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Abstract

A curved shock of general shape in hypersonic flow generates vorticity, so that a
shear layer is formed in the flow downstream of the shock. The parameters affecting
the distribution of vorticity in the shear layer are identified. Experiments aimed
at determining the preferred wavelength of structures that develop in these flows are
carried out in the T5 Hypervelocity Shock Tunnel. To visualize these structures, a new
technique using streaklines is developed. The results are compared with numerical
simulations of perfect-gas flows.

The numerical study also points to a flow regime, as the Newtonian limit is ap-

proached, where the instability of the shear layer is such that the shock becomes
distorted. A series of experiments aimed at investigating flows approaching this limit
is performed, using the T5 Light Gas Gun facility, and confirms the existence of this

new regime.
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Chapter 1 Introduction

1.1 Background

One of the problems associated with a vehicle reentering the atmosphere at orbital
speeds is the extremely high heat transfer rate in the vicinity of the stagnation region.
To be able to dissipate some of that heat, it is necessary for the vehicle to be blunted
at the nose, though this increases the drag. The nose bluntness causes the bow shock
on the vehicle to be detached and curved. As has been shown by Lighthill [1957], a
curved shock of general shape in uniform, steady flow generates vorticity so that a
formed in th ion between the body surface and the shock wave.
An alternative way to view this situation is to look at the entropy field. A region
of high entropy increase is formed behind the ‘strong’ part of the shock wave (i.e.,
Mo sin(3) > 1, where [ is the local wave angle). This ‘entropy wake’ has a lateral
dimension which may be large, but limited. Since for inviscid, non-reacting flow the
entropy is constant along streamlines downstream of the shock, a strong gradient of
entropy exists across the entropy wake, with high entropy near the body and low
entropy near the shock wave. This zone of comparatively high entropy is why the
region near the body is often referred to as the ‘entropy layer’.

The importance of this entropy layer, flowing over the body of a reentry vehicle, on
the flow field surrounding the vehicle, both in terms of heat transfer and drag, has been
appreciated by several research groups over the last thirty years. A group at NASA
Ames was responsible for a large body of work on the effect of cone nose bluntness
at high Mach numbers (e.g., Cleary [1965|, Cleary [1966], and Cleary [1968]). Their

work concentrated on taking static and pitot pressure measurements on cones of

! Although some authors take special care in making the distinction between ‘entropy wake’ and
‘entropy layer’, the distinction is unimportant for the discussion that follows, and the terms are used
interchangeably.
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varying geometries at different flow conditions commensurate with Earth reentry.
Softley [1968] also performed experiments over blunt cones; he observed a correlation
between the nose bluntness and the boundary layer transition. More recently, work
done by Stetson et al. [1984] and Ericsson [1988] on blunt cones provided empirical
rules correlating the distance at which the entropy layer is ‘swallowed'? as a function
of nose bluntness, and the boundary layer transition. Figure 1.1 illustrates the various
parameters used in this analysis. The distance at which the entropy layer is swallowed
is X,; the distance to transition is Xy; and the length of the cone is L. Although
this recent work alludes to the possibility that an instability in the entropy layer itself
is responsible for the correlation between the distance to entropy layer swallowing and
boundary layer transition, the origin of such an instability was not identified, and the
experiments lacked the required flow visualization techniques to observe it, should it

occur.

Figure 1.1. Entropy layer swallowing and boundary layer transition.

Few groups appear to have focused their studies on the physics of the flow within
the entropy layer itself, as it flows downstream of the shock, and as an entity decoupled

from the boundary layer.

A few notable examples of the occurrence of an instability developing in the shear

2‘Entropy layer swallowing’ is the expression used to describe the phenomenon by which the
entropy layer, which becomes thinner as it flows over an axisymmetric body, becomes fully entrained
within the growing boundary layer.
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layer produced by a curved shock do exist in the literature, but the source of the
instability in the flow, or even the mention that an instability exists, has been either
omitted or misinterpreted. One example is the published schlieren photograph of
Mach et al. [1962], which shows a spherical projectile traveling at 3000 m/s in carbon
tetrachloride for the purpose of an experiment aimed at measuring the temperature
within the stagnation region of the shock layer. The instability of the entropy layer
which develops under these conditions and is clearly evident in the photograph is not
mentioned. Series of experiments were also performed in a hypersonic ballistic facility
in Leningrad (Mishin and Mende [1967]) from the late 1970s through the 1980s. The
purpose of these experiments was to use a novel technique (projectiles) to study a fype
of shock instability associated with dissociating gases and first observed by Griffiths
et al. [1975] in shock tube experiments. This instability, found to occur at shock
front velocity nearing that where the value of (0P/0v), is positive on the Rankine-
Hugoniot curve® (due either to ionization or dissociation of the gas), appears to have
been reproduced with some success in ballistic experiments in Leningrad (Baryshnikov
et al. [1979]). The phenomenon, referred to as “Relaxational Instability of Shock
Wave” (RISW), was identified by Baryshnikov and his colleagues as the source of the
instability found in the inviscid wake of projectiles traveling within a certain speed
window and certain initial conditions (including pressure and gas composition). Since
RISW only occurs within a small region of the shock layer, it is unlikely that it is
responsible for instabilities present far downstream, such as claimed by Bedin [1989].
Instabilities which affect the shock layer far downstream of the stagnation point are
more likely to be due to an instability in the entropy layer.

An important observation discussed in Stetson [1979] during experiments done on
blunt cones in hypersonic flow, is that increasing cone bluntness delays boundary layer
transition until the laminar flow section reaches a maximum length. It was found that
further increases in nose bluntness beyond that point then reduce the laminar flow
region of the boundary layer. One of the possible reasons for this reversal to occur

is an instability in the entropy layer itself, where oscillations developing within the

3P, v, and h are the pressure, specific volume, and specific enthalpy behind the shock.
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entropy layer penetrate the boundary layer and initiate early transition to turbulence.
An analytical study of this phenomenon was undertaken by Fedorov [1990]. Linear
theory was used to analyze self-oscillations in the entropy layer on a blunt flat plate.
Fedorov set up the eigenvalue problem for the region of the entropy layer around the
expected point of inflection in the velocity profile. The analysis revealed the existence
of one unstable mode. Furthermore, it was also found that the greatest instability,
that which grows downstream at the fastest rate, occurs at a finite Mach number.
Some of these conclusions, however, may pertain specifically to the flow over flat
plates, which does not remain rotational very far downstream of the shock. It is
unclear how these results translate to different geometries, especially those for which
the flow remains rotational over large distances over the body.

