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SART ONE { pp 1 - 81)
ON THE INITIAL VALUE PROBLEMS OF
RALIATION AND SCATTERING OF WATER

WAVES BY IMMERSED OBSTACLES



Sorme initial value problern.s are studied regarding the radia-
tion and scatteriug of gravity waves by finite bodies in an infinitely deep
ocean. Fruphasis is placed on tho cass where a finite number of thin
plates lie on a vertical liae, fuor which the general solution is obtained
by transforming the boundary value problem to one of the Flemann=-iil-
bert type. Hxplicit investigations are made for the large time bLashave
ior of the free surface elevation for the casc of a rolling plate, and for
the Cauchy-Foisson probleris ia the presence of a stationary plate. By
taking the liznit as ¢t —<o0 , the steady state polution is derived for a har-
m.onic point pressure actiay on the {ree surface near a vertical barrisyr.
¥inally a formal asyinptotic representation of the free suriace slevation
is given for large tirme when the geornetry of the submerged bodies is

arbitrary.
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I. INTRODUCTION

In the recent past much has been attempted to study the problem
of generation and scattering of surface waves by solid obstacles im-
mersed in a heavy fluld. This class of problems is of basic academic
interest as well as of great importance in naval hydrodynamics, for it
provides the basis of predicting the ship behavior in waves. The devel-
opment of a rigorous hydrodynamic theory for this problem, even in the
linearized sense, has been recogaizsed as a difficult mathematical task,
because the boundary value problem involved is of a highly mixed rature in
that different linear combinations of the unknown function and its normal
derivative are prescribed on different parts of the boundary. For two-
dimensional cylindrical bodies of general shape the mlyﬁcal' methods
developed thus far have all been more or less approximate.

The characteristic difficulties encountered in general are fully
represented in the time-harmonic steady state probleme; a brief survey
of the latter may therefore be of value. When there are rigid bodies
oscillating with a single frequency « in or beneath the free surface of
a perfect fluid, a potential function @®(x,y,t) exists in the flow field.
Assuming the free stream velocity to be sero, we may describe the
steady-state problem by a time-independent potential ¢ (x,y) governed

by the font;wlng equations (see, e.g., reference 1, pp. 554-555).
Slryat) = § (e, y)e I (1.1)

Vi (x,y) =0 y <0 (1.2)

% -Pp =0 y=0, with B = f/g (1.3)



¢ » V9 bounded as x 4yt— (1.4)
-aa%;- is given on the wetted body surfaces (15)
L}zq&g‘*umow Q‘NB x| -et) as e f=> o . (1.6)

For radiation problems ¢ ie the true velocity potential, while for scat-
tering problems it is the difference of the true velocity potential and

the potential of the incident wave train. The last condition, 1.6 is the
so-called radiation condition which ie necessary to insure a unique solu-
tion. Furthermore, equation 1.3 implies a tacit assumption that the
water surface is free of external pressure.

Consider for instance the caee of a single floating cylinder. In
the extreme cases of P~——w and f = 0 the boundary condition on the
free surface, equation 1.3, is simplified and the velocity potential can
be continued analytically into the upper half plane. One then obtains a
Neuman problem with -g;f given on a closed curve composed of the
wetted body contour and its mirror reilection in the upper half plane.
The reduced problem can be solved exactly (reference 2). However,
for finite values of B the situation becomes much more complicated.
Although a formal representation may be cobtained for ¢ by using Green's

function G(x.y;xo.yo) satiefying
VG = 8lx-x_) bly-y,)

equations 1.3, 1.4 and 1.6, the boundary condition on the solid body
(equation 1.5)leads to an integral equation which is usually difficult to
solve. For a semi-circular cylinder and large values of 3, Ursell

(references 3 and 4) has treated the integral equation by an iteration



procedure. The analysis seems to be too laborious, however, to be
extended to cylinders of other geometry. An effective and unified per-
turbation method for either small or large values of § is etill lacking.
The most successful method developed so far is essentially a
numerical one first introduced by Ursell (reference 5) and later extend-
ed by himself and others (references 6, 7, and 8) to cylinders of
various other shapes. The central idea of Ursell hinges on the super-
position of a polynomial consisting of terms l.dlfying equations 1,2
and 1.3 and vanishing at infinity, and a singular solution satisying con-
ditions 1.2 ~ 4 and 1.6. A numerical patching is done by applying the
condition 1.4 at a number of chosen points on the sclid boundary to
determine the coefficients in the polynomial and the strength of the
singularity. As an example, for a half-immersed circular cylinder of
unit radius and centered at the origin, one may take the following

complex potential,

&
f(s) = $(x,y) + W(x,y) = S- (Am-ijm)(‘-};;;* 1'%.‘?:1’ — )
[ = 2

m=1

w (® dk  -iks
+ ;—P-a (F+§Q) ‘50 =r e

o
where the integral term above is the singular sclution corresponding to
an oscillating point pressure of strength P + jQ applied at the origin,
The path of integration in the complex k-plane, k = k‘ + jk‘. lies mostly
on the positive real k-axis from the origin to infinity except for a small
detour along & semi-circular arc beneath the pole at k = f. It is to be

noted that two separate imaginary units i and j are used for the



z-and k-planes respectively. Taking the imaginary part of f(z) with
respect to I and noting = = reis we have the expression for the stream

function:

K€
Vimyds ) (A uB)[- Saimé o b costhmoi)e ]

2m 2=} J
P R0 o = '
e
- -'-r.g.i {(P+502) -E_Ea m 24 alrﬂ sin{kr cos 6) . (1.7)

O

—

To calculate the coefficients Am'Bm' ¥ and Q by applying the
boundary condition on the body (equation 1,5), r =1, -#< 60, we
lack the advantage of orthogonality present in ordinary Fourier sine
series and orthogonalization does not seem practical. In order to
simplify the calculation, the series in equation 1.7 can be truncated to
N terms, say, and the boundary values of ¢=‘St-§% dé at any N points
on r =1 provide 2ZN simultaneous equations for an oqﬁal number of
unknown real coefficienta, Ewvidently this procedure is suitable only for
relatively low values of B. A survey of many other approximate
methods can be found in a recent review by Kaplan and Kotik (reference
9).

An important exception is the case of a thin vertical plate be-
cause the corresponding boundary value problem can be solved exactly,
whether the plate is floating or completely submerged. The scattering
of steady monochromatic waves by a submerged stationary plate barrier
extending vertically to the bottom of the ocean has been investigated by
Dean (reference 10); the same problem for a suriace-piercing plate

barrier has been solved by Ursell (reference !1) who also studied the

associated radiation problem for a rolling vertical plate (reference 12).



Haskind (reference 13) combined both radiation and scattering and al-
lowed the floating plate to have swaying in addition tc rolling motion.
The methods adopted by these authors can be classified into two cate~
gories {cf, reference 14): In the first category one uses either Fourler
transform or a Green's function technique to obtain and solve a singu-
lar integral equation, whereas in the second one introduces an auxiliary
function to simplify the boundary conditions and then uses some function-
theoretic argument. In the present thesis the extension of both methods
will be employed.

In regard to the transient gravity wave phenomena the rigorous
theory began with the classical Cauchy-Poisson problem for initial dis-
turbances on the water surface (see e.g., reference 15, pp. 384 - 394).
DePrima and Wu {reference 16) treated in great detail the transient
waves due to & uniformly travelling point pressure on the water surface
with surface tension. Wu (reference 17) subsequently extended the in-
vestigation to include the case where the strength of the point pressure
is sinusoidal in time. In both studies the basic mathematical tool is the
combination of Laplace aud Fourier transforms. Apparently unaware of
the more general work of Wu, Miles (reference 18) has recently ana-
lysed the case of an oscillating point pressure, disregarding the forward-
ing velocity and the surface tension. He used, however, a different ap-
proach of superimposing the Cauchy-Poisson resulte. The analysis by
Kennard (reference 19) for a wave-maker in a wall seems to be the only
two dimensional initial value problem treated with the presence of a
solid object in water.

In the present thosis several initial value problems of the radia-

tion and scattering of surface waves by finite objects in an infinitely



deep ocean will be studied. We shall, however, restrict in most part
the geometry of the solid bodies to a series of thin plates lying vertical-
ly on the negative y-axis. Except for this limitation, the investigation
is formally carried out in the most general manner, i.e., arbitrary
initial and boundary conditions compatible with the basic assumptions of
linearizsation will be allowed. Thus in Chapter II we formulate and then
reduce the mixed initial-boundary value problem to a pure boundary
value problem of Riemann-Hilbert type, which is later solved by a
fanct!?n-thoorotic method. The general scolution is left in a form which
requires no further analysis other than explicit evaluation of some inte~
grals. In the particular case of a single floating plate in the water sur-
face, all the relevant integralscan be explicitly evaluated. Hence in
Chapter 1II the radiation of transient waves from a rolling surface plate
is investigated in detall, ignoring the disturbances on the free surface.
When the rolling motion is simple harmonic in time, the transient
phenomenon is compared with the steady state diffraction of light and an
interesting analogy is pointed out. Chapter IV deals with the scattering
by a barrier of waves generated by a point disturbance in the immediate
neighborhood of the plate. Solutions obtained are exact and explicit.
Finally in Chapter V the restriction on the shape and the geometrical
arrangement of solid bodies is entirely removed and the transient sur-
face elevation {s formally found for simple-harmonic disturbances,
There a different method of attack using a Green's function is developed.
It will be seen that in the special case where the bodies are a string of
thin rigid plates lying on the vertical y-axis the transient response is
essentially the same as that of a single plate or of a point pressure at

the origin.



II GENERAL SOLUTION OF THE INITIAL VALUE PROBLEM
FOR VERTICAL PLATES

2,1 Formulation of the problem

We assume the fluid to be perfect, free of surface tension, and
the flow irrotational. The flow fleld can therefore be conveniently
described by a complex potential f(s,t) = ¢(x,y,t) +iy(x,y.t) analytic
in s=x+ily for y<0, with ¢ and § representing the velocity
potential and the stream function respectively. With the flow further
assumed to be of small amplitude about an equilibrium position, the
usual linearized boundary conditions on the surface read as follows

{reference 1, p. 604):

-%q-%. 20 and .gf. +gl= - % (2.1.a)

for y=0 and t >0, or, equivalently,

9 o bf
Im + =0 and Imi + - R 2.1.»
%t # veb=-2 2Ly
where { denotes the displacement of the water surface measured from
y = 0. Let the extaernal pressure applied on the free surface be given in
a general form,
plx.0.t) =0 tS0
(2.2)
=pylx,t) £ >0 .
We allow initial disturbances of the following type to be created on the
free surface at t = O+

¢ (x,0,04) = Re f(x,04) = ¢ (x) (2.3.a)



Eix, 04) = § (x) . (2.3.b)

The condition 2. 3.a can be interpreted as prescribing an initial impulse
of total magnitude I = -p¢ . From equations 2.1.a it is evident that
giving §(x,04) is equivalent to the description of an initial value of
% + p/p on the free surface.

Let it be assumed that the obstacles, denoted by L as a whole,
consist of N 41 separate vertical plates having no thickness and all

lying on the negative y-axie, i.e.,

N
> >
Lsz Ln with Ln: x=0 , -bnay--;n and
n=o (2.4)
oﬂbo<‘°<hl ----- n<m<‘N .
The motion of L now provides a condition on its boundary:
% 9(0,y,t) =Uly,t) t>0
< for y on L (2.5.a)
=0 t=0
where U denotes the prescribed normal velocity of the plates, or,
after integration,
Im f{iy,.t) = ¢ L(y.t) t >0 ,
for y on L {(2.5.b)
=0 t=0
where
) 7
Yplyat) = ‘S_a Bty tidy sy (D fory on L, m=0,1,2...N.
" : (2.5.¢)

Among all the integration ''constants', Y _(t), one of them can be

taken arbitrary, say 4:0(:). while the rest have to be determined in the



solution,
As usual square root singularities will be allowed for the fluid

velocity at the submerged edges of the plates, i.e.,
of | o -1 —
[-ﬁ- | |z - zel as z—z_ (2.6)

where == -ia_, -in1 s -ib. , - ib‘. o o o=iby; and ot/ b=z
will be bounded everywhere else. The potential itself and its firet time
derivative are everywhere finite for all t. In the region infinitely far
away from the origin the velocity field must be vanishingly small for

all finite values of t, namely,

!%]—-0 as |z|= «x forall t< = . {2.7)
This completes the formulation.
2,2 An auxiliary function ¥F(z,s)

By the method of Laplace transform, the initial-boundary value
problem just formulated can be immediately reduced tc a pure boundary

value problem. We define the Laplace transform of a given function

M(t) by:

M(s) = j dte "M(t)
o
then
10, et
= d 2.8
M(t) -z;]- ‘}r se Mi(s) { )
~ ¥ )
gives the inverse transform of M(s) , where I' denotes a

“1t is to be noted that two different imaginary units are used here, i
for = and j for s, wherei = /<1 and j = /-1 but ij #-1.
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vertical path extending from c¢ - Joo to c 4 joo with the real number c
greater than the real parts of all singularities of ﬁ(u). Taking the

transform of equations 2.1.b, one gets,

lmi -‘—8’— ?(}:..l) + sz(x. 8) - L(x,0) =0

R

e P
e T(x, 8) - Imyi f(x,0) + gTlx,8) = _.‘2%‘-_'?.

which can be combined to give a single boundary condition on the free

surface,

2

Im -1 %';r(x.o)a

ap:(x.a} te
- + {(x,0) - Im, 'y f{x,0) . (2.9)

e

: B

The right hand side of the preceding equation is of course known from

equations 2,2 and 2. 3, The buundary condition on the plates becomes

Imf (iy.8) = $lo,y, o) = ¢, (y,8) (2.10.a)
where
T yy 85 (v 8)dy 47 f L
$plnm = ) g Oeelrdi () for y on B =01, . n o N
'n
(2.10.b)
By introducing an auxiliary function F({z,s) defined by
F(s,8) = 2( y+iw o {ah w4 B Tn, 0 2.11
. = wW(X,Y,8 hs.y.s (-E - E ) (l.ﬂ ‘ . )

which is analytic in 2 for all y <0, we can rewrite equation 2.9 as

'I;:(x- 8)
PR

ImF(x,s) = +E M) - 2 4 () =¥ (k6. (2.12)

On the moving solid boundary L the real part of F is known, since
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2
ROiF(iY) = ﬂ‘)nY-.) = \"% ’% ) Q’L(y") = QL(Yn', s Y On L (1013,

where :'.;L is given by 2.10.b. The singularity condition clearly permits
that,

~ -4 —
|F|~|s - u.i as ==z . (2.14)

F is bounded everywhere e¢lse, in particular
|[F| <« as |8 — =« 2,18)

Summarizing, we note that F has its imaginary part given on
the free surface, its real part on the solid surface and its singular
behavior prescribed at sharp corners. It should be added here that
the given functions po(x.t). é;o(x) and ¢ o(x} are assumed to be such
as to render all the related integrals convergent. Hereafter we shall
use the notations Re for Re, and Im for Imi to represent the real

and imaginary parts respectively with reference to the unit "i".
2,3 General solution for F(z,s) and ?’(s, 8)

We proceed to determine F(s,s) and ?(s.-). The variable =
in the arguments of these functions will be omitted so long as it remaines
as a parameter. First of all we express F as the sum of two parts

F and F :
1 ]
F(z) =Fl(l) +F‘(l) {2.16)

such that, Fl satisfles conditions 2.12 and 2,15 in the absence of the
plates., The solution li"l is readily given by the Poisson's formula for
the lower half plane (Ims < 0):



12

~oo Wo(x_)dx
o e o .
5 xo_‘ + u!w (2.17)

Q|-

F (.) = -
' -0

where lblﬁ: is a real constant equal to the value of F‘(u) at infinity.
From this the value of l"l on the solid plates I can be calculated and
is of course continuous across the line segments L. In fact, on x =0,

| (xoﬂy)wo(xo)dxo
F (y) = ¢ (o,y) #i¥{o,y) = 2 - = 3

. > {2.18)
- xo +y
In accordance with the conditions imposed on F, the second part F‘z

must now have the following boundary value:
lmF‘=0 y=0 (2.19)

and

n.r‘ = @l sRa(!‘-F.) !QL- ‘&l:@aL x =0, yon L
(2. 20)

with 'L and Q' given by equations 2,13 and 2,18 respectively. The
requirement on tlu behavior of F at the sharp edges (equation 2,14)
and infinity (equation 2,15) apply to F‘ without change. The sclution
of F. will now be given as follows,

Because of equation 2.19 one may use Schwarz's reflection prin-

ciple to continue Fa (s) analytically to the upper half z-plane:
Fz(a) = F‘!!I or
@ (x,y) +1¥ (x,y) = @ (x,y) - i¥(x,-y) . (2.21)

Let L be defined ae the mirror image of L reflected into the x-axis
and the boundary condition 2, 20 is extended in accordance with equation
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2.21 so that
Re F‘ = c‘ L L
and, = °;L('V) for x=40 vy on L
or, = ';L“ ly D L+ . (2.22

Under the continuation defined by equation 2, 2] the condition 2,19 is
satisfled identically. Hence we have arrived at a simpler boundary value
.problem for F‘ as specified by equation 2, 22 together with equations
2,14 and 2.15, regarding the behavior at the edges and infinity.

