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Abstract 

Csing both analytical approaches and finite difference time domain simulations, we 

investigate different types of waveguiding and coupling mechanisms, including direct 

coupling between the optical n'sonators, waveguide-resonator coupling, indirect res­

onator coupling via waveguidr'. modes, and Bragg reflection in cylindrically symmetric 

geometries. 

By coupling an array of high Q optical resonators together, we form a ne,v type 

of \vaveguide, coupled resonator optical waveguide (CRO\V), where photons propa­

gate by "hopping" from one resonator to its nearest neighbors. L"sing tight-binding 

approximation, we find that the CRO\V modes retain the symmetries of the isolated 

high Q optical modes and the CRO\V band dispersion can be simply characterized 

by a coupling coefficient f£. The tight-binding results are confirmed by using the fi­

nite difference time domain algorithms to analyze two examples of CRO\\ns: one is 

composed of coupled dcfeet cavities in a two-dimensional triangular lattice photonic 

crystal, while the other is formed by coupling an array of dielectric microdisk cavities. 

By coupling a resonator to a ·waveguide, we significantly change the reflection 

and transmission characteristics of the waveguide. The waveguide dispersion can also 

be drastic-ally modified by coupling an array of resonators to the waveguide, cllw to 

indiwct coupling between the resonators via ,,.-avcguide modes. Using a formalism 

based on thP quantum scattering theory, we investigate how the waveguide-resonator 

coupling, resonator gain (loss), degeneracy and symmetries of the resonator modes 
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influence the optical properties of such coupled waveguide-resonator systems. 

Bragg guiding can be achieved in cylindrically symmetric geometrit!S by using 

cladding media with alternating high and low refractive indices. Examples include 

Dragg fibers and dielectric coaxial fibers. An asymptotic formalism is developed to 

study the dispersion, propagation loss, and field distribution of guided modes in such 

fibers. The results are compan)d with those obtained from nurrwrical calculations. 

where excellent agreement is found between the two approaches. 
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Chapter 1 

Introduction 

1.1 One-Dimensional Bragg Reflection 

In a 1972 paper entitled "Coupled waw theory of distribut0d. feedback lasers': [1 ;, 

II. Kogelnik and C. V. Shank proposed using a spatially periodic modulation of the 

refract i\'e index or gain to provide optical fo<)dback for laser oscillation, as shown in 

Fig. (1.1a). In this case, the coupling between LhP counter-propagating waves can be 

well described by the coupled mode theory [2], and the condition of optical feedback 

requires that the spatial period of the modulation i\ equals to some integral multiple 

of half the guiding wavelength 

,,\ 
.i\.=rn-. rn=l,2,··· 

2 
(1.1) 

An optical bandgap, which is defined as a frequency zone where no propagating 

waveguide mode exists, is formed in the vicinity of this Bragg condition, i.e., Eq. 

( 1. 1). The magnitude of this bandgap was shown to be proportional to the strength of 

the ind.ex perturbation [2]. These) types of one-dimensional ( lD) dielectric st ructurcs 

with weak periodic index perturbation, which include fiber Bragg gratings [3] and 

semiconductor distributed feedback (DFl3) lasers :4], have found wi<k applications in 
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Figure 1.1: (a) Distributed feedback provided by the periodic perturbation of the re­
fractive index or gain. (b) Electromagnetic field in one-dimensional periodic stratified 
media. 

optoelectronics and telecommunications. 

Another example of the lD periodic dielectric structures is the planar Bragg 

stack shown in Fig. (1.1 b), which consists of alternating dielectric layers with dif­

ferent refractive indices. For Bragg stacks with large enough index contrast, it is 

more appropriate to analyze them using the transfer matrix method as developed in 

Ref. [5], instead of the coupled mode theory. These planar Bragg stacks have found 

wide applications as vertical cavity surface emitting lasers (VCSEL) [6], light emit­

ting diodes (LED) [7], anti-resonant reflecting optical waveguides (ARROW) [8], and 

Bragg waveguides [9, 10]. 
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Air Hole 

High Index Dielectric Medium 

Figure 1.2: A two-dimensional photonic crystal composed of a square lattice of air 
holes in a high refractive index dielectric medium. 

1.2 Photonic Crystals and the Formation of Bandgap 

In the lD periodic dielectric structures, the prohibition of wave propagation gener­

ally occurs in the direction perpendicular to the layers, which makes them highly 

valuable as ideal reflective mirrors. However, it can also be shown that for these 

lD structures, no matter how we choose the index contrast and layer thickness, at 

any given frequency there exist some propagating electromagnetic modes within the 

dielectric structures, i.e., the photonic bandgap is not complete. To form a bandgap 

that prohibits light propagation in every direction, it is necessary to utilize dielec­

tric structures periodic in multiple spatial dimensions, which are generally referred as 

photonic crystals in the literature [11]. This was first suggested in 1987 independently 

by E. Yablonovitch [12] and S. John [13]. In Fig. 1.2, a two-dimensional square lattice 

photonic crystal is shown. 

The spatial periodicity of pL10tonic crystals leads to a natural analogy with solid 

state crystals. For example, the Bloch theorem can be applied to classify optical 
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bands in photonic crystals, and the formation of an optical bandgap is directly du<' 

to the periodic distribution of dielectric constant. The main diffPn'nce between thr: 

photonic crystals and solid state crystals is due to the vee.:torial nature of photons. 

As a consequence. to form a complete photonic bandgap, which is defined as a fr<,_ 

quency range within which 110 propagating optical rnod0 exists in ev<'ry direction, it 

is necessary to <'mploy dielectric mat<'rials of w~r.v large index contrast [1:3]. 

By forming a photonir bandgap, the photon densit~' of st ates (DOS) is dramat­

ically reduced within the fr<~quency handgap [14]. lf light emitting materials are 

embedded in the photonic crystals and the photon frequency coincid<'s with the frc­

queucy gap, the spontaneous emission ,~,,ill be strongly inhibited [12]. In sonw appli­

cations, it may be sufficient, or even desirable, to form a partial bandgap [1.:i]-["17]. 

Until recently, much of the research in photonic crystals focused on the fabrication 

of dielectri(' structures exhibiting optical bandgap r18, 19] and the physics within the 

frequency bandgap [20]. 

The spatially periodic dielectric structures lwve much to offor besides thC' forma­

tion of a handgap. It was demonstrated that the dispersion of light outside of the 

gap region ean be 500 times stronger than tlw dispersion in conventional prisms [21], 

which can be attributed to thP large normal and anomalous dispersion near the pl10-

tonic bamblges [22]. In the long-wavelength limit wher(' the photon frequency is far 

below the optical ban<lgap, the photonic crystals can be) vie"ved as uniaxial or biaxial 

media and explicit formulas haw beeu derived for the effective dielectric constants 

[2:3]. Abow the hanclgap, it was also shown that the photonic bands <·a11 be well 

described by thP tight-binding approximation [24]. Thus it is obvious that in periodic 

dielectric materials, a different mechanism is n!sponsible for photon guiding at differ­

ent fn:quencies. To fully understand the complex behavior of the photonie dispersion 

in periodic dielectric materiab, it is rwcessary to study in depth the different µ;uiding 

mechanisms. 
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1.3 Different Waveguiding Mechanisms 

The most widely used guiding mechanism in optoelectronic:s is the total internal 

reflection. One prominent example is the optical telecommunication fibers, where 

photons are confined in the silica core with refractive index slightly higher than that 

of the cladding medium. A far less obvious, but very interesting case of total internal 

reflection guiding is a 2D square lattice photonic crystal v-raveguide. In Ref. [25], we 

demonstrate that the propagating modes within the Pl3G waveguide can lw regarded 

as a slab waveguide mock, and the photonic crystals surrounding the core region 

can be well approximated using an effective index lower than the core region index. 

However, since the total internal reflection is well understood, with simple analyti­

cal solutions easily available, the follmving chapters shall concentrate on evanescent 

guiding and Bragg guiding. 

The evanescent coupling between individual optical resonators, as a guiding mech­

anism, is very similar to the tight-binding propagation in the solid state physics [26]. 

In Chapter 3, we utilize evanescent coupling to construct a new type of waveguide, 

coupled resonator optical waveguide (CRO\V), whos(~ unique symmetry and disper­

sion properties allo-w for many potential applications in optoelectronics, espPcially 

nonlinear optics. It should be mentioned that this type of evanescent guiding is quite 

common in photonic crystals [21, 27:. 

As we shall see in Chapter 4, another type of evanescent coupling, the waveguidc>­

resonator coupling, is also of great interest. For a waveguide coupled to a single 

resonator, a scattering theory is used to analyze the transmission and reflection char­

acteristics of the cmiplPd system, which are shown t,o depend strongly 011 the charac­

teristics of the cavity modes and the wav<~guicle-resonator coupling. The r,vanescent 

coupling between the waveguide and the resonator lPads to the formation of indirect 

CROvV. 

Bragg guiding is considered in Chapter Z1. The effects of Dragg guiding in planar 

geometries have been extensively studied [28]. The Bragg guiding in cylindrically 

symmetric geometries, on tlw other hand, is not well understood. In Chapter i:i, w<' 
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developc~d an m,yrnptotic matrix theory to analytically find the photonic dispersion 

and guided mode distribution in the cylindrically symmetric geometries. 

l\ilost of the dielectric structures considered i11 later chapters are quite compli­

cated. And the analytical theories developed for them usually involve approxima­

tions. Therefore, it is necessary to develop numerical algorithms capable of solving 

~Iaxwell equations exactly. One such numerical method, finite difference time domain 

(FDTD) method, is discussed in tlw next chapter in detail, and is applied Lo various 

dielectric structures. The numerical results are compared with those obtained from 

analytical theories. 
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Chapter 2 

Finite Difference Time Domain 

(FDTD) Algorithm 

2.1 FDTD Cells and Finite Difference Equations 

The original finite difference time domain (FDTD) algorithm ,Yas proposed by '{ee 

in 1966 [29]. Since then, it has found wide applications in numerical electromagnetic 

simulations and is extensively reviewed in Ref. l30]. With its versatility and rela­

tively easy implementation, the FDTD analysis becomes a powerful numerical tool 

in optoclectronics. In this method, we introduce a lattice of computational grids to 

discretize the spatial domain and transform ;-/laxwell <!quations into a set of finite 

difference equations. Unlike the beam propagation method [:11], the FDTD method 

does not involve the paraxial approximation. Consequently, FDTD algorithms are of 

special importance for dielectric structures with large index contrast and complicated 

dielectric constant distribution, such as photonic crystals. 

According to the~ coordinate systems, FDTD algorithms can IH' generally classified 

into the two-dimensional (2D) FDTD algorithm (32, :3]], th<' three-dimensional (3D) 

FDTD algorithm [29], and the cylindrical one [34]. In this chapter, ·we discuss the 2D 

and 3D FDTD algorithms in detail. The cylindrical FDTD algorithm has relatively 
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limited applications and is not considered here. Readers interested in the cylindrical 

FDTD algorithm should consult R<'f. [:34]. 

To speed up FDTD simulations, in this chapter, we adopt a normalized unit in 

which fo = 1 and JLo = 1. vVith this convention, the vacuum speed of light c = 1, 

while time and space have the same unit. 

2 .1.1 Two-Dimensional Case 

For a given dielectric structure infinite in the z axis, the z dependence of the electro­

magnetic field can be written as c-iih, which is directly due to continuous translational 

symmetry in the z direction. Consequently, we can write the electric field E(x, y, ,z, t) 

and magnetic field 1-l(:r, y, ,z, t) in the form of 

E,r(X, y, t) 

E(x. l/. z. I:) = e---ir:iz c (' t) , ,_ , , £:i; :r' y, , 

'l__J(-1· 'i'j ,., 1 ) - (,--,i,/jz n ,.,,. ,.<.,,,/ - _. 

iE2 (:r, y, t,) 

iHr(:r, !I, t) 

iH:v(.r, y, I:) 

Hz(:r, y, t) 

Substituting them into Maxwell equations, we find 

DH,1 DEZ , -
~ = -,,- + ;3Ex , 
ut C!:J: 

DHz DEx fJEIJ 
-----at ay 8:c ' 

~JE,r = ~(DHz - BH,) ' 
cJt ( fJy ' ,1/ 

(2.1) 

(2.2) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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DEZ _ 1 ( [)Hy {)Hr:) 
7ft - ~ a.1: - ay ' (2.8) 

wh(~rc E represents the distribution of dielectric constant in the xy plane. 

In order to cliscretiz<~ Eq. (2.:3) to Eq. (2.8), we introduce a two-dimensional lattice 

of computational cells (2D FDTD lattice), on which for an arbitrary function F(:r, :i;, !.) 

W<~ define 

(2.9) 

where !:::. is the grid size and !:::.L is the time step. T'he FDTD cell itself is labeled 

according to the position of its lower-left corner. For example, the lower-left corner 

of the (i,.J)th FDTD cell, as seen in Fig. 2.1, should be located at the spatial point 

( i.3., j 6). On each FDTD cell, we arrange the corn porwnts of the electromagnetic 

field as shown iu Fig. 2.1. Following the convention in Eq. (2.9) and take cell siw 

!:::. = 1. we can transform Eq. (2.3) to Eq. (2.8) into the finite difference form [32, :3:3]: 

(2.10) 

H n-t-½(. 1 .) Hn-½(. 1 .) A 
Y - 7, + -. J = !I - 'I+ -. J + ~t 

2" " 2' 
(2.11) 

[En ( . . ) En ( . . ) JEn ( . 1 . ] X z ·i.+1,J - '--1 2 i,J +LJ xi+ 2,J), 

(2.12) 

E n , 1 ( . l . n ( . l . ) !:::. I 
.1:, ·1. + ~,.J) = EJ; '/. + 9'01 + _( ____ ) 

- .. f2,.J 
(2.13) 

[ 
n+l 1 1 n-'-l 1 1 . n+l 1 ] 

X EL "(-i+-:-.J·+-)-Hz· 1 (i.--,J·--)+BH1, l(i+-.·i) 2 · 2 2 2 ., 2 ,./ 
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Figure 2. -l: Electromagnrtic field components at the ( i, j )th 2D FDTD cell. 
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n--'-1(· • l) n(· . 1) D.i E,1 i,.7-2 =Ey i,.7+2 + f(i,j) (2.14) 

r Hn+{(. 1 . 1) Hn~{(. l . 1) ,:iHn+½(· . l)] 
X ~ - z - l + 2, .J + '.2 -+- z . - "l - '.2, ] + '.2 + /.J 1: Z • .J + '.2 , 

E ·r· · ·l ( • •) En ( ) 6'.i 
z,, .. Z,J = ~z i,f +-_(· •) 

( '/,, .J 
(2.15) 

[ H n--'-{( .. 1) IIn't(·. 1) Jln++(. 1 ") !In+½(- I")] 
X - . :,: - 'l,}+2 + ·:1: -_z,J-2 ....... y - z+:2,J - ·y -_z-2,.J • 

In this approach, we assume that the propagation constant d is already knnwn. and 

its value is substituted into Eq. (2.10) to Eq. (2.15). using these FDTD equations, ,ve 

can evolve any electromagnetic field distribution within a given spatial domain. Based 

on thC' t.ime evolution results, we can find the freqncncy and the field distribution of 

the resonant modes within the 2D dielectric structun-!s. 

