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Abstract

Using both analytical approaches and finite difference time domain simulations. we
investigate different types of waveguiding and coupling mechanisins, including direct
coupling between the optical resonators, waveguide-resonator coupling, indirect res-
onator coupling via waveguide modes, and Bragg reflection in cylindrically symmetric
geometries.

By coupling an array of high Q optical resonators together, we form a new type
of waveguide, coupled resonator optical waveguide (CROW), where photons propa-
gate by “hopping” [rom one resonator to its ncarest neighbors. Using tight-binding
approximation, we find that the CROW modes retain the symmetries of the isolated
high Q optical modes aud the CROW band dispersion can be simply characterized
by a coupling coefficient x. The tight-binding results are confirmed by using the {i-
nite difference time domain algorithms to analyze two examples of CROW’s: one is
composed of coupled defect cavities in a two-dimensional triangular lattice photonic
crystal. while the other is formed by coupling an array of diclectric microdisk cavities.

By coupling a resonator to a waveguide, we significantly change the reflection
and transmission characteristics of the waveguide. The waveguide dispersion can also
be drastically modified by coupling an array of resonators to the waveguide, due to
indirect coupling between the resonators via waveguide modes. Using a formalism
based on the quantum scattering theory, we investigate how the waveguide-resonator

coupling, resonator gain (loss), degeneracy and symmetries of the resonator modes
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influence the optical properties of such coupled waveguide-resonator systems.

Bragg guiding can be achieved in cylindrically symmetric geometries by using
cladding media with alternating high and low refractive indices. Examples include
Bragg fibers and dielectric coaxial fibers. An asymptotic formalism is developed to
study the dispersion, propagation loss, and field distribution of guided modes in such
fibers. The results are compared with those obtained from numerical calculations.

where excellent agreement is found between the two approaches.
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Chapter 1

Introduction

1.1 One-Dimensional Bragg Reflection

In a 1972 paper entitled “Coupled wave theory of distributed feedback lasers™ [1,,
H. Kogelnik and C. V. Shank proposed using a spatially periodic modulation of the
refractive index or gain tc provide optical feedback for laser oscillation, as shown in
Fig. (1.1a). In this case, the coupling between the counter-propagating waves can be
well described by the coupled mode theory [2], and the condition of optical feedback
requires that the spatial period of the modulation A equals to some integral multiple

of half the guiding wavelength
A
A:'m.a, m=12--- (1.1)

An optical bandgap, which is defined as a frequency zone where no propagating
waveguide mode exists, is formed in the vicinity of this Bragg condition, i.e., Eq.
(1.1). The magnitude of this bandgap was shown to be proportional to the strength of
the index perturbation [2]. These types of one-dimensional (1D) dielectric structures
with weak periodic index perturbation, which include fiber Bragg gratings [3] and

semiconductor distributed feedback (DFB) lasers 4], have found wide applications in



n—1th nth n+1th
unit cell unit cell unit cell

(b)

Figure 1.1: (a) Distributed feedback provided by the periodic perturbation of the re-
fractive index or gain. (b) Electromagnetic field in one-dimensional periodic stratified
media.

optoelectronics and telecommunications.

Another example of the 1D periodic dielectric structures is the planar Bragg
stack shown in Fig. (1.1b), which consists of alternating dielectric layers with dif-
ferent refractive indices. For Bragg stacks with large enough index contrast, it is
more appropriate to analyze them using the transfer matrix method as developed in
Ref. [5], instead of the coupled mode theory. These planar Bragg stacks have found
wide applications as vertical cavity surface emitting lasers (VCSEL) [6], light emit-
- ting diodes (LED) [7], anti-resonant reflecting optical waveguides (ARROW) [8], and
' Bragg waveguides [9, 10].
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Air Hole

High index Dielectric Medium

Figure 1.2: A two-dimensional photonic crystal composed of a square lattice of air
holes in a high refractive index dielectric medium.

1.2 Photonic Crystals and the Formation of Bandgap

In the 1D periodic dielectric structures, the prohibition of wave propagation gener-
ally occurs in the direction perpendicular to the layers, which makes them highly
valuable as ideal reflective mirrors. However, it can also be shown that for these
1D structures, no matter how we choose the index contrast and layer thickness, at
any given frequency there exist some propagating electromagnetic modes within the
dielectric structures, i.e., the photonic bandgap is not complete. To form a bandgap
that prohibits light propagation in every direction, it is necessary to utilize dielec-
tric structures periodic in multiple spatial dimensions, which are generally referred as
‘ photonic crystals in the literature [11]. This was first suggested in 1987 independently
| by E. Yablonovitch [12] and S. John [13]. In Fig. 1.2, a two-dimensional square lattice
photonic cfystal is shown.

The spatial periddicity of photonic crystals leads to a natural analogy with solid

“state crystals. For exarhple, the Bloch theorem can be applied to classify optical
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bands in photonic crystals, and the formation of an optical bandgap is directly due
to the periodic distribution of diclectric constant. The main diflercnce between the
photonic crystals and solid state crvstals is due to the vectorial nature of photons.
As a consequence, to form a complete photonic bandgap, which is defined as a fre-
quency range within which no propagating optical mode cxists in every direction. it
is necessary to employ dielectric materials of very large index contrast [13].

By forming a photonic bandgap, the photon density of states (DOS) is dramai-
ically reduced within the frequency bandgap [14]. If light emitting materials are
embedded in the photonic crystals and the photon frequency coincides with the fre-
quency gap, the spontaneous emission will be strongly inhibited [12]. In some appli-
cations, it may be sufficient, or even desirable, to form a partial bandgap [15]-[17].
Until recently, much of the research in photonic crystals focused on the fabrication
of dielectric structures exhibiting optical bandgap 118, 19 and the physics within the
frequency bandgap [20].

The spattally periodic diclectric structures have much to offer besides the forma-
tion of a bandgap. It was demonstrated that the dispersion of light outside of the
gap region can be 500 times stronger than the dispersion in conventional prisms [21],
which can be attributed to the large normal and anomalous dispersion near the pho-
tonic bandedges [22]. In the long-wavelength limit where the photon frequency is far
below the optical bandgap. the plhiotonic ervstals can be viewed as uniaxial or biaxial
media and explicit formulas have been derived for the effective dielectric constants
[23]. Above the bandgap, it was also shown that the photonic bands can be well
described by the tight-binding approximation [24]. Thus it is obvious that in periodic
dielectric materials, a different mechanism is responsible for photon guiding at differ-
ent frequencies. To fully understand the complex behavior of the photonic dispersion
in periodic dielectric materials. it is necessary to study in depth the different guiding

mechanisms.
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1.3 Different Waveguiding Mechanisms

The most widely used guiding mechanism in optoclectronics is the total internal
reflection. One prominent example is the optical telecommunication fibers, where
photons are confined in the silica core with refractive index slightly higher than that
of the cladding medium. A far less obvious, but very interesting case of total internal
reflection guiding is a 2D square lattice photonic crystal waveguide. In Ref. [25], we
demonstrate that the propagating modes within the PBG waveguide can be regarded
as a slab waveguide mode, and the photonic crystals surrounding the core region
‘an be well approximated using an effective index lower than the core region index.
However, since the total internal reflection is well understood, with simple analyti-
cal solutions easily available, the following chapters shall concentrate on evanescent
guiding and Bragg guiding.

The evanescent coupling between individual optical resonators, as a guiding mech-
anism, is very similar to the tight-binding propagation in the solid state physics [26].
In Chapter 3, we utilize evanescent coupling to construct a new tvpe of waveguide,
coupled resonator optical waveguide (CROW), whose unique symmetry and disper-
sion properties allow for many potential applications in optoelectronics, especially
nonlinear optics. It should be mentioned that this type of evanescent guiding is quite
common in photonic crystals [24, 27 .

As we shall sec in Chapter 4, another type of evancscent coupling, the waveguide-
resonator coupling, is also of great interest. For a waveguide coupled to a single
resonator, a scattering theory is used to analyze the transmission and reflection char-
acteristics of the coupled system, which are shown to depend strongly on the charac-
teristics of the cavity modes and the waveguide-resonator conpling. The evanescent
coupling between the waveguide and the resonator leads to the formation of indirect
CROW.

Bragg guiding is considered in Chapter 5. The effects of Bragg guiding in planar
geometries have been extensively studied [28]. The Bragg guiding in cylindrically

symmetric geometries, on the other hand, is not well understood. In Chapter 5, we
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developed an asvmptotic matrix theory to analytically find the photonic dispersion
and guided mode distribution in the cylindrically symmetric geometries.

Most of the dielectric structures considered in later chapters are quite compli-
cated. And the analytical theories developed for them usually involve approxima-
tions. Thercfore, it is necessary to develop numerical algorithms capable of solving
Maxwell equations exactly. One such numerical method, finite difference time domain
(FDTD) method, is discussed in the next chapter in detail, and is applied to various
dielectric structures. The numcrical results are compared with those obtained from

analytical theories.
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Chapter 2

Finite Difference Time Domain

(FDTD) Algorithm

2.1 FDTD Cells and Finite Difference Equations

The original finite difference time domain (I'DTD) algorithm was proposed by Yee
in 1966 [29]. Since then. it has found wide applications in numerical electromagnetic
simulations and is extensively reviewed in Ref. [30]. With its versatility and rela-
tively easy implementation, the FDTD analysis becomes a powerful numerical tool
in optoelectronics. In this method, we introduce a lattice of computational grids to
discretize the spatial domain and transform Maxwell equations into a set of finite
difference equations. Unlike the beam propagation method [31], the FDTD method
does not involve the paraxial approximation. Consequently, FDTD algorithms are of
special importance for dielectric structures with large index contrast and complicated
dielectric constant distribution, such as photonic crystals.

According to the coordinate systems, FDTD algorithms can be generally classified
into the two-dimensional (2D) FDTD algorithm [32, 33], the three-dimensional (3D)
FDTD algorithm [29], and the cylindrical one [34]. Tn this chapter, we discuss the 2D

and 3D FDTD algorithms in detail. The cylindrical FDTD algorithm has relatively
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limited applications and is not considered here. Readers intercsted in the cylindrical
FDTD algorithm should consult Ref. [34].
To speed up FDTD simulations, in this chapter, we adopt a normalized unit in
which € = 1 and py = 1. With this convention, the vacuum speed of light ¢ = 1,

while time and space have the same unit.

2.1.1 Two-Dimensional Case

For a given dielectric structure infinite in the z axis. the z dependence of the electro-
magnetic field can be written as ¢ 7% which is directly due to continuous translational
symmetry in ihe z direction. Consequently, we can write the electric field £(x,y, z, 1)

and magnetic ficld H(x,y, z,t) in the form of

Er(z,y.1)

E(z,y, 2. t) = e Ey(x,y.t) | s (2.1)
ik (x,y,t)
iH (r,y,1)

H(x, gy, 2, L) = ™52 iH,(z,y,t) | - (2.2)
H.(z,y.1)

Substituting them into Maxwell equations, we find
g | ;

OH,  OF,

— = - 3E, , 2.3
ot oy Y 2.3)
0H, OF,

v OL: + BE, , (2.4)

ot ox
0H., OF oE,

oty ox

OF. 1 0H, ,
(22— 8H). 2.6
ot (( Oy 9H,) (2.6)

or, l(_‘()H;,
ot € Or

+ ,BH_[:) s (27)
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OE. _ 1 0H, 0H,

ot ¢ Ox Oy )

(2.8)

where e represents the distribution of dielectric constant in the zy plane.

In order to discretize Fq. (2.3) to Eq. (2.8), we introduce a iwo-dimensional lattice
of computational cells (2D FDTD lattice), on which for an arbitrary function F(a, y, 1)
we define

F™i, ) = (i), jA, nAt) | (2.9)

where A is the grid size and At is the time step. The FDTD cell itself is labeled
according to the position of its lower-left corner. For example, the lower-left corner
of the (7, j)th 'DTD cell, as seen in Fig. 2.1, should be located at the spatial point
(ZA, jA). On each FDTD cell, we arrange the components of the electromagnetic
field as shown in Fig. 2.1. Following the convention in Eq. (2.9) and take cell size

A =1, we can transform Eq. (2.3) to Eq. (2.8) into the finite difference form {32, 33}:

n—s

1 oS . 1

X |B2G 1) = BN + BB (i + 5)]

n—}-% . l - 77—%'. l -y y
Hy '('l+§:.7):HZJ i+ ;J)‘*‘At (2.11)

x (BG4 1)) = ENij) + BEZG+ 5.)]

n'{V;l- R 1 . ]. n -é . ]. . 1
r N SR Ty = - - A 9 1+
Hz *(i- 2,J+2) H, (z+2,,}+2)+Aé (2.12)
o S T S g
x B+ 5d U = Byl 50 + Byl g+ 5) = Eyi+ 1,5+ 5)
1 1 At
bl ooy LN D <
ntl P 1 1 n--é P 1 . 1 O n.—!—% . 1 y
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¥

Figure 2.1: Electromagnetic field components at the (i, j)th 2D FDTD cell.



1 At .

EM'(i,j—=)=E} - 2.14
n«i—% J. .]. ) ’!L—r% K -l ]- / Tl+% oo 1 3
x [ —H!2( +§,.}+§)+HZ ('/‘5 j §)+dHJ; (c‘.}+§)],
1. o At
E? i) = E2(i. ) + —— (2.15)
Cocldng)
'L-!—% P l 7),1%,, . 1 n'% . ]_ . n-}~% . l .
x [_H‘:' '(19.74’5)“*’[1-'1: -(\7,.,]—5)—‘f1’?,+~(7,—|—§,])—1"]y (7‘5})] .

In this approach, we assume that the propagation constant 3 is already known, and
its value is substituted into Eq. (2.10) to Eq. (2.15). Using these FDTD equations, we
can evolve any electromagnetic field distribution within a given spatial domain. Based
on the time evolution results, we can find the frequency and the field distribution of

the resonant modes within the 2D diclectric structures.

2.1.2 Three-Dimensional Case

Without the continuous translational symmetry of the 2D case, here we start from

the complete Maxwell equations for electric field L and magnetic field H:

OH -~ o
E)‘——:—Vx Y, (2.16)
ol

9F L .

60, =V xH. (2.17)
Jt

As before. we introduce a three-dimensional lattice of cubic cells and attach a label
to each FDTD cell according to the position of the corner closest to the origin of the
coordinate system. The (¢, 7, k)th cell in the FDTD lattice is shown in Fig. 2.2, where
we also indicate the arrangement of electromagnetic field components at this FDTD
cell. Adopting a similar convention as that in the 2D case, for an arbitrary function
F(x,y, 2, ). we have

F™(i, 5, k) = FUA JA KA nAL) . (2.18)
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Figure 2.2: Electromagnetic field components at the (4, 7, k)th 3D FDTD cell.
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Using this notation and taking the cell size A = 1, we can discretize Eq. (2.16) and

Eq. (2.17), which gives us [29]

. T 1 n-L .. 1 ]. .
HE (i) ;+— bt )= i+ 5.k +5) = A (2.19)
| - 1 1
x |En, 7+ k) — E (z‘,j+;,kr+1)—E?(i,j,k+§)+E?(z,1+1,k+;)],
n I 1 not, 1 1
HIYE (G 4 Sk 5 =Hy Fi— gkt 5) - A (2.20)

1 1 1 L . 1
x [E;Z(H-Q-,j,kﬂ) E(it 5.0 k) + E2id k4 5) = E;"(z+l,lj,k;+§)],

-t o1 1 — 1 )
H, *(i+ 5,]'}'5,]&) H. )(I—FZ _}+— k) — At (2.21)
S R 1 1
X [E;(7,+1,.7+5,A) Ey (i, J+— k) — E7 (7+5,J+1,l;:)+E;f(z+§,,y,k)],
1 1 Af ntl 1
E}! k)= EMi+ =, k) — —— ’ k—3) (222
(i 50k) = Bllit 5.0 0) = =M i+ 5dik =) (222
n+l 1 1 #1 1 . 1 nel, 11
— Hy i gk ) H i 5= o k) = B G0 - 5]
1 1 At need 1
EnH k E"G.i+ = k H; 2 — = k+ = 2.23
(i + 5:0) = By (i + 5.0+ s [ (i = 5k 4+ 3) (2.2

nﬁ‘, F 1 1 n——.]— 1 1 n+% . 1 F .
— H; ( 5}‘——)+H (’—5}_'—_]‘) e (+§J+§7}")]~

pel 1 1 .
Hy (it 5.0k +3)  (2:24)

1
r71+1( ]k‘—f— ) E"(/ ]7A_+_ 5

1 Al
; .

)“"I{J '(Z,/—‘—El‘l‘*—i)]

-z 1 . 1
— Hy ( 5,_7,k:+‘_)+IL (z]~—A+2

Eq. (2.19) to Eq. (2.24) arc the finite difference equivalence of 3D Maxwell equa-
tions. They can be used to evolve an arbitrary three-dimensional electromagnetic

field distribution, and form the basis of 3D FDTD algorithm.
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2.2 Boundary Conditions

One important question associated with any FDTD simulation is how to terminate
the computational domain. Take the 2D case for example. In Fig. 2.3, we showed
a 2D FDTD computational domain with (N, — 1) x (V, + 1) FDTD cells. As can
be seen from Eq. (2.10) to Eq. (2.13), the clectromagnetic fields at the (i, j)th cell
depend on those at the four neighboring cells. Thus for some field components at the
boundary cells, such as £7(7,0), we can no longer usc the FDTD equations to update
their values. Consequently, it is necessary to use various boundary conditions to pro-
vide values for electromagnetic fields located at the boundaries of the computational
domain.

There is no unique way to terminate the FDTD computational domain, and the
solution generally depends on the physical nature of the problem. For example, if
we want to know the clectromagnetic modes within a cube bound by perfect metal,
we can simply take all the electromagnetic fields at the FDTD boundary cells to
be zero. Symmetry considerations can also be applied to terminate computational
boundaries, such as the Bloch boundary condition and the mirror boundary condition,
as we shall see shortly hercafter. For some other problems, the boundary conditions
arc more difficult to find. An example is the problem of finding the mode frequency
and quality (Q) factor of a high Q mode in an optical resonator. In this case, we
are required to find an absorbing boundary condition that imitates open space, i.c.,
it should absorb all the outgoing electromagnetic radiation without reflection. Of all
the absorbing boundary conditions available in the literature, the perfectly matched
layer (PML) boundary condition 135, 36] provides the best performance and has found

wide applications in FDTD simulations.

2.2.1 Bloch Boundary

For any dielectric structure with discrete translational symmetry with spatial peri-

odicity R in the x direction, we can classify the electromagnetic modes according to



(O.N,) | (i,N,) (NoN))
(i,j+1)
on| el ool (Nei)
. an|
oo | (N,,0)
“x

Figure 2.3: A two-dimensional FDTD computational domain with (N;+1) x (N, +1)
FDTD cells.
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the Bloch vector K. In the 2D case, the Bloch theorcmn requires
E(x=Ry) =¢"RE(z=0,y), (2.25)

=Ry =e™8H(r=0,y). {2.26)

However, we cannot directly apply these relations to the (0, j)th cell and the (V,. 7)th
cell FDTD domain in Fig. 2.3, since electromagnetic fields at both the (0, j)th cell
and the (N, j)th cell are unknown. Instead, we should relate the electromagnetic

fields at the (N, j)th cell to those at the (1, j)th cell:

n 1
HE'* (Nyyj + -) = TR 4 5) - (2.27)
nt3ar 1. ~71\ Ne—=1) " 13 o <
H'/ (‘N:J:+§a]) = ! H '(27]) ; (‘228)
'n,-'—l ] l R n,;-l— 3 1
CTI(N R 2 = oW (N 1) iy 9 9
H: P(Not 5.+ 5) = = %50+ 35) (2.29)
(AT 1 —iK(N;-1) pn : L 20)
E.’Z (‘]\/1‘7.] —-i— 5) = ¢ SAF, ET (]7‘] - 5) B (2.30)
n 1 — K (N, - n L R
(N, +5,0) = oK DB 4 ) (2.31)
E} Ny, j) = e M= Er(1 ) (2.32)

where we use the fact that cell size A = 1. In the same way, we can relate the (0, j)th
cell to the (N, — 1, j)th cell, which completes the construction of the Bloch boundary
condition for the x direction in the 2D case. We can treat the 2D Bloch boundary

condition along the y axis, and the 3D Bloch boundary condition in a similar fashion.

2.2.2 Mirror Boundary

Another svmmetry property that is useful in FDTD simulations is the mirror reflection
symmetry. Many dielectric structures possess mirror reflection symmetry with respect
to a given symmetry plane, from which we can derive the mirror boundary conditions

for FD'TD simulations. One advantage of the mirror boundary conditions is that they
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can lead to the reduction of the computational domain by a factor of 2 or even more.
This can be very helpful for the 3D simulations, where limited computer memory
often limits the size of dielectric structure that can be calculated. As an additional
advantage, the mirror boundary conditions can also be used to resolve the modal

degeneracy dictated by the symmetry properties of the dielectric structures.

X

Figure 2.4: A two-dimensional diclectric distribution with a mirror reflection symime-
try plane y = .

Take the 2D case as shown in Fig. 2.4, for example, where the diclectric structure
is symmetric with respect to the plane y = yo. Due 1o the mirror reflection symmetry.

the optical modes in this structure can be classified according to their parity P {111

Hm(wa '!/) = _PH:I",(I: 2y() - ’/) : (233)
Hy(x» y) = PH,(z, 2y, — y) , (2.34)
H.(x,y) = —PH.(x.2y0 — y) , (2.35)
Ex,y)=PE,(x,2y0 — y) . (2.36)
Eq(l U) = _‘[)E;z;(l's 2yp — l/) ’ (237)

E.(x.y) = PE,(z,2y0 — y) , (2.38)
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where the parity P can take the value of &1. The modes with P =1 and P = —1
shall be called. respectively, the even modes and the odd modes.
If the FDTD domain in Fig. 2.3 is used to calculate the even Symmetr3’ modes

(P = 1), we choose the mirror reflection plane located at yo = 1/2. Applying Eq.

(2.33) through Eq. (2.38) to the (4,0)th cell and (7, 1)th cell, we find

n 1 . ]
=) =0, (2.39)
2
n+ 4 1 -5 1
Hy 2 (? + 5, 0) = _qu (l + -5_/ l) s (2.10)
n+z L1
H:" i~ 5.5) =0 2.11
=39 (2.11)
] n ] . .
Eglit 5.0) = Ex(i+ 5. 1) (2.42)
7 1 . .
E'lld(z'a ._> =0 s (243)
: 2
E2(i,0) = EZ(i, 1) (2.44)

The above six equations give the even mirror boundary condition at y = 1/2. For the
odd symmetry modes with P = —1, we choose the mirror reflection plane at yg =1

and transform Eq. (2.33) to Eq. (2.38) into

11.-|—% - 1 T n——% B : y
e (ig) = e *(05) (2.45)
T n»é . 1 -
Hy ?(i4+=,0)=—Hy, (i + 5,2), (2.46)
n.—l—.l . 1
Hy #(i+5,1)=0. (2.47)
n-+-;‘2 . 1 1 _ n—-i; K 1 3 9
LN 1 YIS J' ¢
EV(i+ ;,0) =—E7 (i + 5 2}, (2.49)
Eh(i+=,1) =0, (2.50)
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o 3 .

oy 5 0) = £} (4, 3 (2.51)

E2(i,0) = —B1(i,2) . (2:52)
E™i, 1) =0. (2.53)

Similarly, we can construct even and odd symmetry boundary conditions for 3D cases.

2.2.3 Perfectly Matched Layer (PML) B'oundary

In reality, almost all diclectric structures are located in free space and are of finite
size. To analyze such structures, it is often necessary to use absorbing boundary
conditions to simulate free space at the boundaries of the FDTD domain. Among
various absorbing boundary conditions, the perfectly matched layer (PML) bound-
ary condition is relatively complicated in construction but offers superior absorption
characteristics.

In 2D case, the perfectly matched layer can be viewed as a lossy uniaxial medium
characterized by parameters (o,,0,). Following Gedney [36], for a monochromatic
electromagnetic field with frequency w, we can write Maxwell equations in PML region
to be

V x H = iweeE (2.54)

~

V x E = —ijwiH | (2.55)

where we have chosen €y = 1o = 1 and use € to represent the distribution of dielectric

constant, whereas € and fi arc defined as

Sy /82 0 0
E=p=| 0 s/s 0 |, (2.56)
0 0 5.8,

with s, and s, being
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s, =1+ fﬂ{@ . (2.58)

The parameters 7, and o, have. respectively, only @ and y dependence [36].
Egs. (2.54) and Eq. (2.55) are both in the frequency domain. To transform them
into the time domain, we introduce two auxiliary vectorial quantities 1D aud B. Take

the 2 component of Eq. (2.55) for example:

WL = (VY B (2.59)

5 £

We introduce B, which is defined as

H,
B, =—, (2.60)
Sa
and write Eq. (2.59) as
—iws,B, =& - (V x E) . (2.61)

Substituting the definitions of s, and s,. as given in Eq. (2.57) and Eq. (2.58), into
Fg. (2.61) and Eq. (2.60), we respectively find
B, \ - o
— +0,()) By = —. - (V x £, (2.62)
a-l—-l:l: o ()BJ
ot ot

+ 0. (1) By . (2.63)

where we have replaced iw by 0/0t. Following the same steps, we can derive similar
equations for other components.