The solution is most readily obtained by the method of singular
integral equations (reference 20, section 91). The version presented
below is tailored to bring the result in a form particularly suitable for
the case on hand,

Let the positive direction of the contour L + L be vertically up-
wards and the half planes x >0 and x <0 be designated by S, ;nd
S_ respectively. Since its boundary value is the same on both sides of
L + L the function Gl(x,y) must be even in x, which, by Cauchy-
Riemann relations, { mplies that i?a(s.y) must be odd in x. In other

words, the following relation hoids:

F‘ (=) = F‘(:i) or
@ (x,y) +19 (x,y) = B (-x,y) - 1 (-x.y) . (2.23)

When -'i'—-so on L+ L from Spr 22, from S_, therefore,

Fi(z) €E(Z) =E(z) 3E (s ) (2. 24)

where
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+

F~(2)= Hm F (=) for = on L+LC . (2. 25)
2 o x—-~tp # o

The boundary coandition 2, 22 then requires that, for s, =1y on L+L,
+ ¥
Rora(n) = i[!; (s,) + F (=) )

=HE )+ E ) ) =0, -y ])

by making use of equation Z.24. This leads to a so-called Riemann-
Hilbert problem with

s;*cno) +E7(8) =28  (y|) for = =iy on L+L . (2.26.a)
and
r:“o’ - !:'(:o) = Zhﬂ;(o.y) =0 for 5 =iy moton L + L . (2.26.b)

The last condition follows from the fact that ix' is odd in =x.

The corresponding homogenecus sclution satisfying

Fu*uo) + rl;(no) =0 s, on L+L (2.27.a)

+ -
FH(IO) - FH(IO) =0 2 = iy noton L + L (2.27.b)
assumes the following form:

FH(I) = P(z)/D(s) , with

Ps) = Z A.nﬁ s2PY | and (2. 28)
n=o
N
D(s) = [(2* +22) | | (s*+a2)(s? + b,:)fl
n=l

where all the coefficients A;nﬂ are real. The function D will be made
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single-valued by introducing L + L as cuts in the z-plane and choosing

the branch such that in the cut plane

D(z) =22'H a5 5| = w . (2.29)

it is cbvicus that

im D(s) =D*s ) = - im D(s) = -D”(s) for y on L+L
x =40 x= -0

Furthermore, 8o far as only the condition 2.27.a, that is

y on L+L ,

Re lim P/D =0
-x—= 0

(2,27.b) and the conditions at the edges and infinity are

concerned, we may take

3 3

o ant, an

P(s) = S At +1i / A LE
n=0 n=zo

with all coefficients real. However the requirement of equation 2,19

that
Im F/D =0 for y =0

demands the vanishing of all Azn"'
We shall now look for the inhomogeneous part of the solution

Fx(l) satiefying equation 2.26. To do so we let the following subsidiary

function be introduced:

N N
K(z) = | | (=* + an")i 1T (=® +b;)“E 2.30)"
nso n=1 )

1!t is immaterial which factors are in the numerator or the denomina-
tor as long as equation 2, 3] is satisfied,
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which is single-valued in a plane cut at the position of the plates and
their images, L + L, and behaves like

K(z) =2 as |s]— e . (2.31)
Like D(z), K(z) has the following property:

Hm K(z) =K'(s ) = - lim K(s) = -K™(s_) for 2 =iy on L+L
x =+ 0 x =0

and
4+
Hm K(s) =K (2) =K'(s) =K'(2) for s =iy noton L+ L .
x-t0

which may be used to rewrite equation 2,26 as follows,

Re)  Fyls) 28 ,(-ly)
K'z)  K'(s) K'(z,)

B = iy on L+ L . (2, 32)

=0 s, =iy noton L+L .
Direct use may now be made of the Plemelj's formulae (reference 20,

section 17) stating that if

I(s) = wir 5; ﬂﬂ# (2.33.a)

in which ¢ is an arbitrary smooth curve and y(§) is Hilder-continuous

on ¢, then for a point s, on c,

rRw)-r¥e ) =-vs) (2.33.1)

rRe) s rie) = o § ol (2.33.¢)
< o

or, equivalently,
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L‘ "7‘2 Y"'“m 3 4‘-’—1 (2.33.4d)

Ir'“s,)

The symbol 5 represents ths Cauchy principle value of the integral
whereas I‘R(:O) and I‘L(lo) are the limiting values of I' as =
approaches s, on the contour ¢ from the right and the left respective-

ly. From equations above it is evident that equation 2. 32 {s satisfied by:

1 S inl)as’
Re = o Kt | 8 =in (2. 34)
+L (2'-3)K (s")
the path of integration being along L + L, in the direction of increasing
1. An equivalent form of F; may be obtained by making use of the
evenness of ‘&‘L(- inl) and K*(u') in n, giving
L(n)dn

(2. 35)
L (2®+n*)K (in)

Fife) = 22 K(e) 5

Combining with equation 2. 28 one gets the general solution of the present

Riemann-~Hilbert problem as,

() dn
F (s) = Fyy +F; = D.,HL + 22 () ‘SL(I‘M o e (2. 36)

It is easy to check that this solution meets all the requirements, in
particular, !'; tends to a real constant, say é.w' at infinity.
The transformed complex potential, ?(l). is obtained simply by

integrating equation 2.11,



f (=) = o } . ép e “PF(p)
el
=
- ol*® y e e [ (p) + F(p) ] (2.37)
-ioo ) H
with
a=8/g . (2. 28)
iz

A term proportional to e could have been added in equation 2. 37

gince it satisfies the relation

iasao ,

..
(ﬁ- - id/ e
but is discarded since its derivative with respect to 2z does not vanish

at infinity.
2.4 Determination of the constants

it remains to determine the N + 1 coefficients, A in the

an+;’
polynomial P(z) and N integration constants, En {cf. equations
2.10.b and 2.28). For this purpose 2N + 1 relations are needed, of
which N 4+ 1 are provided by applying the boundary condition 2.10 on
each of the N + 1 plates. In the expression 2, 37 for f, we let the
path of integration lie slightly to the right of the negative y-axis, f.e.,

p = 40 +in, then on any plate,

~ ~ pees Yy
Im f{ty) = $lo,y) = e~ _S dn e™"Re Flin)
- QL

1f Cu denotes the complement of 1. on the portion of y-axis between

- and the upper limit of integra fon, y, i.e., If -bn::y 2. 2, then,
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0
8 N2

(-8, >0 > -b_ ) with by, = (2. 39)
n

and if the definition of @ given by equation 2,13 is extended for all
Y s 0, then from the boundary condition that Re F*(in) = Q*(n) = OL(q)

for n on L, one gete

~ - Y -
Plo,y) = j dn e™Me, (n) + ™ Sc dne™a%(n)-0 (n)] .
-os
n

Since by equation 2,13 and partial integration

= y - %4
e % g dnemQL(n) =e % \
- OO s

Y 00

. 2 9~
dne®" (@+ 55 ) Yy fn) 831(7) ’
which reduces the previous equation to

¥lo.y) -47,_‘(7) +e ™ jc dne®[&(n) - @ (n)] .
n

Thus the boundary condition 2,10 is satisfied on every plate if

‘) dne®™(®(n)-@ (n)] =0 , n=0,1,2,...N . (2. 40)
C
n

This provides N 4 1 linear algebraic equationi. Since in each relation
above the path of integration does not involve either side of the plates,
the cholice made at the beginning of thie section to integrate along the
right side of y-axis is clearly immaterial.

In addition to the ones just given, N more conditions are need-
ed. We shall now make the physical assumption that the circulation

around any closed contour, which may enclose an arbitrary number of
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the submerged plates, vanishes. Since,

)

circulation = ¢ ;-d.:s Re § % ds ,

(%4

our assumption implies that Re f(z) must be a single-valued function of

position (x,y), which in turn implies that

Re {G{“ §) dpa-irpr(p) }=0

in view of equation 2, 37. In particular, if the boundary contour of a sub-
merged plate, L. is chosen to be the closed path of the above integral,

it follows that

. b
dy e uty)=0 n=1,2,3,...N (2. 41)

where use has been made of the oddness of ¥(x,y) in x (cf.
equation 2.23). Thie provides Nv conditions which, together with
equation 2,40, form a set of ZN + 1 simultaneous equations for an equal
number of unknowns {A: a +;} and (a;'n}. The solution of these equations
gives in principle the compl'oto formal solution of the problem.

The preceding assumption implies that the effect of viscosity is
completely ignored., Let us however, examine the actual situation of
the flow near the sharp edge of a plate. When the plate first starts to
move transversely in a given direction, relative to the wall a particle
travelling nearby is accelerated and experiences a decreasing pressure
on the upstream side, and is not seriously affected by viscosity since the
boundary layer is very thin at the early instants of the motion. As soon
as it passes over the sharp edge it is decelerated and enters an increas-

ing pressure field and a boundary layer which has grown thicker. Due
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to the additional loss of kinetic energy in the form of viscous dissipa-
tion, the particle may now find itself unable to overcome the adverse
pressure gradient and be driven back., Thus a reverse flow is created
and a vortex formed on the downstream eide of the edge. As the plate
oscillates back and forth, vortices may be continuously generated in
this way on both sides of the edge. Moreover, under the combined in-
fluences of the plate and the mutual induction between the vortices,
these vortices move about and gradually disperse in a very complicated
manner. Hence evaen in the region at some distance away from the plate,
our assumption of zero circulation along a closed path is not strictly
valid, However, it is known experimentally that such a separation
phenomenon does not occur for motions of sufficiently small amplitudes
and high frequencies. It is hoped that under a wider range of circum-
stances our solution will also be v alid with exrors of only secondary

importance,

2,5 Alternative representation of f

The solution in the form of equation 2, 37 is not always convenient
for the general purpose of later applications and an alternative expres-

sion will now be derived. By Poisson's formula for a half plane:

. " ¥¥(n)dn
F (s) = < J St the 2P0
2 -C
and
ro W (n)dn

i
F@ez ), o *Rhe  x<o

where
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+ |
¥ (y) = im ImP¥F(z) . (2.42)
2 x—+t0 s

Since from equation 2,23, 'I': = - W;, ona may write

‘0 #(n)d ¥ (n)d
i (® ¥in)dn i (% ¥ (n)dn
AL S S et S._m T CRTE

- gL

for all =z. Furthermore !; suffers a jump only acrose the branch cuts

L+ and not the remaining part of the y-axis, therefore,

=¥ =0 , for y mnoton L+ L ,

and
- i ___a._r_’
.Fz(z) il T - deZ z-1n
+ +

It follows from equation 2. 21 that \I';(y) ® - 'ﬂ:(-y), hence,

i ( - 1 1
!;") = ’gca". E-L JL dn(wgl- T TR C

Combining with equation 2.17 one obtains

F(z) = F (=) + F (=)
1 z

1 (¢ wo‘xo)dxo + i 54 dnl ¥ l-ff 1 1
e = " 8% v L MBI "R/

(2.43)
in which the quantity [W‘ ]t can be replaced by [‘I]t since

CAMEREIER S SMENE M (2. 44)
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as A consequence of the continuity of W. . Substituting into equation 2. 37

one has
i £+ 00 B ia(z-p)
ﬁz):—f-‘b—l-jdxi(x) ap 2
a * J, 000 J o P X
+ 4 5"'(1 Jlalz-p) i an [#n)*( 1 1
T i P YL RS pHin /

!Gm 1 S*ec 2 .ia(l-p)
— dx W S‘ d
" T J., © o(xo’ _hcp PeX,

m

+-:’:;j

.“ P | 1 o ~+
S ol - AR —PALRN
{2.45)

- dpoia(s-p)

i

after using equation 2,11, The imaginary constant ljwl e, like the
arbitrary constant :ia'o in equation 2.10, is of no significance whatso-~

ever and will be ignored hereafter. By partial integration,

-

)

.dp.ia(z-p)

~fcc

( 1 1 8 T
30w e v L

5y ] i“s-p) 4 B 7 l l
z - dpe S‘Ld‘][‘zl, 8;!" UpHn - p=in /

wico

=
- S‘ ap.la(l-P) 5;‘ qn[s']:' '8% ( P"l'iﬂ + P_r; )

-!w

- + 1 1 T apelate=p)
S JLdn[:]- wHR e te j-t:p’

N T
VpHn p=In /|

where use has been made of the fact that [:)f = 0 at the edges of the

plates. Thus equation 2.45 may be expressed as



L -iﬂ"
2
1 1 ia{z-p) 1 1
+
ke 54;’"\ s I O #Hn  Eelm

¥
d iofm-p)
+2 .._ﬂE_ © {
)Niﬁ- prn )
The transformation from p te k by the relations
a(p-z) = k(u-xo) and al{p-z) = ki(z+in)

for the first and the second integrals respectively finally gives the

following result

o -1 > oG ree dk -ik(.‘xo)
is) = 5 5-wdxowo(xa) ‘)Q Kra
-~ " (° dk _-ik(s+in)
+ -z-l; ;: S‘L dn [¢ ]t glﬂ' :—;;‘? -2 '}o 5e e ‘. ﬂ)/f,‘
{2.46)

The velocity potential is the real part of the preceding formula,
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i < "]

$(xy) = - % j

dk _ky

mdxowo(xo) 30 s ° colk(x-xo)

ry w > o
1 & | >i¥ R dk k(y+n) d
- = = ‘5Ldﬂ[¢}_ “log-H- + 2 jo m e cookx‘.
{2.47)
with

R? = x34(y-n)? and R 2= xt4(y+n)? (2. 48)

It may be remarked that the formal representation of ;(x.y)
given in equation 2. 47 can also be obtained by the Green's function
method (cf. Chapter V) or the method of Fourier transform,

In using the result just obtained the knowledge of ['3 ]t on the
plates is needed., It is thus desirable to have a general expression for
[T ]t in terms of more explicit result al ready deduced for F. Refer-
ring to figure 1 and recalling equation 2, 37 and that W: z - ‘?; on L,

we get for *bnayzcan n=0,1,2, ... N

(T = [Ty} pe™ 5cdpa"’p(¥;(p) +F(p)]

-2

- ( CY an .+ "B an .-
=‘°W; S‘dne ¥ '(n) + S dne” '¥ (n) .
- 2 Jy 1 |
n
- i Y +
= -2e % j dqe"'“wam) (2.49)
-a

n
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II1. RADIATION OF TRANSIENT GRAVITY WAVES
BY A VERTICAL PLATE ROLLING IN THE WATER SURFACE;
LARGE TIME ASYMPTOTIC BEHAVIOR

Because of the linearity of the problem the effects of disturb-
ances of various origin may be treated individually and later lupcrpOled
in a proper manner whenever the combined influence is desired. In
this chapter we shall study in greater detail va. special case of the gen-
eral result obtained in the previous chapter, namely the class of prob-

leme in which all surface disturbances vanish at all time
Po%et) = 8 (x) =4 (x) = 0 ; (3.1)

the only sources of energy are the plates whose forced motion induces
in water gravity waves propagating away from the plates. We further
restrict the subsequent discussion toc the case of a single surface-plerc-
ing plate.

The steady state problem of a vertical plate rolling simple-har-
monically in the surface of an infinitely deep ocean has been solved by
Ursell (reference 12) and investigated further by Haskind (reference 13).
We shall, however, be interested in the transient waves created by a
surface plercing plate rolling either (i) impulsively or (ii) simple-
harmonically. In both cases the motion of the plate is assumed to start
at t =0 in 2 fluid initially at rest. Let the axis of rolling be at a
depth ¢ below the mean water surface, the boundary condition on the
plate L can then be expressed as,

%;‘ (o,y.t) = % (osyst) = 0 t=0 " a y g . (3.2)

= 7{t){c+y), t >0
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where,

7(t) = Gob(t-oﬂ in Case (i) {3.2.1)

jut

Tt) = -j6_we” in Case (i) . (3.2.1i)

Integrating the Laplace transform of the above condition and omitting an

arbitrary function of & which bears no effect on the velocity field, one

hase,

Ply.o) =9, ty) = Tleey + iy®) (3.3)
with T(s) = 90 in Case (i) {3.3.1)
and = -jwﬂo/(u-l»ju) in Case (ii) (3. 3.11)

One ray now use these boundary values to calculate explicitly
the auxiliary function F(z,s). An immediate simplification due to
equation 3.1 is that ‘I&‘o(x) = 0 from equation 2.12 and hence I;(z) = @lm
from equation 2.17. As has been observed earlier (see the remark after
equation 2. 46), a real constant in ¥ results in T an imaginary constant

of no importance, we may therefore ignore F1 altogether and obtain
F(z) = F;(z) . (3.4)
Equations 3.4 and 2,13 together give

QL(y,n) = QlL(y.s) =(-§ +a) $'L = T[c +(1+2c)y +tay?/2] . (3.5)
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Since there is only one surface-piercing plate, equations 2.28 and

2. 30 are much simplified, i.e.,
P(z)/D(z) = Alz(n'-ta‘_)% (3.6.a)

and

K(=) =(:"+a")i . (3.6.b)

Substituting into equation 2, 36 and carrying out the elementary integra-

tione, one gets,

F(z) = TAz +L T(l4ac)zlog * "-‘—-t-a--f'- +-lz Talz z+ad-z4+4Tc
&“-‘n‘ " /23 +at+a '
(3.7)

in which a slight change of notation has been made to replace Al(l) by
T(s)A(s). The constant term Tc may be discarded in the sequel again
for the reason just mentioned. In order to find A we first observe
that due to the abasence of totally submerged plates, equations 2. 41 are
not nesded at all and A can be found from equation 2,40 alone. It

<
follows from equation 3.7 that 0. C_,i.e., ~w<y = -3, x = 0

Ho.y) '/—T—J + T c+{1+aciytay?/ 2T % y2-al --(H»ac)ycou ‘aly] .
4 -at

Making use of this result in equation 2. 40 we obtain a single equation for
A
-8
A 3 ..‘.311...... 5 dye'y(-z y./y*-a% - s (l+¢c)y cos’ n/yJ
- g0 y

The integrals involved above can all be evaluated in terms of the
modified Bessel functions Kn(n) and the Struve functions Ln(aa) s

the result is as follows {see Appendix A.l),
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. (1 “'ﬁ' (am) .
Als) = Alaa) = m Ly K tea) + —2 LKo(u)Ll(n)

l "
+ Lolc-)l{l(n) - == }, .

