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ABSTRACT

A simplified method for finding and using discrete small-signal
models for switching regulators is presented. With int'roduction of a
new ''straight-line' approximation, and application of root locus
techniques, it is dernons:trated that discrete models may be used
accurately to predict wide bandwidth closed-loop behavior with
methods simple enough to be useful in the initial design phase of a
switching regulator. The principal result is a set of converter trans-
fer functions comparable to the sét derived by describing function
techniques, but not subject to the low frequency restriction of ~
describing function models. Also presented is a set of pulse-width
modulator transfer functions which indicates that the potential small-
signal transient behavior of a switching regulator is independent of

the choice of modulator.
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INTRODUCTION

In recent years a new class of power processing circuits called
switching regulators has emerged. Advantages such as higher
efficiency, lighter weight, and in some cases lower cost when com-
pared with linear regulators, are making these 'switchers' more
important in a variety of applications. Today these regulators may
be found in space satellites, office equipment, computers, and even
in hand-held calculators.

So rapid has been their penetration into a wide range of areas
that the analysis for switching regulator design has often been done
on an ad hoc basis with varying results. In particular, a recurring
problem in any switching regulator design is proper choice of the
feedback to yield good regulation and fast recovery from various
source and load transients. Attempts to extend the bandwidth of such
regulétors to frequencies near the switching frequency have some-
times resulted in control loop oscillation, quite often at half the
switching frequency.. This in turn has resulted in sometimes conser-
vative bandwidth design simply for want of an accurate picture of
closed-loop behavior near half the switching frequency.

The principal motivation for this thesis is that to date there has
not been a single analysis technique applicable to the transient design

of switching regulators that is both simple enough for the practicing



engineer to use in an initial design, and accurate enough to model
behavior for wide bandwidth regulators.

The transient analysis of a switching regulator is a nonlinear
control problem, because regulation is achieved with pulse-width
modulation control. Because of this, a number of the standard
techniques for analyzing nonlinear control systems have been applied
to the problem by various investigators.

The phase plane method, for example, has been used by Babad,
Wilson, and Yu [1], to demonstrate stability for certain classes
of switching regulators. From a design point of view, though, this
is a cumbersome method yielding little design information about the
actual transient response. Furthermore, the phase plane is limited
to second order systems and hence is usually not able to handle a
regulator with additional compensation.

Functional analytical methods by Skoog and Blankenship [2], and
more recently by Rootenburg and Walk [3] have been used to establish
stability bounds for general types of pulse-width modulated systems.
Again, these methods give little information about the transient
response of a switching regulator other than whether or not it will
be stable. Of equal importance is that the mathematics of these
techniques are in forms foreign to the circuit designer who is usually

more familiar with Bode plots than Banach spaces.



One may conclude then that sufficient literature exists on various
large-signal analysis techniques applied to the regulator problem to
make a convincing case that the large-signal analysis of switching
regulators is excessively complex for initial design purposes.

This leads one to the conclusion that if there is a design
technique that meets the criterion of simplicity, it is likely to be a
linear small-signal technique.

If one agrees with this argument, then one is confronted with a
choice of two approaches.

The approach that has to date shown the greatest simplicity is
the describing function (df) method in which the switching regulator
components are replaced by linear continuous elements.

Using describing function methods, Middlebrook and Wester [4]
have developed equivalent linear continuous models for many types of
switch and filter combinations.

From a design standpoint, this approach is currently dominant in
the field and may continue to be so principally because df models are
often obtained entirely by pictorial circuit manipulation without the
necessity of explicit equations. The main disadvantage of this
approach is that it suffers from inaccuracy as the closed-loop band-
width of a switching regulator approaches half the switching frequency.

This inaccuracy springs from the assumption that harmonics



generated by pulse-width modulation are attenuated much more than
the fundamental modulation frequency in traversing the control loop
shown in Fig. 1.

This assumption need only be valid for frequencies below the
unity gain bandwidth of the regulator because, beyond the unity gain
frequency, attenuation in the loop is sufficient to make both the
fundamental and its harmonics insignificant.

It can be shown that the sampling behavior of a pulse-width
modulator introduces significant harmonics which are not far beyond
the fundamental input frequency, as the fundamental approaches half
the switching frequency. Because in the converter these harmonics

are attenuated little more than is the fundamental, the assumption of
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Fig. 1. Harmonic attenuation assumption of
describing function models.



Fig. 1 is no longer valid, and if there is sufficient loop gain at these
frequencies then the closed-loop behavior will differ from df model
predictions.

It is the harmonic attenuation assumption that chiefly limits the
valid frequency range of df methods.

One might be content with the describing function approach,
regardless of its restricted range of validity, were it not for the fact
that particular regulators have been reported in the literature which
have transient response superior to those generally designed with\df
methods [5,6].

These ''fast' regulators have often been the product of the second
approach to linearization of a switching regulator, which may be
called the discrete modeling approach. As will be shown at the
beginning of this work, there are no assumptions necessary to derive
discrete models other than the small-signal assumption, so that they
are capable of accurately describing wide bandwidth behavior. In
its present state of definition, however, this technique has only been
successfully applied in conjunction with a computer because of its
mathematical complexity. Consequently, it is rarely, if ever, used
in the initial design phases of a switching regulator.

The conclusion that one is led to then is that, of the two linear
approaches, the df models are simple but not accurate at high
frequencies, and the discrete models are accurate but not simple

enough for general use.



It seemed to this author that the accuracy limitation of the df
approach was of a more fundamental nature than the complexity
limitation of the discrete approach, and this investigation is the result
of that belief.

Basically, the goal of this thesis is to redefine the discrete
approach and by removal of as much mathematical complexity as
possible make the discrete method applicable as a synthesis tool.

A secondary aim is to fashion the discrete models into forms
comparable to the df models to allow comparisons between the two
approaches. Knowing that the discrete models are more accurate,
we can then use them as a yardstick to measure the accuracy of
various df results.

The idea that is the basis for this thesis is to utilize in a new
way a type of approximation that designers routinely make when
finding the steady state condition of a switching regulator. This is
the ''straight-line' approximation.

To ensure adequate filtering of switching harmonics, the switching
frequency fs in a regulator is usually much higher than the resonant
or cutoff frequency fc of the filtering components. As will be
illustrated in Chapter 1, in the time domain the condition f_ >> f,
results in some of the steady state regulator waveforms appearing
very much like straight lines. Use of this fact allows designers to

do a simple and accurate analysis to find the steady state waveforms.



It is shown here that application of a generalization of the
straight line approximation during a discrete model derivation greatly
simplifies computation of the discrete model parameters without
sacrifice of the inherent accuracy of the discrete model at high fre-
quencies. It is this result more than any of the others presented
here that makes it possible to use discrete modeling as a synthesis
tool.

In addition, it is shown that the analysis of a regulator may be
broken into separate simpler parts. One can independently arrive
at discrete models for a portion of the regulator called the
"converter' consisting of the electronic switch and power filtering
components. In a similar manner, one can independently derive
discrete models for various kinds of pulse-width modulators.
Finally, through the use of a '"'non-loading' approximation, Appendix
2 demonstrates that the compensation problem may be isolated to a
certain extent from the basic converter models. Following is a
brief summary of the contents of each chapter and its contribution
to the discrete model development.

We begin with what a switching regulator is and how it works in
Chapter 1, concluding with a discussion of stability and a heuristic
argument on why the discrete method should be appropriate for a
pulse-width modulated (PWM) system. This chapter also introduces

the basic method that designers use to find the approximate steady



state conditions in a switching regulator. It is necessary to know
this method because various parameters of the steady state solution
often occur in the small-signal discrete models. Also in Chapter 1
a boost converter is introduced as an example for the steady state
analysis method. This converter is used as an example throughout
the thesis to demonstrate in a concrete way methods which are often
derived first in a general form.

In the second chapter it is shown how a generalized switch and
filter combination may be exactly described on a small~signal basis
by a system of linear difference equations. The difference equations
are then derived for the boost converter.

In the third chapter a variety of standard pulse-width modulators
are shown to be characterized by simple linear difference equations
on a small-signal basis.

Chapter 4 introduces the use of the z-transform to the discrete
modeling method. In this chapter the z-transform is used to formu-
late the closed-loop transient problem for a switching regulator in
the z-plane. The notion of transfer functions and loop gain are
introduced to make the discrete model seem less strange to the
practicing engineer. When the z-transform is applied to the modula-
tors introduced in Chapter 3, the surprising result is that their
discrete models all have no poles, zeros, or phase shift in the

z-plane.



An example of the discrete method as a design aid is presented
in Chapter 5 with use of the boost converter again as an example. A
review of the discrete model derivation is given to clarify the tech-
nique. Next, explicit solutions for the discrete converter transfer
functions are used to motivate the '"'straight-line' approximation.
Application of this approximation then allows easy computation of the
converter transfer functions. Finally, the root locus technique is
applied to these transfer functions in the z-plane to predict potential
closed-loop switching regulator transient performance. It is shown
that conditions for high frequency behavior such as half switching
frequency oscillation and an optimally fast transient response are
predicted by use of the root locus technique on the discrete converter
model.

The results predicted in Chapter 5 are verified in Chapter 6 by
comparison of the discrete model against the large-signal boost
converter in a digital simulation.

Various conclusions and a review of the discrete results are
summarized in Chapter 7.

Additional information about and extensions of the discrete
method are presented in the appendices.

Appendix 1 shows a systematic way by which state equations for

a switching regulator may be derived.
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Appendix 2 shows how reactive regulator compensation may be
analyzed with discrete models simple enough that the method remains
useful to the designer,

Finally, Appendix 3 uses a physical argument to motivate the

proof of an invariance property of the discrete models.
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Chapter 1

Basic Operation of Switching Regulators

In this chapter the basics of what a switching regulator is and
how it operates are described. A steady state analysis of a boost
converter is performed to illustrate the simplicity of the analysis
method and the accuracy of the result. This is also meant to famili-
arize the reader with the specific operation of this converter,
because it will be used as an example for the techniques developed
in later chapters of this thesis.

With this analysis complete, some of the advantages of switching
regulators over their linear counterparts become more obvious and
are noted. The chapter concludes with a qualitative discussion of the
stability problems one can expect when élosing a feedback loop around
a switching converter.

A switching regulator is a piece of electronic equipment which
processes some unregulated or partly regulated source of ac or dc
electrical power. The output of the regulator is ac or dc power
where generally the voltage (or sometimes current) is constrained
to be constant under a variety of loading conditions. The key to
what makes a regulator a switching regulator is that the active power
handling devices are operated in either closed or open conditions so

that they may be characterized as switches.
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Herein the term '"'regulator' will refer to a complete power
processing unit incorporating some form of feedback. As shown in
Fig. 1.1, the regulator may be considered to be composed of three
parts.

The power handling part of the regulator is called a '"converter''.
This consists of electronic switches and any power filtering compo-
nents. From Fig. 1.1 we note that any significant power that a
switching regulator handles flows into and out of the converter only.

Inputs to a converter consist of a source of power usually unregulated,

A SWITCHING REGULATOR

S N,
UNREGULATED
POWER SOURCE > CONVERTER > REGULATED POWER
7 B
]

ON-OFF SIGNAL TO SWITCH CONVERTER FEEDBACK
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PULSE AMPLIFIER (/
- LIFIE
WIDTH  |€¢— AND T~

ig¢— REFERENCE
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MODULATOR ¢ COMPENSATION

CLOCK SIGNAL

Fig. 1.1. Block diagram of the constituent parts of a
switching regulator.
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and an on-off signal that drives the switch inside the converter. The
converter outputs are the regulated power and a set of feedback
signals which in general will be some measure of the capacitor
voltages and inductor currents in the converter.

The second part of a regulator is labelled ""compensation' in
Fig. 1.1. '"Compensation', as it is used here, includes any addi-
tional reactive elements (usually capacitors) used to alter and
improve the closed loop performance of a switching regulator.

Inputs to the compensation are the various converter feedback signals
and usually a reference signal, while its output is a single analog
signal which serves as input to the pulse-width modulator. In its
simplest form the compensation output may be just a linear combina=-
tion of its inputs. This will be the case for the examples in the main
body of this thesis. Treatment of more complex compensation is
given in Appendix 2.

The third part of a switching regulator shown in Fig. 1.1 is the
pulse-width modulator. Its inputs are the combined feedback signal
produced by the compensation and sometimes, but not always, a
clock signal which can set the switching frequency of the regulator.
The modulators considered in this thesis will all be of the '"clocked"
type, since control of the switching frequency is mandatory for many
applications. Also, the analysis seems to yield more useful results
for clocked regulators. The output of the pulse-width modulator is a

sequence of on-off signals which drives the switch in the converter.
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These three blocks, the converter, compensation, and the pulse-
width modulator, are the consituent parts of any switching regulator.

To illustrate the importance of the switching regulator, consider
the linear regulator of Fig. 1.2. In this circuit the series pass
element behaves as a variable resistor which maintains a constant
output voltage for source and load variations. If, as shown, the load
current is 1 A and the source voltage is 14 V, then the pass element
must support 9 V to maintain the 5 V output voltage. Under this
condition the regulator absorbs 9 watts of power while delivering
only 5 watts of power to the load. If we define m, the efficiency, as
load power /total input power, then n = 5/14 = 0.36. Hence, the
efficiency is only 36%.

This efficiency is costly in terms of power wasted., Furthermore,
since the wasted power is dissipated in the regulator, adequate

means to dispose of the resultant heat must be provided. This

ACTIVE PASS ELEMENT

%3

+OUTPUT REGULATED

UNREGULATED AT +5V

SOURCE +
— 1av 3

FEEDBACK § LOAD

|

Fig. 1.2. Equivalent circuit for a 5 V linear regulator.
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typically means greater volume and weight when compared with
switching regulators of an equivalent power handling capacity.

To understand how a switching regulator works we will first
examine a converter, since this is the part of a switching regulator
through which the power flows.

Figure 1.3 is an example of a type of converter known as a
"'boost' converter because its output voltage is always greater than
or equal to its input voltage. It has a number of features typical of
most switching converters. First, the control element is operated
as a switch. In this case the element is a bipolar transistor. In
most converters a diode is required along with the switch to carry
reactive current when the switch is open. This is noted in Fig., 1.3
as DI and is known as the commutating diode. The other necessary
parts of a converter are the filtering elements to smooth the step-like
waveforms produced at the switch. The converter power source is a
voltage source of magnitude Vs’ and its load is shown in Fig. 1.3 as

a resistor R.

Io(0 + L DI (IDEAL)
> LYY »
+6.0x 107 W
6 + R
Vi= 60V — s(/ c == v, S 60

1 3 )
— x10°F
24

Fig. 1.3. Circuit schematic for a boost converter.
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We now derive the steady state solution for this converter,
because it is in doing this that its basic operation is understood.

At a steady state condition, the switch S in Fig. 1.3 is driven by
the periodic on-off signal shown in Fig. 1.4, which is the output of a
pulse-width modulator. This periodic on-off signal establishes the
switching frequency of the converter, and ultimately of the regulator
when a loop is closed around the converter as in Fig. 1.1. At a

and the off-time T are

steady state condition the on-time Ty 2

constant from period to period.
The ratio of the on-time of the switch T, to the total switching

period T as is defined as D, the duty ratio:

np>

;
T
D=7

To begin the steady state analysis we find an approximation for

the average output voltage Vc by the following argument.

ON — —— —_————— —_—————

OFF ——P TIME

Fig. 1.4. Steady state on-off signal to converter switch.
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If the converter in Fig. 1.3 is at its steady state, then the
average voltage across the inductor per period must be zero. If this
were not so, inductor current would continue to build up or decay

until this condition is met. During the on-time T, a voltage of Vs

1
is impressed across the inductor. The energy stored in the inductor
cannot change instantaneously, requiring continuity of inductor cur-
rent when the switch opens. Thus as the switch opens, t‘he voltage
across the switch rises to VC plus a diode drop. For the analysis in
this work all diodes will be assumed to be ideal, and hence their
forward voltage drops will be neglected.

Since the inductor current increases during the switch on-time,
it must decrease during the off-time if the converter is to be at a
steady state. Thus Vc must be larger in magnitude than Vs’ which
demonstrates the '"boost' property of the circuit of Fig. 1. 3.

With one further assumption and one more approximation, we
shall have the first result. If the inductor current If(t) decreases
during the off time of the switch, it is possible that it may go to zero
before the switch closes again. At zero inductor current the diode no
longer conducts and the voltage across the inductor is zero until the
switch turns on again. This mode of operation is known as the
"discontinuous' or '"light' conduction mode. If the steady state

inductor current does not become zero during the switch off-time,
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this is known as the '"continuous' or "heavy' conduction mode. It can
be shown that the methods developed in this thesis are applicable to
both cases.

For simplicity, we shall assume throughout this thesis that the
converters are always in the continuous conduction mode. With this
assumption, the reverse voltage across the inductor is Vc - Vs
throughout the switch off-time.

If the boost converter is to do an adequate job in reproducing a
dc voltage at its output, the ripple voltage on VC should be small
compared with the average \_/'C. Hence it is a good approximation
during the off-time T that the inductor supports a constant reverse
voltage \—/C - VS.