A common difficulty in all the experiments done on the stability of entropy layers
is visualizing adequately that region of the flow field. It is difficult using conventional
flow visualization techniques to detect the changes in the flow field associated with
this instability. Instead, diagnostic tools such as hot-wire anemometry have been
used to try to detect the fluctuations associated with this instability.

Recall that according to the Rayleigh stability criterion, an inflection point in the
velocity profile is a necessary condition for an instability to develop in inviscid flow
(Rayleigh [1880]). Stetson et al. [1984], in a notable effort using hot wires, attempted
to detect this inflection point, but were unsuccessful.

It is clear that the conditions under which the shear layer becomes unstable are
not well understood, and that the role played by the source of the shear layer, namely
the vorticity produced at the curved shock, may not have been sufficiently well appre-
ciated. Although a sufficient condition for instabilities to develop in such a shear layer
has yet to be established, the more rotational the flow, the more likely instabilities
are to develop. Thus, it is important to understand how vorticity is generated at the
shock, and how to maximize it. Similarly, it is important to understand how high
levels of vorticity may be maintained far downstream of the shock. The answer to
these questions will help define a strategy which will be used to study the instability

of the shear layer produced at curved shocks.
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1.2 Vorticity generation by curved shocks

Although the vorticity generated by a curved shock is a subject treated in a number
of textbooks and journal articles (e.g., Truesdell [1952], Lighthill [1957], or Hayes
and Probstein [1966]), the derivation sheds light on the distribution of vorticity in
the shear layer. To make the concept clear, and for the sake of completeness, the
derivation is included here.
The starting point for such a derivation is the Crocco-Vazsonyi momentum equa-
tion (Vazsonyi [1945]), written here for an inviscid fluid with no body force:
ou

o tox i=TVs—V(h+ i), (1.1)

where @ is the velocity vector; @ is the vorticity vector; 7' is the temperature; s is the

For the case of steady, frictionless, homenthalpic flows, this reduces to the Crocco

equation:

& xi@=TVs. (1.2)

In order to draw useful results from this equation, however, the gradient of entropy
must be expressed in terms of the flow properties along the downstream part of
the shock. To do this, first consider the shock conditions for conservation of mass,

momentum, and energy:

P11 = pPalg (1~3)
P+ piul = Py+ pous (1.4)

and
hi+u?/2 = hy+u3/2, (1.5)

where the subscripts 1 and 2 denote the location before and after the shock, re-

spectively, and the shock geometry is illustrated in Figure 1.2(a). The momentum



shock
streamline
v, //\ T Y
/
U streamline
(a) Curved shock coordinates (b) Entropy gradient

Figure 1.2. Coordinate system used for a curved shock.

equation (1.4) may be rearranged to give:

Py, = P+ p U2 sin® (8) (1 — %) , (1.6)
2

and the energy equation (1.5) may be rearranged to give:

Lo . o P%
h2 = h1 + _Uoo sSin (ﬁ) - . (17)
2 P2

These equations provide a convenient form to be used in the Gibbs relation, which

relates the entropy to the pressure and enthalpy:

ho 10P
0s _Oh _10P (1.8)

T = .
98 08 pop
Differentiating and substituting equations (1.6) and (1.7) into equation (1.8), the

result for the entropy change is



2
75 2—562 = U2 sin (B) cos (B) (1 - %) ‘ (1.9)
It is more convenient, however, to express the derivative of entropy with respect to
the distance along the shock instead of with respect to the shock angle. The two are
related by

0s ds Ox 85@_8559_1’ 0s

where r is the local radius of curvature of the shock.
Equations (1.6) to (1.9) are now in a form that may easily be used in Crocco’s

equation. From the geometry of the shock (see Figure 1.2 (b)), the right-hand side

of equation (1.2) may be expressed as

o T2 882/8.’1?
Similarly, the left-hand side of equation (1.2) reduces to
- cos (5)
= —wlUp ———, 1.12
|w x ] w cos (3 — ) (1.12)
so that Crocco’s equation gives
v, B Th 050z (1.13)
cos (B — ) sin (3 — 6)
Rearranging the terms, and noting that for an oblique shock,
tan(d — 0) = 2 tan(g) | (1.14)

P2

Hayes and Probstein [1966] have in this manner shown that the vorticity downstream

of a two-dimensional, planar curved shock is given by

w = —Uy k cos(f) <BZ + 2 2) , (1.15)
i P2

where w is the vorticity normal to the plane of the flow; & is the local shock curvature
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(k = 1/r); the wave angle is 3; and the density ratio across the shock is py/p1.
Finally, from dimensional analysis, the vorticity given by this equation is often non-
dimensionalized with the free-stream speed and a characteristic length, e.g., the radius

of curvature d of the shock at the normal-shock point, to give

%d— = —dk cos(f) (ﬂ + o 2) : (1.16)

oo

1.2.1 Parameters affecting vorticity generation

Consideration of equation (1.16) shows that two factors play a role in determining

the non-dimensional vorticity at the shock:

1. The density ratio across the shock, ps/p;.

From this equation, moreover, the relative importance of each of these factors on the
overall vorticity distribution may now be determined. In particular, it is important
to find out what role each plays on the peak vorticity.

To illustrate the features of the vorticity distribution and to discuss the relative
importance of these two factors, consider the example of flow of a perfect gas over a
two-dimensional blunt body. Significant differences relating to the flow of real gases
will be pointed out in later sections.

First, the effect of the density ratio on the vorticity distribution is investigated.
Recall that for oblique shocks of angle 3 in a perfect gas, the jump in density across

the shock is given by

P2 y+1
72 1.17
ppr v —1+2/(M2sin®3)’ ( )

i.e., the Mach number and the ratio of specific heats determine the density ratio. 3 is
fixed by the shock shape. Since we wish to exclude the effect of shock shape, a model

independent of M, and 7 is used. A good model under these circumstances is that

Ys zs\ 2
2=(3)

of a parabola
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The parameter d is selected so that the parabola’s nose curvature matches that of
the shock; the remaining parts of the parabola, far from the origin, best approximate
very strong shocks in axisymmetric flow.