2.1.2 Three-Dimensional Case 

'vVithout the continuous translational symmetry of the 20 case, lwrc we start from 

the complete \faxwe1l equations for electric field E and magnetic field Jl: 

a11 - -
-=-VX E. at . 

at - -
f~ = V X H. 

ot 

(2.16) 

(2.17) 

As before. we introduce a three-dimensional lattice of cubic cells and attach a label 

to each FDTD cell according to the position of the corner closest to the origin of the 

coordinate s,vstem. The (i, j, k)th cdl in the FDTD lattice, is shown in Fig. 2.2. where 

we also indicate the arrangement of electromagnetic field components at this FDTD 

cell. Adopting a similar convention as that in the 2D case, for an arbitn1r!· function 

F(z, y, z, l). ,w, have 

(2.18) 



z 

y 

I 
' I 

! H,,, X"1 

---- .------

1 

' I 

12 

~; .,•-~--:,,- -:- -

X 

Figure 2.2: Electromagnetic field components at the (i,_j, k)th 3D FDTD crll. 
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Using this notation and taking the cell size ~ = L we can disc:retize Eq. (2.16) and 

Eq. (2.17), which gives us [29] 

11.+l; . . 1 1 n- l . . 1 1 
1J,, " ( z J + - k + - ) = II . 2 

( 1 .• J + - k + - ) - D. t ( 2 .19) 
.l. '· 2' 2 .I .. 2' 2 

[En , . . 1 I. ') Er, ( . . 1 I. 1 ) En ( . . k 1 ) E·,n ( . . 1 k 1) l x 11Vz,.7+2,"; - -'.1y i,.7+2,ri:+ - , ·t,J, ·+2 + z ·t,.J+ '.;+2 ' 

(2.20) 

En ➔- I (. . 1 k) En (. . 1 I ) D.t [Hn--,-f (. . 1 k 1) (? ?3) 
11 l,J + ;---2,; = y l,.J +-2,r,: + (,- .· 1.·•) :r - 'l,J- -2, ·+? ,---· 

fl,.J,ri. _ 

n+k . . 1 1 n-'-f- . 1 . 1 n+¾ . 1 . 1 ] 
- Ff. "(i.J+-.k--)+H, 2 (z-- 1+-.k)-H, -(-1+-.J+- k) 7 

' . 2 2 ' 2'· 2' .. 2 2' ' 

n+l . . 1 11 ,. • 1 !::!..i [ n-,-f . 1 . 1 
Ez (1.,.7,k+;--2)=EzVt,.J,k+?)+ (" .- k) Hy -(z+-2,.J,k+?) (2.24) 

- (7.,.J.. -

H n'-¾(. 1 . 1_ 1) Jfn,-~(- . 1 k 1) J{n.f(. . l 1 1)] 
I - '/. - -. 7 ,;; +-=-- + .. :r; - 'l.} - -. ''. + - - -. :r: - 1. 7 --1-- -:-. r,; + - . 
.1 2··' 2 .. 2· 2 · 2· 2' 

Eq. (2.19) to Eq. (2.24) arc the finit<, difference equivalence of 3D Maxwell equa­

tions. They can he used to <1volvc an arbitrary three-dimensional electromagnetic 

field distribution, and form the basis of 3D FDTD algorithm. 
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2.2 Boundary Conditions 

One important question associated with any FDTD simulation is how to terminate 

the computational domain. Take the 2D case for example. In Fig. 2.3, we showed 

a 2D FDTD computational domain with (N:i: - "I) x (Ny+ 1) FDTD cells. As can 

be seen from Eq. (2.10) to Eq. (2.15), the electromagnetic fields at the ('i,_j)th cell 

depend on those at the four neighboring cells. Thus for sonw field components at the 

boundary cells, such as E:1 (i 1 0), vve can no longer us<> the FDTD equations to update 

their values. Consequently, it is necessary to use various boundary conditions to pro­

vide values for electromagnetic fields located at the boundaries of the computational 

domain. 

There is 110 unique way to terminate the FDTD computational domain, and the 

solution generally depends on the physical nature of the problem. For example, if 

we want to know the electromagnetic modes within a cube bound by perfect metal, 

vve can simply take all the electromagnetic fields at the FDTD boundary cells to 

be zero. Symmetry considerations can also be applied to terminate computational 

boundaries, such as the I3loch boundary condition and the mirror boundary condition, 

as we shall set: shortly hereafter. For some other problems, the boundary conditions 

arc more difficult to find. An example is the problem of finding the mode frequency 

and quality (Q) factor of a high Q mode in an optical resonator. In this case, we 

are required to find an absorbing boundary condition that imitates open space, i.e., 

it should absorb all the outgoing electromagnetic radiation without reflection. Of all 

the absorbing boundary conditions available in the literature, the perfectly matched 

layer (PML) boundary condition (35, 3G] provides the best performance and has found 

wide applications in FDTD simulations. 

2.2.1 Bloch Boundary 

For any dielectric structun' with discrete translational symmetry with spatial peri­

odicity R in the .1: direction, we can classify the electromagnetic modes according to 
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------------------- -------------------
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(0,j) (i-1 ,j) (i ,j) (i+ 1,j) (Nx,j) 
------------- -------------

I ' I 1 
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(0,0) (i,0) (Nx,0) 

X 

Figure 2.:3: A two-dimensional FDTD computational domain with (Nr + 1) x (N11 + 1) 
FDTD cells. 
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the Dloch vector K. In the 2D case, the l3loch theorem requires 

-:;( . ) ) --iKR -:;( ) E :r: = ft, y = e E x = 0, y , (2.25) 

(2.26) 

However, we cannot directly apply these relations to the (0, j)th cell and the (JVx, j)th 

cell FDTD domain in Fig. 2.3, sine<' electromagnetic fields at both the (0, j)th cell 

and the (N:n j)th cell are unknown. lnstead, w<> should relate the ele<-:trornaguct:ic 

fiPlds at the (NT,.i)th cell to those at the (l,:i)th cell: 

}In\~('\' ·+ 1) .-iK(N--1'}/n-~(l - 1) • l' J - =c "· ' .. J+-.r :r:,. 2 . :r ,. 2 . (2.27) 

(2.28) 

(2.29) 

(2.:30) 

(2.31) 

(2.32) 

where we use the fact that cell size~ = 1. ln the same way, W<' can relate the (0, j)th 

cell to the (N:r - 1, j)th cell, which completes the construction of the Dloch boundary 

condition for the :t direction in the 2D case. \Ne can treat the 2D Bloch boundary 

condition along the y axis, and the 3D Bloch boundary condition in a similar fashion. 

2.2.2 lvlirror Boundary 

Another symmetry property that is useful in FDTD simulations is the mirror reflection 

symmetry. Many dielectric structures possess mirror reflection symmetry with respect 

to a given symmetry plane, from which we can derive the mirror boundary conditions 

for FDTD simulations. One advantage of the mirror boundary conditions is that they 
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can lead to the reduction of the computational domain by a factor of 2 or c~ven more. 

This can be very helpful for the 3D simulations, where limited computer memory 

often limits the size of dielectric structure that can be calculated. As an additional 

advantage, the mirror boundary conditions can also be used to resolve the modal 

degeneracy dictated by the symmetry properties of the dielectric structures. 

(x,y) 

y 

X 

Figure 2.4: A two-dimensional dielectric distribution ·with a mirror reflection symme­
try plane y = Yo-

Tab\ the 2D case as shown in Fig. 2.1, for example, where the dielectric structure 

is symmetric with respect to the plane y = y0 . Due to the mirror reflection symmetry. 

the optical modes in this structure can be classified according to their parity P [ 11]: 

H.(:r:.v) = -PH (x.2'u -y·). ,.. . , d Z d0 , . , 

(2.33) 

(2.35) 

(2.3G) 

(2.38) 
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,vherc the parity P can take the value of ± 1. The modes with P = 1 and P = -1 

shall be called, respectively, the even modes and the odd modes. 

If the FDTD domain in Fig. 2.3 is used to calculatP the eve11 symmetry modes 

( P = 1), we choose the mirror reflection plane located at /Jo = I/ 2. A ppl:ving Eq. 

(2.3:3) through Eq. (2.:38) to the ('i, O)th cell and (i, l)th cell, we find 

(2.39) 

H:~i+ 1 (i + 1, 0) = Ht·1 (i + l, 1) ' (2.rn) 

r - 1 l 
H-1

-t- 2 (i--"-- -. -) = 0. 
- 2 2 . (2.·11) 

E n (. 1 ()) En (. 1 1) ,.. '/, + -. = ,.. i + -. ' . 
~ 2 ~ 2· (2.42) 

1 
E~1

(i, ·:) = o, 

(2.44) 

The above six equations give the even mirror boundary condition at y = 1 /2. For the 

odd symmetry modes with P = --1. we choose th<' mirror reflection plane at y0 = 1 

and transform Eq. (2.33) to Eq. (2.:38) into 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

En ( .- 1 ( ) - En (: ' l 2 \ 
'1: 'l + 2' ) - - J' /. --t- 2' 1 ' 

(2.49) 

(2.50) 



En(,- 0) =-En(· ?) z l, z 1-, - , 

(2.51) 

(2.:32) 

(2.53) 

Similarly, we can construct even and odd symmetry boundary conditions for 3D cases. 

2.2.3 Perfectly Matched Layer (PML) Boundary 

In reality, almost all dielec:tric structures are located in free space and arc of finite 

size. To analyze such structures, it. is often necessary to use absorbing boundary 

conditions to simulate free space at the boundaries of the FDTD domain. Among 

various absorbing boundary conditions, the perfectly matched layer (P:vlL) bound­

ary condition is relatively complicated in construction but offers superior absorption 

characteristics. 

ln 2D case, the perfectly matched layer can be viE~wed a~ a lossy uniaxial medium 

characterized by parameters (ax, ay). Following Gedney [:36], for a monochromatic 

electromagnetic field with frequency w, we can write ).ilaxwell equations in P.\:IL region 

to be 

\7 x E = -iwp,ii , (2.55) 

where we have chosen c0 = p0 = 1 and use c to represent the distribution of dielectric 

constant, whereas E and p, arc defined as 

8y/ ,','J: 0 0 

E = ll = 0 8.1:/·'i;y () (2.56) 

0 () .S,r.Sy 

with s,r and Sy being 

(2.57) 
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(2.58) 

The pararneters a:L and ay have, respectively, only :i: aud !) dependenc<' [36]. 

Eqs. (2.:,4) and Eq. (2.55) arc both in the frequency domain. To transform them 

into the time domain, we introduce two auxiliary vectorial quantities i5 aud iJ. Take 

the• :r component of Eq. (2.55) for example: 

\i\Te introduce B,i: ,vhid1 is defined as 

(2.60) 

and ,vrite Eq. (2.59) as 

(2.61) 

C:. l · t· l l f' · · f" l · · E ('.>_; 7.) ar1<i L'<··1. f,')_;>8), 1"nt.(> ~ u JStitu .rng t 1c < c rn1uo11s o s.r anc 8y, as given Ill q. _ v L _ , 

Eq. (2.61) and Eq. (2.60), \V(\ respectively find 

DBx . - --. _· + CT11('t'})H1· = -(:', .. 0 (\7 XE)'· Dt · · · ' ' · (2.G2) 

(2.63) 

where we have replaced i:.,; by fJ / Dt. Following the same steps, we can derive similar 

equations for other components. 

As in Sec. 2.1.1, we observe that in 2D rnsc, the z dependence of the fields is simpl.v 

e-it!z_ Thus Eq. (2.63). Eq. (2.63), and similar equations for other electromagnetic 

field components can be transformed into: 

(2.64) 

(2.G,3) 
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fJBy .. - DEZ f 

al + a,1·(1, )By - o;r: + BEx , (2.66) 

oHy any ( , 
at = Dt + ay y)By ' (2.67) 

oflz . oE11 DF;,r 
at + a9 (y)Bz = --,::i- + -

0
, 

. . c,:r J/ 
(2.68) 

oH. . DB. a/ + ax(:r)llz = a/ , (2.69) 

DD,r: 1 DHZ 
-:::i- + ay(y)D,r = ( . (-r- - BHy) , 
ui E :r, y) dy 

(2.70) 

DE.x: (]Dx 
ot = Dt + a.x(:r )D.r , (2.71) 

DDy ,, - l DHZ (- ) 
~ + a 1Jr) D,1 - ( ) ( - ~ + S Hr, , 
ut · E 1:, y u 1: 

(2.72) 

DE,1 {)Dy 
at. = ot. + ay(y)Dy ' 

fJDz ) 1 oHy iJH.1: -.)- + a,;(y D 2 = ( ) ( ~ - -,).-) , 
c t · f :r, )! ux c y 

(2.74) 

oE- DD-~+ ax(:r)Ez = ~-. 
ut ut 

(2.75) 

It is relativel:v easy to derive the finite difference form of Eq. (2.64) to Eq. (2.75). 

We will give the explicit finite difference equation for the Ilx component only. Within 

the FDTD cdl shown in Fig. 2.1, we put the components of the iJ field at the same 

location as those of the II field, while the D components occupy the same posi­

tion of the E components. ·with such an FDTD cdl, Eq. (2.64) and Eq. (2.63) are 

transformed into: 

l-rry(jl~)~I I 1 ') nn- 2 (' . ) 
--rr-( .-. --l.-)~-t :.r 1,, .J + 9 
1 _.!_ !/ ~JT 2 ._, 

2 

(2. 76) 

H.n-½(•· 1) 
:r z.,.7- 2 (2. 77) 
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(a) 

X 

Free 
Space 

(b) 

Figure 2.5: (a) Absorption of light in a perfectly matched layer. (b) PML boundary 
condition in a 2D FDTD computational domain. 

Finite difference equations for other components can also be similarly derived. 

As demonstrated by Eq. (2.54) and Eq. (2.55), the PML medium can be regarded 

as an artificial dielectric medium characterized by the parameters (ax, ay), In fact, if 

we substitute ax = 0 and ay = 0 into Eq. (2.56), Eq. (2.57) and Eq. (2.58), it is obvious 

that free space can be viewed as a special case of the PML medium with (ax, ay) = 

(0, 0). In Ref. [36], it has been shown that if ax varies only along the x direction and 

ay has only y dependence, any incident electromagnetic radiation shall enter into the 

PML medium without reflection, irrespective of the incident angle. Within the PML 

medium itself, the radiation attenuates exponentially, with the absorption constant 

depending on the values of ax and ay, 

In Fig. (2.5a), we illustrate how the PML works as an absorbing boundary con­

dition. vVe take the PML boupdary to be perpendicular to the x axis, while the 

unshaded region to the left of the plane x = x 0 represents the free space and the 
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shaded region to the right is the PML medium terminated by perfect metal. There­

fore, in Fig. (2.5a) a1J must remain zero within the P:VIL medium, since ay is zero in the 

free space and is indepcmdent of the variable x. On the other hand, \\'e should choose 

a non-zero value for CT:r,, which provides the absorption within the P::V1L medium. The 

PML medium is terminated by the perfect metal, where we simply assign zero to all 

the values of the electromagnetic field. Cnder this arrangemenl, the incident electro­

magnetic wave enters into the Pl\:IL medium from free space ,vithout encountering 

any reflection. \Yhile the incoming wave propagates in PNIL medium, it attenuates 

both before and after being reflected by the perfect metal. vVith the thickness of the 

P.VIL medium and the value of a:r properly chosen, the rc'sidual radiation reflected 

back into the free space can be reduced to negligible level. 

In Fig. (2.5b), we show how to arrange the (a,r, ay) parameters of the PML medium 

to effectively absorb the outgoing radiation from the 2D computational domain. All 

the Pl'v1L medium, with the exception of the four corners, has only one of the a:r and 

<7y non-zero, directly due to the requirement that Ja, and Jy should be, respectively, 

independent of 1/ and x. As discussed before, such arrangement insures tll<' radiation 

incident on the P::VIL medium does not encounter reflection. As the electromagnetic 

radiation enters into P~dL medium close to the four corners, some may penetrate 

into the corner region. Still, the (ax, a y) are arranged such that the radiation field 

continues its attenuation without suffering back reflection. 

Due to discretization error in actual simulations, it was found that ax can be 

chosen to take the following form to minimize the numerical back reflection [~16] 

(2.78) 

where dist he total thickness of the Pl\11 layer and :r0 is the coordinate of the interface 

betW(\Cn free space and P:.1IL medium, as shown in Fig. (2.5a). \Ve can choose rJy to 

be of similar dependence on 1;. 

In concluding this section, we remark that P~1L layers can be similarly constructed 

for 3D cases. The main difference is that we have t.o introduce a third parameter CTz. 
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For more details, the readers should consult Ref. [.3G]. 

2.3 FDTD Algorithms and Their Applications 

2.3.1 Simulation of High Q Optical Modes 

One important application of the FDTD analysis is to find the resonant frequency 

w and the quality factor Q of the optical modes \vit hin a dielectric resonator. For a 

dielectric :;trncturc with dielectric constant distribution f( i"), we' can define the Yect or 

potential .4n(F) of the nth mode, as the eigensolutions of the following equation [37] 

(2.79) 

where Wn is the eigenvalue for the nth eigenmodc. The eigenmodes arc orthonormal 

(2.80) 

and complete 

()n!JC)(r, r) = f(.i) L Anc,(f)A~3(r) , (2.81) 
n 

where An,n(i;') is the nth components of the vector eigenrnode ilnUl KoticP that in 

Eq. (2.79), we have used the convention of c = 1 . 