The requirement for zero average voltage across the inductor

over a complete period T. + T, = T then gives a formula for the

1

average output voltage:

v = L v - vV = S (1.1)

Equation (1. 1) establishes why the converter of Fig, 1.3 is
called a '"boost' converter. We see that as the switch is closed for
a larger and larger portion of each period (D increasing) the average

output voltage is increased for a constant input voltage. Thus the
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boost converter behaves like a step-up dc transformer. If we can
find the steady-state time waveforms Tg(t) and —Vc(t), then the steady
state converter behavior is completely known. So far we have found
V‘C, the approximate average of Vc(t). Next TE’ the average of Tﬂ(t)
will be found.

At the steady state, the net current into the output capacitor must
be zero. The average current flowing out of the capacitor to the load
is VC/R. Current only flows into the capacitor from the inductor
when the switch is open so that the average current flowing into the
capacitor is _I—QTZ/T. This gives a relation for TQ, the average

inductor current in terms of the average output voltage ’VC.

T, v
&7 _ <
T ' "R (1.2)
Use of specific values shown in Fig. 1.3, and LT T2
4 -4

=0.5x10 " sec. sothat T =10  sec. (f, = 10 kHz), gives
D= Tl/T=0. 5. Evaluation of Eq. (1.1) leads to an a'verage output
voltage VC of 120 V. If the resistance R is 60 2, then Eq. (1.2)
indicates that the average inductor current TQ should be 4 A.

It is now possible to sketch a fairly accurate picture of Tﬁ(t)’ as
shown in Fig. 1.5.

Because the source Vs is constant and the steady state output
voltage \_/C(t) must be nearly constant for the converter to be useful,

the slope of the inductor current is nearly constant as shown in
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Fig. 1.5. Steady state inductor current TB (t) for boost
converter.

Fig. 1.5 whether the switch is open or closed. During the time

T when the switch is closed, the slope of IQ(t) is determined by:

dI, (t) AT AT
v = L—4— 1% =1L
S dt At T

For the element values in Fig. 1.3 and with' T T 0.5 x 10—4 sec,

the change in inductor current ATQ during 7. is calculated to be

1
A, = 0.5 A,
Knowledge of the average inductor current —I-B and its change

ATE is sufficient for completion of the picture of Tﬂ(t). In particular,

we can say that if the time when the switch closes is called t = nT,



then -I-Q(nT)~3. 75 A. The approximate solution for ff(t;) is accurate
to the extent that the voltage ripple on Vc(t) is small compared with
its average V _.

We can compute Vc(t) to see if the small ripple assumption is
valid. If the ripple is small, then the assumptions are consistent,
and the resulting steady ;tate solutions are accurate.

During the time when the switch is closed, the capacitor

discharges into the load resistor. The slope of the output voltage

during this time is governed by:

av_(t) ) Vc(t)
dt -~ T RC

However, if Vc(t) does not change much during this time, then the

slope is nearly constant and we may approximate it as follows:

dV _(t) 7 AV av
C C

i

dt RC At 1'I

For the element values shown in Fig. 1.3 and Ty = 0.5x 107*

sec, A'V'c is 2.4 V which is only 2% of V’C = 120 V. Thus the results

are consistent and we may sketch Vc(t) as shown in Fig. 1.6.
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Fig. 1.6. Steady state capacitor voltage Vc(t) for boost
converter.

In addition, knowing VC and Avc we can say that if the time when the
switch closes is t = nT then VC(nT)~121. 2 V.

As a check on the accuracy of this approach to finding the steady
state solutions, a computer program was used to simulate this con-
verter and calculate the exact (or at least more exact than this

approach) values for I,(nT) and V (nT), with the following results:
PP ) c g

Predicted Exact
TQ(nT) 3.750 3.7478
VC(nT) 121.200 121. 145

So we see that with some very simple analysis it is possible to find

quite accurately the steady state conditions for a switching converter.



-23-

Before consideration of the problem of making a regulator out of
this converter, something should be said about the advantages these
circuits enjoy over their linear competitors. As was noted in the
example shown in Fig. 1.2, alinear regulator may absorb a signifi-
cant amount of power in performing a regulation function. In a
switching converter such as the boost converter, if the switch, diode,
and filtering elements were ideal, the efficiency would be 100%.
Indeed, in practical circuits efficiencies on the order of 80% are easy
to achieve., For state-of-the-art equipment, efficiencies as high as
95% have been reported [7].

In addition to their usually higher operating efficiency, switching
regulators offer an extra degree of flexibility over linear regulators
in that various topologies exist which can step the input voltage up
(as with the boost converter), down, or both.

Now that we understand how the converter part of a switching
regulator works and its advantages over linear regulators, this
chapter will conclude with a discussion of the stability problems that
occur when one tries to close a feedback loop around a converter to
make it a regulator.

To make the converter of Fig. 1.3 a voltage regulator, a signal
loop is made by choosing a pulse-width modulator and compensation
as shown in Fig. 1.1. The feedback is set up such that an increase

in the steady state output voltage tends to decrease the duty ratio of
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the modulator. With sufficient gain in this loop, the output voltage
of the regulator may be made insensitive to both source and load
changes.

The basic steady state behavior of a great variety of switching
regulators is well understood by designers in the field. However,
analysis of the closed-loop dynamics of such circuits is another story.
Because the control loop contains what is well approximated as a
switch, analysis of the dynamics of the loop is a nonlinear control
problem.,

The problem of designing compensation to stabilize such a
feedback loop would be much easier if the problem were linear. Two
things favor this approach. First, in any well-designed switching
regulator, regardless of topology, the switching frequency is
deliberately designed to be much higher than the natural frequencies
of the power handling filtering components. This is done so that ac
components due to the switching will be small relative to the desired
output. Second, in many cases the type of instability that commonly
occurs is some relatively low~frequency modulation of the duty cycle
which, after filtering, results in a nearly sinusoidal output.

The presence of a low-pass element along with generally low
frequency phenomena being observed suggests that a describing
function representation of the feedback and stability problem would

be fruitful. The method as described by Middlebrook and Wester has
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indeed shown itself to be both easy to work with and reasonably
accurate in the prediction of performance at frequencies well below
the switching frequency.

The problem is that engineers (and their customers), as a group
are never satisfied with a regulator that merely works. There is
alwaysAthe urge to extend the performance of these circuits. One
thing which seems easy enough to do is to improve the transient
response. To do this one may increase the closed-loop bandwidth.
However, as the closed-loop bandwidth approaches half the swi’tching
frequency, the linear continuous model gives erroneous results.

For a simple example of why this happens, imagine a regulator
whose pulse-width modulator (PWM) is implemented as shown in
Fig. 1.7. Here the on-off signal to the switch is produced by
comparison of a sawtooth clock waveform with the feedback signal.
Under steady state conditions the feedback signal is a voltage con-
taining a ripple at the sawtooth frequency, if the modulator is not
saturated (i.e., always on or always off). Since the time at which
the switch turns off is determined by the sawtooth, information from
the feedback is passed through the modulator once per cycle at the
instant the switch is turned on.

Roughly speaking, information about the feedback signal flows
through the modulator at discrete instants at a rate equal to the

switching frequency. In other words, the pulse-width modulation
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Fig. 1.7. Sawtooth modulator circuit and timing.



-27-

behaves as a sampler which samples the feedback signal at the
switching frequency. Unlike the ideal analog sampler, the PWM does
not have to sample uniformly (i.e., time between samples constant)
nor is its output a series of impulse functions. Nevertheless, one
might expect that signals entering the modulator with bandwidth
greater than half the switching frequency would be in for trouble,
which is indeed the case. If the information coming out of the modu-
lator is contained in the time location of one of the switching instants
per cycle, then periodic motion of this switching edge with respect
to its steady~state location can occur at a maximum rate of half the
switching frequency. Clearly, if a switching regulator is unstable
with a small oscillation in duty ratio, the maximum possible fre-
quency of oscillation is half the modulator switching frequency.

We may surmise that since the PWM in a switching regulator is
part of the feedback loop, a linear small=-signal continuous model of
the loop dynamics will become increasingly inaccurate at higher
frequencies in describing loop behavior, because of the sampling
nature of the PWM. Chapter 2 will show how this inaccuracy at
frequencies near half the switching frequency may be overcome by
using a linear small-signal discrete model for the regulator. This
is done by replacing the approximate differential equations of the

continuous model with a set of exact difference equations.
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Chapter 2

Derivation of Converter Difference Equations

This chapter introduces the discrete analysis of a switching
converter. The first part of the chapter shows how one can derive
the exact set of small-signal linear difference equations which
characterizes a generalized switching converter about a steady state
operating point. Equivalent derivations have been done before, but
by means of somewhat different arguments and notation [6,8]. Also,
to point out the differences between the discrete converter models,
and describing function or "averaged' converter models, their
derivations are compared.

To add concreteness to the general converter model derivation,
the difference equations for the boost converter introduced in Chapter
1 are found. This derivation is done briefly to illustrate how a
designer would proceed; the derivation will be reviewed in Chapter 5.

Although the general derivation requires a substantial amount of
algebra and matrix manipulation, most of the math is in the general
derivation and very little is shown to be necessary in putting the
method into practice.

The conclusions to be drawn from this chapter are: first, a
difference equation model of a converter is a true small-signal linear

model with no "low-frequency' approximations necessary for its
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validity, and second, at least in form, the difference equations are
not difficult to derive.

The idea that a nonlinear system containing a switch might be
analyzed with discrete techniques is not a new one. It has an
interesting history, first being described by Y. S. Zypkin [9] in the
analysis of the stability of limit cycles in certain relay control
systems. A large-signal approximate extension of the idea for a
particular type of PWM system was later used by R, E. Andeen [10].
Later, McVey and Nurre [11] used the method to locate possible limit
cycles in relay-type systems. More recently Sucena-Paiva et al [12]
have successfully demonstrated the method in studying the stability
of silicon-controlled-rectifier regulator circuits. Finally, Prajoux,
Capel, and Ferrante [6], and Iwens, Yu, and Triner [8] have developed
the analysis in exact form for several special types of switching
regulators such as the one mentioned in Chapter 1,

The discrete model of a switching converter, like any other
small-signal model, is useful in describing the local behavior about
some operating point of what is basically a nonlinear system. For
sufficiently small disturbances from the operating point the discrete
model gives an accurate description of how the actual converter

behaves,
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We begin the derivation of the converter difference equations by

introducing the large-signal mathematical model of Egs. (2. 1):

x(t) = Dy(t) [Apx(t) + Bju] + Dy(t) [A,x(t) + B,u] (2.1)

in which
— — - —
%, (t) dx1 (t)
dt
x(t) = : x(t) =
x (t) dxm(t)
m dt
L - L -

This set of matrix equations characterizes the behavior of most
switching converters. The notation is as follows: x(t) is an mth
order column vector containing the state variables of the converter
at time t. Its components xl(t) through xm(t) are chosen such
that they are all continuous functions of time. The functions Dl(t)
and Dz(t) are scalar functions which may be termed pulse-width
modulation functions or simply modulation functions. These functions
are described pictorially in Fig. 2.1. They have the following
properties:

1. They are binary valued, being either zero or unity.

2., Their sum Dl(t) + Dz(t) is unity for all t.
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Fig. 2.1. Modulation function timing diagram.
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Physically these functions represent the alteration of the converter
topology as ideal switches are opened and closed, and in general
there is no requirement for periodicity.

The matrices A, and AZ are m x m constant matrices, while B1

1
and B2 are m x r constant matrices. Independent voltage and current
sources are contained in u an rth order column vector. ZFor simpli-
city these sources are taken to be dc sources in this derivation.

This choice is adequate to treat many types of converters, although

it can be shown that the only necessary assumption about the sources
is that they are periodic at the converter switching frequency. Dur-

ing a time interval when Dl(t) =1, Al and B1 indicate the current

network topology. At the instant when Dl becomes zero and D,
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becomes unity, the new network topology is described by A2 and BZ’
and reverts to Al’ B1 when again D

As already stated, the components of x(t) are chosen so that they are

1 becomes unity and DZ zZero.

continuous across each switching transition. The operation of this
generalized open loop converter is summarized in Fig. 2.2.

Formulation of the large-signal converter model of Eqgs. (2.1)
is the first step in the difference equation derivation. The next step
is choice of a steady state operating condition for the converter.

The boost converter example in Chapter 1 showed that the signal
that ""drives' the converter is the on-off signal from the pulse-width
modulator. We were able to find the steady state converter wave-
forms when this modulator signal was periodic with constant duty

ratio. This on-off signal is modeled in Eqgs. (2.1) by the modulation

TIME NETWORK DESCRIPTION

D1h)=1

<+
2
<«
N
o]
B
c

Dzm =1

Fig. 2.2. Operation of generalized open-loop converter.
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functions Dl(t) and Dz(t). We therefore conclude that to choose a
particular steady state condition, Dl(t) and DZ(t) must be periodic
functions of t. These functions are denoted as Bl(t) and ﬁz(t), each
being unity for a time T and T, respectively, as shown in Fig. 2. 3.
From the example in Chapter 1 we know that if a boost converter
is excited by a periodic switch drive, the steady state inductor
current Tg(t) and capacitor voltage vc(t) are also periodic functions
of time. Hence, we conclude that the steady state solution of
Egs. (2.1) which we call X(t) is periodic with the same period as

ﬁl(t) and ]_DZ(t). Thus, the second step in the derivation is to specify

D, (1) + Dylt) D, D, D, D, D,

0

..v

Dyl 1

Dylt) 1 ¢

— T

}“12"{ |"“72“"{ t

Fig. 2.3. Steady state modulation function timing.
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steady state modulation functions Bl(t) and ﬁz(t) which give rise
through Egs. (2.1) to a steady state solution X(t). The steady state

quantities I—)l, _DZ and X then satisfy Eqs. (2.2):
X = D [Ali +Bu] + D, [Az?c + B,u] (2.2)

The next step in the derivation is description of the behavior of
perturbations about the steady state condition. The source of the
perturbations X(t) is modulation of the widths of the D(t) functions
about their steady state values. Figures 2.4a, b and ¢ show that
there are three different ways of doing this. The crosshatched edges
in these figures indicate that these switching instants are moved
about their steady state time locations from cycle to cycle.

In later examples in this work the time when the converter
switch is closed is taken as the D1 = 1 interval. The words
"leading'' and '"trailing'' are defined with respect to when the switch
is closed so that 'leading-edge' modulation is of the instant when Dl
becomes unity and ''trailing-edge' modulation is of the instant when
Dl becomes zero.

For this derivation we choose the type of modulation to be
leading-edge modulation as shown in Fig. 2.4a. The difference
equation derivation for trailing-edge modulation is identical to that

of leading-edge modulation except for a change in the time reference,

so the result for this case will simply be stated. Although it can be
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(c) DOUBLE-EDGE MODULATION

Fig, 2.4, Three types of pulse-width modulation.
shown that the double-edge modulation of Fig. 2.4c can be analyzed
with discrete models,‘the results are more complex and they
contribute little additional understanding to the difference equation

derivation, so this case is ignored here,
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Having chosen leading~-edge modulation, we continue toward
describing the behavior of perturbations on the steady state solution
by modeling perturbations on the steady state modulation functions.
Figure 2.5 shows two consecutive leading-edge perturbations in
detail. The width of the nth perturbation is a time Atn, but instead
of using this variable in the derivation we use a normalized variable
dn defined by the relation d = Atn/T. The modulation being small
compared with the converter period T then implies Idn1<< 1. The
steady state location of the leading edge of the nth converter cycle
is chosen as the reference time nT.

Figure 2.5 shows that leading~edge modulation is equivalent to

addition of a stream of pulses d(t) to Bz(t) and subtraction of this

14 ——

Atn | :
1 4T
n'l
D (1) + Dylt) D, L) { 0, D, ] { 1
!——.—‘ 1 t
0 d 4 >
nT nT +d.T nT +7, n+ 1T 1
T
(n+NT +d | 1
4 dy 44T
1
d,T
t
dt) 0 >
nT nT +d. T (n+ 1T
(n+1T+d, , T
-1

Fig. 2.5. Detail of leading-edge pulse-width modulation timing.



-37-

same stream of pulses from ]31(t), that is, Dz(t) = f)z(t) + d(t) and
D, (t) = 51(t) - d(t).