The effect of the density ratio on peak vorticity can now be investigated. Since two
parameters affect the density ratio, we proceed by first keeping the ratio of specific
heats constant and varying the Mach number, and then by keeping the Mach number
constant and varying the ratio of specific heats. Vorticity distributions for both of

these cases are plotted in Figures 1.3 and 1.4.

Effect of M, on the vorticity produced at a parabolic shock
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Figure 1.3. Vorticity distributions: density ratio effect with changing Mach number.

Figure 1.3 illustrates well how the peak vorticity increases significantly with in-
creasing Mach number, up to around 5, but that beyond this point, changes in peak
vorticity are relatively insensitive to Mach number. The density ratio approaches
(v+1)/(y—1) at high Mach numbers, which is not very large unless gamma is close

to one. The limiting trend is different when the Mach number is fixed and v ap-
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Effect of ratio of specific heats on vorticity
* L S L

8 T ] T
L [M.=5.0 in all cases] ,
6 _
. ]
2
= 4 I
3 [~ —
2 b _
i v=5/3 ]
0 S S i n i ! | ; i : ! ; ; : | . .
0 20 40 60 80 100

Shock angle (degrees)

Figure 1.4. Vorticity distributions: density ratio effect with gamma approaching 1.

proaches unity, as shown in Figure 1.4. Even small changes in gamma towards unity
cause large increases in peak vorticity. The density ratio approaches MZ for very
small values of v — 1.

Next, the effect of the shock shape on the distribution is assessed. To do this, an
additional model for the shock shape is introduced. The hyperbola is a convenient
model for the shock shape, since it has a finite radius at the nose and asymptotically
approaches a straight line far downstream. The parameters of the hyperbola may be
chosen so that the slope of the straight line is that of a Mach wave, thus giving a close
approximation to curved shocks over a wide range of Mach numbers. Its equation is

given by
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Both the hyperbola and parabola models are sketched in Figure 1.5, using several

Mach numbers to generate different hyperbolic profiles. While both models are often

- T T T T T T T T T T T T T T T T

6~ ——— Hyperbolic shock
i Parabolic shock

0 2 4 6 8 10
Figure 1.5. Shock shapes for hyperbolic and parabolic shock models.

used to represent shock waves over blunt bodies, there are important differences
between the two. Since the parabola is the M, — oo limit of the hyperbola, both
models converge in the hypersonic limit. For finite Mach numbers, however, the
shock shapes of the two models differ, diverging greatly as x increases, as shown in
Figure 1.5. Both of these models may be used to investigate the effect of x cos(3) on
vorticity generation.

The distribution of vorticity with respect to shock angle for these two models is
shown in Figure 1.6, for the case of a perfect diatomic gas (v = 1.4) at various free-
stream Mach numbers. Four cases are shown, comparing the distributions obtained at
Mach number 2, 5, 10, and oc. The difference in peak vorticity at the different Mach
numbers is mainly due to the dependence of the density ratio on that parameter.

The two shock models give the same distribution of vorticity at infinite Mach

number, as expected, and their distributions are very similar at high Mach numbers.
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Effect of shock shape on vorticity distribution
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Figure 1.6. Vorticity distributions: effect of shock shape.

An important observation, however, is that the distributions never differ significantly,
even at Mach numbers as low as 2, where Figure 1.5 clearly shows that the two shock
shapes are very different. It may therefore be concluded that the relative role of
k cos(8) on peak vorticity and on the shape of the distribution of vorticity in general
is not significant when compared to the effect of changes in density ratio across the
shock.

This analysis suggests that an optimum strategy for a study of the stability of
the entropy layer should focus as much as possible on hypersonic flow using a gas
with a high density ratio. It also shows that for flows beyond M., ~ 5, this is better

accomplished by selecting gases with low ~ than by increasing the Mach number.
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1.2.2 Transport of vorticity in the flow

The above description of the vorticity produced addresses only the region of the flow
immediately downstream of the shock. Now consider the way in which the vorticity
produced at the shock changes as it is subsequently convected downstream of the
shock. For the case of steady, inviscid flow, the Crocco-Vazsonyi equation (equation

(1.1)) becomes
O x i =TVs—V(h+|a*). (1.18)

Taking the curl of the momentum equation gives

D(&/p)

o = (@ V)i+ VT x Vs (1.19)

P

which for planar two-dimensional flow reduces to

D(@/p)

D¢ = VT x Vs, (1.20)

These two equations, (1.18) and (1.20), provide the starting point for analyzing the
variation of vorticity along streamlines downstream of the shock. Two specific cases
are considered here.

For the special case of homentropic, steady, planar flow, equation (1.20) reduces

g_g (%) =0, (1.21)

to

where £ is the streamline coordinate. That is, in the special case where the entropy
remains constant throughout the flow, the vorticity is expected to vary in the same
manner as the density, along streamlines. As has been shown earlier, hypersonic
blunt body flows are not homentropic, however, but are normally homenthalpic, so

that equation (1.2) applies. From equations (1.2) and (1.19), we find that

8% (p%) =0. (1.22)
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Thus, for inviscid, homenthalpic, planar flow over a blunt body, the vorticity produced
at a curved shock remains constant downstream of the shock, provided that the
product of the density and the temperature also remains constant. For the case
of a perfect gas, this is equivalent to having the pressure remain constant®. This
fundamental observation is crucial in the design of an experiment for the study of the
stability of the shear layer produced by a curved shock.

Differences between such an experiment and the above analysis based on a perfect
gas must now be stressed. Although the general mechanism of vorticity production
is the same in the case of a real gas, some important distinctions exist. A molecular
gas in hypervelocity flow experiences rapid heating as it passes through a shock.
This rapid heating excites new vibrational energy levels in the gas, and may cause
significant dissociation to occur. Both of these phenomena play an important role
on the overall density jump across the shock, which has been shown in the previous
section to be the principal factor affecting vorticity production. In fact, the overall
effect of hypervelocity real gas flow on the density jump is to cause a significant
increase in the density ratio, compared to the flow of a perfect gas, as shown by Hayes
and Probstein [1966]. Hence, facilities capable of producing hypervelocity flows are

ideally suited for an experimental investigation of the stability of shear layers.