Asin Sec. 2.1.1, we observe that in 2D case, the z dependence of the fields is simply
e~ Thus Eq. (2.63). Eq. (2.63), and similar equations for other electromagnetic

field components can be transformed into:

0B, . oF, ,
- ne = — < _ BF 2.64
OH, B ) §

OH, _ 9B, + 0,.(2)B, . (2.65)

ot Of
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aBiU o _ (9].72 "~
OH oD S —
o~ or TWBy (2.67)
OB, OE, OF, |
— 0, : = T — 2.68
ot — oW ox Ay (2.68)
OH, - 0B,
—= Ao (Y, = — . 9 6C
D). 9H. »
' e(x,y) Oy '
OF, 0D
d prmans - i T X T s 271
e = 9% 4 0 (a)D, 2.11)
(3[)7] 1 oH
: )D, = ——(—~—— + JH, 2.72
ok oDy = (=S 4 ) (2.72)
OE, oD, -
a - ot W) Dy . (2.73)
oD, 1 9H, OH,
-—_ Tyl . = = — —), 2.74
OF, oD,
d , — i D M=
af +0T(r)Ez dt . (...(O)

Tt is relatively casy to derive the finite difference form of Eq. (2.64) to Eq. (2.73).

We will give the explicit finite difference equation for the 7, component only. Within

the FDTD cell shown in Fig. 2.1, we put the components of the B field at the same

location as those of the H field, while the D components occupy the same posi-

tion of the E components. With such an FDTD cell, Eq. (2.64) and Eq. (2.65) are

transformed into:

n—‘—:; .. 1
BT 2(17.]+5) =

1 —
1=

1+

oy (i +35)AL

2 n—s3

1 .
nar Or eI+ 3) (2.76)
2
Af PLn(s ; g DT - 1
oG—gar B2 (6 + 1) = EZ(L ) + BE (i, + §)] ,
2

I'{;z: (1,J+§)*L]—

n —F%

()AL o
U—(‘é)—f] x (%.7"‘_)
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Figure 2.5: (a) Absorption of light in a perfectly matched layer. (b) PML boundary
condition in a 2D FDTD computational domain.

[1- %] TG g+ %) .
Finite difference equations for other components can also be similarly derived.

As demonstrated by Eq. (2.54) and Eq. (?.55), the PML medium can be regarded
as an artificial dielectric medium characterized by the parameters (o4, 0y). In fact, if
we substitute o, = 0 and o, = 0 into Eq. (2.56), Eq. (2.57) and Eq. (2.58), it is obvious
that free space can be viewed as a special case of the PML medium with (o,,0,) =
(0,0). In Ref. [36], it has been shown that if o, varies only along the z direction and
oy has only y dependence, any incident electromagnetic radiation shall enter into the
PML medium without reflection, irrespective of the incident angle. Within the PML
“medium itself, the radiation attenuates exponentially, with the absorption constant
| depending on the values of ¢, and o,.

In Fig. (2.5a), we illustrate how the PML works as an absorbing boundary con-
dition. We take the PML boundary to be perpendicular to the x axis, while the

unshaded region to the left of the plane © = 1z represents the free space and the
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shaded region to the right is the PML medium terminated by perfect metal. There-
fore. in Fig. (2.5a) o, must remain zero within the PML medium, since oy, is zero in the
free space and is independent of the variable . On the other hand, we should choosce
a non-zero value for a,, which provides the absorption within the PML medium. The
PML medium is terminated by the perfect metal, where we simply assign zero to all
the values of the electromagnetic ficld. Under this arrangement, the incident electro-
magnetic wave enters into the PMIL medium from free space without encountering
any reflection. While the incoming wave propagates in PML medium, it attenuates
both before and after being reflected by the perfect metal. With the thickness of the
PML medium and the value of o, properly chosen, the residual radiation reflected
back into the free space can be reduced to negligible level.

In Fig. (2.5b), we show how to arrange the (o,, 0,) parameters of the PML medium
to eflectively absorb the outgoing radiation from the 2D computational domain. All
the PML medium, with the exception of the four corners, has only one of the o, and
oy non-zero, directly due to the requirement that o, and o, should be, respectively,
independent of y and . As discussed before, such arrangement insures the radiation
incident on the PML medium does not encounter reflection. As the clectromagnetic
radiation enters into PML medium close to the four corners, some may penetrate
into the corner region. Still. the (o,,0,) are arranged such that the radiation field
continues its attenuation without suffering back reflection.

Due to discretization error in actual simulations, it was found that o, can be
chosen to take the following form to minimize the numerical back reflection [36]

(x — xo)?

o . T > Ty, (2.78)

Ty (47;) = Omax

where d is the total thickness of the PML layer and x is the coordinate of the interface
between free space and PML medium. as shown in Fig. (2.5a). We can choose o, 10
be of similar dependence on y.

In concluding this section, we remark that PML layers can be similarly constructed

for 3D cases. The main difference is that we have to introduce a third parameter o,.
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For more details, the readers should consult Ref. [36].

2.3 FDTD Algorithms and Their Applic'atvions

2.3.1 Simulation of High Q Optical Modes

One important application of the FDTD analysis is to find the resonant frequency
w and the quality factor @@ of the optical modes within a dielectric resonator. For a
dielectric structure with dielectric constant distribution €(7), we can define the vector

potential In(r—’) of the nth mode as the eigensolutions of the following equation [37]

—

r 2 ' A 1y
V X [VXAH )’ = Wy ) n( ) \2"9)
where w,, is the cigenvalue for the nth eigenmode. The eigenmodes are orthonormal

/ Fre(F)A(F) - A7) = o (2.80)

and complete

(7 7) = (@) 2 Aua(F) A35() (2.81)

—

where A, ,(7) is the ath components of the vector eigenmode . ln( 7). Notice that in
Eq. (2.79), we have used the convention of ¢ =1 .

At the frequency w, we introduce the Green function G, of Maxwell equations

defined as [38, 39]:

—V x [V x ZGM 7, 7)e)] ZGM P ey = 8(F — 7)ey (2.82)

~where « and § are the subscripts of the Cartesian coordinate. As clear from this
definition, 3-, GZ4(7, 7)€, represents the electromagnetic field excited by a -function

source o(7 — 7)eg. We can expand the Green function in terms of the complete set



of the eigenmodes [39]:

1 An,a(f‘)A:,B(’F’)
2w, w—w, +t,

LF ) =)

Ti

(2.83)

where 1, is the amplitude decay rate of the nth clectromagnetic mode, from which

we can define the quality factor @O, as

1

Wn,

Ct)n = 21—.” .

(2.84)

As can be seen from Eq. (2.83) and Eq. (2.84), for a high Q optical mode, the Green
function becomes very large at the resonant frequency w = w,. From the observation,
we can build a FDTD algorithm to calculate the modal frequencies and spatial profiles
ol high Q modes.

Take the problem of finding mode resonant frequency for example. First we intro-
duce an initial distribution of electromagnetic field and evolve the initial field using
the appropriate 'DTD equations as given in Sec. 2.1 and the PML boundary con-
ditions as given in Sec. 2.2, We record the values of the clectromagnetic field at a
given “observation” point 7 as a function of time and denote the results as £ (7, 1)
and H (Ty,t). We take one component of the electromagnetic field, say E, (7, ), and
transform the temporal series into the frequency domain via fast Fourier transform
(FFT) [40], which gives us F,(7,w). As obvious from the definition of Green func-
tion, the result £, (7. w) is essentially the frequency domain Green function with
some average over the initial field distribution. As a consequence, the peaks in the
frequency spectrum of the temporal series can be identified as corresponding to the
high Q optical modes. The position of the frequency peaks gives the resonant fre-
quency of the modes, while the width of the peaks is inversely proportional to the
factor of the modes. In Fig. 2.6 we show a typical FFT spectrum of the electromag-
netic field at the “observation”™ point. where the three peaks in the figure indicate the
existence of three high () modes within this frequency range.

If we know a priori the resonant frequency w of a particular high Q mode, the
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Figure 2.6: FFT spectrum of the temporal series of the electromagnetic field obtained
using FDTD equations in Sec. 2.1.

mode’s spatial profile can be simply found by using the following mode filtering tech-
nique. As before, we start from an arbitrary initial field distribution and use the
FDTD equations to evolve the initial field to find a time-varying electromagnetic
field E(7,t) and [ (7,t). The difference is that here we need the electromagnetic field
at every spatial point instead of just a single observation point 7. This time-varying
field generally contains a broad frequency spectrum, which depends on the choice of
‘the initial field. By applying a narrow bandwidth frequency filter centered at w to the
temporal field, we filter out E (7,w) and H (7, w) at every spatial point 7, which gives
us the electromagnetic mode at frequency w. In our algorithm, this mode filtering

process is simply achieved by applying a temporal Fourier transformation at the given
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Figure 2.7: Schematic of the FDTD mode filtering algorithm.
frequency w:
— T - —
E(F,w) = / dt e @UE (7 1) (2.85)
40
- r — o
H(F,w) = / dt R (7 1) (2.86)
J0

It should also be noted that the mode £ (7, w) and H (7, w) has a frequency uncertainty
of the order of 1/T, since the temporal integration in Eq. (2.85) and Eq. (2.86) has a
frequency bandwidth of the order of 1/7.

In most cases, however, we do not know the mode frequency w in advance. But

if we know the spatial distribution of a high Q mode to be E (7) and ]7(7 ), the mode

resonant frequency w can be found by noticing that [11]

1

Vx[e(ﬂ

Vx H()| =w?H (), (2.87)

V x [V x E(7)] = w’e(ME(F) . (2.88)

Consequently., the resonant frequency w and the spatial distribution E(7) and H(7)

of the given high Q mode satisfy

, Lo dit {H*(F) - {V x 2LV x B} + E*(7) - {V x [V x E(7)]}}

W =cC

where the spatial integration is over the whole computational domain V.
Combining the mode filtering technique, i.e., Eq. (2.85) and Eq. (2.86), and the

ability to find the resonant frequency of a given mode. i.e., Eq. (2.89), we can itera-
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tively find the high Q mode of interest and its resonant frequency, starting fromn a good
initial guess of the field distribution &£y(7), Ho(7) and the mode frequency §)y. First
we evolve the “guess” field & (7) and Hy(7) using the FDTD equations in Sec. 2.1.
Then from [Eq. (2.85) and Eq. (2.86), we can filter out a mode & (7) and #H;(7) from
the time evolution of the initial field &(7) and Hy(7), using the “guess” frequency €.
Next the “average” frequency € of the mode & () and H,(7) is obtained from Eq.
(2.89). Subsequently, we can use £ () and H,(7) as the initial field distribution and
(2 as the “guess” mode frequency, and resume the iteration. This process is repeated
until it converges and gives the desired high (3 mode. This iteration algorithm is also
summarized in Fig. 2.7.

To evaluate the quality factor of a single resonator mode, we use the definition

avg

CJ — 771,0(%!(3‘ : gzmm e‘T ? 290"
Emode (0) - bmode (T) ! ( )

where Epoqe(T) is the total energy of that mode at time T (the end of evolution),
Einode(0) is the mode energy at time 0 (the beginning of evolution), E;%  is the
average mode energy during the time evolution, and Q4. is the frequency of the
mode.

The decay of the modes leads to an uncertainty of the mode resonant frequency,
which can become the dominant source for the frequency errors in our simulations,
especially when the Q) factor is not very large. Consider a mode with a mode fre-
quency of £ and quality factor of Q. Since the mode evolves temporally according to

{12040 the caleulated mode frequency will bear an uncertainty of order of £2/2().

2.3.2 Simulation of Waveguide Modes

Depending on whether the waveguide possesses continuous translational symmetry
along the direction of propagation or not, we can classify the FDTD waveguide sim-
ulations into two types. If the waveguides are spatially invariant along propagation
direction (such as in optical fibers), we follow the analysis in Sec. 2.1 and use [q.

(2.10) to Eq. (2.15) for time evolution in FDTD calculations. The PML boundary
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conditions as developed in Sec. 2.2.3 can be directly applied here to terminate the
FDTD computational domain. At any given value of propagation constant 3, we
~ can use the algorithms discussed in Sec. 2.3.1 to find the frequency‘and' spatial dis-
tribution of the waveguide modes. The dispersion relation of the waveguide modes
is subsequently obtained by varying propagation constant 3 and calculating mode
frequencqu for each . In Chapter 5, this method is applied to analyze Bragg fibers
and dielectricicoaxial fibers.

For waveguides with dielectric constant varying along the propagation direction,
we can no longer take advantage of the continuous translational symmetry. In many
cases, however, the waveguides possess discrete translational symmetry, and we can
easily use the Bloch boundary condition in Sec. 2.2.1 to restrict the FDTD calculation
within one unit cell of the waveguides. Take the triangular lattice photonic crystal
waveguide as shown in Fig. (2.8a) for example. In this case, the discrete translational
symmetry in the x direction allows us to use Bloch boundary condition to reduce the
modal analysis within a single unit cell. The photonic crystal waveguide is defined
by 3 layers of air holes in an infinite dielectric medium. Thus the PML boundary
condition is applied to terminate the FDTD computational domain in the y direction.
Consequently, we can reduce the original infinite waveguide to its single unit cell in the
FDTD simulations, as shown in Fig. (2.8b). This problem can be further simplified
by introdﬁcing the mirror boundary at the center of the photonic crystal waveguide,
as in Fig. (2.8¢).

An important parameter of waveguides is their propagation loss. Since the simu-
lations of waveguides and simulations of optical resonators are quite similar, we can
define an effective QQ factor as

Fave

mode
Qmoded . 2.91
Emode(o) _ Emode (T) ¢ ( )

Qers =

This definition is the same as that of the Q) factor of an optical resonator mode, as can
be seen from Eq. (2.90). From the effective  factor, we can easily get the waveguide

Yacay rate, which after being divided by group velocity gives the propagation
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Figure 2.8: Boundary conditions for the FDTD calculation of photonic crystal waveg-
uide modes. °

loss of waveguide modes.

- As mentioned at the end of Sec. 2.3.1, for any waveguide mode with effective Q
factor Qeyy, it has a frequency uncertainty of the order of ©/2Q).ss. This may become
the dominant contribution to the frequency errors in our FDTD analysis, especially

when Q). is not very large.

2.3.3 Sources in FDTD Simulations and Their Applications

All the applications of FDTD algorithms discussed so far can be characterized as “pas-

sive” simulations, since there is no radiation source within the FDTD computational

domain. For many applications such as microwave antenna design, it is necessary to

include some radiation sources into the FDTD simulations. In this section, we intro-

duce two types of FDTD radiation sources: the point dipole source, and the Huygens
source.

" The simplest radiation source in FDTD analysis is a point dipole source, which
can be included in Maxwell equations simply by adding an additional dipole term P
as [41, 42]

—— =-VxE, (2.92)
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S H-= 9.93
o VX ot (2.93)
with P defined as
P = d(t)ds(7 — 7) , | (2.94)

where d({) and d are, respectively, the magnitude and the polarization of the oscil-
lating dipole. In translating Eq. (2.93) into the finite difference form, we basically
follow the same steps outlined in Sec. 2.1. The only difference is that the 4-function
in Eq. (2.94) is approximated by a dipole source with uniform distribution in a unit
FDTD cell. The components of the dipole vector is allocated in the same as those
of the electric field. For example, for a z-polarized dipole located at the (4, j, k)th
FDTD cell, ouly °(i, j, k + %) is non-zcro: all P, PP, and other I, are zero.

It is well known that spontancous emission characteristics can be dramatically
modified by complicated dielectric structures such as photouic crystals [12] or high Q
cavities [43]. As shown by us in Ref. [39] and [41], the modification of spontaneous
emission can be modeled using FDTD simulations with point dipole sources. Take
the spontaneous emission rate for example. For a light source placed at the position
7o of an arbitrary dielectric structure. its spontancous emission rate modification is
related to radiation power of a classical dipole, placed at the same position in the

same dielectric structure [41]:
1‘mod . ]jmod
- ?
rfree Pf'ree

(2.95)

where I'ypoq and I g represent, respectively, the spontaneous emission rate in the
dielectric structure and that in free space, whereas P,,,q and Pp... correspond to.
respectively, the classical dipole emission power in the same diclectric structure and
that in free space. This algorithm has been used to simulate spontancous emission
modification in dielectric slab waveguides [41], microdisk cavities [42], and triangular
lattice photonic crystal slabs 44].

Another very useful radiation source in FDTD simulations is the Huygens source
[45, 46]. More specifically, suppose we know that at a given Huygens surface S, the

field distribution of an optical mode is given by E™¢ and H"¢. We can introduce an
g 3
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Huygens Surface

Figure 2.9: Huygens Source that excites the TE mode of an infinite dielectric slab
waveguide.

electric surface current J™¢ and a magnetic surface current M** (Huygens source)

at the surface S, which are defined as

e = g x (2.96)

M = —jig x Ee (2.97)

where 7ig is a unit vector normal to the surface S and points towards one side of the

surface S. With this Huygens source, Maxwell equations become

. 0H .
= —— — M"* 2.98
VxE 5 , ( )
- E
VxH= Eaa—t + Jine (2.99)

In Ref. [45] and [46], it was shown that the Huygens source as defined in Eq. (2.96)
and Eq. (2.97) excites the desired optical mode at one side of the Huygens surface 3,

whereas it does not excite any electromagnetic field at the other side of the surface -

S.
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As an example, we describe in detail how to construct a Huygens source that
excites a TE mode in an infinite dielectric slab waveguide. As shown in Fig. 2.9, the
- slab waveguide is infinite in the z and z direcﬁon. We assume the Waveguide mode
_propagates along the positive z direction with propagation constant 3 and is uniform
in z direction, which enables us to suppress the z dimension and consider only the z
and y dimension. We assume that the Huygens source is located within the FDTD
cells with ¢ = 4y and the vector 7ig in Eq. (2.96) and Eq. (2.97) is simply &,. Since
we consider only TE modes, with E™™¢ = E;”C = H"¢ = (), from Eq. (2.96) and Eq.
(2.97) we can write

Jine = Jineg, (2.100)
Mme = Mi™g, . (2.101)

Consequently, we only need to consider the y component of Eq. (2.98) and z compo-
nent of Eq. (2.99), while the rest of the FDTD equations are the same as those for
Maxwell equations without Huygens source. In the finite difference form, y compo-

nent of Eq. (2.98) and z component of Eq. (2.99) become:

E7(io +1,7) — EZ (i, 7) (2.102)
Lo ontl 1 nt 1 niner 1
= g [H o+ 5) = Iy o+ 5 0)] + Mylio + 5.0)
R R | T | nel 1 ntd o1
He 2 (o, 7 = 5) — He ?(io, j + 5) +Hy+“(10 + 5;]) — Hy *(io — 57])
= il”’t—]l (B2 (o, ) — E2(io, )] + J2 77" (0o, ) - (2.103)

We require that the electromagnetic fields to the left of the Huygens surface are
zero, while the fields to the right of the Huygens surface take the values of the prop-
agating TE mode. Therefore, in Eq. (2.102) E7 (iy, j) equals zero, whereas the rest of

the field components take the values of the TE mode components at the particular
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FDTD grid point:

B} (i +1, ) | (2104
1 n+3,TE . 1 n—+TE . I nyinc( ; L.
=l ) BT o g )]+ Ml 5,

where the field quantities with superscript T'E refer to those of the TE modes. On
the other hand, without the Huygens source, Eq. (2.102) still holds if we substitute
all the field quantities with the values of the propagating TE modes:

n . . n . . 1 n l, . 1 n—l,TE . 1 .
BT io +1, ) = B0, 5) = < [HY ™ i+ 5) = BT o+ 5,4)] (2.105)

Comparing Eq. (2.104) with Eq. (2.105), we find

N 1 . " o
M + 5,]) = E™TE(iy, 7). (2.106)

Similarly, by requiring the field components to the left of the Huygens source to
1
be zero, we find that in Eq. (2.103) all components except H;+2’TE(Z'0 + 1,7) and

ntline,. .
J: 2" (g, J) are zero:

+1 7 . . n l, . 1 .
;+2’nc(207j) = Hy+2TE(ZO+ 57])7 (2107)

1
where it is understood that H£+2’TE(i0 + %,J) takes the value of H, component of
the TE mode at point (ig + 3, 7).

For the TE mode of the dielectric slab, we can write its field distribution as
Hy(x,y,t) = b, " (y) sin(wt — fz) (2.108)

E.(z,y,1) = el®(y)sin(wt — ) , (2.109)

where w andﬂ represent, respectively, the frequency and the propagation constant of
the TE mode, while the exact form of h]” and el” can be found from the standard

text book on optoelectronics [28]. Here it suffices to notice that they have only y
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dependence. Combining Eq. (2.106) and Eq. (2.109), we find

M (i + —2—,3) = el'F(j)sin [umAt - ﬁzo] : (2.110)

Similarly, from Eq. (2.107) and Eq. (2.108), we find

?+§,mc(i07j) = th(]) sin [w(n + %)At —'ﬂ(io + %)] . (2.111)

Huygens Source

Figure 2.10: Huygens source.

In Fig. 2.10, we show the F, field of the fundamental TE slab mode excited
by a Huygens source according to Eq. (2.110) and Eq. (2.111). As seen from Fig.
2.10, the Huygens source produces the fundamental TE mode that exists only to
- the right of the Huygens surface. We have used such Huygens source to investigate
“the coupling between a dielectric slab waveguide and an air-core photonic crystal
Waveguide, and also the coupling between a dielectric slab waveguide [47] and a

dielectric-core photonic érystal waveguide [25].
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Chapter 3

Coupled Resonator Optical
Waveguide (CROW)

3.1 Introduction

Two mechanisms have been proposed and used in the past for optical waveguiding
[28]. The most widely used is the waveguiding by total internal reflection, as illus-
trated in Fig. (3.1a). Another mechanism-- “Bragg waveguiding,” where waveguiding
is achieved through Bragg reflection from a periodic structure, has also been demon-
strated 19]. Fig. (3.1b) illustrate an example of Bragg reflection provided by a periodic
Bragg stack.

There cxists, however, a third approach in photon guiding [48, 49]. Fig. (3.1¢)
shows such a possibility: a waveguide based on the evanescent field coupling between
the high Q whispering gallery modes of the individual microdisk cavities [50, 51].
| Another possible realization is shown in Fig. (3.1d), where the individual resonators
consist of the “defect” cavities [52, 53] embedded in a 2D triangular lattice photonic
crystal. These defect resonators are designed such that their resonant frequency falls
within the “forbidden gap” of the surrounding 2D structure which enables high Q

optical modes. The coupling in this case is due to the evanescent Bloch waves. In
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-Figure 3.1: Three types of waveguiding: a) the waveguiding by total internal reflection
at the interface between the high index medium and low index medium. b) the
“Bragg waveguiding” achieved by reflection from the periodic Bragg stacks. c¢) the
coupled resonators optical waveguide—CROW, with waveguiding due to the coupling
between the individual microdisks. R is the size of a unit cell and e, is the direction
of the periodicity for the coupled resonators. d) the CROW realized by coupling the
individual defect cavities in a 2D photonic crystal.
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both realizations of CROW, we assume a sufficiently large separation between the
individual resonators so that the resonators are “weakly” coupled. Consequently,
we expect the eigenmode of the electromagnetic field in such a coupled resonator
waveguide should remain essentially the same as the high Q mode in a single resonator.
Yet at the same time the coupling between the individual high () modes must be
taken into account to explain the transmission of the clectromagnetic waves. This is
exactly the optical analog of the tight-binding limit in condensed maiter physics [26],
in which the overlap of atomic wavefunctions is large enough to require corrections
to the picture of isolated atoms. vet at the same time not large cnough to render the
atomic description completely irrelevant. The individual resonators in CROW are
the optical counterpart of the isolated atoms, and the high Q mode in the resonators
corresponds to the atomic wavefunction. As a result, many features of the tight-
binding theory in solids remain the same in the coupled resonators waveguide. We
call such waveguide the coupled resonators optical waveguide (CROW) [48, 49]. Some
special cases of coupled resonators have also been studied in the literature, such as
photonic molecules [54, 55, 56}, and the “impurity band” in an infinite chain of spheres
with negative dielectric constant [57].

In both realizations of CROW, we assume a sufficiently large separation between
the high Q resonators so that the photons are “tightly confined” within each individ-
ual resonator and can only propagate by “hopping” from one resonator to its nearest
neighbor. Under this circumstance, we can use the tight binding approach to study
the waveguide mode in CROW’s. Using this approximation, we show two important
properties of CROW’s [48]. First, the waveguide modes of CROW remain essentially
the same as those of the high Q modes in a single resonator and have the same svm-
metry characteristics. This unique property can be utilized o construct reflectionless
- bends [48] and as well as CROW intersections without cross-talk [49]. Second, the
dispersion relation of CROWs is greatly different from that of conventional dielectric
waveguides. In a weakly coupled CROW, the optical waves are dramatically slowed
down, a property which can be used to enhance the efficiency of nonlinear optical

processes [48]. Take the second harmonic gencration (SHG) process for example. In
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photonic crystals, it has been shown that the second harmonic field can be enhanced
at the band edge of the photonic crystals, where the group velocity tends to zero 158]-
[61]. In the casc of defect cavities, the enhancement of SHG efficiency is achieved as a
result of the large optical field amplitude of the localized defect cavity modes [62]-[64].
Both the two properties, the low group velocity and large optical field amplitude, can

be simultancously achieved in CROW.