To determine the effects of the modulation shown in Fig. 2.5,
we substitute Dl(t) = ﬁl(t) - d(t) and Dz(t) = I_)Z(t) + d(t) into Eqgs.
(2.1). Since this perturbation in the steady state modulation should
give rise to a perturbation X(t) on the steady state solution X(t),

we also substitute x(t) = x(t) + X(t) into Egs. (2.1) to yield Eqgs. (2. 3):

t+% = (D - d) [Al(?: LR+ Blu:I + (D, +a) [Az(z+ %) + Bzu:'
(2. 3)
Subtraction of the steady state Eqgs. (2.2) from Egs. (2. 3) leaves
Eqgs. (2.4), which describe the behavior of the perturbation X(t)

caused by the modulation d(t):

1 3
% = DAE+D,A,%+d [(Az - A)E+ (B, - Bl)u] +a [(AZ - Al)i]
(2.4)
The right-hand side of Eqs. (2.4) consists of three parts. The first
part represents the steady state dynamics of the open-loop converter
when there is no modulation. The second part may be thought of as
a forcing function or input. It consists of a stream of pulses d(t)
with gain coefficients dependent in general on the steady state solution
%(t) and on the independent sources. Finally, there is a third part

which is a ""small'' stream of pulses compared with the second part

if the components of X are ''small'’,
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It can be shown that the third part of Eqgs. (2. 4) ultimately makes
a negligible contribution to small-signal equations, so we neglect this
term and complete this part of the difference equation derivation
by writing the differential equations for '"small' perturbations as

Egs. (2.5):

;';:ﬁAi+BAsz+d[(A2—Al)z+(Bz-Bl>uJ (2. 5)

4
At this point if a continuous small signal model of the system is
desired, an averaging operator may be applied to both sides of
Egs. (2.5) resulting in the set of continuous differential equations

(2.6):

<X> = "‘—rf Al + 'E‘ AZ <X>+ <§> (AZ - A1)<X> + (BZ - B1)<u>

(2. 6)

In Egs. (2.6) <X> indicates the new set of variables and is some
1 t
average of X such as T / X dt.
t-T
This is the averaging method of Middlebrook and Wester. One
i
result of this method of linearization is that there is a disparity
between the actual average perturbation and <X>, its average as
computed by Egs. (2.5), which increases as X changes more rapidly

in one converter cycle. This is because the average of the product

of Ei(t)i in general is not equal to the product of the averages of



-39:-

Bi and X unless i is constant. Thus an approximation is made to
get from Eqgs. (2.5) to Eqs. (2.6), which requires the switching
frequency of the converter to be much higher than the cutoff frequency
of the power filtering components. This approximation is well
satisfied for most converters, making measurements of open-loop
averaged quantities agre:e well with predictions at frequencies up to
half the switching frequency. Yet experience shows that the averaged
converter models give erroneous predictions of regulator transient
response as the closed-loop bandwidth nears half the switching
frequency. The reason for this paradoxical behavior is that the
averaged models also require the harmonic assumption discussed

in the introduction to describe closed-loop behavior. So, rather than
average the Egs. (2.5), we continue with the difference equation
derivation here.

The final step in the derivation of the converter difference
equations is to integrate the ''small' perturbation equations (2. 5)
across one complete converter period in the time domain. With
reference to Fig. 2.5, this is done in two parts; first, across the
d(t) pulse from nT to nT + dnT’ and then across the remainder of
thg period from nT + dnT to (mn + 1)T.

In performing this integration extensive use is made of the fact
that the width dnT becomes vanishingly small for small signals.

This small-signal approximation limits the resultant discrete
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convertor model to the approximate description of local behavior
about a steady state condition; but, in return for this limitation the
integration of Eqs. (2.5) is simplified and the resultant small-signal
difference equations are linear.

Integration of Eqs. (2.5) first across the narrow d(t) pulse

leads to the following expression:

nT +d_T nT +d_ T
f ¥dt = f (5,47 + B,4,%)dt
nT nT
nT +d_T
£ d [(AZ - A=+ (B, ~ Bl)u] dt (2. 7)
nT

The left~-hand side of Eqs. (2. 7) is simply equal to X(nT + dnT)
= X¥(nT). The right-hand side may be evaluated for the small-signal
result by repeated application of the integral mean value theorem,
but it is more instructive if we reason that since the first integral
contains ''small' quantities X(t) integrated over a ''small' time dnT’

its contribution to Eqs. (2. 7) is of second order and hence negligible

for small signals.
We can similarly argue that the second integral on the right-hand

side of Eqs. (2.7) contains 'large' quantities X and u integrated
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over ''small" time, producing a first order contribution to Egs. (2. 7).

Consequently, the result of integration of Eqs. (2. 7) for small signals
is:

%(nT + dnT) - &nT) = 4_T [(AZ - Al)i(nT) +(B, - Bl>u,] (2. 8)

-

Note that in Eqs. (2.8) the steady state solution is evaluated at nT.
As the modulation becomes vanishingly small, it matters little
whether we evaluate X at nT + dnT or nT because its components
are all continuous.

To complete the integration we integrate Egs. (2.5) from time
nT + dn'I‘ to (n + 1)T in Fig. 2.5, Because this is between d(ti
pulses, Egs. (2.5) reduce to Egs. (2.9):

% = f)—IAISE + EZAZ:‘E (2.9)

When ﬁl = 1, Egs. (2.9) become % = Ali. The solution of

X = AIS’: in terms of its initial condition X(nT + dnT) is given by

Egs. (2.10):

%(t) = e i(nT+dnT> (2. 10)
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The symbol o.eAt represents the exponential matrix. It has many
properties reminiscent of the scalar exponential function. Among

them are:

2 k
. < e . _Ata 2t kit
1. Series definition; e SI+A+A —TZ, + oo A k!

"
npnv8

k=0

2. Matrix differential equation: eAt solves Y = AY

3. Behavior att = 0: eA'o = I, the identity matrix;
At At At At Aft, +t
4. Commutivity: e 1 e z . e 2 e ! = e (2 ]')
eA(t-t) I

5. Inverse: eAt e-At =

.. Inverse of eAt is e_At

Note: eAt eBt # e(A + B)t unless AB = BA

If the widths of the d(t) pulses in Fig. 2.5 become vanishingly
small, then integration from nT + dnT to nT + 1'1 is nearly the same
as integration from nT to nT + ™ It is easily shown then that the
small-signal equations that take the states of the converter from

nT + dnT to nT + T, are Egs. ‘(2. 11):

J'é(nT + 71) = eA1 "1 x(n'l" + dnT) (2. 11)
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Application of the same argument to Eqs. (2.9) when 52 = 1 vyields
Egs. (2.12):
AT
Z(n+DT) = e > %%@T + 1) (2.12)

Because x(t) was chosen to be continuous for all t, then % and
X are also continuous for all t. This means that the small-signal
integration results of Eqs. (2.8), (2.11) and (2. 12) can be connected
end to end to form the complete set of small-signal converter
difference equations (2. 13) for leading-edge modulation:

AT AT

%((n + nT) = e 2% [)‘E(nT) +d_T[(Az = A)X(nT) + (B - Bl)u]:[

(2.13)

With this result our derivation is complete, but because there
are many symbols in Eqs. (2.13), the reader may understand the
meaning of this result more clearly if it is expressed in words.

What Eqs. (2.13) say is as follows:

We are given X(nT), the perturbation on the steady state solution
at a time nT just before a small modulation dnT occurs. The
m.odulation adds an additional perturbation to X(nT) if the circuit

- topology changes at the switching instant (i.e., (A; - A}) # [0])
and the steady state solution X(nT) at the steady state switching
instant is not zero, or if independent sources u are switched in or

out around this time (i.e., (B3 - B;) # [0]).
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The resultant perturbations are taken as initial conditions at the
beginning of one cycle and used to find the final conditions at the end
of this cycle just before the next modulation occurs.

The results for trailing-edge modulation are found by following
the same procedures. For this case the reference time nT is chosen
to be at the beginning of the I_)Z - 1_ pulses. The result is stated in

Egs. (2.14):

AIT A T
x DT =e * le 2 2[§(nT)+dnT [(A} - A )%(nT) +(B, - B,)u ]] (2.14)

Both of these sets of linear difference equations become exact
descriptions of the effect of pulse-width modulation on perturbations
from the steady state solution as the modulation dn becomes vanish-
ingly small. Though for the derivation dn was taken as positive,

one finds the same formal result of Eqgs. (2. 13) and (2. 14) for dn
negative, so that the modulation may be on either side of the steady
state switching instant. The important thing to note about these linear
converter models is that no assumptions about the switching frequency
relative to the natural frequencies of the filter were necessary. Also
note that a solution of Eqgs. (2. 13) defines the state of the converter

only at a sequence of the time points nT, rather than for all time.
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However, it is clear that if the state is known at one time during
each period, its behavior at other times during the period may be
found by use of exponential matrices. Hence, the behavior of this
sequence of points is sufficient to imply the local behavior of the
continuous converter.

An additional conclusion from the difference equations for both
leading and trailing edge modulation is that they are both of the

form
§<(n + 1)T) - M[i(nT) + dnKJ

where M is a constant matrix called the transition matrix and K is

a constant column vector. From Egs. (2.13) and (2. 14) it is clear
that even if there is no modulation (i. e., dn = 0 for all n), these
formulations produce two different transition matrices. Yet, if the
difference equation formulation is to be correct these two different
transition matrices should indicate the same dynamic behavior. In
Appendix 3 this argument is used as motivation to show that the
eigenvalues of all transition matrices for the same converter are
the same.

Up to this point we have shown that one can start with a large-
signal mathematical model for virtually any kind of switching conver-
ter and with a step-by-step approach ultimately derive a small-
signal difference equation model of the converter's behavior about

some steady state condition.
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Once the ideas are understood the derivation for a particular
case may be done rapidly.

As an example of the procedure to develop the difference
equations for a specific converter, consider the circuit of Fig. 2.6.
Details on the steady state operation of this converter may be found in
Chapter 1. Following the general derivation we first cast the equa-
tions for this regulator in the form of Egs. (2.1). The inductor
current Iﬂ(t) and the capacitor voltage Vc(t) are chosen as the
state variables x(t) because they remain continuous as switch S is

opened and closed. Consider the interval when S is closed as the

D! (iDEAL)

»l
ld ]

Fig. 2.6. Boost converter simplified model.
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D1 = 1 interval. During this interval the state equations of the

boost circuit are:

1,1 [o o711, [1] [v]
? 2 T s
= +
v - Ly
L C_| | 0 RC_{ [ c] LOJ
x = A1x+B1u

When the switch is open, D2 = 1. The state equations for this

interval are:

1, ] [o 17 [,] AT [v
2 L 2 T s
= +
1 =1
ch_ LC RC_ __Vc._J B 0_
x = Azx + Bzu

As in Chapter 1 we treat here the "continuous conduction' mode in

which the inductor current never is zero.
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The combination of the equations for the D. and D, intervals

1
yields Egs. (2. 15):

— - ~ ) —
1]21 o o] I 1 [v]
L S
= Dl +
A\ =Ly
| e [0 RG] "¢ Lo
_ o - -
o _1| |1, (1] [v]
L L S
+ D, N (2.15)
1 __1
C Re) LY Lol

In the next step of the derivation the steady state condition is

specified by choosing periodic modulation functions 1-51 and I—)Z.

Then if necessary we can find the steady state current and voltage

Ig(t) and vc(t) which correspond to D, and D by the methods

1 2
shown in Chapter 1.
In the third part of the derivation we first choose the type of
modulation (see Figs. 2.4a, b, c), then make the appropriate substi-

tutions into the large signal Eqs. (2.17) to extract the equations

describing the continuous perturbations.
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For the choice of leading edge modulation we form Egs. (2. 16):

Y

[ C]

— — 7 —
0 0 I, +1 1 [V]
Y/ 2 T s
+
LT 4w
o we| [Tet¥e) o
= TG L+ -
0 _1||I,+1 1 [V]
L L s
+ (2.16)
1 -1t lg 5
| C RG] _VC+VCJ | 0]

Removal of the steady state part from these equations leaves

Egs. (2.17), in which we ignore the group of "'small'' terms as shown:

+ d

E

a1~

1| 3, ]
_4 1

I )
_ 1 S
RC| | ]

(2.17)

This set corresponds to Egs. (2.5) for the general case.



The final step in the derivation is to integrate Eqs. (2.17) across
 a complete converter period from the beginning of the nth d(t) pulse

to the beginning of the (n + l)th d(t) pulse as shown in Fig. 2. 7.

" py=1 0,=1
19 n 1 1 2
)
fwe™ T, ‘ ~Ta
dit) !
i
4,7 ] f—— ! t
0 L o
aT aT+d T n+e T

Fig. 2.7. Modulation timing for boost converter,
To do this we ignore the fact that the d(t) pulses can encroach on the
length of the nth period, and say that for small signals the matrix

which carries the states at time nT + dn’I‘ across to (n + 1)T is
AT ATy
the transgition matrix M = e e .

ril (tn + 1)’15 o A r_“ig (aT + dn'r;
= e 22,11 (2. 18)

v, [+ 1)T_)_ v, (nT +4,T)
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Next we simplify Eqgs. (2.17) for the time period nT to nT + d T

by ignoring all terms except the '"full size' coefficients of d:

iB —

1 L T
c C R(j VCJ

<t

This approximation only ignores second order terms which would
ultimately be neglected anyway in a small-signal model.

Finally, because fﬁ(t) and 'Vc(t) are continuous, they cannot
change very much during the short time from nT to nT + dnT'
So if d(t) is very narrow, we can replace fg(t) with TQ(nT) (or
T)(T) since Ty(t) is periodic) and replace Vc(t) witH VC(nT)

(or VC(T)) in the integration over the d(t) pulse width:

i 0o IL(nT)

1
L

1 -
_Vc_J C Vc(nT)

(@]

This approximation also ignores only second order terms.



-52-

This expression then allows us to write the result of integration

of (2.17) across from nT to nT + dnT by inspection:

. N . n -7 N
i, (nT + dnT) i) (nT) 0 % I, (nT)
- +d T

n
g (nT +4d T) 3 (aT) 1 V (nT)
L ¢ n/ e | € 0 [ e ]
. VvV (T)
[jnT) - 4 T CC
. I, (1)
_\*C(nT) + dnT L |

The result is then combined with Eq. (2. 18) to yield the complete

boost converter small-signal difference equations (2. 19) for leading-

edge modulation:

B 7 B o e
i} i v (1)
i, ((n + l)T) e A i) (aT) - 4 T —5%
= e 2% 11 _ (2.19)
B _ IP(T)
A2 <(n + 1)T)_ T nT) +d T |

These equations say two separate things for the case of small-
signal pulse-width modulation:
1. Small-signal perturbations on the steady state solutions are
carried across each period by the transition matrix corre-

sponding to d{(t) = 0 for all t.
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2. The only significant perturbations caused by modulation are
due to interaction between the pulse-width modulation and
the steady state solutions.

In summary, it has been shown in this chapter that an exact
linear small-signal model of a generalized open-loop switching con-
verter may be derived by characterization of the converter by a set
of linear difference equations rather than by a set of linear differen-
tial equations.

The steps in this derivation are:

1. Write the large-signal equations of the converter.
2. Choose a steady state operating point.
3. Find the nonlinear differential equations for perturbations

about the operating point.

4. Use the small-signal approximation to integrate the
perturbation equations across one complete cycle including
modulation to find the small~signal difference equations.

The feature of this discrete analysis that makes it potentially

very useful is that the only approximation used to linearize the model

is the small-signal approximation of step 4. This means that

although a discrete model is valid only for small signals, it does

not have the frequency limitations of the describing function models.
The extended range of frequency validity only makes the discrete

converter model potentially useful. What ultimately affects its use
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in a design mode is the amount of work one has to do to derive this
model. Because ease of use is one goal of this thesis, it is worth-
while to assess the difficulty in the various steps of derivation of
the converter difference equations.

The first step in writing the large-signal converter equations is
generally quite easy if one is familiar with the state variable formu-
lation. Since the practicing engineer may not be so familiar with
this characterization, a simple systematic technique for finding
converter state equations is included in Appendix 1.

Many types of switching converters have only two basic state
variables (usually an inductor current and a capacitor voltage), so
that the effort is not much more involved than the boost converter
example at the end of this chapter. We may thus conclude that step 1
in the derivation, although being unfamiliar to some, is generally
easy to do.

The second step amounts simply to choosing a set of symbols to
stand for the steady state conditions (e.g., :Q(t) and vc(t) in this
example). Ultimately in using the final difference equations one will
need to know the steady state solution at the time of modulation in
the period, for example IE(nT) and VC(nT). It was demonstrated
in Chapter 1, however, that accurate values for these quantities can
be found easily by analysis that designers are familiar with. So we

conclude that the second step in the model derivation is easy.
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The third step consists of subtraction of the steady state solution
from the total solution to find a characterization for the various
perturbations. This step is trivial, only requiring the designer to
decide where during the converter cycle the modulation will be placed.

The last step integration of the perturbation equations, is easy
in principle but difficult to implement. The final answer is easily
written in the form of Egs. (2.19) shown in the boost converter
example, but the practical problem in utilization of the difference
equations such as Eqgs. (2.19) is that ultimately one needs to know
the exponential matrices explicitly. Computation of even one of these
in exact symbolic form for a simple two-state converter can be a
formidable task. An indication of this will be given in Chapter 5.

It has been this difficulty that has resulted in discrete converter
models being little used for initial design purposes.

We shall show in Chapter 5 that use of a generalization of the
simple '"'straight-line'" approximations used in Chapter 1 to find the
steady state conditions of a converter effectively solves the difficulty

of finding explicit forms for the exponential matrices.
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Chapter 3

Derivation of Pulse-Width Modulator Difference Equations

The contents of this chapter are a companion to the principal
work of the last chapter. In that chapter a four-step derivation was
introduced to show how nearly any kind of switching converter could
be modeled by a set of small-signal linear difference equations. In
this chapter we show that three different pulse-width modulators may
also be modeled by small-signal difference equations.

