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Appendix A

Benchmarks

Submitted as:

Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas,
O. Large-scale adaptive mantle convection simulation, Geophysical Journal Interna-
tional.

A.1 Abstract

A new-generation, parallel adaptive-mesh mantle convection code, Rhea, is described and

benchmarked. Rhea targets large-scale mantle convection simulations on parallel computers,

and thus has been developed with a strong focus on computational efficiency and parallel

scalability of both mesh handling and numerical solvers. Rhea builds mantle convection

solvers on a collection of parallel octree-based adaptive finite element libraries that support

new distributed data structures and parallel algorithms for dynamic coarsening, refinement, re-

balancing, and repartitioning of the mesh. In this study we demonstrate scalability to 122,880

compute cores and verify correctness of the implementation. We present the numerical ap-

proximation and convergence properties using 3D benchmark problems and other tests for

variable-viscosity Stokes flow and thermal convection.
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A.2 Introduction

Solid earth dynamics are governed by processes that occur over a wide range of time and

length scales. A classic example is plate tectonics, where the large-scale motion of plates over

time scales of millions of years and length scales of thousands of kilometers intimately couples

to seismic processes that occur at time scales of minutes and less over lengths scales generally

under 100 km. The upwellings associated with mantle convection are also typified by a

wide range of length scales with large super plumes 1000s of km across with small plumes

detaching from their periphery that have thermal and mechanical boundary layers 100s of

meters in thickness. Many of the transport processes that occur in mantle convection are

thermo-chemical where chemical boundaries (for example next to subducted oceanic crust)

can be sharp over sub-meter length scales.

The advent of petascale computing promises to make multiscale simulations of mantle con-

vection and plate tectonics possible. Still, capturing global convection processes at realistic

Rayleigh numbers requires resolution down to faulted plate boundaries. A uniform discretiza-

tion of the mantle at, for instance, 1 km resolution would result in meshes with nearly a trillion

elements, which is far beyond the capacity of the largest available supercomputers. An alterna-

tive is to employ adaptive mesh refinement and coarsening (AMR) methods that can reduce the

number of unknowns drastically by placing resolution only where needed. Thus, AMR has the

potential to enable high-resolution global mantle convection simulations, and to reduce the

simulation wallclock time for many mantle convection problems significantly. Unfortunately,

the added complexity of AMR methods can also impose significant overhead, in particular on

highly parallel computing systems, due to the need for frequent re-adaptation and repartition-

ing of the mesh over the course of the simulation. Several recent studies have applied AMR
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methods to mantle convection, including Davies et al. (2007); Stadler et al. (2010); Leng and

Zhong (2011); Davies et al. (2011).

Here, we present the numerical strategies behind and verification of Rhea, a new genera-

tion adaptive mantle convection code that scales to hundreds of thousands of processors and

has negligible overhead for all operations related to mesh adaptation. Rhea builds solvers

for mantle convection problems on a collection of new libraries for parallel dynamic AMR

(Burstedde et al., 2008a). It integrates parallel finite elements with forest-of-octrees-based

mesh adaptivity algorithms and includes support for dynamic coarsening, refinement, rebal-

ancing, and parallel repartitioning of the mesh. Rhea implements a parallel variable-viscosity

nonlinear Stokes solver, based on Krylov solution of the (stabilized) Stokes system (Burstedde

et al., 2009b), with preconditioning carried out by approximate block factorization and alge-

braic multigrid (AMG) V-cycle approximation of the inverse of the viscous and pressure Schur

complement operators.

Rhea has been used previously to compute lithospheric and mantle flow models with

resolutions below 1 km near fault and subduction zones, and generally in areas where strain-

weakening is observed; see Stadler et al. (2010) and Alisic et al. (2010). Here the parallel

capabilities of Rhea have been essential to routinely perform simulations using O(104

) com-

pute cores. In this paper, we discuss the parallel adaptive mesh capabilities, as well as the

solvers used in Rhea in more detail. To verify the correctness of the implementation and to

study convergence of the solution we use problems for which the exact solution is known, as

well as benchmark problems previously used in the literature. Furthermore, we demonstrate

that for problems of high Rayleigh number, adaptive meshes yield smaller errors compared to

uniform meshes of the same element count, and report significant savings in the number of

degrees of freedom and the overall run time compared to highly resolved uniform meshes.
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A.3 Mantle Convection Equations

The dynamics of mantle convection are governed by the equations of balance of mass, lin-

ear momentum, and energy. Under the Boussinesq approximation for a mantle with uniform

composition and the assumption that the mantle deforms as a viscous medium, the nondi-

mensionalized version of these equations reads (e.g., McKenzie et al. (1974); Zhong et al.

(2000)):

r · u = 0, (A.1)

rp�r ·
h
µ(T,u)

⇣
ru+ru

>
⌘i

= RaT er, (A.2)

@T

@t

+ u ·rT �r2

T = �, (A.3)

where u, p, µ, and T are the velocity, pressure, temperature- and strain-rate-dependent viscos-

ity, and temperature, respectively; � is the rate of internal heat generation; er is the unit vector

in the radial direction; and Ra is the Rayleigh number that controls the vigor of convection

and is defined as Ra = ↵⇢

0

g�TD

3

/(µ

0

). Here ↵, ⇢
0

, µ
0

, and  are the reference coefficients

of thermal expansion, density, viscosity, and thermal diffusivity, respectively; �T is the tem-

perature difference across a mantle with thickness D, and g is the gravitational acceleration.

We use top and bottom radii rt = 1, rb = 0.55 throughout, which determines D = 0.45. The

boundary conditions (not shown) specify zero normal velocities and zero tangential traction at

both the free surface and the core-mantle boundary, and impose fixed boundary temperature

values.

Equations (A.1) and (A.2) are instantaneous and need to be satisfied at all times. Together

they describe a nonlinear Stokes system of partial differential equations that needs to be solved

for velocity and pressure. The energy equation (A.3) captures the evolution of the mantle and
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needs to be integrated forward in time, which is done after space discretization transforms it

into a system of ordinary differential equations. Consequently, the numerical solution methods

for these two systems as discussed in the next section are substantially different.

A.4 Discretization and Solvers

For the discretization of the temperature, velocity, and pressure in (A.1)–(A.3), we use (tri-)

linear finite elements on locally refined hexahedral meshes. These meshes are adapted to

resolve features of the velocity, pressure, or viscosity fields. Practical challenges, as well as the

technical details required for parallel adaptive simulations, are discussed in Section A.5. In

this section, we focus on the discretization and on the solvers used in Rhea. Due to the large

size of the matrices that result from the discretization, linear systems cannot be solved using

direct factorization-based solvers but have to be solved using iterative solution algorithms.

A.4.1 Variational Formulation of Stokes Equations

The finite element discretization is based on the weak form of the system of partial differential

equations derived from (A.1) and (A.2) by multiplication with admissible test functions v and

q (omitting the differentials dx, etc., for brevity),

Z

⌦

h
r ·

⇣
pI� µ(ru+ru

>
)

⌘
� f

i
· v = 0 for all v, (A.4a)

Z

⌦

(r · u) q = 0 for all q, (A.4b)
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and integration by parts which yields

A(u,v) +B(v, p) + E(p,u,v) = F (v) for all v, (A.5a)

B(u, q) = 0 for all q, (A.5b)

where we use the definitions

A(u,v) =

Z

⌦

µ

2

(ru+ru

>
) : (rv +rv

>
), (A.6a)

B(u, q) = �
Z

⌦

(r · u) q, F (v) =

Z

⌦

f · v, (A.6b)

E(p,u,v) =

Z

@⌦

h⇣
pI� µ(ru+ru

>
)

⌘
n

i
· v, (A.6c)

and f = RaT er denotes the volume force. When we impose free-slip boundary conditions

on @⌦, namely

u · n = 0, v · n = 0, (A.7a)

t ·
h⇣

pI� µ(ru+ru

>
)

⌘
n

i
= 0, (A.7b)

for an outside normal vector n and any tangential vector t, we see that the term in (A.6c)

vanishes.