3.2 Tight Binding Analysis of CROW

3.2.1 Non-degenerate CROW Band

We first study the case where the isolated resonator supports only a single high
Q mode. In the spirit of the tight-binding approximation. we take the eigenmode
Ex(r, i) of a coupled resonator waveguide as a linear combination of the high Q
modes Eq(r) of the individual resonators along a straight line parallel to e, axis (see
Fig. 3.1). Denoting the coordinate of the center of the nth resonator as © = nRR, we
have

E(r,t) = Ae™rt Z e MERE G (r — nRRe,) . (3.1)

[t is straightforward to show that the waveguide mode Eg(r,#) satisfies the Bloch
theorem. Consequently, we can limit the Bloch vector K to the tirst Brillouin zone,
le., —-m/R< K <z/R.

? /

Ex(r.t) satisfies Maxwell equations, which lead to (in Gaussian units)

2
[ N
K ‘
V x [V X EK] = f(r)‘(E—E[\’ . (32)
where €(r) is the dielectric constant of the system (of coupled resonators) and wy is the
eigenfrequency of the waveguide mode. Similarly, £q(r) satisfies the same equation,

but with €(r) replaced by €(r), the dielectric constant of the single resonator:

! Q?
Vx|[VxE&k= 60(1')—2—81; . (3.3)
-
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In the case of high Q modes, we can take £q(r) to be real and normalize it to unity
according to [ drey(r)€g - En = 1.
After substituting Eq. (3.1) into Eq. (3.2), multiplying both sides from left by
Ea(r) and spatially integrating, we find the dispersion relation for the waveguide

mode Eg(r,t) to be

[J + Zn',t'(] € irLK'R[j)TL:;

wi = O? T A 5 ek (3.4)
where «,,, 3, and A« arc defined as
o = / d're(r)q(r) - Eo(r —nRe,) n#0, (3.5)
8" = / d'reg(r — nRe,)Ey(r) - Ealr —nRe,) n#0, (3.6)
Ao = / d’rie(r) — eo(r)]Ealr) - En(r) . (3.7)

If the coupling between the resonators is sufficiently weak, we can keep only the
nearest neighbor coupling, ie.. o = 0 ,8" = 0 if n # 1,—1. Irom symmetry
considerations, we also require o' = a~! and 3' = 8 . Finally we assume «', /3

and Ao to be small. Putting all these observations together, we simplify Eq. (3.4) to
wr =1 — % + kcos(KR)}, (3.8)

where we define the coupling factor x as
k=8 —al = / d*rleo(r — Re,) — e(r — Re,)|Ea(r) - Ealr — Re.) . (3.9)

This dispersion relation defines a photonic band formed by the coupling of the high @
modes in the individual resonators, which can be denoted as the CROW band. From
Eq. (3.8), the group velocity is found to be

du)]\'

vy () = Fida —QRksin(KR) , (3.10)
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which can be quite small for weakly coupled CROW. Notice that both the dispersion

and the group velocity are only characterized by k.

3.2.2 Degenerate CROW Band

If the single high Q optical resonator supports multiple modes. the /th cigenmode

Ei(r) satisties (in Gaussian units)

V x [V x &(r)] = colr)—LE () (3.11)

where 2, is the eigenfrequency of the /th mode, and ¢o(r) represents the dielectric

constant of the single resonator. The cigenmodes & (r) are also orthonormal:

[ dr co(x) E1(x) - ) = B (3.12)

where as in the previous section we take the QQ factors of the resonator modes to be
very high and assume the mode function £(r) to be real.

As in the non-degenerate case, we take the waveguide mode Ey (r, t) of the CROW
as a lincar combination of the high Q modes & (r) within the individual resonators

along the e, axis, which gives us

Er(r,t) = Ae™<' Y e ™6 (r — nRe,) . (3.13)

n,l

After substituting Eq. (3.13) into Eq. (3.2). multiplying both sides from left by &,,(r)
and spatially infegrating, we find the following eigenequation for the mode expansion

cocllicient b,

Z byS% [Ons + Z e ikl ] = Wi Zbl (St + Aevmy + Z ¢ ik Raﬁ%l] . (3.14)
!

{ nF£0 n#0

where o, ;, 3, and Adqy,; are defined as

Uy = / dre(r)&,, (r) - E(r —nRe,) n#0, (3.15)
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By = /dreo r —nRe )&y (r) E(r—nRey) n#0, (3.16)
Adty) = / drfe(r) — eo(r))Em(r) - E(x) . (3.17)

If the coupling between the resonators is sufficiently weak, we can keep only the
nearest neighbor coupling. which means oy, , = 47, = 0 if n # =1. Trom symmetry

I¥)

considerations, we also require o, =« and / L

el = Putting these observations

together, Eq. (3.14) becomes

Zblszl (6,0 + 281, cos(K R)] :w,‘Zb, Ot + Nagny + 20, cos(KR) . (3.18)

Generally, if the single resonator has N degenerate or nearly degenerate high Q modes
E(r), with I = 1,---, N, we need to diagonalize the N x N matrix of Eq. (3.18) to
find the dispersion relations of the CROW. The result generally depends on all the

parameters o, , /

3n,,_lo:ml, with m,l=1,---.N.

However, if a single resonator possesses certain symietries, the solution is usually
much simpler. For example, the individual microdisks and defect cavities shown in
Fig. 3.1 cach possess a mirror reflection symmetry with respect to the y = 0 plane.
Therefore, the single resonator modes can be classified according to the parity P of
this mirror reflection symmetry, as defined in Eq. (2.33) to Eq. (2.38) of Sec. 2.2.2.
The parity I of the cigenmode can take the value of £1. The modes with P =1 and
P = —1 shall be called respectively the even modes and the odd modes.

It has been shown that the high Q modes in both the microdisk cavity and the
single defect cavity are doubly degenerate and have opposite parity [50, 65!. Conse-
quently, for the CROW's in Fig. 3.1, we can limit the mode expansion of Eq. (3.13)
to the subspace spanned by these two degenerate modes &(r) with { = £1. where the
subscript [ refers to the parity of the mode and can only take the value of £1. The de-
generacy of the two modes gives (; = () for [ = £1. The symmetry of the modes also
leads to oy, ;, By, ;. Auey = 0. if m # [, which is obvious from Eq. (3.15) to (3.17).

To further simplify Eq. (3.18), we also assume the frequency difference between wy

and € to be small. Finally, the dispersion relations for the coupled resonator modes
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are found to be

A
whe = Q{1 - il

+ kycos(KR)} (3.19)

where [ denotes the parity of the mode and the coupling coefficients x; are defined as
Ky = ﬁll’l — all’l = /dr[eo(r — Re,) — ¢(r — Re,)]&(r) - &(r — Rey) . (3.20)

For a given parity [, this dispersion relation defines a CROW band with the same
parity as that of the single resonator mode. Therefore, they can also be denoted as
the even band and the odd band according to their parity.
From Eq. (3.19), the group velocity is found to be
v (K) = d—wlfl = —QRk;sin(KR) , (3.21)
dK
which can be made small by reducing the coupling coefficient x;. It is also interesting
to observe that the dispersion and the group velocity of the two CROW bands, given in
Eq. (3.19) and Eq. (3.21), are exactly the same as the results of the non-degenerate
analysis. This is directly due to the fact that the two degenerate single resonator

modes have opposite parity and cannot couple to each other.

3.3 Coupled Defect Cavity Waveguide

For the numerical calculations in this chapter, we consider only 2D structures, which
can give a good approximation of the original 3D problem if an appropriate effective
refractive index is used [67]. Here we use an effective refractive index n = 2.65
for the dielectric medium to simulate a half-wavelength-thick slab waveguide with
refractive index n = 3.4 [65]. A major advantage of this 2D approximation is that
it speeds up the numerical simulations and renders them more memory efficient. We
use the 2D FDTD algorithm as described in Sec. 2.1.1, and choose 3 = 0. Under
this condition, the eléctromagnetic modes can be classified into TE modes and TM

modes [11]. The TE modes consist of only E,, E,, H. components, and TM modes
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have only E., H,, H, components. In our FDTD analysis, we shall restrict ourselves
to the TE modes, which can be achieved by using an initial field whose only non-zero
component is the H, component. ,

In this section, we use the 2D FDTD algorithm to analyze both the single defect
cavity mode in a triangular lattice photonic crystal and the CROW band formed from
such coupled defect cavities. Due to the mirror réﬂection symmetry, we can reduce the
FDTD compufational domain as that shown in Fig. 3.2. The 2D single defect cavity,
formed by “plugging” an air hole from the 2D triangular lattice photonic crystal, is
illustrated in Fig. (3.2a). The properties of this 2D triangular lattice photonic crystal
are determined by the ratio of r/a, where r is the radius of the air hole and a is
the inter-hole distance. In all the calculations of this section, we choose a = 15,
r/a = 0.3 and use a/A as the unit for frequency. Notice that here we use Mur
absorbing boundary condition [66].

The 2D photonic crystal with r/a = 0.3 has a bandgap for TE modes in the
frequency range of a/A from 0.28 to 0.35 [65]. Within this TE bandgap, the single
defect cavity can support two degenerate high Q modes. Classified according to the
mirror reflection symmetry, the two modes possess opposite parities with respect to
the lower y boundary in Fig. (3.2a). The mode with P = 1 is called the even defect
mode and that with P = —1 is called the odd defect mode. These two modes are
numerically calculated and the results are shown in Fig. 3.3. The field distribution in
Fig. 3.3 is that of the H, component. (In fact, all the figures of mode spatial profile
in this chapter show the H, component.) However, since the H field transforms like
a pseudo-vector under mirror reflection, the H, field of the even defect mode actually
is antisymmetric with respect to the lower y boundary, as in Fig. (3.3a). For the
same reason, the H, field of the odd defect mode is actually symmetric with respect
to the lower y boundary. The frequency and the ) factor of the even mode are
respectively 0.301 and 840, while the frequency and the Q factor of the odd mode
are 0.310 and 780. The degeneracy of the two modes is broken due to the fact
that the air holes in the numerical simulation are not ideally circular. It should be

emphasized that this degeneracy splitting has no significant influence on the CROW
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Mur Absorbing Boundary

x Mirror Boundary Defect Cavity

(2)

PML Absorbing Boundary

x=0 /

Bloch Boundary| .

x=R
Bloch Boundary

Mirror Boundary Defect Cavity

(b)

Figure 3.2: The FDTD computational domain. a) For a single defect cavity in a 2D
photonic crystal. Mirror boundary condition is used at the bottom y boundary. For
other three boundaries, the first order Mur absorbing boundary is used. b) For the
'CROW composed of coupled defect cavities with 4 air holes in between. The PML
absorbing boundary condition and the mirror boundary condition are respectively
used for the top and bottom y boundaries. At both of the z boundaries, x = 0 and
z = R, the Bloch boundary condition is used.
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(a) even mode (b) odd mode

Figure 3.3: T he single defect cavity modes. (a) The even-defect mode. (b) The odd
defect mode.

mode characteristics, -since the two defect cavity modes still possess opposite parity
and remains orthonormal to each other. As clear from the analysis leading to Eq.
(3.19), each of the two CROW bands remains independent of each other and can still
be characterized by a single coupling coefficient «;.

Using the 2D FDTD algorithm, three cases are studied for the defect cavity
CROW, with the spacings between the adjacent defect cavities being 2, 3 and 4
holes respectively. In Fig. (3.2b), we sketch the FDTD computational domain for the
CROW with inter-cavity spacing of 4 air holes. To map out the CROW band, we
increase the Bloch vector K from 0 to m/R with an increment of 0.17/R. Due to
symmetry considerations, the CROW bands are symmetric with respect to the K =0
axis. Therefore, it is sufficient for us to concentrate on the half with K > 0.

First We consider the even CROW bands. In Fig. 3.4, we show two waveguide
modes with inter-cavity spacing of 2 and 4 air holes and K = 0.6x7/R. Comparing
Fig. 3.4 with Fig. (3.3a), we clearly see that the waveguide modes in CROW closely
resemble the single resonator mode. As expected from the tight binding analysis, this
similarity is not restricted to this particular K value and holds through the whole
CROW bands.

| The dispersion curves for the even CROW bands are shown in Fig. 3.5. Using the
least square method [68], we fit the calculated frequency versus K to Eq. (3.19) and
obtain three coupling coefficients «;. For the inter-cavity spacing of 2, 3 and 4 holes,
k1 is respectively 5.6 x 1073, —1.4 x 107® and —2.9 x 10™*. It is obvious from Fig.

3.5 that the coupling coeflicient decreases with the inter-cavity distance and changes
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(a) (b)

Figure 3.4: The even CROW modes with (a) 2 inter-cavity hole spacing and (b) 4
inter-cavity hole spacing. The Bloch vector K of both modes is K = 0.67/R.
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Figure 3.5: The dispersion of the even defect cavity CROW band. The symbols
represent the results calculated from FDTD algorithm using different values of inter-

cavity hole spacing. The solid lines are the least square fits of the numerical results
using Eq. (3.19).
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sign for the CROW band with 3 holes spacing. Such results can be understood as
follows. From Eq. (3.20), we know the coupling coefficient is an overlap integral of
two single defect cavity modes with a distance of R in between. Since the evanescent
field of the single resonator mode decay oscillatorily, this overlap integral will also
decrease oscillatorily as a function of I2. The effective  of the even CROW band is
also calculated and found to be close to the value of 1500 through the CROW bands.

Next we analvze the odd CROW band, and as before, use three different inter-
cavity spacings: 2 holes, 3 holes and 4 holes. In Fig. 3.6, we show the waveguide
modes with A = 0.67/R and 3 air holes spacing. This CROW mode is qualitatively
the same as the odd defect mode in Fig. 3.3b. As before, this similarity holds through
the whole CROW bands.

The dispersion relations of the odd CROW modes are shown in Fig. 3.7. The
numerical calculated mode frequency as a function of A is then fitted into Eq. (3.19),
using least square method. From this fitting, the coupling coefficients x_; are found
to be respectively 1.24 x 1072, 4.5 x 1072 and 1.7 x 1073 for spacings of 2, 3 and 4
holes. Again as expected, the coupling decreases as the inter-cavity spacing increases.
It should also be noticed that the coupling cocfficients of the odd CROW modes are
larger than that of the even CROW modes with the same hole spacing. This is due
to the fact that the even defect mode radiates stronger along the e, direction than
the e, direction, while the opposite holds true for the odd defect mode, as can be
seen from Fig. 3.3. Another consequence of this fact is that the effective Q of the odd
CROW muodes should be much larger than the corresponding even CROW modes,
which is also confirmed by our numerical calculations and obvious by comparing Fig.
3.4 and Fig. 3.6. In fact, all the Q. of the odd CROW modes are found to be larger
than 10°. Unfortunately, these results are only qualitatively correct, since a precise
calculation of Q factor requires the time evolution of order of QQ optical periods. which
is impractical for Q factors large as those.

We also calculate the coupling coefficient using the overlap integral in Eq. (3.20).
We choose the ¢(r) to be a single defect cavity surrounded by 5 layers of air holes

in the e, direction and 9 layers of air holes in the e, direction. Then we calculate
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Figure 3.6: The odd defect cavity CROW mode with 3 inter-cavity hole spacing and
Bloch vector K = 0.67/R.
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Figure 3.7: The dispersion of the odd defect cavity CROW band of coupled defect
cavities. The symbols represent the results calculated from FDTD algorithm using
different values of inter-cavity hole spacing. The solid lines are the least square fits
of the numerical results using Eq. (3.19).
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Coupling Coefficient k1(x1073) k_1(x1073)
Hole Number 2 3 4 2 3 4
Fitting Results 5.6 -1.4 -0.29 || 124 4.5 1.7
Integral Results | 5.4 -1.3 017 | 7.3 0.70° -0.90

Table 3.1: The coupling coefficient x; of the coupled defect cavities. The hole number
refers to the numbers of air holes between the adjacent defect cavities. The fitting
results are obtained from fitting the FDTD dispersion results using using Eq. (3.19).
The integral results are obtained from the overlap integral in Eq. (3.20).

the even and odd defect modes of such a single defect cavity and use them to obtain
k1 and K_1. They are shown in Tab. 3.1 as theoretical results, together with the
coupling coefficients from least square fitting. The results for relatively large s
agrees well with those obtained from least square fitting. However, the deviation is
larger for k_,. For both x; and x_1, as the coupling between the individual resonators
becomes weaker, the discrepancy between the tight binding results and the FDTD
results is more pronounced. The difference between these two results, we believe,
is likely caused by the fact that we assume the single resonator mode &/(r) to be a
real function (see Eq. (3.12)), which only holds when the loss of the cavity mode can
be ignored. However, as the distance between the neighboring resonators becomes
larger, the mode radiation loss, even though relatively small, will introduce a phase
shift to the electromagnetic field that can no longer be ignored. This fact also helps
to explain why the tight binding results for x; agree better with the FDTD results
than in the case of k_;. Previously, we have shown that the even defect cavity mode
radiates primarily along the e, direction; therefore, the phase shift in the e, direction
is relatively small. On the other hand, the odd cavity mode radiates more strongly
along the e, direction, which inevitably introduces a larger phase shift. In this case,
assuming the mode function to be real causes larger deviations between the tight

binding results and the FDTD results.
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3.4 Coupled Microdisk Waveguide

- It is well known that a dielectric microdisk cavity can support high Q whispering
gallery modes, which can be classified according to their polarization (TE or TM),
their azimuthal mode number m and their radial mode number [ [50, 51]. A TE
whispering gallery mode T'E(m, 1) has 2m nodes in the azimuthal direction and [ — 1
nodes in the radial direction. It is also doubly degenerate and can be classified into
an even or odd mode according to its mirror reflection S)vfmmetry‘ By coupling the
microdisks together as in Fig. (3.1b), we can form the even and odd CROW bands
from such whispering gallery modes. In this section, we study the CROW bands
formed by the TE(7,1) whispering gallery modes.

In these calculations, we choose the radius r of the microdisk to be 30 FDTD cells
and use three parameters for the inter-microdisk spacing R, which is normalized as
R/2r and takes the value of R/2r = 1.1,1.17 and 1.23. r/X is used as the unit of
frequency.

The TE(7,1) even mode and odd mode of a single microdisk are shown in Fig.
3.8. The frequency and Q factor of the even TE(7,1) mode are found to be 0.645
and 1500. For the odd TE(7,1) mode, the frequency and the Q factor are 0.639 and
1200 respectively. The degeneracy of the two TE(7,1) modes is broken, due to the
deviation of the dielectric microdisk from an ideal circular shape in our 2D simulation.
As in the case of photonic crystal defect cavities, such degeneracy splitting will not
cause significant change on the dispersion and mode characteristics of the CROW
band, since the even and odd CROW modes remain orthonormal to each other.

The even CROW bands are calculated for three microdisk spacing parameter
R/2r. Shown in Fig. 3.9 is the mode profile of a waveguide mode with R/2r = 1.1
‘and K = 0.57/R. It is qualitatively the same as that of the even TE(7,1) mode in
Fig. (3.8a). This suggests that the tight binding approximation is still valid, even for
the close distance between the microdisks.

The CROW loss can be characterized by its effective Q, as defined in Sec. 2.3.2.
We find that the effective Q factors of the even CROW bands depend strongly on
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(a)

(b)

Figure 3.8: The TE(7,1) whispering gallery modes in a single microdisk cavity. The
even mode is shown in a) and the odd mode is shown in (b).

Figure 3.9: The even microdisk CROW mode formed by coupling the even TE(7,1)
modes together. We use R/2r = 1.1 and K = 0.57/R.
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Figure 3.10: The effective Q factors of the even microdisk CROW modes with R/2r =
1.17.

the Bloch vector K. The Q.ss(K) of the CROW band with R/2r = 1.17 is shown in
Fig. 3.10 as a function of K. The fact that effective Q depends on K is not surprising
and can be explained intuitively. The T'E(m,[) mode has an azimuthal dependence
of €™ [50], which means that its radiation loss has similar angular dependence. As
K, the Bloch vector of the CROW modes varies, the radiation field from different
individual resonators interferes constructively or destructively with each other, which
consequently causes the radiation loss of the CROW modes to increase or decrease
and deviate from that of the single microdisk resonator.
The dispersion relations for the “even” CROW modes with three different values
of R/2r are shown in Fig. 3.11. The error bars in Fig. 3.11 refer to the frequency
: uncertainty due to the radiation decay of the CROW modes, which is estimated to
be wg/2Qess as in section 2.1.1. Within the limit of these frequency errors, the
numerical data agree well with the tight-binding results.
These frequency errors are also taken into account when we fit the numerical

results into Eq. (3.19) using the least-square method. We no longer treat the numeri-
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Figure 3.11: The dispersion of the even microdisk CROW band. The FDTD results
are represented by asterisks. The error bars refer to the frequency error caused by the
finite decay rate of the CROW modes and are estimated to be w/2Q.ss. The solid
lines are the least square fits of the numerical results using Eq. 3.19. The dispersion
diagrams for R/2r = 1.1, 1,17 and 1.23 are shown respectively in a), b) and c).
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cally calculated mode frequencies equally and weigh them by the frequency deviation
of wi/2Q.rs. The coupling coefficient x; obtained from this fitting are respectively
—4.5x 1073, -2.5x 1072 and ~1.3% 1073 for ‘diﬁ’erent values of R/2r =1.1,1.17 and

- 1.23. As expected, k; decreases as the inter-microdisk spacing increases.

Figure 3.12: The odd microdisk CROW mode formed by coupling the odd TE(7,1)
modes together. We use R/2r = 1.1 and K = 0.57/R.

The odd CROW bands are also calculated using the same set of values for R/2r.
The CROW mode shown in Fig. 3.12 is calculated with R/2r = 1.1 and K = 0.57/R,
and as before, is similar to the odd TE(7,1) mode shown in Fig. (3.8b). The odd
CROW bands are shown in Fig. 3.13 for R/2r = 1.1,1.17 and 1.23. Again after
considering the frequency deviation due to the decay of CROW modes, the numerical
results agree well with the theoretical fits. The results for x_; obtained from the
theoretical fitting are respectively 4.8 x 1073,2.9 x 1072 and 1.4 x 1072 for R/2r =
1.1,1.17 and 1.23.

In the case of coupled microdisks, it is difficult to calculate the coupling coefficient
using the overlap integral in Eq. (320) One reason is that the electromagnetic field
outside the microdisk depends strongly on the boundary conditions of the computa-
tional domain, especially in the regions far from the microdisk. This is quite different
from the case of the defect cavity in 2D photonic crystal, where the photonic crystal

can effectively block much of the influence of the absorbing boundaries. Another
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Figure 3.13: The dispersion of the odd microdisk CROW band. The FDTD results
are represented by asterisks. The error bars refer to the frequency error caused by the
finite decay rate of the CROW modes and are estimated to be w/2Q.¢r. The solid
lines are the least square fits using Eq. (3.19). The dispersion diagrams for R/2r =
1.1, 1,17 and 1.23 are shown respectively in (a), (b) and (c).
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reason is that the electromagnetic field does not decay exponentially away from the

microdisk, and therefore creates a normalization problem.

3.5 Second Harmonic Generation in CROW

An important application envisaged for CROW is nonlinear optics [48]. In CROW’s,
the propagating power flux P is proportional to the group velocity of the CROW

band [48]
1

Poc —
OC87TR

v, 4l Al (3.22)

where A is the amplitude of the CROW mode as defined in Eq. (3.1) and Eq. (3.13).
Consequently, the small group velocity of the CROW band can result in a large optical
field with only modest amount of power flux. Since the efficiency of nonlinear optical
processes is proportional to some power of the electric field strength [69], it is possible
to use the CROW band to greatly enhance the efficiency of these processes. Here we
shall analyze in detail the second harmonic generation (SHG) process in CROW. This
analysis, however, is not limited by the tight binding approximation of CROW and
in principle can be applied to any dielectric structures with one-dimensional discrete
translational symmetry.

Using the Bloch theorem, we can express the waveguide mode of a CROW in
terms of a periodic Bloch wavefunction. Assume that the waveguide is periodic in z
direction with a spatial period of R (see Fig. 3.1 for example); the waveguide mode

Ek(r,t) can be written as
Ex(r,t) = el TotiwltgmiKerry  (p) (3.23)

- where the Bloch wavefunction ug (r) is periodic: ug(r+ Re,) = uk(r) and normalized

within a unit cell:
/ dr e(r)uj(r) - ug(r)=1. (3.24)

The frequency and the decay rate of this mode are represented by w and T',, respec-
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tively.
The waveguide mode Eg (r,t) satisfies
47 8EK E(I') 82EK

V x [VXEK]+C—QO’(I') gy :——*—CQ—EQ— y : (325)

where o(r) is introduced to account for the radiation loss of the waveguide mode.
By substituting Eq. (3.23) into Eq. (3.25), we can separate the above wave equation
into an imaginary part and a real part. From the imaginary part, we can derive an

expression for the mode decay rate ',
T, =2r / dr o (t)w (1) - ug(r) . (3.26)

From the real part, an eigenequation for the Bloch wavefunction ug is found:

2

Hicup(t) = —e(r)ug(r) (3.27)

62
Hrug = VX[V xug]|—iK{V x[e, x ux]+e, x[Vxug]}—K?e, x[e, xug] . (3.28)

It can be easily shown that Hj is a Hermitian operator. The derivative of the

normalization relation Eq. (3.24) gives

du’ du
/ dr ()| 75 - ug + g - S = 0. (3.29)

The derivative of w?/c? can also be found from Eq. (3.27) to be

- K
duh+u* H(K)

d sw? dui, ; . .
"—(E):/u.c.dr[ H(E)u - HK) e+ we — o

T e ug|. (3.30)

" Using Eq. (3.29) and the fact that H(K) is a Hermitian operator, this equation is

reduced to

d jw? . MH(K)
K (g) = v dr Up '—d}(—u}( . (331)
In fact, this result is a direct generalization of the Hellman-Feynman theorem [70].