In earlier work by Yuh [13] the three modulators treated here
have been characterized by describing function methods. Because
of the complicated frequency spectrum produced by pulse-width
modulation, a significant amount of effort is necessary to derive
the exact df models and in the end they seem to offer little additional
insight over one's original intuitive feeling about a particular
modulator.

In contrast to the difficulty presented by df analysis of pulse-
width modulators, this chapter shows that discrete modulator models
are remarkably easy to derive, principally because their behavior
in the time domain is usually simple to describe mathematically.
This ease of derivation leads us to conclude that modeling the
modulator introduces no new problems in the use of discrete models

for design purposes.
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As with the converter difference equation derivation of the last
chapter, the only approximation used in this discrete modulator
derivation is the small-signal approximation. So once again the
result is linear, but has no frequency limitations.

To allow more explicit forms for the modulator models to be
presented we take the regulator compensation to consist of a linear
combination of the converter state variables x(t) and a dc reference
signal Vr:

T
V(t) = hyx; thyx, ... h x Vo= Hox(t) +V, (3.1)

In Eq. (3.1) V(t) is the signal input to the modulator and HT is a
row vector containing the gain (or attenuation) constants applied to

the components x x of x(t).

1

Compensation of the form of Egs. (3.1) is the most general
kind of compensation that one can consider for a regulator short of
the inclusion of reactive frequency-shaping components in the
compensation. Treatment of this '"'reactive'" compensation is
reserved for Appendix 2. With the compensation form of Eq. (3.1)
noted, the modulator model derivations begin with the sawtooth
modulator.

We first discussed the behavior of this modulator at the end of

Chapter 1. In its simplest form the sawtooth modulator is a voltage

comparator that switches when the feedback signal V(t) is equal to a



sawtooth clock signal R(t). A detailed picture of the timing for
this modulator is given in Fig. 3. 1.

The difference equation derivation for this modulator has been
done by others, but is included here as a starting point. We first

write the large-signal equation that describes the switching time tg:
R(ts) - V(ts) =0 (3.2)

If the falling edge of the sawtooth is fast, then essentially only a
single transition is modulated in each period. This is arbitrarily

chosen to be at the beginning of the D, = 1 interval.

1
In the steady state condition, reference to Fig. 3.1 shows that

the modulator inputs satisfy Eq. (3. 3):
R(@nT) - V(nT) = 0 (3.3)

If a small perturbation is added to the steady state modulator input;
the output switches at a slightly different time, which may be com-
puted with the following line of reasoning.

First, the new switching time in the nth period is defined by
the relation R(nT + dnT> - V(nT + dnT) = 0. Since the input V is
a combination of steady state V and perturbation ¥V, the relation for

the switching time may also be expressed by Eq. (3.4):

R(nT + dnT) - [V(nr + dnT> + i‘r(nT + dnT)] =0 (3. 4)
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If the input perturbation ¥ is small, then the modulation dnT is
also small; hence we may approximate R, V and ¥V in Eq. (3.4)
with part of their Taylor series expansions about the steady state

switching time nT as shown in Eq. (3.5):

R(nT) + R'(nT)d_T
- [V(n'r) + V'(nT)d_T + 9nT) + V‘(nT)dnT] = 0 (3.5)

Next, we subtract the steady state relation Eq. (3. 3) from Eq. (3. 5)
and neglect the term i?'(nT)dnT as being of second order. Then we
rearrange terms to obtain the final result given in Eq. (3.6):

_ $(nT)
n ~ T(R'=- V'nT))

(3. 6)

where R' is the constant slope of the sawtooth, and V'(nT) is the
slope of the steady state modulator input signal evaluated at nT.

Note that if the modulato‘r input V(t) or its first derivative
contain switching discontinuities at nT, then in place of v(nT) or
V!(nT) we use their values just before the discontinuity. This
reflects the fact that the modulator makes its switching decision
before it switches, which in turn may cause discontinuities at the
modulator input.

Since R and V are periodic, the proportionality between a small

input perturbation and the resultant modulation is merely a constant
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for this modulator. Note, the only assumption necessary to derive
the difference equation (3. 6) is that the input perturbation be small.

Two important characteristics of the sawtooth modulator that
we see from Eq. (3.6) are: first, that it samples its input just
before it produces modulation, and second, the modulator small
signal gain depends partly on the derivative of its steady state input
at the time nT when it samples the input.

If we consider the compensation to be of the form given in

Eq. (3.1) it follows that:

¥(nT) = HTi(nT)
and

V!'(nT) = BT Z'(nT)

So the characterizations of the compensation and modulator may be

combined to yield Eq. (3. 7):

3 HTi(nT)
dn B T
T(R' - H i'(nT))

(3.7)

This expression will be compared with those of the other modulators
at the end of this chapter.

The next modulator whose difference equations we derive is
called the uniformly sampled modulator. Its timing is pictured in

Fig. 3.2. This modulator periodically samples the amplitude of its
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input and determines a switching instant whose time location is
proportional to the sampled input amplitude. In Fig. 3.2 the wave-
form R(t) could be the voltage on a capacitor which is periodically
charged up to the input voltage V(t), and then allowed to discharge
through a constant current source until it has zero volts across it,
at which instant the modulator switches. Clearly, from the geometry
of the picture, the modulation dnT is again proportional to the per-
turbation ¥, but to ¥(nT - T,) rather than to ¥ (nT). If R' is the
slope of R(t), the modulator may be characterized by Eq. (3. 8):

\NI(HT - TZ)

4 = TR (3.8)

The important characteristics of this modulator are: first,
that it has a time delay 7, between when it samples and when it
modulates, and second, its small-signal gain does not depend at all
on its steady state input V(t), in contrast to the sawtooth modulator.

The time delay inherent in this modulator has led many
designers to decide that the uniformly sampled modulator is a poor
choice for wide bandwidth switching regulators. However, with the
expression for the state-space compensation Eq. (3.1), it will now

be shown that the delay can be made to disappear.



-64-

If the feedback is chosen as in Eq. (3.1), then for small signals

T

the modulator input is Vv = H™X. Substitution of this relation for ¥

in Eq. (3.8) gives:

_ HTS':(nT - Tz)
d, = TR

Since nT = T is the beginning of a D, = 1 interval and nT is
at the end of the D2 = 1 interval then, we may write:
A2 ~<
e + X(n

%(nT) = T - 7p)

This is simply carrying the converter perturbations across the
f)z = 1 interval as done in Chapter 2. Running time backwards,
however, allows the starting conditions to be computed from the

ending conditions as:

i(n'I‘ - Tz) = e-AZTzi(nT)

So in terms of its input just before modulation occurs at time nT the
uniformly sampled modulator may be characterized by Eq. (3.9):
T ~A272

__ H e Z(nT)
d, = TR' (3.9




-65-

From Eq. (3.9) we observe that the gain is now dependent on the
steady state width of the D2 = 1 interval, but there is no delay
between the occurrence of a sample and the modulation instant.

The fact that the discrete equations for this modulator with the
compensation can be put in the form of Eq. (3. 9) has some important
consequences which we investigate in the next chapter.

The last modulator that we consider here is called the integrated

error modulator. The steady state switching time, nT, for this

modulator is defined by Eq. (3. 10):

nT ‘

[ V(t) at = v, (3. 10)

nT-TZ

A picture of the timing for the modulator is given in Fig. 3.3. The
operation is as follows: Periodically a clock begins the D2 =1
interval and the modulator input is integrated. When this integrated
input reaches some threshold value Vt the modulator switches,
ending the D2 = 1 interval, and the integrator is reset to some initial
value. If a perturbation V(t) is present, the modulation dnT is

defined by Eq. (3.11):

nT +4 T
n

f ( Vit) + V(t))dt =V, (3.11)
nT -1'2
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This may be expanded as follows:

nT nT + dnT nT nT + dnT
f Vat + / Vde + f Jdt + f vdt = V,
nT = TZ nT nT - Ty nT

Subtraction of the steady state Eq. (3. 10) gives:

nT + dnT nT nT + dnT
[ Tdt + [ vdt + / vdt = 0
1:1T ' nT =~ TZ nT

If dnT is small, then two of the integrals may be approximated as

follows:

nT
d_ T ¥(nT) +f ¥dt +d_T ¥(uT) = Q
nT - TZ

The third term is of second order for small dn and V, and may

be neglected. The final result is the difference Eq. (3.12):

nT

I S -t
d = T9@1) f v(t)de (3.12)
ntT = T2

It is difficult to say from Eq. (3. 12) exactly where the input is

effectively sampled because of the integral in the result, but we can
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say that the modulator small-signal gain depends on the steady state
input, rather than its derivative as in the sawtooth modulator, or not
at all as in the uniformly sampled modulator.

To find a more explicit formula for the behavior of the integrated
error modulator we again assume the compensation is of the form of

Eq. (3.1). Then we may say that

J(t) = HT (1)

Since the integral in Eq. (3. 12) is over the D2 = 1 interval we

may write:

and therefore

~A T
z(nT - T2> = e % %zaT)

Connection of these last three relations provides an expression for

v(t):

J(t) = H e %(nT) (3.13)
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Substitution of Eq. (3. 13) into Eq. (3.12) and integration then leads
to the following exact expression for the small-signal discrete gain

of an integrated error modulator with compensation:

H A, (1 - e_AZTZ) %(nT)
R T (HTsz(nT) + Vr) (- 14)

If T, is short compared to the natural time constants of the
converter, then the exponential matrix may be approximated by the

first three terms in time,

_AT
2"2 2.2
e = I AZT2+A2 TZ

2

Then there results an approximate expression for Eq. (3. 14):

-A_ T,/2
T T 2 2 ~

T SH - (I ~A 1,/2)%(nT) H e X(nT)

2 ( 22 > = T2 (3.15)

T (HTi(nT) + Vr) T (HTi(nT) + Vr>

The exponential matrix in the approximate result means that this
modulator behaves as if it had a delay of TZ/Z if the approximation

AT
e =1I- AZTZ is valid. This agrees with the approximate

continuous model for this modulator developed by Yuh.
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A summary of the results of the modulator derivations is given
in Table 3. 1. -A conclusion is that one can make a trade-off between
the effective delay of a modulator and its sensitivity to the steady
state input.

We note that, from sawtooth to integrated error to uniformly
sampled modulator, the effective delay increases from zero to
~T2/2 to 7, while the dependence on the steady state input decreases
from dependence on its slope to dependence on its amplitude to no
dependence at all.

It is also seen from Table 3.1 that, with assumption of state
variable feedback as the compensation, explicit difference formulas
can easily be determined for all three modulators. We also note
that time delay may be treated as a gain factor in the difference
equations.

In Chapter 6 use of some of these modulator equations as design
formulas will enable the physical feedback HT to be chosen to yield

an optimal small-signal transient response.
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Chapter 4

Application of z-Transform to the Difference Equations

In this chapter the'z-transform is applied to the discrete models
developed in the previous two chapters to obtain a frequency domain
representation of the closed-loop behavior of a switching regulator.
The idea behind using the z-transform is to simplify the use of the
discrete models by shifting their characterization from the time
domain to the frequency domain. To give those more familiar with
the Laplace transform a ''feel" for the discrete frequency domain, the
beginning material also includes comparisons between the z-plane and
the s-plane. A review of the stability discussion of Chapter 1 shows
that the z-plane is a natural setting for the small-signal stability
problem of switching regulators,

We begin with a definition of the z-transform and then show how
it may be applied to transform difference equations into algebraic
equations.

After these preliminaries, the z-transform is applied to the
converter difference equations to show that a converter may be

characterized by a set of scalar transfer functions G(z), as shown

in Eqs. (4.1):
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F}’E”i ’—Gl(z)

S N R [ N (4.1)
;{,* Gm(z)
L ™ [ .

s
~ 8

where d* is the z-transform of the input modulation dn and x 1is the
transform of the perturbations X on the state variables. These
transfer functions emphasize the idea that for feedback loop design
the input to a switching converter is the modulation and its outputs
are the various converter state variable perturbations.

When the transform is applied in a similar manner to the com-
bined differ:ance equations of a pulse-width modulator with compen-
sation of the form introduced in Chapter 3, we find that unlike the
s-plane descriptions of these modulators, their models in the
z-plane have no poles, or zeros, or phase shift. Instead, the gain
is constant and in general dependent on the steady state operating
condition.

Finally, a ''loop gain'' quantity is introduced which allows the
designer to use the root locus technique in the z-plane to position
the closed—Ioop poles of a regulator. With a general expression for

loop gain as the goal of this chapter, we now proceed with a brief

description of the z-transform and some of its properties.
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Formally, the z-transform is defined for a sequence of num-
bers Sn’ where n is an integer ranging from zero to infinity. In its
use here, the sequence of numbers will be points on a function of
time, f(t), taken at points in time labeled nT in keeping with the
derivations in Chapters 2 and 3. We define the z-transform of

f(nT) as f* according to Eq. (4.2):

Z {f(nT)} = fﬂ< = i f(nT) z P (4. 2)
n=0

A crucial property of the transform which follows from its definition

is the relation of Eq. (4. 3):

z {f((n+1) T)} =z (f* - f(O)) 4. 3)

This relation allows a set of difference equations to be transformed
into a set of algebraic equations.

After application of the z-transform to a set of difference
equations, the algebraic results may be described by pole-zero plots
in the z-plane. To understand how the z-plane poles relate to
various types of transient responses, we compare the s-plane and
the z-plane in Fig. 4.1. It can be shown that the two planes are
related by the mapping z = eST. In Fig. 4.1 a contour is drawn and

numbered to indicate how a semi-infinite strip in the s-plane
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between plus and minus half of the switching frequency is mapped
inside the unit circle in the z-plane, Zero frequency s = 0 maps
into z = 1 in the z-plane. Traversal of the positive imaginary axis
in the s-plane which is done when finding the frequency response of
a network, maps into a counter-clockwise trajectory around the
edge of the unit circle in the z-plane. Finally 6 stability, which
corresponds to all poles in the left half of the s-plane, implies all
poles inside the unit circle in the z-plane,

Important to note is that just the strip of the s-plane between
plus and minus half of the switching frequency is enough to uniquely
describe the entire z-plane, The left half s-plane strip fills the
inside of the unit circle and the right half plane strip fills the
remaining z<area outside the unit circle,

This means that all frequencies in the z-plane can be thought
of as being less than or equal to half the switching frequency, which
is precisely the real limitation on small oscillations in duty ratio as
given in Chapter 1, This limitation can be restated in terms of the
guantities introduced in Chapter 2. Basically, a small amount of
pulse -width modulation may be thought of as adding or subtracting
a stream of narrow pulses d(t) to the steady state modulation functions
_Di(t)' The width of the nth d(t) pulse is given by the normalized
variable dn’ so that the modulation may be thought of as a sequence
of numbers . . . dn—l dn dn+1 e e

The fastest possible periodic variation in d(t) then is a sequence

of numbers such as .. . ababab . . . . Since there is only one
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pulse produced per switching period T, the fastest possible variation
in d(t) requires 2T for its period. Hence, the maximum possible
frequency of pulse-width oscillation, assuming that its amplitude is
small, is half the switching frequency.

Since the z-plane can only uniquely describe frequencies up to
half the switching frequency, there is a consistency with the physical
constraints of the problem built into the z-plane, With this intro-
duction to the z-transform, we may proceed to apply it to the
difference equation models. First we show how the general converter
introduced in Chapter 2 may be characterized by a set of transfer
functions.

Recall that the main result of Chapter 2 was that about some
steady state condition a generalized converter can be represented

by the set of small-signal linear difference Eqs. (4.4):

X (+1)T) = M[?{ (nT) + Kdn] (4. 4)

where X is a vector of the perturbations on the converter state
variables, M is a matrix .called the transition matrix which carries
the small-signal initial conditions of a converter across one cycle
to determine its final conditions, and K is a vector of constants
describing the effect of the input modulation dn on each of the com-
ponents of X at the beginning of a cycle.

Application of the z-transform to the converter Egs. (4. 4),

and use of the result of Eq. (4. 3) gives:



-78-

z {3}‘ <(n+1)T)} . Z{M [?{ (nT) + Kdn]}

o (X7 - %(0) = M[F* + xa*]

A rearrangement of terms yields Eqs. (4. 5):

FF = 1o My P MrA 4 2z - M) R (0) (4. 5)

If the initial conditions on the converter states x (0) are all
zero, the remainder of Eqs. (4. 5) are z-plane transfer functions
describing the effect of the modulation d* on each of the converter
state variables. If G(z) is defined to be the vector of the converter

transfer functions for an m-state converter, then the steady state

part of Egs. (4.5) may be written as:

X7 = G(z)ad*
in which
[~ \b_W — ﬂ
x1 Gl(z)
= . |a® (4. 6)
XI;’J. Gm(z)
L | J

G(z) = (zI - M) - MK | 4.7)
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If the converter possesses only two states, as do many of the
basic types such as boost converters, Eqgs. (4.7) may be expressed
more explicitly as:

G, (z)
1 1

= (Z - Zl)(z ~ ZZ) zM - ZIZZI K (48)

G,(2)

where zy and z, are the eigenvalues of M or the roots of Det.
(zI - M) = 0.

