth rate and correspondingly reduce theophylline production. 

Additionally, heme-dependent protein misfolding limits the expression of active, properly-

folded P450, further reducing total activity. In my system, increasing the heme supply, by 

overexpressing three rate limiting enzymes and feeding additional substrates, alleviated these 

stresses and increased the total enzymatic activity by 2.3-fold. 

I have demonstrated that CYP102A1 is not the only heme limited enzyme in yeast, but 

also that not all hemoproteins are heme limited. In situations where activity from a soluble 

hemoprotein is limiting, a similar heme overexpression strategy may be worthwhile. If 

optimal activity is required, the heme overexpression constructs could be streamlined and 

optimized by tuning the expression level of the HEM genes. Similarly, while feeding ALA is 

a straightforward method for increasing precursor availability for the heme biosynthetic 

pathway, the cost would likely be prohibitive on an industrial scale. Accordingly, 

overexpression of the ALA biosynthetic pathway (Kang et al., 2011) might be a preferable 

solution. A similar strategy might also be useful for other enzyme classes, such as S-adenosyl 

methionine (Okamoto et al., 2003) or the phosphopantetheinyl group of acyl carrier proteins 

(Siewers et al., 2009), where a focus on cofactor availability and loading might identify novel 

factors limiting productivity.  

Currently, this type of systems analysis is limited by the assumption that cellular 
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stresses will be reflected in the transcript or protein levels. When we see changes in 

transcript levels, we can generally trust that they result from a disturbance to the host. 

However, constant transcript levels can mean either that the corresponding stress is absent 

or that the stress does not produce a change in transcript levels. If we cannot distinguish 

between these two situations, we run the risk of missing important data. For example, my 

global analysis did not identify protein degradation as a major cellular stress even though I 

later found that the proteasomal activity was significantly higher in some strains. This 

misidentification is likely due to posttranslational regulation of the proteasome (Mason et al., 

1996; Zhang et al., 2003). Had I not hypothesized that protein turnover was increasing and 

specifically measured the proteasomal activity, this would have remained a false negative in 

my global analysis. Conversely, the demethylase used in this work produces formaldehyde as 

a by-product, and therefore I identified formaldehyde toxicity as one potential source of 

stress. The gene responsible for formaldehyde detoxification, Sfa1, is not differentially 

transcribed in the strains that I analyzed. I could only rule out formaldehyde toxicity by 

verifying in the literature that Sfa1 would be induced were formaldehyde present at high 

concentrations (Wehner et al., 1993). Global analyses would be more informative if we had a 

better method of screening through this negative data to separate situations where a lack of 

response is meaningful, such as Sfa1, from those where measuring transcript or protein 

levels does not inform us about the underlying stress, such as the proteasome. 

I anticipate that the approaches described in this chapter will be generally useful in the 

optimization of heterologous metabolic pathways. In addition to my specific solution, where 

heme overexpression leads to increased expression of a P450 monooxygenase, I believe that 

a systems analysis of multiple variants of a heterologous pathway will generally provide 

additional insight into the factors limiting pathway productivity and therefore enable further 
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pathway optimization. 

 

4.4 Methods 

4.4.1 Strains and cultivation 

The strains used in this work are derivatives of W303α (MATα leu2-3,112 trp1-1 can1-

100 ura3-1 ade2-1 his3-11,15). Transcript analysis was conducted in CSY492 (W303 

lys2::PTEF-GFP-L2Bulge8-ADH1T). Cultures were grown in shake flasks at 30 oC and 200 

RPM in the appropriate synthetic dropout media (Formedium, Hunstanton, UK) 

supplemented with 2% glucose, an additional 10 mg/L of adenine (Sigma-Aldrich, St. Louis, 

MO), and 1 mM caffeine (Sigma-Aldrich). Heme overexpression strains were fed varying 

amounts of iron (II) citrate and δ-aminolevulinic acid (Sigma-Aldrich). HEM overexpression 

plasmids were provided by L. Liu, J.L.M Ruiz, and J. Nielsen. HEM overexpression 

constructs were integrated into the lys2 locus of W303 (Sadowski et al., 2007). Assays for 

salutaridine production were fed 4 mM norlaudanosoline (Santa Cruz Biotech, Santa Cruz, 

CA). 

 

4.4.2 Metabolite analysis 

Supernatant theophylline production was assayed on an Agilent 1200 series liquid 

chromatograph using a Poroshell 120 SB-C18 2.1 x 50 mm, 2.7 μm column (Agilent). The 

mobile phase was 0.50 mL/min of 20% methanol/80% water with 0.1% acetic acid. 

Theophylline eluted at 0.70 minutes and was detected at 274 nm. For each sample, 3 μL was 

injected onto the columns. The identity of the theophylline peak was confirmed with each 

assay by the use of an authentic standard (Sigma-Aldrich), and the concentration of 
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theophylline in each sample was determined by comparison to a series of reference 

standards. 

Supernatant salutaridine production was assayed on an Agilent 1200 series liquid 

chromatograph using a Zorbax SB-Aq 3.0 x 50 mm, 1.8 μm column (Agilent). The mobile 

phase was 0.60 mL/min of a mixture of water (Buffer A) and methanol (Buffer B), both 

with 0.1% acetic acid. The mobile phase started at 100% A for 1 minute, followed by a 

gradient to 75% A/25% B over three minutes, then held at 75% A/25% B for three 

minutes. After a total of seven minutes, there was a further gradient to 100% B over one 

minute, then held at 100% B for four minutes. Finally, the mobile phase was switched back 

to 100% A and reequilibrated for 6 minutes. Salutaridine was detected using an Agilent 6320 

Ion Trap Mass Spectrometer, measuring the 265 m/z fragment of the 328 m/z ion. 

 

4.4.3 DNA microarray experiments 

Each strain for microarray analysis was grown overnight in appropriate dropout media. 

Each culture was diluted to OD 0.05 in 30 mL of fresh media, with four biological replicates 

per strain. When the cultures reached OD 0.3–0.4 they were quenched by decanting into a 

50 mL centrifuge tube filled with ice. The cultures were centrifuged for 3 minutes at 4 oC 

and 5000 RCF, washed with 1 mL of water, transferred to a 1.5 mL centrifuge tube and 

centrifuged for 2 minutes at 4 oC and 8000 RCF. The resulting cell pellet was frozen in liquid 

nitrogen and stored at -80 oC in preparation for analysis. 

For each strain, three cell pellets representing three biological replicates were lysed 

using the RNeasy kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. 

cDNA synthesis followed by aRNA synthesis and fragmentation were performed using the 

3’ IVT Express kit (Affymetrix, Santa Clara, CA) following the manufacturer’s instructions. 
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aRNA synthesis and fragmentation were monitored using an Agilent 2100 Bioanalyzer and 

RNA 6000 Nano chips (Agilent Technologies, Santa Clara, CA). Fragmented aRNA was 

hybridized to Yeast Genome 2.0 DNA chips and scanned using a GeneChip 3000 7G 

Scanner (Affymetrix), according to the manufacturer’s instructions. 

Microarray data were analyzed using the BioConductor suite in R. Principal 

components analysis, treating the samples as the variables and gene expression data as 

observations (Raychaudhuri et al., 2000), was used to identify genes with consistent patterns 

of expression between the different strains. Prior to PCA, the microarray data were 

normalized to correct for the steady-state expression level (Holter et al., 2000). The ~ 400 

genes with the highest magnitude scores for PC1 were used as input to Reporter Features 

(Oliveira et al., 2008) to identify transcription factors whose targets were overrepresented. 