Substituting Eq. (3.28) into Eq. (3.31), we find an expression for the group velocity
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U, at frequency w:

(,2

(3 - -———)
wg 2w Ju.c

dr uj.-{—2Ne, x [e, xuy]—ie, x [Vxur]—iV x[e; xug|} . (3.32)

Having found the mode decay rate in Eq. (3.26) and the group velocity in Eq.
(3.32), we can proceed to analyze the second harmonic generation in CROW. First
let us limit our consideration to an electromagnetic field with three components: two

fundamental frequency modes E (r.¢), E(r,?) and a second harmonic mode Es(r, t)
E _ 1 E Jdwt  —i K (w)e PR 3.33
W(r, 1) = 5{ ete Uk, (1) + (,.(,.} : (3.33)

E] (I', t) — ;{E] elwte—zhz(w)luKz(w) (r) + C.(,‘.} s (334)

Eo(r,t) = S{Eo(:ﬂ)e“‘“"e DT 1 ) (1) + (:».(.-,.} . (3.35)

For simplicity, we assume that the two fundamental frequency modes have the same
amplitude £ throughout the region of second harmonic generation (undepleted pump)
[69] and also require the amplitude of the second harmonic mode Ey(x) to be a slowly
varying function.

1

The second harmonic mode is generated according to the following equation [69!

ar  OE, ¢(r) O*E: 1 0 )
V % [v X EQ] + (—20'(1') afz + 2 (')fzz - —EEO_tQ—PNL(rvt) ) (‘336)

where the nonlinear polarization term Py (r, ), the source of the second harmonic
mode, is given by

P f _ 1 F‘Z 2wt J—i[]\'l(w)—i\'g(w‘)l:lrj ) N 3 t)'v)

[\"L(ra ) = 5 e € ; (,2w(r, u,‘-](w)(r)u;\rz(w) (I') +c.cop . (v RSN

The tensor d(r) represents the second order nonlinear coefficient of the diclectric

medium. Multiplying Eq. (3.36) from the left by u’;<(2w)(r) and integrating spatially

within a unit cell, after a long but straightforward derivation. we obtain an equation
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T (Y — i B2 K (w)+ Ka(w)— K (2w)]x . 3 )
T‘»—rszz(l) = —iwk] / dr e~ iHi () =K (2 Uk ow) AUE ) UK ()
axr Ju.c. :

(3.38)
where vy, 4 15 the group velocity of the second harmonic mode, and Iy, is the corre-
sponding decay rate. It is clear that F,(x) will always be small unless there exists an
integer n such that the difference of the Bloch vectors A (w)+ Ko(w)— K (2w)+n27 /R

becomes very small. In such case, the above equation is simplified as

dEy(x N
'z;zw,g—;(l) + TouEy(2) = —iwD, Efe™0Knr (3.39)
dx
- . . . 27 v
AK, = Ki(w) + Ky(w) — K(2w) + N n= 0.+1,+£2---, (3.40)
D= [ dr et ) A () . (841)

According to this equation, a large Ey is only possible under the condition of AK,, =0,

which is the phase matching condition in CROW

I

K(2w) = K, (w) — Ka(w) —I—n%, n=0,=1.42 . (3.42)

This phase matching condition in CROW is very similar to that in the bulk medium,
except the appearance of the term n27 /R [58,. This is to be expected, since only the
Bloch vector, instead of the true photon wave vector, is conserved in CROW.

Eq. (3.39) are our master equations for the analysis of second harmonic genera-
tion. As an example, we shall use them to study two cases of phase-matched second
harmonic generation configurations in CROW. Unlike the previous 2D cases, here we
consider a three-dimensional (3D) geometry as sketched in Fig. 3.14. This CROW is
still composed of defect cavities in 2D triangular lattice photonic crystal. But instead
of being infinite in the third direction, it is confined in a slab waveguide along the z
axis.

In the first case, we assume both the fundamental frequency modes propagate
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Defect Cavity

Figure 3.14: SHG in CROW. The fundamental frequency modes propagate from one
defect cavity to another along the x axis. The second harmonic mode can either
propagate in CROW along z axis or leak out of CROW along z axis.

along the positivé z direction and satisly K;(w) = Ks(w) = K(w), K(2w) = 2K (w).
The second harmonic photons also propagate along the x axis but can either be
collected along the x direction, or collected after “leaking” out along the z direction.
We call this case SHG configuration I.

Assuming the CROW begins at z = 0, we can require E5(0) = 0. From Eq. (3.39),
E,(x) is found to be

,(UE%DO
_’L_.__.—_

Ey(z) = T,

(1 — e Tzem/vag) | (3.43)

From this relation, it is obvious that the SHG process falls into two distinctive limits,
with 2 < vg,,4/['2, (the unsaturated limit) and = > g, 4/T'9, (the saturated limit)
respectively. Defining a saturation length L, = va, 4/T'2., the amplitude of the second

harmonic mode becomes

E2D

By(z) = o220 |z < L, (3.44)
C Vawg
E2D

By(z) = —iwrl 0> I, (3.45)
. 2w

In the unsaturated limit, we collect light along the z direction. In the saturated

limit, however, we let the photons “leak” through and then collect them along the z
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direction.

In the second case, the two fundamental frequency modes propagate along oppo-
site  direction, K;(w) = —Kj(w) and K(Qw)' = 0 and the second harmonic photons
are collected after “leaking” out along the z direction. We shall call this case SHG
configuration 1. Due to the undepleted pump approximation and symmetry consid-
erations, we can require Ey(z) to be a constant and obtain

WEIQDO

By = —i
? ' FQw

(3.46)

Notice that this result is the same as that of the saturated SHG configuration [.

To calculate the efficiency of the second harmonic generation in CROW, we still
need to relate the power flux to the amplitude of the waveguide mode. Recall that the
electromagnetic energy density for a waveguide mode [see Eq. (3.33) to Eq. (3.35)] is
|E|%e(r)ul (r) - ug(r)/8n. After integration, the energy stored in a unit cell is found
to be simply |E[?/87. Consequently, for the waveguide mode propagating along the
x direction, the power flux P is given by

po 1

=R |E? . (3.47)

On the other hand, for the mode leaking through the z direction, the power flux is
1 2
P=_—NT|E|, (3.48)
8T

where N is the total number of the resonators in CROW. Finally, assuming the total
length of CROW is L and combining Eq. (3.47) and Eq. (3.48) with Eq. (3.44), Eq.
(3.45), and Eq. (3.46), we can obtain the second harmonic generation efficiency nsuc¢.

For the unsaturated limit of SHG configuration I, nsp¢ is

1 2 2 2
= = Dy|“87RP,L" . 3.49
NsHG P, U?w,gvﬁ,gw | Do|"8m (3.49)

The nspg for both the Asaturated SHG configuration I and SHG configuration II
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becomes
B, 1

= = 2 Do|*’87RP,L . 3.50
NsHG P, F%Ug’gw | o\ ™ ( )

2

In the above results for nggqg, the factors 1/%79,

1/vg,,4, and 1/I'y, come directly
from the relation between group velocity and field intensity, as shown in Eq. (3.22)
at the beginning of this section. It suggests that SHG efficiency can be enhanced
by slowing down the fundamental mode, the second harmonic mode or making the
effective QQ of the second harmonic mode very high. Another interesting point is that
Nsma 18 proportional to L? in Eq. (3.49) and is only proportional to L in Eq. (3.50).
The reason is that if we collect second harmonic photons along the x axis, the phase
matching condition guarantees that the photons generated at different resonators

interfere coherently with each other. On the other hand, such phase matching cannot

be obtained along the z direction.
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Chapter 4

Scattering Theory Analysis of

Waveguide-Resonator Coupling

4.1 Introduction

The coupling between high @ optical resonators is investigated in the previous chap-
ter, with particular emphasis on the waveguiding induced by such resonator-resonator
coupling. A related and equally interesting subject is the coupling between waveguides
and resonators, which has received considerable attention in recent years [71]-[86]. For
example, the resonant tunneling through the photonic crystal via the localized defect
modes has been numerically analyzed [71, 72] and experimentally observed [73, 74].
Recently, a channel add-drop filter based on coupled waveguide-resonator systems in
photonic crystal was proposed [75, 76, 77]. It was shown that for defect cavities satis-
fying certain symmetry and degeneracy conditions, optical signals can be completely
transfered from one waveguide to another. Waveguide-resonator coupling has also
been explored in many other geometries, such as coupled fiber-ring geometry [79],
coupled fiber-sphere geometry [80]-[83], or coupled semiconductor slab waveguide-
microring geometry [84, 85, 86]." It is intuitively clear that the presence of resonator

should have profound impact on the reflection and transmission characteristics of the
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waveguide. For a system composed of a waveguide and a resonator that supports
traveling wave modes, it was recently demonstrated that the transmission charac-
* teristics depend critiéally on the balance between Waveguide-resonatbr c(oupling and
‘cavity loss, thus it was named “critical coupling” [87]. In Ref. [88], we use scattering
theory to show that for the general system of coupled waveguide-resonator as in Fig.
(4.1a), the reflection and transmission coefficients depend critically on the waveguide-
resonator coupling, the symmetry and degeneracy of the resonant modes, cavity loss

(gain), and the mode resonant frequency.

Cavity Coupled to Waveguide

Waveguide 1 Waveguide 2
(a)

Waveguide

Cavity Cavity Cavity
(b)

Figure 4.1: (a) The general geometry of a waveguide coupled with a cavity. (b)
Example of a CROW with indirect coupling.

Similar to the CROW's, if we couple multiple resonators with a waveguide as
_shown in Fig. (4.1b), the composite structure also serves as a waveguide whose prop-
erfies can be drastically different from those of the conventional waveguides. In this
case, besides direct resonator—resohator coupling, the resonators can also be indirectly
coupled together by the propagating modes within the waveguide. We call this new
type of waveguides indirect CROW’s since the cavities are indirectly coupled together.

A unique feature of such indirect CROW’s is that the tight-binding approximation
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no longer applies, since any two resonators (not just the neighbor resonators) in Fig.
(4.1b) are coupled through the waveguide modes.

It is possible to numerically calculate the transmission and 1'eﬂéctiqn character-
istics of waveguides coupled to other complicated dielectric structures [89, 90, 91].
In fact, the Huygens source as developed in Sec. 2.3.3 is ideal for this purpose, and
has been applied for us to analyze the coupling between a slab waveguide and a
photonic crystal waveguide [47, 25]. The benefit of the numerical approach is that
it is capable of-analyzing dielectric structures of complicated geometries. On the
other hand, the numerical calculations are often time consuming and cannot be eas-
ily generalized. Since the dielectric structures considered here can be separated into
waveguides and localized high Q resonators, we can apply the quantum scattering
theory [92] to find the reflection and transmission coefficients for complicated cou-
pled waveguide-resonator systems and dispersion properties of indirect CROW’s. It
is also worth mentioning that the coupled mode theory has also been used to treat

the coupled waveguide-resonator systems, if the resonators support only one high Q

mode [77, 93].

4.2 Scattering Theory Formalism

4.2.1 chattering Matrix

Maxwell equations can be rewritten in the following form:

0
iz =Hy, (4.1)
) = ? , H= ! C/av>< (4.2)
H (—t/10) V x 0

If we introduce the inner product as

(o) = / Pr (P - By + po / & Hr -, (4.3)
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it is easy to verify that the Hamiltonian H is a Hermitian operator. For the weakly
coupled waveguide-resonator system as shown in Fig. (4.1a), the Hamiltonian H can
be separated into a Oth order approximation HO where the waveguide modes and the
localized high ) modes are independent, and a perturbation term V that couples
them together [76],
| H=H,+V, (4.4)

H, = Z wi ki) kil + 3 Quln)(n) | (4.5)

V=> Viam) ”|+Z ks

m#n

ki) (nl) - (4.6)

In this Hamiltonian we use |n) to represent the nth high Q optical mode with “bare”
resonant frequency §2,,, and |k;) to represent the waveguide mode with wave vector ;.
Here we assume the waveguide supports only one propagating mode, since multimode
waveguides are usually undesirable in applications. Both |k;) and |n) are normalized

to 1 according to Eq. (4.3). We also require Vi, , =V, and V,,,, = V' since the

kin?
Hamiltonian is Hermitian. In Eq. (4.4) to (4.6), we ignore the direct coupling between
the waveguide modes (i.e., V4, », = 0), which will be justified later. An explicit form

for the perturbation term Vj; can be obtained from Eq. (4.1) to Eq. (4.3)

—

= (4| V]yy) = /d“‘ leo (7)]2 [()] BB, (4.7)

where E; and Ej are respectively the electric field associated with mode |¢;) and [1;),
w; 1s the resonant frequency of mode |1);), €y(7) refers to the dielectric constant of the
unperturbed Hamiltonian Hy, and Al- q)] is the difference of 1/¢(7) between the full
Hamiltonian H and its Oth order approximation Hy.

- Following Ref. [76], we use the waveguide mode |k;) as the incident optical wave,

and assume that the total wavefunction is given by

). These two states |k;) and

|1otar) are related via the scattering matrix T [92]

rorat) = ki) + ———

or —Hy v e otat) = Tlki) (4.8)
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where € is a positive infinitesimal number to enforce the outgoing boundary condition.

From Eq. (4.8), we can express the term T|k;) as the sum of an infinite series

Tl = [ 3 V)[R )

-0 Wk — H(] + 1€

i

We define the renormalized Green function G as

1 1
—(V ;
w—Hy+ie w—Hy+ e

Gm,n(w) (m|G|n) = (m| Z )Vn) . (4.10)

Multiplying Eq. (4.9) from left by |k;) and using the above definition for G, we find

1 ,
Tkj,ki = <k]|TIkZ> = 5/6]',]% + — Z ‘/’kj,me,n(wki)Vn,ki . (411)

Wk, — Wk; + 1€ m,n

Similarly, we have

m
In Eq. (4.11), 6y, 4, is 1 if k; = k; and zero if otherwise. The physical meaning of
Eq. (4.11) is clear: The state |k;) can be scattered into the state |k;) in two ways,
the direct transition as represented by d; x;, and the indirect transition through the
localized high Q modes |n) as represented by the second term at the right-hand side
of Eq. (4.11).

Now we can justify the absence of the direct waveguide mode interaction term
Vi, k; in the Hamiltonian. If we include such term, the scattering matrix will have
an additional non-resonant contribution T¢", ~ Vi, r,/(ws, — wi; +i€) [see Eq. (4.8)].
Comparing this quantity with the resonant scattering amplitude T,:j’ki due to the nth

mode, we have
T
Tk ViymGnnVag
~

nr e ’

Tkj,ki k’j ki

(4.13)

where we have used Eq. (4.11). If the waveguide length is L, Vi, 4, is of the order
of wy, /L according to Eq. (4.7), while Vi, n Vi x, is of the order of wi /L. In the next
section, we show that the Green function is of the form Gy, (wi.) = 1/(wg, — wn +

iI'n), with w, being the “renormalized” resonant frequency and T',, the mode decay
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rate. Substituting these observations into Eq. (4.13), it is obvious that the indirect
scattering via the nth high Q modes has an enhancement factor of wy, /(wg, —wn+11',).
Therefore, if we are interested in the resonanf behavior, the direct ivaveguide mode
interaction V}, K, can be safely ignored.

Once the scattering matrix T is known, the optical reflection and transmission
coefficients can be easily found as follows. If we respectively use 1;(7), ¢,(7), and
Y (7) to represent the incident wave, the reflected wave, and the transmitted wave,

then they can be related to the T matrix through the following simple relations:

i(P) + ¥, (F) = (x = —oo|T|k:s) = > (& — —o0|k;) Tk, 4 > (4.14)
kj

From this expression, we can easily find the reflection coefficient and transmission

coefficient. This method is essentially the same as that in Ref. [76].

4.2.2 Green Function

In Eq. (4.10), Gy, is expressed as the sum of an infinite series and is quite compli-
cated. To simplify this expression, we notice that for any matrix B, whose eigenvalues

are all less than one, we have the following identity:
——=> B, (4.16)

where I is an identity matrix. Applying this relation to Eq. (4.10), we find

1 !

G = —_— 4.17
w——Ho-i-zeZO w— Hy + i€ ( )
_ 1 1
 w-Hytie T-V_g—
1

w=—H+ie’
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Thus the term G, ,,, which represents the matrix element of the “renormalized” Green

function G, can be simplified as

1

Cmanle) = (e

n) . (4.18)

Tt is also of use to find an expression for (G71),,,, the matrix elements of the

inverse of the Green function. We start by rewriting Eq. (4.10) as
Gmn = Gn)y=—— m|Ayn) , 4.19
ma = (m|Gln) w—Qn—i-iegam’" w—Q, +zel§% [Adfn) (4.19)

where the index m and n refers to the optical modes within the high Q resonator, €2,
is the frequency of mode |n) as given by the unperturbed Hamiltonian Hy, and the

matrix A; is defined as

1
A= (—————V), 4.20
: (w — H() + 1€ ( )
We can express al, , in terms of its lower order terms
o = Sl VIppl V' ) (1.21)
mn . w — Hy + i€ w — Hy + ie
1
————V|k) (k| —————V — Vi
* kZJJ(m|w—H0+i6 k)¢ ’w—HOJrz'e lp><p|w—H0+ie In)
1 1
= ok Vi ————— Vgl )
W—Q ‘i‘ZE(ZV’pa +Z k (.Uk"—ZG k,pap,n)

To cast this relation in a simpler form, we define the following matrix operator within

the subspace expanded by the high () modes in the resonator:

6mn
= mn 22
(m|Golm) = ——5 5 (4.22)
(m|Valn) = Vi , (4.23)

1
\'2 Viph—————Vim 4.24
(m|Viln) = Z Al (4.24)

where the term V,; and V; respectively represent the direct and the indirect interac-
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tion between the cavity modes. Using these notations, the matrix form of Eq. (4.19)

is

G= (3 A)G, o (4.25)
« =0
* while Eq. (4.21) can be written as

Al == GO[VdAl—l + VZ'A.Z_Q] . (426)
Substituting Eq. (4.26) into Eq. (4.25), we find
G=Gy+Gy(Va+ V)G, (4.27)

where we used Ag =T and A} = GV [see the definition in Eq. (4.20)].

From Eq. (4.27), we find that the inverse of the renormalized Green function is
G =Gy~ (Vi+ Vi), (4.28)
and its matrix elements are given by [76]

(Gﬁl)m,n = (w - Qn)(sm,n - Em,n s (429)

1
Smn(@) = Vi + D Vin—————Vkin - (4.30)
ki

W — Wy, + €
Generally, the ¥ matrix has some off-diagonal elements, so that finding the renor-
malized Green function G can be quite involved. However, in some cases where the
high Q resonators have definite symmetry properties, X is already diagonalized by

the unperturbed states |n). Therefore, the renormalized green function can be simply

written as
1

¥

Omn 5 (4.31)

where w, is the renormalized frequency of mode |n), and T, is the mode decay rate.
Besides enhanced scattering amplitude, the optical intensity in the resonators is

also increased. From Eq. (4.12) and Eq. (4.31), we find the localized mode amplitude
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to be

"/n,k:i
T = (nl Ty = —— 25— (4.32)

which means that the mode amplitude at the resonance is inversely proportional to
the mode decay rate.
The mode decay rate T',, plays an important role in the problem of waveguide-

resonator coupling and can be calculated as follows. Using Eq. (4.30), we find

Pt

W = Wy, + 1€
(4.33)

5 Voo |2 - /d Vo2 4 [V
N ) L (W

where k; is the wave vector of the propagating mode, v, represents the photon group

velocity and is assumed to be positive for any k; > 0. Evaluating the integral, we find

1) . (4.34)

L
Im(zn,n) - —%(|Vn,ki|2 + IV —
g

If the mode representation |n) is chosen such that only the diagonal elements of 3

are nonzero, the total decay rate of the mode |n) is simply

&), (4.35)

L
Pn:r?z"’—'(lv, i
2v,

where T'?is the intrinsic cavity decay rate. We should notice that in Eq. (4.35), the
decay rate is actually independent of the waveguide length L, since (k;|k;) = 1 and
thus V), , is proportional to 1/ VL.

4.3 Optical Scattering in Two Generic Coupled
Waveguide-Resonator Systems

We study two generic cases of coupled waveguide-resonator systems as illustrated in
Fig. 4.2. The case in Fig. (4.2a) is denoted as the “side coupling” case, since the
resonator is located at the side of an infinite waveguide. For the geometry shown

in Fig. (4.2b), the two half-infinite waveguides are coupled together via resonant
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Figure 4.2: (a) The “side coupling” case, where a cavity is side coupled to a waveguide.
(b) The “resonant coupling” case, where two waveguides are coupled by a high Q
cavity.

tunneling through the center cavity. Consequently we call it the “resonant coupling”
case. It should be noticed that the waveguides and resonators in Fig. 4.2 can be
of any type. In particular, the analysis of this section applies to photonic crystal
Wavegﬁides and defect cavities. Therefore, we assume that the waveguides possess
a one-dimensional discrete translational symmetry. The waveguides with continuous
translational symmetry, such as slab waveguides or optical fibers, can be regarded as

special cases.

4.3.1 Side Coupling

“First let us consider the “side coupling” case. We assume that the waveguide mode

|k;) has the following general form (using Bloch theorem)

1 ik;x
i, (7) = ﬁuki (F)e™, (4.36)
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Uy, (F) = uy, (M4 Ré,) , (4.37)

where /N is the total number of unit cells in the waveguide and wy, () is normalized
to 1 within a unit cell. R is the length of a unit cell.

We assume that the incoming wave is the waveguide mode |k;). Therefore, the
incident wave y;(7) in Eq. (4.14) is simply ¢y, (7) and the transmitted wave vy (7) at
x — +oc, as defined in Eq. (4.15), is

PR . i ;1 k; L ' ik 1 ‘k n
(7)) = o, (7) + = / dk; . ot EA — . (4.38
(7) = 01, (7) zn: W, — 2rvVN . 75k —vy(kj — k) — e ( )

;T Wy - ZIY'!L

where Eq. (4.11) and Eq. (4.31) arc used, and we transform the the summation over

k; into an integral. Evaluating the integral, we find the transmitted wave to be

L 1 ibrle - 1 LiVi,l?
1 () = ——uyp (P |1 — i - y 4.3¢
w (1) \/]\_Tu,h (7)¢ [ ! ; et il v, ] (4.39)
LV o2+ Vogml? .
Iﬂ.“ — r?l _|_ (| l\«u”l + | k;, ) ) (440)

2v,

In a similar way, we use Eq. (1.14) and find the optical wave at z — —oc to be

‘;1 I3 _ "k n ;
(kg
— Wy T 7:1‘.71 ‘12: d)ki (7) . ( )

W, — Wg, — €

Ui (7) + 0 (7) = o, (7) + Z .
n "U]‘l

R

We transform the summation over k; into an integral and find . (7) to be

. . 1 L‘—A n ‘;L k; 1 ’ —ik;x
W (7)) = —i — e U (Fe” 7). (4.42
D i e M v e LG L (4.42)

If we respectively use r and t to denote the amplitude reflection and transmission

cocfficient, the above results can be summarized as

- ] L‘/;k--yl‘;L ki
r=—1 - — .
; wlm — Wy -+ /1—‘71 /U!] ’ ( )
1 L "3:,,,%]2

t=1-14)

n

(4.44)

Wy, — wn + I ri'n, Uy
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]J( l ‘/]fi 51

i |‘/"‘ki-,77"2)

FH = F?{ + 21‘
‘g

: (4.45)

The side coupling geometry can actually be regarded as part of the photonic crystal
add-drop filter considered in Ref. [75] to [77]. The above results are also similar to
those in Ref. [76]. However, there is a subtle but important difference: we consider
the possibility of gain or loss in the cavity, which is represented by 'Y in Eq. (4.45).

More detailed discussion will be given in the next section.

4.3.2 Resonant Coupling

Next we study the case of “resonant coupling” as shown in Fig. (4.2b). Here for the
notational convenience, we assume that both waveguides are along the z direction,
even though the results do not depend on this assumption. In reality, the two waveg-
uides can have an arbitrary bending angle, as long as the direct interaction between
them can be ignored.