With the results summarized in Eqs. (4.7) and (4. 8) the
development of a discrete converter model is complete. We now
proceed to model the modulators with compensation presented in
Chapter 3.

In Table 3.1 explicit results were included for three different
types of pulse-width modulators with compensation consisting of
state variable feedback. All of thése results were in the form:

d = HZ X(mT) = a¥, (T)+ bX ,(T) +. . . (4. 9)

where X is the converter state vector and Hz is a row vector of
effective gain constants dependent on the type of modulator, the
physical compensation HT and the steady state conditions of the

converter,
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Application of the z-transform to Eq. (4.9) yiélds the simple

but remarkable result

a* = g~ " (4. 10)

T
e

Equation (4. 10) implies that if a linear combination of the
converter states is physically fed back to any of the modulators
considered in Chapter 3, the resultant modulation a* is merely a
somewhat different linear combination of the states with no addi-
tional poles, zeros or phase shift in the z-plane.

What this means in practical terms is that if the physical feed-
back for two different types of modulators‘is chosen such that the
"effective' feedback given by H: is the same for both, then the
small-signal transient behavior of regulators with either modula-
tor should be identical. In more concise terms we may say that
with regard to potential small-signal transient performance all the
modulators considered in Chapter 3 are equal.

At first this seems a bit peculiar, particularly for modulators
such as the uniformly sampling variety which have time delay
between when the input is sampled and when the actual pulse-width
modulation occurs. We note, however, that in the difference
equation representation a time delay v is taken into account by means
of a factér e-AT in the gain of the modulator. As the duty ratio of

a delay type modulator varies, its effective delay varies. So,
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although a small-signal discrete model of a delaying type of modu-
lator has no phase shift in the z-plane, its small-signal gain
changes with steady state pulse width.

To summarize this part of the chapter, the introduction of the
z-transform has accomplished two important goals. First, it has
allowed the replacement of the difference equation characterization
of a converter with a set of small-signal transfer functions in the
z-plane describing the effect of pulse-width modulation on each of
the state variables of the converter.

Next, it was observed that with state variable feedback, the
model for all of the modulators in Chapter 3 in the z-plane is a set

0

of constants describing the modulator output d" as a linear combin-

N
~

ation of the state variables x

At this point the theoretical development is nearly done. The
last step, which in some ways is the most important one, is to
introduce the discrete equivalent of loop gain which will be noted as
T3(z) and should not be confused with T, the symbol for the steady
state switching period.

To find the loop gain, first consider the z-plane description
of the switching regulator signal loop shown in Fig. 4.2. The
sign inversion after the modulator is provided to make the feedback
negative. Traversal of theloop as indicated in the figure yields

Eq. (4.11) for the loop gain:

T¥(z) = Hf G(z) = aG,(z) + bG,(z) * . . . (4. 11)



-82-

CONVERTER x . /

L
O———P Glz)
L

Is’

T*{z)

A
[N

-
d T,

A

MODULATION AND COMPENSATION

Fig. 4. 2. Block diagram of the z-transformed signal loop
for a switching regulator with state variable
feedback.

To verify the expression for T#¥(z) we may combine the results

of Eqs. (4. 5) and Eq. (4.10) as follows:

a* = ulg" = m’ [G(z) (-a%) + z(s1 - M) R (0) ]
i

negative feedback
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a* (1 + H: G(z)) = Hf z(zl - M)“1 X (0)

H: z(zl - M)_1 X (0)

1+ Hg G(z)

H;f 2(zI - M) ! %(0)
1 + T%(z)

(4.12)

Equation (4. 12) describes the closed-loop regulator transient
which occurs when a distrubance X (0) is introduced on the steady
state condition. The important point to note about Eq. (4.12) is that
the closed-loop poles of the regulator are the zeros of 1 + T*(z),
which makes T*(z) a true loop gain quantity.

We can infer information about the closed-loop transient
response of a switching regulator by knowledge of the location of its
closed-loop poles in the z-plane. Since the closed-loop poles in the
z-plane are shown to be the zeros of 1 + T*(z) in Eq. (4.12), itis
possible to use root locus techniques on T*(z) to find the closed-
loop poles. In fact, the root locus gives the designer a means to
design the closed loop poles of a switching regulator, and is import-
ant in making the discrete formulation of the regulator problem
useful for synthesis as well as analysis. All of the transfer func-
tions of the converter have the same poles which are the eigenvalues

of the converter transition matrix. Since with state variable
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feedback the loop gain T*(z) is a linear combination of these transfer
functions, the poles of the loop gain are those of the converter by
itself. It will be shown in Chapter 5 that with the right combination
of state variable feedback to place the zeros of the loop gain, and by
proper choice of the magnitude of T#(z), one can sometimes place
closed-loop poles in an optimal manner.

The results of this chapter conclude the theoretical part of this
investigation. The basic idea is to develop a more accurate means
of designing switching regulators for proper stability and transient
response. The introduction and Chapter 1 indicated that linear con-
tinuous models lose their validity for describing small-signal
closed-loop behavior as frequencies approach half the switching
frequency. In Chapter 2 a general converter was presented and it
was shown that a small-signal model consisting of linear difference
equations could be derived which characterizes the converter in a

'""approximation. Chapter 3

way which requires no '"low-frequency
showed that similar characterizations are possible for a variety of
different pulse-width modulators.

Finally, in this chapter the z-transform was used to obtain a
frequency domain representation of the transient design problem.
Using the transform one can work with transfer functions in the

z-plane rather than sets of difference equations in the time domain.

Also, a loop gain quantity T#(z) was introduced which enables the
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designer to use the root locus to place closed loop z-plane poles.
The notion of loop gain and poles and zeros are brought into the
regulator problem to make the discrete formulation seem less
strange to the practicing designer. Besides making the models
more familiar, the z-transform produces some startling results
such as the fact that certain delay type pulse-width modulators may
be modeled by a constant transfer function in the z-plane with no
poles or zeros or phase shift.

Knowing how to formulate discrete models in a general way, we
go from the general to the specific in Chapter 5 with an example of

a performance analysis approach.



-86-

Chapter 5

The Straight-Line Approximation, and a Performance Analysis
Example of the Discrete Method

In this chapter the results derived in Chapters 2, 3, and 4 are
applied to the analysis of the boost converter of Fig. 5. la. With use
of the root locus the potential transient performance of this con-
verter is investigated, which leads to a simple prediction of wide
bandwidth phenomena such as subharmonic oscillation and optimal
transient response.

Of equal importance in this chapter is the introduction of the
powerful ''straight-line' approximation, which greatly reduces the
computation necessary to obtain the converter transfer functions.
This makes the approximate transfer functions simple enough that
in symbolic form they may be used for design purposes. Because
this chapter is meant to tie together the results of the previous
chapters with a specific example, we shall begin with a review of
the derivation of the boost converter discrete model.

As a first step the converter of Fig. 5. 1a is modeled by the

large signal Egs. (5.1):
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(a)  BOOST CONVERTER SCHEMATIC

(b) CONVERTER TOPOLOGY WITH SWITCH CLOSED (Dy(th=1)

(c} CONVERTER TOPOLOGY WITH SWITCH OPEN (Dz(l) =1)

Fig. 5.1. Boost converter schematic with topologies for
each switching interval,
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The alteration of the converter topology by the switch is shown in
Figs. 5. 1b and ¢ and is modeled in Egs. (5. 1) by the modulation
functions Dl(t) and DZ(t).

The large signal converter model, of Egs. (5. 1) is nonlinear
and too complicated to yield design information about transient
response. So, with a linear model objective, a steady state operating
point is chosen and denoted by—fﬁ (t) and vc(t), which correspond to a
particular choice of Dl(t) = 5l(t) and Dz(t) = T)Z(t). The timing of

5l(t) and 52(t) is shown in Fig. 5. 2.
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Fig. 5.2. Boost converter timing diagram.
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Once the converter is modeled by a set of large-signal
equations and an operating point is chosen, then we decide where
pulse-width modulation will occur during a switching cycle. For
our example the modulation is taken to move the time location

at the beginning of D, = 1 interval about its steady state location.

1
Next we find the differential equations which describe pertur-

bations about the steady state condition. This is done by noting

that both the steady state solution and the steady state solution plus

perturbations must satisfy Eqs. (5.1). By subtraction of the former

from the latter and neglect of second order terms, one is left with

Egs. (5. 2) which describe the perturbations only:

~ 0 0T 1 1 ~
1y ! O -1 ||
v 0 __1_ v L ____1_ v
c RC c ¢ RC c
L L L L JL
A]. AZ
B 1~ T ]
= (5. 2)
0 T J4
+d
1 v
c c
(A, - A)
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The difference equations of the discrete model are then found
by integration of Egqs. (5. 2) over one complete converter cycle.
To do this a reference time is chosen for the nth cycle to be at the
part of the cycle where the pulse-width modulation modeled by d(t)
occurs. We note that as d(t) becomes very narrow the integration
may be carried out in two parts over the nth cycle yielding the final

small-signal converter difference result Egs. (5.3):

e >*-
1 <(n+l)T
] . AZTZ AlTl
= e e
v
.c<(n+1)T>
ip (nT) T VC(T)
L
+d
n
~ IE(T)
VC(nT) T c
| ] B N (5. 3)

Chapter 4 then showed that the application of the z-transform
to Eqs. (5. 3) yields a set of steady state transfer functions G(z)

defined by Eqgs. (5.4):



—91_

P — 7
i=' Gi(Z)
£ *k -1 sk £
= G(z)d = (zI - M) MK4A = d (5. 4)
v
. GV(Z)
where
A_T AT
M = e 2 Ze 1 1
and
NG
_ - L
K =
L (T)
T C _J

It was also noted in Chapter 4 that a simplification of Egs. (5. 4)

is possible if a converter has only two states, as do most of the
simple ones including our example, which results in

G, (z) [2M - z,2,]]

i -1 ~
= - M)TMK = e K (5. 5)

G, (2)

where zy and z, are the eigenvalues of M.
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The final exact results for the boost converter transfer func-

tions as developed in Chapter 4 are:

G.(z) [ Ay Ty BTy
1 zZ e e
- K (5. 6)

GV(Z)

It is noted that in the derivation of Egs. (5.6) for the boost
converter from its schematic of Fig. 5. 1la, several equations were
written but none was actually solved.

If one understands the small-signal approximations in the gen-
eral derivation well enough, the transfer functions in the form of
Egs. (5.6) can be found in a matter of minutes for any two- state
converter. However, Egs. (5.6)a;e not in explicit form, and it
is the last step of finding the explicit forms for Gi(z) and Gv(z) that
is difficult.

To do this the transition matrix M = e e must be
found in explicit form. This may be done exactly through the very
painstaking and tedious process of solution and multiplication of the
exact exponential matrices. To find a single exponential matrix in
closed form symbolically, one would have to take a Laplace trans-
form, invert a matrix, and then take an inverse Laplace transform.
Clearly, this effort would preclude investigation of systems of

much higher than second order in symbolic form. Furthermore, the
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resultant exact transition matrix would often contain many trans-
cendental functions which tend to obscure the dependence of the
converter's dynamic response on the filter elements.

This tedious process may be demonstrated by our boost con-

verter example. With not much difficulty it can be shown that

A1y
e is given by:
1 0
AT
e 1 = T (5.7)
0 e RC
AT
With considerably more difficulty e may be found as:
-T, -T;:
e H° [°°5 “¢T 2 IWCay 1" OfT z] -e®RC T_‘ul“f sin @ty
AT _
e -
=T, -Tz
eZRC =L sin w,T eZRC [cos Y — sin
Cu; 72 f72 7 ZRCu, 1" “f7 z]
. -
(5.8)

1 1
w = ———,,  cm——————
f \/LC (2RC)?

The difficulty in derivation of Egs. (5.8), and the mass of symbols
that one has to manipulate to find Eqs. (5.06) explicitly, are suffi-

cient to discourage further attempts along these lines. This is one
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reason why current use of the discrete models is not widespread
and is confined to computer analysis of specific cases.
This difficulty can be overcome by introduction of an approxi-

'""approximation. The

mation which we call the ''straight-line
approximation is stated as follows: since the switching frequencies
of most practical converters are much higher than the natural
frequencies of the converter filtering components, an accurate

. . . .. AT . .
approximation for any exponential matrix e associated with a

converter is found by

AT = I+ A+

A corollary to this is that if a transition matrix is of the form

AT AT
e e , then an accurate approximation to this matrix is

To demonstrate this approximation for a particular case, we
begin with the exact exponential matrices for the boost converter
given in Eqgs. (5.7) and (5. 8), and note that if the switching
frequency is much higher than the boost converter natural frequen-
cies, then T and thus T and T, are much shorter than the filter

time constants. This implies that the following inequalities hold

in Eqs. (5.7) and (5. 8).
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T1 T2
§E<< 1 SRC << 1 wfrz << 1
One may then approximate:
L .
eRC -»'1-——}- cos w.T., ~ |
RC “f 2
2 i,
eZRC~1-——2—— sin w, T,~ T
2RC £2 f 2

Insertion of these approximations into the exact expressions for

AITI AZT
e and e and retention of only first order terms in time
yields:
~ -
1 0
AT
e b (5.9)
"1
o 1- RC
- -
2
! L
AT
e 2% - ' 15.10)
T2, 22
C RC

The multiplication of Eqs. (5.9) with Eqs. (5.10) and the reten-

tion of only first order terms in time yields the transition matrix.
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- -1

1 2
L
S ApT, ATy
e e = (5.11)

T2 . -T
C " RC

- —

However, this is seen to be the same result one obtains if the approx-

AT AT
22e11=I+AT + AT

imation e 2T 5 171 is made. This result is
remarkably simple and easy to find.

From this example the general argument is clear. Because an
exponential matrix represents a collection of time-domain solutions
for any converter it always contains exponentially decaying sinu-
soidal functions which depend onthe ratios of T and T 5 to the filter
time constants. Since converter switching frequencies are usually
much higher than the natural frequencies of the filter components,
the ratios of T and T, to various filter time constants are much
less than unity. The transcendental functions may then be accurately
approximated by their truncated series which implies that any
converter exponential matrix may be approximated by its truncated

, AT AT M1
series as e = I+ Ar. The corollary result that e e =

I+ AZTZ + Al'r1 follows from this because second order terms in the

ATy ATy
e

matrix product e are negligible if they are negligible for

the individual exponential matrices.

That keeping only the first order terms in time should give an

accurate result for the transition matrix is really not surprising:
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At I + At rﬁerely implies that the perturba-

the approximation e
tion waveforms in the time domain are close to straight lines.
This "'straight-line' approximation has already been used in
Chapter ! to find the steady state waveforms; so, approximation
of the transition matrix ]ay' retention only of its first order time
terms constitutes a generalization of the approximations that are
made to find the steady state converter waveforms. Indeed,
Middlebrook and Cuk[14] show that this approximation is impli-
cit in describing function converter models.

For an indication of the numerical accuracy of this approxi-

mation, we return to the boost converter example with element

values chosen to be those used in Chapter 1.

T = 10-4 sec. (switching frequency of 10 kHz)
R = 60Q
L = 6.0mH
C'= 1/24x 10> F
Vs = 60 V
- _ -4 -
T, T T, = 0.5x107 sec. (50% duty cycle)
From these values, compute wg = 1.99 x 103 rad/sec (corner

frequency of filter is then 316 Hz). With these values we compare

exact and approximate transition matrices.
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The exact solutions for the leading and trailing-edge transition

matrices for the boost converter are:

—~ —
0.995 -8.24x 107>
AT A_T
e ! e 22 2 (trailing-edge)
1.16 0.956
L _
B -3
0. 995 -8.07x 10
AT AT
e 2211 2 (leading-edge)
1. 19 0.956

The first order approximation for either of these matrices from

evaluation of Eqs. (5.11)is

2 1. 00 -8.33x 10"

= (5.12)

2 T
C RC 1. 20 0.960

In each component there is a relative error of from 1 to 3 percent.
Another test of the accuracy of this result is to compare the eigen-
values of the exact transition matrices with those of the approxima-

tion. The results are:



_99_

exact eigenvalues: 0. 9755 +j. 097

approximate eigenvalues: 0. 9800 +j. 098

This example is an indication that the straight-line approxima-
tion is numerically sufficiently accurate for practical purposes.
But, most important is the fact that with this approximation a
converter transition matrix may now be found in the simple sym-
bolic form of Egs. (5.11). We apply this result to complete the
explicit calculation of the boost converter transfer functions.

In the specific case of the boost converter transfer functions of
Egs. (5.6), the transition matrix can be evaluated in symbolic form
with use of the straight-line approximation as Egs. (5.11). Solution
for the eigenvalues of the approximate transition matrix yiélds

approximations for z. and z,, the converter's z-plane poles.