The discrete Stokes problem can then be written as the following saddle point system of

equations:

Q

0

BB@
ˆ

u

ˆ

p

1

CCA =

0

BB@
ˆ

f

0

1

CCA with Q =

0

BB@
A B

>

B �C

1

CCA , (A.8)

where ˆ

u, ˆp, ˆf denote the nodal values of the finite element approximations of u, p, f , respec-
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tively, and the matrices A, B, C are defined by inserting the subset of finite element shape

functions {�n}n that satisfy the boundary conditions (A.7a) into the corresponding bilinear

forms A(· , ·), B(· , ·), and C(·, ·). The purpose of the contribution

C(p, q) =

X

⌦

e

Z

⌦

e

(p�⇧p)(q �⇧q) (A.9)

is to stabilize the linear system (A.8). Here, ⌦e for e = 1, 2, . . . denote the finite elements and

⇧ the L

2-projection onto the space of element-wise constant functions. This stabilization is

necessary since linear elements for velocity and pressure do not satisfy the inf-sup condition

for stability of numerical methods for saddle point problems; we refer to Elman et al. (2005);

Bochev et al. (2006); Dohrmann and Bochev (2004) for details. The blocks A and C are

symmetric and positive and, thus, (A.8) is an indefinite symmetric system.

The solution for the pressure is unique only up to a constant, which we address by pe-

nalizing the integral of the pressure over the domain. Concerning the velocity, all rigid-body

rotations are non-trivial solutions to the homogeneous Stokes equations in a spherical geome-

try with free-slip boundary conditions. We remove this ambiguity by transforming the velocity

field after each solve to a zero angular momentum state, as is done in Zhong et al. (2008).

A.4.2 Boundary Terms and Topography

The above derivation of the discrete Stokes system incorporates the free-slip boundary condi-

tions, but at the same time removes information on the boundary traction from the formulation.

Since the normal component of the traction vector,

s = n ·
h⇣

pI� µ(ru+ru

>
)

⌘
n

i
, (A.10)
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is an important ingredient in determining the topography, we include a brief description of

how it can be recovered in a postprocessing step.

Assuming a Stokes solution (u, p) that satisfies the boundary condition (A.7b), we can

simplify the boundary term

E(p,u,v) =

Z

@⌦
(v · n)s. (A.11)

Note that this term can also be introduced as part of a Lagrangian functional to enforce (A.7a)

in a variational form; in this case the normal traction s is identified with the Lagrange multiplier

for the normal velocity component.

Equations (A.5a) and (A.11) hold for arbitrary velocity fields v, in particular those not

satisfying v · n = 0. We can exploit this fact by constructing a discretization of the normal

field on the boundary,

v(x) =

X

n|x
n

2@⌦

⌫nnn�n(x), (A.12)

defined by a coefficient vector ¯

⌫ = {⌫n}n whose index n loops over the subset of finite

element shape functions �n on the boundary, and ¯

n = {nn}n denotes the vector that contains

the normals of all boundary nodes xn. Inserting this function v into (A.5a) and rearranging in

terms of the coefficient vector ¯

⌫, we obtain a system of equations for the discretized normal

traction s =

P
n sn�n with nodal values ¯s = {sn}n,

¯

M

¯

s =

⇣
¯

f � ¯

A

ˆ

u� ¯

B

>
ˆ

p

⌘
· ¯n. (A.13)

Here the bar notation denotes matrices and vectors whose leading dimension corresponds

to the boundary degrees of freedom, and the dot product is understood to collapse three
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coefficients into one independently at each node. The surface mass matrix ¯

M with entries

¯

Mmn =

Z

@⌦
�n(x)�m(x)dx (A.14)

derives from the boundary integral in (A.11), with indices m, n restricted to the boundary

nodes. In our numerical experiments we use a lumped version, that is a diagonal approxima-

tion, of ¯

M that is easily invertible.

This procedure to obtain the normal traction is equivalent to the consistent boundary flux

(CBF) described in Zhong et al. (1993). Note that the method can be modified to compute

tangential tractions for problems with prescribed flow at the boundaries, as is the case when

plate motions are imposed.

A.4.3 Stokes Solver

Since the coefficient matrix Q is symmetric and indefinite, we employ the preconditioned

minimum residual iterative method (MINRES) for its numerical solution. MINRES (Paige and

Saunders, 1975) is a generalization of the conjugate gradient method to indefinite systems.

Each MINRES iteration requires one application of the matrix Q to a vector and two inner

products. The overall number of vectors stored does not increase with the number of MINRES

iterations, thus the memory footprint is small. For a comprehensive discussion of the approach

used in Rhea see Burstedde et al. (2009b); for alternative approaches see Elman et al. (2005);

May and Moresi (2008); Geenen et al. (2009).

To obtain a mesh-independent (or almost mesh-independent) number of iterations, i.e., a

constant number of iterations as the problem size increases, one needs to employ a suitable

preconditioner for (A.8). MINRES requires a symmetric and positive definite preconditioner.
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The block factorization

0

BB@
A B

>

B �C

1

CCA =

0

BB@
I 0

BA

�1

I

1

CCA

0

BB@
A 0

0 �(BA

�1

B

>
+C)

1

CCA

0

BB@
I A

�1

B

>

0 I

1

CCA (A.15)

shows that Q is congruent to a block diagonal matrix. Neglecting the off-diagonal terms BA

�1

and A

�1

B

> motivates the use of the symmetric and positive definite matrix

P =

0

BB@
A 0

0 S

1

CCA , with S = BA

�1

B

>
+C (A.16)

as preconditioner. However, since the Schur complement S involves A�1, systems of the form

P

ˆ

z =

ˆ

r cannot be solved easily which makes P unsuitable as a preconditioner. Thus, we

replace the Schur complement S by a lumped mass matrix weighted with the inverse viscosity

µ

�1. For instance, in Elman et al. (2005) it is shown that in the case of constant viscosity

the resulting diagonal matrix is spectrally equivalent to S. For varying viscosity and interface

Stokes problems, similar results are obtained in Grinevich and Olshanskii (2009). Note that,

when lumped, the pressure stabilization matrix C drops out. This is due to the fact that at the

element level, constants are in the null space of C. The resulting diagonal matrix reflects the

local element size as well as the local viscosity. This is essential for favorable scalability of the

MINRES iterations as the problem grows, and is particularly important for adaptively refined

meshes.

While a solve with the lumped mass matrix is trivial, the viscous block A is obtained

from a discretization on highly heterogeneous meshes with large variations in the viscosity

µ (up to six orders of magnitude). To approximately calculate A

�1

ˆ

r for a given residual ˆr,

we use one V-cycle of an algebraic multigrid (AMG) method (see, e.g., Briggs et al. (2000)).
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Compared to geometric multigrid, AMG can have advantages due to its ability to account for

variations in viscosity and adaptively refined meshes in the grid hierarchy. AMG requires a

setup phase, in which a coarse grid hierarchy and corresponding restriction and interpolation

operators are constructed. Parallel implementations of AMG require significant communica-

tion for this setup step. Generally, there is a trade-off between increased time/memory and

the effectiveness of the coarse grid hierarchy. Rhea interfaces to two different parallel im-

plementations of AMG, either to BoomerAMG from the hypre package (The Hypre Team,

2007; De Sterck et al., 2006; Falgout, 2006), or to the smoothed aggregation implementation

ML from the Trilinos project (Gee et al., 2006). Both packages are available under open

source licenses and allow the user to choose among various coarsening strategies, and to set

parameters that influence the complexity of the coarse grid hierarchy and the interpolation

and restriction operators.