We assume that both waveguides consist of N unit cells, the normalized waveg-
uide modes in waveguide 1 and waveguide 2 are uncoupled and can be expressed

respectively as

1

(Fk;) = o [uki(F)(;z"k"”’ + zz,z,i(f')ef_’:k"”’] , in waveguide 1 ; (4.46)
y 1 (N L EGST ® (N —ig;x . . I lrd
(Mg;) = ﬁ[’v,}j(r)e v (F)eTH ] , 1n waveguide 2 ; (1.47)

We respectively use |k;) and |g;) to represent modes in waveguide 1 and waveguide
2, with k; and ¢; referring to their wave vectors. As before, both uy, (7) and Vg, (7)
are normalized within a unit cell. We assume that the unit cell length in waveguide
1 is Ry, and the total waveguide length is L, = NVR,. For waveguide 2, the unit cell
length is Ry and the total length is Ly, = N R,.

According to Eq. (4.14), the optlical wave at & — —oc¢ (in waveguide 1) consists
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of the incident wave ¢;(7) and the reflected wave ¥,(7):

; Ll ik N 1 ‘/YI\ n ‘rn k;
U (P (7F) = /dkr — = lup. e e 0. b+ , ERda Al .
’ il ) r( ) ! TV QAV[ & ][ ki Why — W + e T Wg —wn + Zrn]
(4.48)
Evaluating the integral, we find
() = — ()" (4.19)
2N '
1 , Vil 2L,
U (F) = —=ul (Fe HF* |1 — 4 L , 4.50
() = gk (e L =18 o e ] (4.50)

where 'U}, is the photon group velocity in waveguide 1 and is assumed to be positive.

The transmitted wave v, (7) at & — —oc (in waveguide 2) can be found similarly from

Eq. (4.15):

L2 ' g 1 | n ‘n ks ]
0(F) = —— / dg; (vg,e""" + c.c.) — B B (4.51)
TV 2N ! Why, — Wy, T Wy, — Wy 11y,
_ 1 . (,—* RTE 9, 1 LQ v gj.n ""'n,,k-,; 7
= —==vy (7)e — 20 ) - . 5 ;
V 2]\ T u‘)kff - W‘n + I”FTL v g
where ¢; is the wave vector of the propagating mode in waveguide 2 and is determined
by the condition w, = wi., ©2 is the corresponding photon group velocity and is
8, i i3 g B

assuined 10 be positive.
Since the photons in the high Q cavity can independently decay into both waveg-
uide 1 and waveguide 2, the decay rate of the nth mode ', will simply be the sum of

the two processes. Collecting the results, for the “resonant coupling” case, we have

ol ,-.')_ 1 , (
i (7 _\/‘ZWU,A‘{

Feie (1.52)

1 A _ 1 2L |Vi o l? .
W (F) = ——uk (Fle 7|1 — i — , (4.53
‘ 7‘( ) V2N kl( )( [ ; Wy, — wp + iy, ”.; ] )
. - 1 —y J- 2LL“! 5 “', (P -
0y (7) — 1, (7’)6“1-“’{ 1) = —— > qj;" ot ] ) (4.54)
2N Wi, — wy il v
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LVl Vi l” (4.55)

,1 2
Vg ”g

r,=IY

The cavity mode decay rate T, in Eq. (4.55) is different from Eq. (4.35), which is
due to the fact that we assume the waveguide supports traveling wave invderiving Eq.
(4.35), yet the waveguide modes we use in the “resonant coupling” case are essentially
standing waves (see Eq. (4.47)). It is interesting to compare the above results, Eq.
(4.52) to Eq. (4.54) with Eq. (4.43) and Eq. (4.44), and observe that the reflection
and transmission in the “resonant” coupling cases correspond, respectively, to the
transmission and reflection in the “side” coupling geometrices.

The Bloch wavefunctions uy, or v, in Eq. (4.46) and (4.47) are normalized to 1
within a unit cell. Thus the power flux P in the waveguide satislies the following
relation

P o |AP '1; (4.56)

where I? is the size of a unit cell, v, is the photon group velocity, and A is the
amplitude of the optical wave. As an example, A = exp(ik;r)/v2N for the incident
wave 44 (7) in Eq. (4.52). From Eq. (4.52) to Eq. (4.54) and applying Eq. (4.56), we

find the power reflection coefficient R and transmission coefficient T to be

. 1 2L, |V n| _
R=11—; U 4.57
! l L%:wki—i&)n—\ir (‘l ‘ ( )‘>
_ ‘Z 1 2L2"/;]_7 ,n,‘”;z,la:i 2’1);]21 (4 58)
Wk, — wy + i, v2 vy Ry . o

4.4 Critical Coupling in Coupled Waveguide-Resonator

Systems

4.4.1 Single Mode Side Coupling

The simplest case of “side coupling” is a single mode resonator coupled with a single

mode waveguide, as shown in Fig. (4.3a). A specific example of this side coupling



78

Waveguide
L°
. Single Mode Cavity
— - x=0
X

3 -
. ——— Reflection Coefficient 6t
=== Transmission Coefficient c
25 2
. ‘6 4 L
@D
®
o

|
bo

w

n

-
T
N

©
&)
-

Resonant Reflaction / Transmission Coefficient
-
o
Transmission

o
-
3
S

o
N
o
[e<]
—_
o
|
[&)]

Figure 4.3: (a) A single mode resonator side coupled to a single mode waveguide.
I'® and I'{ are respectively the cavity decay rate in the —% and +Z direction. For
a resonator with mirror reflection symmetry with respect to x = 0 plane, I' = I'}.
(b) The resonant (Aw = 0) reflection and transmission coefficient for the geometry
-shown in (a). T represents the intrinsic cavity loss (gain), and I'¢ is the decay rate

- of the cavity mode into the waveguide. (¢) Reflection and transmission spectrum for
four different values of I'° /.
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geometry has been investigated in Rel. [93], where the single mode resonator is the
quarter wave shifted DFDB resonator. In our case, the cavity decay rate I'“ duc to the

presence of waveguide is given by Eq. (4.35)

L
¢ g : A4 2 R VAR .
[« = F{__ + 1—\(| =5 i"/n,,—k: -+ I ‘nkl s (459)
: 2uy g
where we respectively use IT'C = '—]l .ﬁk.|2 and T¢ = J=|1,, .2 to represent the
. 2y 11T Du, 1Pk

decay in the —% and +& direction. A further simplification is possible il the cavity
possesses a mirror reflection symmetry with respect to the 2 = 0 plane, which gives
r‘ =7T1¢ = T./2. From FEq. (4.43) and Eq. (1.44), we find the power reflection

coefficient R and transmission coefficient 7" to be

Rl = ()" (4.60)
T T R (o -
) A .2 02
Topp =2t (4.61)

Aw? = (04162
where T'0 represents the intrinsic loss (gain) of the resonator, Aw is w—42, with w being
the frequency of the incident light and 2 being the “renormalized” mode frequency.

In Fig. (4.3b), we show the resonant (Aw = 0) reflection coeflicient R and trans-
mission coefficient T as a function of T'°/T'¢. Notice that at '°/T¢ = 0, the resonant
transmission coefficient T' becomes zero and the reflection coefficient R is 1. On the
other hand, when the intrinsic cavity loss is much larger than the cavity-waveguide
coupling, i.e. T?/T¢ > 1, the transmission coefficient approaches 1 and the reflection
coefficient almost vanishes. If we introduce gain into the cavity and the lasing condi-
tion is approached, i.e. T°/T¢ — —1, both R and T become very large. In Fig. (4.3¢),
we plot the transmission and reflection spectrum using different values of I'° /T, which
clearly shows the critical dependence of the reflection and transmission characteristics
on both Aw and I'"/T¢. Of particular interest is the case of I’/ = —0.5, which
gives a flat transmission cocfficient equal 1o 1. An obvious application of this critical
dependence, similar to the phenomenon of “critical coupling” observed in Ref. [87],

is the possibility of controlling optical transmission and reflection by tuning Aw, T,
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or I'.
In reality, it is difficult to fabricate a dielectric structure with perfect mirror
reflection symmetry and there will always be some small difference between I' and

[“. With symmetry broken, the reflection coefficient R and transmission cocflicient

T are
y 4r«re
_[ = ’”‘2: - =+ 5 /4.(‘2
I Aw? + (T0 4T +T9)% (4.62)
) A 2 11() e - 1°¢ .2
Topp = oL +) (4.63)

Aw? + (IV+ T + 1 )2
These results show that the general reflection and transmission features of the system
is not significantly changed. We can still achieve zero resonant (Aw = 0) transmission

by tuning I'Y = 'Y —~ I'. The unity transmission can also be achieved by choosing

0= —T¢

4.4.2 Side Coupling with Doubly Degenerate Modes

Here we consider a side coupled cavity that supports two degenerate modes with

frequency Q. We rewrite Eq. (4.43) to Eq. (4.43) as

L

2
— VeV s 1.64
,Z:: w+1rlb k J‘ ' ( )

t—'l—ii—l—LIV | (4.65)

T 2 Aw+iT,y, fonl o

[,=T%~r1¢ =124 5 2 Teal? (4.66)
P /q

where we use the convention of Aw = w — , and € represents the “renormalized”
frequency of the doubly degenerate modes.

For this doubly degenerate side coupling geometry, two simple cases are of special
interest. The first example is when the resonator possesses a mirror reflection sym-
metry with respect o the x = 0 planc and the two degenerate modes have opposite

parity, as shown in Fig. (4.4a). Assuming the even mode is
A -

e) and the odd mode is



81

| k> »
- I- k>
s
x=0
1 k> : [+>
“—.—.—

(a) (b)
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Resonant Transmission Coefficient
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Figure 4.4: (a) A waveguide side coupled with a cavity supporting two degenerate
modes. The cavity is symmetric with respect to £ = 0 plane and support two degen-
erate modes with opposite parity under mirror reflection. The even mode is |e) and
-the odd mode is |0). (b) The side coupling geometry with two degenerate traveling
~wave modes in the cavity. The mode traveling in the clockwise direction is [+) and
the mode traveling in the counterclockwise direction is |—). (¢) The resonant trans-
mission coefficient as a function of I'°/T. (d) The transmission spectrum for different
values of I'?/T. o



82
lo}, Eq. (1.7) gives
Vk‘e = “;’_k:./e 5 A"/;:,n = _"?—k,o s (467)

where 1} . represents the coupling between the incident wave |£) and the even cavity

mode

e), and Vj, represents the coupling between |£) and the odd cavity mode |o).
Following Ref. [75] and [76], we assume that the waveguide mode |k) couples equally

strong with the even mode and the odd mode, i.c.
|‘vk7,(:1 = E‘Vlvk,()l - (468)

Consequently, from Eq. (4.66) we obtain

B sz + (FO _ r(:)Q

R=0. 1= o msry

(1.69)

where T¢ is T = L|Vi.|[*/v,. We notice the remarkable result that the reflection
coefficient I? remains 0 for all the frequencies. This is a direct consequence of the
destructive interference between the reflected waves due to the two degenerate cavity
modes, as was pointed out in Ref. [75]. In fact, this side coupling geometry can be
regarded as half of the photonic crystal add-drop filters studied in Ref. [73] to [77].
Here the coupling to the second waveguide is represented by the “intrinsic” cavity
decay rate I'".

In addition to the condition of frequency degeneracy and equal mode decay rate,
Eq. (4.68) must also be strictly satisfied to eliminate reflection. It is very difficult
to simultaneously realize these requirements during the fabrication processes. In
practice, it is easier to fabricate semiconductor ring or disk resonators [84]-[86] and
dielectric microspheres [80]-[83], which support two counter-propagating modes, as
shown in Fig. (4.4b). In the following analysis, we show that the reflection and
transmission coefficients of a waveguide coupled to this type of resonators are also
described by Fq. (4.69).

If the waveguide mode and the traveling wave mode in the resonator are phase-

matched, it is safe to assume that the waveguide mode can ouly induce the traveling
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wave circulating in one direction, due to the requirement of phase matching. As
shown in Fig. (4.4b), we denote the clockwise circulating mode as |+), and the coun-

terclockwise mode as |—). Using these notations, the condition for phase-matched

coupling is V... = 0, and V_,, = 0. Furthermore, using Eq. (4.7) and the time
reversal symimetry, we find Vi . =17, . With these conditions, from Eq. (1.66) we
have
R=1p]*=0, . (1.70)
,  Awr+ (T -T2
T =] =— ( - ,)‘ : (4.71)
Aw? 4+ (10 4 T¢)?
L 5 L - .
= _—|Vi.]*= Vo 2. 4.72
Q’z;gl ot | TR (4.72)

The above results are the same as Eq. (4.69).

In [ig. (4.4c), the resonant (Aw = 0) transmission coeflicient was plotted as
a function of I'’/T*. Notice that at T/T¢ = 1, T is always equal to zero. This
phenomenon is the principle behind many add-drop filters studied in the literature
[75]-77", [82]-[86;, and was named “critical coupling” in Ref. 87]. The transmission
spectrum is shown in Fig. (4.4d) for different values of I'’/I*. We notice that when
the lasing threshold is approached (T'?/T¢ — —1), the optical wave is amplified and
the resonance width is narrowed.

The “critical coupling”™ condition depends on the assumption that the waveg-
uide mode couples to only one of the traveling wave modes, and the two counter-
propagating traveling wave modes are independent. Under these two conditions, the
transmitted wave is the supperposition of two scattering waves: One due to the direct
scattering where the photons propagate through the waveguide without interacting
with the resonator, the other due to the indirect scatiering where the photons are
first coupled into the resonator, travel in the resonator while experiencing loss or gain,
and arc coupled back into the wavegnide. At Aw = 0 and I'° = T, the scattering am-
plitudes due to the direct scattering and the indirect scattering have equal amplitude
but opposite sign, and cancel each other exactly.

In reality, the surface of the dielectric microring, microdisk. or microspheres would
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not be ideally smooth and can cause coupling between the counter-propagating cavity
modes [94, 95]. It is also conceivable that a Bragg grating is deliberately introduced
into the resonator to couple the two counter;propagatillg modes together. In either
scenario, it becomes essential to take the coupling between the resonator modes into
account. Using the expression in Eq. (4.30), we can introduce a phenomenological
parameter x such that the ¥ matrix can be written as

5 o — ([ +T°) K | (4.73)

K o =il +T°)

where w representing the difference between the “bare” resonant frequency and the
“renormalized” resonant frequency. In reaching Eq. (4.73), we also keep the assump-
tion of Vi o = V*, , Vh_ = V_ ;4 =0, and I'* is given by Eq. (4.72). With the relative
phase of the two counter-propagating modes carefully chosen, x can be assumed to
be a positive number. To diagonalize the ¥ matrix, we use a new representation

=== +10]. (4.74)

Sl

2

1

12) ﬂ[l—> -1+ (4.75)

In this representation, the ¥ matrix becomes

O+r—i(T0+T¢ 0
> = i ) . (4.76)
0 & — ke — §(T 4 I)

From this expression and Eq. (4.29), we can read out the resonant frequencies of mode
|1) and |2):
w1 = Q) + K y (477)

wy =0 — K, (4.78)

which clearly shows the splitting of the modal degeneracy due to the coupling term
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k. The decay rates of the two modes remain the same:
[ =Ty=T%4+T¢. (4.79)

" From the definitions in Eq. (4.74) and Eq. (4.75), we also find

1 1
Vit=—=Vis, Vigr = —=V_p_, 4.80
k,1 \/§ k,+ k,1 \/§ k,‘ ( )

r 1 by 7 1
’k72 - _ﬁ k’+ ’ ‘/*k’Q - ﬁ‘lf;kv_ * (481)

Combining Eq. (4.77) to Eq. (4.81) and substituting them into Eq. (4.43), we find

4(1’%)2%2

R=1r*>=
" [(Aw)2 — k2 — (10 + rc)Q]2 + 4(Aw)?(I0 + Te)?

: (4.82)

where Aw = w — 2, and €2 is the resonant frequency of the uncoupled traveling wave

modes. Similarly from Eq. (4.44), we find

[(Aw)? = w2 — (192 + (197 + 4(Aw)2(T0)?

T=t]* = . :
[(Aw)? = K2 = ([0 + T)2]" + 4(Aw)? (10 + I'e)?2

(4.83)

Inspecting Eq. (4.82) and Eq. (4.83), we observe that the reflection/transmission
characteristics of this particular coupled waveguide-resonator system depend critically
on x, I'% and I'*. A special case of particular interest is shown in Fig. 4.5, under the
condition of I'Y = 0 and k = I'“. Different from the previous case with doubly mode
degeneracy, the reflection coefficient in Fig. 4.5 is not zero around the resonance. In
fact, the photons are completely reflected at w = €. Also notice that the reflec-
tion/transmission spectrum is much flatter than the typical Lorentzian lineshape as
shown in Fig. (4.4d).

In Fig. 4.6, we show how the resonant reflection/transmission coefficients change as
a function /. At k = 0, since the two traveling modes are decoupled, the reflection

coefficient is zero. At k = FC,’ the reflection coefficient is 1 and the transmission
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Figure 4.5: Reflection/Transmission spectrum of a waveguide coupled to a resonator
that supports two counter-propagating traveling modes, as described in Eq. (4.82)
and (4.83). The coupling between the two traveling modes is given by .
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Figure 4.6: Resonant reflection/transmission coeflicient of a waveguide coupled to a
resonator with two coupled, lossless (I'° = 0), counter-propagating traveling modes.



87

1 e /=1
0 ---  ¥T°=5
5 I''= wow o 1T=5
805} .
© i
v
O ey e e e
-10 10
1 - =
C
9
3 c
% 05 , = E//r c_=_1
@ =0 =5
© wow K/T%=5
) |
-10 10

Figure 4.7: Reflection/Transmission spectrum of a waveguide coupled to a resonator
with two coupled traveling wave modes, using different values of x/T"°.
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Figure 4.8: Reflection spectrum of a waveguide coupled to a resonator with two
coupled traveling wave modes. In this case, we use different values of I'%/T¢ but keep
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coefficient is zero, which is also consistent with Fig. 4.5. To gain more intuition into
this result, let us consider photons propagating along +2 direction in the waveguide
shown in Fig. (4.4b). The photons are first 'Coupled into the ring resonator in the
form of clockwise traveling wave. As the photons propagate within the resonator,
some of them are coupled into the counter-clockwise modes and can be counted as
loss With'respect to the clockwise traveling photons. The counter-clockwise photons
are coupled back into the waveguide and propagate along —% direction. In the doubly
degenerate case, at the “critical coupling” point, the waveguide-resonator coupling
and resonator loss exactly balance against each other and cancel the transmitted
wave. With the presence of coupling term x and ' = 0, the coupling between the
traveling wave modes takes a role similar to that of the resonator “loss” in the doubly
degenerate case, and “critical coupling” point is defined by ' = &.

In Fig. 4.7, we change the value of x/T'° and plot the reflection/transmission
spectrum of the coupled system. As expected, in the “under-coupled” case (k < I'¢),
the values of the reflection coefficient are less than the corresponding “critically-
coupled” results (k = I'°). When the two counter-propagating modes are “over-
coupled” (k > T°), the reflection spectrum and the transmission spectrum clearly
show two resonances, with one centered at w =  — k and the other centered at
w = Q+ k. In Fig. 4.8, we introduce loss/gain into the resonator and show the
reflection spectrum. If the resonator is lossy (I'® > 0), the reflection coefficients are
smaller than those in the lossless case. With the presence of cavity gain, the reflection
spectrum clearly shows double peaks, whose peak frequencies correspond to 2 — &

and Q + k respectively.

4.4.3 Single Mode Resonant Coupling

For the case of resonant coupling, we limit ourselves to the simplest case, which is
composed of two waveguides coupled via a single mode high Q resonator, as shown
in Fig. 4.9. As a further simplification, we assume that the two waveguides are the

same type and have the same unit cell length R and total length L. Thus Eq. (4.57)
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Figure 4.9: (a) Two waveguides of the same type coupled together via a high Q
resonator supports a single mode. (b) The resonant reflection and transmission co-
efficients of the “resonant coupling” geometry shown in (a). (c¢) The reflection and
transmission spectrum with different parameters of I'’/T.
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and Eq. (4.58) become

(Aw)? + (0 + T —T°)?

R= : 1.84
(Aw)2+ (I +T¢ +T4)2 (1.84)
4TeTe

T o - , 4.85
(Aw)? + (IO + 1 +T7)? 489

L : . L :
Pe= <V l® L TS = 1,7 (4.86)

vy Ly T

where as before we use I'® to represent the intrinsic cavity loss or gain, T represents
the cavity decay rate into waveguide 1 and I' represents the cavity decay rate into
waveguide 2. From the above equations, we find that at resonance (Aw = 0), it is
necessary to satisfy the condition of I' = 0 and ' =T, to realize R =0and T =1
(i.e., photon resonant tunneling).

To reduce the parameters in our analysis, we agsume I'C = ', which allows us
to use a single parameter T¢ = 2" and simplily Iq. (1.84) and Eq. (4.83) as

(Aw)? + (T9)?

= Aoy g

(1.87)

(]"c)‘z

T= . -,
(Aw)z - (I‘() _|_1"(:)2

(4.88)

It is interesting to notice that the above result is very similar to Eq. (4.60) and
Eq. (4.61), which give the reflection and transmission coefficient for a waveguide
side-coupled with a single mode waveguide. The only difference between the two
cases is that the reflection coefficient in Eq. (4.60) corresponds to the transmission
coefficient in Eq. (4.88), and the transmission coefficient in Eq. (1.61) corresponds to
the reflection coeflicient in Eq. (4.87).

In Fig. (4.9b). we show the resonant reflection and transmission coeflicients as a
function of T?/T°. In Fig. (4.9¢), we plot the reflection and transmission spectrum
using various parameters of I'’/T'¢. As expected, we find that Fig. (4.9b) and (4.9¢)
is the same as Fig. (4.3b) and (4.3¢), if we respectively identify the transmission and

reflection in Fig. 4.9 with the reflection and transmission in Fig. 4.3.
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4.5 Dispersion Relation of Indirect CROW

R :

 [+1Ith Cavity

X=Xi+1

Figure 4.10: An example of indirect CROW, which consists of a waveguide side
coupled to an array of high (Q resonators.

As mentioned in Sec. 4.1, for the structure shown in Fig. 4.10, where a waveguide is
side coupled to an array of high Q resonators, tight-binding approximation no longer
applies, since any two resonators in this type of CROW are indirectly coupled to
each other via the propagating modes in the waveguide. We shall name this type of
CROW as indirect CROW. In this section, we develop a matrix formalism to analyze
the indirect CROW’s.

To simplify our analysis, we limit ourselves to the CROW’s with large inter-cavity
distance R, which enables us to ignore the direct coupling between the resonators.
For the structure shown in Fig. 4.10, we write the optical wave to the immediate left

of the [th unit cell as
’(/)(’F)lwzml = Aluk(f') -+ BluZ(F) = aleik”uk(f') + ble_ikg”’uZ(F) s (489)

~where uy(7) is the Bloch wavefunction defined in Eq. (4.37). We now introduce a
‘matrix formalism, in- which a matrix M is used to relate the optical wave to the left

and the optical wave to the right of the /th unit cell,

‘a a
AR Y 3 I (4.90)
it by
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We notice that this approach is similar to the transfer matrix method that was widely
used to describe one-dimensional multilayer structures [28]. Using Eq. (4.39). Eq.
(4.42), Eq. (4.43), Eq. (4.44), and applying time reversal symmetry, we have the

following relations for the matrix A/:

t 1 0 r*
M| || =M (1:91)
0 r t* 1

M= " S (4.92)

Combining Eq. (4.89), Eq. (1.90), and Eq. (4.92), we find

- P N N A . B 5 23
Bl—l—l —%(?zk(a’1+*‘1+1/ 1?( ikR B[

The cigenvalue equation for the matrix in the above equation is simply
2 1 r kR
A= Aze T =) +1=0. (4.94)

According to the Bloch theorem and the definition of 4, and B, in Eq. (4.89), for any
propagating wave inside a spatially periodic structure, the eigenvalue A should be of
the form exp(+iSR), with 3 being the Bloch wave vector. Consequently from Eq.
(4.94), we tind

, 1 _, 1 -
2cos(fR) = ?6_““” + 1‘_*8M : (4.95)

We consider a simple case of CROW, where the resonator possesses mirror reflec-
tion symmetry and supports only a single mode. Under this assumption, the refiection

coefficient ¢ is given by Eq. (4.44),

T Aw i’ (4.96)
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where we assume the cavity has no loss or gain, i.e., ['° = 0. We use the definition of
I'¢ = L|Vjn|?/v,, which represents the coupling between the cavity and the waveguide.
Using Eq. (4.95) and Eq. (4.96), we obtain the dispersion relation for this indirect
CROW

sin(kR) . (4.97)

c

cos(BR) = cos(kR) + i

w
Notice that k represents the wave vector of the pure waveguide, and [ represents the
wave vector of the compound system. '

If the quantity kR # nm, a direct consequence of Eq. (4.97) is that no propagating
mode exists at the renormalized resonance frequency w = €. In fact, under the
condition of sin(kR) not close to zero, for any Aw within the range of I'*, the term
['“/Aw will be larger than 1. According to Eq. (4.97), this means the formation a
bandgap of the order of I'“ that contains the renormalized resonator frequency 2. If
an unperturbed waveguide band traverses the renormalized resonance frequency at
ko, it is necessary that this waveguide band is split and a bandgap is formed due to
its coupling to the CROW structure. We assume a linear dispersion relation for the

unperturbed waveguide mode

1
k= ko + —Aw R (498)

Yg
where Aw = w — Q. This assumption simplifies Eq. (4.97) as

Aw RT® re . Aw RT*®
cos(BR) = cos(koR + ™ o )+ A sin(ko R + T o,

). (4.99)

From this expression, it is obvious that the photonic band structure of the compound
waveguide depends critically on kR, ' and R. For many photonic crystals, the
mid-gap frequency is typically of the value wa/2rc = 0.3, where a is the photonic
lattice spacing and c¢ is the light speed in free space [11]. If we consider a compound
waveguide formed by a photonic crystal waveguide and defect cavities, we can choose
R = 5a, v, = 0.3c, the cavity Q (consequently w/T'¢) between 100 and 1000. From
these estimates, we find fhat the parameter RI'“/v, is of the order of 0.05. In Fig.
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Figure 4.11: The uncoupled waveguide band and the photonic band of the indirect
CROW calculated from Eq. (4.99). In (a) koR = 7/2 and in (b) koR = 57/6. We
choose the parameter RI'*/v, = 0.05. The justification of this value is given in the
text.