(3.8)
Another preliminary step for using equation 2,47 is the calculation of
the difference [?(y)]t for © - y : -a, From equations 2,49 and 3.7

one has,

- Yy
[Thr)}f =-2Te % S dne*"Gle,n) for 0 Zy 2 -2 (3.9.a)
-8

where,

Gla,y) = ¥Hy)/T = - ¥ (y)/T

g e
. AT +-1;(1+ac)y jog 25AR0Y. +3y aly? (3.9.b)
val -y'z a+t ,la -y

by taking the imaginary part of equation 3,7. Hence the function 3’
assumes the following form

- *

~ 0 . n
By = HEL 2 b ane™™ | aee™Gla,0){log
-a -a

]

e
dk _ki{y+n)
+2 ) g U eoskx | (3.10)
and its inversion gives the velocity potential,

#x.y.t) = oix frd-o“?tx.y.-) : (3.11)

This is an integral representation of the solution; it does not

seerp feasible to perform the inversion explicitly in closed form. One
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important and interesting information which can be derived from this
solution is the asymptotic behavior of the transient waves loang after the
motion is begun. This will be investigated in the remainder of this
section,

Upon inspecting equation 3, 10 together with equations 3, 3, if,
3.8, 3.9, and 3,10 we observe the presence of the following eingulari-

ties of 3’(3.7.0) in the complex s-plane:
a logarithmic branch point at s =0
s = §/ gk | Cases (i) and (ii)
simple poles at g = -j/ gk (3.12)
' 8 = ~jw Case (ii) only
The branch point at s arises {rom the modified Bessel functions
Kn(aa). We now make use of the following known theorem: If 8 is the

singular point of ;’(u) having the largest real part and if :(s) can be

expanded near 8 in the form

$s) = :> atu(s-a!)ﬁ“'l + log(s-s,) / bu(s-u‘)n
n=o n=o
or, {3.13.a)
ole) = /‘ a.n(s-si)n" + (s-a‘)a" \ bn(s-si)n’ o<p<l1
n=o n=o

then thoa,-iymptm_'“;cxpression of ¢(t) for large ¢t is
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S 'lt ¢ \E nd -n-
¢ty =e " ja + ) () 'boare !
. n=Q
or ' (3.13.Db)
~ Bt 1 {f n -f-n
d(t) = e | 28 + = ainf » / {-) bnl']ﬂi-n)t ,
n=o

respectively. If there exists several singular points and m of them
have a common real part, Rejn. which is larger than those of all the
rest, then a term as given by equation 3,13.b should be included for
each of the m singular points. The detailled proof of the statement
above is available elsewhere (see, e.g., reference 2})and will be

omitted here., It should be noted however that the contribution due to

s,t
the simple pole term alone, i.e., ae i is valid for all t ae it is

obviously the exact result of Cauchy's integral theorem after properly
closing the contour I' on the left.

Since all four singular points LI .1' s'. s (see equation 3,12)
have zero real part, they must be all taken into account in the calcula-
tion of the asymptotic behavior of the nolntioﬁ for large t. Itis
straightforward to show from equation 3, 10 that the expansion of

:(x.y.s) for amall s (near LR = 0) is
¢(x,y,s) ~ B +B's loge +. ..

where B and B’ are independent of s. Our theorem then gives for

fixed x,y,
9, (xy,t) = ot™%) (3.14)

and the corresponding surface height is
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Gobut) = - £ g dylx0T) = 0™) (3.15)

As will be seen later, these results are very insignificant compared
with the simple pole termese at 8.8, 5.
For these simple poles we shall consider Cases (i) and (i)

separately for large t.
3,1 Case (i): impulsive rolling

Wriunj out explicitly, we have by Theorem 3.13

$0x, ¥, t) :‘I * ‘8 + 0“.5) (3.16.a)
where
‘ ) . 9 e B !’ *0 : it +
“' R —oj- ) dk,[gk_eky sinkxe i/gkt [S dqozk11 ") doe'kqﬁ(ko"jfcﬂ
T ¥ o : -a -a
(3.16)

are the exact contributions from the residues at the poles s and -‘

B
respectively as has been remarked before. In the foregoing expression
the bracket can be evaluated in terms of Bessel and Struve functione,

Leaving the details in Appendix A. 2 we merely quote the following resuit:

o = + : :
S dne 260 ) Mo ¥9G(ke"I¥ o) = AT [ -Vika) (3.17.a)
-a -a 2x? | ¥(ka) |
a

V(X) _':1'—-*5(——' [1 (X)+L (X))
) o (X)FIK

(3.17.b)
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Thus it follows after substitution and differentiation that the surface

height is

Lx,t) = ~ — -&- $(x, 0" ,t)

89 &8 o

+ Vika) [ Jlkx- igkt)_ -Jlioct gkt | (3.18)

We are now in a position to explore the dispersion phenomenon
of waves along fixed rays § = x/t = constant for large t. The well-
known method of stationary phase will be used., For simplicity all the
following calculations will be made for positive x only: Consider first

the exponential functions,

exp (¥ jlku- /gkt)] = exp [ jtke - /gK)] = exp jtu
where

alk) = T (k€ - gk) . §=x/t .
Then

u'tk) = ¥ (g - é \'E ) and  u'k) =¥ g a¥? .

At the stationary point ko' u'(ko) =0, 8o that ""giu = -& . ko = g/4g?
and u'(k)) = t 2¢%/g. Let gk be defined such that it is real and posi-
tive for positive real k and is one-valued in the complex k-plane cut
slong the negative real axis. Then it is evident that k_  lies in the
range of integration (0, «) since £ = x/t> 0, Similar analysie for the

other two exponentials in equation 3,18
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exp [ ¥ jlkx + [gkt)]

shows that there is no stationary point on the line 0 s k <«., Accord-
ing to the theory of the stationary phase method, the first member of
each bracket in equation 3.18 playe a more dominant role than the second
since they make the major contributicon to the following asymptotic

result:

Lx.t) T26,2, 28 € Re, v\-l::j, J€ ) +ouh (3.19.a)
4
with
®= ‘--ll‘--;ng-:-.} . (3.19.b)

48
Clearly the waves are dispersive in nature, i.e., along any ray § = x/t=
constant one observes a train of simple harmonic waves with a speed

2§ and an amplitude decaying with t like t-*.
3,2 Case {ii): simple-harmonic rolling

Neglecting again the contribution from the logarithmic branch
point 8 , we obtain from the three poles, LN and s (cf.

equations 3. 3.4i, 3,10, 3,12 and 3.13)
Sx,y.t) =9 +6 +4 + ot™%) (3. 20.2)

in which

+, r+
é; + 1 d ® JHY-JVgRt omx (°
o (=7 % 3%%8 3% e gy an
2’ o /gk (w- gk) -a
N ko t‘l{
2kn g do e Glke™ ", 0) (3.20.1b)
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and, with the new notation

p=uwt/g , (3.20.¢)
l -jwt a ha ﬁ" - ﬂ .w ’j'
¢3 =- = j6_we b ‘S-‘ dne » doe " G(fe 7 ,0)-
% QT
R dk _ki{y+n)
lo + 2 2 oskx [ . (3.20,4)
(108 T +2 ) g3 cos kx |

The k-integrands of ¢ and ¢ are both singular at gk = w or k = §,
but actually when combined together the singularity is removed as can
be seen from the above equations and

1 1 1
= +
b= % L i )

- - ‘j vsit o
P0G B 1) + o §

&
dnequj doe "G (ke j'.a)% P
. \‘k -8 -8

in which we have omitted the integral with the regular integrand. As
gk = w or k — B, the curly bracket tends to sero and therefore
cancels the simple pole in front. This enalies us to llnterprat the
k-integrals of ‘z and ¢, separately by_their Cauchy principal values.
By using the closed contour shown in figure 2 onecan rewrite the

following principal-valued integral

4k ky By (% ay g~k bl
kx = - sin ]-Q» s (& COB +8 sin ky)
50 g ¢ coskx =-we Bx . s ky y

(3.21)
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The integral on the right hand side and the term log R /R in 3.20.d
have only local effect near the plate; their contributionsdiminish as x !

with increasing |[x|. Hence,

, = 26 wplagnx)e PV I %coq ox 5 dne?Pn 5 doe”PIG(peI", o)
*O(|=]|7%) .
Making use of equation 3.17 one gets,
¢, (x)y,t) =- -é wwﬁoaV(ﬂa)(smx)ep’"“co- ox +0(|x|™") (3.22)

and the corresponding surface elevation is

C,(X.t) = - -;_ -“?- O’Gx,o

= -ju0_aV(palegnx)e ™ “*cos px + O (|x["?) . (3.23)

Equations 3.20.b can aleo be simplified by applying equation
3.17,

+
sin kx oY J /BKE Vika)
k \rli("’f v.a-i) (v (ka) )

¢ o
EERIE T . (3.24)
X o

The corresponding surface heights have the following expressions:

¢
;:-;* i o % WO ’: )7=0= £4 % j6_aw 'o. :l(::i;:;x, etj"ilE' L ;:::; &

(3. 25)
Only the second integrals in equations 3,24 and 3. 25 are to be interpreted
by their principal values.

In view of the fact that L’ is of order O0(l) as far as t is
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concerned, we shail study ‘1 and {,‘ up to the same order of magni-
tude only. For convenience, only x > 0 will be considered in all the
calculations and results that follow. By the method of stationary phase
one may again show that ;‘ = O(t'i) for large t and %/t = constant,
To treat the principal-valued integral for ‘t we first break up the path

of integration into three parts, i.e.,

G0 =8, 4+ L,

 oB~é - p+é -j gkt
W | 0 a0 | . % _’? | dk¥(ka) ('jkx_‘-jkx)e-’ g
o B+é “VB-8 ' k{w-gk)

(3. 26)

where § is a small positive quantity. ;u and z;" can again be

shown to be of the order O(t'i). Now consider,

Py 6 —— -
¢ ot e- ko a0 [ dETEA) (S gk o) R
. ° Jpes klw- . gk)

= '-lr 6 8w(E -E-) . (3.27)
Let k = (1 + ¢), then

Jgk = w (1 fq)* nw:l + -‘za - '3‘: + 0(1’)}‘
and
exp [§(thx- [gkt)]= oxp {J[(Tpx-wtire(Pog- 3)er 5 MOl
Thus the integrals in C“ becomes,

5 = 3‘“‘ dkVika) jkx-y gkt
Y Jss k(w-.gk)
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P r6/B __ . 2
«. 2 JUPxe0) § élﬂi“- Viga)[1+0(c) Joxp 3¢/ 288 - ) e+ = +OU)) .

Neglecting the order terms for the moment, we obtain after the change

‘wt
of variable n = ¢, that

- + - ~BVE
E!F + %Jeﬂ-ﬁx'“,\ﬂﬂa) ‘So %—?— ejn‘nin thn (3.28.a)
W 2t
Q=g s 8. - (3.28.b)

Since -; ‘-‘“-;- = « with t, the integral in equation 3.28.a can be ap-
proximated by means of the following asymptotic relation (see reference

16 p. 21 for proof):

s
MmN o > r
dn _jn? w J30 2 ‘2 -y
jo = " sin2gn ’/-5.' e Clzq IS $a, +O(t™) (3.29.a)
where
M F (" 2
Clu) = 3 cos 3-’;-— dm and S{u) ==j .ml’z“_ dm
o o

(3.29.b)

are the Fresnel integrals. Combining equation 3,27, 3,28 and 3. 29 we

obtain for large t

— _— j ; ‘ [ £ '3 ]
w Px-wt) 2 Z '.
cas - j V’Z: BOI.V(&)O | °J \C“"'i.' Q+J -js lq-'- q*’J
e RS 1 il ' (3. 30)

The error term that we have neglected ll. proportional to
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c8/P T w 2
s ‘S-élﬁ de exp jt (-P§ - 5 ¢ # -"';—Ig
s%
-..’.}__ \ dnejn'cos Zq*n
vt Yo -

It can also be shown that the integral above is of order 0(1) (eee refer-

ence 16 p.21), i.e.,
£ ¥
\ 2 e A
5 dn e?® cos 2qn w'-; e i, O(t'g)

L]

The information derived thus far can now be collected to give,

txt) =5+ ¢+ 00 h)

w
= v 1 dT 7z - Z it
z-jtb‘oaV({ia)& - +5 e (Clz a,) =3I T,/ o (Px-ut)

: k4
- 1 1337 Z 0 -j(Pxter
-thOaV(ﬂa)t 3-;3¢ Sz alISizale J(Pxtut)

+ O(t't) {3. 30)

for t large. In the region where the above asymptotic result is valid,
the second term represents a train of left-going waves the amplitude
of which is, however, vanishingly small. This can be seen from the
fact ¢q_ is positive and large for all positive x and large t and that
we have the following asy mptotic expansions:

Clu) s .
= 5 sgnu + 0 ') . (3.31)

S(u)

As a connuiuenco. the bracket in the second term of equation 3. 30 be-

comes
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w2 .
% - o’ 4 (1-)) % sgnq_ + O(t'i) = O(t-*)

v

N

and hence the leftward waves do not actually exist up to the first order

The expression for the surface height is finslly reduced to a simpler

form

-ﬁ q,) -lSt,-,z; q,,mejmx'“’

¥

Ux,t) = -§78 aV(Ba)| 3 + - {
+ ou‘*.x") (3. 32)
In a region far away {rom the wave front, x/t = g/2w = group
velocity, the quantity % lq+.| = 2| _ogtz_ - fx} /mx >>1, consequently

equation 3. 31 may be applied to approximate equation 3. 32, giving
(3.33)

Gx,t) = -jut_aVipa)H (%% - px) SP Dot g 74"

If it is further required that -lz wt >> Px, one observes a train of steady

waves propagating to the right with the complex amplitude
(3. 34)

Ag= -jut_aT(pa)

which is a result already obtained by Ursell (reference 12). On the

other hand if 5 «t << fx, the surface height
(3. 35)

¢ “0(‘»-*. lq‘,l". x-‘)

will be small, Clearly the interior of the parabolic region:

(3. 36)

.E. I"U = O{1) or |x-gt/2w]| = O(ti)

defines a sort of transition sone relating the steady state and the
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transient state. Near the wave fromt, _:_ la,| << 1. Hence, by using
the properties of the Fresnel integrals,

Cla) =u + O(u’)
S(u) = O(u?) {3.37)

it is easy to show that near the wave front,

Hpmet), o"3, g, |, x78) (3. 38)

i
Ux,t) = - 5 Ju9_aV(pa)e
namely the amplitude is only one half that of the steady waves,
As for the situation throughout the transition region we must
study the curly bracket in equation 3. 32 which is the amplitude ratio of

to the steady state waves, A'.:

the transient waves, At'
33 z 3
1 1 r 2 \ 2 1
At,AB SE *é b ChT "S(»,‘G %))
1
= 5 [1#(14j) (C-jS)]

N | 1 Y r.1 1
-z-jl-z + C! -(-z +5,’J ‘jt(z '.‘C)'P(-z

{

= +8) ,' :
4)
where the argument of C and S is understood to be
z 2 ot \
-, ¥ — - Px . (3.39)
T + Jwot Z

Thus,
(3. 40)

. oqa. 1 v (1 2
Q) = A /A |P= 5[y +C) +(z *+8) | .
This quantity is familiar in the Fresnel theory of optical diffraction
(see reference 22 section 8.7, in particular p. 433). For the case of a
half plane screen in the field of monochromatic light source, equation

3. 40 represents the normalized intensity of {llumination I(Q) ata
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point of observation where Q is a measure of the distance between the
observer and the edge of the geometrical shadow. In the illuminated
region Q> 0, whereas in the geometrical shadow < 0. The vearia-
tion of \1{(Q) is shown graphically in figure 3. It is interesting to view
the pheonmenon of the radiation of transient gravity waves in comparison
with optical diffraction. Since in the former (Q is a measure of the
distance from the wave front (Q = 0 or fx = wt/2), the physical
correspondence between the two cases is clear, i.e., the relatively un-
disturbed state to the geometrical shadow, the wave iront to the
boundary of the shadow and the highly disturbed state to the illuminated
region. As the wave front approaches a stationary observer, Q in-
creases from negative values; the guantity [At/A’ [« grows monotonical-
ly to % at the front (Q = 0), rises to a peak shortly after the wave
front passes, then coscillates with iiminiohir- amplitude and eventually
settles to the value 1 in the steady state.