A.4.4 Advection-Diffusion Solver

When the advection-diffusion equation (A.3) is discretized with Galerkin finite elements, the

transport term can give rise to spurious oscillations of the numerical solution. Among var-

ious stabilization methods, the streamline upwind Petrov-Galerkin (SUPG) approach can be

formulated by multiplying the residual of (A.3),

R(T ) = � � @T

@t

� u ·rT +r2

T, (A.17)

with the modified test function W + ⌧u ·rW , where ⌧ is a stabilization parameter:

Z

⌦

R(T ) (W + ⌧u ·rW ) = 0. (A.18)
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The value of ⌧ is derived from the element Peclet number, that is the relation between advec-

tion, diffusion, and element size (Brooks and Hughes, 1982). Integration by parts and invoking

Dirichlet boundary conditions for the test space, W |@⌦ = 0, yields bilinear forms

M(T,W ) =

Z

⌦

T (W + ⌧u ·rW ), (A.19a)

G(T,W ) =

Z

⌦

(u ·rT )W, (A.19b)

K(T,W ) =

Z

⌦

rT · (I+ ⌧u⌦ u) ·rW, (A.19c)

which give rise to the nonsymmetric extended mass matrix ˜

M and advection matrix G and

the extended stiffness matrix ˜

K, respectively. Thus, the SUPG stabilization can be interpreted

as the introduction of artificial diffusion along the streamlines of the velocity field, and the

semi-discrete energy equation becomes

R(T) = g � ˜

M

@T

@t

�
⇣
G+

˜

K

⌘
T = 0, (A.20)

where g is the discretization of the heat generation rate � in (A.3). This system of ordinary

differential equations is integrated in time by an iterative ↵-predictor-corrector method that

operates on pairs of vectors ( ˙T,T). For each time step k, the first iteration i = 0 is initialized

by

˙

T

0

k = 0, T

0

k = Tk +�t(1� ↵)

˙

Tk. (A.21)
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The iterations proceed from i to i+ 1,

M

⇤
�

˙

T = R(T

i
k), (A.22a)

˙

T

i+1

k =

˙

T

i
k +�

˙

T, (A.22b)

T

i+1

k = T

i
k + ↵�t�

˙

T. (A.22c)

We use three iterations per time step and ↵ =

1

2

, which provides second order accuracy in the

(implicit) limit i ! 1. The matrix M

⇤ in (A.22a) can be understood as a preconditioner

that may be approximate; we choose the diagonally lumped standard mass matrix which

avoids an implicit solve. At the beginning of the simulation we obtain the time derivative

˙

T by executing one zero-length time step with the initial value of T. The spherical mantle

convection code CitcomS (Zhong et al., 2008) uses a similar time integration scheme. The

method is described in detail in Hughes (2000); see also Cottrell et al. (2009).

The velocity field u enters the energy equation, and we update u by a Stokes solve between

each two time steps, thus decoupling it from the time integration. This amounts to an explicit,

first-order splitting with respect to the velocity. The is also means that the size of the time

step is bounded by a CFL condition that is dominated by the advection limit in the problems

considered here.

A.5 Adaptivity

Our goal is to simulate global mantle convection while taking into account the effects of

faulted plate boundaries, trenches, and other tectonic features. These features require a spatial

resolution of approximately 1 km (Stadler et al., 2010). However, covering the volume of

the mantle (which is of the order 1012

km

3) with an appropriately spaced grid would require
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roughly a trillion mesh elements, which is still beyond the storage capacity of even large

supercomputers. Furthermore, significant over-resolution would be created in areas such as

the lower mantle, and any computation on this many elements would take an unacceptably

long time.

We address this problem by adaptive mesh refinement (AMR), i.e., we cover the mantle

with elements of different sizes depending on the local resolution requirements. Since the

number of elements per volume scales with the third power of the resolution, large savings in

element number are possible. In our computations we are able to achieve sub-km resolution

of lithospheric features with less than 109 elements globally; this amounts to savings of three

orders of magnitude.

Various approaches to AMR exist, differing in the type of the elements (tetrahedra, hexa-

hedra, prisms), their organization in space (unstructured or hierarchical), and the refinement

pattern (conforming or non-conforming); see, for example, Flaherty et al. (1997); Berger and

LeVeque (1998). Compared to a uniform mesh approach, AMR adds significant topological

and mathematical complexity. Implementing AMR efficiently on large parallel computers is

challenging, due to the irregularity of element ordering schemes and communication patterns,

and the requirement to distribute the computational work equally between all processors (par-

allel partitioning). Solving a stationary equation with a coarse-to-fine sweep of subsequently

refined meshes, or evolving a dynamic problem with moving features in time, both call for fre-

quent re-adaptation and re-partitioning of the mesh over the course of the simulation. Ideally,

the time needed for all AMR components should remain small compared to solver time, so

that the gains accrued for having fewer degrees of freedom are not offset by inefficiencies of

the algorithms for adaptivity (Luitjens et al., 2007; Burstedde et al., 2010). For Rhea we have

chosen a hierarchical non-conforming approach based on a forest of octrees that satisfies all
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Proc 0 Proc 1 Proc 2

Figure A.1. A 2D cartoon of an octree on the left and the corresponding mesh on the right.
The leaves of the octree, also called octants, correspond one-to-one to the elements of the
mesh. A traversal of the leaves as indicated by the red curve (left) establishes a total ordering
of the mesh elements in space (right), also called z-order due to its shape. Cutting this space
filling curve into equal-sized pieces creates a parallel partition of the elements, in this example
between the three processors 0, 1, and 2.

of the above requirements, described below.

A.5.1 Parallel Adaptive Meshes Based on a Forest of Octrees

The term octree refers to a logical tree structure where each node is either a leaf or has eight

child nodes. The recursive tree structure can be identified with a subdivision of a cubic

volume, obtained by splitting the volume into eight similar child elements and applying these

splits recursively where higher resolution is desired. The leaves of the octree, also called

octants, then correspond bijectively to the mesh elements; see Figure A.1.

After defining a fixed ordering sequence for any eight elements created in a split, traversing

the hierarchical tree structure left-to-right establishes a total ordering of all elements. This

so-called space-filling curve is depicted in Figure A.1. Due to the shape of the curve, this

particular child sequence is also called z-order. We use the total ordering not only to establish

the storage sequence of elements and associated degrees of freedom, but also to determine

the partition of the mesh into processor domains that have equal numbers of elements, which



137

is essential for parallel load balancing. Additionally, the locality properties of the space filling

curve allow near-optimal cache efficiency when looping over the elements in this order.

Efficient implementations of parallel adaptive octrees have been developed recently (Tu

et al., 2005; Sundar et al., 2008). However, a single cube allows only a very restrictive set

of computational domains. To lift this restriction, we decompose the domain into multiple

octrees, conveniently called a forest of octrees, that are topologically equivalent to a hollow

sphere. As an extension of the so-called cubed sphere approach we use 24 octrees, grouped

into 6 caps of 2 ⇥ 2 octrees each, to achieve a roughly uniform aspect ratio (see Figure A.2).

The space-filling curve is first connected through all 24 octrees and then split into pieces of

equal length, which extends the z-order parallel partitioning scheme to the forest of octrees.

An octree may be split between multiple processors, and a processor may store parts of more

than one octree, depending on the number of processors and elements. In the Rhea code

we interface to the scalable parallel forest-of-octree AMR implementation p4est (Burstedde

et al., 2011) that provides all mesh management operations.