At the frequency w, we introduce the Green function ci0 of Maxwell equations 

defined as [38, 39]: 

'7 ["' (' Gw ( _, __,,) _, , ] ( _,) ') ""'G'w ( _, __,,.) _, -( _, ➔) _, 
- V X - V X L ct/1 r, r ec,) + f r 0r L n/J r, r. Co = 0 r - r e;1 ' (2.82) 

Cl 

where n and (3 an~ the subscripts of the Cartesian coordinate. As dear from this 

definition, I: 0 G~!J (F, r)('0 represents the electromagnetic field excited by a cl-function 

source rl(f' - r)t:1 . We can expand the Green function in terms of the complete set 
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of the eigenmodes [3!)]: 

1 A (r-:'\A* (r') 
C'w ('-=' -;'I) - " -- . n,n J n,.6 , o.!J r , r - L , . , 

T, 2wn w - Wr,. + zfn 
(2.8:3) 

where r 11 is the amplitude decay rate of the nth electromagnetic mode, from which 

we can defiue tlw quality factor Q11 as 

w 
q.,, = 2[n . 

"fl 

(2.84) 

As can be seen from Eq. (2.83) and Eq. (2.84), for a high Q optical mode, the Green 

function becomes very large at the resonant frequency w = w11 • From the observation, 

we can build a FDTD algorithm to calculate the modal frequencies and spatial profiles 

of high Q modes. 

Take the problem of finding mode resonant fn~quency for example. First we intro­

duce an initial distribution of electromagnetic field and evolve the initial field using 

tlw appropriate FDTD equations as given in Sec. 2.1 and the P:vlL boundary con­

ditions as given in Sec. 2.2. We record the values of the electromagnetit field at a 

give11 "observation" point F0 as a function of 1 irne and denote the results as E(F0 , t) 

and H(ru, t). \~/e take one component of the electromagnetic field, say E,r(I70 , t), and 

transform the temporal series into the frequency domain via fast Fourier transform 

(FFT) [40], which gives us Ex(ro, w). As obvious from the definition of Green func­

tion, the result E,..(r0 , w) is essentially the frequency domain Green function ,vith 

some average over the initial field distribution. As a consequence, the peaks in the 

frequency spectrum of the temporal series can be identified as corresponding to the 

high Q optical modes. The position of the frequency peaks gives the resonant rn~­
qucncy of the modes, while the width of the peaks is inversely proportional to the Cl 

factor of the modes. In Fig. 2.6 we show a typical FFT spectrum of the electromag­

netic field at the ''obsPrvatimt" point. where the three peaks in the figure indicate the 

existence of three high Q modes within this frequency range. 

If we know a priori the resonant frequency w of a particular high Q mode, the 
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Figure 2.6: FFT spectrum of the temporal series of the electromagnetic field obtained 
using FDTD equations in Sec. 2.1. 

mode's spatial profile can be simply found by using the following mode filtering tech­

nique. As before, we start from an arbitrary initial field distribution and use the 

FDTD equations to evolve the initial field to find a time-varying electromagnetic 

field E(f, t) and H(r, t). The difference is that here we need the electromagnetic field 

at every spatial point instead of just a single observation point r0 • This time-varying 

field generally contains a broad frequency spectrum, which depends on the choice of 

the initial field. By applying a narrow bandwidth frequency filter centered at w to the 

temporal field, we filter out E(f,w) and ii(r,w) at every spatial point r, which gives 

us the electromagnetic mode at frequency w. In our algorithm, this mode filtering 

process is simply achieved by applying a temporal Fourier transformation at the given 
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Eq. (2.89) 
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♦ 

Figure 2.7: Schematic of the FDTD mode filtering algorithm. 

frequency w: 

(2.85) 

- ~- . -
H( - ) I 1 -'1,W/ll(- -) r, w = ( ,t c - r, t . 

. () 
(2.86) 

It should also be noted that the mode £ (t, w) and H (f, w) has a frequency uncertainty 

of the order of 1 /T, since the temporal integration in Eq. (2.85) and Eq. (2.86) has a 

frequency bandwidth of the order of 1/T. 

In most cases, however, we do not know t}w mode frequency w in advance. But 

if we know the spatial distribution of a high Q mode to be E(f') and JI(r), the mode 

resonant frequency w can be found by noticing that [11] 

[ 
1 -• ] :z-v' x -v' x H(r) = w H(r1, E(r') ' .. (2.87) 

(2.88) 

Consequently, the resonant frequency w and the spatial distribution E(f') and ll('r"l 
of the given high Q mock satisfy 

2 2k d,f { ll*(f) · {v' X [«½v' X .H(r)]} + E*(r) · {v' X [v' X E(r)]}} 

w = c .!\- df { lJ*(,f) · H(,f) -L E(r)E*(f) · E(r)} ' (
2

-
39

) 

where the spatial integration is over the whole computational domain V. 

Combining thP mode filtering technique, i.e., Eq. (2.85) and Eq. (2.86), and the 

ability to find the resonant frequency of a given mode. i.e., Eq. (2.89), WP can itera-
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tively find the high Q mode of interest and its resonant frequency, starting from a good 

initial gm~ss of the field distribution £0 (f), 1-l0 (f') and the mode frequency 0 0 . First 

we evolve the "guess" field £0 (P) and 1-£0 ( P) using the FDTD equations in Sec. 2.1. 

Then from Eq. (2.85) and Eq. (2.8G), we can filter out a mode £1 (f) and 1-£ 1 (F') from 

the time evolution of the initial field £0 (f) and 1-l0 (f), m,ing the "guess" frequency 0 0 . 

~ext the "average'' frequency 0 1 of the mode £1 Ul and 1-£ 1 (F) is obtained from Eq. 

(2.89). Subsequently, we ean use £1 (f) and 1-£ 1 (f) as the initial field distribution and 

0 1 as the '·guess" mode frequency, and resurm' the iteration. This process is repeated 

until it converges and gives the desired high Q mode. This iteration algorithm is also 

summarized in Fig. 2.7. 

To evaluate the quality factor of a single resonator mode, we use the definition 

Eavg 
,·1 _ rnode () T 
1c,:: - ( ) . , (T) ~lrnode , Emode O - Drrwde 

(2.90) 

where Emod,:(T) is the total energy of that mode at time T (the end of evolution), 

Ernade(O) is the mode energy at time O (the beginning of evolution), E;;:,~~lc is the 

average mode energy during the time evolution, and nmode is the fn~quency of the 

mode. 

The decay of the modes leads to an uncertainty of the mode resonant frequency, 

·which can become the dominant source for the frequency errors in our sirnulatiorn,, 

especially when the Q factor is not very large. Consider a mode with a mode fre­

quency of n and quality factor of Q. Since the mode evolves temporally according to 

e(-- 1/ 2Q+ilnt, the calculated mode frequency will bear an uncertainty of order of n/2Q. 

2.3.2 Simulation of Waveguide Modes 

Depending on whether the waveguide possesses continuous translational symmetry 

along the direction of propagation or not, we ean classify the FDTD waveguide sim­

ulations into two types. If the waveguides arc spatially invariant along propagation 

direction (such as in optical fibers), we follow the analysis in Sec. 2.1 and USC' Eq. 

(2.10) to Eq. (2.15) for time evolution in FDTD calculations. The Pl\IL boundar.v 
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conditions as developed in Sec. 2.2.3 can be directly applied here to terminate the 

FDTD computational domain. At any given value of propagation constant /3, we 

can use the algorithms discussed in Sec. 2.3.1 to find the frequency 'and spatial dis­

tribution of the waveguide modes. The dispersion relation of the waveguide modes 

is subsequently obtained by varying propagation constant /3 and calculating mode 

frequency w for each (3. In Chapter 5, this method is applied to analyze Bragg fibers 

and dielectric coaxial fibers. 

For waveguides with dielectric constant varying along the propagation direction, 

we can no longer take advantage of the continuous translational symmetry. In many 

cases, however, the waveguides possess discrete translational symmetry, and we can 

easily use the Bloch boundary condition in Sec. 2.2.1 to restrict the FDTD calculation 

within one unit cell of the waveguides. Take the triangular lattice photonic crystal 

waveguide as shown in Fig. (2.8a) for example. In this case, the discrete translational 

symmetry in the x direction allows us to use Bloch boundary condition to reduce the 

modal analysis within a single unit cell. The photonic crystal waveguide is defined 

by 3 layers of air holes in an infinite dielectric medium. Thus the PML boundary 

condition is applied to terminate the FDTD computational domain in the y direction. 

Consequently, we can reduce the original infinite waveguide to its single unit cell in the 

FDTD simulations, as shown in Fig. (2.8b). This problem can be further simplified 

by introducing the mirror boundary at the center of the photonic crystal waveguide, 

as in Fig. (2.8c). 

An important parameter of waveguides is their propagation loss. Since the simu­

lations of waveguides and simulations of optical resonators are quite similar, we can 

define an effective Q factor as 

Eavg 

Q mode n T 
eff = ( ~lmode · 

Emode 0) - Emode(T) 
(2.91) 

This definition is the same as that of the Q factor of an optical resonator mode, as can 

be seen from Eq. (2.90). From the effective Q factor, we can easily get the waveguide 

10c:ay rate, which after being divided by group velocity gives the propagation 
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Figure 2.8: Boundary conditions for the FDTD calculation of photonic crystal waveg­
uide modes. · 

loss of waveguide modes. 

As mentioned at the end of Sec. 2.3.1, for any waveguide mode with effective Q 

factor Qeff, it has a frequency uncertainty of the order of 0/2Qeff· This may become 

the dominant contribution to the frequency errors in our FDTD analysis, especially 

when Qeff is not very large. 

2.3.3 Sources in FDTD Simulations and Their Applications 

All the applications of FDTD algorithms discussed so far can be characterized as "pas­

sive" simulations, since there is no radiation source within the FDTD computational 

domain. For many applications such as microwave antenna design, it is necessary to 

include some radiation sources into the FDTD simulations. In this section, we intro­

duce two types of FDTD radiation sources: the point dipole source, and the Huygens 

source. 

The simplest radiation source in FDTD analysis is a point dipole source, which 

can be included in Maxwell equations simply by adding an additional dipole term P 
as [41, 42] 

ail --- --­- = -v' XE at ' (2.92) 
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DE -. -. DP 
f ~ = v' X H - -,.- . 

ot dt · 

with ft defined as 

fi = d(t)rlJ(r - ·ro) , (2.94) 

where d(t) and d are, respectively, the magnitude and the polarization of the oscil­

lating dipole. In translating Eq. (2.93) into the finite difference form, we basically 

folluw the same steps outlined in Sec. 2.1. The only differ<:~nce is that the 6-function 

in Eq. (2.94) is approximated by a dipole source with uniform distribution in a unit 

FDTD cell. The components of the dipole vector is allocated in the same as those 

of the electric field. For example, for a z-polarized dipole located at the (i,j,k)th 

FDTD cell, only P(-i,j, k + b) is non-zero: all Pi:, I'11 , and other I'z are zero. 

It is well known that spontaneous emission characteristics can be dramatically 

modified by complicated dielectric structures such as photonic crystals )2] or high Q 

cavities f4~1:. As shown by us in Ref. [39] and [41], the modification of spontaneous 

emission can be modeled using FDTD simulations with point dipole' sources. Take 

thf~ spontaneous emission rate for example. For a light source plac:Pd at the position 

'0i of an arbitrary dielectric structure, its spontaneous emission rate modification is 

related to radiation power of a classical dipole, placed at the same position in the 

same dielectric structure [,11]: 
[mod 

rfree 

I'inod 

Pfree ' 
(2.95) 

where f mod and f free represent, respectively, the spontaneous emission ra.te in the 

dielectric structure and that in free space, whereas Prnod and Prree correspond to, 

respectively, the classical dipole emission power in the same dielectric structure and 

that in frep space. This algorithm has been used to simulate spontaneous emission 

modification in dielectric slab waveguides [41], microdisk cavities [42], and triangular 

lattice photonic crystal slabs :44]. 

Another very useful radiatiou source in FDTD simulations is the Huygens source 

[45, 46] .. \fore specifically, suppose we know that at a given Huygens surface S', the 

field distribution of an optical mode is given by f?inc and J]inc_ \Ye can introduce an 
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Figure 2.9: Huygens Source that excites the TE mode of an infinite dielectric slab 
waveguide. 

electric surface current }ne and a magnetic surface current Mine (Huygens source) 

at the surface S, which are defined as 

jne = ns X Hine, (2.96) 

Mine = -ns X J;Jine ' (2.97) 

where ns is a unit vector normal to the surface S and points towards one side of the 

surface S. With this Huygens source, Maxwell equations become 

V X E = - aii - Mine 
at ' (2.98) 

_, aif __. 
V X H = E at + pnc . (2.99) 

In Ref. [45] and [46], it was shown that the Huygens source as defined in Eq. (2.96) 

and Eq. (2.97) excites the desired optical mode at one side of the Huygens surface S, 

whereas it does not excite any electromagnetic field at the other side of the surface 

S. 
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As an example, we describe in detail how to construct a Huygens source that 

excites a TE mode in an infinite dielectric slab waveguide. As shown in Fig. 2.9, the 

slab waveguide is infinite in the x and z direction. We assume the waveguide mode 

propagates along the positive x direction with propagation constant f3 and is uniform 

in z direction, which enables us to suppress the z dimension and consider only the x 

and y dimension. \Ve assume that the Huygens source is located within the FDTD 

cells with i = i0 and the vector iis in Eq. (2.96) and Eq. (2.97) is simply ex. Since 

we consider only TE modes, with E~nc = E[nc = H~nc = 0, from Eq. (2.96) and Eq. 

(2.97) we can write 

Jtnc _ Jinc­
- z ez' (2.100) 

(2.101) 

Consequently, we only need to consider the y component of Eq. (2.98) and z compo­

nent of Eq. (2.99), while the rest of the FDTD equations are the same as those for 

Maxwell equations without Huygens source. In the finite difference form, y compo­

nent of Eq. (2.98) and z component of Eq. (2.99) become: 

(2.102) 

1 1 1 1 1 1 l 1 
H n+:,(. . ) Hn+:,(. . ) Hn+:,(. .) Hn+ 2 (. .) 

x - io,J- 2 - x - io,J+ 2 + y - io+ 2,J - y io- 2,J 

E(i J.) 1 · 
O, [En+l ( • .) _ En (. ·)] Jn+ 2 ,inc(. .) 6.t z io,J z io,J + z io,J . (2.103) 

We require that the electromagnetic fields to the left of the Huygens surface are 

zero, while the fields to the right of the Huygens surface take the values of the prop­

agating TE mode. Therefore, in Eq. ( 2.102) E~ ( i0 , j) equals zero, whereas the rest of 

the field components take the values of the TE mode components at the particular 
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FDTD grid point: 

E;,TE(io + 1,j) (2.104) 

1 [Hn+½,TE(. 1) Hn-½,TE(. 1 ·)] _A,fn,inc(. 1 .) D..t y io + 2 - y io + 2, 1 + y io + 2, 1 , 

where the field quantities with superscript TE refer to those of the TE modes. On 

the other hand, without the Huygens source, Eq. (2.102) still holds if we substitute 

all the field quantities with the values of the propagating TE modes: 

En,TE(. 1 ") - En,TE(. ") - _I_ [Hn+½,TE(. !) - Hn-½,TE(. ! ·)] (2.105) 
z io + '1 z io, 1 - D..t Y io + 2 Y io + 2' 1 

Comparing Eq. (2.104) with Eq. (2.105), we find 

Mn,inc(i + ! 1-) = En,TE(i 1-) 
y O 2' z O, • (2.106) 

Similarly, by requiring the field components to the left of the Huygens source to 

be zero, we find that in Eq. (2.103) all components except H;+½,TE(io + ½,j) and 
n+½,inc . . 

lz ~ (io, 1) are zero: 

l· 1 TE 1 
J n+ 2,inc(. .) _ Hn+ 2, ( • _ ·) 

z io, 1 - y io + 
2 

, 1 , (2.107) 

where it is understood that H;+½,TE(io + ½,j) takes the value of Hy component of 

the TE mode at point (io + ½,j). 