Comparing the present example with the case of an oscillating
point pressure investigated by Wu (reference 17) and later by Miles
(teference 18) we may note that the transient responses are quite the
same except that in the latter case the steady state wave amplitude A'
ehould be replaced by

+iFu? /pgt
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IV. SCATTERING OF SURFACE WAVES
BY A STATIONARY VERTICAL BARRIER

In many scattering problems it i customary to assume that
there is a steady train of simple harmonic waves, generated at infinity
from a permanent energy source, incident upon cbstacles situated in
the finite part of space, Such steady state problems for vertical plate
barriers in a deep ocean have received a rather comprehensive treat-
ment from Dean (reference 10), Ursell (reference 11), Levine and
Rodemich (reference 14), etc. In this chapter the scattering of surface
waves will be investigated with a view to reveal the effects of disturb-
ances not necessarily simple harmonic in time and criginated within a
finite past and a finite region from the obstacle. Specifically three
kinds of surface disturbances will be dealt with: an initial impulse, an

initial displacement and an oscillating pressure.
4.1 The fundamental solution

Ve consider only one surt‘ace-faiarcing vertical plate of finite

depth a, i.e.,

< <
L:xzo. 'a=Y=0,

which is held fixed in the presence of external disturbances. The
linearity of the problem enables one to treat any general disturbance

28 a superposition of concentrated ones. It is therefore useful to cone~
struct a fundamental solution defined as the solution to the problem
formulated in section 2.1 with the following special initial and boundary

values
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Plo,y,.t) = ‘PL(YJ) =Q , t >0 y on L {4.1.a)
#(x,0-,0) = éo(x) =Q M’"":”’ (4.1.b)
Ux,0) = § (=) = Q é(x-x ) (4.1.¢)
and '
pxit) = Q;;g)a(x-xl) t >0 T (4.1.4)

where the constants Qx ’ Q‘ and Qs denote the total strength of the
coencentrated impulse, displacement and preséuu on the free surface
relpactivaly.. |

Referring to equations 2,12 and 2.13 we now have the following

boundary values for the auxiliary function F:

3
ImF(z) = :,; Tm(l)é(x-xm) = Wo on y=0 (4.2.a)
m=1
where
T () = Q s/pg (4.2.b)
T‘(l) = Q; - (4,2,.¢)
T;(a) =Q s7(s)/ pg (4.2.4)
and,
Re F(iy) = @{o,y) = QL(y) =0 for y on L . (4.2.¢)

It is obvious that we may first take
ImF(z) = Tmb(x-xm) = \I'o . on y=0 (4.2.1)

instead of equation 4. 2,2 as our boundary value on the free surface and
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sum over m in the final step. Substituting 4.2.f into 2.17 we get,

T
i
F x|
A P (4.3)
and,
Tm
Ql(o-v) =°x°¢- — r— for y on L .,
yox
m
Hence by equation 2. 20, for y on L,
Tm X
ﬁz‘o.y) = ‘L - Q‘s ‘:L, -Q.‘r+ s yz*x =i 3 (4. 4)
m

Noting that the results in equation 3.6 is etill valid in the present case,

we may put 4. 3 in equation 2. 36 to obtain

= oy 3
rimeom Ae  Tm 1 BEE R,
& ™ /x¥eal " :3-::“;l ./xm‘-bal moaw
{4.5)

It then follows by combining equations 4.3 and 4.5 that,

F(s) = Fl+ F‘

T (sgnx_)/z*+a?
Az, _m % (1* B X N J (4. 6)

m
LT e J " 1 a2
/ +a - --:tm ’m + a

The coefficient A can be calculated from equation 2.40, and the fact

that QL(y) = 0,

~ - o [rf-a?
‘J-w ™ =90 v ’7 -a \('H’ma “"v" m I ;

or



sgn x -8 [ 3 a2
A = m __1 ‘s dne™ JLL R (4.7)
!: ta‘i y a +ai L o "‘ ’xl
1 5 m

whereas the function ‘lf:(y) needed in computing the difference [é ]t

of equation 2,49 is simply
T (sgnx_)ay, at-yé < «
s 2 AL . 5 asySo | (4.8)
& W S atey¥ x‘m-n‘ (y'-!-x‘m)

¥inally the fundamental solution including only one kind of surface dis-
turbance is

1 st Co1 (% dak ky '
P X yat) = T 5rdso Tm(')(’ % 50 iz ¢ cosk(x-x )

*

1 8 {° +7, R b k 7
- j dq[?]__ Jog " ¢ 2 \ Ed:k; e (y*ﬂ’coakx/( (4.9)
-3 vo /
with [:]f given by equations 2.49 and 4. 8,
The solution for general disturbances is formally obtained by

superposition:
3

Sy & L 5@0 dx O
w- Veos

m=l

m(xmw;’n(x. X v Yot) (4.10)

where Qm(x) is the strength per unit length of the free surface and
6;; is given by normalizing equation 4.9 for unit strength.

In order to obtain the solution in an explicit form it is however
desirable to confine curselves to a rather special case when the con-
centrated disturbance is confined to the immediate neighborhood of the

plate, say s D+. Thus from equations 4.7 and 4.8,
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T ~—s
Wy) = 2 Ay = _Jal-y  (4.11)
2 LA y

Afaa) = R;I% e aa(K (@)L (ea) + K (aa)L_ (an)]{ . (4.12)

The detalled integration for the result above is performed in Appendix A, 3.
In the following sections we proceed to study this particular case for

the three types of disturbances separately.
4.2 Cauchy-Poisson problem for an initial impulse

Furely transient waves will ariee when the water surface is acted
upon by an impulsive pressure for a short duration. In the present case
we let th;a initial displacement and the surface pressure vanish

identically, thus we have

T=-Qe/pg , T, =T =0. (4.13)

From equation 4.9 the velocity potential is therefore,

st & 5"“ okvcoakx
o

1
’&i $x,y.t) = ¢ yop ) dse 3 e
1 st 8 -~ + 8 R"
+ d - d 1
-z-a— 8o z" - ﬂ[¢(ﬂ)]_ 'ﬁ og b- 3
+ z;rl 3 dne® 2 Sw an(Tn Sm-é;“- KV M)y sinkx .
’ ) o v vY.a - Ve od

(4.14)

As was mentioned earlier the first term on the right side of the preced-

ing expreesion represents the potential without the barrier, of which the
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inversion can be performed to give the classical Cauchy-FPoisson result

(reference 15):

Q o
tﬁl(x.y.t) = --;% So dk eV cos kx cos gkt (4.15)

The corresponding surface elevation is

Q oo
1 &
Eylw,t) = - ik 'Ol(x.o-.t) z Eﬁ"‘ ‘Bo dk /gk coskx sin /gkt . (4.16)

For large t and fixed £ = x/t, one finds

Gylx,t) = 37;! f',‘;' 161°% ginc + 0(-:-) (4.17)
where @ is given by equation 3.19.b.

The second integral in equation 4. 14 represents a local effect
which ie significant only in a small neighborhood of the origin and dies
out like 1/x® for all t; it will therefore be ignored.

The asymptotic expression valid for large t can be obtained for
the third term in equation 4. 14 by considering the three singular pointe
having the largest real part, i.e., ® =0 and +] /gk. It can again be
shown that at 5 = 0 there is only a logarithmic branch point whose con-
tribution to the surface elevation is of a negligibly small magnitude:

-7

Ot "). As for the two poles at s = j /gk and -} /gk, we can follow the

procedure used in section 3.1 by first rewriting the third term as

20 ~00 ky ro _
P (x,y,t) = —de . \ ds e®'s j dk k :%k-ig-— dna‘k @)n
= v?apg L o “ -a

e
:) do e®Gle, o)
. (4.18.a)
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where

/ad® o ord
Gla, o) x/;AT(;:;_ L (4.18.1b)

The corresponding surface elevation is

‘Iu‘xo t) = - % ‘ag‘ %1‘30 o=,t)

~0
3 ds e®ts ‘ dk..k_?.?_‘i"..j dn

(kea)n{ ", ec
e do Gla,o) .
"lpg ‘S-a ° “

(4.19)
Applying the asymptotic theorem of section 3 (equation 3.13.a and b) to

the two poles at o = +j/gk and integrating by parts, we get,

byt =8, + L_+0(t™T) (4.20.a)
in which

Qe

+. — St +
¢, =+ —»4 dk\/g—ko"’"'kt-iakx‘) dnsin keG(ke ™n) (4.20.b)
= T vtapg Yo -2

where the order term refers to the neglected part from 8 = 0, The

last integral ie evaluated in Appendix A4 from which the following
result is quoted:

4jw R
@ Alke”™ )n [al-n? via {V(ka){
dnsinhk - = 4 (4.21.a)
5.. e “[V’Ef- " n Je 41 5 Vika) :

where,

( Vika) R

- (4.21.b)
V(ka)) t T



50

Putting this-into the expression for { + 2nd applying the method of
stationary phase as in sectinn 3,1, we can then combine with ‘l to
Obt“n.
Q
B -5/2{ o ‘ a, J®7, . -
L(x,t) = .;l; -g_ (& ] sin @+ H(sgnx) Im, [ V(-‘t-;)e jjmu 1).(4. 22)
From the Iollo'o}ing properties of Bessel and Struve functions

(referencee 23 and 24),

X
I{X), L-I(X)'—';n and I{l(x) -*-;Lx e'x as X ~
and

g | - ) .
ll(X) IX. L_.(X) = and Kl(X) x as X -0,

one can show that
VX))~ 0 as X - 0 and
- 2/w as X~ o« . (4.23)

Thus, when there is no barrier, i.,e., a =0,

¥4
i ‘: #in® + O (t™h) (4. 24)
x|

Q
txit) = b &
and when the barrier extends down to the bottom of the ccern, f.e,,

a~-w,

tlx,t) = :i-‘ ‘& £ (1+sgnx) sin @+ O(t™}) (4. 25)
! p VW ;TW gn - :

indicating no transmission to the left and perfect reflection to the right,
Comparing the two limiting cases one finde that in the latter the

smplitude of waves traveling to the right is twice in magnitude as in the
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former. This agreee with the simple fact that mathematically the cliff
is equivalent to an additional image disturbance of the same strength
applied on the free surface at x =0~ and t = 0, For an observer not
too close to the origin, the two concentrated disturbances may of course

be replaced by a single one with twice the strength.
4,3 Cauchy-Poisscn problem for an initial displacement

In this case 'I‘l = '1') =0 and 'I‘zu Qz' An analysis similar to the
one given in the forego.ing secticn leads to the following result for large
t and constant § = x/t:

~ Q 3 ;- ( % \ Xy ) -
Lix,t) = -‘z-‘—& (€] yzzcos@:-f-; (agnx)Re,[V(f;)e"ﬁJK+0(t H

(4. 26)
where V is given by equation 4.21,b.
When no barrier exists, a =0,
Q e - yz ~
Gx,t) = —F ;f. 77 cos®+ O@t™Y (4.27)
and when the barrier forms a cliff, a = « .
Q e : _yz N =
Lix,t) = fy% 16177 (1+signx) cos ® + O(t™}) {4.28)

4.4 An oscillating point pressure

We suppose that starting from t = O+. a concentrated pressure
having a harmonic time dependence {8 acting on the free surface at

= =0, Allewing no initial disturbance, we have for equation 4.1.d that

T(t) = o~ I%

and from equation 4.2 that
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T= 1;: 0 , T=Qs/pglstiw) . (4. 29)

Equation 4.9 then becomes

™ st ol
9; ‘(Z:Y:t) " - !;‘22;]' ‘Srd' :%U ‘So. kd; ekyCOOEI

1 1 {0 e (° -an‘ L ]
- :;.: T 5rdo G " dne j-‘&co Gla,0) g=

f.log ﬁf +2 Sow .‘?};

with G defined by equation 4.18.b.

L A } (4. 30)

The asymptotic behavior of the solution for large t can be
carried out as in section 3.2, This will be omitted here however, and
only the steady state limit will be derived. Adopting the procedure of
De Prima and Wu {(reference 16), we shall make use of a theorem by

Tauber. Let

rcdjeo
Mix,t) = g | e NOLm P (4. 31.a)

c=joo

and let N(x,\) be analytic in \ and regular in the half plane
ReAZ\ 20 and c > \_, then
§ o o

i M(x,t) = lim N(A)
t=~ $x A -0+ (4. 31.Db)

if and only if

<
! oM
. SHm 5 ‘Lt - dT=0 . (4.31.¢)

Supposing that the qualifying condition 4. 31.c can always be verified a

posteriori,we now introduce in equation 4. 30 a new variable \ = s+jw
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so that the theorem may be directly applied. It is apparent that the
k-integrals deserve gpecial attention because of the appearance of a sin-
gularity in the integrands as \ — 04,
lim (k+s®/g) = Mm [ke(A-jw)?/g]
A = O+ A G+
o wh
zlUm [k- (T +2} —)].
Thus the k-integrals are Cauchy-singular and their limits as X — O¢
can be obtained by Flemelj's formula (equation 2, 33) or by deforming the
path of k to by-pass the pole at «‘/g. The complex number
w?/g + 2jul/g approaches the original path of integration from above,

the new path is therefore taken to circumvent the point k = /g from
2

below, ae shown in figure 44. Replacing a by peIT o -“é-. e 3" overy-
where elese we arrive at the steady state limit:
o
el »
P (xey,t) = —'—'7‘3- e j“ﬂ). ’Ei-rk'ﬂ" o™ coskn
Jul ;o n
+ ) it dneﬁ“ doo‘ﬁao{ﬂed'ﬂ) 9
v pga j-- j-m x
R O dk _k(y+n)
floar+zjme""co-kx}. (4. 32)

™

The curly bracket in the preceding formula may be recognized as the
Green's function in the theory of steady, time-harmonic gravity waves
in deep water. The correct indentation of the contour as obtained
above can also be arrived at by various other means, for which a brief
discussion is available in reference 16. The present method ueing

Tauberian theorem relates Rayleigh's approach of employing a fictitioue
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damping factor and Peters' approach of an initial value problem (refere
ence 25); it has the same mathomatical simplicity but not the artificlal-
ity of the first, and seems to be more direct than the second.

To be sure that equation 4, 32 is the valid steady state limit, one
has «f course to check that the necessary and sufficient condition is

satisfied, {.e.,
I, 4 .
lm 'lt 50 ! ‘sa{ [ﬂx.y.f)cj"t]d'r =0, " (4. 33)

In doing so it suffices to know the asymptotic order of magnitude ¢ for
large t and fixed x and y. For, by taking any large T the left hand

side of equation 4. 33 may be written as

lim -1£ fyT + j }'r 'B%‘ [$tx,y, T)edtlar =0 .
o T

The first integral above is of order O(t™!) due to the finiteness of ¢
whereas the second can alsoc be proved to approach gero after substitut-
ing the approximate order of magnitude of ¢ into the integrand. We
shall, however, cmit the details which are fully illustrated in reference
16. |

Since for large {x|,

3 31‘?‘3‘1 Y coskx = jedP X1+ By of kY

_s*

as can be shown readily, we have, from equation 4. 32



55

)
6'(x.y.t) I _;‘_l, eﬁ‘lej(ﬂ H""t){l

O ;o _ _ ) N
+ 1L (sgnn) 2 j-'dnezﬁ" j-adae PoG(ge j'.u)J +O( x| ™H

w
2o g oPYPIXIYN L 3 taga) Vipw s OUx N (4. 40)

where the function V(Ba) ie given by equation 4. 21.b and the term
O(|x|"!) demotes the local effect diminishing as 1/|x| for large |x|.
In getting the present expression use has been made of the analyeis in

section 4.1. The surface elevation far away from the plate is
Lt = - & g $ylxi0-t)
a ] ’ ‘E’ 8 ] »

199, (Bix|-wt)

pg’

Applying equation 4,23, one obtaina for the limiting case of

{14 3 (sgnx) Viga)| + Olk|™) . (4.45)

=

a =0 that

- jutQ i
g e t) T —2 SBlxi-wt)y L (4. 46)
pg

while in the other extreme case of a vertical cliff, a - o,

2
Q
g )T £ - SPIxI-0th o ony . x| . (4.47)

Lo 4
The transmission coefficient can be defined as
T g ',BT
Cpr=1- 5 V(fe) = lcTI- (4. 48)
and the reflection coefficient as

® jGR
Cp=l+ 5 Vipa) = ~{cR| e . (4.49)
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The quantities }CTI. O lcnt and 6, are plotted as a function of
fa, in figure 5.
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V. RADIATION AND SCATTERING OF TRANSIENT GRAVITY
WAVES DUE TO DISTURBANCES AND SOLID BODIES
OF ARBITRARY GEOMETRY

In Chapter 1II we have derived an asymptotic formula,
equation 3. 32, which describes the tru.jnlont gravity waves due to the
rolling oscillation of a vertical plate. The analysis performed there
can be extended fo-mally to arbitrary sinusoidal disturbances distributed
over a finite part of the ocean., We shall consider in this section the
effect of Aoscilln.tory motion of dﬁtributod pressure on the water surface
and of floating and submerged bodies of any geometrical arrangement.
The result will be formal since it contains a quantity which depends on
the complete solution of the problem.

Let the fluid field be described by a velocity potential ¢(; ot}
where T denotes the vector (x,y), them ¢ is governed by the follow-

ing conditions:

Vig =0 _ y< o (5.1)
2
(-;:-’; ,y 3%) é = Ig. wp (oH(e It on s (5. 2)
.g-;- =v(F) eIt H()  on 5 (5.3)
#{x,0,0) and -;g- (x,0,0) given for |x|> X =0
for |x|> 0 (5.4)
and ¢ - 0 sufficiently fast as |r|—~e for finite t . {(5.5)

In the above, the water surface has been designated by S5, and the solid
boundaries of floating and submerged bodies by S5.° The phrase
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"gufficiently fast'' will be made more specific as the situation arises.