4.11, we use RI'*/v, = 0.05 and plot the indirect CROW band as calculated from Eq.

(4.99). It is clearly demonstrated in Fig. 4.11 that the photonic band of the indirect

CROW splits at Aw = 0 and its resonant band structure depends critically on the
value of kg R.

On the other hand, if the propagating mode frequency is far away from resonance,
Eq. (4.97) can be solved asymptotically. For Aw > T'¢, § can be expanded around k

to obtain an approximate solution
BR~kR—-T°/Aw, (4.100)

which can be easily verified by substituting this result into Eq. (4.97). Fig. 4.12 shows

the uncoupled waveguide band, the split waveguide bands around wy calculated from
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Eq. (4.99), and the photonic bands obtained from the above asymptotic approxima-
tion. It is interesting to notice that the asymptotic approximation actually gives a
~ fairly good description of the indirect CROW bands.

In closing this section, we remark that if cos(kgR) ~ =+1, it is possible that one
of the split bands becomes extremely flat. This scenario is illustrated in Fig. (4.13),
where kyR = 3.0 and RI'“/v, = 0.05. The nearly horizontal band lies closely to
the resonance frequency w = wo. The flatness of the band indicates extremely low
propagating group velocity. The group velocity is reduced to a large extent due
to the fact that, when propagating through the indirect CROW structure, photons
are trapped inside the resonance cavities most of the time. This property may find
applications when low photon propagating velocity is desired, such as in the case of

bandedge lasers [96].

4.6 Optical Transmission and Reflection Through
Waveguide Coupled with Multiple Cavities

We have discussed the light reflection and transmission characteristics of some simple
coupled waveguide-resonator system in Sec. 4.4. Yet it is of both theoretical and
practical interest to investigate more complicated geometries. As an example, Fig.
(4.14a) shows a structure composed of N identical resonators periodically side coupled
to a straight waveguide. To simplify our analysis, we assume that each resonator is
single mode and possesses mirror reflection symmetry.

First we reconsider the case where a straight waveguide is coupled to a single
cavity. As shown in Fig. (4.14b), we choose the origin of the 2 coordinate such that
T = I, 1s the mirror reflection symmetry plane of the system. As before, we express

the propagating waveguide mode as
¢(F): aezk(m—xo)uk(,f:*) _|__ be—ik(zfﬂjo)u_k(f’) , (4101)

where we choose the wavefunction of the propagating mode such that under mirror
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Figure 4.14: (a) A straight waveguide side coupled to N resonators. The incident
optical wave is described by [a; b;], the output optical wave is given by [a, b,]. (b) A
straight waveguide coupled to a resonator that possesses mirror reflection symmetry
with respect to plane z = z,.

reflection operation z — z, — —(r — x,)
Omq, [ uy (7)) = e * )y () (4.102)

where the operator O,_,_ represents the mirror reflection with respect to plane z = z,.
-Usihg the same matrix formalism as in the previous section, from Eq. (4.45), we know
that if the wave to the left of the resonator is described by [1 r], then the wave to
the right is given by [t 0]. On the other hand, if the wave to the right is [r 1], the

mirror reflection symmetry dictates that the wave to the left must be [0 ¢]. Since the



98

two waves can be related to each other via matrix M, we have

r

which gives

(4.104)

S G |

When we study the case of a waveguide coupled to N identical resonators as shown
in Fig. (4.14a), the scattering by each resonator can still be described by the matrix M
as given by Eq. (4.104). However, to apply Eq. (4.104) to describe the lth resonator,
we need to choose z, in Eq. (4.102) as z;. Therefore, if the same M matrix is used
to describe the next resonator, we should switch to another basis of wavefunctions

where z, 1s 241 = 2; + R. Consequently, we have

a a,
"lop| |, (4.105)
bi1 by
ikR t2—r2 p
| 0 et 1,106
N 0 —ikR roo1 (4.106)
€ T

It should be remembered that the wavefunction basis for [a; 11 b1] is different from
that for [a; by].

Assuming the center of the first resonator is located at z = 0, and we choose the
wavefunction basis according to Eq. (4.101) with z, = 0. In the same wavefunction

basis, the output optical wave [a, b,] after the Nth resonator is related to the incident

wave [a; b;] through
= DV (4.107)

We consider the simplest case where the cavity possesses mirror reflection sym-
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metry and supports only a single mode, where r can be found from Eq. (4.45)

—1i L
= - —V e n Vo : 4.108
T Aw 401 T9 0, Vak | ( )

Assuming the parity of the cavity mode is given by P, from Eq. (4.7), we have
Vg = PV - (4.109)

Using this relation, Eq. (4.108) is simplified as

Pre
= — . 4.110
' lAerz'(FO—I—I‘C) ( )
The transmission coeflicient is
Aw + 310

t = . 4.111
Aw + ¢(I'0 + T¢) ( )

Substituting Eq. (4.110) and Eq. (4.111) into Eq. (4.106), we find

1 R B Aw + (10— T¢ —iPT etk
S | ( . ) | (4.112)
Aw +10 iPFce—sz G_ZkR[Aw + Z(FO + FC)]

To find the reflection and transmission coefficient, we calculate DV by using the

procedure in Ref. [97]. First we obtain the eigenvalue equation of matrix D:

2 ¢ .
A /\{C()S(k' ) + Aw iT0 ql“(lu )] +1= ( )

Then we use Hamilton-Cayley theorem [98], which says that the matrix obeys the

same equation as its eigenvalue equation

c

ssin(kR)| +1=0. (4.114)

D2 -2 _—
| D[cos(k:R) + A+ T
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Thus, if we define 3 as

[

cos(BR) = cos(kR) + TR sin(kR) , : (4.115)
we find [97]
N _ SinVBR)  sin(N —1)8R
b =D sin(SR) L sin(BR) (4.116)

where I is the identity matrix.

With the optical amplitude at the input and output given by Eq. (4.107) and the
expression for DY given by Eq. (4.116), we can easily evaluate the optical transmis-
sion and reflection coefficients due to the presence of N resonators. The results in
general depend critically on the values of Aw, T'%/T'¢, N and k¢R. However, under the
condition of Aw = 0 and kg R = nm, the optical transmission and reflection coefficient

are of simple form. In this case, D and D" can be evaluated as

Ie Ie
1-L —pL

D=(-1)" Ff_° . (4.117)
PL 145
and
| _ NI _ pNI®
DY = (-p¥| T o (4.118)

The power transmission and reflection coefficients of the whole system can readily be

calculated as

70 o
1+ NlFC/FO)Q’ B [T%E/ﬁ] (4:119)
It is evident from (4.119) that under the condition of kgR = nm, the resonant trans-
mission and reflection characteristics of a waveguide coupled to N equally spaced
single-mode resonators each with intrinsic loss I'? are as if the waveguide is coupled
to a single resonator with intrinsic loss I'°/N, which has been analyzed in section
4.4. In general, however, such scaling property with respect to N does not hold for

arbitrary values of Aw and kgR. In the rest of this section, we shall use Eq. (4.107),
Eq. (4.115) and Eq. (4.116) to find the transmission and reflection properties of such
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coupled waveguide-resonator system. The parameter 3 as defined in Eq. (4.115) is
very similar to the Bloch wavevector of the compound waveguide in the previous sec-
tion and can be calculated using the same assumption of linear dispersion. 1n all the
calculations of 3. we choose the same RT'“/v, = 0.05.

In Fig. 4.15, we show the transmission and reflection spectrums for a W;W(‘guidé
coupled to N = 2 and NV = 6 resonators. We assume that there is no loss or gain
and £oR = 7 /2. Tt is iuteresting to nuotice that for only 2 resonators, the transmission

dip and the reflection peak are no longer Lorentzian and relatively flat. For the case

of N = 6, the transmission dip around Aw = 0 becomes extremely flat. We also
observe the rapid oscillation of the transmission coefficient around the transmission
dip, which is caused by the optical interference bhetween the 6 resonators.

In Fig. (4.16a), we assume that kyR = 0, '’/ = 0 and show the transmission
spectrum for a waveguide coupled to N = 2, N = 6, and N = 20 cavities. [t is
interesting to notice that only the case of N = 20 resonators produces flat transmis-
sion dip. In Fig. (4.16b), we show the photonic bands in the indirect CROW that
corresponds to the coupled waveguide-resonator system in Fig. (4.16a). We notice
the bandgap in the indirecct CROW corresponds exactly to the transmission dip of
N = 20 resonators in Fig. (4.16a). Tt is interesting that in Fig. 4.15 (kgR = 7/2), it
only takes 6 resonators to produce a flat transmission dip. while under the condition
of ky R = 0. it requires 20 resonarors.

We have observed in the previous section that it is possible to createc a very flat
photonic band close to Aw = 0 in an indirect CROW (see Fig. 4.13. where kR = 3.0
is used). We use the same value of kgR to evaluate the optical transmission through
a waveguide coupled to N lossless resonators, with N respectively equal to 2 and
10. The results are shown in Fig. 4.17. For the case of N = 2. we observe the
presence ol a narrow transmission peak around Aw = 0. For N = 10, multiple high
transmission peaks are formed within the frequency range of 0 < Aw/I'® < 2.5. which
roughly corresponds to the flat CROW band observed in Fig. 4.13. The appearance of
multiple peaks instead of a plateau of high transmission is likely due to the imperfect

coupling between the unperturbed waveguide band and the flat CROW band.
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Figure 4.15: The transmission and reflection coefficient of a straight waveguide side
coupled to N resonators, with N = 2 and N = 6 respectively. T°/T° =0, kyR = /2,

RI/v, = 0.05 are used.
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Figure 4.16: (a) The transmission spectrum of a straight waveguide side coupled to
N resonators, with N =2, N = 6 and N = 20 respectively. ['’/T¢ =0 and kyR = 0,
and RI'“/v, = 0.05 are used in the calculations. (b) The photonic band of a straight
waveguide side coupled to an infinite array of resonators the same as those in (a). The
band structures are calculated using Eq. (4.99), with kR = 0 and RI*/v, = 0.05.
The bandgap in (b) corresponds to the transmission dip for the case of N = 20 in

(a).
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kR=3.0, rore=0
N=2

Transmission Coefficient
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Figure 4.17: The transmission spectrum of a straight waveguide side coupled to N
resonators, with N = 2 and N = 10 respectively. We use I'°/T¢ = 0, ko = 3.0, and
RT*/v, = 0.05.
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Figure 4.18: The transmission and reflection spectrum of a waveguide coupled to N
resonators with loss (I'°/T'¢ > 0) or gain (I'°/T < 0). We use N = 6, kR = 7/2,
and RI'“/v, = 0.05 in the calculations.
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In Sec. 4.4, we have found that the optical transmission and reflection depends
critically on the cavity loss(gain). For a waveguide coupled to multiple resonators,
we expect to see similar critical dependence.' In Fig. 4.18, we calculate the optical
transmission and reflection coefficient of a waveguide coupled to 6 resonators, with
kR = m/2 and RI'“/v, = 0.05. At the presence of cavity loss, we find that the rapid
oscillation of the transmission coefficient vanishes around the edge of the transmission
dip. This is due to the reduced interference between the lossy resonators. When cavity
gain is introduced, we find that the transmission and reflection is greatly enhanced at
frequencies corresponding to the bandedge of the indirect CROW band as shown in
Fig. 4.11. This gain enhancement is a direct consequence of the slow group velocity
at the edge of the indirect CROW band. In Fig. 4.19, where N = 20 and kR = 0, we
also find diminished transmission side-lobe at the presence of cavity loss, and sharp
enhancement of optical transmission at the bandedge when the cavities possess gain.
However, comparing Fig. 4.19 to Fig. 4.18, we observe that it takés more cavities to
obtain the same amount of optical enhancement when kqR = 0. Finally, we study the
case of N = 6 and kR = 3.0, which is shown in Fig. 4.20. With the presence of cavity
loss I'°/T'® = 0.3, we find that the transmission peaks around Aw = 0 in the case of
lossless cavities are greatly reduced. With cavity gain I'°/T'¢ = —0.12, we find that
the sharp peak of enhanced optical transmission close to Aw = 0. Indeed, comparing
Fig. 4.20 to Fig. 4.18, we find that the enhancement of the optical transmission for
koR = 3.0 is much larger than the case of kgR = 7/2. As a concluding remark, we
observe that the phenomenon of effective gain enhancement is a direct consequence

of the reduced group velocity around bandedge [96].
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Figure 4.19: The transmission spectrum of a waveguide coupled to 20 resonators with
loss or gain. kyR =0, and RI'“/v, = 0.05 are used in the calculations.
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Figure 4.20: The transmission spectrum of a waveguide coupled to 6 resonators.
koR = 3.0, and RI“/v, = 0.05 are used in the calculations.
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Chapter 5

Bragg Fibers and Dielectric

Coaxial Fibers

5.1 Introduction

In conventional optical fibers, the light confinement is achieved through total internal
reflection and photons propagate mainly in the high index silica core. A completely
different confinement mechanism, Bragg reflection, provides an alternative way of
guiding photons, and has recently attracted a lot of attention [99]-[107]. Since Bragg
reflection and total internal reflection are completely different guiding mechanisms,
it is not surprising that fibers with Bragg confinement offer many possibilities that
are difficult to achieve in conventional fibers. A particularly appealing application
of Bragg confinement is the possibility of guiding light in air instead of silica glass,
which can lead to lower propagation loss and reduce the threshold for nonlinear effects.
~We can also utilize Bragg reflection to design a fiber that supports a single guided
mode without azimuthal dependence. In contrast with the fundamental mode in
conventional fibers, which is always doubly degenerate, these guided fiber modes are
truly single mode. Consequently, many undesirable polarization dependent effects,

such as polarization mode dispersion (PMD) and polarization dependent loss (PDL),
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(a) Bragg Fiber (b) Dielectric Coaxial Fiber (c) Metallic Coaxial Cable

Figure 5.1 Schematic of (a) a Bragg fiber, (b) a dielectric coaxial fiber, and (c) a
metallic coaxial cable.

can be completely eliminated [105].

The possibility of guiding light using Bragg confinement was first pointed out by
Yeh et al. [99], where the concept of Bragg fibers was proposed. The experimen-
tal fabrication of Bragg fibers has been recently reported [102]. Fig. (5.1a) is the
schematic of a Bragg fiber, which consists of a low index dielectric core surrounded
by cladding layers with alternating high and low refractive indices. A new approach
of using Bragg reflection to transmit optical signals was suggested in Ref. [105]. In
this design, Ibanescu et al. proposed to use an all-dielectric coaxial fiber to overcome
problems of polarization rotation and pulse broadening in high data rate telecommu-
nication. The coaxial fiber is essentially a Bragg fiber with an extra high index core, as
shown in Fig. (5.1b). The cladding of the coaxial fiber is a cylindrical omnidirectional
mirror, Which can be designed such that there is a frequency range within which light
incident from the low index medium is completely reflected back irrespective of the
incident angle and polarization [108, 109, 110]. Thus analogy can be drawn between
dielectric coaxial fibers and metallic coaxial cables [see Fig. (5.1b) and Fig. (5.1¢)].
Based on this analogy, Ibanescu et al. predicted small dispersion for dielectric coaxial

fibers. |
" In both Bragg fibers and coaxial fibers, we use 1D Bragg reflection to achieve
photon confinement. It is also possible to surround the fiber core region (silica glass
or air) with éilica glass patterned with two-dimensional arrays of air holes [101, 103,
104]. Such fibers are generally referred to as photonic crystal fibers, and shall not

be considered here. However, we point out that as confinement mechanism, there
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is no fundamental difference between 1D Bragg reflection and 2D Bragg reflection.
Thus properties of photonic crystal fibers should qualitatively resemble those of Bragg
fibers or coaxial fibers.

Due to the z translational symmetry of the aforementioned fibers, we can use
the 2D FDTD algorithm in Sec. 2.1.1 and Sec. 2.3.2 to find dispersion and field
distribution of the guided modes. This approach has the obvious advantage of being
able to analyie fibers with complicated dielectric distribution. The drawback is that
the numerical approach tends to be time consuming and physically less transparent.
In this chapter, we shall develop an efficient analytical method for Bragg fibers and
coaxial fibers by taking advantage of their cylindrical symmetry and radial periodicity
of the cladding layers.

In the original matrix formalism [99], Yeh et al. used four independent parameters
to describe the solution of Maxwell equations in each layer of the Bragg fiber, and the
parameters in neighbor dielectric layers were related via a 4 x 4 matrix (see also Sec.
5.2.1). Unlike the case of conventional fibers, in this approach the confined modes
in a Bragg fiber were treated as quasimodes whose propagation constant and field
distribution were found by minimizing the radiation loss [99]. The extra complexity
associated with this matrix approach is due to the difficulty in finding the eigenmode
in fiber cladding layers. For a planar air core Bragg waveguide, the eigen solution that
decays in the cladding structure can be easily found according to the Bloch theorem
[9]. For a cylindrically symmetric geometry, which is strictly speaking not periodic
and the Bloch theorem does not apply, we cannot single out an eigen solution that
decays in the fiber cladding layers. As a result, it is no longer feasible to find an
exact analytical equation that determines mode dispersion by matching the cladding
solution and core solution at the waveguide core-cladding interface, as in the case of
conventional optical fibers [69] or planar Bragg waveguides |9].

We observe that in the asymptotic limit, the exact solutions of Maxwell equations,
which take the form of Bessel functions, can be approximated as exp(ikr)/\/r and
exp(—ikr)/y/r [68]. In this form, the solutions in cylindrical Bragg cladding resemble

those in planar Bragg stacks and eigen solutions in the fiber claddings can be similarly
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Figure 5.2: Schematic of the » — z cross-section of a fiber with Bragg cladding. The
dielectric layers of the Bragg fiber are classified into two regions: the core region and
the cladding region, which are separated by the dash line in the figure.

found [106]. In Ref. [107], we treat the first several dielectric layers exactly and
approximate the rest of the dielectric cladding structures in the asymptotic limit. We
can use this method to find the dispersion relation of Bragg fibers within any desired
precision simply by increasing the number of inner layers that are treated exactly.
The accuracy of the asymptotic approximation can also be estimated by comparing
results obtained from treating different number of inner layers exactly, as will be

demonstrated shortly hereafter.

5.2 Asymptotic Matrix Theory

We begin the asymptotic analysis by separating the Bragg fiber or coaxial fiber into
"two regions: the core region and the cladding region. The core region consists of N

concentric layers each with refractive index n’, and thickness I’,, i = 1---N. The

co?
fiber cladding region is composed of pairs of alternating layers of different dielectric
materials. Layer type I has refractive index n}, and thickness 1. Layer type II has

refractive index nZ and thickness 12, as shown in Fig. 5.2.
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5.2.1 Exact Solution in the Core Region

In the asymptotic matrix formalism, we apply exact solutions of Maxwell equations
to describe the fields in the core region. It should be emphasized tﬁat the refractive
index and thickness of layers in the core region can be chosen arbitrarily. If we take
the z axis as the direction of propagation, due to the translational symmetry, every

field component has the following form [99]
W(r,0,2,t) = ¥(r, §)eP= (5.1)

where ¢ can be E,, E., Ey, H,, H,, and Hy, w is the mode frequency, and /3 is the
propagation constant.

As in conventional fibers, the transverse field components can be represented by

E, and H, [99]:

E = /c‘jﬁ g (%Ez + fg—o%ﬂz) , (5.2)
Ey= (ﬁ/&éi? — (- MSO%HZ + T%HEZ) , (5.3)
b= e e ) o4
o= /C;ﬁ . (“’6;”2 %Ez + T—g—éHz) , (5.5)

where n is the refractive index of the dielectric medium.

Due to the cylindrical symmetry of Bragg fibers, we can take the azimuthal de-
pendence of the field components as cos(m#f) or sin(mf). For each m, the general
solutions of E, and H, are the superposition of either J,,(x) and Y, (x), or I,,,(x) and
K, () [68]. In this section, we assume the solutions are given by J,,(z) and Y, ().

As a result, the electromagnetic field at radius r, which is within the 7th core layer,
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can be written in the following matrix form [99]

E, A;
L Hy B;
! = ]\/[( Neos kéw ) (5'6)
—5E0 | | D; |
The matrix M ( i ki, 1) is defined as
M (i, ki, ) (5.7)
(k) Y, (ki r) 0 0|
| SR (k) SRV (K)o (Kr) gl Yo (L)
0 0 ( r) Yo (KLr)
L kzm)Z Im (kéor) WE (l{’Z ) kéo%‘]m(kéor) ]{:)1“(233/;:1(]{1 )

where £, = \/ (ni,w/c)? — B2. The coefficients A;, B;, C;, and D; are constant within
the ith layer. We emphasize that as long as 3 < n’ w/c, Eq. (5.6) and Eq. (5.8) are
the exact solution of Maxwell equations, with no approximation involved [99].

Once the electromagnetic field in the ith layer is known, we can easily find the field
in the (i + 1)th layer by applying the condition that E,, Ey, H,, Hy are continuous
at r = p’,, the interface between the ith and (¢ + 1)th layer:

r T I T

A A;

B; B,
=Ty , (5.8)

Citr Ci

| Dit1 | | D; |
where the transfer matrix T} is
. —1 .

Ti= [Mnig ki plo)] M (i, Koy pl) - (5.9)

It is important to notice that within the first core layer, the coefficients B; and D,



112

are zero, since Y,,(x) is infinite at z = 0.

5.2.2 Asymptotic Approximation in the Cladding Region

The electromagnetic fields in the cladding region can be described in the same way
as the core regions fields, i.e., by Eq. (5.6) and Eq. (5.8). However, with a sufficiently
large r, it suffices to approximate the exact solution in the asymptotic limit, which
allows us to replace Jy,(z) and Y,,(z) with exp(iz)/\/z and exp(—iz)/+/x [68]. Under
this condition, the field distribution in type I layer of the nth cladding pair can be
written as [107]:

r

— _ftm [CL ezkcl(r pcl)—l-b e—zk (r— pcl)}

\/kcllr
_ weo(n})? L (r—p ikl (r—pr
Hy = — pe \J}Tﬁ_[a etka(r=p2) — b e=tkalr—rl)

o <r <+l . (5.10)

— f’l];}f [C echl(r p?[) _i_dne_ikil(r_p?l)]
al

ﬁ

By = @o _IrE [c ikl (r—p) _ dne—mgl(r-pgl)]

L Acl \/kl

;...