1.3 Experimental facilities for hypervelocity flow
simulations

Many of the problems relating to flight to and from space are associated with the high
speeds of such flights through the atmosphere, and the subsequent high stagnation
temperatures. Simulating the effects that result from high temperatures in ground
facilities requires the test time to be short, since materials currently available cannot
sustain these temperatures for very long. The shock tunnel with heated driver gas

has therefore been the most usual type of flow facility in this regime. In the free-

4Note that even in the case of a reacting gas, pT is approximately proportional to the pressure.
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piston shock tunnel (pioneered by Stalker [1961}), the driver gas is heated by adiabatic
piston compression. The transient heating achieved by this method permits operation

at higher driver temperatures.

The T5 hypervelocity shock tunnel is such a facility. A sketch of the shock tunnel,
including the specification of some of its main components, is included in Figure 1.7.
Detailed descriptions of the specific facility may be found in Bélanger [1993], Germain
[1994], and Wen [1994]. Descriptions of the operation of piston-driven shock tunnels

in general are also available in the literature (Lukasiewicz [1973]).

T5 Hypervelocity Shock Tunnel

free piston primary diaphragm
(2 available: 90kg and 120kg) (stainless pteel: max. burst preggure: 130MPa)

nozzle
compression tube (2 available: contoured and conical
(He/Ar driver gas exit dlameter: 30cm)
length 30m
diameter 30cm)
@ | \
:
launch
capsule
shock tube
(length 12m

gecondary reservoir diameter 9em)
(max. compresped air pressure: 16 MPa)

test Sectlon model

freestream
(3-8 km/n)

gecondary diaphragm
(mylar)

inertial mass
(14 tong) gtagnation reservoir

Figure 1.7. Sketch of the T5 Hypervelocity Facility.

1.3.1 Range of conditions available in T5

In the shock tunnel, the test gas is heated and compressed by the passage of a shock.
The shock is then reflected from the end wall of the shock tube, bringing the test gas

to rest by compressing it and heating once more. The test gas is then expanded from
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this reservoir state through the nozzle. For a given test gas and nozzle shape, the
conditions at the nozzle exit depend only on the reservoir state, provided that the
test gas is in equilibrium in the reservoir. The reservoir state may be characterized
by its pressure, Py, and specific enthalpy, hg.

The free-piston shock tunnel permits the reservoir state to be varied over very
large ranges by varying the driver parameters such as driver gas composition, driver
gas compression ratio, diaphragm burst pressure, secondary reservoir pressure, and
piston mass. An essential requirement constraining the range of these parameters is
a safe piston trajectory, so that damaging impact between the piston and the end of
the compression tube is avoided. |

Ground testing facilities are in general designed for the realistic simulation of
flow conditions encountered during atmospheric flight. In the case of hypervelocity
facilities such as T5, the flow being reproduced is that encountered by a reentry vehicle
(or any object traveling at high speed through the atmosphere, such as a meteor or a
satellite). To understand how this flow regime differs from others (particularly from
the flow of a perfect gas), it is useful to consider specific examples. Consider the case
of a vehicle reentering the Earth’s atmosphere. A typical speed for such a vehicle
during reentry is U, &~ 6km/s. The specific kinetic energy of the gas relative to the
vehicle is U2 /2 = 18 MJ/kg. As the gas comes to rest on the surface of the vehicle
in the stagnation region, this kinetic energy is converted to thermal energy. Now, if
it is assumed that the gas is diatomic and behaves according to the perfect gas law,

then its specific heat is given by

J
~ 1000 ——— , (1.23)

R
Cr = M kg - K

b | =3

so that its temperature increase at the surface of the body is

AT = 1~ 18000 K . (1.24)
CP

Flight test data, however, have shown that vehicles traveling in the atmosphere at even



17
higher flow regimes (e.g., Apollo reentry) do not experience temperatures higher than
approximately 11000 K (Anderson [1989]), so that the perfect gas model is clearly
inappropriate in this case. In reality, when the thermal energy is sufficiently large,
a significant fraction of the gas molecules become vibrationally excited or dissociate
or even possibly ionize, so that the gas behaves very differently from a perfect gas.
If the rate at which this occurs is very rapid, then the gas may be considered to
be in thermodynamic and chemical equilibrium everywhere. If the rate is slower,
however, then thermodynamic and chemical nonequilibrium effects need to be taken
into account. Hence, these ‘real gas effects’ occur as a result of a combination of two

phenomena.

1. The specific enthalpy is of the same order as the dissociation energy D of the

gas molecules.

2. The rate of dissociation is finite and introduces a time scale tp that must be

taken into account when characterizing the gas.

This time scale also introduces a length scale I[p = Uy tp. Hence, in order for a
ground facility to properly model the flow around a reentry vehicle, it is necessary
that the dimensionless groups UZ /(2D) and lp/L, where L is a characteristic length
of the vehicle, be kept the same for both the test model and the reentry vehicle. The
gas used in the simulation is chosen as the one being simulated since many properties
of this gas must be duplicated. Now, since D is a property of the gas, Uy, must
also be duplicated in the facility. Also, the need to duplicate the flight value of Ip/L
means that as the characteristic length is scaled down from the original vehicle to the
model, [p must also be scaled down by the same amount. Since dissociation occurs
as a result of collisions between gas molecules, it is intimately related to the density
of the gas. In fact, [p is inversely proportional to the density p for the dissociation
reaction. It therefore follows that in order for the ratio I[p/L to be duplicated in
the experiment, the product pL must also be duplicated. The range over which this
parameter, referred to as the ‘binary scaling parameter’, may be varied is thus an

important index of the ability of a facility to model the real gas flows of reentry.
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Performance Envelope of some Hypersonic Facilities
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Figure 1.8. Comparison of various hypervelocity ground testing facilities.