For the TE mode of the dielectric slab, we can write its field distribution as 

(2.108) 

Ez(x, y, t) = e;E(y) sin(wt - (3x) , (2.109) 

where w and (3 represent, respectively, the frequency and the propagation constant of 

the TE mode, while the exact form of hf E and e;E can be found from the standard 

text book on optoelectronics [28]. Here it suffices to notice that they have only y 
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dependence. Combining Eq. (2.106) and Eq. (2.109), we find 

(2.110) 

Similarly, from Eq. (2.107) and Eq. (2.108), we find 

(2.111) 

X 

Figure 2.10: Huygens source. 

In Fig. 2.10, we show the Ez field of the fundamental TE slab mode excited 

by a Huygens source according to Eq. (2.110) and Eq. (2.111). As seen from Fig. 

2.10, the Huygens source produces the fundamental TE mode that exists only to 

the right of the Huygens surface. We have used such Huygens source to investigate 

the coupling between a dielectric slab waveguide and an air-core photonic crystal 

waveguide, and also the coupling between a dielectric slab waveguide [47] and a 

dielectric-core photonic crystal waveguide [25]. 
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Chapter 3 

Coupled Resonator Optical 

Waveguide ( CROW) 

3.1 Introduction 

Two mechanisms have been proposed and used in the past for optical waveguiding 

[28]. The most widely used is the waveguidi11g by total internal reflection, as illus­

trated in Fig. (3.1a). Another mechanism- "Bragg waveguiding,'' where waveguiding 

is achieved through Bragg reflection from a periodic structure, has also been demon­

strated (9]. Fig. (3.lb) illustrate an example of Bragg reflection provided by a periodic 

Bragg stack. 

There exists, however, a third approach in photon guiding [48, 49]. Fig. (3.lc) 

shows such a possibility: a waveguide based on the evanescent field coupling between 

the high Q whispering gallery modes of the individual microdisk cavities [50, 51]. 

Another possible realization is shown in Fig. (3.ld), where the individual resonators 

consist of the "defect" cavities [52, 53] embedded in a 2D triangular lattice photonic 

crystal. These defect resonators are designed such that their resonant frequency falls 

within the "forbidden gap'' of the surrounding 2D structure which enables high Q 

optical modes. The coupling in this ease is due to the evanescent Bloch waves. In 
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Figure 3.1: Three types of waveguiding: a) the wave guiding by total internal reflection 
at the interface between the high index medium and low index medium. b) the 
"Bragg waveguiding" achieved by reflection from the periodic Bragg stacks. c) the 
coupled resonators optical waveguide-CROW, with waveguiding due to the coupling 
between the individual microdisks. R is the size of a unit cell and ex is the direction 
of the periodicity for the coupled resonators. d) the CROW realized by coupling the 
individual defect cavities in a 2D photonic crystal. 
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both realizations of CR0\V, we assume a sufficiently large separation between the 

individual resonators so that the resonators are "weakly" coupled. Consequently, 

'vVf! expect the eigenmodc of the electromagnetic field in such a coupled resonator 

waveguide should remain essentially the same as the high Q mode in a single resonator. 

Yet at the same time the coupling between the individual high Q modes must lw 

taken into account to explain the transmission of the d(!Ctrornagnetic waves. This is 

exactly the optical analog of tlw tight-binding limit in condensed matter physics [26], 

in which the overlap of atomic wavefunctions is large enough to require corrections 

to the picture of isolated atoms, :,.:et at tlw same time not large enough to render the 

atomic description completely irrelevant. The individual resonators in CRO\~T are 

the optical counterpart of the isolated atoms, and the high Q mode in th(~ resonators 

corresponds to the atomic wavefunction. As a result, many features of th(' tight­

binding theory in solids remain the same in the coupled resonators ,vaveguide. \Ve 

call such w;-weguide the coupled resonators optical waveguide (CROW) [48, 49]. Senne 

special cases of coupled resonators have also been studied in the literature, such as 

photonic molecules [54, 55, 56], and tlw ''impurity band" in an infinite chain of spheres 

with negative dielectric constant [57]. 

In both realizations of CR0\V, we assume a sufficiently large separation between 

the high Q resonators so that the photons are "tightly confined" within ead1 individ­

ual resonator and can only propagate by "hopping'' from one resonator to it8 nearest 

neighbor. L:nder this circumstance, we can use the tight binding approach to study 

the waveguide mode in CR0vV's. l:sing this approximation, we show two important 

propertie8 of CR0\V's [48]. First, the waveguide modes of CR0\V remain essc~ntially 

the same as those of the high Q modes in a single resonator and have the same sym­

metry characteri8tics. This unique property can be utilized to construct rdiectionless 

bends [48] and as well as CROW intersections without cross-talk [49]. Second, the 

dispersion relation of CR0\Vs is greatly different from that of conventional dielectric 

waveguides. In a weakly coupled CRO\\', the optical waves are dramatically slowed 

down, a property which can be used to enhance the efficiency of nonlinear optical 

processes [48]. Take the second harmonic generation (SHG) process for example. In 



photonic crystals, it has been shown that the second harmonic field can be <~nhancecl 

at the band edge of the photonic crystals, where thf> group velocity tends to zero '.58]­

[61 ]. In the case of defect cavities, the enhancement of SHG efficiency is achieved as a 

result of the large optical field amplitude of the localized defect cavity modes [62]-[64}. 

Both the two properties, the low group velocity and large optical field amplitude, can 

be simultaneously achieved in CRO\V. 

3.2 Tight Binding Analysis of CROW 

3.2.1 Non-degenerate CROW Band 

We first study the case where the isolated resonator supports only a single high 

Q mode. In the spirit of the tight-binding approximation. we take the eigenmodi~ 

EK (r, t.) of a coup Jed resonator waveguide as a linear combination of the high Q 

modes £0 (r) of the individual resonators along a straight line parnllc,] to e.r axis (see 

Fig. 3.1). Denoting the coordinate of the center of the nth resonator as :r.: = nR, we 

have 

EK(r, t) = A.eiwf{t L e--inKHEn(r - nRex). (3.1) 
n 

It is straightforward to show that the waveguide mode EK(r, t) satisfies th<· Bloch 

theorem. Consequently, we can limit the Bloch vector I{ to the first Brillouin zone, 

i.e., -1r/R ~ 1( ~ 1:/R. 

EK(r, t) satisfies .\ilaxwell equations, which lead to (in Gaussian units) 

(3.2) 

where r(r) is the dielectric constant of the system ( of coupled resonar.ors) and 0..,'K is t.he 

eigenfrequeney of the waveguide mode. Similarly, En (r) satisfies the same equation, 

hut with E ( r) replaced by c0 ( r), the dielectric constant of the single resonator: 
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In the case of high Q modes, we can take t'n(r) to be real and normalize it to unity 

according to J drco(r)t'n · t'n = 1. 

After substituting Eq. (3.1) into Eq. (3.2), multiplying both sides from left by 

£0 (r) and spatially integrat.ing, we find the dispersion relation for the waveguide 

mode Eg(r, t) to be 

when) nn, /J11 and 60: arc defined as 

/-r' = / rl1n 0 (r - nRez)t'n(r) · t'n(r - nRez) 

60: = / d3ridr) - fo(r)]t'n(r) · £n(r) . 

n =/- 0, 

(3.-1) 

(3.5) 

(3.7) 

If the coupling between the resonators is sufficiently vveak, we can keep only the 

nearest neighbor coupling, i.e.. nn = 0 , ,871 = 0 if n =/- l, -1. From symmetry 

considerations, we also require o: 1 = n - 1 and 01 = /J 1
. Finally we assume n 1, (-J1 

and .0.o to he small. Putting all these observations together, we simplify Eq. (3.4) to 

60: 
WJ( = n{l - 2 + KCos(K R)}, 

"'·here wP define the coupling factor K as 

This cfo,persion relation defines a photonic band formed by the coupling of the high q 

modes in the individual resonators, which can be denoted as the CROW band. From 

Eq. (3.8), the group velocity is found to be 

(3.10) 
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which can be quite small for weakly coupled CROW. ~otice that both the dispersion 

and the group velocity are only characterized by "'· 

3.2.2 Degenerate CROW Band 

If the single high Q optical resonator supports multiple mocks. the lth eigcnmode 

£1(r) satisfies (in Gaussian units) 

where n1 is the eigenfrequency of the Ith mod<>, and (o (r) rqm~sents the dielectric 

constant of the single reso11ator. The eigenmodes £1 (r) are also orthonormal: 

(3.12) 

where as in the previous section we take the Q factors of the resonator modes to be 

very high and assume the mode function £1(r) to be real. 

As in the non-degenerate case, we take the waveguide mode Et<(r, t) of the CHOW 

as a linear combination of the high Q modes £1(r) ·within the individual resonators 

along the e.1: axis, which gives us 

EK(r, t) = Aeiu:f(t L e-inKRb,E1(r - nRe,i:) . (:3.13) 
n,l 

After substituting Eq. (3.1:1) into Eq. (:3.2). multiplying both sides from left by Em(r) 

and spatially integrating, we find the following eigenequation for the mode expansion 

coefficient b1 

(3.14) 

n =I- 0' (3.15) 
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n#-0, (3.16) 

(3.17) 

If the coupling between the resonators is sufficiently weak, we can keep onl)' the 

nearest neighbor coupling, which means o:;~i.l = /}~1•1 = 0 if n i- =l. From symm<:try 

considerations, we also require n;n,I = n;\ and fJ;,1,1 = ,{Jm\· Putting these observations 

together, Eq. (~1.14) becomes 

L b1ni[c5m.l + 2,B;n.l cos(KR)] = w7( L bz[6m,1 + !lnm,1 + 2n}11 ,1 cos(J{R)]. (3.18) 
l l 

Generally, if the single resonator has N degenerate or nearly degenerate high Q modes 

[ 1(r), with I = 1, · • - , N, we need to diagonalize the N x N matrix. of Eq. (:U8) to 

find the dispersion relations of the CRO\V. The result generally cfopends on all the 

parameters n;n,1' (J;n,1, D..nm,1, with m, l = l, · · ·, N. 

However, if a single resonator possesses certain symmetries, the solution is usually 

much simpler. For example, the individual microdisks and defect cavities shown in 

Fig. 3.1 each possess a mirror reflection symmetry with respect to the :i; = 0 plane. 

Therefore, the single resonator modes can be classified according to the parity P of 

this mirror reflection symmetry, as defined in Eq. (2.33) to Eq. (2.38) of Sec. 2.2.2. 

The parity P of the eigenmode can take the value of ±1. The modes with P = l and 

P = - l shall be called respectively the even modes and the odd modes. 

It has been shown that the high Q modes in both the microdisk cavity and the 

single defect cavity are doubly degenerate and have opposite parit.y [50, 65]. Conse­

quently, for the CRO\i\T's in Fig. :3.l, we can limit the mode expansion of Eq. (3.13) 

to the subspace spanned by these two degenerate modes [ 1(r) with l = ±1. where the 

subscript l refers to the parity of the mode and can only take the value of ±1. The de­

generacy of the two modes gives n1 = n for l = ±1. The symmetry of the modes also 

leads to n:;n,1, fJ/n,t, ~nm.I = 0, if m #- l, which is obvious from Eq. (3.15) to (:3.17). 

To further simplify Eq. (3.18), we also assume the frequency difference between WK 

and n to be small. Finally, the dispersion relations for the coupled resonator modes 
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are found to be 
z 6.az 1 

wK = D{l - -
2
-' + l'i:z cos(KR)}, (3.19) 

where l denotes the parity of the mode and the coupling coefficients i'i:z are defined as 

(3.20) 

For a given parity l, this dispersion relation defines a CROW band with the same 

parity as that of the single resonator mode. Therefore, they can also be denoted as 

the even band and the odd band according to their parity. 

From Eq. (3.19), the group velocity is found to be 

(3.21) 

which can be made small by reducing the coupling coefficient i'i:z. It is also interesting 

to observe that the dispersion and the group velocity of the two CROW bands, given in 

Eq. (3.19) and Eq. (3.21), are exactly the same as the results of the non-degenerate 

analysis. This is directly due to the fact that the two degenerate single resonator 

modes have opposite parity and cannot couple to each other. 

3.3 Coupled Defect Cavity Waveguide 

For the numerical calculations in this chapter, we consider only 2D structures, which 

can give a good approximation of the original 3D problem if an appropriate effective 

refractive index is used [67]. Here we use an effective refractive index n = 2.65 

for the dielectric medium to simulate a half-wavelength-thick slab waveguide with 

refractive index n = 3.4 [65]. A major advantage of this 2D approximation is that 

it speeds up the numerical simulations and renders them more memory efficient. We 

use the 2D FDTD algorithm as described in Sec. 2.1.1, and choose f3 = 0. Under 

this condition, the electromagnetic modes can be classified into TE modes and TM 

modes [11]. The TE modes consist of only Ex, Ey, Hz components, and TM modes 
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have only Ez, Hx, Hy components. In our FDTD analysis, we shall restrict ourselves 

to the TE modes, which can be achieved by using an initial field whose only non-zero 

· component is the H;:, component. 

In this section, we use the 2D FDTD algorithm to analyze both the single defect 

cavity mode in a triangular lattice photonic crystal and the CROW band formed from 

such coupled defect cavities. Due to the mirror reflection symmetry, we can reduce the 

FDTD computational domain as that shown in Fig. 3.2. The 2D single defect cavity, 

formed by "plugging" an air hole from the 2D triangular lattice photonic crystal, is 

illustrated in Fig. (3.2a). The properties of this 2D triangular lattice photonic crystal 

are determined by the ratio of r / a, where r is the radius of the air hole and a is 

the inter-hole distance. In all the calculations of this section, we choose a = 15, 

r/a = 0.3 and use a/>.. as the unit for frequency. Notice that here we use Mur 

absorbing boundary condition [66]. 

The 2D photonic crystal with r / a = 0.3 has a bandgap for TE modes in the 

frequency range of a/>.. from 0.28 to 0.35 [65]. Within this TE bandgap, the single 

defect cavity can support two degenerate high Q modes. Classified according to the 

mirror reflection symmetry, the two modes possess opposite parities with respect to 

the lower y boundary in Fig. (3.2a). The mode with P = l is called the even defect 

mode and that with P = - l is called the odd defect mode. These two modes are 

numerically calculated and the results are shown in Fig. 3.3. The field distribution in 

Fig. 3.3 is that of the Hz component. (In fact, all the figures of mode spatial profile 

in this chapter show the Hz component.) However, since the ii field transforms like 

a pseudo-vector under mirror reflection, the Hz field of the even defect mode actually 

is antisymmetric with respect to the lower y boundary, as in Fig. (3.3a). For the 

same reason, the Hz field of the odd defect mode is actually symmetric with respect 

to the lower y boundary. The frequency and the Q factor of the even mode are 

respectively 0.301 and 840, while the frequency and the Q factor of the odd mode 

are 0.310 and 780. The degeneracy of the two modes is broken due to the fact 

that the air holes in the numerical simulation are not ideally circular. It should be 

emphasized that this degeneracy splitting has no significant influence on the CROW 
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Mur Absorbing Boundary 
/~ ""·· ~ .. 

Mirror Boundary Defect Cavity 

(a) 

PML Absorbing Boundary 

x=R 
Bloch Boundary 

L 
Mirror Boundary Defect Cavity 

(b) 

Figure 3.2: The FDTD computational domain. a) For a single defect cavity in a 2D 
photonic crystal. Mirror boundary condition is used at the bottom y boundary. For 
other three boundaries, the first order M ur absorbing boundary is used. b) For the 
CROW composed of coupled defect cavities with 4 air holes in between. The PML 
absorbing boundary condition and the mirror boundary condition are respectively 
used for the top and bottom y boundaries. At both of the x boundaries, x = 0 and 
x = R, the Bloch boundary condition is used. 
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(a) even mode (b) odd mode 

Figure 3.3: The single defect cavity modes. (a) The even ·defect mode. (b) The odd 
defect mode. 

mode characteristics, since the two defect cavity modes still possess opposite parity 

and remains orthonormal to each other. As clear from the analysis leading to Eq. 