 

4.4.4 Proteasomal activity measurements 

Proteasomal activity was measured using the Proteasome-Glo kit (Promega, Madison, 

WI), according to the manufacturer’s directions. Cultures were grown to mid-log phase (OD 

0.2–0.4) then diluted in fresh media to OD 0.1, 0.05, and 0.02 (corresponding to ~ 100,000 

to 20,000 cells per 100 µL, respectively). 100 µL of the resulting cell suspension was mixed 

with 100 µL of the assay reagent, prepared according to the manufacturer’s directions. After 

a 10 minute incubation at room temperature, the luminescence was measured on a Wallac 

1420 Victor3 microplate reader (PerkinElmer, Waltham, MA).  

 

4.4.5 Heme measurements 

The intracellular heme concentration was measured using a derivative of a previously 

described protocol (Sassa, 1976). 5 mL samples of mid-log cultures (OD ~ 0.4) were 
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centrifuged at 4 oC and 5000 g for 5 minutes. The pellet was washed with water, transferred 

to a centrifuge tube, and centrifuged again at 4 oC and 8000 g for 5 minutes. The pellet was 

then resuspended in 500 µL of 20 mM oxalic acid (Sigma-Aldrich) and stored at 4 oC in the 

dark for 16 hours. After the acid extraction, 500 µL of 2 M oxalic acid was added to each 

tube. 500 µL of the resulting suspension was transferred to a new centrifuge tube. The 

original centrifuge tube was heated to 95 oC for 30 minutes, removing the iron from non-

fluorescent heme and producing a fluorescence porphyrin ring. 200 µL of each sample 

(heated and unheated) were measured in a microplate reader (Tecan Safire, Männedorf, 

Switzerland), exciting at 400 nm and measuring emission at 620 nm. A standard curve was 

constructed using variable concentrations of hemin (Sigma-Aldrich).  

 

4.4.6 Quantitative Western blots 

Yeast strains harboring the appropriate enzyme expression constructs were grown 

overnight in 5 mL of SD-Ura. Protein extraction was carried out using 0.1 M NaOH 

(Kushnirov, 2000) followed by lysis in protein loading buffer (Invitrogen). Samples and 

ladder (New England Biolabs P7711S) were resolved on 4–12% Bis-Tris SDS-PAGE gels in 

1x MOPS (Invitrogen). Protein was transferred to a nitrocellulose membrane using semidry 

transfer (Bio-Rad) in 2x NuPAGE transfer buffer (Invitrogen) + 10% MeOH. After 

transfer, the membrane was cut in half at ~ 55 kDa. Both membrane halves were blocked in 

5% BSA for 1 hour. The membrane with higher-molecular-weight proteins was blotted with 

an anti-V5 HRP antibody according to the manufacturer’s instructions (Invitrogen). The 

membrane with lower-molecular-weight proteins was blotted with a mouse anti-actin 

antibody (Abcam 8224, Cambridge, UK) and a rabbit anti-mouse HRP (Abcam 6728) 

according to the manufacturer’s instructions. Both HRP antibodies were detected by 



 104 

chemiluminescence, following the manufacturer’s instructions, (Pierce, Rockford, IL) using a 

Chemi-Doc XRS imager (Bio-Rad). Blots were analyzed using the QuantityOne analysis 

software (Bio-Rad).  

 

4.4.7 Catalase activity assays 

Cells containing the catalase overexpression construct as well as various heme 

overexpression constructs were grown to saturation overnight. The cultures were diluted 20x 

into 50 mL of fresh dropout media and regrown to mid-log (OD ~ 0.4). 5 mL samples were 

taken to measure heme content as described previously. The remaining culture volume was 

centrifuged at 4 oC and 6000 g for 5 minutes, washed once with 1 mL of resuspension buffer 

(0.1 M potassium phosphate, 0.5 mM EDTA), and centrifuged again. The pellet was then 

resuspended in 1 mL of resuspension buffer plus protease inhibitor (HALT, Pierce) and 

transferred to a tube containing 500 mg of acid washed glass beads (Sigma). The samples 

were lysed by 5 cycles of 1 minute vortexing followed by 1 minute on ice. After vortexing, 

the crude lysate was centrifuged at 4 oC and 16,000 g for 5 minutes, and the supernatant was 

transferred to a new tube. The total protein concentration was measured using a Bradford 

reagent (Bio-Rad) according to the manufacturer’s instructions, using 160 μL of sample 

dilutions and 40 μL in a microwell plate. Absorbance was assayed using a Tecan Safire 

microplate reader. Sample values were compared to a standard curve was constructed using 

BSA to determine the total protein concentration.  

Next, the catalase activity of each sample was measured. Samples were diluted to ~ 10 

μg/mL. 40 μL of protein was mixed with 160 μL of 250 uM H2O2. Aliquots were taken at 

30, 60, and 120 seconds and quenched in 200 μL of Peroxide Assay Reagent (Pierce), 

according to the manufacturer’s instructions. Absorbance was measured on a Tecan Safire 
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microplate reader. Residual peroxide was calculated by comparison to a standard curve of 

H2O2 dilutions. One unit of catalase activity was calculated as the amount of active protein 

necessary to degrade 1 mM of H2O2 in 1 minute.  

 

4.4.8 qRT-PCR measurements 

Cells containing various combinations of heme and P450 overexpression plasmids 

were grown to saturation overnight. They were then diluted in triplicate 30 mL cultures and 

regrown to midexponential phase (OD600 ~ 0.5). 10 mL of each culture was centrifuged for 5 

minutes at 6,000 g and 4 oC, washed with 1 mL of water, and repelleted for 5 minutes at 

8,000 g and 4 oC. The supernatant was removed and the cells were frozen in liquid nitrogen 

and stored at -80 oC. 

The cell pellets were resuspended in 500 μL buffer AE (50 mM NaOAc, 10 mM 

EDTA) with 1.5% SDS. 500 μL of acid phenol was added to each suspension and the 

mixture was heated at 65 oC for 10 minutes with regular vortexing. The tubes were cooled 

on ice for 5 minutes, then centrifuged for 12 minutes at 10,000 g and 4 oC. The supernatant 

was transferred to a new tube and mixed with an equal volume of chloroform. The tubes 

were again centrifuged, and the supernatant transferred to a new tube. Nucleic acids were 

precipitated with 1/10th volume NaOAc and 2 volumes 100% ethanol. Tubes were stored at 

-20 oC for 30 minutes, the centrifuged for 30 minutes at 16,000 g and 4 oC. The supernatant 

was removed, the pellets were washed with 500 μL 70% ethanol, and the tubes centrifuged 

again for 20 minutes at 16,000 g and 4 oC. The supernatant was removed and the pellets 

allowed to air dry. The pellets were then resuspended in 20 μL of water. 2 μL of DNAseI 

buffer and 1 μL of DNAseI (NEB) were added to each tube. The tubes were incubated at 37 

oC for 10 minutes. Next, EDTA was added to a final concentration of 5 mM and the tubes 
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incubated at 75 oC for 10 minutes. Finally, the ethanol precipitation procedure was repeated 

to remove the EDTA. 

