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ABSTRACT 

This report describes the algorithm, implementation, and performance 

of a hierarchical circuit extractor, HEX, for Metal-Oxide Semiconductor(MOS) 

layout designs at Caltech. The input to HEX is a layout design in Caltech 

Intermediate Form(ClF), a hierarchical layout description language, and the 

output is a hierarchical netlist describing the circuit. HEX avoids redundant 

work by finding out the repetitive cells in the input ClF tile. To handle over­

lapping instances, HEX modifies the hierarchy in the ClF tile to generate a 

new one without overlapping instances. HEX then traverses the resulting 

hierarchical structure, calls a fiat extractor to extract leaf cells and com­

poses cells bottom up to get the circuit information of the whole chip. 
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CHAPrER 1 

INTRODUCI10N 

1.1. BACKGROUND 

1.1.1. Why We Need a Extractor 

Aside from fabrication problems, there are many other factors that con­

tribute to faulty VLSI chips. Planners may make mistakes in algorithm, 

logic, circuit, or layout design. To verify their plan at each level, designers 

use specific verification tools. Functional or register transfer simulators are 

used for algorithm designs, while logic and switch level simulators check the 

logic. A number of items, i.e., timing simulators, design rule checkers, etc, 

verify circuit and layout designs. However, to demonstrate that a circuit is 

valid, the plan must be presented in some specific form to the verification 

tools. To facilitate this need, extractors withdraw the desired circuit informa­

tion from the layout description tiles. In general, the extracted information 

includes (1) all the transistors along with their connectivity (2) electrical 

characteristics, such as resistance and capacitance, of the elements on a 

chip. 

1.1.2. llotivation 

The artwork of integrated circuit design is usually available in the form 

of a hierarchical specification, in which each symbol is made up of primitive 

geometry (e.g. rectangles and polygons) and references to other symbols. 

The typical approach to circuit extraction involves fully instantiating the 

hierarchical structure in layout description. The extractor then traverses 

1 



2 

this flat representation and carries out its function. There are several objec­

tions to the full instantiation approach of circuit analysis. The most obvious 

of these is time efficiency. A flat extractor usually takes several hours of 

CPU time just to extract a chip containing a few thousand devices. In a few 

years it will be feasible to fabricate VLSI chips containing more than one mil­

lion devices [3,4]. Even if we assume that the execution time of extractors 

grows linearly in time with respect to the number of devices in a chip, we can 

expect flat extractors to take several days for VLSl circuit. 

Since integrated circuit designs often exhibit considerable degrees of 

regularity and hierarchy, determining which parts are identical can elim­

inate redundant work. Recognizing identical groups of geometry in a fully 

instantiated description is difficult at best. However, a hierarchical descrip­

tion of the structure makes this task possible. Instead of trying to deter­

mine if a given group of geometry matches some other group, a hierarchical 

extractor need only decide if the groups are instances of the same symbol. 

There is another advantage of using hierarchical approach in imple­

menting extractors. Since this may be used in most VLSI CAD tools in the 

future, it is desirable that extractors retain the hierarchical structure 

embedded in layout description of circuit for other verification tools. 

1.2. OVERVIEW 

In this report, HEX, a hierarchical circuit extractor is described. Hex 

takes in layout descriptions specified in Caltech Intermediate Form (ClF) [4] 

and exploits the regularity of chips based on the hierarchical structure in 

CIF me. The output of HEX is a hierarchical description of the electrical cir­

cuit denoted by the layout. The extracted circuit information includes (1) all 

transistors together with their connectivity (2) capacitance of the wires and 
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transistors on the chip. 

This report consists of five chapters. Chapter 2 illustrates what a 

extractor should do and how a fiat extractor carries out its function. The 

algorithm proposed by C.M. Baker is described in this chapter. 

Chapter 3 discusses the problems that must be resolved by hierarchical 

extractors when they exploit the hierarchy and regularity of cells. The prob­

lems and proposed solutions are discussed in general. 

Chapter 4 describes the detail algorithms and data structures used in 

implementing HEX. The output format generated by HEX is also described in 

this chapter. 

Chapter 5 discusses the complexity analysis of hierarchical algorithm. 

It also contains some execution time data of HEX and the fiat extractor. 

These data are obtained by running the two programs on V AX-7BO system. 

Some results obtained by running HEX on various IC design are 

presented in appendix. 



CHAFfER 2 

BASIC ALGORITHM FOR FLAT EXTRACfORS 

As the name implies, extractors extract information about all the 

transistors and their connectivity from the layout description. All it needs to 

do is simply 

(1) Follow the connectivity of the wires. 

(2) Find transistors. 

In 1980, C.M. Baker proposed a algorithm for fiat extractor. Baker's 

algorithm consists of two stages. In the first stage, the extractor rasterizes 

the geometry to obtain a bit map. Every pixel in the bit map contains one bit 

for each layer which indicates the existence of the layer. Figure 2.1 shows a 

typical example of rasterization procedure. In the second stage, the extrac-

tor scans the bit map to carry out the two tasks mentioned above. 