We analytically map the forest of octrees into the spherical shell by a smooth transforma-

tion. A necessary condition for this map is the preservation of aspect ratio. Since an octree

is a perfect cube, we demand that each octant is transformed into a mesh element of similar

width and height. To reconcile this criterion with the fact that the domain is spherical, and

the surface area of the core-mantle boundary is smaller than the outside surface area of the

earth, we implement an exponential grading of the mesh with the radius. The mapping from

the octree coordinates ⇠, ⌘ 2 [-1, 1], ⇣ 2 [0, 1] (which reflects the construction from a 2 ⇥ 2

octree) to the cap oriented in +z direction is given by:
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z =

(R/R

CMB

)

⇣�1

p
tan

2

(⇡⇠/4) + tan

2

(⇡⌘/4) + 1

,

x = z tan(⇡⇠/4), y = z tan(⇡⌘/4).

The 5 remaining caps are created by permuting x, y, and z and changing signs as appropriate.

The grading in radial direction is derived as the solution of a one-dimensional ordinary dif-

ferential equation that relates the octree-⇣-component to the non-dimensionalized radius. We

abbreviate this transformation as x = x(⇠). An illustration of the discretization of the mantle

by this mapped forest of octrees is shown in Figure A.2.

A.5.2 Handling of Nonconforming Meshes

Rhea uses a continuous trilinear finite element discretization to represent all variables. A field

such as the temperature is approximated by a linear combination of basis functions that in

our case are trilinear, i.e., defined as tensor products of linear functions in the three space

dimensions. Our meshes are nonconforming, which means that adjacent elements can have

different sizes and the endpoints of neighboring faces or edges need not coincide; see Fig-

ure A.3. This results in nodes that are “hanging,” i.e., that do not correspond to element basis

functions on all adjacent elements. To enforce global continuity of finite element functions,

the space of element-local basis functions must be restricted to a continuous subset. This can

be done through algebraic constraints as outlined next.

Let us introduce local basis functions on each element e, denoted by  e
i (x), i 2 {1, . . . 8}.

We choose nodal basis functions that assume the value 1 at exactly one of the eight nodes

x

e
j of the element,  e

i (x
e
j) = �ij . These element-local basis functions are zero outside of
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Figure A.2. Illustration of adaptive discretization of the mantle. Shown are five of the six
caps of the cubed sphere. Each cap consists of 2 ⇥ 2 appropriately mapped octrees that are
adaptively subdivided into octants (the mesh elements). The connectivity between the overall
24 octrees and the parallel distribution of elements is managed by the forest-of-octree library
p4est (Burstedde et al., 2011).
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the element. A function that is trilinear on each element but possibly discontinuous between

elements can be represented by element-local coefficients cei as f(x) =
P

e,i c
e
i 

e
i (x).

To fully specify the element-local basis functions  e
i (x) we take into account both the

transformation from the octree coordinates ⇠ = (⇠, ⌘, ⇣)

> into physical coordinates x(⇠) and

the scaled shift ⇠ = ⇠e(r) from the reference element r = (r, s, t)

> 2 [�1, 1]

3 into the octant

that corresponds to element e, covering a cubic subvolume Ve of octree coordinate space.

Combined with a tensor-product ansatz for three space dimensions this yields

 

e
i (x) =  

e
i (x(⇠e(r))) = `

1,i(r)`2,i(s)`3,i(t) =

⇣Y
d
`d,i

⌘
(r).

The linear basis functions `d,i are 1 at one end of the reference interval and zero on the other,

based on the coordinate direction d and the corner number i.

Adaptive refinement and coarsening produces non-conforming meshes where nodes of

one element are not necessarily nodes of a neighboring element, but may instead be hanging

(see Figure A.3). Continuity of the trilinear representation can be enforced by identifying only

the non-hanging nodes with global independent degrees of freedom gn, where n 2 {1, . . . , N}

and N is the number of independent nodes, and generating the element-local coefficients

through an interpolation matrix S,

c

e
i =

X

n

S

e
ingn.

The matrix S is sparse and thus never assembled or stored; instead the submatrix Se = (S

e
in) 2

R8⇥N is applied for an element e. Through the identification

f(x) =

X

e,i

c

e
i 

e
i (x) =

X

e,i

X

n

S

e
ingn 

e
i (x) =

X

n

gn�n(x)
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Figure A.3. Illustration of a hanging face in a nonconforming adaptive discretization. The
values of a variable field at the hanging nodes h

1

, h

2

, h

3

are computed from the values at
a

1

, a

2

, a

3

, a

4

through interpolation. For instance, for the edge-hanging node h

1

the value is
given by the mean of the values at a

2

and a

3

; similarly, the value at the face-hanging node h

3

is given by the mean of a
1

, a

2

, a

3

, a

4

.

we define global basis functions �n =

P
e,i S

e
in 

e
i that are locally supported and continuous

by construction.

For parallel computation we distribute the global degrees of freedom among the proces-

sors. Hanging nodes are always understood as processor-local and their values are interpolated

when needed from associated independent nodes (Figure A.3). We assign ownership of an

independent node to the lowest-numbered processor whose elements touch it. Given local

copies of one layer of off-processor elements (so-called ghost elements) each processor can de-

termine the hanging status and processor ownership of all nodes touching any of its elements

without further communication. To determine a globally unique numbering of all degrees of

freedom, each processor counts its owned independent nodes and shares this number with

all other processors. Every processor then offsets its owned node indices by the number of

independent nodes owned by all lower-numbered processors.
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Figure A.4. Globally unique node numbering and parallel sharer lists on an example mesh
consisting of two octrees partitioned between three processors. On each processor the owned
nodes are numbered in z-order with respect to the octree coordinate systems (see also Fig-
ure A.1). Sharing processors arise due to independent nodes on processor boundaries and
due to the hanging node a that depends on independent node values for interpolation (num-
bers 1 and 3 in this case).

The values of an independent node may be needed on other processors than its owner,

either through an independent node on the processor boundary or through referral by an

off-processor hanging node that depends on its value for interpolation. Thus, for each inde-

pendent node we maintain a list of sharing processors. Most independent nodes are away

from inter-processor boundaries due to the surface-to-volume ratio of the parallel partition;

these have no sharers. Those on a processor boundary usually have a small and bounded

number of sharers due to the locality properties of the space filling curve.

The authoritative value for a degree of freedom is stored on its owner processor; we use

the sharer lists to send its value to other processors, and to receive updates when necessary.

The algorithms for creation of the ghost layer and the trilinear node numbering for a forest-

of-octree mesh are detailed in Burstedde et al. (2011). Figure A.4 illustrates the global node

numbering and sharer lists.

While all finite element variables are stored as global degrees of freedom it is more conve-

nient to apply discretized operators, such as mass or stiffness matrices, using the element-local

formulation. With the definitions introduced above we decompose, for example, the mass ma-
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trix M = (Mmn) 2 RN⇥N as follows,

Mmn =

Z

⌦

�n(x)�m(x)dx =

X

e,i,j

Z

⌦

e

S

e
in 

e
i (x)S

e
jm 

e
j (x)dx

or, equivalently in matrix notation,

M =

X

e

S

>
e M eSe with M

e
ji =

Z

⌦

e

 

e
i (x) 

e
j (x)dx. (A.23)

Here, ⌦ is the whole domain and ⌦e the part occupied by element e. The element-local mass

matrix M e = (M

e
ji) 2 R8⇥8 is then evaluated using the transformation theorem,

M

e
ji =

Z

[�1,1]3
Ve

����
@x

@⇠

����
⇠

e

(r)

⇣Y
d
`d,i

⌘
(r)

⇣Y
d
`d,j

⌘
(r)dr,

where Ve is the volume fraction of the octant within its octree. In Rhea we approximate the

volume integral by the tensor product of three third-order Gauss integration rules, one for each

coordinate direction, thus using eight integration points on the reference element.