(3.19), each of the two CROW bands remains independent of each other and can still 

be characterized by a single coupling coefficient 11,1• 

Using the 2D FDTD algorithm, three cases are studied for the defect cavity 

CROW, with the spacings between the adjacent defect cavities being 2, 3 and 4 

holes respectively. In Fig. (3.2b), we sketch the FDTD computational domain for the 

CROW with inter-cavity spacing of 4 air holes. To map out the CROW band, we 

increase the Bloch vector K from O to 1r / R with an increment of O. l 1r / R. Due to 

symmetry considerations, the CROW bands are symmetric with respect to the K = 0 

axis. Therefore, it is sufficient for us to concentrate on the half with K 2'. 0. 

First we consider the even CROW bands. In Fig. 3.4, we show two waveguide 

modes with inter-cavity spacing of 2 and 4 air holes and K = 0.61r / R. Comparing 

Fig. 3.4 with Fig. (3.3a), we clearly see that the waveguide modes in CROW closely 

resemble the single resonator mode. As expected from the tight binding analysis, this 

similarity is not restricted to this particular K value and holds through the whole 

CROW bands. 

The dispersion curves for the even CROW bands are shown in Fig. 3.5. Using the 

least square method [68], we fit the calculated frequency versus K to Eq. (3.19) and 

obtain three coupling coefficients 11,1 . For the inter-cavity spacing of 2, 3 and 4 holes, 

11,1 is respectively 5.6 x 10-3 ,-1.4 x 10-3 and -2.9 x 10-4 _ It is obvious from Fig. 

3.5 that the coupling coefficient decreases with the inter-cavity distance and changes 
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(a) (b) 

Figure 3.4: The even CROW modes with (a) 2 inter-cavity hole spacing and (b) 4 
inter-cavity hole spacing. The Bloch vector K of both modes is K = 0.67r / R. 
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0.3015 
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0.2 0.4 0.6 
K R/n 

0.8 1 

Figure 3.5: The dispersion of the even defect cavity CROW band. The symbols 
represent the results calculated from FDTD algorithm using different values of inter­
cavity hole spacing. The solid lines are the least square fits of the numerical results 
using Eq. (3.19). 
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sign for the CRO\V band with 3 holes spacing. Such resulls can be understood as 

follows. From Eq. ( 3.20), we know the coupling coefficient is an overlap integral of 

two single defect cavity modes with a distance of R in between. Since the evanescent 

field of the single resonator mode decay oscillatorily, this overlap integral will also 

decrease oscillatorily as a function of R. The effective Q of the even CROW band is 

also calculated and found to be close to the value of E,00 through the CRO\V bands. 

Next w<: analyze the odd CROW band, and as before. use three different inter­

cavity spacings: 2 holes, :1 holes and 4 holes. In Fig. 3.6, we slmw the waveguide 

modes with I{ = 0.67r / R and ~~ air holes spacing. This CRO\V mode is qualitatively 

tlw same as the odd defect mode in Fig. 3.3b. As before, this similarity holds through 

the whole CRO\V bands. 

The dispersion relations of the odd CRO\:V modes are shown in Fig. 3.7. The 

numerical calculated mode frequency as a function of K is then fitted into Eq. (3.19), 

using least square method. From this titting, the coupling coefficients ,c 1 are found 

to be respectively 1.24 x 10-2 , 4.G x 10- 3 and 1.7 x 10-3 for spacings of 2, :~ and 4 

holes. Again as expected, the coupling decreases as the inter-cavity spacing increases. 

It should also be noticed that the coupling coefficients of the odd CROvV modes are 

larger than that of the even CROW modes with the same hole spacing. This is clue 

to the fact that the even defect mode radiates stronger along the ey direction than 

the e:r direction, while the opposite holds true for the odd defoct mode, as can be 

seen from Fig. :3.:3. Another consequence of this fact is that the effective Q of the odd 

CR0vV modes should be much larger Lhan the corresponding even CROW modes, 

,vhich is also confirmed by our numerical calculations and obvious by comparing Fig. 

:3.4 and Fig. 3.6. ln fact, all the C2c.r 1 of the odd CHO\V modes are found to be larger 

than Hi'. unfortunately, thes<' results arc only qualitatively correct. since a precise 

calculation of Q factor requires the time evolution of order of Q optical periods, which 

is impractical for Q factors large as those. 

\Ve also calculate the coupling coefficient using the overlap integral in Eq. (;t20). 

\Ve choose the fo ( r) to be a single defect cavity surrounded by 5 layers of air holes 

in the e11 direction and 9 layers of air holes in the e,:r direction. Then we calculate 



49 

Figure 3.6: The odd defect cavity CROW mode with 3 inter-cavity hole spacing and 
Bloch vector K = 0.61r / R. 
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Figure 3.7: The dispersion of the odd defect cavity CROW band of coupled defect 
cavities. The symbols represent the results calculated from FDTD algorithm using 
different values of inter-cavity h9le spacing. The solid lines are the least square fits 
of the numerical results using Eq. (3.19). 
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Coupling Coefficient K:1 ( X 10-3) K:_1 ( X 10-3) 

Hole Number 2 3 4 2 3 4 
Fitting Results 5.6 -1.4 -0.29 12.4 4.5 1.7 
Integral Results 5.4 -1.3 0.17 7.3 0.70 -0.90 

Table 3.1: The coupling coefficient K:z of the coupled defect cavities. The hole number 
refers to the numbers of air holes between the adjacent defect cavities. The fitting 
results are obtained from fitting the FDTD dispersion results using using Eq. (3.19). 
The integral results are obtained from the overlap integral in Eq. (3.20). 

the even and odd defect modes of such a single defect cavity and use them to obtain 

r;;1 and r;;_ 1 . They are shown in Tab. 3.1 as theoretical results, together with the 

coupling coefficients from least square fitting. The results for relatively large r;;1 

agrees well with those obtained from least square fitting. However, the deviation is 

larger for r;;_ 1 . For both r;; 1 and r;;_ 1, as the coupling between the individual resonators 

becomes weaker, the discrepancy between the tight binding results and the FDTD 

results is more pronounced. The difference between these two results, we believe, 

is likely caused by the fact that we assume the single resonator mode E1 ( r) to be a 

real function (see Eq. (3.12)), which only holds when the loss of the cavity mode can 

be ignored. However, as the distance between the neighboring resonators becomes 

larger, the mode radiation loss, even though relatively small, will introduce a phase 

shift to the electromagnetic field that can no longer be ignored. This fact also helps 

to explain why the tight binding results for r;;1 agree better with the FDTD results 

than in the case of r;;_ 1 . Previously, we have shown that the even defect cavity mode 

radiates primarily along the ey direction; therefore, the phase shift in the ex direction 

is relatively small. On the other hand, the odd cavity mode radiates more strongly 

along the ex direction, which inevitably introduces a larger phase shift. In this case, 

assuming the mode function to be real causes larger deviations between the tight 

binding results and the FDTD results. 
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3.4 Coupled Microdisk Waveguide 

It is well known that a dielectric microdisk cavity can support high Q whispering 

gallery modes, which can be classified according to their polarization (TE or TM), 

their azimuthal mode number m and their radial mode number l [50, 51]. A TE 

whispering gallery mode TE(m, l) has 2m nodes in the azimuthal direction and l -1 

nodes in the radial direction. It is also doubly degenerate and can be classified into 

an even or odd mode according to its mirror reflection symmetry. By coupling the 

microdisks together as in Fig. (3.lb), we can form the even and odd CROW bands 

from such whispering gallery modes. In this section, we study the CROW bands 

formed by the TE(7, 1) whispering gallery modes. 

In these calculations, we choose the radius r of the micro disk to be 30 FDTD cells 

and use three parameters for the inter-microdisk spacing R, which is normalized as 

R/2r and takes the value of R/2r = 1.1, 1.17 and 1.23. r / ,,\ is used as the unit of 

frequency. 

The TE(7, 1) even mode and odd mode of a single microdisk are shown in Fig. 

3.8. The frequency and Q factor of the even TE(7, 1) mode are found to be 0.645 

and 1500. For the odd TE(7, 1) mode, the frequency and the Q factor are 0.639 and 

1200 respectively. The degeneracy of the two TE(7, 1) modes is broken, due to the 

deviation of the dielectric microdisk from an ideal circular shape in our 2D simulation. 

As in the case of photonic crystal defect cavities, such degeneracy splitting will not 

cause significant change on the dispersion and mode characteristics of the CROW 

band, since the even and odd CROW modes remain orthonormal to each other. 

The even CROW bands are calculated for three microdisk spacing parameter 

R/2r. Shown in Fig. 3.9 is the mode profile of a waveguide mode with R/2r = 1.1 

and K = 0.57r / R. It is qualitatively the same as that of the even T E(7, 1) mode in 

Fig. (3.8a). This suggests that the tight binding approximation is still valid, even for 

the close distance between the microdisks. 

The CROW loss can be characterized by its effective Q, as defined in Sec. 2.3.2. 

We find that the effective Q factors of the even CROW bands depend strongly on 
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(a) 

(b) 

Figure 3.8: The TE(7, 1) whispering gallery modes in a single microdisk cavity. The 
even mode is shown in a) and the odd mode is shown in (b). 

Figure 3.9: The even microdisk CROW mode formed by coupling the even TE(7, 1) 
modes together. We use R/2r ::::; 1.1 and K = 0.51r / R. 
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Figure 3.10: The effective Q factors of the even microdisk CROW modes with R/2r = 
1.17. 

the Bloch vector K. The Qe11 (K) of the CROW band with R/2r = 1.17 is shown in 

Fig. 3.10 as a function of K. The fact that effective Q depends on K is not surprising 

and can be explained intuitively. The TE(m, l) mode has an azimuthal dependence 

of eimcp [50], which means that its radiation loss has similar angular dependence. As 

K, the Bloch vector of the CROW modes varies, the radiation field from different 

individual resonators interferes constructively or destructively with each other, which 

consequently causes the radiation loss of the CROW modes to increase or decrease 

and deviate from that of the single microdisk resonator. 

The dispersion relations for the "even" CROW modes with three different values 

of R/2r are shown in Fig. 3.11. The error bars in Fig. 3.11 refer to the frequency 

uncertainty due to the radiation decay of the CROW modes, which is estimated to 

be wK/2Qeff as in section 2.1.1. Within the limit of these frequency errors, the 

numerical data agree well with the tight-binding results. 

These frequency errors are also taken into account when we fit the numerical 

results into Eq. (3.19) using the least-square method. We no longer treat the numeri-
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Figure 3.11: The dispersion of the even microdisk CROW band. The FDTD results 
are represented by asterisks. The error bars refer to the frequency error caused by the 
finite decay rate of the CROW modes and are estimated to be w/2Qeff· The solid 
lines are the least square fits of the numerical results using Eq. 3.19. The dispersion 
diagrams for R/2r = 1.1, 1,17 and 1.23 are shown respectively in a), b) and c). 
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cally calculated mode frequencies equally and weigh them by the frequency deviation 

of WK/2Qeff· The coupling coefficient 11;1 obtained from this fitting are respectively 

-4.5 X 10-3 , -2.5 X 10-3 and -1.3 X 10-3 for different values of R/2r =Ll, 1.17 and 

1.23. As expected, 11;1 decreases as the inter-microdisk spacing increases. 

Figure 3.12: The odd microdisk CROW mode formed by coupling the odd TE(7, 1) 
modes together. We use R/2r = 1.1 and K = 0.51r / R. 

The odd CROW bands are also calculated using the same set of values for R/2r. 

The CROW mode shown in Fig. 3.12 is calculated with R/2r = 1.1 and K = 0.51r / R, 

and as before, is similar to the odd TE(7, 1) mode shown in Fig. (3.8b). The odd 

CROW bands are shown in Fig. 3.13 for R/2r = 1.1, 1.17 and 1.23. Again after 

considering the frequency deviation due to the decay of CROW modes, the numerical 

results agree well with the theoretical fits. The results for 11;_ 1 obtained from the 

theoretical fitting are respectively 4.8 x 10-3 , 2. 9 x 10-3 and 1.4 x 10-3 for R/ 2r = 

1.1, 1.17 and 1.23. 

In the case of coupled microdisks, it is difficult to calculate the coupling coefficient 

using the overlap integral in Eq. (3.20). One reason is that the electromagnetic field 

outside the microdisk depends strongly on the boundary conditions of the computa­

tional domain, especially in the regions far from the microdisk. This is quite different 

from the case of the defect cavity in 2D photonic crystal, where the photonic crystal 

can effectively block much of the influence of the absorbing boundaries. Another 
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Figure 3.13: The dispersion of the odd microdisk CROW band. The FDTD results 
are represented by asterisks. The error bars refer to the frequency error caused by the 
finite decay rate of the CROW modes and are estimated to be w/2Qeff· The solid 
lines are the least square fits using Eq. (3.19). The dispersion diagrams for R/2r = 
1.1, 1,17 and 1.23 are shown respectively in (a), (b) and (c). 
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reason is that the electromagnetic field does not decay exponentially away from the 

microdisk, and therefore creates a normalization problem. 

3.5 Second Harmonic Generation in CROW 

An important application envisaged for CROW is nonlinear optics [48]. In CROW's, 

the propagating power flux P is proportional to the group velocity of the CROW 

band [48] 

(3.22) 

where A is the amplitude of the CROW mode as defined in Eq. (3.1) and Eq. (3.13). 

Consequently, the small group velocity of the CROW band can result in a large optical 

field with only modest amount of power flux. Since the efficiency of nonlinear optical 

processes is proportional to some power of the electric field strength [69], it is possible 

to use the CROW band to greatly enhance the efficiency of these processes. Here we 

shall analyze in detail the second harmonic generation (SHG) process in CROW. This 

analysis, however, is not limited by the tight binding approximation of CROW and 

in principle can be applied to any dielectric structures with one-dimensional discrete 

translational symmetry. 

Using the Bloch theorem, we can express the waveguide mode of a CROW in 

terms of a periodic Bloch wavefunction. Assume that the waveguide is periodic in x 

direction with a spatial period of R ( see Fig. 3.1 for example); the waveguide mode 

Ex(r, t) can be written as 

(3.23) 

where the Bloch wavefunction ux(r) is periodic: uK(r+Rex) = ux(r) and normalized 

within a unit cell: 

(3.24) 

The frequency and the decay rate of this mode are represented by w and r w respec-
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tively. 

The waveguide mode EK(r, t) satisfies 

(3.25) 

where a(r) is introduced to account for the radiation loss of the waveguide mode. 

By substituting Eq. (3.23) into Eq. (3.25), we can separate the above wave equation 

into an imaginary part and a real part. From the imaginary part, we can derive an 

expression for the mode decay rate r w 

(3.26) 

From the real part, an eigenequation for the Bloch wavefunction UK is found: 

(3.27) 

It can be easily shown that 11,K is a Hermitian operator. The derivative of the 

normalization relation Eq. (3.24) gives 

r )[du~ * dul(l lu.c. dr c(r dK . Ul( +UK. dK = 0 . (3.29) 

The derivative of w2 
/ c2 can also be found from Eq. (3.27) to be 

(3.30) 

Using Eq. (3.29) and the fact that 1i(K) is a Hermitian operator, this equation is 

reduced to 

d~ (::) = [ dr u;< · ~u;) uK . (3.31) 

In fact, this result is a direct g~neralization of the Hellman-Feynman theorem [70]. 

Substituting Eq. (3.28) into Eq. (3.31), we find an expression for the group velocity 
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1JJJ.g at frequency ~: 

Having found the mode decay rate in Eq. (3.26) and the group velocity in Eq. 

(3.:32), wc can proceed to analyze the second harmonic generation in CRO\V. First 

let us limit our consideration to an electromagnetic field ,vith three components: two 

fundamental frequency modes E 1 (r, t), E
1

1 (r, t) and a second harmonic mode E2 (r, t) 

E . (r t) = ~ { r;: (.,iwt(·'-iK1 (w):i:u .. (r) + (' (' } 1 ' , 2 DJ .• . /q(w) .. ,. , (3.33) 

E ( ) _ 1 {E, (· ) .i2wt iK(2w)x (. ) ... } 2 r, f - 2 , 2 .r f C llK(2w) r + CJ. . (3.35) 

For simplicity, wc assume that the two fundamental frequency modes have the same 

amplitude E 1 throughout the region of second harmonic generation ( undepleted pump) 

[69] and also require the amplitude of the second harmonic mode E2 (:r:) to be a slowly 

varying function. 