2.1. PONDS AND ISLANDS PROBLEM The basic algorithm for following con-

nected regions in a bit map comes from the classic ponds and islands prob-

lem which is defined as follows. Given a two dimensional array of zeros and 

ones, where the zeros represent water and ones represent land, write a pro-

gram that counts the number of land masses and prints out the area for 

each one. Assume that land must connect horizontally and vertically but not 

diagonally. Baker's algorithm scans the bit map from left to right, and top to 

bottom, with one scan line buffered in memory (see figure 2.2}.1 At each bit, 

the access requires three bits of information: the current bit, the bit to the 

Really, portions of two scan lines are buffered. The total space used in equivalent to that of a 
sin,gle scan line. 
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Bits Maps for Diffusion and Polysilicon Layers 

/" "" 
o 0 0 0 0 0 0 000 
001 1 000 0 1 1 
001 1 000 0 1 1 
001 1 000 0 1 1 
001111111 1 
0011111 111 
o 0 000 1 1 000 
o 0 0 001 100 0 
o 0 0 0 0 1 1 000 
o 0 0 0 0 1 1 000 
00000 1 1 000 
00000 1 1 000 
o 0 000 1 1 000 

Diffusion Layer 

000 0 0 0 0 0 0 0 
000 0 0 0 0 000 
o 0 0 0 0 0 0 0 0 0 
0000000 0 0 0 
000 0 0 0 0 0 0 0 
0000000 000 
000 0 0 0 0 0 0 0 
000 0 000 0 0 0 
o 1 1 1 1 1 1 1 1 1 
o 1 1 1 1 1 1 111 
0000000 000 
0000000 000 
o 0 0 0 0 0 0 000 

Polysilicon Layer 

Figure 2.1 
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left, and the bit above. Since there are three bits of information, there are 

eight cases to consider. Four of them can be handled at once. (1-4) If the 

current bit is water, there is nothing to do. (5) If the current bit is land and 

the other bits are water, then the upper left corner of a new piece of land has 

been found. This information is remembered in an array as big as the scan 

line, and the new piece of land is assigned a unique number. (6) If the 

current is land and the bit to the left is land and the bit above is water, then 

this is the top of a horizontal strip and the number is the same as the 

number to the left. (7) If the current is land and the bit to the left is water 

and the bit above is land, then this is the left edge of a vertical strip and the 

number is the same as the number above. (8) The interesting situation occur 

when all three bits are land. (8a) If the number above is the same as the 

numbers to the left, then that must be the number for the current bit. (8b) If 

the numbers are different, the lower right inside corner of some shape has 

0 0 0 0 0 0 0 0 0 0 
0 1 1 1 0 0 1 J 0 0 
0 1 0 0 0 0 0 1 1 0 
0 J 0 1 0 1 1 1 I 0 

One scan line bulTered .. 0 1 0 0 0 1 0 0 0 0 
0 1 1 1 1 1 0 1 1 0 , 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 1 0 1 1 1 0 
0 1 1 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 

Figure 2.2 
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been found, and two pieces of land which previously seemed distinct are 

found to be part of the same mass (see figure 2.3). Some bookkeeping is 

needed to update the counts of one land mass number with those of the 

other land mass. 

2.2. HOW ill FOlJ.DW TIIE CONNECTIVITY OF TIIE YlIID:3 The same algorithm 

that work with land and water will also work with poly, diffusion, and metal. 

For the purpose of following wires and finding transistors, four derived layers 

will be used. Metal (M) and poly (F) correspond to the mask layers b y t he 

same name. In the extractor, diffusion (D) will be the diffusion mask minus 

the poly mask and transistor (T) will be the diffusion mask intersected with 

the poly mask. 

The basic algorithm for following connectivity given a raster scan ver-

sion of the masks can be thought of as a ponds and islands search on four 

1 1 1 2 2 
1 ~2 1 J .. c , X 

X X 

X X X X X X X 

X 
X X X X X 

X X X X X X 

Figure 2.3 
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layers at once. The electrical properties of contact cuts can be added by 

checking to see if the current pixel contains P. M. and C. If it does. merge the 

number of the poly layer with the number of metal layer. Another kind of cut 

for D and M is handled similarly. 

2.3. HOW TO FIND TRANSISTORS 

By checking the current pixel for T. the extractor can find pieces of 

transistor. From the number of p. the extractor knows the number of its 

gate node. However. edges of the transistor lay contains useful information. 

namely the node number of its source/drain nodes. During the ponds ,:').d 

islands processing. the transistor finder looks for one of four cases: (1) 

current pixel is transistor and left is diffusion. (2) current pixel is diffusion 

and left is transistor. (3) current pixel is transistor and up is diffusion. (4) 

current pixel is diffusion and up is transistor. For each match. some 

pointers between the records for node and records for transistor are set to 

remember the relation found. 



CHAPI'ER 3 

PROBLEMS IN HIERARCHICAL APPROACH 

3.1. OVERVIEW OF lllERARCHICAL EXTRACTORS 

The basic idea of a hierarchical extractor is to avoid redundant analysis 

work using the hierarchy in layout description. One straight forward 

approach is to implement a recursive depth-first program which extracts the 

layout description from the lowest level symbols. This is where the symbols 

contain only primitive geometry to build up the whole chip. It is followed by 

the symbol-calling hierarchy and extraction of each symbol only once. There 

are two problems needs to be considered. The first one is about the overlap­

ping instances in layout description. The second one is how to build up the 

whole chip. 

3.2. OVERLAPPING INSTANCES 

Since ClF allows instances physically overlap on the chip surface, many 

strange cases may happen. Overlapping instances may create new transis­

tors that were not in original symbols, or remove transistors that previously 

were there. A conductive path might get broken by an overlap, or it might 

get shorted to another path. Figure 3.1 shows a typical example. In figure 

3.1. symbol C contains three instances of symbol A. In the overlapping area of 

the adjacent instances of symbol A, new transistors are generated. That 

makes it difficulty to obtain the circuit information of symbol C from the cir­

cuit information of symbol A. 

9 
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3.2.1. Disjoint Transformation 

This problem was addressed in several articles [2,5,6,7]. In 1982, M. 

Newell and D. Fitzpatrick proposed a solution, called disjoint transformation 

[2,5]. Disjoint transformation uses a preprocessor to transform the 

hierarchical description specified in ClF into another hierarchical descrip-

tion with no overlapping cells l
. The non-overlapping hierarchical description 

satisfies another property: only the cells at lowest level contain primitive 

geometry. The cells at higher level contain only references to other cells. 