A matrix-vector product is computed in parallel by looping over all processor-local ele-

ments and applying (A.23), or rather the analogous expression for any of the specific matrices

introduced in Section A.4, using shared degrees of freedom when necessary. Shared entries

of the result are sent to all sharing processors, and contributions to local shared or owned de-

grees of freedom are received and added. This process yields identical results for independent

nodes on all of their respective sharers.
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A.5.3 Criteria for Mesh Adaption

There are various scenarios in which adaptively refined meshes are beneficial. Adapted

meshes may be needed, for instance, to resolve boundary layers, sharp temperature or vis-

cosity gradients, and narrow weak zones near plate boundaries. In simulations for which it is

known a priori where the largest mesh resolution is necessary, an appropriately refined mesh

can be chosen as part of the preprocessing. Often, such prior knowledge is not available and

an adequate mesh adaptation depends on properties of the solution. This so-called solution

adaptivity usually requires solving the problem on a sequence of meshes. After each solution,

an error indicator is used to help decide where the mesh should be refined or coarsened.

As is the case with solution adaptivity for stationary problems, time-dependent simula-

tions also require that the mesh is adapted while the simulation is running. We denote this

capability “dynamic AMR,” which implies that the mesh needs to be repartitioned after each

adaptation and all finite element fields must be transferred from the old to the new mesh. This

is a particularly challenging problem arising with parallel computation. Example mantle con-

vection problems that require dynamic AMR are those featuring rising plumes or a rheology

law that produces localized features, as, for instance, rheologies that accommodate yielding

under high strain rates. To keep the number of elements small in dynamically refined AMR

problems, meshes also have to be coarsened wherever high resolution is no longer necessary.

The algorithmic framework for dynamic adaptivity used in Rhea is described in Burstedde

et al. (2008a).

Accurate element-based error indicators are essential for effective solution adaptivity. Var-

ious choices for such error indicators are summarized next.
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Physics-based error indicators. Often, physical intuition can be used to devise an indicator for

adapting the mesh to the problem: simple examples are element-wise temperature gra-

dients for the energy equation and viscosity gradients or numerical velocity divergence

for the Stokes equation.

Residual-based error indicators. For some problems error indicators are available that can be

proven to provide bounds for the actual error. These indicators (also called error esti-

mators) involve element equation residuals and jumps of the solution derivatives across

element faces, or they require a reconstruction of the solution over a patch consisting of

several elements (Ainsworth and Oden, 2000).

Goal-oriented error indicators. Often, one is not interested in minimizing the global dis-

cretization error, but in obtaining high accuracy in a certain quantity of interest, for

instance the solution in a part of the domain or its mean. Goal-oriented error indica-

tors (Becker and Rannacher, 2001; Ainsworth and Oden, 2000; Oden and Prudhomme,

2001) lead to meshes that target maximal accuracy in the quantity of interest. However,

they require the solution of an adjoint problem, which makes them comparably costly

(Burstedde et al., 2009b).

Having an error indicator at hand, it remains to decide which elements to refine and

coarsen. Several strategies can be used, for instance to coarsen/refine elements with an error

indicator under/above a certain threshold. Alternatively, one can coarsen and refine a certain

percentage of elements, since it is often desirable to control the size of the simulation. This

approach relies on choosing appropriate refinement/coarsening thresholds to obtain a target

number of elements. In a parallel simulation environment, these thresholds can be determined

by the iterative bisection algorithm MarkElements described in Burstedde et al. (2008b). For
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most time-dependent simulations we use the latter strategy to keep the number of elements

constant throughout the simulation.

A.5.4 Mesh Adaptation for Time-Dependent Problems

Simulation of the energy transport of mantle convection (A.3) often reveals the creation and

disappearance of localized features, and a motion of plumes and other structures through

space. Thus, the mesh needs to be adapted dynamically to resolve physics that evolve with

time. While adaptation after each time step is technically possible, in practice it is sufficient

to only adapt the mesh after a time interval corresponding to a fixed number of time steps

(e.g., 10–50 steps). To obtain a properly adapted mesh for such a time interval, we determine

the maximum in time of an error indicator separately for each element. Implementing this

strategy naively, however, would allow features that move from a finely resolved into a coarsely

resolved area during the same interval, resulting in a loss of information. This risk can be

eliminated by a multi-pass algorithm, as described in Sun and Wheeler (2004). Here, one or

more passes for estimation can be executed to gather the error information, which is then used

to create a new mesh and run the simulation pass starting from a checkpoint that was saved

previously. Our adaptation of this process is illustrated in Figure A.5 and has been described

in Burstedde et al. (2008b) in more detail.

The numerical result of the estimation pass is discarded after mesh adaptation and can thus

be approximate. For the simulation of mantle convection, where solving the Stokes systems

consumes the majority of computation time, we hold the flow solution constant for the error

estimation pass to avoid solving the Stokes equation at each estimation time step.
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. . .

T0 T1 T2 Tn−1 Tn

Estimation

Solution

Adaptation

Interpolation

Figure A.5. Interval-based adaptation over time. The estimation pass (green) is used to com-
pute the average error information throughout one interval and adapt the mesh accordingly
at the end (blue arrows). The initial condition has been saved and is transferred to the new
mesh (orange arrows). The simulation pass (red) then executes on a mesh that is well adapted
for this interval. It can be chosen shorter than the estimation pass in case the time integration
does not accumulate sufficient error information towards the end of an interval. The cost of
multiple passes through the same interval can be reduced by using a less expensive numerical
solution method for estimation.

A.6 Tests and Benchmarks

The purpose of this section is twofold: First, we provide evidence for the correctness of the

Rhea code by comparing numerical against analytical solutions and studying convergence

rates. Second, we analyze the potential of adaptively refined meshes for typical mantle con-

vection benchmarks and discuss for which scenarios adaptive mesh capabilities are most ben-

eficial.

A.6.1 Analytical Solutions for the Stokes Equations

Analytical solutions can be employed effectively to demonstrate the correctness of the imple-

mentation and to verify convergence rates for finite element discretizations of partial differ-

ential equations. However, it is generally not possible to construct an analytical solution for

a given right-hand-side f . What is possible, in contrast, is to postulate velocity and pressure
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fields and to insert them into the system of equations to derive an appropriate f that is used

as forcing for the simulation. The postulated and computed velocity and pressure can then

be compared. This approach is often called the method of manufactured solutions. It can

reveal errors in the implementation and deliver precise convergence rates of numerical ap-

proximations. In this section we present two manufactured solutions, namely a polynomial

and a trigonometric formulation.

A.6.1.1 Polynomial Solution Benchmark

We begin by postulating a simple polynomial solution for the Stokes equations (Dohrmann

and Bochev, 2004),

u =

0

BBBBBB@

x+ x
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+ xy + x

3
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y + xy + y

2

+ x

2
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2

yz

1

CCCCCCA
, (A.24a)

p = xyz + x

3

y

3

z � 5/32, (A.24b)

which is divergence free. Inserting this solution into the momentum equation with a given

viscosity µ, we obtain the right-hand-side forcing:
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We also impose exact velocity boundary conditions derived from (A.24). Then we solve the

Stokes equations with Rhea and compute the L

2-norm of the difference between numerical

and exact solutions (uh, ph) and (u, p), respectively,

||u� uh||L2 :=

✓Z

⌦

(uh � u)

2

dx

◆
1/2

, (A.26a)

||p? � ph||L2 :=

✓Z

⌦

(ph � p)

2

dx

◆
1/2

. (A.26b)

In Table A.1 we summarize the convergence results for constant viscosity ⌘ ⌘ 1 on a 45�⇥ 45�

portion of the spherical shell as well as the global mantle geometry, for which the radius has

been scaled to 1. Additionally we show the number of MINRES iterations to achieve a drop in

the residual by a factor of 108. Analogous results for a spatially smoothly varying viscosity

µ = exp(1� 4(x(1� x) + y(1� y) + z(1� z))) (A.27)

are included in Table A.2.