The RNA was quantified using a Nano-Drop spectrophotometer. Total RNA was 

reverse transcribed using SuperScript III (Invitrogen) and gene specific primers for HEM13 

and ACT1, according to the manufacturer’s instructions. Approximately 1.5 μg of total RNA 

was loaded into each RT reaction. Following reverse transcription, qPCR was performed 

according to the manufacturer’s instructions using the iQ SYBR Green Supermix (Bio-Rad) 

and 3 μL of cDNA in a 20 μL reaction. The qPCR reactions were monitored on a Bio-Rad 

iCycler. For each biological replicate, three technical replicates were performed for each of 

the gene specific primers. A dilution series was conducted for one sample, using both primer 

pairs, to measure the cycle efficiency. For each biological replicate, the technical replicates 

were averaged and the measured HEM13 level was normalized to the ACT1 level. The 

normalized expression was then averaged for the three biological replicates. 
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4.5 Tables 

Table 4.1 Heme overexpression data 

Enzyme Expression Heme 
Overexpression 

Relative Total Heme Level Relative Total Porphyrin 
Level 

No Enzyme Empty Plasmid    1.00   ±0.14 1.00   ±0.14 

No Enzyme HEM2/3/12  1.20 ±0.20 3.91 ±0.52 

No Enzyme HEM2/3/12 + ALA  1.19 ±0.33 13.81 ±1.09 

Low-Copy P450 Empty Plasmid  1.44 ±0.14 0.89 ±0.04 

Low-Copy P450 HEM2/3/12  2.44 ±0.14 2.58 ±0.26 

Low-Copy P450 HEM2/3/12 + ALA  3.35 ±0.13 6.87 ±0.15 

High-Copy P450 Empty Plasmid  1.90 ±0.11 0.62 ±0.04 

High-Copy P450 HEM2/3/12  3.97 ±0.17 1.37 ±0.17 

High-Copy P450 HEM2/3/12 + ALA  9.54 ±0.94 3.41 ±0.71 
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5  Design of In Vivo Feedback Controllers Using 

Synthetic RNA Switches 
Portions of this chapter are adapted with permission from Michener JK, Thodey K, Liang JC, Smolke CD 
(2011) Applications of genetically-encoded biosensors for the construction and control of biosynthetic 
pathways. Metab Eng. May;14(3):212-22. 
 

Cells are filled with biosensors, molecular systems that measure the state of the cell and 

respond by regulating host processes. In much the same way that an engineer would monitor 

a chemical reactor, the cell uses these sensors to monitor changing intracellular 

environments and produce consistent behavior despite the variation. While natural systems 

clearly derive benefit from pathway regulation, past research efforts in engineering cellular 

metabolism has focused on introducing new pathways and removing existing regulation, and 

researchers have rarely used genetically encoded biosensors as tools for optimizing and 

regulating heterologous pathways. In this chapter, I describe several ways in which 

biosensors could be used to introduce feedback control into metabolic pathways, providing 

dynamic control of metabolism to increase pathway efficiency and reliability. 

 

5.1  Introduction 
Natural metabolic pathways have evolved intricate regulatory networks to allow cells to 

respond to changing conditions (Bennett et al., 2008; Zaslaver et al., 2004) with a minimum 

of wasted energy (Chubukov et al., 2012). In contrast, engineered pathways rarely introduce 

any regulation beyond the use of an inducible promoter. More commonly, engineering 

efforts focus on removing regulation (Lutke-Eversloh & Stephanopoulos, 2007) rather than 

adding it anew. However, there are important reasons that cells use dynamic regulation, 

ranging from responding to variable environments to coping with stochastic variation in 

transcription and translation (Elowitz et al., 2002). However, efforts to replicate these types 

of controllers have been slow, due in large part to the difficulty of engineering a sensor that 
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can recognize the desired pathway intermediate (Farmer & Liao, 2000; Zhang et al., 2012). 

RNA sensors have the potential to simplify the construction of dynamic controllers that 

sense and respond to novel metabolites. 

In Chapter 2, I describe the optimization of an enzymatic reaction using a sensor, a 

theophylline-dependent RNA switch, to control expression of a reporter, GFP. Once a 

sensor has been used in this fashion for pathway optimization, it can then be linked to an 

actuator to dynamically regulate a metabolic pathway. In this context, an actuator refers to a 

molecule that affects the pathway being regulated. The combination of sensor and actuator 

forms a controller. Controllers may be divided into two broad categories, open loop and 

closed loop, based on the ligand being sensed. An open loop controller responds to a ligand 

that is distinct from the pathway being controlled; examples of open loop control include 

inducible promoters, native promoters that demonstrate a desired temporal response 

(Scalcinati et al., 2012), and quorum-sensing systems (Tsao et al., 2010). In contrast, closed 

loop controllers directly measure the current status of the pathway and respond accordingly 

(Zhang et al., 2012).  

For a closed loop controller, the details of the linkage between sensor and actuator 

define the control law for the circuit. In a simple negative feedback loop, the sensor might 

respond to the product of an enzymatic reaction and directly regulate the expression of the 

associated enzyme; the enzyme serves as the actuator, and the feedback is roughly 

proportional. In a more-complicated controller, an increase in pathway output would lead to 

increased expression of a repressor that lowers the pathway expression (Ang et al., 2010). 

This system can be switched from proportional to integral control if the repressor is made to 

degrade at a constant rate. A truly constant decay rate is not possible, but pseudozeroth-

order decay can be achieved through saturated enzymatic proteolysis with much greater 
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magnitude than that of first-order dilution (Grilly et al., 2007). Proportional negative 

feedback can diminish the effects of disturbances to a pathway, but integral control, 

particularly in conjunction with proportional control, can completely reject disturbances. 

However, sensors linked to actuators require a great deal of design flexibility to ensure 

proper operation. In contrast to electronic controllers, the set point and control law of a 

metabolic controller are fixed by biochemical parameters of the component elements. If the 

metabolic engineer lacks sufficient tools to manipulate these parameters, the controller is 

unlikely to work reliably. 

The primary advantage of using RNA switches to construct controllers is their 

modularity, in both sensing and actuation. As described previously, new ligand binding 

domains can be selected in vitro and integrated into existing RNA switch platforms. Similarly, 

taking an existing switch of the type used in Chapters 2 and 3 and using it to regulate a new 

gene is simply a matter of cloning the switch into the 3’ UTR of the gene to be regulated. 

The characteristics of an RNA switch can also be quantitatively tuned (Liang JC, Chang AL, 

Kennedy AB, and CDS, in submission), aiding in the construction of controllers. There are 

two main weaknesses associated with the use of RNA switches in feedback controllers. First, 

the currently available switches have relatively small dynamic ranges, and a feedback 

controller requires a much larger range than does enzyme screening. Second, the RNA 

switch operates posttranscriptionally, so actuation requires a relatively slow translation step. 

If the input is changing on a faster time-scale than the switch can handle, the controller will 

not function properly. Protein transcription factors can be used in place of RNA switches, 

though with similar weaknesses. In fact, a transcription factor will show an even slower 

response, as actuation requires both transcription and translation. Future options for post-

translation actuation could control enzyme activity (Guntas & Ostermeier, 2004), localization 
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(Czlapinski et al., 2008), or degradation (Davis et al., 2009). Controllers built using these 

actuators could respond on much faster time-scales. However, engineering a new post-

translational actuator would be more challenging than constructing a transcriptional or post-

transcriptional actuator. 

In a classic example of engineering closed loop metabolic control, a transcription 

factor-based sensor has been used to detect excess flux through the glycolytic pathway 

(Farmer & Liao, 2000). The sensor, based on a natural E. coli promoter, linked increases in 

acetyl phosphate concentration to increases in transcription from its cognate promoter, 

glnAp2. This promoter was used to express genes that divert the glycolytic flux away from 

acetyl phosphate to an engineered lycopene biosynthetic pathway, producing a closed loop 

control system designed to maintain acetyl phosphate levels at a set value (Figure 5.1). Two 

genes in the lycopene pathway were placed under the control of either a strong constitutive 

promoter or the acetyl phosphate-responsive glnAp2 promoter. Expression from the strong 

constitutive promoter led to growth arrest and low production of lycopene. When the genes 

were expressed in an acetyl phosphate-dependent manner, the cells grew normally and 

produced high titers of lycopene.  