Similarly, fields inside type II of the same cladding pair are given by

;

— kaJ\24 [a’ ekRa(r=r'd) 4 b g=ika(r- pcz)]
2 . n g
H0 _ _weoligl D fTJ;I [a%ezké(r—p’d) _ b/nefzkzl(rAp/?l)]
. el v kclr

g m 2
3 (n e P <r<py+1. (5.11)
HZ —_ _fre_ [Cnelkfl(T—P o) + d;zeﬂk‘;l(r_p’cl)il cl cl cl

= 240 L [d] eialr=r'a) — dr e~k
n

h— ;
\ 0 kCl V k?lT

In Eq. (5.10) and (5.11), &}, = \/(n}?lw/c) — 3%, k% = \/(nzlw/c)2 — 032, p, ploy are
defined in Fig. 5.2. It should be noted that TM component (including E, and Hy)
and TE component (including H, and Ey) are decoupled in the asymptotic limit,
with TM component amplitude being frp; and TE component amplitude being frg.
The values of frg and fry; are constant within the whole Bragg cladding region.
The field amplitudes in type II layer of the nth cladding pair can be easily related
to those in type I layer of the same cladding pair. By applying the condition of E,,
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Ey, H,, Hy being continuous at r = p'ly, we find

(n2)k2)\ ikl (ng )22\ —ikl, 1
g | 1k (1 + (355 Clj)ez L (1 (niﬁﬁk;ﬁ)e kit | |, (512)
' 2\ k! (ni)*k2 Y\ ikl 1L (n2)Pk2 Y\ ikl 1! ’ )
bn { (] —_ W)ez clbel (1 —+ (nzl)zkil) Rt bn
for the TM component, and
/ 2N ikl 1 kg ikl
Cn — l k_zl (1 + k’il)e rel (1 kii)e et Cn (5 13)
1 k,2 k2 °
d;L 2 kcl (1 - Efﬁ)elkizliz (1 + kﬂgl)e ik e d,

for the TE component. Similarly, we can relate a; , 0, ¢, and d;, to any1, byi1, Cpat,
n+1

v . This allows us to

and d,,.; by applying the field continuity condition at r = p

exXpress Gny1, bpt1, Cpe1 and dpoq in terms of the corresponding parameters in the

nth layer:
Apt1 Arn Bru Gp (L_ 1 4)
= , 5.
bns1 Bry Arm bn
tne1 | | Are Bre Cn (5.15)
dnt1 Brg Arg || dn
The parameters Arp, Brg, A7y and By, are respectively defined as [106]:
n kl 2 k? 2 )
App = etfaile [zg—ci)———j_g—-gi sin(k312) + cos(kﬁllgl)] , (5.16)
2kclkcl
e (k) = (R9)?
Brp = ie ’%zlcz—l%szl sin(k31%) (5.17)
214(1.132 1\4(2.2\2
a1 () (kg)? + (ng) (RS .o 2 12
Agpy = eFeile [z 2L )2 ER R, sin(k; 1) + cos(kclld)] : (5.18)
o 2V4(L1Y2 _ (1 V4(}2)2
BT]V[ — ,[;e-zkdlél (ncl) ( cl) (ncl) ( cl) Sin(kzllzl) ) (519)

2(ng)? (nig) ek

cl

Since Arg, Brg, Ary, and Bry, are the same for all cladding layers, we can apply
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the Bloch theorem to the cladding fields:

{ Gap ] _ E By :
= (Apag)™ ! , , (5.20)

by, I Aty — Arm

Cn _ Brg
{ :| = (Arp)"! , (5.21)

dy, | Are — Arg ‘
Mrw = Re(Arg) + /[Re(Arg)]2 — 1, (5.22)
/\T]VI = R@(ATM) + \/[RB(ATN[)]Q - 1. (523)

These results clearly indicate that in the asymptotic limit, the properties of Bragg
fiber cladding resemble those of planar Bragg stacks [9], which is directly due to the
radial periodicity of the cladding layers and the fact that the asymptotic solutions
in Eq. (5.10) and (5.11) takes the form of traveling plane waves. There are two
solutions for Arg and Arps. In the Bragg bandgap, which is defined by the condition
of Re(Arg) > 1 or Re(Arys) > 1, the two solutions of Arg and Arys are real numbers,
with one having absolute value less than one and the other greater than one. We shall
take the solutions of Arg and Ar,; with absolute values less than unity, since they
correspond to modes decaying in the Bragg cladding.

Once we find the values of ay,, b, ¢,, dn, al, b, ¢, d,, by combining Eq. (5.20)
through Eq. (5.23), the only unknown quantities in Eq. (5.10) and Eq. (5.11), which
give the electromagnetic field in the entire cladding region, are frg and frys, the
amplitudes of the TE and TM components. The problem of finding them lies at the

center of our asymptotic matrix formalism, and will be treated in detail in Sec. 5.2.3.

5.2.3 Matrix Formalism

The guided modes in a Bragg fiber are founded by matching the exact solution in the

core region [i.e., Eq. (5.6)] with the asymptotic solution in the cladding region [i.e.,
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Eq. (5.10)] at the interface r = p2 = pl, (sce Fig. 5.2), which gives us

- - [ rar A- — A B |
A oY (Ara rar + Bra)
iweo(ng Y fra oy A B '
, - TAMr — Arar — D
Mn) kN p B = Fal kLol ([( ' / ) (5.24)
4 Lo Lro :{(0) e : 9.
Cn \/k’%()\lk — Arg + Brg)
D " Iy g , -
L PN _ —%%ﬁ(/\n — Arg — Brg) |

We then relate the amplitude coefficients in the Nth core layer (i.c.. Ay, By, C'v and
Dy ) to the coefficients in the first core layer (i.e., A), B, ) and D;). We remember
hat in the first core laver B, = = (} and we further denote A, as Ayyr, and C as
that in the first layer B: = Dy = 0 and we further denote A, as Apy, and C a

Crr. Applying Eq. (5.8) and (5.9) repeatedly, we have

AN ] (Al()[)co) 0

>3 weg 1 ] _om AN}

SO R (A7(n2,. 82, 01)] e AN AL

C'N U Jm (kcopgro)

L DN ] L m ] (/‘lopco) 1‘:}1/1?{ ]7’77(1’10/)(0)
A
X . (5.25)

C'I’Itf

Substituting Eq. (5.25) into Eq. (5.24), we find the following matrix relation

T Lopla) 0 '
F(;fcln/f weo(nly)? jr (l‘lopm) m']m(k(lmpclv) A
0 T (kLpty) Cre
| ) S k)

Iy (Njpy — Apas — B
m( TM 1M T’\[)

iweo(ny)®  fry :
— e (Apar — Ay — Brar)
— T el \/kclﬂcl

\/“%()\TE — Arp + Byry)

ZLU
T *L (Are — Arp — Brg)

i_ k'[ vV kP
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where an overall transfer matrix T is defined as

T = []\/[( Moo kco? pco)]\/[_ ( Moo ’l”cov pco)] e []W( Mo ké\;? pi\g 1)M ( Mo kco’ pco)]
. v
= I [Mniy, Ky plg") M7 (0, Ky, )]

1=2

t11 ti2 tiz tia
to1 too loz To4

a1tz 13z l3a

tgr Tag Taz T4

In Eq. (5.26), A7y and Crg, which represent field in the first core layer, are linearly
related to field in the first cladding layer (fra and frg) via a 4 x 4 transfer matrix
T as defined in Eq. (5.27). Eq. (5.26) gives us four equations with four independent
variables A7y, Cre, fru, fre, and is sufficient to determine the propagation constant
G and field distribution of guided modes. To see this more clearly, we introduce eight

new parameters g7, and grp, j = 1,---,4 as

j w )
g%‘E = tj?,(/\TE - ATE + BTE) ,u/ﬁO ]4<)\TE ATE — BTE) , ] = ]_, Ce 74 , (528)
ke
j zweo(nd) _
Irm :tjl()\TM—ATM+BTM) 13 tiolArse — Arve — Bru) ;5 =1,-+-,4,
cl

(5.29)
where t;1, jj2, tj3 and t;4 are the matrix elements given in Eq. (5.27). With these new

parameters, we can split Eq. (5.26) into two equations:

J (k 1op co) 0 -ATJW
weo ) J, (kiopco k12 pl Jm opco CTE
1 9rm 9TE f T™

_ 1 (5.30)
\/klpcl gTM gTE Ire
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0 Jm(kioptlzo) AT]W
FLyE, Im (KeoPeo) é{%‘];n(kiopio) Cre

_ 1 v 9t Jrm (5.31)

\/ l”llpcl Q%M 9% E frE

These two equations lie at the center of our asymptotic matrix method. To fully

understand their consequences, we consider two separate cases, the TE or TM modes
with m = 0, and the mixed modes with m # 0.

For modes with m = 0, we first notice that the matrix M(n,, kZ,,r) is block
diagonalized into two 2 x 2 matrices. As a result, the transfer matrix T, as defined
in Eq. (5.27), is also block diagonalized into two 2 x 2 matrices with t3; = 4 = 30 =
tyg = 113 = ta3 = t14 = tog = 0. According to the definitions in Eq. (5.28) and Eq.
(5.29), we have g3; = g7y = 0, and gjp = g7.p = 0.

By definition, the H, component of any TM mode must remain zero in the entire
Bragg fiber, i.e., Crg = 0 and frp = 0. With this condition in mind, from Eq. (5.30)

we can easily find
(.UE()( ) JO(k;op}:o) — 912"]\/[
coﬁ Jo (kéopéo) g%“M

Once we have specified the Bragg fiber parameters and chosen the frequency w, the

(5.32)

propagation constants of TM modes are found by solving for frs; satisfying Eq.
(5.32). We substitute the result 873 back into Eq. (5.30), and obtain the following

relation
Q%M
Ary = fra -
J (klopco) \/ kclpcl

The importance of this result is that it relates the mode amplitude Az, in the first

(5.33)

core layer to frar, which determines the fields within the entire fiber cladding region.
We can choose the normalization factor of the guided mode such that Azpy = 1.
Combining this condition with Eq. (5.33), frr = 0, and Eq. (5.10) through Eq.
(5.23) in Sec. 5.2, we obtain the TM field distribution in the cladding region. The
TM field distribution in the core region can also be easily found. In the center core

layer, we have A; = Apy =1, and By = Cy = D; = 0. Applying Eq. (5.8) repeatedly,
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where the transfer matrices T; are found from Eq. (5.8) and Eq. (5.9), we find all the
mode coefficients A;, B;, C;, and D; in the N core layers. The TM field distribution in
the core region is simply given by substituting these mode coefficients into Eq. (5.6)
and applying Eq. (5.8).
For TE modes, we have Arp = 0 and Eq. (5.31) gives us

wuo JolkeoPeo) _ 91
ﬂJO( opco) g%E ,

Cri = 9rs fre . (5.
Jo(kgopéo) \V kllpd

Following the same procedure as for TM modes, we can find the propagation constant

$ and field distribution for TE modes from the above two results: Eq. (5.34) and Eq.
(5.35).
For any mixed mode with m # 0, both Eq. (5.30) and Eq. (5.31) are needed and

the solutions are more complicated. To simplify our final results, we introduce more

definitions
Wi m
H%E = —Jm (klopco) kl ; (klopio)g%“E + W']m(kiopéo)g'll“E ) (536)
WE m
H’%E :Jm(k(l:opio)g%E —(l);l—ﬁ)‘jl (klopco)gTE W—J (]”lopco)gTE ) (537)

m
HYI“M = Jm(k';opio)g%M ﬂJ;n(klopco)gTJ\I WJ (klopco)gT]\/[ ) (5-38)

wWey m
Hiyy = —Jm(kioﬂio)g%MJr*—k(l—)J' (klaﬂio)g%MﬂL(kl)—gpljm(kiopio)!]%M- (5.39)
To find the propagation constant § of any mixed mode, we first express Ary; and
Crg in terms of frp; and frg by inverting the leftmost 2 x 2 matrix in Eq. (5.30).
Substituting the results of Ary, and Crg into Eq. (5.31), we find

1 1
HT]W —HTE fTM

! =0, (5.40)
H’Z%J\/[ _HIQ"E fTE
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with H}p, H?p, Hby and H,, defined in Eq. (5.36) through Eq. (5.39). In order for
Eq. (5.40) to have non-zero solutions, the determinant of the matrix must be zero,

 which gives
- 1 1
Hry _ Hpg
2 T 72 v
Hry  Hig

(5.41)

As can be seen from the definitions in Eq. (5.36) to Eq. (5.39), Eq. (5.27) to Eq. (5.29)
and Eq. (5.8), the parameters H}.p, H?,, H}.,,, and H3,, are complicated. However,
once the Bragg fiber structure is chosen and the frequency‘ is given, they only depend
on 3. Therefore, the solution of Eq. (5.41) gives us the propagation constant of any
mixed mode.

After finding the solutions of Eq. (5.41) and choosing an appropriate normalization

constant, we can determine the values of frps and frp from Eq. (5.40):

fru m H:}“E
- (kL )2pL [']m(kiopio)]Q\/ kape . . (5.42)
fTE co co HT]\f

As before, by combining this result with Eq. (5.10) to Eq. (5.23) in Sec. 5.2, we can
find the whole cladding field distribution. To obtain the fields in the fiber core region,
we substitute Eq. (5.42) into Eq. (5.31) and find

A
i (5.43)

CTE

L

— e T (Kopto) (Grs HE g + GhpHEng) + I (kbopto) (9820 HE g + 915 Hear)
(kéoTépéo Im(kiopto) (Gras Hi g + 935 Hiar)

Thus within the first core layer, we have A, = Ary, C; = Crg, and By = D, = 0.
By applying Eq. (5.6) to Eq. (5.9) in Sec. 5.2.1 throughout the entire core layers, we

find the electromagnetic fields in the Bragg fiber core region.
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5.2.4 Surface Modes

In the previous sections, we assume that general solutions in any lqyer are given by
Jm(z) and Y,,(z), which only holds if 3 < n! w/c for all the core layers. In an air
“core Bragg ﬁbef, a guided mode may have 3 exceeding w/c, yet satisfying § < nlw/c
and 8 < n%w/c. Such mode is generally referred to as surface mode, since it decays
both in the cladding layers (due to Bragg reflection) and in the air core (due to total
internal reflection). In this case, we can still apply the asymptotic approximation to
the cladding field and use results in Sec. 5.2.3. However, in the core region, there are
some important differences between regular guided modes and surface modes, which
shall be summarized in this section.

For the ith Bragg fiber layer in which 8 > n’ w/c, the solutions of E, and H, are
given by I,,,(k,r) and K,,(k%,r) [68], with k%, defined as

o= /02— (niw/c)? (5.44)

We still use four parameters A;, B;, C; and D; to express field components in the

ith layer, as in Eq. (5.6). However, the matrix M has a new definition:

M(ni,, ko) (5:45)
I (kz r) Ko (K,r) 0 0
| S (k) Sl (k) g (L) — e Ko (k)
0 0 ]m(l{?l 7’) Km(kczzor)
] ( Zm) [ (kf:or) (k1m) TK (kior) E#—II (kior) _kﬂﬁ%K;n(kior)

If we use this new definition for M(nt,, ki ,7) when 8 > n’ w/c, the overall transfer

“matrix T is still the same as in Eq. (5.27), and g}z, g3, are still given by Eq. (5.28)
‘and Eq. (5.29) respectively. If 3 > n! w/c at the first core layer, Eq. (5.30) and Eq.
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(5.31), which determine modal dispersion and field distribution, are replaced by

L (k2opro) -0 A
-Em]é%g—)[;n(kiopéJ — gz Im (keopeo) Cre

_ 1 9rv 9 Jru (5.46)
vV kap 9ru 9t JTE

O ] (k10p00> ATM

—(_k_z;z)ﬂfa[m(k‘éop}:o) _Elz_%lé’t(kiopco) CTE
_ 1 9Fu GrE Jrum (5.47)

Vkaba | 9tv 91 Jre
From the above two equations, for TM modes we find
B [O(kéopio) g’}“M ’
gl

Ay = I Jram (5.49)

IO (kclzopio) V kclpcl

which, respectively, give dispersion and field distribution of guided TM modes. The

Correspondihg equations for TE modes are

_ Wilo ]6(kéopio) — g%E
k(lzoﬁ Io(k}:opéo) g%E ’

(5.50)

CTE - g%E fTE .
(klopco) V kclpcl

The results for the mixed surface modes are more complicated. First, if § >

(5.51)

nl,w/c, the definitions of H}p, H2,, H},,, H#,, must be changed accordingly:

: Wi m
H’%’E = -Im(k.gopio)g%E kl ;I, (klopco)gTE WI (klopco)gTE ) (552)
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Wwe m
HTQ"E = In, (kiopco) 91 t —2,(1——)], (k;opio)g%’E + (kl—)g—p_l-lm(kiopio)g%E s (553)

CO

m ¢
HYI“J\I = ]m(kcopco)gTJM + kl ﬁll (klopco)gT]\[ + WI (kclop;l:o)g’%“M ’ (554)

' weg(nl,)? m
Hip = —Ln(kiopty) 9as — ‘“2,171' (kioPeo) 9T — ml m(koPeo)gins - (5.55)

With the new definitions, Eq. (5.41) still holds for surface modes and its solutions
give the modal dispersion. However, the expressions for cladding field coeflicients and

core field coefficients are different, and are respectively given by

Jrm m H}E
= (kl )Qpl [I (l"lopco)] V kclpcl I ) (556)

f TE co TM

A
™ (5.57)
CTE

]:Jlu%jrln(klopco)(gTMHTE‘ + 97eHty) = In(keobio) (970 Hep + 91 pHrar)

Gy dm (kooboo) (970 Hrp + 975 Hr )

5.3 Radiation Loss

There are two sources that contribute to the propagation loss in Bragg fibers or coaxial
fibers: the material absorption loss and the radiation loss. The material absorption
loss depends on the choice of dielectric medium. The radiation loss mainly depends
on the index contrast between the cladding media and the number of cladding pairs.
In principle, the radiation loss can be reduced below any given number simply by
using a large enough number of cladding pairs. In this case, the propagation loss in
an air core fiber is mostly due to the residual absorption in the fiber cladding. Thus if
appropriate cladding materials can be found, it is possible to reduce the propagation
loss in an air core fiber below that of conventional optical fibers. In fact, this is one
of the main reasons behind the recent interest in air core fibers [102, 104]. However,

since using too many cladding pairs is generally undesirable or even impractical, it is
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Figure 5.3: The radiation loss of an air core Bragg fiber with N cladding pairs. P,
is the power flux inside the air core. P, represents the outgoing radiation power flux
through a cylindrical surface with radius R and height dz.

important to know how many layers are required to reduce the radiation loss below a
given number. Here we give an estimate about the number of cladding pairs necessary
to achieve 0.2dB/km radiation loss, as a comparison with typical conventional fiber
propagation loss.

To simplify our analysis, we study a Bragg fiber with a central air core bounded
by N pairs of cladding layers, as shown in Fig. 5.3. We treat the air core exactly and
apply the asymptotic approximation to the entire Bragg cladding structure. This
means that the transfer matrix T relating the cladding region to the core region is
simply a 4 x 4 identity matrix whose diagonal terms are 1 and the off diagonal terms

are 0. Following Eq. (5.28) and Eq. (5.29), we find

945 = Arp — Arg + Brp (5.58)
w

915 = _kl—lg)()\TE ~ Arg — Brg) , (5.59)
cl

913 = At — Arar + Bra (5.60)

iweg(nl))?

9rm = _—kolgﬁl"()\TM — Ay — Bru) - (5.61)

: cl

Other values of gi.; and gi,, are all zero. As a further simplification, we shall confine

ourselves to the study of TE and TM modes. The reasons are two-fold. As we have
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mentioned before, the modes with m = 0 are of special interest, since they do not
have any polarization dependent effects. Secondly, in the asymptotic limit, the mixed
modes (m # 0) in the cladding structure can always be classified into TE component
and TM component.. Therefore, we can expect the radiation loss of mixed modes to
exhibit characteristics between those of TE and TM modes.

We first consider TE modes. According to Eq. (5.6), the H,(r) component in the
Bragg fiber core is simply H,(r) = CreJo(kl,r) and the other two components are

[99]
-Wio

Eg = “'L-?l—CTEJA(kJiOT) s (562)
i .
H, = E;CTEJO(@OT) : (5.63)

From these expressions for Fy and H,, we find the power flux along the 2 direction

in the low index core:

TW L ﬂ Peo ,
PTE = |Crg|? B ;2 T dr Ty (kL)) (5.64)

If the Bragg fiber consists of an infinite number of cladding pairs, the asymptotic

fields in the (N + 1)th cladding pair can be extracted from Eq. (5.10)

H, = f_zf_[cNHeikil(rpr“) 4 dN+le“iké1(T_Pg+l)] : (5.65)
clT
Ey = %—fzf— [CNHE’«ikil(r_pZH) — dN+1€_ikgl(T_p?’]H)] . (5.66)
c kg

In the above expressions, we notice that the fields consist of two components: an
outgoing wave with amplitude proportional to cy.i, and an incoming wave with
amplitude proportional to dy,;. It can be shown that the two components are of
equal value and cancel each other such that the Bragg fiber has no net radial power
flux. This, however, is directly due to the assumption of infinite cladding pairs. In
fact, we can regard fhe incoming component in the (N + 1)th cladding pair as due

to the reflection by the remaining Bragg cladding. Therefore, it is reasonable to



125
assume that if the Bragg fiber has only N cladding pairs, the radiation field outside
the cladding structure can be well approximated by the outgoing component of Eq.
(5.65) and Eq. (5.66) (i.e., we replace dyi with 0). To calculate the radial power
flow, let us consider a cylindrical surface with radius R and height dz that encloses
the Bragg fiber, as shown in Fig. 5.3. Using Eq. (5.65) and Eq. (5.66) and taking

dyy1 = 0, we find the radial power flux through this surface to be

W '
P;fE (kll;O‘fTE‘ ’CN+1‘ dz . (567)

For TE modes propagating along the z direction of the Bragg fiber, with the
presence of radiation loss, the optical power decays as exp(—argz). The parameter
arg is the radiation loss constant, and from the definitions of PT¥ and PT”, we can

identify arg as

TE
P’r

_ = L k
OTE = Prig, — ﬂ

‘ Brgp lzl lQN [JO( col }:)] clpcl (568)
Mg — Are + Brg fpw dr r[Jy(kl,r)]? 7

where Eq. (5.21), (5.35), (5.58), (5.64), and (5.67) are used.
For TM modes, we can follow the same procedure to obtain the radiation loss

constant app;. First, we find fields in the low index core and the corresponding

power flux in z direction

iweg(nl )2 ,
Hy = Lk(lwiATMJo(kgor) : (5.69)
E, = Zf AgarJb(EL ) | (5.70)
60 co /3

pCO
PIM — | Ay 200 / dr [Ty (EL7)])? . (5.71)

(k&

The outgoing radiation field outside the Nth cladding pairs can also be identified
from Eq. (5.10) as

E, = fru = P’ ) (5.72)
kLr

cl
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He _ CL)GO( ) fTM a,N+ e cl(r pN+1) (573)
ko JELr
cl
and correspondingly, the radial power flux is
pPr™ = %| FrarlPla s *dz | (5.74)
which gives the radiation loss constant to be
orm = P’"TAI 1(nclkco 2’ Bry ‘ | |2N [Jo(kcopco)]chlpcl
PIMdz — 5 nl kY "Apar — Arar + Brar 2o dr r[J4(kLr))?
(5.75)

where Eq. (5.20), (5.33), (5.60), (5.71), and (5.74) are used.
To simplify our results for arg and aggy, we introduce a new parameter z = k,pg,.

For the fiber structure shown in Fig. 5.3, pl, is the same as pl,, which gives

o(klopl) PRl 1y 2lJo(x)P
[0 dr e[ By (kLSS du u Ty (W)

(5.76)

where we have applied Jj(z) = —Ji(x) [68]. The exact value of this expression
depends on our choice of x. But for an order of magnitude estimate, we can simply
choose z = 3.8317, the first zero point of Ji(x), and the integral [ du u[J;(u)]?
becomes z2[Jy(2)]?/2 [68]. Combining these results, we find

[']O(kioptl:o)]le glpil
Jooodr r[Jo(klr))?

~ 0.522kL kL . (5.77)

As can be seen from Eq. (5.16) to Eq. (5.23), Are, Bre, Are, Arm, Bru, and
Aras have the same order of magnitude. Therefore, in our estimation of radiation
loss, we take the values of Brg/(Arg — Arg + Brg) and Bra/(Arar — Arav + Bras)
to be 1. Combining these approximations with Eq. (5.77), we find Eq. (5.68) and Eq.

(5.75) become
| (keo)®

orp = 0.522—— Bk,

o (5.78)

) 2 (k) a2V (5.79)

Ty = 0.522
(nco ﬂl”;l



127
These two expressions can be further simplified by taking n., = 1 (air core), A =

2nc/w = 1.55um, and assuming § = k! = w/v2¢, kl, = nlw/c:
1 .
aTE(dB/km) = 4.6 X 109—1|/\TE|2N s (580)
g '

ara (dB/km) = 4.6 x 10°nY| Aras[?Y (5.81)

where the unit for radiation loss has been converted to dB /km.

Many assumptions are made to simplify Eq. (5.68) and (5.75) into Eq. (5.80)
and (5.81). Tt is worthwhile to see how we can justify the simplified results from
an intuitive point of view. Without the Bragg cladding, the light confinement can
only be achieved on the order of the wavelength, which means that the radiation
loss constant must be of the order of dB/um = 10°dB/km. With the presence of
Bragg cladding, the light amplitude reduction due to each cladding pair is Ayrg for
TE modes and Apps for TM modes. Therefore, the radiation loss for a fiber with N
Bragg cladding pairs should be of the order of (Arg)?" x 10°dB/km for TE modes
and (Arar)?Y x 10°dB/km for TM modes.

The values of Arg and Arjps also have complicated dependence on 3, nl;, I}, n?
and [, as can be seen from Eq. (5.16) to Eq. (5.23). However, when the cladding
layers form quarter wave stack (i.e., kLl} = k%1% = 7/2) such that light is optimally

confined, the expressions for |Are| and || take simpler forms:

2 1

ks k
Mg = min(-¢, <) | (5.82)
(/fiz k?;z)

kl n, 2’931]

2
: nc ¢ [
’)‘TM| = mm[(—l—l) k?l’( 2l) k,‘_l (583)

- We choose cladding layer II to be the low index medium with n% = 1.5, typical of

silica glass and polymers. With this value, it can be shown that for 0 < 8 < w/c the

minimum value of |Arg| is \/[(nél)2 — 1]/[(n})? — 1], and the minimum value of |Ap|

is n2/nl,. Substituting them into Eq. (5.80) and Eq. (5.81), we find the minimum
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number of Bragg layer pairs required to achieve 0.2dB/km radiation loss is

23.9 — In(n}))
In [(ng)? — 1] — In[(n3)* — 1

for TE modes and
23.9 + In (n})

2[In (”iz) —In (nZ)]

Nry = (5.85)

for TM modés.