As expected from the theory (Dohrmann and Bochev, 2004), with each uniform mesh
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mesh ||u? � uh||L2 ||p? � ph||L2 #iter
83 8.08e-4 3.85e-2 47

163 2.25e-4 1.15e-2 47
323 5.84e-5 3.43e-3 54
643 1.46e-5 1.03e-3 54

24⇥ 43 1.53e-2 2.66e-1 75
24⇥ 83 4.40e-3 8.95e-2 50

24⇥ 163 1.16e-3 2.98e-2 57
24⇥ 323 2.94e-4 1.01e-2 67

Table A.1. Polynomial solution example: Error between exact and numerical solution for
constant viscosity µ ⌘ 1 for a 45�⇥ 45� portion of the spherical shell (upper part) and the full
mantle geometry (lower part). The number of MINRES iterations is reported in the rightmost
column.

mesh ||u? � uh||L2 ||p? � ph||L2 #iter
163 2.75e-4 1.03e-1 51
323 6.94e-5 3.80e-2 58
643 1.72e-5 1.28e-2 55

24⇥ 163 8.56e-3 1.70e+3 179
24⇥ 323 2.19e-3 4.55e+2 122

Table A.2. Polynomial solution example: Error between exact and numerical solution for
variable viscosity given in (A.27). For the 45�⇥ 45� portion of the spherical shell (top), the
viscosity varies by a factor of about 300, and for the global mantle geometry (bottom) by about
106. The MINRES iteration is terminated if a relative drop in the residual of, respectively, 108

or 109 is achieved. The difference in the number of iterations can be explained by the fact
that the coarser mesh cannot fully resolve the viscosity variations.

refinement (that halves the mesh size) the velocity error decreases by a factor of 4, and thus

the convergence rate is of order 2. For the pressure error, finite element theory only predicts a

decrease of linear order for a uniform refinement. However, our numerical tests yield a better

value of approximately 1.6, which is also observed in Dohrmann and Bochev (2004). Note

that the number of iterations required to solve the problems is almost constant across different

refinement levels. Such a mesh-independent convergence rate of solvers is necessary to obtain

optimal scalability when problems become very large, and constitutes the main motivation to

employ multigrid-type preconditioners.
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A.6.1.2 Diverging Flow Stokes Example

We now use an example that models diverging flow that has similarities to the mantle flow

found at a mid-ocean ridge. The viscosity µ and the forcing f(r, ✓,') = (fr, f✓, f') are, in

spherical coordinates, given as follows:

µ = r

2

, (A.28a)
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f' =

2(4 + r

5

)(1� tanh(

'
�0
)

2

) tanh(

'
�0
)

5'

2

0

r

2

sin(✓)

� 14r

3

sin(✓) tanh(

'

�

0

) + 3r cos(3').

(A.28d)

Above, the parameter '
0

> 0 controls the smoothness of the ridge. The smaller '
0

, the faster

and more localized is the radial flow under the ridge; see Figure A.6. It can be verified that

the solution (u, p) = (ur, u✓, u', p) to the ridge Stokes flow problem is given by

ur =
(1� r

5

)(1� tanh(

'
�0
)

2

)

5'

0

r

2

, (A.29a)

u✓ = 0, (A.29b)

u' = r

3

sin(✓) tanh(

'

�

0

), (A.29c)

p = r

2

sin(✓) sin(3') +

✓

3

r

2

. (A.29d)
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mesh ||u?�u
h

||
L

2

|⌦|
||p?�p

h

||
L

2

|⌦| #iter
83 2.75e-2 6.18e-1 42

163 7.42e-3 1.92e-1 42
323 1.91e-3 5.91e-2 46
643 4.80e-4 1.86e-2 42
163 3.02e-1 8.74e0 38
323 8.20e-2 1.00e0 43
643 2.35e-2 3.22e-1 40

1283 6.08e-3 8.73e-2 42
2563 1.54e-3 2.39e-2 44
5123 3.85e-4⇤ 5.66e-3⇤ 49

Table A.3. Ridge example: L

2-errors between exact and numerical solution for parameters
'

0

= 0.5 (upper table) and '

0

= 0.05 (lower table). The last column shows the number of
iterations to obtain a drop in residual by 10�7 (the errors marked by ⇤ are obtained after a drop
in residual by 10�9).

To study the accuracy of our numerical method, we set the velocity on the boundary to the

exact solution and then solve the Stokes problem for the forcing given above. Again, we

report the L

2-norm of the difference between numerical and exact solution (uh, ph) and (u, p),

respectively; see Table A.3. Note that for the same mesh, for large '
0

the numerical solution

is a better approximation of the exact solution. This can be explained by the fact that for small

'

0

the solution becomes less smooth, which makes the numerical solution of the problem

harder.

Furthermore, note that the number of iterations remains stable as the mesh is refined,

enabling the efficient solution of large-scale problems.

A.6.2 Benchmarks for Stokes Solver

We now use a common Stokes benchmark problem (see, e.g., Zhong et al. (2008); Choblet

et al. (2007)) to verify the flow solution of the Stokes solver, as well as the computation of

surface and CMB topography. The problem uses constant viscosity, the Rayleigh number is

unity, and the temperature is specified as a delta function at a radius r
0

in the radial direction
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Figure A.6. Slice (✓ = 0) through flow field for exact ridge example solution for parameters
'

0

= 0.5 (top), '
0

= 0.05 (middle), and '
0

= 0.01 (bottom).
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#cores #elem/
core

#elem #iter
setup

time [s]
matvecs
time [s]

V-cycle
time [s]

120 5,800 700K 24 1.39 2.75 2.88
960 4,920 4.72M 22 2.30 3.94 2.89

7,680 4,805 36.9M 23 4.07 3.99 5.72
61,440 5,145 316M 21 34.2 4.60 9.03

122,880 5,135 631M 26 112.48 6.29 8.39

Table A.4. Weak scaling with approximately 5,000 elements per core for the mid-ocean ridge
Stokes example, obtained on the Jaguar supercomputer. The mesh contains elements of three
different sizes determined by a strain rate error indicator and the viscosity varies over one
order of magnitude. Reported are the number of MINRES iterations to decrease the residual
by a factor of 104, the time for the AMG setup (using ML from Trilinos), the overall time
for matrix-vector and inner products, and for the V-cycles in MINRES. ML employs the recur-
sive coordinate bisection (RCB) repartitioning algorithm from ZOLTAN to improve the parallel
efficiency of the multigrid hierarchy.

and a spherical harmonic function Y

m
l of degree l and order m in the tangential directions,

i.e.,

T (r,', ✓) = �(r � r

0

)Y

m
l (', ✓). (A.30)

The �-function in the radial direction is approximated by a triangle with unit area:

�(r � r

0

) =

8
>>>><

>>>>:

ner

rt � rb
if r = r

0

,

0 otherwise,

(A.31)

where ner is the number of elements in the radial direction in a uniform mesh. The spherical

harmonic function is described by

Y

m
l (', ✓) = cos(m')plm(✓). (A.32)

The normalized associated Legendre polynomial plm is related to the associated Legendre

polynomial Plm by:

plm(✓) =

s
(2l + 1)(l �m)!