 
Figure 5.1 Dynamic regulation of the lycopene biosynthetic pathway. (A) The controller senses 
acetylphosphate, a signal that glycolytic intermediates are building up, and regulates idi and pps, the genes 
coding for rate limiting enzymes in lycopene biosynthesis. (B) Glyceraldehyde-3-phosphate can either be 
metabolized through glycolysis or converted into lycopene. An increase in acetylphosphate causes an increase 
in Idi and Pps, diverting flux from glycolysis into lycopene biosynthesis. 
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In this example, the controller functioned similarly to a stationary phase promoter 

and allowed the cells to switch on the pathway only after the cell density had reached a 

critical level. However, this controller also demonstrates several disadvantages of relying on 

natural transcription factors. The system can only respond to acetyl phosphate and shifting 

to regulate the pathway based on another metabolite would be difficult. Acetyl phosphate is 

quite close to central metabolism, and is embedded in an existing regulatory network. 

Analysis of the controller is therefore quite difficult, as it may interact with the endogenous 

network in unexpected ways. Additionally, the control law is difficult to modify, since the set 

point of the controller is largely fixed by the relationship between acetyl phosphate 

concentration and transcription factor activation. Varying regulatory elements, such as the 

RBS (Salis et al., 2009), may allow some tuning of the control response by changing the 

strength of the linkage between sensor and actuator, but much of the system response is 

fixed by the choice of components. 

Due to the properties of its components, this type of controller is difficult to modify 

and analyze. Simple changes to the sensor and pathway, such as using an RNA switch and a 

pathway with an exogenous substrate, can make the controller much more tractable. The 

tunability of RNA switches would allow targeted modifications to the controller, and the use 

of an exogenous substrate minimizes the interactions between the system and its host. Built 

in this fashion, negative feedback controllers can be used in many different situations. In this 

chapter, I consider two such applications: the use of feedback control to accommodate 

disturbances to the concentration of the substrate of an enzymatic reaction, and its use to 

reduce retroactivity when connecting enzymes into pathways. I construct computational 

models of these controllers and explain the necessary design parameters for components 
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used in such a controller. Finally, I discuss experimental characterization of potential 

components for use in a feedback controller. 

 

5.2  Results 
 

5.2.1 Minimizing disturbances from input perturbations 

Substrate-limited enzymes can allow changes in the concentration of an initial reactant 

to propagate through a metabolic pathway. These changes could have deleterious 

consequences, including starving the cell of a necessary metabolite or overproducing a toxic 

intermediate. In a substrate-limited reaction, an increase in the substrate concentration 

would lead to an increase in the product concentration. A feedback controller could 

effectively convert this substrate-limited reaction into a substrate-independent step by 

sensing the increase in product concentration and decreasing the enzyme expression to bring 

the concentration back to the basal level. The simplest type of controller would use 

proportional feedback, where the enzyme expression was regulated in response to the 

current product concentration (Figure 5.2A). A more-complicated integral controller adds a 

repressor protein to effectively integrate the product concentration over time (Figure 5.2B). 

A true integral controller would require that this repressor protein degrade at a constant rate, 

so that the repressor concentration would be the integral of the difference between the 

product-dependent synthesis rate and the constant degradation rate. However, a constant 

degradation rate is not possible in a growing cell due to first-order dilution. The best that we 

can achieve is to degrade the repressor enzymatically using a saturated protease. The 

protease will introduce an effectively constant decay term, and if the magnitude of this term 

is significantly larger than the first-order dilution, the system will behave as an integral 
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controller.  

 

Figure 5.2 Feedback control can reduce the effects of a disturbance to the pathway input. (A) An enzyme is 
used to convert a substrate, A, into a product, B. Proportional feedback control would regulate enzyme 
expression in response to the current product concentration. (B) An integral feedback controller uses a 
repressor protein to integrate the product concentration. Synthesis of the repressor is induced by the product, 
and the repressor then reduces expression of the enzyme. (C+D) Feedback controllers can reduce the effects 
of a change in substrate concentration. The unregulated module (black) has a linear dependence on the 
substrate concentration. Proportional regulation can reduce this effect but cannot eliminate it entirely. An 
integral controller could completely reject this type of disturbance. However, true integral control requires the 
repressor protein be degraded at a constant rate, which is not possible in the presence of dilution due to 
growth. The presence of a small-magnitude first-order decay term prevents perfect adaptation (blue). 
 

 I have modeled the effects of introducing these two controllers into a substrate-

limited enzymatic reaction that is challenged by fluctuations in the substrate concentration 

(Figure 5.2C). The cells are grown in continuous culture with varying concentrations of 

substrate added to the media feed. In the absence of a control system, changes in the 

substrate concentration propagate directly to the product concentration (Figure 5.2D). For 

example, doubling the substrate concentration will double the product concentration. 
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Proportional regulation can reduce, but not eliminate, these disturbances. With a 

proportional controller, a twofold change in the substrate concentration produces a 1.6-fold 

change in the product concentration. The integral controller further reduces the disturbance, 

but only at the cost of significant transient fluctuations as the system adapts to the new 

equilibrium. Additionally, the presence of first-order degradation due to dilution prevents the 

controller from behaving as a true integral controller. As a result, the system is not able to 

perfectly adapt to a changing substrate concentration, and there is still a steady-state 

disturbance. Neither of these controllers, proportional or integral, is perfect, but either 

controller would reduce the effect as an input change propagates through a metabolic 

pathway. 

 

5.2.2 Minimizing retroactivity in a biosynthetic pathway 

In addition to using controllers to prevent disturbances from propagating along a 

pathway, they can also be used to accommodate disturbances that propagate up a pathway, a 

situation described as retroactivity. Metabolic pathways can demonstrate retroactivity when 

two reactions in a pathway compete for the same substrate or cofactor. Changing the 

specifics of the downstream reaction, such as its cofactor utilization, can propagate up a 

pathway to affect the enzyme that shares that cofactor. In the case of cofactor-dependent 

retroactivity, the host cell will generally already use control systems to sense cofactor 

depletion and react accordingly. While this adaptation might not be sufficient to counteract 

the new load, as in the case of heme biosynthesis (described in Chapter 4), solutions typically 

take the form of augmenting the native response. Minimizing the retroactivity from 

competition over a mutual substrate, however, will often require the introduction of an 

entirely new controller. This controller must sense the concentration of the mutual substrate 
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and act to keep that substrate concentration constant despite varying rates of consumption.  

I first considered a simple example where a feedback controller was used to maintain 

the concentration of an intermediate, B, as the rate of consumption was increased (Figure 

5.3A). In my model, the parameter ‘m’ denotes the activation ratio of the sensor, roughly 

equivalent to the gain of the proportional controller. If m = 1, there is no feedback and the 

enzyme that converts A into B is working at its maximum reaction rate. When m = 10, the 

enzyme expression can vary by a factor of 10. I used realistic parameters for the RNA switch 

and modified the basal expression level of the regulated enzyme variants to ensure that, in 

the absence of a downstream reaction, the various controllers produced the same output 

(Figure 5.3B). The controller is able to reduce, but not eliminate, the variation in the 

concentration of the intermediate, B (Figure 5.3C). As a result, the pathway would show less 

retroactivity and an enzyme that competes for B would produce more-consistent results.  