We now define a Green's function G(;: t| :o. tol by the follow=-

ing roqulrcmentu‘

VG = 6(r - 'r’oa s(t-t_)

(2 -%)Qso y =0
n? ’
Ga—g’f‘i =0 t < to y =0

and

G ~ 0 sufficiently fast as [r| = « for finite t .
Using the reciprocity theorm which ie proved in Appendix B
Glr,t | 7,,t) =G(r,, -t_|T, -t)
we can show for the same Green's function that,

VEGIr,tlr .t )=8(F-r)blt-t) y <O

& 8
(]
G'-aa—-Gso 8>t Y, * 0

&)

G == 0 sufficiently fast as |r| — « for finite t_,

(5. 6)

(5.7

{5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

* This Green's function is different from the one used by Finkelstein in
proving a uniqueness theorem for a situation identical to the present.

See reference 26.
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22 g

where V3= — 3 2. {n squation 5,11,
[+ L+

From equations 5.1 and 5,11 and the second Green's theorem it
follows that,

- st - .
#EO = | ar | ax oy 47,06 ) 920 - G RRE )]

“t, .
) ‘So i ‘sz+sb+s (HEgt) g - @ F’? (50t5))

in which D {s the domain bounded by Sg S S, and a great semi-circular
arc S5_. The direction of the contour will be taken as positive, when
the enclosed region is to the left, and the direction of the normal (;‘;)
is positive if it points cutward, We noiw take conditions 5.8 and 5,14
to mean that ﬂro. tn) and Gir,t | ro.to) vanishes as I;o |~ = so fast
that the lini integral along S, @lso vanishes as the radius of the arc
grows indefinitely. Applying the boundary conditions 5.2 and 5. 12 we

h‘ve,
e ' 8 _~ & w (%, "IN, e
e | ¢t (2™
+13‘t‘dt il (6 D‘G_Gg‘_ij
§, %o ) (050 5

[+

The third integral can be integrated with respect to t,

t =t
~t e 2 e 0 3G o 4
jo*dt" 3_::0[0 i—;;g -G ;Ei‘] . J-:a% (¢ w -O -%jt
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on account of equation 5.13, Hence

“r.t)a; at_ ‘) ds_[é -o% +Lj *dtejm" __dxp (%G

o

: )‘:a:%w -% «G 'a%ﬁ : (5.18)
toao

If G is found, the second and third integrals then involve known bound-
ary and initial values (cf. equation 5, 4), while in the first integral
-%o on Sb is given by tie boundary conditlon 5.3, Thus eguation 5,15
provides the solution for the velocity potential once the value of ¢ on
Sb can be calculated. 0§vioualy this formula is valid also in three
space dimensions with the line integrals replaced by surface integrals.

The construction of the Green's function defined by equations
5.6 to 5.9 can be performed by the customary integral transform method,
as shown in Appendix C; the result is: |

N 1 i .(t'to} ~
G(Fitirt) = wor 3rdae G, ©.8) (5.16)
where,
- JKly+y,)
Gir, 7,_,8) = - 'z;; logR /R 42 ' dk cos k{x-x) = 1 (5.17)
‘o t+ed/g

is the Laplace transform of G for t, =0 ,

R = [(av:--xm)‘4-(y--yo)',Ii R a2 [(x-g)‘ﬂywo)z]% (5.18)

and I {s a vertical path in the s-plane to the right of all singularities of
the function &{r,z ,s).
Now let the Laplace transform of equation 5.15 be taken. Since
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the dependence of G on t and t is in the form of their difference

t - t_ only, the convolution theorem may be used to yleld,

o
- ~ V(r )
HEo) = | 0, [FE, 0 Eo' - O i | a3
b
1 ('
v ) e lsh ) +Nx)]T (5.19)
-0
with,
> i = - -8t
$ir,e) = jxm."'m,u . 6(r .e) = mdtoo Cor_.t,) (5. 20)
o o

‘o(xo) ”‘(xol o, o) , NO“D) = &f— “‘O. o, t) (5.21)

[+]

t,=0

In getting the third integral to the present form we have made use of

the fact that

.8 .3
'tozﬁ ltono

oG
k3
o

on account of equation 5.16. Equation 5.19 and
W0 = ghr [ dee™PF o 2o, 44 40
™ Jp p 1

where ‘b‘ ‘p and 4‘ corroapoﬁd respectively to the three integrals in
equation 5.19, form a more convenient basis of asymptotic analysis than
equation 5.15 as will be seen presently.

Let us consider ép and ‘i first. For % * 0, R= R*‘ ., hence

it follows from equation 5,17 that,
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dk eky

oG
E(r. J%.l) T - -li- 5‘

wer e cos k(x-xo)

and irom equation $.19 that

as 1 > st e ky
b= e | anntn) iz § o i | et connten))

1y " 1 ¢ C% ky
& -*E )‘w%¢o(xo) {-z;,- ‘Sqr‘ds se® 30 dk -;‘-5:'/—;- cook(x-%)I

1 e ~ %0 ky
- 1 Bt e
ng dx N {x ) dse S dk conk(z-x)f .(5.22)
.)_w o 0" 0 1'2?3" ‘SI‘ A k+s?/g o
The curly brackeis in the three terms above can be identified with known
resulte, i.e., the first with the periodic point pres--nre by Wu (1957)
and the remeaining two with the classical Cauchy-Foisson problem for a
concentrated initial impulse and ‘t on the surface S[. By either quot-
ing from the literature or repeating the procedure demonstrated in
Chapter III one gets the time cerivative of the first bracket in equation
5.22 the following asymptotic expresesion for large t.
» ~ k(yw ,
1 8 1 S o’ 5 ®  ax o
Fwiny ) aw ) rer T wok kinsi)

y=0

(5.23.a)

L ) w j[ﬁ(n-x ,'“] -
Tome1 L ST e ousZafjee T T ot
g

~l-

1
Z
2 2 w
where — q = —— (5 t-flx-x)] . (5.23.b)
‘1' \E“t ['Z o’/
For later application Yo ie kept arbit rary without being equated to zero.
Since the coatribution to ‘i from the initial values 60 and No is pure-

ly transient in nature it will be ignored on account of its relative order



63

of magnitude. Consequently from equation 5. 22

c 2 a0 b
i@ ~ o ~3Px, 1y 33
SRS LU U AR TR DRI O |
3 Bl )-wt]
e " + ou'%) . (5. 24)

It should be noted that the effect of the pressure distribution and initial
disturbances on the water surface is not entirely represented by the
termas ‘p and ﬂ; it is also contained implicitly in the value of 0(;0. t)
on the solid boundaries,

We now treat ‘b formally as if ;'(;.s) were known on qu The
argument following will be mainly based on the Tauberian theorem (cf.
equation 4. 31) and Theorem 3,13 with its inverse which is assumed to
be true without proof. Since from physical ground one expects @(r,t)
to settle down finally to a steady state of periodic oscillation at the

frequency w, 3'(;,1) must possess a simple pole at a = -jw., Thus one

may write
Pire = Fl - HD 4 Qe (5. 25)
where
8 3!4';tem-g‘+;") and O(ms) = AL ':4,-;; — (5.26)

It is clear from Tauberian theorem that ﬁ(;) must be the time independ-
ent part of the steady state solution, i.e., ":"'s = @ exp(-jwt), and that
5(;.. 8) contains only purely transient waves. At large t the slowest

rate at which Q(:.t) diees out may be assumed to be algebraic, i.e.,

Q(:, t) ~O(t-'). a > 0., Allowing this we see that 5(2-‘. 8) can have
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singularities s; of the following kind:
(i) They lie on the imaginary axis, i.e., s = j§, ¢ real.
(ii) For any ;i =0, & =0 in the expansicn of the form of
equation 3.13.a.

Substituting 5. 25 into 5.19 we have

ds BE‘; ~ -
% " Ztrj 5 sﬂw jbds G(ro) Tﬁg -GV(ro)J

{) 7 bd
ds et (.0 5= . .27
Jpaee Ssb"sb G5t s (5.2

In view of Theorem 3.13 and the singular behavior of Q and G one may
expect that the second integral above vanishes for large t at least as
fast as C}(t‘ﬁ), 0< B <1, forall x. As for the first integral, we
shall only be interested in approximating the corresponding surface
height. First, the function G in equation 5. 27 will be replaced by its
explicit form (equation 5.17)in which the term log R/Rﬁ is to be neglect-
ed as it vanishes on the free surface (y =0), while the remaining term

is handled simply by applying the result of equation 5. 23, i.e.,

8, |
] S TReit | as (e K v klrowet x?) (5,28
©TTE W o8 5% o Ty VK] x"%)  (5.28)

with

B By jP(x-x)
K2 ,y,) af-lz + Clz a)-is(/5 q]]fe Ce R (5. 29)

NI~

Summarising equations 5. 24 and 5. 28 we have finally
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pixet) z‘b+;9+;i: %’ e7Jet ‘Sq o {'0(;0) -%f- - V(;';)K E
b
o? -jut s -* )
* ‘:.;l_ ¢ '3-«, dxopo(xo)(i()yo___omu ) . (5. 30)

ut-Zﬁ(x-—xo)
For /;— q® —————— 2> | the steady state prevails; from
Jwwt

equation 3. 31 we have the following formula

-~ 2 - +B{x-x ) " *Blx-x) oy
uarl g oI ‘}s dso{ﬂro) 3:? [e = ° Opyol-v(ro)e I, o 0}
b
o T B8(x~-% )
+ g;- e L ~Y_“Lds0 B, (x Je ° (5. 31)

which may also be obtained from a steady state formulation (cf. refer-
ence 27).

As a special case we consider the situation in Chapter III where
there are a series of thin plates denoted by L, lying vertically on the

negative y-axis. Noting that

(] 8 -
W = -b-s; . X = 0
for y_ on L
o
T - ® X = 0+
=
©
and _
8 K{x-x y ot = - —— Kix )
Fi: o'_yo' ) I Bx 'Yyt
xoltO

we have, from equation 5, 30, that
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Llx,t) :‘;3 e-jut SL dyo [.‘Yo)lt '5?; K(xIYOOt)

2

o .
4 _:_:_f o (Ax-wt) 5_%630%%)1((:-:0.0.:)

)

cuth € Py, I3
- dpe e "{deyolwtvo)Jf- °Ha+2 e *lcas)|

2

-
sore-tye .1“’.; od(Px-oit) 3 ax p (% JK(x-x ,0,t) (5.32.a)

P8 -

in which,
C=C(Q) ., 8 =5(Q)
' 5.32.b
" Qs 2 (% - px) { |
Gt

1f the external pressure po(x) is identically zero on the free

surface, we have

k)
~, 1 .1 31 J(Px-wt)
Wt TA Ty ta e [c-ss1] o (5. 33)
with
A =48 U a0 o 4 o 5. 34
s "% jLVD AN (5. 34)

which is equal to the steady state wave amplitude as x o, as can be
derived from equation 5, 31. Recalling the result of Wu (reference 17)
and Miles (reference 18), and that of Chapter III cquation 3. 32, we may
conclude that equation 5. 33 represents the transient wave response as

long as the sources of disturbance are located on the y-axis.
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APPENDICES

Appendix A, Evaluation of integrals.

A.a, Let

-8 S
N = S dye‘y[% y/y?-ad.

- 00

-IIN

(1 +ac) y cos ,l % ]

e | o
= af 3 dye"V[ 3§ y/y*-1 - -(1 Vv 5)y cos™! -;.] (A.1)

L
-
with v = aa. The first intagral is clementary

| ~ o
=5 d - S 1
N = 5 dyeVy [yt-1 = R 51 dye™ VY [yl = - 7 K . (A2

- Qf

Integrating the second one in equation A.1 by parts, we got

-1 ok’ 1 s
vy -‘i d -vy - l - d l -. —l- -
N‘s‘g‘w dye “ycos y = '3'\'/'.51 dye ‘cos ¥ = 3-\7'51 cos Ydh bty
d 1 j“‘ e VY
o . (A.3)
av v J, yiyte
ovy dN (“2 -VY
SotN= dy .thcn—-(l—-’a—;&v—-—-'-xo(v).
j yff‘d = Y1 y%1
Hence,

.
N=C- )o K (0)do .

The constant of integration, C, is easily seen to be w/2 by noting
that
- o [
N (v=o0) = J —-—dz-—: = co9 "i‘ = w/2
3 1 r Y

VY]-! |l.
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We may now make use of the following known formulas (p. 439, refer-

ence 25):
J".nxn‘.)d. =27 % T nsh)s[K (8L, _ (5)-L (=)K,_ (s)] (A.4)
= 2°71 /7 Din+die(K (=)L, (=)4L, nl®Kng, (=)} + —-,:-‘-'-’- (A, 5)
whcrol. -
2
Fal®) = g_o r(u::/.?; : (::+ D e

is a Struve function of imaginary argument. Upon substitution we get,

v
1
f; - 50 Ko(u)dcj- 5 KW

b4

]

'
4..'__

- :
- ;W [Ko(v)L' (V4L (VIK (v)] - o f . (A.7)

Finally, equatione A.1 - 3 and A.7 together give,

a ¥ --E ¢, 3
N=a 3 Nﬁ '\lfv ‘)N‘J

<

1
_— % ,lz K (v)+ .._.v...‘;.. CKOQV)Ll (v)-l-LO(V)K'(V)- -‘!;]} (A.8)

which leads to equation 3,8,

A.b, Integrating by parts, one cbtains,

o n o +
N=S. aq.’"‘“‘S doe *GxeV",0) = - ,‘55 dnsinhknGlke ¥, 0). (A.9)
-2 -a -8

Using the expression for G as given by equation 3. 3.b the function N

assumes the following form:
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1 c
2 O ...Ay ]ow = /l—]
N=- ...E..“ dy sinhuy( = + 2 ylog LT y l-y‘)
-1 N1y ¥ 14 1.y%

(A.10)

where u =ka, The first and the third term can be integrated imme-

diately as follows,

ro 1 |
; inhu d coshu n
N s\ gy 2220 » 5 ay 208 « I(u) Z 1), (A.11)
) ‘3-1 Jl-y! aa o vl-y’ 2d 5
~ 0 . I(u) I {u)
N}:j ldyy\/—l-y sinhay = 3-5 dy/1-y? couhuysza-‘-‘- ; 2 .
(A.12)
The second term in A, 10 is,
o 1.V1-y® a1l 1e/1y?
N=\ dyy log ————te sinhuy = o= — | log ———de d(sinhuy)
: ‘3-1 d 14/1-y% da u "\o 14/1-y? 4
ez A L (e tioher
®E I T eyt
Let 5 dy SoBYY  hen M B ‘\‘l ay S2ShuY ¥ 4 (a)
- y/1-y® W™ "0 T iy T

and,
e (¥
N4(u) = C + v S; dclo(u)

Since N‘(u =0) =0, we get C =0 also. Making use of the known result

(p. 438, reference 25} :

"
So dz :“In(z) =287 /% Cin+ hs[!n(u)Ln_‘ (')'Lu"nn-. (2)) (A.13)
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- n'h! (’)
= 277 /w T (n+$)(1 (-)LM{:) -L (s)xn+ (z)) -1-4-—- (A.14)
we furthor have

a Ny

N ::-2. ;T-t--a» 3'!3—- S dOI (0)

-k LW - L w] (aas)

Combining the expression above and that of A (equation 3.8), and
employing the following identities (p. 80, reference 24):

L, (-u) = (-1)*h L () (A.16)
tjt z + n
K_(we ™) = j{wl_(w) H-1)%K_(u)] (A.17)
and
K, () +In+!(u) K (a) = 1/u (A.18)

we obtain the simple formula,

% I 1=k
N=3% -i-k'_:{z - “C [Il(u)i-Ll(u)}}/[v!l(u) 131-:“@)] (A.19)

which leads to equation 3.17,

A.c Let v =aa and,

-8 -1 i
N = S dy e [yt-at/y = a S\ dyew‘/yi-l y . (A. 20)
-0 -0
Since,
el o K )
-;— %-!; = 5 dyevy\/;r-l = % -x‘v

- ol
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it follows from equation A. 4 that,

N/fa=C+ | do = K_ (9)
T

"

= C - K L .

3V | _l(V) 'i(V) *L_i(V)K_l(V)]
It is evident from the defining equation that N(v = «) = 0, Thus by using
the formula (p. 439, reference 25) below,
1
5‘ 3 K_l(c)da =~ w/2 (A.21)
o

and the asymptotic expressions of K, and L  for alarge argument, we
can determine the constant of integration C to be /2. The identity

that
K_n(ﬂ) = Kn(ﬂ)

enables us to write,

- w - -
N= 3 a{l-v[K (vL_ (v) Loiv)K‘(v)]} (A. 22)
A.d Let
+
C dy sinhuy | Awe Ny [alyf
Joa InE v
=a S dy sinhuy( ‘:’I_ 5 . ) (A.23)
° /1-y? y /

with u = ka. The first integral in the preceding equation is,

-inh y.sinhuy d 5 osh u

v d "
T L 10(\3) = l‘(k‘)
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whereas the second is

+ 1
. 1
I"e‘ = ) dy --y-\/l--yz sinh uy

o
Eince,

dN ~1
2 Moed = 31
vl i dyy ley® coshuy = 3 = I (u)

it follows from the identity In(a) = I‘n(s).

,a

" 1
y 7z ‘)o do r I-l(a)

- (1 (@)L (u)-L () (u)]

where use has been made of formula A.13 and the integration constant is

fixed by the special choice of the lower limit, 0. Adding up, we have,

N= a(N!o Na)

+
. Atae )1 () + all(@)L_ (@)-L_(w (0] | .