2⇡(1 + �m0

)(l +m)!

Plm(✓). (A.33)
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The usual free-slip boundary conditions are used. Due to properties of the spherical harmonics

functions, this setting allows the computation of the Stokes flow by solving numerically an

ordinary differential equation for the coefficient of the spherical harmonic; see Hager and

Richards (1989). This semi-analytical solution is used to compare with the finite element-

based solution obtained in Rhea.

As in Hager and Richards (1989); Zhong et al. (2008); Choblet et al. (2007), we report the

responses of flow and topography at the top surface and the CMB when changing the radius r
0

,

at which the force is imposed; see Figure A.7. The mesh size is varied from 23 to 26 elements.

We perform a detailed error analysis for the various resolutions (Figure A.8). The errors in

response functions with respect to the semi-analytical solution decrease quadratically with

increasing resolution, as expected. The error increases with increasing spherical harmonic

degree as the complexity of the forcing is made larger. Additionally, the error decreases with

increasing forcing depth. Due to the spherical geometry of the domain, elements have smaller

dimensions at larger depth and therefore errors with respect to the semi-analytical solution are

smaller. These results are in agreement with those of Zhong et al. (2008).

We use this benchmark problem to assess parallel scalability as we simultaneously increase

the problem size and the number of processing cores. A breakdown of different components

of Rhea by runtime is presented in Table A.4. We observe that the number of iterations

remains essentially constant over a three-orders-of-magnitude increase in problem size and

number of processor cores. Thus we observe algorithmic scalability out to 123,000 cores and

631M elements (which corresponds to roughly 2.5B degrees of freedom). Parallel scalability

can be assessed by observing the growth in CPU time of the dominant components of the

Stokes solver: AMG setup at the beginning of each Stokes solve, the matrix-vector product

time for each Krylov iteration, and the V-cycle time associated with the application of the AMG
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Figure A.7. Response functions for surface topography, CMB topography, velocity at the sur-
face, and velocity at the CMB, for spherical harmonic degrees 2, 5, 8, and 15 in a sphere with
uniform viscosity. The solid lines show the Rhea solution, the dashed lines the semi-analytical
solution.

preconditioner at each Krylov iteration. As can be seen, the latter two times remain relatively

stable over the thousandfold increase in problem size and number of cores (for perfect weak

scaling, they would not grow at all). However, the AMG setup time experiences large growth

above 104 processor cores. This is understandable, given the large communication induced

in the AMG setup, and is rarely a problem in practice, since even at 123,000 cores, the AMG

setup time is still dominated by the total time taken (across Krylov iterations) in matrix-vector

products and V-cycle applications; moreover, the AMG setup can often be reused for several

Stokes solves.
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Figure A.8. Errors in response functions with respect to the semi-analytical solution for surface
topography (s), CMB topography (b), velocity at the surface (Vs), and velocity at the CMB (Vb),
for spherical harmonic degrees 2, 5, 8, and 15 in a sphere with uniform viscosity. Three
forcing depths are shown left to right, namely 0.25d, 0.5d, and 0.75d.
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A.6.3 Time-Dependent Benchmark

The time-dependent solver in Rhea is benchmarked using a spherical harmonic temperature

perturbation, superimposed onto a conductive profile in a shell. The temperature field is

defined as follows:

T (r, ✓,') =

rb(r � rt)

r(rb � rt)
+

�
✏c cos(m') + ✏s sin(m✓)

�
plm(✓) sin

⇡(r � rb)

(rt � rb)
, (A.34)

where plm is given by (A.33). The parameters ✏c and ✏s are set to 0.01, and the degree l and

order m are 3 and 2, respectively. The viscosity is given by:

µ = exp[E(0.5� T )], (A.35)

where the viscosity variation within the model is determined by the activation energy E.

Cases with �µ = 1 (isoviscous) and �µ = 20 are run. These cases have also been reported

by Bercovici et al. (1989) and Zhong et al. (2000) for �µ = 1, and by Ratcliff et al. (1996);

Yoshida and Kageyama (2004); Stemmer et al. (1996) for �µ = 1, 20. Zhong et al. (2008)

showed results for a wide range of viscosities from �µ = 1 to 107. We use a Rayleigh number

of 7.6818 ⇥ 104. The mesh is uniform at level 5, corresponding to 32 elements in the radial

direction, which is comparable to that of Zhong et al. (2008).

The resulting temperature field in steady state has tetrahedral symmetry for the viscosity

ranges tested here. The steady-state temperature field shows four well-defined plume-like

upwellings, and a set of interconnected downwelling sheets (Figure A.9). The time series of

average temperature, average root mean square velocity, and Nusselt numbers at the top and

bottom of the mantle reproduce results described by, e.g., Zhong et al. (2008) (Figure A.10).
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Figure A.9. Temperature field at steady state for the time-dependent benchmark. Shown are
contours at temperatures 0.05 (blue) and 0.5 (yellow). Left: isoviscous model. Right: model
with viscosity variation of factor 20.

A.6.4 Adaptive Resolution of Rising Plume

In the final benchmark presented here, we illustrate the effectiveness of mesh adaptation. We

compute plume models in a 45°⇥ 45° section of a spherical shell, with an initial temperature

field given by

T (x) = T

0

+ exp

✓
� 1

2�

2

kx� x

0

k2
◆
, (A.36)

where � = 1/20 determines the extent of the anomaly and x

0

denotes its center, situated D/10

below the core-mantle boundary (which is outside of the domain, but still has an effect in the

lower mantle). A thermal boundary layer is used at the bottom of the domain for r < rb+wTBL

with wTBL chosen to cover the bottom-most 500 km. This temperature profile is described

using an error function:

T

0

= 1.0� 0.5 erf
(r � rb)

wTBL/2
. (A.37)
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Figure A.10. Measured quantities in time-dependent convection models with a temperature
perturbation of degree 4 and order 0. Shown are the average temperature, root mean square
velocity, and Nusselt numbers at top and bottom of the mantle. Black: isoviscous model.
Blue: model with viscosity variation of factor 20.
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Ra, t

model

Level # elements # cores t

comp

(s) V

rms

error

104, 8.0 ⇥ 10�2

Level 7 uniform 221 (= 1283) 192 1.6268 ⇥ 107 -
Level 7 coarsened 218 96 2.1181 ⇥ 106 0.029
Level 6 uniform 218 (= 643) 24 9.1380 ⇥ 105 0.044
Level 7 coarsened 216 24 3.2419 ⇥ 105 0.083
Level 7 coarsened 215 24 2.0125 ⇥ 105 0.159
Level 5 uniform 215 (= 323) 8 6.0709 ⇥ 104 0.226

106, 5.0 ⇥ 10�4

Level 8 uniform 224 (= 2563) 1536 5.7819 ⇥ 107 -
Level 8 coarsened 221 768 7.1220 ⇥ 106 0.019
Level 7 uniform 221 (= 1283) 192 5.5831 ⇥ 106 0.249
Level 8 coarsened 219 192 1.7953 ⇥ 106 0.272
Level 8 coarsened 218 192 1.0900 ⇥ 106 0.279
Level 6 uniform 218 (= 643) 192 4.9778 ⇥ 106 0.800

Table A.5. Comparison of the time evolution of a rising plume on static uniform and dynam-
ically adapted meshes. The first column lists the Rayleigh number and the nondimensional
model time at which errors are assessed. The second column indicates the mesh level at the
start of the simulation, while the third column contains the number of elements after adaptive
meshing. The fourth column shows the number of cores used for the computation. The fifth
column shows the total compute time t

comp

, computed as the overall run time in seconds
times the number of cores used for the computation. The last column shows the relative error
in V

rms

compared with the highest resolution uniform mesh case.