 
Figure 5.3 A proportional feedback controller can reduce the retroactivity of a downstream reaction. (A) 
Diagram of the model system. A substrate, A, is converted to an intermediate B. The consumption rate of B is 
varied. A feedback controller attempts to maintain the concentration of B at a fixed value despite this variable 
consumption. (B) In an unregulated pathway, a small increase in the rate of conversion of B to C can have a 
large effect on the concentration of free B. A feedback controller can respond by increasing the rate at which B 
is synthesized. As a result, the concentration of B is less dependent on the rate of the downstream reaction. 
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The concentration of B is reported relative to its basal rate in the absence of any downstream reaction (where 
loss of B occurs only through dilution). The downstream reaction velocity is normalized by the basal dilution 
rate; a reaction velocity of 1 means that the rate of B→C is equal to the basal dilution rate of B. 
 

Next, I expanded my simple model to a more-realistic pathway (Figure 5.4A), in which 

a common substrate, B, is used to make two intermediates, C and D. These two 

intermediates then condense into the product, E. This pathway structure occurs in the 

biosynthesis of norcoclaurine (Nakagawa et al., 2011). In this type of pathway, optimizing 

one branch of the pathway, perhaps by evolving the enzyme that makes D to improve its 

activity, could lead to lower production of the final product E by reducing the concentration 

of the common substrate B and therefore the rate of reaction in the opposite branch making 

C. A feedback controller can sense the increased consumption of B and respond by 

increasing the rate of synthesis of B.  

 
Figure 5.4 Feedback control can accommodate competition over a common substrate. (A) Diagram of the 
model pathway. A single intermediate is used to produce two different compounds that condense into the final 
product. (B) As one branch of the pathway is optimized, the maximum rate of that reaction will increase. In the 
absence of regulation, the concentration of the common substrate, B, will decrease. (C) As a result, the rate of 
the competing reaction will decrease and quickly become limiting. Since the overall flux is limited by the slower 
of the two reactions, an improvement to one branch can lower the concentration of the final product. 
However, a feedback controller can respond to lessen the decrease in the concentration of B. As a result, the 
competing reaction is not affected by the optimization. The optimization may not increase pathway output, but 
it will not cause a large decrease in output. 
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I considered a feedback controller with a 10-fold dynamic range. As in the simpler 

model, the feedback controller was able to lessen the change in the concentration of B as the 

maximum reaction velocity converting B to D was increased (Figure 5.4B). As a result, the 

rate of the competing reaction, vc, was nearly constant despite the changes in vmax,D. The 

retroactivity has not been eliminated completely, and we would not expect a proportional 

controller to be able to do so. However, the behavior of the enzymatic module that converts 

A to B is now much less sensitive to the characteristics of the downstream processes that 

might be connected to it, allowing more-predictable composition of disparate enzymes. 

 

5.2.3 Experimental characterization 

I planned to build a negative feedback controller using a theophylline-dependent RNA 

OFF switch to control expression of the caffeine demethylase that I evolved in Chapter 2. 

However, the characteristics of the system components, both the switch and the enzyme, 

were ill suited to this application. As I describe in Chapter 4, the enzymatic activity of the 

engineered demethylase is not limited by the transcription rate. Decreasing the plasmid copy 

number by a factor of ~ 10 made little difference to the amount of theophylline produced. I 

decided to investigate this relationship further, to see whether a change in mRNA stability, 

such as that produced by an RNA switch, would lead to a change in enzymatic activity. 

I built a series of constructs to express the caffeine demethylase from high- and low-

copy plasmids behind a series of promoter variants whose transcription rates varied by ~ 12 

fold (Nevoigt et al., 2006). As expected, changing the promoter strength on a high-copy 

plasmid had little effect (Figure 5.5). However, combining a weak promoter with a low-copy 

plasmid reduced the total enzyme activity. Unfortunately, at low expression the enzymatic 

activity shows a logarithmic relationship with the expression level. As a result, an RNA 
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switch that can produce a twofold change in the expression level might only produce a 1.5-

fold change in enzymatic activity. This logarithmic relationship effectively reduces the 

dynamic range of the RNA switch used for control. 

 
Figure 5.5 Enzymatic activity shows a sublinear dependence on transcription rate. A caffeine demethylase was 
expressed from a variety of constructs, including high- and low-copy plasmids as well as a range of promoter 
strengths. The predicted transcription rate is based on similar results for GFP, where fluorescence is presumed 
to be a linear function of the transcription rate. The enzymatic activity, measured as the final theophylline 
concentration, was independent of concentration over a roughly tenfold change in transcription rate. At lower 
expression levels, changes in transcription resulted in changes in activity, but the relationship was logarithmic. 
  

Further complicating the construction of a feedback controller, the existing OFF 

switches do not show a large dynamic range. I tested a previously described OFF switch 

(Win & Smolke, 2007) and constructed two mutated switches that should show constitutive 

expression, either at the high or low end of the OFF switch dynamic range. When GFP was 

expressed under the control of the OFF switch, I saw a ~ 1.5-fold change in fluorescence 

between the uninduced and fully induced switch (Figure 5.6), which was consistent with the 

controls. However, the dynamic range of the OFF switch is less than ideal for use in a 

feedback controller (Figure 5.2B). 
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Figure 5.6 Activation of a theophylline-dependent OFF switch. GFP was expressed from a constitutive 
promoter with the OFF switch placed in the 3’ UTR. Samples were grown in the presence of varying amounts 
of theophylline and assayed for geometric mean fluorescence using a flow cytometer. Two controls (shown in 
black and green) have mutations in the RNA switch that lock the switch into the ON and OFF conformations. 
 

To aid in my modeling work, I also sought to measure the internal concentrations of 

the relevant metabolites. Previous results have assumed that feeding theophylline to cells, 

either yeast or bacteria, produces an internal concentration that is significantly lower than the 

concentration in the culture media but the justification for such assumptions is either 

inferred (Chen & Ellington, 2009) or based on a misinterpretation of experimental data 

(Koch, 1956). Measurements of the intracellular methylxanthine concentration are 

technically very difficult: since the intracellular concentration is so low, any carry-over of 

supernatant will drastically skew the measured concentration. To minimize theophylline 

export during the wash steps, I immobilized the cells on a membrane filter and rinsed them 

with 3 volumes of PBS in < 1 minute (Wittmann et al., 2004). No theophylline was observed 

when the cells were simply washed by centrifugation, demonstrating that theophylline was 

exported from the cell on a time-scale shorter than that required for centrifugation. The cells 

attached to the membrane filter were then lysed in boiling buffered ethanol (Gonzalez et al., 

1997), concentrated to 50 μL, and measured by LC-MS. 
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Figure 5.7 Measurements of internal metabolite concentrations. (A) When fed 1 mM theophylline and 
caffeine, internal concentrations were ~ 40-fold lower for caffeine (green) and ~ 80-fold lower for theophylline 
(blue). Technical and biological replicates showed similar variance, ~ 15–20%. (B) As expected, cultures at a 
higher OD accumulate more theophylline in the supernatant. However, the internal concentrations are similar, 
demonstrating that the measured internal concentration is not simply carry-over from the supernatant. (C) 
When fed 1 mM of caffeine, a variant of the caffeine demethylase sees ~ 18 μM caffeine and produces ~ 8 μM 
theophylline. When fed 1 mM theophylline, the same cell sees ~ 13 μM theophylline intracellularly. These 
results are consistent with comparative measurements of fluorescence when feeding or producing theophylline. 
(D) A timecourse of the intracellular metabolite accumulation suggests passive import and active export of 
caffeine and theophylline. 1 mM of each metabolite was added to the culture at t=0 and samples were taken at 
the indicated timepoints. 
 