Figure 3.2 illustrates the function of disjoint transformation. The hierarchi-

cal description of cell C in figure 3.2a is transformed into the non-

overlapping hierarchical description shovm in figure 3.2b. 

3.2.2. Strategy of Disjoint Transformation 

Of course, there are many approaches to carry out disjoint transforma-

tion. A satisfactory approach should be able to fulfill two requirements. 

(1) Preserve the repetition of instances so that repeating the same analysis 

work can be avoided. 

(2) Reduce the overhead due to hierarchical approach in case chips con-

taining very few repetitions are extracted. 

One straight forward strategy for disjoint transformation is to divide a 

cell into several non-overlapping subcells according to the boundary of the 

instances in this cell. However, this approach fails to fulfill (1) in many cases. 

For example, a transformation of the hierarchical description in figure 3.1 to 

the non-overlapping hierarchical description in 3.3a is rather poor since the 

hierarchical extractor can not take advantage of the similarity of Al , ~, and 

lIn non-overlapping hierarchical description we use cell instead of instance to avoid ambi­
guity. 
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A". Similar cases occur quite often in VLSI design, so it behooves one to seek 

an amelioration. A better algorithm should find out the similarity between 

Al , ~, and A", then further divide Al and A" as shown in figure 3.3b. That 

makes the total area that needs extracted very much reduced. 

If a chip contains very few repetitions, then the hierarchical extractor 

might take more time than an ordinary fiat extractor. The time due to dis­

joint transformation is not significant because it is not a time-consuming job 

and the hierarchical extractor need do it only once. On the other hand, the 

hierarchical extractor needs to compose cells at each level. Assume that at 

each level the average overhead due to the composition of cells is about 5% 

compared to the extraction time, and a chip has about 7 to 9 levels in 

hierarchical description. Then, the total overhead is «1.05)7-1) to ((1.05)9-1), 

or about 40%-50%, compared to the extraction time. One possible solution 

for this problem is to use a post-processor to modify the non-overlapping 

hierarchical description. The post-processor traverses the whole structure 

and determines which cells are good for hierarchical approach. If a cell is 

unsatisfactory, then the post-processor will remove the underlying sub­

structure. That produces the flatness necessary for the hierarchical extrac­

tor. Figure 3.4 illustrates the function of the post-processor. In figure 3.4a, 

even though cell B contains two different subcells Bl and B2 , a smart post­

processor should find that B is good for hierarchical approach since a major­

ity of the subcells contained in Bl are also contained in B2 . On the other 

hand, cell C is obviously nol good for hierarchical approach. The post­

processor will remove the substructure below C. The resulting configuration 

is shown in figure 3.4b. 
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3.3. HOW TO BUILD UP TIlE WHOLE CIllP 

Once the non-overlapping hierarchical description is available. the 

hierarchical extractor starts extracting the cells at lowest level. 2 Then. it 

composes the cells at lower level to obtain the cells at higher level. The 

hierarchical extractor continues this activity. called a composition task, 

until it reaches the root of the non-overlapping hierarchical description. 

What the hierarchical extractor needs to do in the composition task 

stage depends on what kind of output format is desired. since there is a 

choice between two: fiat format and hierarchical format. No matter which 

selection is made. the hierarchical extractor faces the following two prob­

lems: 

(1) nodes and transistors may cross the boundary of cells. 

(2) The gate node and source/drain nodes of a transistor may lay on 

different cells. 

3.3.1. Boundary Nodes and Bondary Transistors 

To handle the two situations above, the nodes and transistors in a cell 

are partitioned into two groups. One group consists of the nodes and transis­

tors that touch the boundary of this cell. called boundary nodes and boun­

dary transistors respectively. Another group contains the nodes and transis­

tors that don't touch the boundary of this cell, called local 

nodes/transistors. When composing cells, the hierarchical extractor uses 

the locations where the boundary nodes and boundary transistors touch the 

border to determine connectivity of boundary nodes and boundary transis­

tors in different cells. 

B Actually, the hierarchical extractor calls a flat extractor to extract leaf cells. 
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3.3.2. Flat Output Format and Hierarchical Output Format 

In general, the fiat output format consists of a list of nodes, a list of 

transistors, and a connection description. The nodes and transistors list 

record all of the nodes and transistors in the chip. As one might guess, the 

connection description specifies the connectivity relation between nodes and 

transistors. The hierarchical output format usually consists of a list of cell 

definitions. Each cell definition contains three parts. The first part contains 

a list of references to other cells, denoted as calling commands. The second 

part describes some circuit in this cell, which is known as circuit commands. 

The third part describes the connectivity of the boundary nodes and boun­

dary transistors of this particular cell's subcells, called connection com­

mands. The cell-calling relation denotes a hierarchical structure, which is 

usually isomorphic to the hierarchical structure of the non-overlapping 

description. 

3.3.3. Generating Flat Output Format and Hierarchical Output Format 

To generate the fiat output format, the hierarchical extractor must 

combine the circuit information of the cells at a lower level to obtain the cir­

cuit information of cells at a higher level. Therefore, when composing cells 

the hierarchical extractor has to obtain the circuit information of each cell. 

For the cells that have previously been extracted, the hierarchical extractor 

only needs to retrieve their circuit information. For cells yet to be pro­

cessed, the hierarchical extractor need only extract them. But, no matter 

how the hierarchical extractor obtains circuit information, the time com­

plexity of composition is approximately proportional to the total area of 

these cells. 
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On the other hand, if the hierarchical extractor generates hierarchical 

output format it doesn't need to obtain all the circuit information of the cells 

being composed. It generates calling commands by just follovring the hierar­

chy in the non-overlapping description and generates connection commands 

by checking the connectivity of the boundary nodes and boundary transis­

tors of these cells. Hence, the time complexity of composition is approxi­

mately proportional to the total length of these cells. 