Elsewhere, the background temperature T

0

is 0.5. The Rayleigh number is set to 104 and

106, respectively (Figure A.11). The viscosity is given by (A.35), with E = 7.0. The solutions

for meshes with various amounts of coarsening are compared to the solution obtained on a

uniform mesh. We start with a static uniform mesh in both cases, using mesh level 7 (221

elements) for the model with Ra = 104, and mesh level 8 (224 elements) for the model with

Ra = 10

6. Time series of the average temperature, average root mean square velocity, and

Nusselt numbers at the top and bottom of the mantle are computed. We then decrease the

number of elements using dynamic adaptive coarsening in consecutive model runs (Table

A.5), but only allow a maximum decrease in resolution of two mesh levels. These coarsened

models are then compared to models with uniform meshes with the same total number of

elements.

The time series show that in the case with Rayleigh number 104, a steady state develops
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Figure A.11. Temperature field for plume models. Shown are contours at temperatures 0.6,
0.8, and 0.95. Top left: Model with uniform mesh at level 6 (218 elements) and Rayleigh
number 104 at t = 6.95 ⇥ 10�3. Top right: Model with uniform mesh at level 7 (221 elements)
and Rayleigh number 106 at t = 7.54 ⇥ 10�5. Bottom: Cross-sections showing temperature
and mesh of a model with coarsening from level 8 to 221 elements and Ra = 106, at t = 5.91
⇥ 10�5 (left) and at t = 1.24 ⇥ 10�4 (right).
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(Figure A.12). Quantitative comparisons are provided in Table A.5. The models with 218

elements reproduce the results of the uniform high-resolution mesh (221 elements) well, and

the adaptive better than the uniform. The model with 218 elements coarsened from level 7

has a smaller V
rms

error than the model with uniform mesh at level 6, as does the coarsened

model with 215 elements compared to the model with uniform mesh at level 5. Comparing

the uniform high-resolution model with the adapted one at the same number of elements,

it can be seen that adaptivity allows an overall 8x reduction in both elements and run time,

only with a minor loss in accuracy. Choosing increasingly coarser models, the errors increase

gradually, which is expected at this Rayleigh number: The temperature field is smooth and

does not show sharp features.

The models with a Rayleigh number of 106 show a much increased sensitivity to mesh

resolution. The plume is narrower, temperature gradients are sharper, and flow velocities are

larger with increased Rayleigh number. In this model, no steady-state solution is achieved.

The original plume is only stable up to t

model

⇠ 3 ⇥ 10�4, and is then replaced with smaller,

more ephemeral features for the duration of the model run. These features are harder to

resolve than the original plume, and therefore a uniform reduction in the number of elements

under-resolves the solution and eventually fails (see Figure A.12). In contrast, an adaptive

coarsening from level 8 to 221 elements reproduces the results from the uniform level 8 mesh

(224 elements) well in 8x less run time, and provides a 12x smaller error than the the model

with a uniform level 7 mesh at the same number of elements (see again Table A.5). This

adaptive model is the only lower cost variant that yields an acceptable error. Considering

a further reduction of the problem size, the model with 218 elements adaptively coarsened

from a level 8 mesh has a much reduced error compared with a uniform level 6 mesh (also

218 elements). These results indicate that adaptive coarsening can preserve high accuracy
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Figure A.12. Measured quantities in plume model, for decreasing number of elements. Shown
are the average temperature, root mean square velocity, and Nusselt numbers at top and bot-
tom of the mantle. Left: Rayleigh number 104. Right: Rayleigh number 106.

while providing a much faster time to solution. When Rayleigh numbers become large, the

adaptive simulation becomes increasingly favorable compared to a uniform mesh simulation

of the same element count.

A.7 Discussion and Conclusions

In this article we have presented the design and functionality of the Rhea code for instanta-

neous and time-dependent simulation of mantle convection. The uniqueness of Rhea lies in



165

the combination of dynamic adaptive mesh refinement capabilities that enable the resolution

of multiple scales, and large-scale parallel scalability that enables efficient use of petaflop-

class supercomputers. Rhea has been used previously to simulate global mantle convection

to one-kilometer resolution, satisfactorily recovering the motion of plates and microplates. In

this document we detail the choices made for the computational algorithms and numerical

solvers, and the technical background for their implementation, and we discuss their perfor-

mance and accuracy using problems with exact solutions, as well as community benchmarks.

In all cases, our focus was on maximal algorithmic efficiency, which is reflected in the follow-

ing considerations.

We cover the computational domain by what we call a forest of octrees — a collection of

conforming mapped hexahedra, each of which is the root of an adaptive octree. This leads to

logically cubic elements that feature hanging faces and edges when elements of different sizes

meet. The main benefit of this approach is that it allows us to define a space filling curve that

we exploit for fast mesh partitioning and search of element neighbors. In particular, we do not

depend on external graph-partitioning software that would introduce additional overhead and

complexity.

We choose continuous trilinear finite elements for both the velocity and the pressure. The

introduction of an element-wise projection term in the pressure block stabilizes the Stokes sys-

tem and allows us to handle all variables within the same fast finite element framework. Since

this term can potentially introduce artificial compressibility, we are considering different-order

velocity pressure pairings. However, higher-order finite elements for the velocity complicate

the preconditioning of the Stokes operator.

To apply the inverse of the block-diagonal preconditioner we use an algebraic multigrid

solver for the viscous operator and approximate the inverse of the pressure Schur complement
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with an inverse-viscosity pressure mass matrix. This preconditioner is symmetric, as is the orig-

inal Stokes system, and thus allows us to use the MINRES iterative solver that does not need

to store a history of previous iterates as opposed to GMRES variants. Block-triangular precon-

ditioners are interesting alternatives promising faster convergence at the cost of destroying the

symmetry of the system. The viscosity-scaled mass matrix is a reasonable approximation of the

Schur complement for smoothly varying viscosity. However, for extreme viscosity gradients,

the approximation degrades, and convergence of the iterative solver can become slower.

The ↵-predictor-corrector iteration that we use for time integration is well established in

elastodynamics and other finite element applications. While the early truncation of the iter-

ation yields a rather small residual, it still implies that the method is not implicit and thus

limits the time step by a Courant-Friedrich-Levy condition. Since we operate in the advection

dominated regime, the quadratic dependence of the diffusion time step on the mesh size does

not take effect and the linear dependence due to the advection component prevails. This situ-

ation may change at resolutions of roughly 10 m for a global run, which seems far beyond the

accuracy of current tectonic models. Still, we may consider treating at least the diffusion term

implicitly, or to switch to fully implicit time integrators. Another alternative is to consider an

altogether different approach to solving the energy equation, for example using a discontinu-

ous Galerkin method. Finally, the time step size limit may be considered separately for each

element to avoid over-resolution in time for large elements. These are common challenges

that will generally need to be addressed in future AMR simulations.

Having outlined the design principles of Rhea, we demonstrate its correctness by the

method of manufactured solutions, and by solving a series of community benchmark prob-

lems both instantaneous and time-dependent. We argue that adaptivity has the potential to in-

crease accuracy and reduce the computation time for high-Rayleigh-number simulations such
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as presented by the Earth’s geodynamics. We demonstrate the parallel efficiency of Rhea by

scaling a variable-viscosity Stokes solve to 122,880 cores of the Jaguar supercomputer. Our

results indicate that Rhea is indeed an accurate and scalable code for simulating global mantle

convection and possibly other thermal convection scenarios.
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