I consistently observed a ~ 40-fold drop in caffeine concentration and an ~ 80-fold 

drop in theophylline concentration across the yeast cell membrane (Figure 5.7A). When 

theophylline was produced intracellularly, I observed similar internal theophylline 

concentrations in cultures of variable density, despite different levels of extracellular 

theophylline accumulation (Figure 5.7B). The relative measurements of the internal 

concentration of cells fed or producing theophylline were consistent with fluorescence 

measurements of the respective cultures (Figure 5.7C, Figure 2.5). When I spiked a culture 

with 1 mM caffeine and theophylline and followed the intracellular concentration over time, 
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I saw a large, rapid increase in the internal concentration followed by a slow decay back to 

the steady-state concentration (Figure 5.7D). Previous research has demonstrated that 

transporter mutants can show increased caffeine sensitivity (Parsons et al., 2004). Several 

different pieces of data — my metabolite measurements, the connection between caffeine 

sensitivity and export protein knockouts, the similarity between the internal concentrations 

of cells fed or producing theophylline despite significantly different external concentrations, 

and my observation that slow washes led to negligible theophylline recovery — all support 

the hypothesis that caffeine and theophylline are actively exported from the cell, and as a 

result the internal concentration is significantly lower. 

 

5.3  Discussion 

I made several simplifying assumptions in my first computational model, describing 

the use of controllers to respond to fluctuations in the input. First, I linearized several Hill 

functions, consistent with a situation in which both the enzyme converting substrate to 

product and the sensor controlling the product-dependent synthesis of the repressor protein 

are substrate limited. These assumptions made the model more tractable, but as a result the 

model only represents a subset of possible systems. Additionally, the model does not include 

the time delays involved in transcription and translation. These delays would slow the 

response of the regulated systems and possibly destabilize the integral controller. 

Integral control requires an approximately constant decay rate. To achieve such a rate, 

the repressor must be degraded by a saturated protease at a rate much greater in magnitude 

than that due to first-order dilution. As a result, this controller would be extremely wasteful, 

producing and degrading large numbers of repressor proteins, and attempts to improve the 

integral controller would also increase the load. As I demonstrated in Chapter 4, when a 
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pathway places a burden on its host, the host’s response to that burden can affect the 

pathway. A better integral controller would use less-costly posttranslational modifications 

such as phosphorylation or methylation as a control variable in the place of protein synthesis 

and degradation (Yi et al., 2000). 

A proportional feedback controller that uses a sensor whose transfer function is a non-

cooperative repressed Hill function, such as the RNA switch that I characterized for this 

work (Figure 5.6), will be limited by the shape of that transfer function, even at the limit of 

sensors with a large dynamic range. As the dynamic range of the controller increases, the 

sensor output approaches a simple hyperbola. Even assuming that the researcher has 

complete flexibility to tune the sensitivity of the sensor and the basal expression of the 

enzyme, certain trade-offs will still be unavoidable. The expression level will be fixed by the 

requirement that the controller produce a certain behavior in the absence of any load (Figure 

5.3B). Tuning the sensitivity will move the basal position along the hyperbola (Figure 5.8). If 

the basal substrate concentration is low compared to the binding constant of the sensor, the 

controller will produce a strong response to any disturbance. However, the controller will 

only be able to respond to small disturbances before saturating the sensor. If the basal 

substrate is high relative to the sensor binding constant, nearly the entire dynamic range of 

the sensor will be available, and the controller will be able to produce large changes in 

output. Unfortunately, the sensitivity will be low, and the concentration of the controlled 

substrate will have to change dramatically to produce a large change in output. Sensors with 

cooperative transfer functions would produce more-effective controllers by producing a 

large change in output with higher sensitivity. 
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Figure 5.8 Transfer function of the sensor limits controller performance. (A) An enzyme converts substrate A 
to product B. Expression of the enzyme is regulated by the concentration of B, such that increases in the 
concentration of B lead to lower expression of the enzyme that produces B. (B) Transfer function of a non-
cooperative RNA switch. A larger dynamic range will lower the enzyme expression at large [B] but does not 
change the basic shape of the transfer curve. Tuning the affinity of the switch binding domain allows the 
researcher to choose where on the curve to set the basal expression level. If the basal state is significantly below 
the EC50 of the switch, the controller will display high sensitivity but can use only a small fraction of the 
potential dynamic range of the switch. If the basal state is well above the EC50, the controller will be able to use 
the entire dynamic range of the switch, but will require a large change in [B] to produce a small change in vmax,B. 
 

Due to the logarithmic scaling between predicted mRNA expression and enzymatic 

activity, the caffeine demethylase is not an ideal enzyme for use in a feedback controller. The 

existing OFF switches have relatively small dynamic ranges as well as hyperbolic transfer 

functions. In combination, the characteristics of these components severely limit the 

effectiveness of any feedback controller built from them. My computational results 

demonstrate that a moderate dynamic range (2–4-fold) is necessary for measurable controller 

performance, so the dynamic range of the OFF switch will need to be increased in order to 

build an effective controller. A further increase in the switch range will be necessary if the 

current demethylase is used in the controller, perhaps by adapting the screening strategy used 

for ON switches (Liang JC, Chang AL, Kennedy AB, and CDS, in submission) to screen for 

improved OFF switches. Alternately, a different enzyme with a linear rather than logarithmic 

relationship would allow the use of a switch with a smaller activation ratio. 

Despite the difficulties that I faced in implementing my controller designs, I believe 

that efforts to build and characterize dynamic controllers will play an increasingly important 
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role in constructing predictable metabolic pathways. While constructing novel controllers, 

we will also need to develop a deeper understanding of exactly how controllers, both native 

and engineered, work to increase the pathway productivity and reliability. Some controllers 

may function by reducing variability, either between cells or over time, while others mainly 

provide benefits by programming the bulk temporal expression of genes in the pathway. 

Differentiating between subtle differences such as these will aid in the forward design of 

future controllers for novel situations. 

 

5.4  Methods 

5.4.1 Variable enzyme expression 

The enzyme yCDM4b was initially expressed from a high-copy plasmid with a strong 

TEF promoter, as described in Chapter 2. First, the enzyme was cloned into a low-copy 

centromeric plasmid, following the same protocol as in Chapter 2. Next, the promoter in 

each plasmid was replaced by a series of TEF promoter mutants (Nevoigt et al., 2006). In 

total, I tested TEF mutants 4 (65% native activity), 3 (32% native activity), and 7 (16% 

native activity) in the high-copy plasmid and mutants 4, 7, and 2 (7% native activity) in the 

low-copy plasmid. Cultures containing these enzyme expression constructs were grown in 

the presence of caffeine as described previously and then assayed for theophylline 

production by HPLC. 

 

5.4.2 RNA switch characterization 

A previously described OFF switch (5’-AAACAAACAAAGCTGTCACCGGATG 

TGCTTTCCGGTCTGATGAGTCCGTGTTGCTGAtACCAGCATCGTCTTGATGCCct
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TGGCAGCAGTGGACGAGGACGAAACAGCAAAAAGAAAAATAAAAA-3’) was 

constructed in two overlapping DNA oligos and cloned between the XhoI and AvrII sites of 

pCS1585. Two variants, indicated by the lowercase letters in the sequence above, were also 

used as controls. The double mutant C89T/T90A fixes the switch in the ON confirmation, 

where expression is high. A triple mutant, T58G/C89T/T90A locks the switch OFF. These 

variants were constructed in a similar fashion using overlapping oligos. Cells containing 

these plasmids were grown in the presence of variable amounts of theophylline and assayed 

for fluorescence by flow cytometry. The yeast cultures were diluted 4x into water and 

assayed for fluorescence in 96-well plates on a Beckman Quanta flow cytometer. Cells were 

excited at 488 nm and GFP fluorescence was measured at 525 nm. Samples were gated first 

by electronic volume and side scatter to capture the cell population and then by fluorescence 

to remove the outliers with significantly low fluorescence. Approximately 8,000 cells were 

analyzed for each culture. The geometric mean fluorescence, normalized by the electronic 

volume, was then compared to cells containing an unregulated copy of GFP. 