Two parameters must therefore be reproduced in the facility: the flow speed of
the vehicle, which limits the enthalpy of the flow; and the binary scaling parameter
pL, which is proportional to the non-dimensional chemical reaction length of the gas,
both in the flow around the vehicle and in the ground testing facility. The available
range of these parameters forms an envelope of test conditions which characterizes
the ground testing facility. Figure 1.8 illustrates how the T5 envelope compares with
those of selected other existing facilities, and to a typical reentry vehicle. In this
figure, it is assumed that the span of the model is half of the nozzle diameter d, so
that the characteristic length L is d/2. The envelope for T5 is based on actual shot
conditions; the envelopes for the arc-heated facility and T3 are adapted from Hornung
[1988]; the envelope for HIEST is adapted from Itoh et al. [1997]. The lower bound
on each of the envelopes shown is for illustrative purposes only; the facilities are only
strictly limited at the low end of pL by their vacuum capability.

Table 1.1 lists several dissociation reactions relevant to Earth and Mars reen-
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try. The enthalpy of formation for each of these reactions is listed, along with the
corresponding reentry flight speed based on an energy balance along the stagnation

streamline

D = ho+UL/2 =~ U2)/2, (1.25)

i.e.,

U, ~ V2D, (1.26)

so that the dissociation energy of the various gases may also be plotted (as dashed

vertical lines) in Figure 1.8.

Table 1.1. Selected reactions relevant to reentry flows.

Reaction Enthalpy of formation Free-stream speed
CO, - CO + O 12.1MJ/Kg 4900 m/s
0,—-0 + 0O 15.6 MJ/Kg 5600m/s
N - N + N 33.7MJ/Kg 8200m/s
Ar — Art 4+ e” 38.0MJ/Kg 8700m/s

For the purposes of studying the vorticity generated at a shock, the parameters
of interest in the test section are the free-stream Mach number, total enthalpy, and
gas properties. These have a direct effect on the levels of vorticity produced at the

shock, as they affect the density jump across the shock.

1.4 Scope

The scope of the current project is to explore experimentally the stability of the shear
layer generated by a blunt body in hypersonic flow. It is the goal of the present thesis

to address the following questions:

1. What are the flow conditions under which the shear layer becomes unstable?

2. How far downstream from the shock is their effect visible?
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. What diagnostic tools are currently available to detect these instabilities?
. What diagnostic tools would be best suited to investigate these flows?

. Assuming that these instabilities exist (outside of the boundary layer), what

physical parameters affect their wavelength?

. Assuming that these instabilities exist, what is their overall effect on the flow

and on the shock profile?
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Chapter 2 Numerical Investigation of

Shock Generators

2.1 Goal of the numerical investigation

Although a description of the physical mechanisms responsible for the generation and
transport of vorticity at a shock has been presented in the previous chapter, a shock
generator optimized to study the shear layer instability that may develop from such
vorticity has not been identified. Even though any blunt object producing a detached,
curved shock is adequate for the purpose of making the flow rotational at the shock,
certain criteria were deemed essential for an experimental study of the stability of the

shear layer. The shock generator needs:

1. To produce high levels of vorticity that remain constant over a large distance

downstream of the shock.

2. To produce maximum vorticity as far from the body as possible, so as to elim-

inate possible interactions with the boundary layer.

The first constraint follows directly from the goals of the experiment, while the second
one is necessary in order to keep the boundary layer decoupled from the shear layer.

Experimentation in the shock tunnel to optimize a shock generator over these
criteria is not a viable option due to both cost and time constraints. Existing compu-
tational fluid dynamic (CFD) programs provide a much more efficient tool to perform
this type of investigative work. One such program is the code developed by Candler
for hypersonic flows in thermochemical nonequilibrium (Candler [1988]). This code
was selected based on a history of successful simulation of T5 flows, see e.g., Wen
[1994] and Wen and Hornung [1995]. The goal of the present numerical investigation is

therefore to use the code developed by Candler to study the vorticity field produced
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by different shock generator geometries and to determine, based on the computed
vorticity field, which of these basic configurations best satisfies the two experimental
requirements listed above. Since several descriptions of this code are already available
in the literature, only a brief description is presented here. In all of the simulations

discussed here, nitrogen is used as the ‘test’ gas.

2.1.1 Description of the numerical method

Candler’s code computes the flow field by solving the partial differential equations
for the conservation of species, mass, mass-averaged momentum, vibrational energy
of each diatomic species, and total energy. These coupled equations are solved using
a modified Steger-Warming flux-vector splitting finite-volume method (MacCormack
and Candler [1989]) to obtain a steady-state solution. The scheme is implicit, using
Gauss-Seidel line relaxation. It has been implemented to simulate both viscous and
inviscid flows, the latter being a special case for which the transport coefficients
(viscosity, thermal conductivity, and diffusion) are all set to zero. The implicit scheme
is not time accurate; a time-averaged steady-state solution is provided as output.
Since no turbulence modeling is attempted in this code, the solution is always laminar.

Thus, this tool is of limited practical use in studying the stability of the shear layer
produced by the shock and cannot be expected to answer the questions listed at the
end of Chapter 1. Nevertheless, Candler’s code is a valuable tool for characterizing
many real gas flows in T5 and has often helped in obtaining quantitative flow-field
information. In contrast, the only field information obtained experimentally is in the

form of interferograms, which provide constant density contours in the flow.

2.2 Computing the vorticity field

The vorticity field plays a particularly important role in this study, as discussed in
Chapter 1. Thus, the velocity field found by the code may be used to compute
the vorticity distribution in the flow over prospective models and to determine the

maximum vorticity levels produced by each one. The vorticity, defined as the curl of
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body surface

Figure 2.1. Grid coordinate system for vorticity calculations.

the velocity vector, V x @, may be computed directly from the output of the code.