We plot Eq: (5.84) and Eq. (5.85) in Fig. 5.4. The top figure corresponds to the
case of weak index contrast. For An less than 0.01, it takes 1000 or more cladding
pairs to reach 0.2dB/km. Fabricating such large number of cladding pairs is likely
to be very difficult in practice. For An between 0.1 and 1, we find that it takes
less than 200 cladding pairs to reduce the radiation loss of TE and TM modes to
0.2dB/km. We notice that this index contrast range corresponds to what can be
achieved in air core PBG fiber [104]. Of course, the light confinement in PBG fibers
is achieved through two-dimensional Bragg reflection rather than one-dimensional
Bragg reflection. However, if we take an effective index approach and approximate
the 2D air hole patterns as alternating layers of concentric dielectric layers with high
and low refractive index, the index contrast between the effective refractive indices
should fall within the range of 0.1 to 1. Thus for air core PBG fibers, 0.2dB/km
propagat‘ion loss can be achieved with 200 or less air hole layers. The bottom figure
in Fig. 5.4 corresponds to the case of large index contrast. We notice that for An
between 1 and 3 (2.5 < nl, < 4.5), 25 pairs may suffice to guide TE and TM modes
with less than 0.2dB/km radiation loss.

We have only discussed radiation loss for TE and TM modes so far. According

to the discussions in Sec. 5.2.3, modes with m # 0 are mixtures of TE and TM

| components in the Bragg cladding layers. Therefore, their radiation loss is determined

by the TM component, since TM component is less confined and suffers more radiation
loss compared with TE component, as can be seen from Fig. 5.4.

Since we use the smallest possible values for |Arg| and |Arp| in deriving Eq.

(5.84) and Eq. (5.85), our results in Fig. 5.4 give the minimum number of Bragg pairs
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Figure 5.4: The number of Bragg cladding pairs necessary to achieve 0.2dB/km ra-
diation loss. An is the index contrast between the two cladding dielectric media
nl, —n?, with n% = 1.5. The solid line gives the minimum Bragg pairs for TE modes

to 0.2dB/km, while the dash line gives the corresponding quantity for the TM modes.
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needed to achieve 0.2dB/km radiation loss and should serve as an order of magnitude

estimate. Obtaining a better estimate of radiation loss requires values of 3, nl;, I},

© nZ, and 3. Once they are known, we can find Arg and Ay from Eq. (5.22) and

(5.23), and substitute them into Eq. (5.78) and (5.79) for arg and arpy.

One notable exception to the above estimate is worth mentioning. In an air core
fiber, if ﬂ is only slightly less than w/c, the value of k!, can be very close to zero
(whereas in dériving Eq. (5.84) and Eq. (5.85) we use 3 = k!, = w/v/2¢). According
to Eq. (5.68) and Eq. (5.75), a small k2, can greatly reduce the radiation loss [100].
Therefore, when [ becomes very close to w/c, it may be necessary to use Eq. (5.68)

and Eq. (5.75) to obtain accurate results of radiation loss.

5.4 Bragg Fiber Dispersion

Having developed the asymptotic formalism in the previous section, we shall apply
it to study the dispersion properties of a Bragg fiber. The results will be compared
with those obtained from 2D FDTD calculations to verify the validity of the asymp-
totic approach. We choose to study an air core (n!, = 1.0) Bragg fiber with cladding
parameters as follows: nl, = 4.6, [, = 0.25A, n% = 1.5 and [% = 0.75A, where the
parameters are defined in Fig. 5.2 and A = [}, + [ is the total thickness of a Bragg
cladding pair. We choose the air core radius to be p!, = 1.0A. In the asymptotic
calculations, the core region consists of 5 concentric dielectric layers. Using the no-
tations in Fig. 5.2, we explicitly write out the core region parameters as n’, = 1.0,
n?, =ng, =4.6,n3, =nd, =151, =1.0A, 12 =12 = 0.25A, and !, = I>) = 0.75A.
In 2D FDTD calculations, we choose A = 24 computational cells and use 3 cladding
pairs around the air core to define the Bragg fiber. In Fig. 5.4, we find that for index
contrast we have chosen, 10 cladding pairs are enough to reduce the radiation loss
to approximately 0.2dB/km. Not surprisingly, 3 cladding pairs should give us well
defined guided modes.

Both the asymptotic results and the FDTD results are shown in Fig. 5.5, where in

the top picture we plot the effective index n.sf = fc/w as a function of w, and in the
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Figure 5.5: The dispersion of an air core Bragg fiber with a single m = 1 mode. The
Bragg fiber parameters are: nl, = 1.0, pl, = 1.0A, n}; = 4.6, [}, = 0.25A, n? = 1.5 and
12 = 0.75A. The solid line is from the asymptotic analysis, while the dots represent
the 2D FDTD results. The effective indices n.;; is defined as fe/w.

Figure 5.6: The H, field distribution of a guided Bragg fiber mode at w =

0.291(27c/A) and S = 0.143(27/A). The parameters of the Bragg fiber are given
in caption of Fig. 5.5.
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bottom picture w as a function of propagation constant §. Notice that the units for
{3 and w are respectively 27 /A and 27¢/A. Within the frequency range shown in Fig.
5.5, both the asymptotic analysis and FDTD calculations show that the Bragg fiber
supports a single guided mode with m = 1 propagating in the air core. In Fig. 5.5,
the two approaches agree well with each other, while the small discrepancy can be
attributed to the discretization error in the FDTD algorithm. In fact, if we consider
that only 6 computational cells are used for [}, the agreement between the asymptotic
approach and FDTD approach is quite impressive.

In Fig. 5.6, we show the distribution of the H, field obtained from FDTD cal-
culation. The frequency and propagation constant of the mode are respectively
w = 0.291(2m¢c/A) and § = 0.143(27x/A). Fig. 5.6 clearly shows that the guided
mode has an azimuthal number m = 1 and most of the field is concentrated within
the air core and the first cladding layer. The radiation field outside of the Bragg
cladding can also be seen in Fig. 5.6.

As mentioned before, our asymptotic algorithm can be arbitrarily precise by in-
corporating more and more dielectric layers into the core region. More specifically,
if we use a superscript N to denote the asymptotic results obtained using an inner
core region consisting of N dielectric layers, the results should converge as a function
of N to the exact solutions. With this expectation in mind, we analyze the same
Bragg fiber described in the caption of Fig. 5.5 and study how the results depend on
the number of inner core region layers. We first choose a core region consisting of
7 dielectric layers (including the center air core plus 3 cladding pairs) and calculate
the effective index of the Bragg fiber. We denote the result as nzf s and use this as
the standard for comparison. Then we calculate the effective indices using 1, 3 and
5 inner core layers and respectively denote the results as nl¢;, nlq,, and nZ;.. The
absolute value of the difference of between these values and n;, are plotted in Fig.
5.7 (ie., ngsr — nlssly nd;p —nlp,l, and [n,;; —nl ).

We first notice that the difference between n/;,, where the core region consists of
only the air core, and the standard n[ sy 1s quite large. In fact, as frequency approaches

0.265(27/A), the cutoff frequency of the guided mode, the difference between the two
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Figure 5.7: The deviation of the effective indices obtained using various inner core
region layers. We use né\}f to denote the effective index obtained using a N layer
core region. The curves labeled with “1 layer,” “3 layers,” and “5 layers” represent
respectively |nl;; — nl|, [nd;; —nl;|, and [nd;; — nl;|. The parameters of the
Bragg fiber are given in the caption of Fig. 5.5.

values reaches 0.2, which is quite significant. On the other hand, with the addition of
only one cladding pair into the core region, the deviation between the effective indices
(Ins; —nszl) is reduced below 0.02, a 10x reduction compared with [nl; —nl;;|. As
one more cladding pair added into the core region, [n3;; — nl;(| is below 0.001. This
suggests that the difference between asymptotic results and exact solutions should
also be of the same order of magnitude. Thus we can conclude that asymptotic
results with inner core region consisting of the first 5 dielectric layers offer an excellent
‘approximation of the exact solution. _

| At the end of Sec. 5.2.3, we described how to find the field distribution using the
asymptotic approach. Basically, we must first obtain the propagation constant using
Eq. (5.41)‘. Substituting the result into Eq. (5.42) and Eq. (5.43), we obtain the modal
amplitude coefficients in the first layer of the cladding region (i.e., fras and frg) and

those in the center air core (i.e., A7y and Crg), respectively. Then the cladding fields
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are easily found from Eq. (5.10) and Eq. (5.11), while the core fields are obtained by
applying Eq. (5.6) and Eq. (5.8) repeatedly. We apply this algorithm to study the
- field distribution of the guided Bragg fiber mode at w = 0.286(2rc/A). Using a core
region of 5 layers, we find the propagation constant to be [ =‘0.128(27T/A). The
field distribution given by this asymptotic approach is represented by the solid lines
in Fig. 5.8.

Having obtained the field distribution using the asymptotic algorithm, naturally
we would like to know how accurate the asymptotic approximation works without
having to check asymptotic results using either the orginal algorithm by Yeh et al.
or the FDTD method. We notice that the essence of the whole asymptotic algorithm
is that the field distribution in the cladding region can be well described in the
asymptotic limit. As long as this condition is satisfied, the asymptotic approach
should provide a satisfactory description of the guided mode. To check the accuracy
of the asymptotic approximation in the cladding region, we can calculate the ezact
field distribution in the cladding region by repeatedly applying Eq. (5.6) and (5.8).
We use “exact solution” to denote results obtained this way. In other word, to find
the “exact solution,” we still need to find Ary, and Crg using Eq. (5.41), (5.42)
and (5.43), as described in the previous paragraph. The only difference between
the “exact solution” and the asymptotic solution is that for the “exact solution,”
the field distribution in the entire Bragg fiber is obtained from Eq. (5.6) and (5.8).
Consequently, within the core region, the “exact solution” and the asymptotic solution
are the same. In the cladding region, the two solutions differ from each other, and
their difference indicates how well the asymptotic approximation works. In Fig. 5.8,
the “exact solutions” are represented by the dots. As expected, the “exact solution”
and the asymptotic solution are the same within the core region. However, even in
the cladding region, the difference between the two solutions are very small. Thus we
can conclude that the asymptotic algorithm gives an accurate description of the field
distribution of the guided mode.

We notice that the free space wavelength of the mode is A = 3.5A, which means

that the ratio of the air core radius and the photon wavelength is only 0.286. Inspect-
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‘Figure 5.8: The electromagnetic field distribution of the guided Brag fiber mode at
w = 0.286(27wc/A). The interface between the core region and cladding region is
indicated by dash line. The exact solutions are obtained using Eq. (5.6) and (5.8)
only. The asymptotic solutions are obtained using Eq. (5.6) and Eq. (5.8) in the core

region, and Eq. (5.10) and (5.11) in the cladding region.
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ing Fig. 5.7 and Fig. 5.8, we find it quite amazing that for such small air core radius,

the asymptotic approximation with 5 inner core layers works so well.

5.5 Coaxial Fiber Dispersion

It is well known that the fundamental TEM mode of a metallic coaxial cable has
no polarization effect or any modal dispersion, which make it very attractive for
transmitting electromagnetic signals. The problem is that metals are very lossy in
the optical range. In Ref. [105], Ibanescu et al. drew an analogy between the metallic
coaxial cables and dielectric coaxial fibers, and proposed to use dielectric coaxial
fibers in optical communications. There are, however, several important problems to
be solved before coaxial fibers can find wide applications in optical telecommunication.
Firstly, it is critical that the coaxial fiber mode has small dispersion within the entire
telecom frequency window instead of at a single point. Secondly, we should keep
in mind that the analogy between omnidirectional mirrors and high refractive index
materials with metals is not perfect. For example, if the outer cladding of a metallic
coaxial cable is taken out, the center metal rod does not support lossless propagating
mode. Yet if we take away the Bragg cladding of the coaxial fiber, the center high
index dielectric rod resembles an optical fiber and supports at least one propagating
mode. Naturally we need to address the question: How does the difference between
high index‘dielectric and metal influence the dispersion properties of coaxial fibers?
In this section, we apply the asymptotic matrix theory to address the aforementioned
problems.

As in Bragg fibers, each guided coaxial fiber mode can be classified according to
its propagation constant S (momentum in the z direction) and angular momentum
m. Using the asymptotic method, we analyze one of the coaxial fibers studied in Ref.
[105]. For the high index medium of the coaxial fiber cladding, we choose n); = 4.6
and I = (1/3)A, whereas for the low index cladding medium we have n? = 1.6 and
12, = (2/3)A. A is the total thickness of the Bragg cladding pair. The parameters

of the Bragg stack are chosen such that it forms an omnidirectional reflector [105].
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Figure 5.9: Dispersion of the coaxial fiber. The points in the shaded region indicate
the existence of propagating TM cladding modes in the omnidirectional reflector. The
thick solid lines are results obtained from asymptotic analysis. The dots represent
the 2D FDTD results. The light lines in air (f = w/c) and in the low index medium
of the Bragg cladding (8 = n%w/c) are also shown. If the omnidirectional cladding is
taken away, the center core of the coaxial fiber resembles a conventional optical fiber
and supports three guided modes: HE, TE and TM modes. Their dispersions are
~calculated using the formulae for conventional optical fibers and are shown as dash
‘lines. The single mode windows for the TM band are illustrated in the figure as two
boxes.
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The refractive index and radius of the center core are respectively n.,, = 4.6 and
lco = 0.4A. The refractive index and thickness of the coaxial region are respectively
 Neoge = 1 and lepge = 1.0A. We use four core layers in our asymptotic calculations
and normalize the results with respect to A. The asymptotic results are Shown in Fig.
5.9 as thick solid lines. We also use the 2D FDTD algorithm to verify the validity of
our asymptotic calculations. The FDTD results are shown in Fig. 5.9 as dots. The
shaded regioniin Fig. 5.9 corresponds to the TM cladding modes that can propagate
in the cylindrical omnidirectional reflector.

In Fig. 5.9, the asymptotic analysis gives us four photonic bands, a TE band
(m = 0), a TM band (m = 0), and two m = 1 bands. The asymptotic results agree
well with FDTD calculations, considering that in FDTD analysis the thickness of the
high index cladding is only 8 calculation cells. We point out that the TE band was
missed in the results in Ref. [105]. We notice that the asymptotic results for the
TM band and two m = 1 bands are confined within the region of TM gap. This is
simply due to the fact that all three bands contain TM components [106] and that
the TM components must decay in the Bragg cladding to define guided coaxial fiber
modes. The TE band, on the other hand, does not contain any TM component [106]
and asymptotic analysis gives us guided TE modes up to the light line in cladding
medium II (8 = nw/c). After crossing the light line, fields in cladding medium
II can no longer be described by the asymptotic analysis in Sec. 5.2. The excellent
agreement between the asymptotic analysis and FDTD calculations demonstrates the
validity of asymptotic approach.

As mentioned before, if we take out the Bragg cladding, the center dielectric
core becomes a conventional optical fiber whose modal dispersion is well known [69].
The dispersion of these conventional fiber modes was plotted in Fig. 5.9 as dash
lines. Comparing the conventional fiber modes with the FDTD calculations of the
full coaxial fiber, we find excellent correspondence between the two for the region
below the air light line 8 = w /c. This strongly suggests that once the guided coaxial
fiber modes pass through the air light line, the main confining mechanism is actually

provided by the center high index core. To see this point more clearly, we show two
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(b)

Figure 5.10: The H, field distributions of the lower m = 1 band. In (a), the guided
mode has § = 0.153(2r/A) and w = 0.187(27¢/A). In (b), the guided mode has
8 =0.611(27/A) and w = 0.229(27¢/A).

FDTD calculations of field distribution of the lower m = 1 band. The m = 1 mode in
Fig. (5.10a) has 3 = 0.153(27/A), w = 0.187(27¢/A) and belongs to the TM bandgap
above the air light line. For any modes above light line, guiding cannot be achieved
through total internal reflection and therefore in Fig. (5.10a) we observe a substantial
field distribution in both the coaxial region (air) and the Bragg cladding. The m =1
mode in Fig. (5.10b) has 8 = 0.611(27/A), w = 0.229(27¢/A) and is clearly below the
air light line. As expected, the guided coaxial fiber mode becomes essentially the HE
mode of a conventional fiber, with optical fields concentrated in the center dielectric
core and only a negligible amount in the Bragg cladding.
Not. only does the total internal reflection play a significant role in the modal
dispersion of the guided coaxial fiber below the light line, it also must be taken into
‘_ account in determining the frequency window of single mode operation. The lower
single mode window, as shown in Fig. 5.9, simply contains all the TM modes below
the cutoff frequency of the lower m = 1 band. However, finding the higher single
mode window is more trickier. ‘As the lower m = 1 band enters the shaded region

in Fig. 5.9, the TM field component loses confinement in the Bragg cladding and the
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m = 1 band is no longer a well defined guided mode. Thus the second single TM mode
window in Fig. 5.9 begins at the lower intersection of the m = 1 band and the TM
gap, and ends at the smallest of the following frequencies: the cutoff frequency of the
~higher m = 1 band, the cutoff frequency of the TE band, and the higher intersection
point, of the lower m = 1 band and the TM gap where the lower m = 1 band enters
again into the TM gap. The two single frequency windows are shown in Fig. 5.9
as two boxes. Within the higher single frequency window, the m = 1 quasi-band,
even though not well confined, can still have low loss due to total internal reflection
in the coaxial air region. In fact, that is exactly why FDTD algorithm can give us
m = 1 and TM band outside of the TM gap. To study the influence of the m =1
quasi-band on the single mode operation of TM band, however, is beyond the scope
of this section.

For the long distance communication fibers, the dispersion parameter D, which

2{}% [69], should remain small within the entire telecommunication

is defined as —
window. In Fig. 5.11, we show the dispersion parameter D calculated from the asymp-
totic results. The wavelength A is normalized such that the TM band crosses air light
line 8 = w/c at 1.55um. The two single frequency windows are identified in Fig.
5.11 as shaded region. We immediately notice that the dispersion parameter D takes
very large value at most frequencies and can be both positive and negative. Around
L.6um [w = 0.202(2m¢/A)], D crosses the point of zero dispersion but remains small
only within a very small frequency range. In Ref. [105], Ibanescu et al. predicted a
point of zero dispersion. Our results in Fig. 5.11 confirm their prediction, yet at the
same time, point out an important problem: The frequency window of small D is too
narrow. for optical signal transmission.

In Fig. 5.12, we show F, and Hy components of the TM mode at the zero disper-
sion frequency w = 0.202(27¢/A). Since the magnetic field of a TM mode contains
only Hy component, from Fig. 5.12 it is obvious that there is substantial presence of
electromagnetic field in the high index core and the optical intensity in the high index
core is comparable to that in the air coaxial region. As a result, using this coaxial

fiber mode to guide light does not provide much benefit in terms of reducing material
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Figure 5.11: Dispersion parameter D of the coaxial fiber TM band. At A = 1.598um
[or w = 0.202(27¢/A)], the dispersion parameter D becomes zero, which is shown as
the dash line. In the upper diagram, the absolute values of D are show in a log scale.
The two single mode windows in Fig. 5.9 are shown as shaded regions. To the left of
the dash line, D is negative, whereas D is positive to the left of the dash line. In the
lower diagram, D is shown in the linear scale. ~
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Figure 5.12: The E, and H, fields of the TM coaxial fiber mode at w = 0.202(27¢/A).
The unshaded, light, and dark regions respectively represent air (nep,, = 1), low
index dielectric medium (n% = 1.6) and high index dielectric medium (nl, = 4.6).
The units for electric field and magnetic field are chosen such that ¢, = 1 and po = 1.
The asymptotic solutions and the exact solutions are obtained in the same way as in
the caption of Fig. 5.8.

absorption and nonlinear effects. This also illustrates that the analogy between di-
electric coaxial fibers and metallic coaxial cables is not perfect. Turning our attention
to the cladding field, we find that the field strength in the first cladding pairs, even
though relatively small, is not negligible. In fact, the fields in the first Bragg pairs
cannot be neglected, since optical fields must penetrate at least one cladding pair to
experience Bragg confinement. This also explains the large modal dispersion we find
in Fig. 5.11, since any guided coaxial fiber mode must “feel” several different dielec-
‘tric media: the high index core, air in the coaxial region, the high index cladding,
‘and the low index cladding. In contrast, for conventional optical fibers, the guided
modes are defined by the silica core and cladding whose index difference is generally
less than 0.01. |

In conclusions, we find that both Bragg reflection and total internal reflection play
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important roles in determining modal dispersion of the coaxial fiber. The analogy
between dielectric coaxial fibers and metallic coaxial cable are not entirely accurate,
and there is substantial amount of optical fields in the high index core and the Bragg

cladding. As a result, guided coaxial fiber mode generally have large dispersion.
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Chapter 6
Conclusions

In the previous chapters, it is demonstrated that evanescent coupling and Bragg
reflection, as confinement mechanism, lead to many possibilities that are difficult to
achieve using conventional guiding via total internal reflection.

In coupled resonator optical waveguides (CROW), the photons propagate by “hop-
ping” from one resonator to its closest neighbors, which leads to substantially reduced
group velocity and dramatically modified dispersion relation. Both these properties
are very useful in nonlinear optics. In Sec. 3.5, we take second harmonic generation
(SHG) as an example and derive expressions for the SHG efficiency. In the deriva-
tion, two observations are of special importance and can be applied to many other

nonlinear optical processes besides SHG. First, we notice
P « |E|*v, , (6.1)

- where |E'| stands for the strength of the electric field, P is the power flux, and v, is the
group velocity of the photons. Consequently, in CROW’s with small group velocity,
a modest power input can lead to a large electric field strength, which in turn leads
to more efficient nonlinedr optical processes. Another consequence of the slow group

velocity is that photons become much heavier. Again take SHG as an example, when
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both the fundamental mode photons and the second harmonic mode photons travel
much slower, the effective interaction time between them becomes longer for a given
traveling length, as can be seen from the factor Vg g in Eq. (3.39). This also leads to
“an enhancement of the nonlinear efficiency. Secondly, we observe that for the SHG

process, the phase matching condition is changed into

K1 () + Fo(w) = K(2w) + nox

& n=0ELE2 (6.2)

as can be seen from Eq. (3.40). The term n27/R in Eq. (6.2) corresponds to the Bloch
vector of the 1D periodic structures. It is easy to see that the appearance of the Bloch
vector in any phase matching condition should be universal, since the “real” photon
momentum in any periodic structures is always the “crystal” momentum within the
first Brillouin zone plus some integral multiples of the Bloch vectors of the periodic
media. For many nonlinear optical processes, the addition of the Bloch vectors should
make the phase matching condition easier to achieve.

Even though only two examples of CROW’s are studied in Chapter 3, the CROW
bands appear in many other cases. In photonic crystals, many optical bands above
the bandgap have the characteristics of CROW bands [24, 27]. We can apply tight
binding approximation to study many interesting phenomena of those bands, such as
superprism effect [21] and soliton propagation in CROW-type bands.

To achieve low propagation loss in Bragg fibers and dielectric coaxial fibers, it
is necessary to use dielectric materials with large index contrast. Consequently, the
guided modes tend to have large modal dispersion, which makes this type of fibers
very interesting for the purpose of dispersion compensation. However, further calcu-
lations ére needed to understand the complex dispersion behavior of Bragg fibers and
dielectric coaxial fibers. Another interesting phenomenon is that the effective index of
guided modes in Bragg fibers and coaxial fibers can be less than one, where the phase
velocity is greater than the speed of light in free space. This unique property cannot
be achieved in conventional fibers, and may lead to many interesting applications.

In the scattering theory analysis of waveguide-resonator coupling, we find that
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the reflection/transmission characteristics of the composite system depend strongly
on the strength of the waveguide-resonator coupling, the gain/loss of the high Q
© mode, and various properties of the cavity modes such as degeneracy and symmetry.
Such dependence provides an efficient way of controlling the waveguide transmission
and reflection using nonlinear optical effects, such as electro-optical effects and Kerr
nonlinearity [111]. The improved efficiency is mainly due to two effects. First, at the
cavity resonance, the cavity field amplitude is enhanced by a factor of (), as shown
in Eq. (4.32). Second, both the waveguide-resonator coupling and the cavity loss
can be made very small. In this case, to completely change the transmission and
reflection coeflicients of the coupled system, we only need to modify the waveguide-
resonator coupling by a small amount comparable to the cavity loss and vice versa
(i.e., “critical coupling” in Ref. [87]). Another possibility is to modify the group
velocity of the indirect CROW through changing the waveguide-resonator coupling.

The above mentioned effects are all classical effects in the sense that they can
be understood purely from Maxwell equations. However, by strongly modifying the
photonic density of states, periodic dielectric materials can also fundamentally change
the interaction between atoms and photons. A well know example is the enhancement
or the inhibition of the spontaneous emission rate by embedding the atoms in a high
Q cavity [43] or photonic crystals [12]. A fascinating consequence of the modified
spontaneous emission rate is the dramatically reduced threshold for nonlinear optical
phenomena [112]. It should be emphasized that this effect is completely different
from the enhancement of nonlinear optical efficiency due to group velocity reduction.
Another interesting application of photonic crystals is to introduce a high Q defect
cavity to increase the atom-photon coupling. When the atom-photon coupling is
much larger than the cavity photon decay rate and atomic dephasing rate, the atom-

photon coupling enters into the strong-coupling regime, which is of great interest in

cavity QED [113].
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