 

5.4.3 Intracellular metabolite assays 

Yeast cultures were grown in the appropriate culture medium to the desired density, 

approximately 20 OD*mL of cells per extraction. Fewer cells resulted in a lower signal, and 

more cells clogged the filter paper and slowed the wash steps. The cells were then applied to 

a vacuum filtration unit containing a cellulose nitrate filter with a 25 mm diameter and 0.45 

μm pore size. The filter disks were washed with 90 mL of phosphate-buffered saline. The 

filter was then removed from the holder, transferred to a clean tube, and vortexed with 500 

μL of 80 oC buffered ethanol (75% ethanol, 10 mM HEPES pH 7.0) to wash the cells off 

the filter. The resulting cell suspension was incubated at 80 oC for 5 minutes, then 
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centrifuged at 10,000 g for 10 minutes. The supernatant was transferred to a fresh tube and 

concentrated to < 50 μL, centrifuged again to remove particulates, and adjusted to 50 μL 

before being analyzed by LC-MS. Based on previous data (Hans et al., 2001), I estimated that 

the intracellular volume of our standard yeast strain is 1.3 μL/(OD•mL). By calculating the 

internal volume of each sample, I can estimate the dilution factor and therefore the internal 

concentration. 

 

5.4.4 HPLC and LC-MS Characterization 

HPLC samples were analyzed on a Poroshell 120 SB-C18 2.1 x 50 mm, 2.7 μm column 

(Agilent). The mobile phase was 0.50 mL/min of 20% methanol/80% water with 0.1% 

acetic acid. Using the Poroshell column, 3 μL of each sample was injected onto the column 

and theophylline eluted at 0.70 minutes. 

LC-MS samples were analyzed on an XDB-C18 2.1 x 50 mm, 3.5 μm column (Agilent 

Technologies). 5 μL of each sample was injected onto the column. The mobile phase was 

0.35 mL/min of 15% methanol/85% water with 0.1% acetic acid. Theophylline eluted at 

1.65 minutes and was detected by mass spectrometry (Agilent 6320 Ion Trap) as a peak with 

m/z of 181. 

 

5.5  Modeling 

5.5.1 Modeling an Input Disturbance 

In this model, an enzyme E converts a substrate A into a product B. The substrate is 

fed at a constant rate, Fc, and the cells grow and dilute at a rate kd. The enzyme is in a linear 

regime, such that the rate of enzymatic conversion of A to B is linearly proportional to A. In 



 128 

the unregulated case, the enzyme is produced at a constant rate. With proportional 

regulation, the rate of enzyme synthesis is dependent on the concentration of the product, B, 

and the inhibition constant of the RNA switch, Ki. For integral regulation, a new 

component, a repressor, is introduced. The enzyme synthesis rate is dependent on the 

concentration of the repressor and its inhibition constant, KR. Repressor production follows 

a noncooperative Hill function, dependent on the concentration of B. The repressor is 

degraded both by dilution and by a protease. The repressor concentration, R, is much larger 

than the binding affinity of the protease, Kdeg, so proteolysis effectively occurs at a constant 

rate kR. Reduced to equations, this becomes: 
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To simulate a disturbance in the input concentration, FC was varied as a function of 

time. The parameters used were: FC = [1.5, 3, 6], kB = 1, kd = 1, SE,U = 0.5, SE,P = 1, SE,I = 4, Ki 

= 1, KR = 0.2, SR = 1, KD = 0.1, kR = 10, Kdeg = 0.001. The differential equations were 

solved in MATLAB using ode23s. 

 

5.5.2 Modeling a Variable Load 

In this model, an enzyme E converts a substrate A into an intermediate B. The 

intermediate B then reacts, at a variable rate, to produce the final product C. The steady-state 
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concentration of enzyme is dependent on the concentration of B and the dynamic range of 

the sensor, m. The sensor can switch from full expression to a fraction 1/m of the maximal 

expression. Thus, at m = 2 the sensor range is 100% to 50% and at m = 10 the range is 

100% to 10%. Within that switching range, the transfer curve is a repressed Michaelis-

Menten equation with inhibition constant KB. However, the enzyme expression must be 

normalized to ensure that the steady-state concentration of B in the absence of any load, 

termed Bf, is the same for each switch. Therefore, the enzyme expression is normalized to 

ensure that E(Bf) = 1.  
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The parameters used were: Bf = 1, kd = 0.36, KB = 0.25, KI = 0.25. In Figure 5.3A, I 

plot E as a function of B for various values of m. In Figure 5.3B, I used the fzero function in 

MATLAB to numerically solve for the steady-state concentration of B as vmax,C was varied 

from 0 to 1. 
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5.5.3 Modeling a Branch Point 

In this final model, the previous example of a variable load was extended to two 

competing reactions for the intermediate B. B can be converted to C with rate constants 

vmax,C and KC or to D with rate constants vmax, D and KD. The rate of the first reaction, vmax,C, 

is kept constant while the rate of the second reaction, vmax,D, is varied. In comparison to the 

previous model, the normalization factor for E must be adjusted to account for the constant 

conversion of B into C. Otherwise, the modeling is very similar. Reduced to equations, this 

becomes: 
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The parameters used were: Bf = 1, kd = 0.36, KC = 0.25, KD = 0.125, KI = 0.25, vmax, D 

= 0.25. In Figure 5.4B, I solved this equation numerically for B using fzero in MATLAB as 

vmax,D was varied between 0 and 1. In the unregulated case, m = 1, and in the regulated case 

m = 10. In Figure 5.4C, I used the resulting concentration of B to calculate the actual 

reaction rates, vC and vD, over the same range of vmax,D.  
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6  Conclusions and Future Prospects 
 

6.1 Applications of RNA switches for metabolic engineering 

In this thesis, I have discussed three ways in which synthetic RNA switches could 

advance efforts in metabolic engineering. RNA switches can be used to identify new 

enzymes from cDNA pools, to evolve enzymes and increase their activity in a heterologous 

host, and to regulate enzymes and improve their predictability. These applications can form a 

continuous process, where a single ligand-binding domain can be integrated into a variety of 

switch platforms and used sequentially to identify, optimize, and regulate an enzyme. 

 

Figure 6.1 A synthetic RNA switch can be used to identify, optimize, and regulate a biosynthetic enzyme. (A) 
Starting from an uncharacterized source, such as plant cDNA or metagenomic DNA, a functional screen using 
an RNA switch can (B) identify an enzyme capable of producing the target molecule. (C) The same switch can 
then be used to optimize the enzyme activity in a heterologous host. (D) Finally, a variant of the RNA switch 
can be used to regulate the expression of the enzyme, allowing the construction of a synthetic feedback 
controller. 
 

I have demonstrated that synthetic RNA switches can be used as biosensors for in vivo 

enzyme evolution. I was able to perform seven iterative rounds of directed evolution, 

screening for increases in enzymatic activity using an RNA switch and ultimately increasing 

the activity of the enzyme by more than 30-fold. Assaying mutants in clonal culture allowed 

me to discriminate small changes in the switch output, while screening at the single-cell level 

allowed me to screen libraries of more than a million members. Given the modular nature of 

the RNA switch that I used (Win & Smolke, 2007),  I expect that these techniques will be 

generally applicable to a wide range of enzymes and pathways. Other RNA switches, such as 
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those developed for E. coli, could allow the use of similar strategies in other host organisms 

(Topp et al., 2010).  