In two-dimensional planar flow, the vorticity is given as

ov Ou

where v = u(z,y) and v = v(z,y). Since the grid is generally not Cartesian, the
gradients in the general coordinate system are computed using the mesh metrics, to
give

ov 0€ Ov On Ou 0¢ ou dn

= GEar oo 0Edy | mdy’ 22

where u = u(&,n), v =v(&,n), £ = &(x,y), and n = n(z,y). £ and n are the curvilinear
grid coordinates shown in Figure 2.1, and = and y are the Cartesian counterparts.
The resulting vorticity field forms the basis of the numerical study used to select a

model to be used in the experimental investigation.
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2.2.1 Geometries investigated

Several candidate geometries which appeared to be promising shock generators were

studied in this numerical investigation:

—

. a hemicylindrically blunted flat plate,

2. a square-faced flat plate,

3. a plate with a wedge-shaped leading edge (referred to as ‘double-wedge’),
4. a hemispherically blunted cone, and

5. a hemicylindrically blunted wedge.

The following sections discuss the process used to investigate these geometries and

some of the results obtained.

2.2.2 Grid layout and noise in vorticity computations

The flat plate with hemicylindrical leading edge generates a shock closely approxi-
mated by a hyperbola, which means that the point of maximum vorticity generation,
occurring at a shock angle of approximately 60 degrees (e.g., see Figure 1.3), is far
off the surface of the body.

The free-stream conditions and physical dimensions used in this simulation are
listed in Table 2.1 and are generally representative of the types of experiments per-

formed in T5. Initially, a mesh of uniformly spaced grid points at the body in the

Table 2.1. Free-stream conditions used in the simulations.

Isothermal wall temperature: 297 K
Free-stream speed: 5000 m/s
Free-stream density: 0.04 kg/m?®
Free-stream temperature: 2260 K
Nose radius: 0.1m
Length of plate: 0.5 m

i-direction (streamwise), and j-direction (normal to the body surface) was used to
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Figure 2.2. Initial grid system used, 56x100 cells. Flow is from left to right. Figure (b) is
an enlarged view of the leading edge in (a).
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field is plotted in Figure 2.3, where temperature contours are non-dimensionalized
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Figure 2.3. Contours of temperature, showing the
shock position. The solution was found using the grid
shown in Figure 2.2. The waviness at the shock sur-
face is due to the poor resolution of the mesh in that

region.

by the characteristic temperature
of dissociation of Ny. The tem-
perature contours clearly indicate
the shock position and illustrate
the poor resolution of the mesh
near the shock front. Since the
vorticity field is obtained by tak-
ing derivatives of the velocity
field, discontinuities such as these
are amplified and preclude any
meaningful interpretation of the
data, at least in that region of the
flow.

To improve grid resolution

near the shock and to reduce the

type of oscillations illustrated in Figure 2.3, the number of cells must be increased
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significantly, especially in the i-direction. Also, in order to make the shock less diffuse,
the number of cells in the j-direction must also be increased. We first seek to deter-
mine the extent to which the shock front is smeared by the uniform grid. To this end,
the temperature profile across the shock is plotted as a function of cell number, using
the solution shown in Figure 2.3, and is then compared to the temperature computed
using a new grid having half the number of grid points in the j-direction. The result is

shown in Figure 2.4. The figure shows that to capture the shock, from the beginning

Temp. (k) Temperature through normal shock point
10000~ - e 56x100grid

—e— 56x50 grid

8000 — ?

6000

I

4000 —

m{—mt'c’414

| L P I

2000 '
-0.135 -0.130 XO' 125 -0.120 -0.115

Figure 2.4. Temperature at center of cells, along stagnation streamline. The stagnation
point is at ¢ = —1.0.

of the rise in temperature to the peak after the shock, requires approximately four
cells. Therefore, reducing the number of cells in the j-direction by a factor of two
doubles the computed physical thickness of the shock from approximately 0.004 m to
0.008 m. The computed shock thickness is not physically representative and should be
minimized as much as possible. Uniform mesh refinement would solve this problem,
but the computational burden of this approach, beyond a certain limit, is prohibitive.
Since the region of concern is confined to a small part of the domain, upstream and
downstream of the shock, a computationally less intensive approach is to ‘fit’ the

mesh to the shock, i.e., refining it in the immediate vicinity of the shock. In order to
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do this, however, a priori knowledge of the shock shape and position is necessary’.
Using an analytical approximation to the shock shape, such as a hyperbola, to define
the region of refinement is ruled out, as any deviation from the true shock position
quickly reverts to the same problem of poor resolution at the shock and no universal
analytical shock shape representation exists that may be applied to a wide range of

shock generators.

2.2.3 Fitting the mesh to the shock

The best estimate of the shock position is obtained by using the solution from the
coarse uniform grid computations already performed, so these results may be used to

generate a fitted mesh. This new mesh can then be used to perform a flow computa-

body surface

Figure 2.5. Nomenclature for shock-fitted grid.

tion that is better resolved near the shock, providing a better estimate of the whole

vorticity field. Hence, the approach taken is twofold:

1. An initial run is performed, using a ‘uniform’ grid (as described in the discussion

regarding Figure 2.2), for the purpose of finding the shock position at the given

1“Adaptive Mesh Refinement’ techniques, which refine the mesh in regions of high gradients,
would be ideal in providing the type of shock fitting discussed here, but such a tool has not been
implemented in Candler’s code at this time.
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condition, and for the given model geometry, and

2. Based on this computed shock profile, the mesh is stretched in such a way

that the spacing between grid points along rays normal to the shock decreases

exponentially as the shock position is approached from both sides, down to a

minimum specified width at the shock, as shown in Figure 2.5.

First, to find the shock position, the computed temperature field found with the

uniform grid is used along with the following algorithm:

1. Along each ray where i is constant, the temperature at each j node is compared

with the free-stream temperature starting at the free-stream end of the ray.

2. The node at which the temperature of the cell has jumped by 5% or more is

recorded.

3. The zy-location within that cell where the temperature is exactly 5% higher

than the free-stream value is found by interpolating the temperature linearly

across that cell. This is the coordinate of the shock on that i-ray.

Shock profile
0.8+ ’ ' ‘

oot [ ., |
02 0.0 0.2 0.4 06

Figure 2.6. Shock profile for 800 x 100 grid.

The relation describing the
way in which the new mesh is
then stretched between this com-

puted shock and the body is

d(j) = (—*—66”“2"11) dy, (2.3)

et —

where d, is the distance between
the shock and the body surface,
Js 18 the j-node at the shock, and

¢ is a parameter that determines

the minimum grid width at the shock. The nomenclature is specified in Figure 2.5.