The argument above shows that generating hierarchical output format 

usually takes less time than generating fiat output format. Hence, the 

hierarchical output format is prefered. 



CHAPI'ER 4 

IMPLEMENTATION OF HEX 

4.1. BASIC ALGORITHMS OF HEX 

HEX contains essentially two subprocedures. The first one, called 

transformer, is responsible for disjoint transformation. The second one, 

called H-extractor, is responsible for extracting circuit information. H-

extractor is a top-down depth-first recursive procedure that walks through 

the non-overlapping hierarchical structure, calls fiat extractor to extract 

leaf cells, and composes cells bottom-up to build up the whole chip. 

Below is the basic algorithm of H-extractor written by Algol-like 

language. The detail algorithm and data structure used to implement HEX 

are described later. 

procedure H-extractor(cell P); 
begin 

end; 

for each subcell Qi of P do 
begin 
generate a reference command for Qi; 

if Qi has been extracted 
then retrieve the information about the 

boundary nodes and boundary transistors 
of Qi; 

else if Qi is a leaf cell 
then call fiat extractor to extract Qi and 
store the information about the 
boundary nodes and boundary transistors 
of Qi; 

else call H-extractor(Qi) and store the information 
about the boundary nodes and boundary transistors 
of Qi; 

compose Qi to P; 
end; 

19 
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4.2. OUfPUT FORMAT OF HEX 

The output format generated by HEX must be specified before details of 

the data structure and algorithm are described. The hierarchical output for-

mat generated by HEX. called HXTR format. consists of a list of cell 

definitions. Each cell definition contains three parts. 

(1) a list of arguments: 

Every argument contains a list of node names that are present in this 

cell. 

(2) a list of references to other cells: 

Each reference to another cell. called a calling command. specifies the 

particular cell called and two sets of parameters which are passed to the 

called cell. Each parameter in the first set passes a character string to 

the called cell. These character strings are used in handling the node 

names defined by users. The second set of parameters pass node names 

to the called cell. By passing node names to the subcells. some relation 

between the node names of the calling and called cell is defined. In 

HXTR format. the node names in different cells that denote the same 

node are specified in this way. 

(3) a list of nodes. a list of transistors. and a connection description: 

The node list and the transistor list define l some local nodes and some 

local transistors of the cell2. In node definition commands. every node 

name is associated with a decimal number. When this cell is called. the 

number specifies which character string is passed from the calling cell 

through the first set of parameters then put before the node name. 

1 By "define", we mean the information about the node (or transistor) is presented. 

e Some local nodes and local transistors may be defined in this cell's subcells. Actually, in 
the HXTR file generated by HEX, a node (or transistor) is defined in the smallest cell in whlch the 
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The formal definition of the format is given below. The standard notation 

proposed by Niklaus Wirth is used: production rules use equal = to relate an 

identifier to expressions. a vertical bar I for or. double quotes" " to surround 

terminal characters. curly brackets f j to indicate repetition any number of 

times. (including zero). square brackets [] to indicate optional factors. and 

parentheses 0 for grouping. 

output-file 
cell-definition 

calling Command 
prefixes 
parameters 
arguments 
nodelist 
nodename 
nodeCommand 

= Hblankj[cell-definition] semij!blankj"EOF". 
= "CELL" cellname semi kallingCommandj 

targumentsj ~nodeCommandl 
~transistorCommandj "ENDC". 

= f"CALL" cellname "(" prefixes ")" parameters semij. 
= kharacterstring commaj. 
= fnodename semij. 
= fnodelist semij. 
= nodename " " ~nodename " "j. 
= decimalnumber characterstring. 
= fpolyarea polygatearea dift'usionarea metalarea 

tnodenamej semij. 
transistorCommand = ftransistortype transistorarea 

semi 
comma 

- fl." - .. 
-" " - .. 

gateNodeName contactNodeName 
contactNodeName semij. 

4.3. DE:l'AIL ALGORITHM AND DATA srnUCTURE 

4.3.1. Disjoint Transformation 

The transformer procedure carries out disjoint transformation by divid-

ing a cell into several non-overlapping subcells recursively. At each level. it 

follows the following steps. 

(1) Does this cell contain only primitive geometry? If so. return. 

node (or transistor) is a local node (or local transistor). 
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(2) Expand the cell one level. See figure 4.1a. 

(3) Slice the cell into several subcells. using the boundary of the instances 

in cell as guidance. See figure 4.1b. 

(4) Compare each newly generated cell with the cells that were generated 

previously. If an identical cell is found. jolly good show. It is not neces­

sary to extract this newly generated cell. Otherwise. (bloody hell!) try 

to further divide this cell so that some of its subcells are identical to 

some of the cells that were generated previously. 

(5) Apply steps (1) - (4) to the newly generated cells that have no identical 

cell. 

The purpose of involving step 4 is to obtain a non-overlapping descrip­

tion that preserves repetition better. Of course. this strategy fails in some 

cases. However. for most cases in VLSI chip it works quite well. For example. 

the typical case in VLSI chip like that one in figure 3.3a can be solved by this 

approach. 

4.3.2. Algorithm. and Data Structure for Flat Extractor 

The fiat extractor is responsible for extracting the lowest level cells. 

The implementation of the fiat extractor is based on Baker's algorithm [1]. 

which is described in Chapter 2. The data structure used in implementing 

the fiat extractor is described below. 

(1) node records: The information of a node is saved in a node record. 