The second harmonic mode is generated according to the following equation [69] 

(:3.36) 

\Vhere the nonlinear polarization term PNL(r, l), the source of the second harmonic 

mode, is given by 

(3.37) 

The tensor d(r) represents the sPcond order nonlinear coefficient of thf' dielectric 

medium . .\ilultiplying Eq. (:3.36) from the left by u~q2w) (r) and integrating spatially 

wit.bin a unit cell, after a long but straightforward derivation. we obtain an equation 
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for E2 (x) 

where v2w,g is the group velocity of the second harmonic mode, and f 2w is the corre­

sponding decay rate. It is clear that E-2(:r:) will always be small unless there exists an 

integer n such that the difference of the Bloch vectors l\.· 1 ( u.:) + l{ 2 ( w) - K ( 2w) + n 2,r / R 

becomes v<'ry small. In such case. the above equation is simplified as 

(3.39) 

27T 
.6.K11 = I<1 (u.1) + I<2(w) - Tf(2w) + n R , n = 0. ±1, ±2 · · · , ( :3.40) 

D - j i in('21T I n):r: * ( ) i~( ·i ( ) ( .) n - ·u.c. ere I 
UK('2w) r · /, r llK1(w) r llK2 (w) r,. (3Al) 

Ac('.ording to this equation, a large E2 is only possible under thP condition of .6.Kn = 0, 

which is the phase matching condition in CRO\Y 

This phase matching condition in CROW is very similar to that in the bulk medium, 

except the appearance of the term n211 / R [58;. This is to be expected, since only the 

Bloch vector, instead of the true photon waw vector, is conserved in CROvV. 

Eq. (3.:19) are our master equations for the analysis of second harmonic genera­

tion. As an example, we 8hall u8e them to study two cases of phase-matched 8econd 

harmonic generation configurations in CRO\V. Cnlike the previou8 2D cases, here we 

consider a three-dimensional (3D) geometr~' as 8kctched in Fig. ~U 4. This CHO\Y is 

still composed of defect cavities in 2D triangular lattice photouic crystal. But instead 

of being infinite in the third direction, it is confined in a slab waveguide along the .::: 

axis. 

In the first case, we assume both the fundamental frequency modes propagate 
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Defect Cavity 

Figure 3.14: SHG in CROW. The fundamental frequency modes propagate from one 
defect cavity to another along the x axis. The second harmonic mode can either 
propagate in CROW along x axis or leak out of CROW along z axis. 

along the positive x direction and satisfy K 1 (w) = K2 (w) = K(w), K(2w) = 2K(w). 

The second harmonic photons also propagate along the x axis but can either be 

collected along the x direction, or collected after "leaking" out along the z direction. 

We call this case SHG configuration I. 

Assuming the CROW begins at x = 0, we can require E 2 (0) = 0. From Eq. (3.39), 

E2 (x) is found to be 

(3.43) 

From this relation, it is obvious that the SHG process falls into two distinctive limits, 

with X « V2w,9/r2w (the unsaturated limit) and X >> V2w,9/r2w (the saturated limit) 

respectively. Defining a saturation length Ls = v2w,9 /r 2w, the amplitude of the second 

harmonic mode becomes 

(3.44) 

E ( ) 
_ .wErDo 

2 X - -'l 
r2w 

(3.45) 

In the unsaturated limit, we collect light along the x direction. In the saturated 

limit, however, we let the photons "leak" through and then collect them along the z 
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direction. 

In the second case, the two fundamental frequency modes propagate along oppo­

site x direction, K1 (w) = -K2 (w) and K(2w) = 0 and the second harmonic photons 

are collected after "leaking" out along the z direction. We shall call this case SHG 

configuration II. Due to the undepleted pump approximation and symmetry consid­

erations, we can require E2 ( x) to be a constant and obtain 

(3.46) 

Notice that this result is the same as that of the saturated SHG configuration I. 

To calculate the efficiency of the second harmonic generation in CROW, we still 

need to relate the power flux to the amplitude of the waveguide mode. Recall that the 

electromagnetic energy density for a waveguide mode [see Eq. (3.33) to Eq. (3.35)] is 

IEl 2E(r)uk(r) · uK(r)/81r. After integration, the energy stored in a unit cell is found 

to be simply IEl2 /81r. Consequently, for the waveguide mode propagating along the 

x direction, the power flux P is given by 

(3.47) 

On the other hand, for the mode leaking through the z direction, the power flux is 

(3.48) 

where N is the total number of the resonators in CROW. Finally, assuming the total 

length of CROW is L and combining Eq. (3.47) and Eq. (3.48) with Eq. (3.44), Eq. 

(3.45), and Eq. (3.46), we can obtain the second harmonic generation efficiency T/SHG· 

For the unsaturated limit of SHG configuration I, T/SHG is 

(3.49) 

The rJsHG for both the saturated SHG configuration I and SHG configuration II 
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becomes 

(3.50) 

In the above results for TJsHG, the factors 1/v~,
9

, 1/v2w,g, and 1/f 2w come directly 

from the relation between group velocity and field intensity, as shown in Eq. (3.22) 

at the beginning of this section. It suggests that SHG efficiency can be enhanced 

by slowing down the fundamental mode, the second harmonic mode or making the 

effective Q of the second harmonic mode very high. Another interesting point is that 

T/SHG is proportional to L2 in Eq. (3.49) and is only proportional to Lin Eq. (3.50). 

The reason is that if we collect second harmonic photons along the .T axis, the phase 

matching condition guarantees that the photons generated at different resonators 

interfere coherently with each other. On the other hand, such phase matching cannot 

be obtained along the z direction. 
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Chapter 4 

Scattering Theory Analysis of 

Waveguide-Resonator Coupling 

4.1 Introduction 

The coupling between high Q optical resonators is investigated in the previous chap­

ter, with particular emphasis on the waveguiding induced by such resonator-resonator 

coupling. A related and equally interesting subject is the coupling between waveguides 

and resonators, which has received considerable attention in recent years [71 ]-[86]. For 

example, the resonant tunneling through the photonic crystal via the localized defect 

modes has been numerically analyzed [71, 72] and experimentally observed [73, 74]. 

Recently, a channel add-drop filter based on coupled waveguide-resonator systems in 

photonic crystal was proposed [75, 76, 77]. It was shown that for defect cavities satis­

fying certain symmetry and degeneracy conditions, optical signals can be completely 

transfered from one waveguide to another. vVaveguide-resonator coupling has also 

been explored in many other geometries, such as coupled fiber-ring geometry [79], 

coupled fiber-sphere geometry [80]-[83], or coupled semiconductor slab waveguide­

microring geometry [84, 85, 86]. It is intuitively clear that the presence of resonator 

should have profound impact on the reflection and transmission characteristics of the 
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waveguide. For a system composed of a waveguide and a resonator that supports 

traveling wave modes, it was recently demonstrated that the transmission charac­

teristics depend critically on the balance between waveguide-resonator coupling and 

cavity loss, thus it was named "critical coupling" [87]. In Ref. [88], we use scattering 

theory to show that for the general system of coupled waveguide-resonator as in Fig. 

( 4. la), the reflection and transmission coefficients depend critically on the waveguide­

resonator coupling, the symmetry and degeneracy of the resonant modes, cavity loss 

(gain), and the mode resonant frequency. 

Cavity Coupled to Waveguide 

Waveguide 1 Waveguide 2 

(a) 

Waveguide 

Cavity Cavity Cavity 

(b) 

Figure 4.1: (a) The general geometry of a waveguide coupled with a cavity. (b) 
Example of a CROW with indirect coupling. 

Similar to the CRO\V's, if we couple multiple resonators with a waveguide as 

shown in Fig. ( 4.1 b), the composite structure also serves as a waveguide whose prop­

erties can be drastically different from those of the conventional waveguides. In this 

case, besides direct resonator-resonator coupling, the resonators can also be indirectly 

coupled together by the propagating modes within the waveguide. We call this new 

type of waveguides indirect CROW's since the cavities are indirectly coupled together. 

A unique feature of such indirect CROW's is that the tight-binding approximation 
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no longer applies, since any two resonators (not just the neighbor resonators) in Fig. 

( 4.1 b) are coupled through the waveguide modes. 

It is possible to numerically calculate the transmission and reflection character­

istics of waveguides coupled to other complicated dielectric structures [89, 90, 91]. 

In fact, the Huygens source as developed in Sec. 2.3.3 is ideal for this purpose, and 

has been applied for us to analyze the coupling between a slab waveguide and a 

photonic crystal waveguide [47, 25]. The benefit of the numerical approach is that 

it is capable of analyzing dielectric structures of complicated geometries. On the 

other hand, the numerical calculations are often time consuming and cannot be eas­

ily generalized. Since the dielectric structures considered here can be separated into 

waveguides and localized high Q resonators, we can apply the quantum scattering 

theory [92] to find the reflection and transmission coefficients for complicated cou­

pled waveguide-resonator systems and dispersion properties of indirect CROW's. It 

is also worth mentioning that the coupled mode theory has also been used to treat 

the coupled waveguide-resonator systems, if the resonators support only one high Q 

mode [77, 93]. 

4.2 Scattering Theory Formalism 

4.2.1 Scattering Matrix 

Maxwell equations can be rewritten in the following form: 

'ljJ= H= [ E l [ 0 
ii ' (-i/µ 0)v'x 

If we introduce the inner product as 

(i/c)v'x 

0 

( 4.1) 

l ( 4.2) 

(4.3) 
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it is easy to verify that the Hamiltonian H is a Hermitian operator. For the weakly 

coupled waveguide-resonator system as shown in Fig. (4.la), the Hamiltonian H can 

be separated into a 0th order approximation H0 where the waveguid'e modes and the 

localized high Q modes are independent, and a perturbation term V that couples 

them together [76], 

k 1, 

H=H0 +V, 

n 

(4.4) 

(4.5) 

(4.6) 

In this Hamiltonian we use In) to represent the nth high Q optical mode with "bare" 

resonant frequency On, and lki) to represent the waveguide mode with wave vector ki. 

Here we assume the waveguide supports only one propagating mode, since multimode 

waveguides are usually undesirable in applications. Both lki) and In) are normalized 

to 1 according to Eq. ( 4.3). We also require Vm,n = v;,m and Vn,ki = vk:,n, since the 

Hamiltonian is Hermitian. In Eq. (4.4) to (4.6), we ignore the direct coupling between 

the waveguide modes (i.e., Vi;,kj = 0), which will be justified later. An explicit form 

for the perturbation term ½,i can be obtained from Eq. (4.1) to Eq. (4.3) 

(4.7) 

where Ei and Ej are respectively the electric field associated with mode Iv\) and 11/Jj), 

wi is the resonant frequency of mode 11/Ji), Eo(r) refers to the dielectric constant of the 

unperturbed Hamiltonian H0 , and 6t(~)] is the difference of 1/E(r) between the full 

Hamiltonian H and its 0th order approximation H 0 . 

Following Ref. [76], we use the waveguide mode lki) as the incident optical wave, 

and assume that the total wavefunction is given by 11/Jtotaz). These two states lki) and 

11/Jtotaz) are related via the scattering matrix T [92] 

( 4.8) 
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where E is a positive infinitesimal number to enforce the outgoing boundary condition. 

From Eq. (4.8), we can express the term Tiki) as the sum of an infinite series 

(4.9) 

We define the renormalized Green function G as 

00 1 1 
Gm,n(w) = (mlGln) = (ml L H . (V H . )1ln) . 

l=O W - O + ZE W - O + iE 
(4.10) 

Multiplying Eq. (4.9) from left by lkj) and using the above definition for G, we find 

(4.11) 

Similarly, we have 

(4.12) 
m 

In Eq. (4.11), c5kJ,ki is 1 if ki = kj and zero if otherwise. The physical meaning of 

Eq. (4.11) is clear: The state lki) can be scattered into the state lkj) in two ways, 

the direct transition as represented by c5kj ,k;, and the indirect transition through the 

localized high Q modes In) as represented by the second term at the right-hand side 

of Eq. (4.11). 

Now we can justify the absence of the direct waveguide mode interaction term 

Vk k in the Hamiltonian. If we include such term, the scattering matrix will have 
J' i 

an additional non-resonant contribution Tkj~ki ~ Vij,kj(wki -wkj + fr) [see Eq. (4.8)]. 

Comparing this quantity with the resonant scattering amplitude TkJ,ki due to the nth 

mode, we have 

(4.13) 

where we have used Eq. ( 4.11). If the waveguide length is L, Vii ,ki is of the order 

of wkjL according to Eq. (4.7), while Vij,nVn,ki is of the order of w~jL. In the next 

section, we show that the Green function is of the form Gn,n(wkJ = 1/(wki - Wn + 
if n), with Wn being the "renormalized" resonant frequency and r n the mode decay 



69 

rate. Substituting these observations into Eq. ( 4.13), it is obvious that the indirect 

scattering via the nth high Q modes has an enhancement factor of wkj(wk; -wn +if n)­

Therefore, if we are interested in the resonant behavior, the direct :waveguide mode 

interaction Vi. k. can be safely ignored. 
J, ' 

Once the scattering matrix T is known, the optical reflection and transmission 

coefficients can be easily found as follows. If we respectively use 1Pi (r), ·i/Jr (r), and 

1Pt ( r) to represent the incident wave, the reflected wave, and the transmitted wave, 

then they can be related to the T matrix through the following simple relations: 

1Pi(r) + 1Pr(r) = (x ➔ -oolTlki) = L(x ➔ -oolkj)Tkj,ki ' ( 4.14) 
kJ 

1Pt(f) = (x ➔ +oolTlki) = L(x ➔ +oolkJ)Tkj,ki. ( 4.15) 
kJ 

From this expression, we can easily find the reflection coefficient and transmission 

coefficient. This method is essentially the same as that in Ref. [76]. 

4.2.2 Green Function 

In Eq. (4.10), Gm,n is expressed as the sum of an infinite series and is quite compli­

cated. To simplify this expression, we notice that for any matrix B, whose eigenvalues 

are all less than one, we have the following identity: 

_l_=fBz, 
I - B l=O 

where I is an identity matrix. Applying this relation to Eq. (4.10), we find 

G 1. . f (V 1 . )l 
w - Ho + u:_ l=O w - Ho + iE 

1 1 

w - Ho+ iE 

1 

w '- H + iE ' 

(4.16) 

( 4.17) 
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Thus the term Gm,n, which represents the matrix element of the "renormalized" Green 

function G, can be simplified as 

1 
Gmn(w) = (ml H . In)• 

' W- +iE 
( 4.18) 

It is also of use to find an expression for ( c-1 )m,n, the matrix elements of the 

inverse of the Green function. Vi/e start by rewriting Eq. (4.10) as 

(4.19) 

where the index m and n refers to the optical modes within the high Q resonator, Dn 

is the frequency of mode In) as given by the unperturbed Hamiltonian H0 , and the 

matrix A 1 is defined as 

A1 = ( l . V)1 . 
w - H 0 + iE 

(4.20) 

We can express a~ n in terms of its lower order terms 
' 

1 1 
2Jml . Vlp)(PI H . v 1

-
1 ln) (4.21) 

P w - H 0 + if w - o + iE 

+ I:(ml ~ +. Vlk)(kl ~ +. Vlp)(PI ~ +. V
1
-

2
ln) 

W - O 'lE W - O 'lf W - O 'lE 
k,p 

To cast this relation in a simpler form, we define the following matrix operator within 

the subspace expanded by the high Q modes in the resonator: 

(mlV din) = Vm,n , 

(mlViln) = L Vm,k l . Vi,n, 
k W - Wk+ 'lE 

(4.22) 

(4.23) 

( 4.24) 

where the term V d and Vi respectively represent the direct and the indirect interac-
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tion between the cavity modes. Using these notations, the matrix form of Eq. ( 4.19) 

IS 
(X) 

G = (~Ai)Go, (4.25) 
l=O 

while Eq. (4.21) can be written as 

( 4.26) 

Substituting Eq. ( 4.26) into Eq. ( 4.25), we find 

(4.27) 

where we used A 0 = I and A 1 = GoVd [see the definition in Eq. (4.20)]. 