Substituting into the foregoing equation the expression for A as given by
equation 4. 12 and applying formulas A, 16-18, we get,

L jrta WL @

= . (A. 24)
‘!I! {a) +jKl (u)
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Appendix B. A Reciprocity Relation:

The effect at a point r and time t caused by an impulsive
disturbance at ;o and an eurﬂcr time t; < t is aqual to the effect at

?o and -to caused by an equal impulse at ;': and -t. That is, if,

3 - - = ”- —- _
ViG(r, t | roet ) = 8(r-r ) é(t-t) (B.1)
G=Gt=0 for y=0, t< ¢, {(B.2)
G"+3Ccy=0 for y=0, all t> © (B.3)
then
Glr,t H-'éto) =OT_, -t | 7, -t) . (B.4)
PROOF :
By definition
x -y *' -.‘ - N
ViG(r, t | rot)=8(r-r )8 (t-t) (B.5)
via(r, -t I;:,-t‘)-‘:& ‘;';;”“"1’ . (B. 6)

Multiplying equation B.5 by Glr, -t | ?l,- t‘) and equation B, 6 by
G(;.. t | ;;. to) and integrating with respect to epace over the volume
bounded by the free surface Sf and a great sphere Bm. and with

respect to time from -« to t' > to.tl._ we have,

C t' % — - . - e Py = —
3 dt 5 av {G(r,t| r_,t )V G(r, =t|r ,-t)-G(r, -t| Rt)VGa(F (T 1)
-0 Vv i l

= G(l‘l. t! Il'o.to) - G(!’o. = tolrl“tl, ‘B- 7’
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from equations B.5 and B. 6. Applying to the left hand side successive-
ly the second Green's formula and the boundary condition on the free

surface equation B. 3 and integrating with respect to t we get,

~-\t|
- — 8 - -
L.H.s'aj dt‘g. dS{G{l‘ t'l’ » ,EB‘ G‘?.'tll‘ '-t)
-0 Sf+8 %% o

o0

-G(rl' -t | T -tl) o Glr.t i £t )}

i f t! ' - - a‘ - -
= d 0 e " - | P
3 t ‘SS ds{G(r tlro.to) por’ Gir, t.r! tl)

- QL f
- - 63 —m -
.G(r,-t{r;-tl) Py Glr, tlx -t )}

l ™ - e a - -~
=z - = js {G(r.tlro.to) w G(r.-tlri.-t!}

f

— -t . g ‘-t'
-G(r.tlrl--tl) _8;‘% (r.tlfonto)}

tSuw

In dropping the surface integral over 3 as the radius of S grows
indefinitely large, we have assumed that |G| - 0 sufficiently fast as

[r| = 0. On account of the initial conditions, at the lower Umit wephave
Gix, =<t jxo,to) 2 Gt(x. o Ixéto) =0
whereas at t =t', -t = -t' < -t‘, gince t' > tl »

G(x‘- -t' lx' ’ -tl) = Gylx, -t' h:‘» “ tl) =0

also. Thus the left hand side of equation B, 7 vanishes and the

reciprocity relation B. 4 is proved.
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Appendix C : A Green's Function

To coastruct the Green's function satisfying equations B, 6-9 we
start by letting t =0+ and x, = o+ and return in the final result to
t-t, and x - x  respectively. Taking the Laplace transform with

respect to t and the Fourier transform with respect to x,

A o ~ o
ak.y. 8) = S‘ dxe -ﬂuj dt o“Q(x.y.t)
- e}
we get, from equations B, 6-9
a® ~
(-—-—- -k')az ‘(y~y , Y( 0
dy" @
-;5-: é + 4 é- 0 y=0
8 dy
and
131 - 0 ' ¥y e

It is easy to show that the solution for G s

' X |(y +
~ 11 Heltyemyy)  Ikltyetys), lrets)
E B - IT [Q - J-
LN Ikl 4+ s*/g
Ys=Y Vo =y,
> <
where Ye=7v, if y>vy o * and Ve =y if y Yo

Since G is even in k its {nverse Fourier transform is
' - a . T A
Slxyoo) = gz | axe™ Gk = 1 | dk coskx Elio)
- gl O

Use of the following formula



5“dkcoskxé(t.ky'- e 3 a:log(-.—-L.
O »

finally leads to

*
R

e g5 [los ¥

where R? = x‘ﬂy-voit
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-ky xl*yl )'/2
y.y. > 0
2 2 [
x 'Pyl
250 kiy4y,)
+ 2 j dk cos kx
o k+s?/g

and B = xit{ysy )
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T =1A/a,l

g = (%—BX)

Figure 3 (cf. equation 3. 40)

AIm K

k =/ Re k
G/

Figure 4
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Figure 5 (cf.

equations 4. 43 and 4.

49)




82

PART TWO (pp 84 ~128)
GRAVITY WAVES DUE TO A POINT
DISTURBANCE IN A STRATIFIED FLOW
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ABSTRACT

The subject of gravity waves in the two dimensional flow of
a vertically stratified fluid is investigated with regard to the dynamic
effects of a submerged singularity. Love's linearized equations are
adopted as the basis for the theory. Two apecit;ic cases are treated
according as the parameter N2 being a constant or a function'of depth,

where

o
e°

5o%
o
[

characterizes the density variation in the fluid. The first example
of constant NZ is physically a hypothetical case but can be given an
exact mathematical analysis; it is found that in a deep ocean with
such a density variation the internal waves are local in nature, i.e.,
their amplitudes diminish to zero as the distance from the singular-
ity becomes very large. In the second example an asymptotic theory
for small Froude number, Uz/gL <« 1, is developed when Nz(y)
assumes the profile roughly resembling the actual situation in an
ocean where a pronounced maximum called a seasonal thermocline
occurs. Internal waves are now progagated to the downstream in-
finity in a manner analogous to the channel propagation of sound in

an inhomogenous medium.



CHAPTER

I.

IV,

84

TABLE OF CONTENTS

PAGE
ABSTRACT 83
INTRODUCTION 55
FORMULATION AND THE GENERAL SOLUTION FOR

A SUBMERGED DOUBLET 90
THE CASE OF CONSTANT N°(y) 97

ASYMPTOTIC SOLUTION FOR LARGE kz :
CHANNEL PROPACATION OF INTERNAL GRAVITY

WAVES 109
REFERENCES 120
APPENDICES 121

FIGURES 126



85

I. INTRODUCTION

When a layer of lighter fluid is superposed on a heavier one it
is well known that waves may occur not only at the upper free surface
but at the interface as well. In an ocean the difference in salinity and
temperature due, for example, to the melting of ice, frequently gives
rise totwo such distinct layers. For small density change the wave
motion may sometimes be quite pronounced at the interface while the
free surface remains relatively calm (reference 7, pp 521-523, Vol. II).
This has been attributed asthe cause of the so-called dead water phenome-
non in which a ship may find herself unable to maintain a normal speed
because more power is spent with the interfacial wave motion. Various
physical situations also arise in the atmosphere for which the density
gradient in air is largely responsible. An example is provided by the
lee waves behind a mountain which is evidenced by the experience of
glider pilots and the appearance of certain cloud patterns.

Much theoretical work has been done in the past on stratified
fluids composed of a number of homogeneous layers of different densi-
ties. However, gradual density variation is the case more often found
in reality, and therefore seems to deserve further exploration.

We shall begin with a brief discussion on the parameter which
characterizes a heavy stratified fluid, such as an ocean. Clearly, if
the fluid at rest is stably stratified, the density must increase with in-
creasing depth, since otherwise a fluid parcel slightly displaced upward
would experience a buoyancy tending to push it up further. Using a

coordinate system in which the positive y axis points downward, we have



86

the following stability criterion:

> stable
-8-5—;:’ = 0 neutrally stable {(1:.1)
dy

< unstable

In practice it is more convenient to use the so-called stability frequency
defined by

2_ 486
Fo dY

The precise meaning of Sfa is made clear by actually computing it as

N (1.2)

follows (reference 1, p. 196, Vol. 1). Let p, s, and T be the static
pressure, salinity and temperature respectively at the level y, and

p +dp, s + ds and T + dT the corresponding quantities at a slightly
lower level y + dy. When a fluid parcel is displaced from y + dy to

y , it will subject to a new pressure p and adjusts its temperature by
an amount -df due to an adiabatic expansion, whereas the salinity re-
mains unaffected. Thus the density excess of the parcel relative to its

surrounding is

Sﬁ,= Plp, stds, T+dT-dé)- £(p.s. T) = _g_gd,w %%(d—r_ de)

Hence,
2 1 Fr o8 ds of d7 3¢ Jd8é
Ni(y)= . = @ R aY, 1.3
(v) f’,( T4 T dy 2T alj ) : )

The first two terms in the bracket above are due respectively to the
variable salinity and temperature of the undisturbed fluid; they may be

jointly referred to as

3 As’,(_ i[ﬁﬁi'[_’,,ﬁd_l])
e ?j_ = ol Ay ot dy (1.4)



The third term, beipg the consequence of adiabatic expansion when the

fluid ie slightly displaced, can be expressed in terme of the sound

speed ol

1 2% - e de g
fod) lpm B 2T dy —
Thus equation [. 3 may be writtea ia the following form
' P Lde
Ny = 9( g di- %) .8
which is called the Vaisala f{requency and can be obtained from insa-
surements.

In an actual ocean it is observed that Z\s;(y) usually ig pretty
s:nall in the top layer, rises sharply to a peak at the depth of about 30,
then gradually decreages and rises again slightly to another relatively
low peak at a few Luandred meters below, and finally diminishes to zero
at greaﬁ depths. The first and the secoad peaks are called respectivaly
the seasonal and the permmanent thermoclines, A typical profile is
showrn in figure 1, {taken from reference 2). As for the relative :nagai-
tude of the two terras in aguation 1.5, it is known that (g/c)?' is almost
a constant (about 0. 44 x 1077 scc.”%) and is comparable with respect to
the first term %"% at large depths.

Simple harmonic waves in stratified fluids have been studisd
quite extensively, for examnpie, by Yik (refercuce 3 ) and Eckart {refer-
ence 1) with emphasis on the diepersion relations. la particular, Eckart
has iavestigated the eifect of a thermocline. Siuce the compressiblity

of the fluid is included, e was able to deal with waves of both acoustic

and gravity types. For ocemas a mathematical niodel using an income



pressible fluid i. e.,

. LS
fo dy (1.6)

ie sufficient to bring forth the sssential fecatures of internal waves of the
gravity ty.pe. and this was firet adopted by Love, {reference 5, pp 373-
330). Based on Love's equations Yanowitch {reference €) has investi~
gated the dispersion relation for a stratified fluid with a plece~wise
smooth density function, £ (y). Ia the present thesis we sghall follow
the approach of Love to neglect the effect of compreasibility.

. since the -;nﬂueaca of a finite body ia a uniforn stream is per-
haps of some fundamental intersst, we shall forruunlate the prohlém of a
submerged doublet. Most of the discussion, however, will be miade with
reapect to an associated Greoen's funciion which is not a physical solu-
tion by itself but neverthiclesa contalue the essential features of the proe
blem, and from wiick various flow quantities {or the case of a doublet
can be easily obtained by simple differentiation. In Chapter LI we study
the simplest.case of a constant N‘?' and obtain the exact solution for an
infinitely deey ocean. The intornal waves will be found to have only the
local effect near the disturbance while the gurface waves may or raay

not appear according as

2 df 3
vt (290/8)7 £

a9y (1.7)

a situation remianiscent of the open channel flow of a homogeneous fluid.
Internal wavas of the type
cos K X

fX(K‘j) ,Sl‘nKK-
B (x. ™)
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may occur for the case of counstant 2‘2‘2 only when the depth of the fluid

is finite. The correspoanding solution can be worked out in an analogous
manner as that in Chapter Il but is not given here. Au approxiisate
solution for constant MZ andlarge %Jz has beea studied by lLong {reference
7) when the disturbance is cauvsed by thie unevennegs of the bottoin of a
channel with a {inite depth. [He found that many modes of waves of the
above~meationed type {(cf. sgquation l. !) can be excited, the nuniber of
which depends on the riaganitude of ths parameter 5}Jii£. In Chapter IV
we asguce the funciion N‘:’{y) to decrease in:onotonically with depth and
thue to resemble to soine extent the shape of a therm.ocline. \n asym pto-
tic theory for small » rouds sunbez, or large L, '-'.."‘)', will be developed
using Langer's well-known theory of a second order differcntial eguation
with a large parametar. The internal waves generated will appear as a
large number of discrete niodes each confined inside a channel, similar
te the high frequency souand propagation in an atmosphere with & (21 perae-

ture inversion.
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1. FORMULATION AND THE GENERAL SOLUTION
FOR A SUBMERGED DOUBLET

Consider the steady, two-dimensional flow of an inviscid and
incompressible fluid bounded above by a free surface, and having a

density which varies with depth., Let

(@, V) = velocity components
P = pressure - P
P = density, and

(x. y) = sepatial coordinates

with positive V and y pointing vertically downwards. In an other-
wise uniform flow with a streaming velocity U, let there be a fluid
doublet of strength m immersed at a depth h and oriented in the
negative x-direction. The continuity equation then requires that

(Fh)z + BV)5 = = m 8D S(y-h) (2.2)

and by the principle of momentum conservation,

<1

(a

=i

5) + };x— — 0 (2‘3)

X+ V

“o|

and,
(gvzﬂuvvj)yﬁjagf:o (z2.4)

“o|

For an incompressible fluid, on assumes the following ""equation of

state'":

= af;+\7/.=o (<.5)

U&U
rtlvn)

which states the constancy of density along a streamline in steady flows.

This reduces equation 2 2 to a simpler form:
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g + V

= [m,-/fl"E)J 508 ) J(jh—[) (2. 6)

Let the free surface of the fluid be described by
Fizj1=5- 5 = 0, .7

then two conditions hold for a fluid particle lying in the surface.

Kinematically the particle never leaves the surface F, i.e.,

DF
Dt

= QFE4\7F7‘— 0 on F(x,y) =0, . 8)

and dynamically the surface pressure remains unchanged throughout

the course of the particle motion, l.e.,

=

PE _ TF < v h =
Tt ut{-rv}’ 0

on F(x,y) =0 . (<. 9)
Let each of the flow guantities be expressed as the sum of the

equilibrium and the perturbation values:

(T.v) = { Uru(tyr, v(Z,y)}

=)
il

by) + p(X,¥) PR W

and - _

P = L9+ £X )
in which the static fluid density p, ie a given function of Y. Assum-
ing the disturbance caused by the submerged singularity is so weak that
the perturbation quantities are much smaller than the corresponding
equilibrium values, we may ignore the second order terms when equa~
tions 2. /0 are substituted into equations 2 3-6. Thus, in terms of
dimensionless variables:

(x,y,4.¢)= (X5, 4, 5)/L (2.11)

=) —
with L '—'(-;; f’_’_f_' )I where h, is some depth at which dﬁ’/dy + 0,
o 4 o

~|
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we have the following linearized equations valid in the region y>0;

Po"__ ?L fo — O {C.lc’.)

.13

_ﬁuul‘l‘P(:O :.‘ ..),:

G, L4

‘Pouvx N F)’ . g‘Lf =0
LR (2.15)
‘nd. L

(2. 16)

Uy + Vy = - [ m/{_‘fg(k)} é(l'() 5()/_}‘)
As usual, the dash is referred to the ordinary differentiations.

Cn the free surface the tbondary conditions 2 8 and 2 9 are
linearised to give:

;;"—‘ ‘—j;a\

2.17
fory =0 . ( )

Up, +vp =0 (2, 1x)

Furthermore, the flow field should be unperturbed at both far upstream
and a great depth below the free surface, i.e.,
P O (2a19)
(w,v,p,¢) — 0
y-r {2.20)
The simuitanecus equations 7 /3- /6 can be combined to give

& single equation for the vertical component of the velocity, v,

Voo tYyy e 0t (v, r Av ) = - M Scx [ S'ty-%) + n'§ly-h)j, yro
where (2.21)
2= jj_/u‘ = I'roude numbesr "4 {2.22)
n'y)=faly) [fily) >0 (2.23)
and

M = m /L_,lfof'ﬁ) (2. 24)
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The positive-definiteness of the function n¥y) implies that the
equilibrium density increases with {ncreasing depth, as required for
the stability of the stratified fluid. The boundary condition of v on

the free surface is obtained from equations 2 12 23 2.16 and (. /8
L . . — oy
Vy+ A v =0 y=0 (2.25)

Ae for the behavior at infinity, equations 2 19 and 2 20 require that

X — — O i5 %
V> O as (2.28)

) = oo : tec.cry

Once v(x,y) is solved from egquations 2.2/ 2 :§-27 the other
flow quantieies u, p, p and { can be obtained from equations 2 /6

23 2.5 and 2.7 respectively, giving

x
u(x‘y)z—/d'fl/,(f.ﬂ—’”5“’5(/-“) (2.28)

~ o0

o
(= { U,-
P(X.,y) = Ufm)f’ W = L)j:)a\/)’)z/,d‘? !l/]y;')/)+ TL—; );’x,o?/—/y_)(z.z(;?

o K
/ i 1 2w of ~
Pla,y) =- uﬁ’f’ng/? vif x) (2. 30)
snd, ) B i [ (
Fixg = g df vi§ o) {2.31)
a0

In the preceding formulas the lower limits of integration have been
chosen in accordance with the fact that all the perturbation quantities
vanish as x — - «. Any stream line within the fluid is given implic~

itly by the following integral equation:

rr /]
J('x): Y r‘i ds VFE.W,[U’r u(_;,Y)J {2.32)

which can be approximated for points far away from the singularity

at {0, h) as,
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% )
YO E Yoo G 4V a) (2
with
Jo = Y (@) . (2.
The fact that
MSI(’f‘)[S/(‘j"h)+nl(k)g(j‘h)J = *J 5("1 5(7-/\,) (2
where
d J L
Of-,—. Mglsp -], {2
suggests the introduction of a new function G{x,y) satisfying
P o
vir, y) = = AL alxa y) an

. 33)

34)

.35.a)

LN

for, upon substitution, it is easy to see that G(x,y) is governed by the

following equations:

Gt Gyy+ 7 (G, rA'G ) =~ 5(x) 5(y-h) y>0 {2.37)
a i~ . =
G, + A4 = (2 y= 0 (2. 33)
L Sy e 0 {2.39)
=3 as
Y —% €20
(2. 40)

These equations obviously identify G as a Green's function.
It may also be observed that in terms of another function

8 &
v (x,y} such that,

v = 2 yY (2.41.