(2) transistor records: The information of a transistor is saved in a transis­

tor record. Each transistor record contains a pointer to its gate node 

and another pointer to the list of its source/drain nodes. 
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Actually. both node and transistor records contain one more pointer. 

called realnode. This pointer is used in merging two nodes or two transis­

tors. When merging two nodes or transistors. the extractor. (in addition to 

combining the information of two nodes or transistors). will make the real­

node pointer of one node or transistor point to another node or transistor. 

[3] A queue of pointers : The size of the queue is equal to the number of 

columns in the bit map. Each entry in the queue has one pointer to 

transistor record and three to node record. The three pointers to node 

record correspond to the nodes on the derived layer D. p. and M. To 

retrieve the information of a pixel, the extractor must be able to obtain 

the pointers of the nodes and transistor on the pixel. During the ponds 

and islands processing. the transistor and node pointers of the pixels 

that were scanned most recently are saved in the queue. Keep in mind 

that the first entry of the queue keeps pointers for the pixel above the 

current picture element the last entry keeps pointers for the pixel left 

of current. 

[4] a list of node records: The list contains the records of the local nodes in 

the cell. 

[5] a list of transistor records: The list contains the records of the local 

transistors in the cell. 

The data structure above is enough for fiat extractor. However. it is not 

enough for hierarchical extractor. As it is mentioned in Chapter 3. in 

hierarchical extractor the information of the boundary nodes and boundary 

transistors needs to be saved. Hence. in HEX. each cell has a array of 

pointers for this purpose. 
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[6] a array of pointers: The node and transistor pointers of the pixels on the 

boundary are saved in the array. Each entry in this array is mapped to a 

pixel on the boundary and the index of the array reflects the location of 

its corresponding pixel. When given a location on the boundary, the 

hierarchical extractor can use this configuration to find out the nodes 

and transistor that touch the boundary at the location. 

Figure 4.2 shows the configuration of the data structure after the 

extractor has finished extracting the cell. 

4.3.3. Algorithm of Composition 

In composition, HEX generates calling commands according to the 

structure in non-overlapping hierarchical description. To handle the boun­

dary nodes and boundary transistors, HEX examines every common border of 

the cells being composed pixel by pixel. From the array of pointers for boun­

dary pixels, HEX can easily determine the connectivity relation of the boun­

dary nodes and boundary transistors in the cells being. composed. The con­

nectivity relation can be definitely described by passing node names through 

the cell-calling mechanism. In addition to generating calling commands, HEX 

carries out the two functions below. 

(1) Merge the boundary nodes/transistors that are connec i 3d. 

(2) Establishes the transistor-source/drain relation of every pair of boun­

dary node/transistor that are connected. 

After (1) is done, some boundary nodes (or boundary transistors) of the 

cells being composed may still be the boundary nodes (or boundary transis­

tors) of the cell newly formed. For this kind of nodes, HEX assigns one argu­

ment to each of them. For the boundary nodes/transistors that become local 
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nodes/transistors) of the newly formed cell, HEX prints their definition com­

mands. 



CHAPTER 5 

COMPLEXITY AND PERFORMANCE 

5.1. COMPLEXITY 

To analyze the complexity of hierarchical extractors let us consider the 

following two cases. 

(1) Each symbol contains m identical instances except those at lowest level. 

(2) Each symbol contains m distinguish instances except those at lowest 

level. 

Case 1 is the best configuration for hierarchical extractors and case 2 is 

the worst configuration for hierarchical extractors. The upper bound and 

lower bound of the time complexity of hierarchical extractors can be 

obtained by analyzing these two cases. 

At first. define 

T(A) : time to extract a cell with area A hierarchically. 
Actually. the area of a cell is in unit of number 
of pixels in it. 

a * 1: time to compose two cells with common boundary 
length 1. Actually. length is in unit of number 
of pixels on the boundary. 

b * A: time for the fiat extractor extracting a cell with area A. 

For case 1. the recursive equation of time complexity is of the form: 

(5.1) T(A) '" T(A/m) + (m-l)*a*Ao.5 + d 1 

28 
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Because the extractor needs to extract only one of the m disc ells, the 

coefficient of the term T(A/m) is 1. The term (m-1)*a*Ao 5 is the time to 

compose these m discells.(the length of common boundary of two discells is 

about of the order of square root of A.) The last term d is the time to divide 

this cell and is almost a constant. The approximate SOlUtion for recursive 

equation (5.1) is 

(5.2) T(A) '" m*a*AO.5 + d*logmA + b. 

For case 2, the recursive equation of time complexity is of the form: 

(5.3) T(A) '" m*T(A/m) + (m-1)*a*Ao.5 + d. 

Because these m discells are distinguish. the extractor needs to extract 

each discells separately. So, the coefficient of T(A/m) is m. The terms (m-

1)*a*Ao.5 and d are the same as that in 5.1. The approximate solution for this 

recursive equation is 

(5.4) T(A) '" b*A + m*a*AO.5 + d*logm A. 

The complexity analysis above shows that in the best case hIerarchical 

approach reduces the the time complexity from O(A) down to O(A05). In the 

worst case the the hierarchical approach doesn't increase the order of time 

complexity but adds two more terms of smaller order. 

Ithe symbol ""," means "approximately equal to" 
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5.2. PERFuRMANCE 

The run time data shows that for the cells with mid-size to large size2 

the time to retrieve circuit information of the cell and compose the cell with 

other cells is usually less than 5% of the time to extract the cell fiatly. This 

means that potentially the speedup of hierarchical approach is at least 20. 

However, except the chips such as memory and systoic array the repetition 

of 4 to 16 times is more often. The table below shows the run time data for 

some regular chip. S 

Other running time data shows that if a chip containing very few repeti-

tions is extracted then HEX may take 20%-50% more time than the fiat 

extractor. 

chip # of repetitions 
of identical cells 

communication ring 16 
supermesh 16 
supermesh 64 
pipelined multiplier 8 

time used by HEX/ 
time used by fiat extractors 

0.186 
0.299 
0.103 
0.352 

e a cell with 10,000 lambda square is considered as a mid-size cell. 