From Eq. ( 4.27), we find that the inverse of the renormalized Green function is 

(4.28) 

and its matrix elements are given by [76] 

(4.29) 

( 4.30) 

Generally, the :E matrix has some off-diagonal elements, so that finding the renor­

malized Green function G can be quite involved. However, in some cases where the 

high Q resonators have definite symmetry properties, :E is already diagonalized by 

the unperturbed states In). Therefore, the renormalized green function can be simply 

written as 
1 

Gm n ( W) = T Om n , 
' W - Wn + i n ' 

( 4.31) 

where Wn is the renormalized frequency of mode In), and r n is the mode decay rate. 

Besides enhanced scattering amplitude, the optical intensity in the resonators is 

also increased. From Eq. (4.12) and Eq. (4.31), we find the localized mode amplitude 
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to be 

( 4.32) 

which means that the mode amplitude at the resonance is inversely proportional to 

the mode decay rate. 

The mode decay rate r n plays an important role in the problem of waveguide­

resonator coupling and can be calculated as follows. Using Eq. ( 4.30), we find 

where ki is the wave vector of the propagating mode, v9 represents the photon group 

velocity and is assumed to be positive for any ki > 0. Evaluating the integral, we find 

Im("i:.n,n) = -
2
~ (IVn,kJ2 + IVn,-kJ 2

) • 
g 

(4.34) 

If the mode representation In) is chosen such that only the diagonal elements of ~ 

are nonzero, the total decay rate of the mode In) is simply 

( 4.35) 

where r~ is the intrinsic cavity decay rate. We should notice that in Eq. ( 4.35), the 

decay rate is actually independent of the waveguide length L, since (ki lki) = 1 and 

thus Vn,ki is proportional to 1/vL. 

4.3 Optical Scattering in Two Generic Coupled 

Waveguide-Resonator Systems 

We study two generic cases of coupled waveguide-resonator systems as illustrated in 

Fig. 4.2. The case in Fig. ( 4.2a) is denoted as the "side coupling" case, since the 

resonator is located at the side of an infinite waveguide. For the geometry shown 

in Fig. (4.2b), the two half-infinite waveguides are coupled together via resonant 
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Waveguide ◄ • 7 
, _______ ~ ---~----------- I -------~ ~--

J 

X 

(a) 

◄ 

Waveguide 1 
Cavity 

X 

(b) 

Figure 4.2: (a) The "side coupling" case, where a cavity is side coupled to a waveguide. 
(b) The "resonant coupling" case, where two waveguides are coupled by a high Q 
cavity. 

tunneling through the center cavity. Consequently we call it the "resonant coupling" 

case. It should be noticed that the waveguides and resonators in Fig. 4.2 can be 

of any type. In particular, the analysis of this section applies to photonic crystal 

waveguides and defect cavities. Therefore, we assume that the waveguides possess 

a one-dimensional discrete translational symmetry. The waveguides with continuous 

translational symmetry, such as slab waveguides or optical fibers, can be regarded as 

special cases. 

4.3.1 Side Coupling 

First let us consider the "side coupling" case. We assume that the waveguide mode 

lki) has the following general form (using Bloch theorem) 

(4.36) 
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(4.37) 

where N is the total number of unit cells in the waveguide and nk, (t) is normalized 

to 1 ·within a unit cell. R is the length of a unit cell. 

\\·c assume that the incoming wave is the waveguide rn ode I k1). Therefore, the 

incident vrnve ·u;i(i1 in Eq. (4.14) is simply 9)i;;('f) and the transmitted wave ii't(f) at 

:r----+ +oc. as defined in Eq. (4.15), is 

(,1.38) 

,,·here Eq. ( 4.11) and Eq. ( 4.31) are used, and we transform the the summation over 

k.i into an integral. Evaluating the integral, ·we find the transmitted wave to llf! 

( _, 1 r) ,-k [· -~ 1 LIVi-.nl
2

] ·1u r) = --·u. (r c2 ,x 1 - z ------ '· 
. t 17v k, ' 'l' V ;v n WJ;, - Wn + Z n v9 

I (ll' 1
2 IV 1

2
) r = fo + -' k;,n + -k;,n 

.,,_ n 2·, . 
1;'] 

(4.10) 

ln a similar way, we use Eq. (•1.14) and find the optical wave at :i: -► -x to hP 

(4.4"1) 

\Ve transform the summation over kj into an integral and find 1.};,.(f) to be 

(4A2) 

If we respectively use r and t to denote the' amplitude reflection and transmission 

codficicnt, the above results can be summarized as 

( 4.4'"1) 
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L ( I v.. I 2 - I \' . 12 ) [ = [O + k,,n -k,,n 
n n 2 '/Jg 

(4.45) 

The side coupling geometry can actually be regarded as part of the photonic crystal 

add-drop filter considered in Ref. [75] to [77]. The above results are also similar to 

those in Ref. [76]. However, there is a subtle but important difference: we consider 

the possibility of gain or loss in the cavity, ,vhich is represented by r~ in Eq. (4.4;:i). 

\lore detailed discussion will be given in the next sectiorL 

4.3.2 Resonant Coupling 

::\" ext we study the case of "resonant coupling'' as shmvn in Fig. ( 4.2b). Here for thc 

notational convenience, we assume that both waveguides are along the :r direction, 

even though the results do not depend on this assumption. In reality, the two waveg­

uides can have an arbitrary bending angle, as long as the direct interaction between 

them can lw ignored. 

\iVc~ assmrw that both waveguides consist of N unit cells, the normalized waveg­

uide modes in waveguide~ 1 and waveguide 2 arc uncoupled and can be exprcss<,d 

respectively as 

\,Ve respectively use lki) and lqJ) to represent modes in waveguide l and waveguide 

2, with ki and qj referring to their vrnve vectors. As before, both 'Uk; ( i) and Vq_; ('f') 

are normalized within a unit cell. \Ve assume that the unit cell length in ,Naveguide 

1 is R 1, and the total waveguide length is L1 = N R 1 . r<:>r waveguide 2, the unit cell 

length is R 2 and the total length is L2 = N R2 . 

According to Eq. (4.14), the optical ·wave at :r ----1 -x (in waveguide 1) consists 
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of the incident wave V;Jr) and tlw reflected wave 1hr(r): 

Evaluating the integral, we find 

· ( _,) l ( -➔) ik x 1})· r = --'llk r e 1 

, i ~ ' 

(4.50) 

when~ vt is the photon group velocity in waveguide l and is assumed to be positive. 

The transmitted wave -~;i('r) at :r ~ -,-x (in waveguide 2) ean be found similarly from 

Eq. ( 4.15): 

where q1 is the ,vave vector of the propagating mode in waveguide: 2 and is determined 

by the condition v..,'<1; = wk.;, 1:i is the corresponding photon group velocity and is 

assumed to be positive. 

Since the photons in the high Q cavity can independently decay into both waveg­

uide 1 and waveguide 2, the decay rate of the nth mode rn will simply he the sum of 

the two processes. Collecting the results, for the "resonant coupling" case, we have 

(L52) 

(4.54) 
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(4.55) 

Tlw cavity mode decay rate r n in Eq. (4.55) is different from Eq. ( 4.35), which is 

due to the fact that wc> assume the v,aveguide supports traveling wave in deriving Eq. 

( 4.:35), yet the waveguide modes we use in the "resonant coupling'' case are essentially 

standing waves (see Eq. (4.47)). It is interesting to compare the above results, Eq. 

(4.Z>2) to Eq. (4.54) with Eq. (4.43) and Eq. (4.44), and observe that the ref-iection 

and transmission in the "resonant" coupling cases correspond, respectively, to the 

transmission and reflection in the "side'' eoupling geometrics. 

The Bloch wavefunctions Uk; or 'V,/J in Eq. (4A6) and ( 4.4 7) are normalized to l 

within a unit cell. Thus the power flux P in the waveguide satisfies the following 

relation 

(4.56) 

where R is the size of a unit cdl, Vq is the photon group velocity, and A is the 

amplitude of the optical wave. As an example, A = exp('ikp·) / J2N for the incident 

"vave 'l/)i(r) in Eq. (4.52). From Eq. (11.52) to Eq. (4.54) and applying Eq. (4.56), we 

find the power reflection coefficient R and transmission coefficient T to be 

(4.57) 

( 4.58) 

4.4 Critical Coupling in Coupled Waveguide-Resonator 

Systems 

4.4.1 Single Jvlode Side Coupling 

The simplest case of "side coupling" is a single mode resonator coupled with a single 

mode waveguide, as shmvn in Fig. (4 .. 3a). A specific example of this side coupling 
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Figure 4.3: (a) A single mode resonator side coupled to a single mode waveguide. 
f'.:_ and r~ are respectively the cavity decay rate in the -x and +x direction. For 
a resonator with mirror reflection symmetry with respect to x = 0 plane, f'.:_ = r~. 
(b) The resonant ( .6.w = 0) reflection and transmission coefficient for the geometry 
shown in (a). r 0 represents the intrinsic cavity loss (gain), and re is the decay rate 
of the cavity mode into the waveguide. ( c) Reflection and transmission spectrum for 
four different values of r 0 /re. 
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geometry has been investigated in Ref. [93], where the single mode resonator is the 

quarter wave shifted DFD resonator. In our case, the cavity decay rate P' due to the 

presence of waveguide is given by Eq. (4.35) 

(4.59) 

where vve respectively use r~ = 2~ ll'~i,--kl 2 and f'\ = 2~;
9 

ll~i.A:' 2 to repn~scnt the 
9 

decay in the -:i: and +:i: direction. A further simplification is possible if the cavity 

possesses a mirror reflection symmetry with respect to the :r = 0 plane, which gives 

r~ = f'1l- = f('/2. From Eq. (4.'13) and Eq. (4A1), we fincl the power reflection 

coefficient R and transmission coefficient T to bP 

( 4.60) 

(4.Gl) 

where r0 represents the intrinsic loss (gain) of the resonator. 6w is uJ-n, 1.vith '"'' being 

the frequency of the incident light and n being the ''renormalized" mode frequency. 

In Fig. ( 4. 3b), we shmv the resonant ( 6u; = 0) reflection coefficient R and trans­

mission coefficient T as a function of r 0 /re. ~ otice that at r0 /re = 0, the resonant 

transmission coefficient T becomes zero and the reflection coefficient R is 1. On the 

other hand, when the intrinsic cavity loss is much larger than the cavity-waveguide 

coupling, i.e. r 0 /re » l, the transmission coefficient approaches 1 and the reflection 

coefficient almost vanishes. If we introduce gain into the cavity and the lasing concli­

tion is approached, i.e. r 0;rc ➔ -L both Rand T become very larg<'. In Fig. (4.3c), 

we plot the transmission and reflection spectrum using different values of r 0 /re, which 

clearly shows the critical dependence of the reflection and transmission characteristics 

on both .6.w and r 0 /r''. Of particular intc~rest is the case of r 0 /r'' = -0.5, which 

gives a fiat transmission coefficient equal to 1. An obvious application of this critical 

dependence, similar to the phenomenon of "critical coupling" observed in Ref. [87], 

is the possibility of controlling optical transmission and reflection by tuning .6.l.tJ, r 0
, 



80 

or re. 
In reality, it is difficult to fabricate a dielectric structure with perfrct mirror 

reflection symmetry and there will always be some small difference between r~ and 

f::_. \Vith symmetry broken, the reflection coefficient R and transmission coeflicient 

Tare 
, 4p· re 

R = lr!2 = - + 
~W2 +([Cl+ f':_ + [~~)2 

• ~(.(}2 -- (ro + re -- re )2 
T = ftl2 = ~w2 + (ro + r~ + 1<)2 . 

(4.62) 

These results show that the general reflection and transmission features of the system 

is not significantly changed. v\'e can still achieve zero resonant (,0,.w = 0) transmission 

by tuning r 0 = r: - r::_. The unity transmission can also be achieved by dl(Josing 

r 0 = -r::_. 

4.4.2 Side Coupling with Doubly Degenerate Modes 

Here we consider a side coupled cavity that supports two degenerate modes with 

frequency n. vVe rewrite Eq. ( 4.4:3) to Eq. ( 4.45) as 

( 4.64) 

2 

f=l-i"_ l !::__1Vk,zl 2 
L ". , + :r _ , . , 
n=l .:..i.~ l n tg 

( 4.65) 

I' 1-0 . I'C ro L 11 .r 12 L 11 T 12 
n = -n-,- n = n + 9 1'k.n + ? 1·-k,n , 

._.'Og ....,vg 
(4.66) 

where we use the convention of ~w = w - n, and n reprc\sents the "renormalized" 

frequency of the doubly degenerate modes. 

For this doubly degenerate side coupling geometry, two simple cases are of special 

interest. The first c'xarnple is when the resonator possesses a mirror reflc!ction sym­

metry with respect to the :r = 0 plane and the two degenerate modes have opposite 

parity, as shown in Fig. (4.4a). Assuming the even mode is le) and the odd mode is 
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Figure 4.4: (a) A waveguide side coupled with a cavity supporting two degenerate 
modes. The cavity is symmetric with respect to x = 0 plane and support two degen­
erate modes with opposite parity under mirror reflection. The even mode is le) and 
the odd mode is lo). (b) The side coupling geometry with two degenerate traveling 
wave modes in the cavity. The mode traveling in the clockwise direction is I+) and 
the mode traveling in the counterclockwise direction is I-). ( c) The resonant trans­
mission coefficient as a function of r 0 /re. ( d) The transmission spectrum for different 
values of r 0 /re. 
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(1.67) 

where Fi.c represents the coupling between the incident wave ik) and the even cavity 

mode le), and 11.:,o represents the coupling between lk) and the odd cavity mode Jo). 

Following Ref. [75] and [76], vve assume that the waveguide mode jk) couples equally 

strong with the even mode and the odd mode, i.e. 

(4.68) 

Consequently, from Eq. (4.66) we obtain 

(-1.69) 

where re is p: = Lll1.:,el 2 /v9 . \Ve notice the remarkable· result that the reflection 

coefficient R remains O for all the frequencies. This is a direct consequence of the 

destructive interference between the reflected waves due to the two degenerate cavity 

modes, as was pointed out in Ref. [75]. In fact, this side coupling geometry can be 

regarded as half of the photonic crystal add-drop filters studied in Rd. [7i:i] to [77]. 

Here the coupling to the second waveguid<' is represented by the '·intrinsic'' cavity 

decay rate r 0
. 

In addition to the condition of frequency degeneracy and equal mode decay rate, 

Eq. ( 4.68) must also be strictly satisfied to eliminate reflection. It is very difficult 

to simultmwously realize these requirements dming the fabrication processes. In 

practice, it is easier to fabricate semiconductor ring or disk resonators [84]-[86] and 

dielectric microspheres [80]-[8:3], which support two counter-propagating modes, as 

shown in Fig. ( 4.4b). In the• follmving analysis, we shmv that thE' reflection and 

transmission ccwfficients of a waveguidP coupled to this type of resonators are also 

described by Eq. ( 4.69). 

If thP waveguide mode and the traveling wave mode in the resonator are phase­

matched, it is safe to assume that the waw~guide mode can only induce the travding 
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wave circulating in one direction, due to the requirement of phase matching. As 

shown in Fig. ( 4.4b), we denote the clockwise circulating mode as I+), and the coun­

terclockwise mode as 1-). Csing these notations, the condition fcfr phaHe-matched 

coupling iH li,- = 0, and l'_k,+ = 0. Furthermore, using Eq. (4.7) and the time 

reversal symmetry, we find h .. = V:k,-. With these conditions, from Eq. (11.66) we 

have 

(4.71) 

(4.72) 

The above results arc the same as Eq. (4.69). 

In Fig. (4.4c), the resonant (.6.w = 0) transmission coefficient was plotted as 

a funct.ion of r 0 /re. :\"oticc that at r 0 /re = 1, T is always equal to zero. This 

phenomenon is the principle behind many add-drop filters studied in the literature 

[75]-'.77:, [82]-[86;, and was named "critical coupling" in Ref. '.87]. The transmission 

spectrum is shown in Fig. (4.4d) for different values of r 0 /P. \Ve notice that when 

the lasing threshold is approached (f0 /rc---+ -1), the optical wave is amplified and 

the resonance width is narrowed. 