This procedure was used on the flow computed on a 800 x 100 uniform grid and

generated the shock profile shown in Figure 2.6.
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Although the large number of i-nodes used in this uniform flow computation
accounted for a large reduction in the shock shape waviness (compared to Figure 2.3),
small oscillations, still present, play a role in distorting the overall mesh fitted to this
curve. A standard low-pass filter may then be used to smooth out the shock shape
and reduce these oscillations. The Savitzky-Golay moving window data averaging

scheme (Press et al. [1992]) was implemented here for this purpose.
The Savitzky-Golay algorithm

recalculates the shock position by

Shock profiles

altering each (z, y) coordinate ac-

0.190 _
] cording to
> 0.180 g . = L it ik
. | P z(i,j) = ot 1 hey 2 (1 )
| ,
! .. ]- j+ .
V’/ y@)j) = 2n + 12',7‘_?*71:9’(2,!\3),
0.170 R
~0.050 -0.040 —0.030 where n sets the number of cells

over which the moving window

Figure 2.7. Enlarged view of shock profile of Fig- averaging is done. The effect
ure 2.6, showing the effect of the filter. The initial ) )
shock is shown by a solid line; the filtered shock is of this smoothing on the shock

shown by a dashed line. o .
shape is illustrated in Figure 2.7,

which shows a magnified section
of the shock shape of Figure 2.6. Note that the filtering operation does not create a
shift in the shock position. The resulting mesh, nearly oscillation-free, is shown in
Figure 2.8.

The procedure outlined in this section tacitly assumes that the converged shock
position is unaffected by the mesh refinement. If this assumption is wrong, however,
our choice that the grid spacing increases exponentially away from the point of mini-
mum cell width will cause a rapid return to the shock thickness problem illustrated in

Figure 2.4. The effect of the grid on the shock position must therefore be investigated.
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Figure 2.8. Fitted grid generated using the smooth shock profile of Figure 2.7. Figure (b)
is an enlarged view of the grid in (a).

2.2.4 Grid effect on shock shape and stand-off distance

Computations made on a mesh using the stretching technique discussed in Sec-
tion 2.2.3 give significantly better resolution of all the flow properties in the immediate
vicinity of the shock, as long as the region of maximum refinement is aligned with the
converged shock location. One of the effects of varying the grid in this manner, how-
ever, is a perceptible shift in the converged position of the shock. That shift, which
appears to reduce the stand-off distance by approximately 10%, has the undesired
effect of offsetting the region of greatest grid density with the new shock position.
The shocks found by both the uniform and fitted grids are shown in Figure 2.9, rep-
resented by a solid line and a dash line, respectively. A third computation, performed
using a mesh fitted to the dash line shock, provides the shock shown by a dotted line.
Thus, the first solution found with the fitted mesh needs to be used to generate
another mesh in order to take advantage of the maximum benefits of having a grid
aligned with the shock, i.e., to have the shock lie within a few cells of the region
of minimum cell width. Of course, this third step increases the computational re-

quirement further. Also, as shown in Figure 2.9, the change in the converged shock
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Figure 2.9. Computed shock position with fitted mesh vs. uniform mesh (note: the stag-
nation point is located at # = —1.0). The uniform grid solution is shown by a solid line;
the first fitted mesh solution is shown by a dash line; the second fitted grid is shown by a
dotted line.

stand-off distance that this additional step provides is only approximately 1.5% for
the case of the hemicylindrically blunted flat plate. The vorticity contours obtained
from the two-pass approach were in fact deemed sufficiently smooth to guide the

investigation of the various models considered.

2.3 Results: vorticity distribution over
selected models

The two-pass approach described above was performed to compute the vorticity field
over the five candidate models listed at the beginning of the chapter. For the blunt
wedge model, multiple passes were performed to refine the mesh around the converged

shock profile. The results are discussed in the following sections.

2.3.1 Vorticity distribution over a hemicylindrically blunted

flat plate in hypervelocity flows

The resulting vorticity distribution for the hemicylindrically blunted flat plate under
the conditions listed in Table 2.1 is shown in Figure 2.10. These results show that

a blunt flat plate creates non-dimensional vorticity peaks of order unity immediately
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downstream of the shock. Note that in this case, the vorticity is non-dimensionalized
by the plate radius, as opposed to the radius of curvature of the shock at the stagna-
tion point, as was done in Section 1.2. Lines of constant pressure over the plate are
shown in Figure 2.16.

Although the peak vorticity is indeed generated far from the surface of the plate,
the vorticity level diminishes rapidly along streamlines, as expected from the results of
Section 1.2.2 for a homenthalpic flowfield with pressure diminishing along streamlines.
This shock generator is therefore not optimal in a study of the shear layer stability.

The model, nonetheless, provided a good starting point for this investigation and

Vorticity Contours
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Figure 2.10. Vorticity contours around a hemicylindrically blunted flat plate, computed
using a shock-fitted grid.
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was helpful in developing the shock-fitted mesh procedure with which other shock

generators were investigated.

2.3.2 Vorticity distribution over a rectangular flat plate and

a double-wedge shock generator

The hemicylindrically blunted flat plate is inadequate because the part of the flow
that is rotational is confined to a small region downstream of the shock. In order
to raise the peak vorticity at the shock, the next two shock generators listed at the
beginning of the section were considered: the rectangular flat plate and the double-

wedge (see Figure 2.11) . The purpose of investigating these two models was to

—

Figure 2.11. T'wo of the five shock generator geometries considered: a rectangular plate and
a double-wedge.

determine whether a sharp corner could create a rapid expansion which would bend
the shock locally, thus creating a region of high vorticity far from the body surface.
The rectangular plate’s sharp 90° corner, for example, generates an expansion fan
which bends the detached shock. Since this occurs relatively close to the body surface,
a ‘double-wedge’ geometry was also considered in an attempt to move the point of
maximum vorticity generation further away from the body. The double-wedge shifts
the point of maximum vorticity generation outward by using the angle separating the
oblique shock from the body surface.