S these data are obtained by executing HEX and the flat extractor on VAX-UNIX system. 



CHAPTER 6 

CONCLUSION AND FUTURE WORK 

The performance of HEX demonstrates that hierarchical approach is one 

possible way to handle the more and more complicated VLSI chip. The run­

time data shows that for regular designs the speedup is about 3-10 times fas­

ter. While for some design, HEX runs a little slower than the fiat extractor, 

(primarily due to the overhead of disjoint transformation and composing sub­

cells). The performance of HEX can be further improved by using more intel­

ligent strategy in disjoint transformation. This work is still under research. 

Another thing to be done is making extractors be able to extract more 

electrical information; there is still no good algorithm for extracting resis­

tance information. 

31 
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HXTR F1LE GENERATED BY HEX 
(for the 4-repetition slice) 

h 100 t.cif regslice NMOS; 
CELL 1 0 0; 
#1 = J"JODEl ; 
#2 = J"JODE2 ; 
#3 = .-NODE3 ; 
#4 = .-NODE4 ; 
#5 = _NODE5; 
#6 = _NODE6; 
ENDC; 

CELL 225; 
#1 = .-NODE14 ; 
#2 = .-NODEIB ; 
#3 = ...,NODE19 ; 
#4 = ...,NODE7; 
#5 = _NODE20 ; 
#6 = J"JODE21 ; 
#7 = J"JODE22 ; 
#B = _NODE15 J"JODE16 _NODE17 ; 
#9 = J"JODEB J"JODE9 ; 
#10 = --NODEll--NODE12 ; 
s 492 1B2 55 2B 10624 13000 J"JODE10; 
s 10 1 1000000 _NODE13; 
d 9B 25 5 7 _NODE15 J"JODE15 0 4 0 0 J"JODE11 2 0 0 3; 
n 7116 103 --NODE 10 J"JODE15 0 1 167 J"JODEB 10 5 0 1; 
n 14543 --NODE 14 _NODE 15 003 1_NODE7 3 000; 
d 111 2B 5 7 jl"ODElO ...,NODEll 0 0 2 3 ...,NODE 10 0400; 
n 31 B 53 _NODE7 J"JODEB 0 0 B 1_NODElO B 100; 
ENDC; 

CELL 300; 
CALL 20 10; 

E# 1 = ...,NODE23; 
E#3 = _NODE24; 
E#4 = _NODE25; 
E#5 = ...,NODE26; 
E#6 = J"JODE27; 
E#9 = ...,NODE2B; 
E#10 = jl"ODE29; 
E#2 = ...,NODE30; 
E#7 = J"JODE3l; 
E#B = J"JODE32; 

#1 = ...,NODE23 ; 
#2 = .-NODE30 ; 
#3 = _NODE24 ; 
#4 = J"JODE25 ; 
#5 = ...,NODE26 ; 



#6 = jJODE27 ; 
#7 = _NODE31 ; 
#8 = jJODE32 ; 
#9 = jJODE28 ; 
#10 = JWDE29 ; 
ENDC; 

CELL 4 00; 
CALL 10 6; 

E#1 = jJODE33; 
E#2 = jJODE34; 
E#3 = ...,NODE35; 
E#4 = jJODE36; 
E#5 = _NODE37; 
E#6 = ...,NODE38; 

CALL 30 10; 
E#1 = j.IODE39; 
E#3 = _NODE40; 
E#4 = _NODE41; 
E#5 = _NODE42; 
E#6 = ...,NODE43; 
E#9 = ..NODE44; 
E# 10 = ..NODE45; 
E#2 = ..NODE46; 
E#7 = ..NODE47; 
E#8 = _NODE4B; 

#1 = ..NODE33 ..NODE39; 
#2 = ..NODE46 ; 
#3 = _NODE35 _NODE42 _NODE43 ; 
#4 = ..NODE47 ; 
#5 = ..NODE48 ; 
#6 = _NODE37 _NODE44 ; 
#7 = ..NODE38 _NODE45 ; 
s 309 16 136 8 0 0 0 0 0 0 _NODE36 ..NODE34 _NODE40 . 
s 85 31 22 5 93 10 19 0 0 0 _NODE41 ~#reg; 
n 16 5 5 3...,NODE36 ...,NODE41 0 1 3 0 ..NODE35 3 0 0 1; 
ENDC; 

CELL 5 0 0; 
# 1 = jJODE49 ; 
#2 = jJODE50 ; 
#3 = ..NODE51 ; 
#4 = ..NODE52 ; 
#5 = ..NODE53 ; 
#6 = _NODE54 ; 
#7 = _NODE55 ; 
#B = ..NODE56 ; 
ENDC; 

CELL 6 00; 
#1 = _NODE57; 
#2 = _NODE58 ; 



#3 = ..,NODE59 ; 
#4 = _NODE60 ; 
#5 = _NODE61 ; 
#6 = _NODE62 ; 
ENDC; 

CELL 700; 
CALL 20 10; 
E#l = ..,NODE63; 
E#3 = ..,NODE64; 
E#4 = ..,NODE65; 
E#5 = ..,NODE66; 
E#6 = ..,NODE67; 
E#9 = ..,NODE68; 
E#10 = ..,NODE69; 
E#2 = ..,NODE70; 
E#7 = _NODE71; 
E#8 = ..,NODE72; 

CALL 606; 
E# 1 = ..,NODE73; 
E#2 = ...,NODE74; 
E#3 = ..,NODE75; 
E#4=..,NODET 
E#5 = .,.NODET; 
E#6 = jJODE78; 