I also developed a process for using an RNA switch to perform functional screening of 

a cDNA library. While my screening attempts were unsuccessful, I believe that the limitation 

lay in the choice of a target that may be difficult to functionally express in a heterologous 

host. I expect that the same process could successfully be used to identify a more-tractable 

target, such as a cytosolic enzyme. Additional improvements to the library construction 

process and the RNA sensor would also increase the chances of success. 

Finally, I have described several ways in which RNA switches could be used to build 

synthetic regulatory controllers for metabolic pathways. These controllers would allow 

researchers to engineer more-predictable pathway output in the presence of various 

disturbances, such as changes to the pathway input or the addition of a competing reaction. 

Unfortunately, the components currently available for use in a controller are not well suited 

to the task. New components, including both new switches and new model pathways, will be 

necessary before these applications can be tested experimentally. 

 

6.2 Constructing new RNA switches for metabolic engineering 

The main barrier to the broad application of RNA switches lies in the limited number 

of available ligand-binding domains that recognize metabolites of interest. While the SELEX 

technique for selecting new binding domains de novo is well established, the process is still 

quite tedious. Additionally, traditional SELEX has several inherent disadvantages. First, the 

target molecule must be conjugated to a chromatographic resin. This coupling process is 

dependent on the presence of reactive groups in the target molecule, and there are some 

molecules that are simply incompatible with the available coupling chemistries. Additionally, 
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the coupling process removes from functional group that could potentially participate in 

binding. Second, the selections take place on the surface of the resin, with the target 

molecule fixed in a specific orientation. Fixing the orientation of the target limits the 

potential binding modes, possibly forcing the target into a conformation that is difficult to 

bind. Limiting the conformational entropy of the target may also produce false positives in 

the selection process, such as binding domains that can only recognize the target when it is 

attached to the resin. The presence of the resin also requires tedious counterselections to 

avoid selecting binding domains that recognize the scaffold and not the target. Finally, the 

applications described above would be more effective if they could draw on a pool of 

binding domains with identical specificity but varying affinity. Screening for novel enzymes 

would benefit from an RNA switch with high affinity, while a feedback controller regulating 

an optimized enzyme would be more effective using a lower-affinity switch. New methods 

for rapidly selecting and tuning binding domains in solution would be very valuable (Liang, 

2012). 

A second barrier concerns the limited dynamic range of existing synthetic RNA 

switches. Screening enzyme variants in single cells requires a large signal-to-noise ratio in 

order to eliminate inactive enzyme mutants. As a result, any switch has a minimum 

sensitivity threshold. An enzyme must be sufficiently active so as to cross this threshold 

before the switch can be used for enzyme discovery and optimization. All else being equal, a 

switch with a larger dynamic range has a lower sensitivity threshold. Additionally, a small 

dynamic range brings with it the risk of saturating the switch when evolving or controlling 

highly active enzymes. The smaller the dynamic range of the switch, the more important our 

ability to tune the switch sensitivity becomes, and vice versa. Larger dynamic ranges would 

hide a number of other weaknesses in switch construction. 
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Finally, when switches are used as sensors in metabolic controllers, the shape of the 

transfer curve becomes particularly important. In these applications, switches that display 

cooperative binding would be particularly valuable, as they would allow a controller to 

respond with high sensitivity over a large dynamic range. Our ability to tune the switch 

parameters and the linkage between the switch and enzyme will also become more 

important. If the switch transfer curve is ideal but the binding affinity is poorly chosen, the 

controller will not function effectively. Alternately, if the switch properties, such as binding 

affinity and transfer curve, are not matched to the enzyme expression and activity, the basal 

enzyme activity will be suboptimal. Useful metabolic controllers will require the ability to 

precisely specify characteristics of the sensor its linkage to the actuator. 

 

6.3 Analysis of heterologous pathways 

Many biosynthetic pathways are highly productive in their native host but fail to 

function effectively when transferred to a new host. In Chapter 2, I described methods by 

which a pathway can be evolved to adapt it to its new host. However, in many situations it 

may also be necessary to adapt a host to its new pathway. Therefore, in Chapter 4 I 

demonstrated one technique for accommodating the specific stress of a heterologous 

pathway, using measurements of mRNA levels to identify the stress and targeted 

overexpression of native genes to alleviate that stress. 

The first step in this process, identification of the stress or stresses, can be very 

challenging. First, a typical heterologous metabolic pathway will induce many changes in its 

host, and identifying a small set of significant stresses among all the data can be difficult. I 

have shown that analysis of multiple pathway variants can be helpful in this process, but a 

deeper knowledge of the host stress response and better models and bioinformatics tools 
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would greatly aid in this effort. Second, a given measurement technique, such as my choice 

to measure mRNA levels, will miss stresses that provoke responses through other 

mechanisms, such as changes in translational or posttranslational control. As before, a better 

understanding of the underlying biology will allow us to focus on the specific biochemical 

players that are likely to be important. Similarly, improved methods for rapidly characterizing 

a cell on multiple levels (mRNA, protein, metabolites, etc.) and integrating and analyzing the 

large resulting data sets will be very useful (Moxley et al., 2009). However, our ultimate goal 

is to increase the pathway productivity, and identifying the stress is only the first step in that 

process. Once a stress is identified, a metabolic engineer must then treat that stress in order 

to have a real impact. 

 

6.4 Tools and techniques to accommodate metabolic pathways 

I was fortunate to have identified a stress, heme depletion, that is amenable to a 

rational, targeted approach. Overexpressing three native genes and feeding the precursor led 

to a large increase in the heme level and therefore pathway output. Had the source of stress 

proven to be more complicated, such as reactive oxygen (Ro et al., 2008) or protein folding 

and expression (Wiedmann et al., 1993), I would have had few targets for rationally 

modifying the host. The host systems responsible for detoxifying reactive oxygen species 

(Morano et al., 2011) or ensuring proper folding of marginally stable proteins (Geiler-

Samerotte et al., 2011) are very complex, and no simple modification will increase the stress 

tolerance without significantly altering the basal functions of the host (Zakrzewska et al., 

2011). 

In cases such as these, researchers must turn to more-complicated strategies, either to 

limit the interactions between the pathway and its host or to identify unexpected host 
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modifications that would better accommodate the pathway. Encapsulating a pathway in an 

organelle (Farhi et al., 2011) or protein microcompartment (Sampson & Bobik, 2008) could 

limit the stress by physically separating the heterologous pathway from the rest of the cell. 

Alternately, the host could be modified on a genome-wide scale to identify (Warner et al., 

2010) and then optimize (Wang et al., 2009) novel modulators of complex traits. Finally, 

experimental coevolution of a pathway and its new host could simultaneously optimize both 

components (Chou et al., 2011). The development of techniques such as these will be critical 

for future efforts to optimize the interactions between a heterologous pathway and its new 

production host. 

Metabolic engineering has the potential to play an important role in the transition away 

from an economy based on increasingly limited petrochemicals. Efficient biosyntheses of 

chemicals and fuels would allow the development of a sustainable industry built around the 

production of a wide array of valuable chemicals from feedstocks such as agricultural and 

municipal waste. Given the decades of optimization in existing petrochemical processes, a 

bioconversion must be extraordinarily efficient in order to be economically viable. Similarly, 

development costs must be minimized if biobased chemicals are to replace all of the niche 

chemicals currently produced from petroleum. New tools from systems and synthetic 

biology, such as those described in this thesis, will be necessary to enable the rapid 

construction and optimization of efficient metabolic pathways for chemical synthesis. 
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