The vorticity contours for the double-wedge model are shown in Figure 2.12. Since
the leading edge of the wedge and of the attached shock both have radii of curvature of
zero, for the sake of comparison the vorticity is non-dimensionalized by the radius of
the plate of Figure 2.10. The vorticity peak is not substantially different from that of
the hemicylindrically blunted flat plate, and suffers from the same shortcomings: the

flow does not remain rotational very far downstream of the shock. The rectangular
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plate produces similar vorticity contours. For these reasons, both of these two models
were not selected for the experimental investigation.

The three models discussed so far, the hemicylindrically blunted flat plate, the
rectangular flat plate and the double-wedge, thus support the results of Chapter 1:

1. Tt is difficult to generate high levels of vorticity at a shock by controlling its

shape and curvature, and

2. In flows where the pressure along streamline drops away from the shock, so does

the vorticity.

Thus, the next two models investigated were selected specifically because they keep
the density ratio high across a large section of the shock profile and have relatively

constant pressure fields downstream of the shock.
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2.3.3 Vorticity generation over a blunt cone

and a blunt wedge

Blunt cones and wedges produce pressure fields which remain roughly constant along
streamlines, so that by the results of Section 1.2.2, whatever vorticity generated at

the shock is convected downstream with the flow. There exist important differences
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Figure 2.13. Vorticity contours around a blunt cone.

between the flow over axisymmetric bodies and over two-dimensional planar bodies,
however, that need to be discussed at this point. The derivation of the results of
Section 1.2.2 assumed early on that the flow was planar, so that the vortex stretching
terms, (@ - V)i of equation (1.19), played no role in the final result.

A similar simplification was performed in the derivation of equation (1.16), which
described the mechanism of vorticity generation at a curved shock in two-dimensional,
planar flows. Following this result, Hayes and Probstein [1966] derived a further result

for the vorticity field behind a curved shock over a concentric sphere (axisymmetric
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flow) and found that it is given by

_ _ P22
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Figure 2.14. Vorticity contours around blunt wedge.

R sind | (2.4)

where R, is the radius of the
spherical shock; R is a spheri-
cal radius between the body and
the shock; and 6 is the polar
angle from the upstream axis.
Even though many simplifica-
tions were made in this deriva-
tion (e.g., concentric, spheri-
cal shock and body; constant
density field downstream of the
shock), it shows that the vortic-
ity field in axisymmetric flows
differs significantly from that
in planar flows. For instance,
whereas an inviscid planar flow
next to the body is irrotational,
the vorticity field in axisymmet-
ric flow is never zero except on
the axis where 6 = 0.

The stretching of vortex
lines in axisymmetric flow has
an intensifying effect on the vor-
ticity level along streamlines, as
can be seen by comparing the
computed flows over a cone with

those over a wedge (Figures 2.13
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and 2.14, respectively). This may or may not have an effect on the overall stability
of the shear layer. The flow over these two shock generators, a blunt wedge and
blunt cone both with nose radii of 0.1 m and half-angles of 30°, was computed. The
free-stream flow conditions are those listed in Table 2.1. The vorticity contours found
for each model are shown in Figures 2.13 and 2.14. Again, vorticity has been non-
dimensionalized by the nose radius. It is clear from these figures that these shock
generators represent a significant improvement over the previous three models dis-
cussed so far. The vorticity levels in both cases are appreciably higher than the other
models, but more importantly, they remain high over a large region of the flow. For
the cone, the vorticity layer has peak vorticity very close to the body, and Wéuld
clearly eventually become ‘swallowed’ by the boundary layer (in viscous flows) at
some point downstream, as found by Stetson et al. [1984] and others. So, although
the shock generated by a blunt cone produces an intense shear layer that may well be-
come unstable, its coupling with the boundary layer makes this model inappropriate
for the present experimental study.

The wedge model, however, satisfies one requirement important in the experi-
mental study of the shear layer instability, namely that the vorticity layer remain
separated from the surface of the body throughout the flow.

To see how the vorticity and the product of density and temperature correlate
along streamlines, both are plotted along streamlines in Figure 2.15. The same is
done in Figure 2.16 for the flow over the hemicylindrically blunted flat plate whose
vorticity levels, shown in the contours of Figure 2.10, dropped rapidly downstream
of the shock. In these calculations, the flow is inviscid and chemically non-reacting
to satisfy the assumptions made in Section 1.2.2. The streamlines are plotted using
a commercial data visualization software (Tecplot) which uses a predictor-corrector
algorithm for the calculation of the streamtraces. Four steps are taken within each
cell (in the direction of the local velocity vector) to find the best line of tangency with
the vector field. The flow properties, in this case the non-dimensional vorticity and
the product of density and temperature, may then be plotted along those stream-

lines. Fluctuations may be observed near the shock because of the large gradients
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(especially in vorticity) in that region. Kinks in the curves are due to poor local grid
resolution, which is not perfectly aligned with the shock in these computations. The
curves showing the ratio (—wr /Uy )/(pT') are indeed roughly constant after the shock,
as expected for homenthalpic flows. To appreciate the effect of thermo-chemistry on
this correlation, the computation was repeated (using the same free-stream condi-
tions as Figure 2.15), this time allowing for the gas to dissociate and vibrate. The
result is presented in Figure 2.17. Note the stand-off distance which is reduced by
a factor of nearly 2 due to the increased density ratio across the shock, compared
to Figure 2.15. Correspondingly, the vorticity level produced at the shock is higher
than in the frozen case. The vorticity drops down slightly along streamlines, how-
ever, further downstream. Although the flow in this case is still homenthalpic, the
endothermic balance is not accounted for in the derivation presented in Section 1.2.2,
so that the correlation with pT is no longer expected to be strictly valid. The initial
rise of (—wr/Us)/(pT) along streamline A, and subsequent slow decrease correspond

to initial rapid dissociation and subsequent slow recombination.

2.4 Selection of an experimental model

Based on this survey of different model geometries, the best model for an experimental
study of the instability of the shear layer produced by a curved shock is a blunt wedge.
Such a shock generator produces high levels of vorticity, depending on the density
ratio at the shock, and the flow remains rotational far downstream of the shock, along
streamlines. Furthermore, the region of high vorticity is far off of the surface of the
body, so that the shear layer is separated from the boundary layer. Such a mode