# 1 = _NODE63 ...,NODE73 ; 
#2 = _NODE64 ; 
#3 = ..,NODE65 ; 
#4 = ..,NODE66 ; 
#5 = _NODE71 _NODE67 _NODE75 ; 
#6 = ..,NODE68 _NODE77 ; 
#7 = _NODE69 _NODE78 ; 
s 308 25 143 6 0 0 0 0 0 0 ...,NODE70 _NODE74 ..,NODE76 . 
s 332 98 30 12 189 38 18 0 0 0 _NODE72; 
n 25 7 5 3 -..NODE70 -..NODE71 0 1 3 2 _NODE72 7 0 0 2; 
ENDC; 

CELL 8 0 0; 
CALL 4(RO) 7; 

E#7 = _NODE79; 
E#l = ..,NODE80; 
E#2 = ..NODE81; 
E#3 = ..,NODE82; 
E#4 = ..,NODE83; 
E#5 = ..NODE84; 
E#6 = ..,NODE85; 

CALL 5(R1.RO) 8; 
E#l = ..,NODE86; 
E#3 = ..,NODE87; 
E#4 = ..,NODE88; 
E#5 = _NODE89; 
E#7 = ...,NODE90; 



SiB = jJODE91; 
E#2 = _NODE92; 
E#6 = _NODE93; 

CALL 2(R1) 10; 
E#l = jJODE94; 
E#3 = jJODE95; 
E#4 = jJODE96; 
E#5 = _NODE97; 
E#6 = jJODE9B; 
E#9 = jJODE99; 
E#lO = _NODE100; 
E#2 = jJODE101; 
E#7 = jJODE102; 
E#8 = _NODE103; . 

CALL 5(R2.R1) B; 
E# 1 = JJODE 104; 
E#3 = _NODE 105; 
E#4 = _NODE106; 
E#5 = jJODE107; 
E#7 = JJODE lOB; 
E#8 = JJODE 109; 
E#2 = jJODE110; 
E#6 = _NODEll1; 

CALL 2(R2) 10; 
E# 1 = JJODE 112; 
E#3 = _NODE 113; 
E#4 = jJODE1l4; 
E#5 = JJODE 115; 
E#6 = JJODE 116; 
E#9 = JJODE 117; 
E# 10 = _NODE 118; 
E#2 = _NODE 119; 
E#7 = jJODE120; 
E#8 = jJODE121; 

CALL 5(R3.R2) B; 
E#l = jJODE122; 
E#3 = jJODE123; 
E#4 = jJODE124; 
E#5 = jJODE125; 
E#7 = jJODE126; 
E#8 = jJODE127; 
E#2 = jJODE128; 
E#6 = jJODE129; 

CALL 7(R3) 7; 
E#l = jJODE130; 
E#2 = jJODE131; 
E#3 = _NODE 132; 
E#4 = jJODE133; 
E#5 = jJODE134; 
E#6 = _NODE135; 
E#7 = jJODE136; 

s 380 56 68 13 0 0 0 1220 62 39 _NODE80 _NODE86 _NODE94 
JjODE 104 JJODE 112 _NODE 122 _NODE 130; 



sO 0 0 0 380 48 16 12206239 _NODE79 _NODE91...,NODE100 
...,NODE 109 ...,NODEl18 ...,NODE 127 _NODE136; 

s 0 0 0 0352809 12407639 _NODE120 _NODE 102 ...,NODE83 
...,NODE82 ...,NODEB8 _NODE97 _NODE9B _NODE 106 
_NODEl15 ...,NODEl16 ...,NODE 124 _NODE133 ...,NODE134 
, 

s 309 16 1368000000 _NODE129 _NODE128 _NODE131 
, 

sO 0 0 04046412 12327439 ...,NODE85 _NODE90 _NODE99 
...,NODE 108 _NODE 117 ...,NODE 126 _NODE 135; 

s 85 31 22 5 93 10 19 0 0 0 ...,NODE 132 .Jl#R3.reg; 
s 30B 251436000000 ...,NODE 119 _NODE123 _NODE125 

, 
s 332 98 30 12 18938 180 00 _NODE121; 
s 309 16 136 BOO 0 0 0 0 ...,NODE111_NODE110 ...,NODEl13 

, 
s B5 31 22 5 93 10 19 0 0 0 _NODEl14 _0#R2.reg; 
s 30B 251436000000 ...,NODE101_NODE105 _NODE 107 

, 
s 332 98 30 12 189 3B 1B 0 0 0 _NODE 103; 
s 309 16 136 BOO 0000 ...,NODE93 ...,NODE92 _NODE95 

, 
s B5 31 225 93 10 1900 0 ...,NODE96 .Jl#Rl.reg; 
s 30B 25 143 6 0 0 0 0 0 0 _NODEB1 _NODEB7 _NODEB9 

, 
s 332 9B 30 12 1B9 3B 1B 0 0 0 _NODE84; 
n 16553 _NODE129 _NODE132 0 130 ....NODE 120 3 00 1; 
n 25 7 53 ...,NODE 11 9 ....NODE 120 0 132 _NODE121 70 02; 
n 16553 _NODE 11 1 ....NODE 114 0 1 30 _NODE120 3 0 0 1; 
n 25 7 53 ...,NODE 10 1 ...,NODE120 0 1 32 ....NODE 103 7 002; 
n 16553 ...,NODE93 _NODE960 130 _NODE 120 3 0 8 1; 
n 25 753 _NODEB1 _NODE120 0 1 3 2 _NODE84 7 0 0 2; 
ENDC; 