1 2’

2
-1 T+.\/T2 T 1%
1~ *"2rc " IVIC " |ZrC

2

V/Jté B [zgc]z (5.13)

Use of the approximate transition matrix Eqs. (5.11) and the

. T .
2 - Z2rRC "

N
n

first order terms of Z1%, in the transfer function Egs. (5.6) gives

explicit z-domain transfer functions of the boost converter to first

order in time:



Al , 14T 2 ] v _(T)
1y RC L -T
1 L sk
- (z-2,)z-2,) d
v 2 ] ( i T) -
c z2¢ (z-1{1-g¢ . @
L - L_ N I C _
The individual solutions are then
T _T[VC(T) (Z Y L (T)m 2]
_ L RC i.C
G.(z) = =
i a* . (z - zy)(z - ZZ)
~x o plePTe BT D - L)
v, Z71C c ‘*- RC
= = 5. 14
GV(Z) a* (z - z,)(z - z,) ( )

A quick check on the accuracy of these expressions may be
made by comparison of the modulation-to-output voltage transfer
function Gv(z) with that of Wester's averaged model.

If the ripple on the steady state waveforms—]'.£ (t) and VC (t)is
small,. then the relation I, = V_C/D'R between the average values

i

_IE and Vc, developed in Chapter 1, Eq. (l.2), may be used to write

Gv(z) as

(5.15)
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where
1
_ D
w =
o
LC
1 T
—
D T
Q = w RC
o

It was stated in Chapter 4 that the s-plane is mapped into the
sT

z-plane by z = e 7. At frequencies low compared to the switching
frequency, l sTl << 1 so that the mapping is approximately
z = 1+ sT. Substitution of this low-frequency approximation into

Eq. (5.15) yields

which agrees with the df result except for the factor -T in the
numerator. However, if the switching frequency is much higher
than the radian frequency of the zero, then the df and discrete
results agree for frequencies where [ sT| << 1is valid.

A number of interesting things can be done with the transfer
functions Gi(z) and Gv(z). In Chapter 6 use of the transformation
z = 5T is made to allow Bode plot comparison of transfer func-

tions derived by both the discrete and describing function methods.
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These comparisons allow one to see the range in frequency where
the describing function approach is Qalid. However, the way in
which the designer may be most interested in using the discrete
functions is in evaluation of closed-loop response by means of the
root locus.

Recall that in Chapter 4 in Eq. (4. 11) the true loop gain T3(z)
was shown to be a linear combination of the transfer functions
such as Gi(z) and Gv(z) for any of the modulators treated in Chap-
ter 3. Since all the transfer functions of a converter have the
converter's open-loop poles, then we conclude that the poles of the
loop gain are always the open-loop poles of the converter -- z, and
Z, for the specific case of the boost converter. The zeros of T*(z)
will depend on how Gi(z) and Gv(z) are combined. For example,
suppose that the feedback and type of modulator were chosen such
that T#(z) = kGV(z). In other words, only the output voltage is
effectively fed back. After some manipulation, the expression for

Gv(z) in (5. 14) may be expressed in the form:

k(21
G._(z) (Z3 )

v - (z-zl)(z-zz)
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in which

1 -

TI(T)L(I - -R—C)

For the boost converter element values given in Chapter 1,

Zy = 1.39. The open loop poles z; and z, are calculated to be:
z; = 0.98 +j. 098
Z, = 0.98 -j. 098

Thus a pole-zero plot of T#(z) or G_(z) for this particular set of
element values would appear as in Fig. 5.2. Since T#*(z) is the loop
gain, then as the scale factor k is varied from 0 to infinity, the
closed-loop poles follow a root locus starting at the open-loop poles
and ending at the open-loop zeros. This root locus, which for two
poles and a zero makes a circle around the zero, is also shown in
Fig. 5.3. The locus shows that with sufficient loop gain the boost
regulator will oscillate at a frequency somewhat higher than its

open-loop natural frequencies.
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— —» — ROOT LOCUS

Fig. 5.3. Root locus of T#(z) = kGy(z), boost regulator
with voltage feedback.

Figure 5.4 is a pole-zero plot of the same transfer function in
the s-plane obtained from Wester's describing function model. For
the given set of parameters, the two models agree quite well quali-
tatively in predicting oscillatory behavior at slightly greater than the
natural frequencies of the converter.

Since the transfer functions of mod ulators are constants, one can
conclude that with simple voltage feedback a boost regulator at this

operating point can never have a closed-loop bandwidth much beyond
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(s)-PLANE \

OPEN-LOOP POLES
OF < Gvlis) >

ZERO OF < G (s} > /

— & — ROOT LOCUS /

Fig. 5.4. Root locus of T(s) = k<GV(s)>, boost regulator
with voltage feedback.
the effective resonant frequency of the output filter. This effective
frequency can be found approximately by the relation mentioned in

Chapter 4 relating the mapping of the s-plane to the z-plane:

z = e =~ 14+ sT
if
|sT]<<1
- = z - 1
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So, for the boost converter with poles at z, and z, as given in

Egs. (5.13), the continuous poles are:

2
. _ %t 1_.\/(T2 1_[1]2
2 T “2RC J T)1C 2RC

These agree precisely with the poles as derived by Wester's averaged
model.

Several investigators have found that feeding back the current as
well as the voltage seems to have a salutary effect on the converter's
transient response [6,8]. The root locus and the discrete model
together provide an elegant way of explaining this.

First note that the current transfer function Gi(z) as given in

Egs. (5.14) is of the form:

4
k.1<_z_4 _ 1)
6@ = LT ez,
where
TV (T) (1 - T)
kK = - c RC
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z, = !
4
v LT,
1+ RC +
vV _(T)C
For the set of values used in this example, zy 0. 928.

If the feedback is made up of a linear combination of the inductor

current and capacitor voltage, then the loop gain T#*(z) is of the form:
T#(z) = k [Gv(z) + hGi(z)] (5. 16)

where k and h are constants. Since Gi(z) and Gv(z) have the same
poles, as h varies from zero to plus infinity the zero in the loop gain
moves along a locus from the zero of Gv(z) to the zero of Gi(z) as
shown in Fig. 5.5. Once h is chosen to place the zero in T#*(z) then
k, the overall gain, may be varied to move the closed-loop poles
around this choice of zero. The partial loci of the closed-loop poles
for four different zero placements are shown in Fig. 5. 6.

Figure 5.6 indicates that with the right choice of h and k a boost
regulator can oscillate at anywhere from near the output filter's
resonant frequency to half the switching frequency. It also indicates
the possibility of some interesting behavior which is incapable of
being predicted by a continuous linear model.

For example, Fig. 5.7 is a root locus for a boost regulator when
just the inductor current is fed back. This would be done if one

wished to make the converter a current regulator. The pole which
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Fig. 5. 5. Root locus of the zero of T#(z) for increasing amounts
of current feedback for boost converter.
heads toward the origin on the locus corresponds to a pole in the
s-plane on the negative real axis which is heading for minus infinity.
Thus, the part of the transient response corresponding to this pole

decays more and more quickly.
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Fig. 5.6. Root loci.for T#(z) with different zero locations

corresponding to increasing amounts of current
feedback.
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Fig. 5.7. Root locus for boost converter with
current feedback.

Eventually, for a certain value of loop gain, the z-plane pole
reaches the origin. This corresponds to a transient which is incap-
able of being predicted by the describing function approach. For a
discrete system a pole at the origin means that part of the transient
is over in a single cycle. In a practical sense it would appear that
the closed-loop regulator only had a single pole in the s-plane.

As the loop gain is increased further, even stranger things
happen. While the z-plane pole is on the negative real axis inside
the unit circle it contributes a decaying o.scillation at half the switch-

ing frequency. Thus a single pole can here effectively look like a
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pair of complex conjugate poles in the s-plane. Now it may appear
that the regulator has three s-plane poles.

An even further increase in the loop gain eventually drives the
pole far enough so that it hits the unit circle. At this point the
converter should sustain half- frequency oscillation according to the
small signal discrete model. Actually, whether the converter will
oscillate or not when the pole is precisely at -1 depends on second
order nonlinear terms which were neglected in the derivation.
Practically speaking, this is of little consequence, since at best the
regulator would be only marginally stable.

This prediction of half-frequency or subharmonic oscillation
comes with relative ease with the discrete model. For comparison
one can refer to Yuh's work [13] where complicated Fourier techniques
are used to make the describing function approach predict similar
instability,

One final point of interest for the boost converter with both
voltage and current feedback is that about any operating point there
exists an optimal solution in the sense that the transient response is
the fastest of all possibilities. Figure 5.8 is a root locus that
illustrates the case.

ﬂHere h is chosen in Eq. (5.16) such that the zero of T*(z) is
placed equidistant from the origin and the open-loop poles of Gi(z) and

GV(Z).
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-jt T* = (G (2) + h G,(z))

Fig. 5.8. Root locus for optimal transient response
for boost converter.

Then an overall gain factor k in Eq. (5. 16) is chosen for the loop |
gain such that the closed-loop poles coalesce at the origin.

The resultant closed-loop system then has an essentially finite
transient response for small disturbances from its operating point.
Sampled-data theory indicates that a pole of order n at the origin
contributes a response that settles completely after n periods. Thus,
this optimized two-pole system should settle in two converter cycles.

In Chapter 6 verification of the fascinating behavior predicted by
the discrete model will be given by means of a digital computer pro-

gram which solves the large-signal nonlinear boost converter equations.
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To summarize this chapter, a boost converter has been used as‘
an e#ample of how one might use discrete modeling as a design analy-
sis tool. Various assumptions were made about operating mode
(continuous conduction) and type of modulation (leading-edge at begin-
ning of 1-51 = 1). As a review of the earlier chapters the steps in the
model derivation leading to an eXpressio'n for the z-plane converter
transfer functions were reviewed.

To find the converter transfer functions in éxplicit form a new
"straight-line' approximation was introduced. It was shown that
since the ratio of switching frequency to filter corner frequency is
large, then the approximation eAt = I+ At can greé.tly simplify the
task of finding a transition matrix. Because the most difficult part
of the discrete model formulation is to find explicit forms for con-
verter transition matrices, the straight-line approximation is a key
step in the development of discrete techniques simple enough for
use in initial design phases of a switching regulator.

A numerical example was given to indicate that the accuracy of
this approximation is good. Since the requirements for this approx-
imation to be accurate are met by most practical converters, we
conclude that it should be of use in the discrete analysis of any
switching converter. It is important to note that the straight-line
approximation in no way limits the range of frequency validity of the
discrete converter models, because eAT refers to the steady state

solution and not to any perturbation frequency.
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After this approximation was used to find explicit forms for the A
boost converter transfer functions, the root locus was then used to
indicate the potential transient performance-of a boost regulator with
voltage or current feedback. This was done independently of the
choice of modulator, because Chapter 3 showed that single-edge
modulators contribute only constant gain factors to a regulator's
z-plane loop gain. A natural by-product of these root loci was the
prediction of half switching frequency oscillation for some cases.
Similar predications with the describing function models are more
difficult to derive. Finally, the root locus indicated that there exists
a unique choice of the feedback which produces a regulator with
optimal transient characteristics about the chosen operating point.
From a design standpoint it is of great interest to know that this

possibility exists.
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Chapter 6

Verification of the Performance Analysis

In the previous chapters a small-signal modeling technique was
introduced with the ultimate purpose of being used as an aid in the
design of transient response for switching regulators. The essential
claim for this technique is that a pulse- width modulated system,
such as a switching regulator, is more accurately modeled for
small signals by linear difference equations rather than linear differ-
ential equations. This is essentially proved by noting that in the
mathematics of the discrete model derivation the only approximations
made were ''small-signal' type approximations. Nowhere was it
assumed in the derivation that the switching frequency had to be
"high'' compared to filter resonant frequencies or closed-loop
bandwidth.

With the exact derivation accomplished, it was then shown that
the assumption of the switching frequency being much higher than
the converter natural frequencies allowed simple ''straight-line"
approximations to be rnéde to obtain the discrete model parameters.
This approximation does not degrade the inherent perturbation high-
frequency accuracy of the discrete converter models because it is only
applied to find the steady state transition matrix. Consideration of
various modulators in Chapter 3 led to the rather startling claim that

as far as small-signal transient response is concerned, all modulators



-116-

offer the same potential performance. Use of the z-transform on the
discrete model in Chapter 4 showed that closed-loop transient and sta-
bility performance could be inferred via the frequency domain concepts
of transfer functions and loop gain. For the discrete model, though,

the frequency domain is the z-plane rather than the s-plane.

By means of a sirnplé example of a boost regulator in Chapter 5
some interesting transient behavior was predicted. Use of the root
locus in this example showed that depending on the type and amount of
feedback, the regulator haé the potential for duty ratio oscillation from
near the filter resonant frequencies to half the switching frequency.
Even more important from a design standpoint is that negative
infinity in the s-plane is in the middle of the z-plane at the origin
and within the reach of the closed-loop regulator poles. This implies
that an o?timal transient response in the small-signal sense is pos-
sible provided the feedback is chosen to place all the closed-loop poles
at the origin.

It is the aim of this chapter to lend credence to the validity of
these conclusions by comparisons of the transient performance of a
nonlinear large-signal boost regulator model with its small-signal
discrete model by means of digital computer simulation. To indicate
the ability of the approximate small-signal discrete models to predict
the performance of a large-signal regulator, small-signal predictions
and large-signal performances are compared at low frequencies and

at frequencies comparable to the switching frequency. In addition,
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particular emphasis is given to the optimal transient condition, since
achievement of this response is of practical interest.

To begin we discuss the low frequency accuracy of the discrete
models as represented by the approximate boost converter small-
signal voltage transfer function Gv(z) given in Eqs. (5.14). This is
compared with the comparable df result in a Bode plot, and then used
to predict low-frequency oscillation of a boost regulator with voltage
feedback.

Next, the approximate boost-converter small-signal current
transfer function Gi(z) of Eqs. (5.14) is plotted and compared with
its df counterpart. The high-frequency accuracy of the apprc;ximate
discrete model is diSpiayed by the ability to predict accurately
from Gi(z) the onset of half switching frequency oscillation in a
regulator with current feedback.

Finally, the conditions for optimal transient response are
examined. A section is presented on how to design the physical
feedback for two different modulators so that the optimal response
is achieved. Results of this section are then compared in a large-
signal simulation to test the accuracy of the approximate models in
a design mode,.

The results presented here may be summarized as follows:

1. The small-signal difference equation model is a valid model.

Actually this is plain from the mathematics of the earlier
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chapters, but it will be demonstrated that if the large-signal

regulator is slightly disturbed from its steady state, its

transient performance closely follows that of the linear

difference equation model.

The types of transient behavior indicated in Chapter 5 includ-

ing the optimal response, do occur in various large-signal
g P P g

regulator configurations, and furthermore are accurately

predicted by analysis with the linear discrete model. It will

be shown that the linear discrete model including the
''straight-line' approkimation can quite accurately predict
the onset of both low-frequency and half-switching-frequency

oscillation as well as the conditions for the optimal response.

Different modulators can irndeed yield the same transient

response for "small' transients. Comparisons of the same

regulator wii:h a sawtooth modulator and a uniformly sampled
modulator will show that although their large-signal perform-
ance can vary, for small signals both can produce similar
transients. An example of this is that the optimal response
is achieved with a uniformly sampled modulator, a modulator
believed by many to have poor closed-loop bandwidth capa-

bility because of its delay.
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For all the cases examined here the same basic converter and
the same operating point were used. Except where mentioned other-
wise, a sawtooth modulator is used in the large-signal model. The

boost converter is described by the following parameters:

= 107 sec (switching frequency of 10 kHz)
= 60 Q

T
R
I. = 6.0 mH
C

= 1/24 x 107 F
V. = 60V
S
Ty T T, = 0.5x 10'4 sec (50% duty cycle)

S S 3 .
\/f(T = 2x 107 radians per sec (318 Hz)
The effective resonant frequency, defined for Egs. (5.15)is

@ T

o ~ 159 Hz

e
Q
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We begin with an investigation of the low-frequency accuracy of
the discrete models. The goal is to test the accuracy of low-frequency
oscillation prediction with Gv(z) and to compare the averaged voltage

transfer function <Gv(s)> with Gv(z). A Bode plot of Gv(z = eST

) is
given in Fig. 6.1. Shown in x's in Fig. 6.1 is <Gv(s)> for Wester's
averaged model. Both were easy enough to compute that a hand-held
calculator was used for the task. It is seen that there is good agree-
ment between these two different models at low frequencies. The
most noticeable disparity between these transfer functions is that as
half the switching frequency is approached, the discrete model shows
an additional 90 degrees of phase lag. However, for voltage feedback
this makes little difference in the prediction of oscillatory closed-loop
transient behavior, because the frequency where the converter will
first oscillate is much lower than the switching frequency.