)

3—Phw,ui,c:an.lly v® corresponds to the solution for a source immersed at
the point (0,h) emitting fluid of the same density as the surrounding
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or, equivalently, .
s N
vi= [ -ndr] G (2. 42)

equations & 18-3| and / J all become simpler:

L.y ) = = (k,y) — M S(x) dly—h) (2.43)
y . 'F;" ‘,S MU ~ %
Pl y) = UFHA(y) y ley) 4 = 80 S(y-h) (2. 44)
. ST 5
flr.y) = U Se0) viin y) (2.45)
_L— a/sr"
Clxy = [ VIi*xo) (2. 46)
and e | 5
/)/(x) = ,X:u ) vV (x Yo ) (2.47)

Summarizing, we note that the whole problem hinges on the
solution of the Green's function G from equations 2 37 - 40 ; the flow
quantities are then given by Vequ&tion- 23, and 2.43-47 . Most of the
important features in the solution will evidently be revealed by the be-
havior of the Green's function also,

Let us proceed to derive an integral representation of G. Apply-
ing the Fourier transform defined by the following pair of formulas,

-F(l- ) {oo —Akx )
L y) = | dxe G(x.y) {2.48.a)

L -

= J Rk _
G(x,y)z;\?jﬁ“f@ Flie.y) (2.48.b)

we obtain from equations 7 37- 40 that,

"

-?(y) Tnl(y)—F-[-,\+,\L\rnlry)~j(LJ'{(7)=*5(7‘[‘1)) y> o (2.49)

f+af =0 y =0 (2. 50)

)
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yo—e = (<. 51)
The solution for f(y) is known to be of the following form:
Foyy = A0/ Wik) -
where
‘74.:{'; :1;=j 1'*: j)i'L
_ (. 52.%)
Jo=9, $=h  iF gk ”
and
W(y)= Huyf,u - £y £.0y) (2. 52. ¢)
is the Wronskian of the functions f and f‘ which are two linearly
independent sclutions of the corresponding homogeneous equation
£+ 2 e (0 f =0 (2.53)
and are such that,
= e ‘“ y e (2.5
—F; + AY . = o for y =0

Finally the inversion formula gives the Green's function G.

Explicit examples will be worked out in the subsequent chapters.
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1Il. THE CASE OF CONSTANT n?{y)

Let us consider the special case of a deep ocean with the simple

property:
neyy= % [/f, = n = constant (3.1)

which represents a fluid with an equilibrium density increasing exponen-
tially with depth, i.e.,

n.Jy

Sayy = (0 € (3.2)
This is of course a highly idealized model of which the digcrepancies
are perhaps comparable with those of an isothermal atmosphere of
infinite height in the theory of atmospheric waves, whare p, decreases
exponentially with the height above the ground. In both cases the
solution should not be expected to agree with physical realiiy at the
levels where the distances from the water surface or ground are great.

Since the coefficients involved in the governing equations are
now constants, an exact solution is possible. It is easy to show that
the following functions, fl and (3' are the two linearly independent

solutions of equation 2 53 . satisfying the boundary conditions . 54 and

2 55 respectively:

- (A-B) Y
f, = e (3.3.2)
. _(A-B)J . - -(A+B)y
f, = (A-A-B)¢ SR AT {3.3.1)
in which,
A= n'/2 J D= e;kj_},‘lfkf _‘ ij: ni-n‘fﬁ,\f {3.3.¢)

and the equare root . fé-k? will be defined to behave like

(3% k* —= Uk as k| —» oo {3.3,d)
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along the real axis of the k-plane cut along two vertical lines:
(B, P +ix) and (-B, -f - i=). The solution for F follows immediate-
ly from equation . 57 . In order to have a real Green's function, we

shall take, 4‘ 5 = /
k:.-}K.j\:_' ge, "%’I‘K, "f))‘}';_(‘(, jﬂ ]/’W{k,)‘\;’ (3.4)

" which may be substituted into equation 2 48 » to give,

k (~¢’ {AK’(‘. I
) i 'l f \ [ /
Gr.y) = 2 Re jdk € Hlx pI% (5 )/ Wikh)

- @

) (AKX } ] . . ,
=37 ¢ G | "}/;LKL?« -
o)
Afkx+ [pE kT (g 2h) ]
' ~Aly-h) [, e
~ T C Ee | dk o = = ———— {3.5.3)
P _,M ‘.1//3‘- L; + ol
N /
with
/ &y
A= A=Al = A- /i (R & w)

In obtaining the first equality of equation 3.5 2 use has been made of
the evenness of f(k,y) in k. It may be remarked that according to
our nomenclature (cf. equation 2 52 b)) Y5~ Y™ br -h| and

YotV =Y ¢ h, and both quantities are positive.

The integral, . (kX e fAZETY)

/ -
J=ldx L e (3.6.a)
= v B Wt

can be trmstorme;i to &2 well-known representation of the Hankel func-
tion of the first kind by introducing,
ki)36059 . X;: Eq(j'csé Y-‘—' ESI’?L}"

Ths result is (sce, e.g., reference 8, pp. 823-824),



e -« LYIJEC‘”S -
(_ | de e = 7 H (38)
< T TH, (3. 5.b)
-+l
Equauon 3.5 2 may now be rewritten in the following form:
] — A -h) i 1 (r) 7
G(x.y.) = 7 € ! Ke L\H:,;x‘,aﬁ, ) -~ H, f’/\‘ilt’ )J.’
4 \ - 00 ) L‘)\[Ax +N'?i.il i_ij)J
_AlY-n . e -
b ? dk —= S (3.7.2)
n € e e 7
- v'lj " +
where : o .
R=[ x*(-m]1"  rf=[x+grh)t]", {3.7.0)

When B2>0, or B = real and positive, we may use the fact that

H:){)g&) _ '_-L;;’)\‘}K.“ 0 \[‘o‘)\{;&\
I

hence the

and integrated term in equation 3 /£ a may be

written
o & d y \/ ¢ 5 £ g )
fo i H, (2300 - Ho R = YR - Yo AR ) | (a5
On the other hand, when 2 < 0, or f =ib = imaginary, we have
instead,

,

Roi [HpR) - Hitagr®)] = 7 (K2R ) - KofA bR*) ] t3.8.)

by noting that iHoh)(lxbR) = % K_(AbR). These various representa-
tions will be useful in later discussions.

To proceed the examination of the obtained Green's function we
first observe that the integrand of the remaining integral in equation

3 7.a poseesses simple polee on the real k-axis if simple zerces can
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be found from the following equation:

L —

LJJﬂl-WZ‘_ = - = —(A- nl/;ik ) {3.9

The right hand side of the preceding equation is alwaye real., In the
case when B® = n?(l-n?/4\%) > 0 the left hand side is real only when
k is real and [k| > B and is then equal to - |/%3%-p% | on our chosen
branch. Consequently real roots will exist only if @ > 0, or 1 >n¥2\%
I pt= -2 <o, 1./p-x% = | /WDT | for all real k, hence the same
conditions holds for the existence of real roots. It is easy to show that
when they exist, the real zeroes are located at the pointa k = ¢ A.. We
may summarise with the statement as follows:

exist at k =14 7 .

Simble real zaroes of «q, 3,9 if o Q ar ,) n 1% Yyl
do not exiet <an

VWhen « = 0, the roots at k = + f# are only two branch points.

When its integrand has simple poles on the real k-axis, the
integral in equation 3 72 is not well defined as it stands. However,
we can define it by fixing the path of integration such that the singulari-
ties are avoided. At each pole this can be achieved by deforming the
real k-axis either above or below the pole; the correct choice is
dictated by the requirement of equation 2 39 that G{x,y) should die ocut
as x = -x. Letus decide to adopt the deformed path C which circam-
vents both poles at k =\ and -\ from below along two infinitesimal
semi-circles 5, and S_ respectively, as shown in figure 2.a, and

then study the behavior the resulting integral as || == e, i.e.,



j:__ (a!k £ o . '()(,Y)':)\(",ff*}"]

{32.11.3)

Thae above integral can oo traasiorured succeasively as follows:

.
[ ¢ r I(*(k/(*‘ilgz'k Y)
i ) ©.
bofpw |+ +] fde = - — {3.11.0)
L S ¥, "5 TR
i\
» ( k‘)((["‘j’”'; Y: r . eL(ﬂXf'JELK Y)
=3 rdk == ~ Bt }dkg‘ﬁ’"‘ B 11
=3 ; : 2 f— - Ye - 8 1S :...1 .
- Lvl Jzi_k‘ + & J+ - L\; lJ_K + o {3 <)

ikl + pxt Y

[ r () e
':.{‘1‘ e 50“(*(3(-3';1(‘}41
vcf ‘-b_rl USH’ Y ? r\()
W ,L_'K y
(o 14 g st (3.11.9)
+f! +| Ko = -
{’ssr -ls-_.t Lj_/s‘; K.L + ol
[ egrm_‘;q *f}&‘-n‘_ Y )
SN[ .
ch ¢ T—F"-_k‘,«g(_
' {3.11.9)
~ He Hix) & jT\"-f;—‘ s Al exi,[_,\f)\".‘ﬁ(jr Ly T
f Ok d st Y
e
= | ok —
~r1‘ L‘ila — K 44
1;_.1)

iy A P =% 2% =
— H(as H % fg-jkl_,g Sim AKX Qxf[— /\,J/\L_/J‘ {j+l\.)J ’

The procedure involved above will now be explained step by step with
reference to figures 2.a and 2.b. ¥rom the construction of the contour
C, equation 3.11.b follows at once from 3.11.a where the symbol P.V.

refers to the Cauchy principal value. In the first term of equation PRIN
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3,11.b the "spectrum function"

iy Ry

0 P‘» kS a o
{s even in k which is purely real within the range of integration,
hence % may be replaced by x|, as expressed by equation 3. 1l.c¢.
The broken path may then be considered as the sum of a continuous
contour C& , which is the mirror reflection of C, and of two small
semi-circles Si and St spanning the gaps at k =\ and -\ res-
pectively from above in the counter-clockwise direction (cf. figure
2.b), thus equation 3.11.d is resulted. To see how to arrive at
equation 3.11.e, we note that when x> 0, S'i and S+ together form
a closed circuit and the sum of their corresponding integrals can be
evaluated by using the residue theorem; the same {s true for the pair
S‘_ and 5. When x< 0, |x|=-x; by changing the variable from
k to -k the integral along S‘; is easily seen to cancel exactly the
one along S . In a similar manner the integrals along St and 8§
cancel also for x < 0. Thus equaticn 3.11.e follows. A Heaviside
function H(e) is used as a multiplier to the residue term, on account
of equation 3,10, Finally the contour C canbe replaced by the con-
tour I' along the sidejof the branch cut extending from B to f 4+
(cf. figure 2.b), without altering the value of the corresponding integral.

This leads to the last equation 3.11.f. It may be added that

< 1 L ﬂL ] L/“-i\___ LLi
S L Bl KRS K2 o e

|

It will be shown in Appendix A that the branch cut integral in

3.11.f dies out as |x| = = . Upon substituting the above resalt into
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equation 3.7.a and making use of the asymptotic properties of the
Hankel functions, one readily sees that the ''radiation condition' 2,39

is indeed satisfied with the contour C chosen by us. The solution for

the Green's function is therefore:

C AR e
""" ([ H, A3k ﬁHa‘Aliﬂ j]

Gxy) =-ge
| Okx e JEERT (gt R ]
L _A!,{j';l.’f{ ‘f dk _‘Lc . S {3.13.,a)
2T £ic o [§i o

L AR, ey | M ety T
=—7 g [Ce { [ Ho /\IJ/\]* He )‘13& ) |

+ Hit) ,L},m.}‘!-ﬂa;r" Sin Xx €xp [ Alg-h) - AJApT 92 R) ]

AL kx +J‘95k‘(§+!‘t\J

P-l', ’J(L f =

LVV’ "j"__)\)‘ + ol (3.13. :')b

/ ‘_A“rwﬂ
...1_,:(' t e

7 etz [iEpTdie N Cxp [- Aly-h)- AN (R ]

AR e TP
-4 € Re ¢ [ Ho@WpR) —Ho @ FRT) ]
('A[ k(x| + Jr,g"-" "—( ‘\7’ +h )J
(y-n) f :
s -AtY Re de £ S {3.13.¢)
2_‘1'1" ,‘{_' L- ‘Vp J)[__kl 1+ GL

/

The preceding formula will be studied in greater detail later,

At this stage we may recall a few facts from the theory of gravity



134

waves in homogeneous fluids. In the case when there is a disturbance
near the origin, in an otherwise uniform flow, simple poles on the
real k-axis correspond to waves that propagate downstream to infinity.
1f the depth of the fluid is finite, say H, then those far-going waves
will or will not be present according as

| > U/3H or | < U?gH —
respectively. The value ,/gH is called the critical speed of the open
channel flow. In stratified fluid the simple poles alsc give rise to the
downstream-going waves as represented by the first term in equation
3.13.b, Comparing the two criteria 3.10 and 3,14, and noting by
definition that

T /
faai® (1.7 o= QLB et
7’), 2L = J, fﬁ e He ALfe, £ (3. 15)

we may conclude that in the present example, the increasing fluid
density produces an effect equiva.lm-:t to an effective depth H, of an
open channel. The quantity ,\«"?H—G may therefore be considered as an
equiﬁlcnt critical speed.

Before going into the discussion of the general case, we cite

the following limiting cases which may serve as useful checks.

(1) @ =0(n* = 222, B = \):

The integral in equation 3.7.a can be expressed as a Hankel
function (cf. squations 3, 6.a and b) which in turn leads to a Weber

function (cf. eguation 3.8.a). Thus we have
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and from equation 2. 36, the vertical component of the velocity

Vi, y) = - M é“)‘(. .",f)i’}c_z)f‘ 3 laa
s -
{4<-h ) |
o v 4 .~ ‘.J . L7 ) /\ / _’ ‘Y ALK )
= A th,L }h‘.-ZJ\ fioe i ? 2T
S I £e g ma
o e R (2.17)

No far-going surface waves appear in this case. Since

Yok} v 2 sz -T - AT )

T ain ) ‘
s L {q..‘. 3

the internal waves dis out with [x| at an equal rate in both upstream
and downstream directions like lxl'%; they are strong above and
dimninish exponentially below the level of the doublet {y =h}. Howaver,
unlike a surface wave which decayt monotonically with depth, the present
solution is uscillatory in y because of the behavior of the Weber

fanctions.

(i) n? =0 (f? =A =0, a=x>0, = &) - - homogeneous fluid:

Using the formula

L 2 7\__2 _‘J:. = ) -
\""A/‘QK ) = T log /\/}tﬂ ) A 3 O (3. 1)

we obtain from 32.13.a and b two equivalent expressions as follows
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3 ¢ {1 ~ o I(*/\

= Xl(yrh\ \ 12 204y
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— PARRE:
-+ ‘~!”>\X\‘_'

in which the bracket may be recognized as the velocity potential of a

submerged source in a uniform stream of a homogeneous fluid (refer-

ence 3, p. 489).

We now return to equation 3,13, c. Consider first the case

2
g =n® (1- --“-:‘) > 0. The Hankel functions can be replaced by the
~ 4\ {74

Weber functions (cf. equation 3.8.2) and the two branch points at

k = + 8 are located on the real k-axis. For large [x| and a fixed vy,
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thus one may use the asymptotic property of the Weber function (cf.
equation 3.18) to obtain

I 7 * 7 ) N { ﬁ_,fr b \ e ‘;} ]
Z[\To{)‘#Q )= \]/o ‘\)‘-{J&'J == ’);_"[ Yo"’\r’j/i—“"z'/\”'ﬁf{\' ro‘/\/’y’t,‘ J

(0
:‘_f,,;‘f f"j S \3/)‘}’5U ) {3.21)
¥ }Xi,/‘ / £

The integral along the branch cuts is evaluated asymptotically for

large |x| and a fixed y in Appendix A with the following resuilt:

ifvd. a2t v ) . _
a(k/f.x’*v'ra"‘ % )‘S;L o] /)c/'i’l )
[ £ « o LR e
| z’,\]k o = N L\*)Tf,g j (3.46)
l/"! ['_\‘/@-/\L+ oL / &"\/X//L
J

Combining equations 3. 21 and 3.22 with 3.13.¢c, we have

/ IAZas[ Y+
——I—‘/‘{_ n) "/\;— \ i) } A)

> } N p [y , < . 4
G(x, L/) e J His H(X) )%-JA E.rfddm Ax &

o e 3/ / )
T oy p T (FE M o e
+ r;f i‘“’ f - o Ji- J»\_]_J-";*’T:’r‘ (X <Nl *{Jf"’ "gi_:’)j {3.23)
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The first term in the above exp;’oalion represente obvicusly a
surface wave of wavelengh 2vw/%\%, which exists only downstream of
the disturbance and persists at x — o, The second term represents
an internal wave which propagates with equal strength both ahead and
behind the disturbance, and with the wavelength 2w/A which is longer
than that of the surface wave since )\ > f (cf. equation 3.12), Although
they die out like x| vé in the horizontal direction, the internal waves
do not diminiel. with depth as fast as the surface waves; in fact the
former starts decaying exponentially only below the depth of the dis-
turbance (y =h).