ENDC 



XTR FILE GENERATED BY FLATOR 

h 100 t.cif regslice NMOS; 
s 492 182 55 28 106 24 13 0 0 0...,NODE-7; 
s 1 0 1 1 0 0 0 0 0 0 _NODE-8; 
s 309 16 136 8 0 0 0 0 0 0 _NODE-9; 
s 85 31 22593 10 19000 _NODE-lO RO.reg; 
s 492 1825528 10624 13000 _NODE-ll; 
s 1 0 1 1 0 0 0 0 0 0 ..,NODE-12; 
s 492 1825528 10624 13000 JWDE-13; 
s 10 1 1000000 ...,NODE-14; 
s 492 1825528 1062413000 ...,NODE-15; 
s 10 1 1000000 _NODE-16; 
s 308 25 1436000000 ...,NODE-17; 
s 332 98 30 12 18938 18000 _NODE-18; 
s 3805668 13000 12206239 _NODE130 _NODE 122 ..,NODE 112 

...,NODE 104 ..,NODE94 ...,NODE86 ..,NODE80; 
sOO 0038048 16 12206239 ..,NODE 136 _NODE127 _NODE 118 

...,NODE 109 ..,NODE 100 _NODE91_NODE79; 
s 0000352 80 9 12407639 ..,NODE 134 _NODE133 _NODE124 

_NODEl16..,NODE115_NODE106_NODE98_NODE97 
...,NODE88 ...,NODEB2 _NODE83 _NODE 102 _NODE120 

· s 309 16 1368000000 _NODE131....N0DE12B _NODE129 

• 
sOO 0 0 4046412 12327439 _NODE135 ....NODE 126 _NODE 117 

...,NODE lOB ....NODE99 ....NODE90 _NODE85; 
s 85 31 22 5 93 10 19 0 0 0 _NODE132 R3.reg; 
s 30B 25 1436 000 0 0 0 ...,NODE 125 ...,NODE 123 ....NODE 119 

· s 332 98 30 12 lB9 3B 18000 _NODE121; 
s 309 16 1368000000 ...,NODE 113 ....NODE110 _NODE111 

• 
s 85 31 22 5 93 10 19 0 0 0 ...,NODE114 R2.reg; 
s 308 251436000000 ...,NODE 107 _NODE105 _NODE101 

· s 332 9B 30 12 1B9 3B 18 0 0 0 ..,NODE 103; 
s 309 16 136 8 0 0 0 0 0 0 _NODE95 ..,NODE92 _NODE93 

· s 85 31 22 5 93 10 19 0 0 0 ....NODE96 R1.reg; 
s 308 25 143 6 0 0 0 0 0 0 ....NODEB9 _NODE87 ....NODEBl 

· s 332 98 30 12 189 38 18 0 0 0 _NODEB4; 
d98 25 5 7 ...,NODE84 ...,NODE84 0 4 0 0 ..,NODE79 2 0 3 0; 
n71 16 10 3 _NODE-7 ....NODEB4 0 1 7 16 _NODEB5 10 5 1 0; 
n14 543 NODE80 NODEB40 0 1 3 NODE-10 3 0 00; 
d111 28 5"7 _NODE-7 ....NODE79 0 0 3"2 ...,NODE-7 0 40 0; 
n31 853 ...,NODE-l0 ....NODEB5 0 0 1 B ....NODE-7 8 1 0 0; 
n16 553 ...,NODE-9 ....NODE-lO 0 1 03 ...,NODEB2 3 0 1 0; 
d9B 25 5 7...,NODE103 ..,NODE103 040 0 _NODE100 2030; 



n71 16 103 ...,NODE-11 .,lJODE103 0 1 7 16 .,lJODE99 105 1 0; 
n14 543 _NODE94 JWDE103 00 13 _NODE96 3 000; 
dll1 2B 57 _NODE-11 .,lJODE100 0 0 3 2 _NODE-ll 0400; 
n31 B 53 .,lJODE96 ...,NODE990 0 1 B ...,NODE-ll B 100; 
d9B 25 5 7.,lJODE121 _NODE121 0400 _NODEllB 2 0 3 0; 
n71 16 103 ...,NODE-13 .,lJODE121 0 1 7 16 _NODE 117 105 1 0; 
n14 5 4 3...,NODE112 .,lJODE121 0 0 1 3 ...,NODE 114 3000; 
d1112B 5 7...,NODE-13 .,lJODEllB 0 03 2_NODE-13 0400; 
n31 B 5 3...,NODE1l4 JJODE1l70 0 1 B _NODE-13 B 1 00; 
d9B 25 5 7.,lJODE-1B _NODE136 2030 _NODE-1B 0 4 0 0; 
n71 16 103 _NODE-15 _NODE135 105 1 0 ...,NODE-1B 0 1 7 16; 
n14 543 ...,NODE130 j.10DE1323 000 _NODE-1B 0 0 13; 
d1l1 2B 5 7...,NODE-15 ...,NODE-15 0400 _NODE136 0032; 
n31 B 5 3...,NODE132 _NODE-15 B 1 00 ...,NODE 135 0 0 1 B; 
n25 7 5 3 ...,NODE-17 ...,NODE 134 0 1 2 3 _NODE-1B 7 0 2 0; 
n16 5 5 3...,NODE129 ...,NODE120 30 1 0 _NODE132 0103; 
n25 753 ...,NODE1l9 _NODE121 7 020 ...,NODE 120 0 1 23; 
n16 5 5 3 -.NODE 11 1 _NODE120 3 0 1 0 _NODE 114 0 103; 
n25 753 ...,NODE101 ...,NODE1037 020 ...,NODE 120 0 1 23; 
n1B 5 5 3 JWDE93 _NODE120 3 0 10 ...,NODE96 0 103; 
n25 7 5 3...,NODEB1 _NODEB47 0 2 0 ...,NODE 120 0 123; 