In the case of voltage feedback the boost regulator loop gain

T*(z) is given by
T"(z) = kG (z)

where k is a constant. We can predict the value of k necessary for
osciliation with voltage feedback ko by finding the frequency fo where

the angle of Gv(z) is -180 degrees in Fig. 6. 1 and then choosing
jZ-rfoT
k=l/'GV(zo=e I=k.

o
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This was done for the approximate G_(z) derived in Eq. (5. 14)
with the result that ko = 0.0034 is the predicted gain necessary for
oscillation. From simulation with a large-signal boost regulator
with voltage feedback, an experimental value of ko = 0.00458 was
determined. This is a reasonable agreement if one considers the
relevant time constant ratios necessary to validate the straight-line
approximation given before Eqs. (5.9) and calculated here with the

specific values taken for this boost converter.

5 = 0. 226

= 0.02 = 0.01 W.T

f

Because the WpT 5 K 1 inequality is not well satisfied for the
regulator, it is not surprising that predicted and measured low
frequency stability bounds differ somewhat from each other.

An additional low-frequency check on the accuracy of the straight
line approximation for Gv(z) is to compare the frequency of closed-
loop oscillation for voltage feedback with the frequency where Gv(z)
is -180° in Fig. 6. 1.

Figure 6. 2 is a plot of the discrete perturbations on the boost
regulator capacitor voltage taken from a large-signal simulation with
ko = 0.00458. The plot indicates that the regulator is barely unstable.
Examination of the period of the oscillation in Fig. 6. 2 indicates that
a full period would be 44T. Since the switching frequency is 10 kHz,

T = 10~4 sec. The period of the oscillation is then 4.4 x 10_3 sec
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Fig. 6.2. Time response of perturbation on
capacitor voltage.
indicating a frequency of about 230 Hz which agrees well with where
the plot of Gv(z = eST) in Fig. 6.1 has -180 degrees of phase shift.
Since both discxgete and averaged models agree in this area it is
not surprising that they can both be used successfully at low fre-
quencies.

The divergence of results, and in fact the region where the
accuracy of the discrete model is superior, occurs at frequencies
approaching half the switching frequency.

A striking example of these effects is presented in the
next example when a boost converter is made a current regu-

lator by feeding the pulse-width modulator a measure of inductor
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current, This example demonstrates the high-frequency accuracy of
the discrete models,

Figure 6. 3 is a Bode plot of the approximate discrete modulator-
to-inductor current transfer function Gi(z = eST) given in Eq. (5. 14).
Also shown is the transfer function for the averaged model <Gi(s)> .
Again; there is close agr’eement at low frequencies, with the principal
disparity being an extra 90 degrees of phase lag in Gi(z) as frequencies
approach half the switching frequéncy. In addition there is a distinct
difference in the magnitudes of the two transfer functions near half
the switching frequency.

*
For the case of current feedback the loop gain T (z) is given by

T*(z) = kG, (=)

where kis a constant. From Fig. 6.3 we note that Gi(z) has -180
degrees of phase shift at half the switching frequency. Since z = -1
at half the switching frequency a predicted stability bound for a boost
current regulator is k:) = l/l Gi(-l) | . The predicted value for k'o
from the straight line approximation for Gi(z) is k'o = 0.976.
Experimentally this bound was determined from large-signal regulator
simulation to be k'o = 0.973 which agrees well with the predicted
bound. |

Figure 6.4 is a picture of the resultant computer-simulated
discrete perturbations in inductor current for an initial small

disturbance in duty ratio with k'o = 0.973. As predicted by the discrete
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~ 10
e (nT)
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-10 | 27—
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211

Fig. 6.4. Half frequency oscillation on
inductor current.
current transfer function with the root locus in Chapter 5 and in the
Bode plot of Fig, 6.3, the indicator current oscillates at half the
switching frequency.

Figure 6.5 is a plot of the discrete capacitor voltage perturbations
for the same case. In this figure we can see the effect of a stable pole
as well as the unstable one. Recall that in Chapter 5 the argument
was presented that since a single pole in the z-plane on the negative
real axis gives rise to a ringing response at half the switching
frequency, another pole can make the total systém appear to have

three poles if it were continuous. This effect is clearly evident in
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0.1

velnT)
(V)

0.05

B /

-0.05

-0.1

Fig. 6.5. Half frequency oscillation
on capacitor voltage.
Fig. 6.5 as '\\;c(nT) has a decaying component as well as the half
frequency oscillation.

Although prediction of stability is a useful validation of an
analytic technique, the more interesting and practical case from a
design point of view is the optimal response condition.

In this last comparison a three-step procedure is outlined which
shows how one can design the physical regulator feedback to achieve
the optimal response. The procedure is then implemented on two
boost regulators, one with a sawtooth modulator and one with a uni-

formly sampled modulator. Their transient responses are then
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compared. To clarify this procedure we begin with a review of the
notation in the development of the regulator loop gain T:':(z).
The physical feedback for a regulator with converter state

variable compensation is specified in general by Eq. (3. 1) with a row

vector HT. For the case of the boost regulator HT is defined by

[ ] — ]
Iﬁ (t) I, (t)

V() = HY +V_ = [a, b] +V_
Vv (t) Vv (t)
L B

1

a11£ (t) + b1 Vc(t) + Vr

where V(t) is the signal input to a pulse-width modulator Vr is a dc
reference signal and Ig (t) and Vc(t) are the boost converter state
variables.

The modulator development of Chapter 3, summarized in
Table 3.1, shows that any of the three modulators treated in that
chapter may be characterized together with the compensation in the

small-signal form
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where HTe is the "effective' feedback of the combination of modulator
and compensation. For the case presented here we use the following

notation for the effective feedback.

—'i\'Q (nT)— F;} (nT)_q
d = HT; = [a 1]
v (@T) v (T)
L ] L ]
= a?‘ﬂ (nT)+b'\7C(nT) (6. 2)

)

In Chapter 4 a general expression for the regulator loop-gain T*(z)

was developed in terms of I—ITe in Eq. (4.11) as

T (z) = HTe G(z)

where G(z) is a vector of the converter transfer functions. It is this
form which enables the conclusion that for converter state variable

feedback the loop gain is a linear combination of the converter trans-
fer functions. With the notation of Eq. (6. 2) the loop gain for a boost

regulator is
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G.(z)

T (z) = [a b] = 2 G,(2) + b G_(2) 6. 3)
GV(Z)

Finally from Egs. (5. 14) we note that Gi and Gv are each of the
form of a linear polynomial in z over a quadratic in z which with
Eq. (6.3)implies that T (z)is of the form

1 1
azthb

T (z) = (Z-zl)(z—zz)

(6.4)

where z, and z, are the poles of Gi and Gv given in Egs. (5.13).
With all of the necessary notation defined we now list the three-
step procedure one may use to find the physical feedback HT = [al, bl]

which will result in the optimal transient solution, where all of a
regulator's closed-loop poles are at the origin in the z-plane.
1. Given a particular converter linearized about an operating
point, find a' and b, in Eq. (6.4) in terms of the open-loop
converter poles z, and z, such that 1 + T*(z) = Ohas a

double root at z = 0.

From Eq. (6.4) 1 + T*(z) = 0 may be written as

1 1
+a z+hb

1
o

(z - zy) (z - z5)

6. 5)

N
—
I
N
—
|
N
+
W
N
+
on
-+
N
N
|
o



-131-

1 !
Clearly a = zy + z, and b = -z 2, result in the optimal

response, because 1 + T*(z) = 0 reduces to z2 = 0 for this choice.
2.  With this optimal a and b' known, find the optimal effective

feedback HTe = [a b] by equating Eq. (6. 3) with Eq. (6. 4).

Because Gi and Gv have the same denominator (z - zl) (z - ZZ) we

may write
1 1
a (numerator of Gi) + b (numerator of GV) = az+hb (6. 6)

Equating the coefficients of z and the constant terms yields two
equations from which we solve for a and b in terms of a| and b'.
3. Having found the optimal effective feedback Hr'g = [ab] pick
a modulator from Table 3.1 and find HY = [a,b,] the
optimal physical feedback using the formulas given for
the individual modulators.
For example from Table 3.1 the formula for the uniformly

sampled modulator relates HT and HZ by

~ALT
T 2 2
HT:H e‘

€ TR

We may invert this expression to find HT in terms of H'IE; as follows

2y B))= TR [2 b e 6.7)
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Equation (6. 7) expresses the final answer for the physical feed-
back into a uniformly sampled modulator.
As an additional example the sawtooth modulator relations

between HT and HT; are given in Table 3.1 as

T
HT - A (6. 8)
€ T(R - H x (nT))

T_ 1
From Eq. (6.1) the term H X (nT) for the boost converter is:

fﬂ'(nT)

H E,(nT) = [a1 bl] = al.fl,(nT)wLblv—c(nT)

\_/:c (nT)
L _

So Eqgs. (6.8) may be expressed equivalently as

[a b] = [a, b,] — — (6. 9)
T(R' - a,T, (aT) - b,V _ (nT))

These equations may then be solved for ay and bl in terms of
a, b, and the steady state conditions to find the optimal physical feed-
back into a sawtooth modulator.

These examples complete the presentation of the three-step

design procedure for finding the physical feedback for the optimal

transient case.
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With the use of this procedure two different boost regulators were
designed and simulated, one with a sawtooth pulse-width modulator and
the other with a uniformly sampled modulator.

The converter parameter values used were those given at the
beginning of this chapter. The clock ramp slope specified by R' in
Eqgs. (6.7) and (6. 9) was arbitrarily set equal to 1000 for both modu-
lators. The approximate expressions for Gi(z) and Gv(z) from Egs.

(5. 14) were used for computation of the optimal effective gain from
Eqs. (6.6). Then the straight-line approximation was used to

simplify the exponential matrix of Eqs. (6.7) to find the physical gain
into the uniformly sampled modulator. Next, to find the steady state
derivatives .I.! '(nT) and vc'(nT) in Eqs. (6.9) the approximate tech-
niques of Chapter 1 were used. These values then enabled the computa-
tion of the physical feedback into the sawtooth modulator with Egs. (6.9).
Large and small-signal regulator simulations of Eqs. (5.1) were then
performed to investigate the accuracy of the approximate design tech-
niques for the optimal response. Figures 6. 6a and b are plots of the
discrete transient current and voltage for an initial disturbance in duty
ratio of 0.001, or 0.1 percent of the total period. These transients
were computed for a small-signal linearized regqlator model

and for large-signal regulator models with sawtooth and uniformly
sampled modulators. Agreement between the linearized model and

the large-signal models with both types of modulators was good

enough that to the eye their plots are’indistinguishable in Fig, 6. 6a
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Fig. 6.6 Discrete perturbations V_(nT) and iy (nT) for a
small disturbance from the optimal steady
state solution,
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and b. It is interesting to note that, except for a small residue in the
fourth period, the transient is essentially finished in fwo periods as
predicted in Chapter 5.

Agreement between the linearized and the large-signal regulators
in Fig. 6.6 is not surprising because the initial perturbation from
the stead\)- state duty ratio was very small,

One would expect to see differences in the behavior of the
linearized regulator model and the actual regulators for very large
disturbances. However, it is to be expected that if the feedback is
optimal for the small signal model, it will also be satisfactory for
large disturbances as well, since real regulators are often subject
to large source and load transients,

Figures 6.7 and 6. 8 are plots of a large transient caused by an
initial duty ratio perturbation of 10 percent (20 percent of either
the ﬁl or 52 steady state pulse width). As anticipated, the linearized
model and the two boost regulators all behave differently, but these
differences are still not so great that the larger part of the transient
is finished in the first two cycles. One might add that although these
transients are large in the sense that the change in duty ratio is sig-
nificant, the modulators do not saturate. Analysis of what happens
with modulator saturation will vary from one regulator to the next, and
it is doubtful that a linear model can yield useful design information in

this case.
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The results of this chapter may be briefly summarized as follows.

By the examination of three cases, voltage feedback, current
feedback and optimal feedback, agreement has been shown between
the behavior of large-signal regulators and their discrete models at
low and high frequencies, and with two different types of modulators.
From this it can be concluded that the discrete model is valid and
useful for prediction of small transient behavior of a regulator about
some steady state operating point.

The optimal response was shown to exist, and to be attainable
even with a ''delay'' type modulator. Most important, though, is
that use of the straight-line approximation together with the
z-transform, allows one to design the physical feedback for a particu-
lar transient response such as the optimal response. A simple
three-step procedure was introduced in this chapter to indicate the
approach one might use to design for the optimal response. This is
a clear indication that discrete modeling can indeed be useful as a
synthesis tool which is the main goal of this thesis.

Also included in this chapter were a set of Bode plots comparing
the discrete and df converter transfer functions. From these plots

one may easily infer the high-frequency limitations of the df models.
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Chapter 7

Review and Conclusions

The previous chapters have provided a number of useful results
on the use of discrete models in the synthesis of switching regulators.
It is the purpose of this last chapter to present the main conclusions
and to add a few words on the application of this material.

The principal goal of this thesis is the devéloPment of simple
discrete analysis techniques, for use in the initial design of switch-
ing regulators, which maintain the inherent accuracy of discrete
methods over describing function methods at high frequencies.

A secondary goal is expression of the discrete models such that
easy comparisons could be made between the discrete and the des-
cribing function results. This allows use of the discrete results as
a yardstick to measure more explicitly the high frequency limitations
of the df models.

The success in achieving these aims will be discussed after a
review of the organization and results of each chapter.

In an attempt to make this work self-contained, the first chapter |
introduces the unfamiliar reader to a basic concept and functioning of
a switching regulator. A simple analysis to find the steady state
waveforms for a boost converter is presented to give the 'feel' of a
design-oriented approach. The main point of this chapter is that

steady state converter waveforms are easily and quite accurately
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found, so that their later inclusion as parameters in the discrete
model should not be presumed to make the discrete models more
difficult to find.

The second chapter contains the principal derivation of this
work. It is shown that a generalized switching converter driven by
a pulse-width modulated switch may be modeled about some steady
state condition by a set of linear small-signal difference equations.
A new symbol dn is introduced in this derivation to model the normal-
ized width of the small-signal modulation, and which later allows
direct comparisons to be made between converter discrete and df
transfer functions.

The main point of this chapter is to show that a small-signal
difference equation converter model may be derived in a compact
symbolic form almost by inspection of the converter state equations.

In Chapter 3 three different types of pulse-width modulators are
shown to be characterized by small-signal difference equations com-
patible with those of the converter. With the assumption that the
feedback is a linear combination of the converter state variables,
detailed gain expressions are found for each modulator.

The key result of this chapter is that time delay of less than one
cycle in a modulator only modifies the gain in the small-signal
modulator models. It is also apparent from the derivations that

small-signal discrete modulator models are usually easy to derive.
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Chapter 4 shows that application of the z-transform to the dif-
ference equation models allows the regulator transient analysis
problem to be treated in the frequency domain of the z-plane. For
the case of converter state variable feedback, a loop gain quantity
T#(z) is derived and shown to be composed of a linear combination
of the converter transfer functions regardless of the type of modulator
used. This means that the potential small-signal closed-loop dynamic
behavior of a regulator is essentially independent of the choice of
modulator.

A new identity is presented in this chapter for the case of a two-
$tate converter which allows one to write, from the converter dif-
ference equations, the converter transfer functions directly without
any matrix inversions, in terms of the converter transition matrix
M and modulation gain K.

The most important conclusion of this chapter is that the potential
transient performance of a switching regulator is strongly dependent
on the converter transfer functions G(z). This in turn means that
simplicity in the discrete modeling approach may be established
by finding simple ways of deriving G(z).

Chapter 5 introduces a new approximation called the '"'straight-
line' approximation, which enables G(z) to be explicitly evaluated in
symbolic form with a minimal amount of computation. With the use
of this approximation and the root locus, the potential transient per-

formance of a boost regulator is investigated. Effects such as half
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frequency oscillation and an optimal transient response are noted for
various types of feedback.

The two key results of this chapter are that G(z) may be easily
derived by use of the straight-line approximation, and that the
resultant approximate G(Z) may then be used with the root locus in
an exploratory manner to 'deterrnine possible closed-loop transient
responses.

In Chapter 6 verification of the effects predicted by the root
locus is accomplished by means of a large-signal boost converter
simulation. Comparisons between the discrete and df converter
transfer functions are given in Bode plots which show explicitly the
range of frequencies where the df models are valid. Also included
in this chapter is a section covering the design of the physical feedback
for two different types of pulse-width modulators. These methods are
applied to the boost regulator example in order to achieve the optimal
response with either modulator. The designs were then verified with
a large-signal simulation.

The goal of Chapter 6 is to lend credence to the claims made in
the earlier chapters. In particular the results predicted with the use
of the approximate transfer functions are shown to be accurate in
predicting high frequency closed-loop behavior. This indicates that
use of the '"'straight-line' approximation does not degrade the

accuracy inherent in the discrete regulator models.
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In conclusion, the results of this thesis indicate that discrete
models may be simplified to the point where it is possible to apply
them in the initial design phases of switching regulators. We have
seen that for the case of a two-state converter, it is possible to
find the approximate discrete converter transfer functions with little
more effort than the addition and subtraction of a few matrices.
Furthermore, it has been shown that the closed-loop transient analy-
sis problem may be intimately tied to solution of the discrete open-
loop:converter transfer functions by the introduction of a discrete
loop gain and by application of the root locus to this loop gain.