In the other case of p? = -b®*< 0, the surface wave is the only

significant term for large |x|:

) ) .
r~ VN N i I O / i i '
Gley)= Heud )=l At Stinha erpl - DR - A A% o) ]
VA ,\ ~ "4 ~ -

,

i
i
-
P\-
g

The remalining terms in equation 3.13.c are exponentially small for
large |x| .as can be seen by first ueing equation 3.8.b and the follow-
ing asymptotic property of the modified Bessel function:

e

:\zb(’z)\\‘,kﬂ: ,é,"'a)

and by carrying out the same analysis as before for the integral around
the branch cut, which is now entirely on the imaginary k-axis. The

details are omitted.
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IV, ASYMPTOTIC SOLUTION FOR LARGE X : CHANNEL
PROPAGATION OF INTERNAL GRAVITY WAVES

In this chapter, we shall study a case where the density strati-

fication is such that nz(y) decreases monotonically with depth, i.e.,
mty) < 0,  for JE0 (4.1)

as depicted by figure 3, which partly fits the shape of a thermocline.
From the end of Chapter 1I, the solution of our problem is seen to
hinge on the explicit solution of a second order ordinary differential
equation. This in general is not feasible unless the expression for
nZ(y) is extremely simple. liowever, for very large values of the
parameter A 2 o gL/UZ. the results of Langer's asymptotic theory
(reference 10, p. 91 £ff) can be used even when nz(y) is prescribed in
as general a way as the present®. e shall therefore limit our investi-
gations to the case where A > 1. Furtﬁermore, only the Green's
function will be discussed in detail as it reveals to a sufficiently full
extent the essential features of the problem, and from it the physical
quantities u, v, p and f’ can be easily computed in a straightforward
manner.

The transformation,

Y
_+(nd
2/” )’F'(j)

fy)= ¢ (4.2)

£ For a similar application of Langer's theory to the acoustics of
inhomogeneous media, see, e.g., reference 11 and 12,
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brings equation 2. 53 to a standard form:

F' {)\lfnﬁj)—kf} —~(nn’+ 714/4)f F =0

(4. 3)
which belongs to the general class treated by Langer. To obtain
asymptotic solutions uniformly valid even near the turaing point
y = Y at which

niy) = k°, kI < M(O), (4. 4)
Langer introduces the following further transformation:
1
Fly) = (43/) t 5(7) (4.5)
2
with ¢¢" = Ny k. (4. 6)
Zqguation 4. J can then be written as
d¢ 2
—= + AgE = Qf (4. 7.2)
49
where,
1 r Z
@ 3 (@) g2, . 4
ﬂ=_L - B —(¢) (77)71")7/1)
2 (‘)b/z 4 (?5) (4. 7. b)
Since the function f1 is bounded if
! 2
by # 0 for 9 =0, (4. 3)
2
and if 45(}) is three timmes differentiable, for large A
equation 4. 7. a becomes approximately,
4
i -
Tt AdE =0, (4.9)
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The solutions of the preceding equations are the Airy functions, the
properties of which are briefly listed in Appendix B. Thus one may

expect that

(4.10)

F.,‘ o ¢,)-%z{4:(-x”’¢> F
IRl = @ Lo cm

are two linearly independent solutions of equation 4. 3 in the lalympto-
tic sense; this is indeed true and is justified rigorously in the refer-
ence cited. The omitted terms are of the order 0 7\") relative to
those given above.

The function ¢(y) can be solved from equation 4. 6 with the

following result:

Y
3 Z L
for y<'Y, 5¢/‘=f4n(f)*k dr ¢ >0 (4.11. a)
J

W

s, Wk 17
for y> Y, 3(-¢)‘.—=]Y,ut nr) doe . $<o0 (4.11. b)

in which the positive values of all fractional powers are to be taken.

The condition that ¢’ should be non-sero may now be examined.
The only place where ¢  may vanish is at the turning point, as is evi-
dent from equation 4.6. In the neighborhood of such a point we have,

from, for example, equation 4. 11.b

4 2 o V/.
";'[‘ﬂb)% g./j[,"[’”z()().] (=Y )= F[ncy2] (- y)*‘- f c
Y

? / 3
= {- )] }/5 ;(y—Y)A + Of5-v)*]
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Consequently for 75’ to be non-zero it is necessary to have [n (y)] f
which is guaranteed by our monotonicity assumption (cf. equation 4. 1)

In view of the asymptotic properties of the Airy functions the

solution £, which is to vanish as y—» should be of the following form,

/M/y[sﬁ A4 4%4)  (4.12)

To determine fz we first rewrite the free surface boundary condition
2.55 in terms of E(y).
Fle £ = 0

L/7s
e ¥ ﬂqu[F (A )F ]

TR Y 107 Y B S

5ince the square bracket in the last expression is always bounded, we

obtain for large A Z, that
(4.13)

£/+ ,{_ng 0 Hor y: O/

in agreement with the present degree of approximation. The asymptotic

expression of f?. should therefore be

.y‘_ _' %
£ ¢ -4[7 "")’(45) 2 fa Ac(-2%) - P8 (~A/’¢)f (4.14. a)
where 74 ,_/é '
Py (2 ., i (A7)
;a} — ("] A 3 (—/‘%Sb) (4.14. b)
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With the aid of identity B. 1 in Appendix D the Wrouskian as

defined by equation 2. 52, ¢ can oe easily calculated; the result

T
y, ~) nd
W(k.y)é’#f\/"e/ ‘g (4.15)

Equations 4. 12, 4. I4.a and 4. 15 may now be substituted into 2.52.a

for the Creen's function:
= Ak X
Glxy) = z%/a”‘ e Fth ) A 4/ Wk h)

J 2 Ak ¥ L
1y, L4 a ¢
Z . take »f/.” 7/44 e ,45(4445,){

v : e -Z ~
QA58 - PBi-A4)f (84)" P’ (4.16. a)
in which,
& _ Pl) (4.16. b)
¢ PYe)

The integrand of equation 4. 16. a is a single-valued analytic
function of k except at the possible poles in the complex k-plane. At
the first glance the points k = &n(yi) where y, = U,y and y, may
appear to be branch points; a more careful study shows, however,
that they are not. The details of the argument is given in Appendix C.

As is usual in mmany wave problerms, if the integrand of the
Fourier integral representation of the solution has simple poles on the
real ke-axis, then these poles contribute most significantly to the far
field. An examination of equation 4, 16. a shows that such poles exist
at k=& [km’ , m =1,2,3... which are the real roots of the following

equation:
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. . -4 ’ 1
P = AN[Ai(-A%¢,)-A "4 AL(—A/’ém)f-ﬁ‘ 0 (4.17. a)

where

Yo
3 [ X Z
_g_(qu)é = /o S NE) = kAT (4.17. b)

and

A';(z) = ;—2/4'(1) (4.17.¢)

More detailed study of the foregoing equation will be postponed until
later. Following exactly the same procedure which led to equation
3. 13 we can show that, in order not to have waves at upstream in-
finity, the integral representation of G(x, y) must be defined on a
path C constructed by deforming the real k-axis below all the simple
poles at k =ﬁtlkm’ , as shown in figure 4. Then the contour integral
along C may be transformed to an integral along a great circular
arc D in the upper half k-plane, plus the sum of residues from the
simmple poles enclosed within D + C. DBy using the asymptotic for-
mulas of the Airy functions {cf. Appendix B) the integral along D
can be shown to vanish as the radius of the arc becomes infinite.
Since the contribution from the possible poles which do not lie on the
real k-axis are exponentially small as |x|-—= o , only the residues

from the geal poles are retained to give the following result,
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—

r = d:y . 2
Glty) = - 27 He “ HCX)Z Sin(A k| 2) G, Ai [—fl/qum(JG)]'

m=|

Y f 9P—,
AN bty )] [ $a40 ¢ (.‘f()] (N); = k]

b A ey T S Uk )G Ac[A (]

= - 2T A 8
m=/

(4.13)

/;
AL k] [ 09) S Dk ( )—//r..,/

in which qb (y) is obtained by replacing k by k_ and ¥ by Y_ in
equations 4.1l. a and b, whereas X1 denotes (GZ)? 4,

Some general observations may be made with regard to the
dependence on y of the Green's function just derived. In view of the
definition of ¢ and the properties of Ai(~ 2 ) the following two fea-

tures are evident:

a). qf'm(y) always decreases with increaeing y and

e U oscillatory
b). when Ym% ¥ 45,”(5’)?0, AL A gﬁmr’y)J is _ iny.
monotonic
It follows from equation 4. 18 that for increasing depth and for a
fixed x > 0, the m=th mode, which is represented by the m-th term
in the series, oscillates when y < Ym. and decays exponentially

when y > Ym. Hence the quantity Ym plays the role of the depth of

a channel within which the m«-th mode is effectively trapped.



116

We now return to equation 4.17. a for the approximate location
of the real poles. Since both Ai(-z) and Ai(-z) have zeroes only when z
is real and positive, and since A is large. we may use the asymptotic

formulas B. 4 of Appendix B to get,

44 T -1
p=0-= ELW" {(,os (S ) ~ A [ntoY- k2 Cas(S,.,-—’-z}-)}[H 04 )J (4.19. a)

with
Sm= Fad (4.19. b)

The value of 5 must then fall into the following range,

(m+-i~)Tr > Sm > (m-Z)T (4.20)
Since Vn*0) - ka is bounded for real k__ { [kml < n{0)) and A is

large, s is closer to the me«th zero of Ai than to that of Al; in fact

we may say that,

S = (m—;',,—)'ﬂ'['* ’O“‘h,)“ (4. 21)

Due to the monotonicity of n{y), lkrn[ decreases while both
Ym and 4>m (0) increase with increasing m. It follows from equation

4. 17. b that if
-4

jn( ¥) dj < N

0
where N is some finite number, there is an upper limit M for the
integer m beyond which no real roots can be found for km' However,
if the integral above is infinite, such a limit does not exist and k = 0

ie the accumulation point of the entire sequence ﬂkm” as m—» oo .
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As is clearly exhibited in equation 4. 13 , each Ikml corresponds to
an eigenmode and is inversely proportional to the associated wave-
length. Thue while the spectrum of the wavelength is discrete and has
a lower bound in both cases, it also has an upper bound in the first, if
|kM[ # 0, but not in the second. The following table summarizes the

situation just described.

0
fn(y) dy No. of eigenmodes Max. eigen-wavelength
o

finite, if |k, | # 0

finite finite (= M)
infinite, if ]kwl =0
e fe;( dy= 2[4, 1%
i )’) V= 3LFm
infinite infinite infinite

In equation 4. 18 the unspecified upper limit of the sumrnation, which
is also the number of possible normal modes, is given by the second
column of the table above. When the integral ;/ fx(y) dy is finite we
may calculate roughly the value of M, as follows. Clearly M must be

the largest integer such that
o0
Y
240" & [ ney)dy
Using equation 4,21, we have

| 00
M < o7+ %[,ﬂ(ﬂr/y (4. 22)
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which indicates that the larger the parameter]l, the more modes will be
excited,

We shall investizate the lower modes in greater detail. For
the first few values of m, qu (0) is small for large A . It follows
from equation 4. 17. b that Ym T 0. We further recall that in our r;1I(0)< 0

model hence the following approximation is valid:

NPT ni-1nandl q (4.23. a)
where
No= n(0) no’—_- [in(y)_] (4.23.b)
' Ay y=10

Dy definition,

N(Ym) = koo = - 2naind! Y

therefore we have,
, o=
Y, 2 (ng'-ka)(2noimd 1)

From equations 4. 17. b and 4. 21 we get,

Y
%[4;"(0)]’4 = fmegp & (zn,;n,’()/‘fo dr [y -7

1bik »/,,,’/‘

i\

2
3 (-Z. J"?,l?"a

i

2 s ‘ oo
—;'(nO'I‘M)A(lnol”nal) ,
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which can be solved for the location of the real poles:

bo= % lhal = £ {n0— (221" 4 (0) ]

LWy

. =Y P
= jc{nré(ﬂo)’[’l}r(m-i)l”olljf (4. 24)

Let a denote the wavelength of the m«th mode in horizontal propa-

gation, i.e.,

/a4, = Ak, A= 2T /A bl (4.25)
then,
Y 3 oy [Nel 14
O = ;ma{'*}':[T“” +) n:LJ f (4. 26)

Thus the wavelengths become longer for higher modes. The channel

depth for the m-th mode can also be calculated to give

37

7 =7
Y & [;_KKM—:’;—)] ’(z.n./n,,’/) ’ (4.27)
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APPENDICES

Appendix A,
We shall evaluate asymptotically for large [X| the following

integral (cf. figure 2.b):

(kIxI+Jp= k" Y)

?:jdk £
I bk -

By the change of variable k =ﬁ +('§ one gets.

o R ~IXIE cY[-285+F"
J= . B£F}X'fj+f } d e v
ol 4 L‘W{- L

where L and R refer to the left and the right sides of the cut res-

pectively, The above integrals are of the Laplace type,

@
fof"ff J&)

for which the asymptotic expansion for large |X| can be obtained

by first expanding ?[ §) about §=0 and then integrating the first few
terms in the series. This amounts to saying that the short stretches
near the branch point give the most significant contribution to the

contour integral. Since for F= 0

arng -2 5457 = 3T/4
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on the right side of the cut, and
arg ,/W =Ty
on the left, we have
e ;(f'_e";/)(/{f:; C—~/X/§[/+ ‘/,1/6_5 th‘%f'_.][/_%jgya—gé';f: ]
£ . )

—/ao; E-/X/f[h‘c'@? y e f“'J[I‘;lL 3/2— 6—';-1‘ ]

v ) l/)(/ .fiﬂ v -/X/f
= j—eﬁ zce“fa?‘()/-;’-)[a/;f JE

. B : 3
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Some important properties of the Alry functions (reference 12):
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Aiz) Bi(Z) — ALZ)BI(3) = I/

Let

then for large |z|

=9
(=

y L
Ai(z)~ T2 4

k

-4
Ai(-2) ~ T 2 Cos(s-)

~% s
Bi(z) ~T 2 te

1
~h %
Bi(-z)~T Z Cos(stT)

Y

S=%52Z

Wi

. | -4/ -3
Ai(z) ~-ZzT Z ¢ [arg z|< T

Y

/4
Ai(-2)~Tf‘Z 605(5*3:{5) |arg z]«%’r‘

: K u s
Bi(z) ~T z e |arg z| < =

- _f/ ’/4
Bi(=2z)~T 2 Co5(5-F) farg z/< 2T

3
e N S
oy % tep 4
Bi(z € 3)~(-,";) - Cos(s-;}r_-;%lojl)
2
) f{ﬂ'—gikjw
. tig hoOFig )
Bi(z @ ’)m(%/’*e”‘zéus(w—};;-logz)

(B.1)

(B.2)

(B. 3)

(B. 4)

(B. 5)

(B.6)

(B.7)



124

Appendix C.
We shall show that the points k = ﬁn(yi),where ¥; =0 v¢andy,

are not branch points of the integrand in equation 4. 16.a

Consider the behavior of ¢ near the point k = n(yi) with

3, y
§[¢(j,k)J = fJn‘zcr)-A‘ dr (C.1)
J

When k ¥ n{y,) and ¥ ¥ y,, the following approximation can be made:

Ny n, +Mg (-3, ) (C.2)

k= nY) & g+ (Y-90) : (C. 3)
inwhi;h

o= nly) ne = M(y) e (C. 4)

Substituting C, 2 into the C. 1, we get,

v
%(4’)’/" = Jln;fy Nn-k)+ n' (=Y. ) e dr

» r ,l Y
2 L Lo [ne koo A eyt ], (c. 5)

From eguation C, 3 it follows that

n, -k g—'";’( Y-9.) .
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Thus equation C. 5 gives

% Y
2$)% = - o (- k)"

or

Heance k = n(y,) is not a branch point for ¢ . Similarly we can show
that ($)” is analytic in k algo. Since both Ai{ -A%4$) and ,5(-(.,;’4,,,)
are entire functions of 95 , it follows that the integrand in equation

4, 16. a is single-valued at k = n(yi). The proof for k = -n(yl.) is

analogous.



126

0 0l 0 02

100 ’
1

Depth,

500 q’
|
meters i

1,000
|‘
|

1,500 —
i

2,000 —

2,500 —]‘

3,000 - |

Figure 1. Typical variation of stability

frequency in an ocean



127

Im k
(=X,0) (-B,0) ) (x\,0) Re k
N\ (8.0
S_ S+
Figure 2.a
A
Im k
r
\
s" s
L3 Re k
N\ U




128

Re k

Figure 4