A secondary goal, to provide a convenient way to gauge the
accuracy of the df approach, was accomplished by introduction of the
discrete equivalent dn of the average modulation <d> into the discrete
model formulation. One can show in general that if the ''straight-
line' approximation is valid, then, for frequencies where ] sT[ << 1,
the transfer functions derived by either method agree with each other.

One of the most fruitful applications of the methods presented
here is achievement of the optimal transient response for any given
converter, through proper choice of feedback and modulator gain.
Since the explicit results for the modulator and converter models
show that the loop gain varies with the steady state condition, the
objective is to design the loop gain to be insensitive to source and load
changes so that the optimal response is achieved over a wide range of

operating conditions.
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In many systems measures of all the converter states may not
be available for feedback purposes, in which case use of the root locus
could indicate the limits on attainable transient performance.

Finally, it should be clear from this thesis that use of discrete
models of switching regulators offers the designer substantial advan-
tages in both accuracy and simplicity. In particular, this design

approach permits an optimal transient response to be achieved.
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Appendix 1

Writing State Equations

Presented in this appendix is a review of a simple systematic
way of finding the state equations for networks of the type commonly
found in switching power converters.

The basic steps in finding the state equations of a converter

during any switching interval may be summarized as follows:

1. In order to maintain state variable continuity across each
switching instant, choose the state variables to be the
current in each inductor and the voltage across each capaci-
tor, giving each a reference direction on the circuit

schematic.

2. Replace each inductor with an independent current source,
and replace each capacitor with an independent voltage

source.

3. Solve the resultant resistive network for the voltage across
each inductive current source and the current through each

capacitive voltage source.

4. Note that the voltage V, across each inductive current source
dI
is equal to Ld—t— and the current Ic through each capacitive
dv
c

voltage is CF .
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5. Divide each state equation by its respective L or C to get the

standard form as presented in Chapter 2.

As an example of this technique, consider the boost converter of
Fig. Al. 1. This converter is shown with parasitic elements repre-
senting loss in the inductor and }capacitor to make the final state
equations less trivial. Also, the converter is assumed to be operating
in the interval where the transistor switch is open and the commutat-
ing diode (shown in dashed lines) is effectively closed. Note the
inductor current I, and capacitor voltage V. are chosen as the state
variables.

Next, Fig. Al. 2 shows the reactive elements replaced by indepen-
dent sources. The input power supply, Vs, is also an independent

source. This corresponds to step 2.

Fig. Al.1l. Boost converter with parasitic
loss elements.
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Fig. Al. 2. Source replacement of state
variables. :
The next step is to solve for the current through Vc (labeled Ic)
and the voltage across I (labeled v, ). By superposition, these

equations are of the form:

VE = KIII + KZVC + K3Vs
Ic = K4II + KSVc + K6Vs

To find the Ki simply turn off the other sources (i.e., short
the voltage sources and open the current sources) and compute V, or
Ic as a function of the remaining source.

For example, to find Kl’ turn off Vc and VS as shown in

Fig. Al.3. Compute V, and hence K, as follows:

v, = -[rl +rcHR} I, = K,I,

K, =,-[r1 ¥ rcHR]
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Fig. Al.3. Circuit for computation of K.

In a similar manner, the other K's may be found to yield:

B} R
v, = —[rﬂ +rCHR]IQ -<?—~ﬁ>vc+vs

_ R 1
I = (r +R>Iﬂ -(r +R)VC (Al

d1,
Ve T L

av
I = ¢ —=5

1)
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Substitution of these relations for v, and I in eq. (Al.1) gives:

dlﬁ

R
e B L e S

1l

dv

c _ R 1 \%
Car <r +R)Iﬁ ‘(r +R) c
C C

Division by L and C finally puts the state equations in standard

form:
rlﬁ r, +r_||R ) R TI ] r-_lT
- + (r_ ¥ R)L i L
: A
__R__ 1 °
v (r_ + R)C (r, +R)IC || V_ 0

This method will always work provided there are no loops of
capacitors or nodes with only inductors connected to them, cases

which typically never occur in converter models.
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Appendix 2

Analysis of Reactive Compensation

A simplified way of handling regulator compensation for the dis-
crete models is presented in this appendix. Discussion of the problem
is followed by a general and a specific example to indicate the method.

To begin, compensa'tion as it is used here will mean the addition
of reactive elements, usually capacitors, in the feedback of a regula-
tor to improve performance either in transient response or regula-
tion. With the discrete model there are two ways to tackle the addi-
tional complexity that reactive compensation introduces.

The most direct approach is to consider each additional reactive
element in the compensation as an additional state variable of the
converter. Then, this new, more complex converter could be
treated by the methods of Chapter 2 to derive small-signal linear
difference equations about some operating point.

The main problem is that to find the z-transform transfer func-
tions of the modulation to each of the state variables (now including
the compénsation) requires the evaluation of (zI - M)'1 M, where M
is the transition matrix now of the converter-plus-compensation. If
M is 2 x 2, evaluation is easy as shown in Chapter 4. For M of order
3 or higher (which a two-pole converter plus reactive compensation
would be) the evaluation of the inverse in symbolic form would be

quite complicated. Furthermore, if one wished to see the effect of
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a change in the type of compensation, the whole model development
procedure would have to be repcated. A general example will be first
used to show a simpler alternative method based on a '"non-loading"
approximation.

The small-signal nonlinear state equations for a two-mode
converter-plus-compensation may be represented by Eqs. (A2.1),

assuming single edge modulation.

B -
X X
B (51A1'+52A'2)--__ t]--=- 4 (A2.1)
X x K

Cc C C

This corresponds to Egs. (2. 5) with the product terms of d and the
perturbation neglected, because they do not contribute to the small-
signal difference equations.

In Eqs. (A2.1) the state variables are partitioned into two groups

X, to represent the state variables of the converter, and X to repre-

sent the state variables of the compensation,
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F_~ a
xl(t)
x xm(t)
X J';cl(t)
c [ ]
xcj (t)
- p—

In a similar fashion K and Kc are sets of constants, derived
as shown in Chapter 2, which represent the effect of the modulation
on each of the state variables. As mentioned at the beginning of the
appendix, Eqs. (A2. 1)‘cou1d be treated as just a bigger, more com-
plicated converter. Quite often, however, one can take advantage
of the fact that in practical systems the converter voltages and
currents affect those of the compensation, but not vice-versa. In
other words, one can often assume that the compensatidn does not
load the converter sufficiently to affect the operation.

Figures A2.la and b are two typical examples of this case. In
Fig. A2. la it should be clear that small changes iﬁ the filter capaci-
tor voltage (a converter state variable) will have much more effect

on the compensation capacitor voltage (a compensation state variable)
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than vice versa because of the relative component sizes. In Fig. A2.1b
the op-amp makes this reverse signal flow even more negligible.

These examples help to indicate that although the non-loading
assumption is an approximation, it is an extremely good one for most
converters and most kinds of compensation.

The mathematical ramifications of the non-loading assumption
are that the converter-plus-compensation state matrices A'l and A'

2
of Eqs. (A2.1) have the partition property as shown, ‘

_ A
]
I~ 0
A ~
! _ l i
Ay = |
—-—-——1-———
|
H | A
" | c
I —
!
Al = Ba 0
2 |
|
SR R
|
LH e

where A1 and AZ specify the topology of the converter by itself, Ac
the topology of the compensation by itself, and H indicates how the

converter states couple to the compensation.
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Most important is the matrix block which is approximately all
zeros, which specifies the back coupling from the compensation to the
converter. If the compensation topology is altered in the two inter-
vals then there would be an Acl and Ac2 instead of Ac in A'1 and Atz.
Also, if the forward coupling were switched, H would have to be
replaced by H1 and HZ' For simplicity, it will be assumed that H
and A  are sufficient to model the coupling.

If the modulation is single-edged and located at the beginning of
the 51 = 1 interval, then Eqs. (A2.1) may be integrated as in

Chapter 2 to find the linear difference equations for the converter-

plus-compensation. The result is shown in Egs. (A2, 2):

' ()
|
A, :o A, 0
!
S B T E——
[} §
2 H 18 H 1A
{ C
--- e e
%
C
nt1)T
[ ha — “T
~ K
X
—— + ooy 4T (A2.2)
n
X K
(o] C
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With use of the series definition of the exponential matrix, it

can easily be shown that the following equalities hold:

— |
A '07
1
1
______ - — |
[ 1 | ]
H A Aty o0 O
y C e }
L _ 1 — _ |
e E B e
I
M L AT
el e ]
— ! -]
I
A2 IO
S N
_ | _
I 1 AZTZ : 0
H 'A e |
e
= |- |- == - —=
e A T
I\/ICZ :e c 2
B . |
where
2
T
MCI—HT1+(HA1+ACH) 2+...
and
2
T2
M_, = Hr,+ (HA, + AH) —5— + ..
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Substitution of these relations in (A2. 2) yields:

- B ! i ~ 7]
|

o] ATy ATy | "3 K

x e e ) 0
- B ER R B N S R
~ AT AT AT

x 11 c 2 | c ~

c‘ Mcze + e Mcl :e X Kc

m+t1)T L 4 Ld k-

! !
This shows that the partitioning property of A, and A , allows the
difference equations to be partitioned into two sets. The first set

is the original description of the converter by itself:

AT AT
(o)1) = e 2% . e H[FET) 4 Ke,T] (82.3)

The second set describes the compensation and how the converter is

coupled to the compensation:

AcT AITI AT

~ - ~ C 2
X ((n+l)T) = e [xc(nT) + chn'I‘:‘ + [Mcz e + e Mcl]

(R T) + Ka,T] (A2. 4)

This partitioning property can save a great deal of effort on the
part of the designer. First, the converter can be characterized inde-

pendently of any compensation and its z-transfer functions found.
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Changing compensation only requires recvaluation of the set of differ-
ence cquations describing the compensation and its coupling with the
converter.

Also, since the converter-plus-compensation problem is split into
two parts, the order of each part is reduced making it easier to work
in symbolic form.

To illustrate how this result might be applied to a particular
regulator, consider the boost converter used as an example in
Chapter 5. It was shown that for a particular operating point, if the
proper sum of inductor current I, and capacitor voltage Vc were fed
back, an optimal transient response could be achieved. The feedback
tends to hold this sum of I[ and VC constant, so if Iﬁ increases,

Vc decreases, yielding a regulator with a closed loop output
impedance typically too high to be a good voltage regulator and too
low to be a good current regulator. In essence what one has is a
regulator that has excellent transient properties, but with an
unacceptable output impedance.

This situation may be remedied by integration compensation. To
make the regulator a good voltage regulator, for example, one could
integrate the difference between the output capacitor voltage Vc and
some reference Vref' Feeding this integrated voltage error back
should insure a good voltage regulation regardless of any other

feedback.
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The new state variable V_, the voltage across the compensation
P

capacitance, then satisfies Eq. (AZ2.5):

t
v, = kpof (V (6) - V__)at (A2.5)

or

Vo sk, (V) -V

The small-signal version of Eq. (AZ2.5) is then:

Y= k ¥ (t)
P p c

Insertion of the equation for the compensation state variable v
together with the state equations of the boost converter yields

Eqgs. (A2.6). The dashed lines are drawn to indicate how the matrices

in Eqs. (A2.6) are partitioned.
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~ B 7 B T T
| 0 B :o i 0 L :oT i
i | 2 L ‘
| ~
c | PY% me (O | Ve|TPdE RE %] ¢
T 0TS [Fl 0 e TR e
v ] 0 { v
_P _ __0 P '0_ _vp__ - P JL P
B ]
_VC(T)
T
T,(T)
0
L —

From Eqs. (A2.6) the following quantities used in the compensation

difference equations may be identified:

v_(T)
S
A = 0 K =
C
T1,(T)
44
C
H = [0 kp] KC = 0

For typical parameter values for the boost converter, the coupling
coefficients in the compensation difference equation are well approxi-
mated by retention of only the first order terms in time as shown

below:
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<
o
+
o
<

[HTZ I+ IHTI] = HT

= [o K T]
p
Using these results, the approximate compensation difference
equation for this case in the form of Eqs. (A2.4)1is given by Eq.
(A2.7).

N 5 ~ T, (T)
vp((n+l)T) = ¥ 0T)+ K T| ¥ 0T) + —5d, (A2.7)

Application of the z-transform to (A2.7), with vp(O) = 0 for transfer

function calculation, leads to

(~ . TTf (T) )
9 ka Ve + — d
p (z - 1)

The transfer function of the boost converter is known from the analysis

of Chapter 5 to be ch\ = Gv(z)d>':. This is then used to write the
transfer function from d.:"< to Vp* as:
sk ( Tfﬂ (T ))
vp . ka \Gv(z) e
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With the expression developed in Chapter 5 for Gv(z), one can
then show that the expression for the compensation transfer function

Gp(z) is of the form

P = = AP
. G,(5) = G Sy (A2.8)
where
I,(T) V (T)~ V (T)~
k”:kTZIC 1+_£—---i2-; z = [1+—C—-2
p I,(T) p [,(T) L
For the parameters of Chapter 6, z = 1. 25.

From this example, it should be clear that the compensation
problem can be greatly simplified by the non-loading approximation.
The derivation of the transfer function of Eq. (A2. 8) required no
matrix inversions nor any additional analysis on the basic converter
by itself. With its simplicity this approximation should extend the
capability of the designer to the point where nearly any converter with

reactive compensation can be symbolically analyzed.
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Appendix 3

An Invariant Property of the Transition Matrix

In this appendix we show a property of transition matrices that is
invariant with problem formulation, that all transition matrices for a
particular converter have the same eigenvalues. The physical argu-
ment is as follows:

Consider a converter of the general type introduced in Chapter 2
and operating at a steady state condition. If it is disturbed and allowed
to settle back to its steady state, without any pulse-width modulation,
the dynamic behavior of this transient should be the same regardless
of how we formulate the difference equations to describe it.

The difference equation model for a converter is not unique
because it only describes converter behavior at a particular set of
time points. In Chapter 2 Egs. (2. 13) showed that by taking a time
reference at the beginning of the 51 = 1 interval a specific set of
linear difference equations describes the converter problem of per-
turbations on a steady state solution. An equally valid description of

the problem would be Eqgs. (2. 14), obtained by taking the reference

time at the beginning of the 52 = 1 interval as in Fig. A3. 1. When
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Fig. A3.1. Converter timing diagram.

there is no modulation Eqgs. (2. 13) and (2. 14) reduce to Eqs. (A3.1)

and (A3.2):

"
o
o
>

EX
=

E((nH)T) (A3. 1)

H
0]

X ((nu)T) X (nT) (A3. 2)

If the matrices A1 and A_ are not identical, then the transition

2
matrices of Eqs. (A3.1) and (A3. 2) will usually be different. Yet, if
the formulation of the problem is correct, both matrices must indicate
that the converter has the same dynamic behavior. One way of solv-
ing difference equations such as Eqgs. (A3.1) is through the use of

the z-transform. The procedure is quite analogous to using I.aplace
transform to solve sets of linear differential equations. A basic
result of this approach is that poles in the z-plane indicate natural
frequencies of the discrete system in the same way that poles in the

s-plane correspond to natural frequencies of a continuous system.

The z-plane poles occur at eigenvalues of the transition matrix. Thus,
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if the discrete formulation of the converter prohlem is correct, then
all transition matrices for the same converter must have the same
eigenvalues. This is easily proved because of the structure of the
problem. First we show that if a time 7 later than the reference
time is chosen for a new formulation of the homogeneous converter
problem, the new transition matrix is formed by splitting a matrix
off one side of the old transition matrix and multiplying it on the
other side.

With reference to Fig. A3.1 the original problem formulatién

is:

AT AT
;((rﬁl)T) = e 1l 2 2;;'(nT)
AT A (t,+ 71 - 71)
= e 1 le 252 x(nT)

(A [B) R (1)

1

Using nT + 7 at the reference time, the new formulation is:

i
—
o
>
N
-
—
—
o
>
—_
-
o
>
oo
-1
oo
i
-]
—
"¢

§’<(n+1)T + T) (nT + 1)

1

[B][A] ;;'(nT +7)
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Clearly then, fer a particular converter given any two transition
matrices, one can find two nonsingular (because they are products
of exponential matrices which are nonsingular) matrices A and B such
that AB is one traunsition matrix and BA is the other.

Therefore, to show that the eigenvalues and hence the system
dynamics remain invariant with regard to when the reference time
is chosen, one only need show that the eigenvalues of AB are identical
to those of BA for square nonsingular A and B.

Note, the following equality holds, since A is invertible:

\I-AB = ADI- BAJa™?
Taking the determinant of both sides we find:

Det. (A (A1 - BA) A‘l)

i

Det. (\I - AB)

Det. (A) Det. (\I - BA) Det. (A~ })

1

"Det. (\I - BA)

The characteristic equations and hence the eigenvalues are identical.
This result tells us two things: First, that the discrete con-
verter model behaves in a way compatible with the physical converter,

and second, that if we somehow can find the eigenvalues for a
particular converter transition matrix, then we know them for any
other transition matrix for the same converter provided the operating

point stays the same.