The ''critical coupling'· condition depends on the assumption that the waveg­

uide mode couples to only one of the traveling wave modes, and the two counter­

propagating traveling wave modes are independent. Under these t,vo conditions, the 

transmitted wave is the supperposition of two scattering waves: One due to the direct 

scattering -where the photons propagatC' through the waveguide without interacting 

with the resonator, the other due to the indirect scattering where thC' photons are 

first coupled into the resonator, travel in the resonator while experiencing loss or gain, 

and arc coupled back into the waveguide. At ~w = 0 and r 0 = P, the scattering am­

plitudes due to the direct scattering and the indirect scattering have equal amplitude 

but opposite sign, and cancel each other exactly. 

In reality, the surface of the dielectric rnicroring, microdisk. or rnicrospheres would 
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not be ideally smooth and can cause coupling between the counter-propagating cavity 

modes [94, 95]. It is also conceivable that a Bragg grating is deliberately introduced 

into the resonator to couple the two counter-propagating modes together. In either 

scenario, it becomes essential to take the coupling between the resonator modes into 

account. Using the expression in Eq. (4.30), we can introduce a phenomenological 

parameter r,, such that the :E matrix can be written as 

( 4. 73) 

where w representing the difference between the "bare" resonant frequency and the 

"renormalized" resonant frequency. In reaching Eq. (4.73), we also keep the as::mmp­

tion of Vi,+= v_:k,-l Vi,-= v-k,+ = 0, and re is given by Eq. (4.72). With the relative 

phase of the two counter-propagating modes carefully chosen, r,, can be assumed to 

be a positive number. To diagonalize the :E matrix, we use a new representation 

( 4.74) 

12)= ~[1-)-1+)] (4.75) 

In this representation, the :E matrix becomes 

(4.76) 

From this expression and Eq. (4.29), we can read out the resonant frequencies of mode 

11) and 12): 

(4.77) 

( 4.78) 

which clearly shows the splitting of the modal degeneracy due to the coupling term 
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K,. The decay rates of the two modes remain the same: 

r 1 = r 2 = r 0 + re . ( 4. 79) 

From the definitions in Eq. ( 4. 7 4) and Eq. ( 4. 75), we also find 

v - -1-v 1r -
1 v k,l - ,/2 k,+, 1 -k,l - -J2 '-k,-, ( 4.80) 

l .r 
1 

l T l T _ 1 l T 
Vk,2 = - ,/2. V k,+ , V -k,2 - -J2 V -k,- · ( 4.81) 

Combining Eq. (4.77) to Eq. (4.81) and substituting them into Eq. (4.43), we find 

( 4.82) 

where ~w = w - Sl, and Sl is the resonant frequency of the uncoupled traveling wave 

modes. Similarly from Eq. (4.44), we find 

(4.83) 

Inspecting Eq. ( 4.82) and Eq. ( 4.83), we observe that the reflection/transmission 

characteristics of this particular coupled waveguide-resonator system depend critically 

on K,, r 0
, and re. A special case of particular interest is shown in Fig. 4.5, under the 

condition of r 0 = 0 and K, = re. Different from the previous case with doubly mode 

degeneracy, the reflection coefficient in Fig. 4.5 is not zero around the resonance. In 

fact, the photons are completely reflected at w = Sl. Also notice that the reflec­

tion/transmission spectrum is much flatter than the typical Lorentzian lineshape as 

shown in Fig. (4.4d). 

In Fig. 4.6, we show how the resonant reflection/transmission coefficients change as 

a function /',,/re. At K, = 0, since the two traveling modes are decoupled, the reflection 

coefficient is zero. At K, = re, the reflection coefficient is 1 and the transmission 
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Figure 4.5: Reflection/Transmission spectrum of a waveguide coupled to a resonator 
that supports two counter-propagating traveling modes, as described in Eq. ( 4.82) 
and ( 4.83). The coupling between the two traveling modes is given by K,. 
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coefficient is zero, which is also consistent with Fig. 4.5. To gain more intuition into 

this result, let us consider photons propagating along +i: direction in the waveguide 

shown in Fig. (4.4b). The photons are first coupled into the ring 'resonator in the 

form of clockwise traveling wave. As the photons propagate within the resonator, 

some of them are coupled into the counter-clockwise modes and can be counted as 

loss with respect to the clockwise traveling photons. The counter-clockwise photons 

are coupled back into the waveguide and propagate along ~i: direction. In the doubly 

degenerate case, at the "critical coupling" point, the waveguide-resonator coupling 

and resonator loss exactly balance against each other and cancel the transmitted 

wave. With the presence of coupling term "' and r 0 = 0, the coupling between the 

traveling wave modes takes a role similar to that of the resonator "loss" in the doubly 

degenerate case, and "critical coupling" point is defined by re = "'· 

In Fig. 4. 7, we change the value of t,,/re and plot the reflection/transmission 

spectrum of the coupled system. As expected, in the "under-coupled" case (t,, < re), 

the values of the reflection coefficient are less than the corresponding "critically­

coupled" results ("' = re). When the two counter-propagating modes are "over­

coupled" ("' > re), the reflection spectrum and the transmission spectrum clearly 

show two resonances, with one centered at w = n - "' and the other centered at 

w = n + "'· In Fig. 4.8, we introduce loss/ gain into the resonator and show the 

reflection spectrum. If the resonator is lossy (r0 > 0), the reflection coefficients are 

smaller than those in the lossless case. With the presence of cavity gain, the reflection 

spectrum clearly shows double peaks, whose peak frequencies correspond to n - "' 

and n + "' respectively. 

4.4.3 Single Mode Resonant Coupling 

For the case of resonant coupling, we limit ourselves to the simplest case, which is 

composed of two waveguides coupled via a single mode high Q resonator, as shown 

in Fig. 4.9. As a further simplification, we assume that the two waveguides are the 

same type and have the same unit cell length R and total length L. Thus Eq. ( 4.57) 
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Figure 4.9: (a) Two waveguides of the same type coupled together via a high Q 
resonator supports a single mode. (b) The resonant reflection and transmission co­
efficients of the "resonant coupling" geometry shown in (a). ( c) The reflection and 
transmission spectrum with different parameters of r 0 /re. 



and Eq. ( 4.58) become 

90 

R = (6.w)2 + (ro + f':._ - re )2 
(6.w)2 + (fO + f+ + r~y 

4rc re 
1'= - T 

(6.w)2 + (r0 + r+ + r~ )2 

r1:_ = !:...1 \;l." 12 
, r: = !:... I\~ q. 12 

, rvg ' / ' -,,,g ' J . 

(-1.84) 

( 4.85) 

( 4.86) 

where as before we use r 0 to represent the intrinsic cavity loss or gain, f':._ represents 

tlw cavity decay rate into waveguide 1 and f'~ represents the cavity decay rate into 

waveguide 2. From the above equations, we find that at resonance (6.w = 0), it is 

necessary to satisfy the condition of r 0 = 0 and f':._ = r~ to realize R = 0 and T = 1 

(i.e., photon resonant tunneling). 

To reduce the parameters in our analysis, we assume f:_ = r:_, which allows us 

to use a single parameter re = 2r1:_ and simplify Eq. (11.84) and Eq. ( 4.85) as 

(6.w )2 + (ro)2 
R = (6.w)2 ~ (ro + p:)2 , (4.87) 

( 4.88) 

It is interesting to notice that the above result is very similar to Eq. (4.60) and 

Eq. ( 4. 61), which give the reflection and transmission coefficient for a waveguide 

side-coupled with a single mode waveguide. The only difference between the two 

cases is that the reflection coefficient in Eq. (4.60) corresponds to the transmission 

coefficient in Eq. ( 4.88), and the transmission coefficient in Eq. (,l.61) corresponds to 

the reflection coefficient in Eq. ( 4.87). 

ln Fig. ( 4.9b), we show the resonant reflection and transmission coefficients as a 

function of r 0 /P. In Fig. ( 4.9c), we plot the reflection and transmission spectrum 

using various parameters of r0 /P. As expected, we find that Fig. (4.9b) and (4.9c) 

is the same as Fig. ( 4.3b) and ( 4.3c), if we respectively identify the transmission and 

reflection in Fig. 4.9 with the reflection and transmission in Fig. 4.3. 
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4.5 Dispersion Relation of Indirect CROW 
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Figure 4.10: An example of indirect CROW, which consists of a waveguide side 
coupled to an array of high Q resonators. 

As mentioned in Sec. 4.1, for the structure shown in Fig. 4.10, where a waveguide is 

side coupled to an array of high Q resonators, tight-binding approximation no longer 

applies, since any two resonators in this type of CROW are indirectly coupled to 

each other via the propagating modes in the waveguide. We shall name this type of 

CROW as indirect CROW. In this section, we develop a matrix formalism to analyze 

the indirect CROW's. 

To simplify our analysis, we limit ourselves to the CROW's with large inter-cavity 

distance R, which enables us to ignore the direct coupling between the resonators. 

For the structure shown in Fig. 4.10, we write the optical wave to the immediate left 

of the lth unit cell as 

(4.89) 

where uk(r) is the Bloch wavefunction defined in Eq. ( 4.37). We now introduce a 

matrix formalism, in which a matrix M is used to relate the optical wave to the left 

and the optical wave to the right of the lth unit cell, 

(4.90) 
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\i\!e notice that this approach is similar to the tram,fer matrix method that was widely 

used to describe one-dimensional multilayer structures [28]. "Csing Eq. (4.39), Eq. 

(4.42), Eq. (4.43), Eq. (4.44), and applying time reversal symmetry, we have the 

following relations for the matrix M: 

From these two equations, the matrix .Al is determined to lw 

M= [ t 
r 
t 

-~ l t· 

l 
t 

Combining Eq. (4.89), Eq. (11.90), and Eq. (4.92), we find 

The eigenvalue equation for the matrix in the above equation is simply 

(4.91) 

(4.92) 

(4.94) 

According to the Bloch theorem and the definition of A1 and B1 in Eq. (4.89), for any 

propagating wave inside a spatially periodic structure, the eigenvalue ,,\ should be of 

the form exp(±'i/.lR), with {-J being the Bloch wave vector. Consequently from Eq. 

( 4.94), wf! find 

(4.95) 

\Ve consider a simple case of CRO\V, where the resonator possesses mirror reflec­

tion symmetry and supports only a single mode. lJnder this assumption, the reflection 

coefficient tis given by Eq. (4.44), 

.6::.c: 
t = --- . 

.6L<J + ifC , 
(4.9G) 



93 

where we assume the cavity has no loss or gain, i.e., r 0 = 0. We use the definition of 

re= LIVi,nl 2 /v9 , which represents the coupling between the cavity and the waveguide. 

Using Eq. ( 4. 95) and Eq. ( 4. 96), we obtain the dispersion relation for this indirect 

CROW 
re 

cos((3R) = cos(kR) + .6.w sin(kR) . (4.97) 

Notice that k represents the wave vector of the pure waveguide, and (3 represents the 

wave vector of the compound system. 

If the quantity kR -I mr, a direct consequence of Eq. (4.97) is that no propagating 

mode exists at the renormalized resonance frequency w = D. In fact, under the 

condition of sin(kR) not close to zero, for any .6.w within the range of re, the term 

re/ .6.w will be larger than 1. According to Eq. (4.97), this means the formation a 

bandgap of the order of re that contains the renormalized resonator frequency D. If 

an unperturbed waveguide band traverses the renormalized resonance frequency at 

k0 , it is necessary that this waveguide band is split and a bandgap is formed due to 

its coupling to the CROW structure. We assume a linear dispersion relation for the 

unperturbed waveguide mode 

1 
k = k0 + -.6.w , 

Vg 

where .6.w = w - D. This assumption simplifies Eq. ( 4.97) as 

.6.w Rf e re .6.w Rf C 

cos((3R) = cos(k0R + --) + ~ sin(koR + -r -) . 
fe V UW c V g g 

( 4.98) 

( 4.99) 

From this expression, it is obvious that the photonic band structure of the compound 

waveguide depends critically on k0R, re and R. For many photonic crystals, the 

mid-gap frequency is typically of the value wa/21rc = 0.3, where a is the photonic 

lattice spacing and c is the light speed in free space [11]. If we consider a compound 

waveguide formed by a photonic crystal waveguide and defect cavities, we can choose 

R = 5a, v9 = 0.3c, the cavity Q ( consequently w ;re) between 100 and 1000. From 

these estimates, we find that the parameter Rre /v9 is of the order of 0.05. In Fig. 
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Figure 4.11: The uncoupled waveguide band and the photonic band of the indirect 
CROW calculated from Eq. (4.99). In (a) k0R = 1r/2 and in (b) k0 R = 51r/6. We 
choose the parameter Rrc /v9 = 0.05. The justification of this value is given in the 
text. 

4.11, we use Rrc /v9 = 0.05 and plot the indirect CROW band as calculated from Eq. 

(4.99). It is clearly demonstrated in Fig. 4.11 that the photonic band of the indirect 

CROW splits at .6.w = 0 and its resonant band structure depends critically on the 

value of k0R. 

On the other hand, if the propagating mode frequency is far away from resonance, 

Eq. ( 4.97) can be solved asymptotically. For .6.w ~ re, (3 can be expanded around k 

to obtain an approximate solution 

(4.100) 

which can be easily verified by substituting this result into Eq. (4.97). Fig. 4.12 shows 

the uncoupled waveguide band, the split waveguide bands around w0 calculated from 
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Eq. ( 4.99), and the photonic bands obtained from the above asymptotic approxima­

tion. It is interesting to notice that the asymptotic approximation actually gives a 

fairly good description of the indirect CROW bands. 

In closing this section, we remark that if cos(k0R) '.:::'._ ±1, it is possible that one 

of the split bands becomes extremely flat. This scenario is illustrated in Fig. (4.13), 

where k0R = 3.0 and Rrc / v9 = 0.05. The nearly horizontal band lies closely to 

the resonance frequency w = w0 . The flatness of the band indicates extremely low 

propagating group velocity. The group velocity is reduced to a large extent due 

to the fact that, when propagating through the indirect CROW structure, photons 

are trapped inside the resonance cavities most of the time. This property may find 

applications when low photon propagating velocity is desired, such as in the case of 

bandedge lasers [96]. 

4.6 Optical Transmission and Reflection Through 

Waveguide Coupled with Multiple Cavities 

We have discussed the light reflection and transmission characteristics of some simple 

coupled waveguide-resonator system in Sec. 4.4. Yet it is of both theoretical and 

practical interest to investigate more complicated geometries. As an example, Fig. 

( 4.14a) shows a structure composed of N identical resonators periodically side coupled 

to a straight waveguide. To simplify our analysis, we assume that each resonator is 

single mode and possesses mirror reflection symmetry. 

First we reconsider the case where a straight waveguide is coupled to a single 

cavity. As shown in Fig. (4.14b), we choose the origin of the x coordinate such that 

x = x 0 is the mirror reflection symmetry plane of the system. As before, we express 

the propagating waveguide mode as 

(4.101) 

where we choose the wavefunction of the propagating mode such that under mirror 
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straight waveguide coupled to a resonator that possesses mirror reflection symmetry 
with respect to plane x = x 0 • 

reflection operation x - x 0 --+ -(x - x 0 ) 

(4.102) 

where the operator Ox=xa represents the mirror reflection with respect to plane x = x 0 • 

Using the same matrix formalism as in the previous section, from Eq. (4.45), we know 

that if the wave to the left of the resonator is described by [1 r], then the wave to 

the right is given by [t OJ. On the other hand, if the wave to the right is [r 1], the 

mirror reflection symmetry dictates that the wave to the left must be [O t]. Since the 
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two waves can be related to each other via matrix M, we have 

( 4.103) 

which gives 

(4.104) 

When we study the case of a waveguide coupled to N identical resonators as shown 

in Fig. ( 4.14a), the scattering by each resonator can still be described by the matrix M 

as given by Eq. (4.104). However, to apply Eq. (4.104) to describe the lth resonator, 

we need to choose x 0 in Eq. (4.102) as xz. Therefore, if the same M matrix is used 

to describe the next resonator, we should switch to another basis of wavefunctions 

where x 0 is x1+ 1 = x 1 + R. Consequently, we have 

(4.105) 

[ 

eikR 

D= 
0 

0 l [ t2 

~r

2 

% l . 
e-ikR _'!:. l 

t t 

(4.106) 

It should be remembered that the wavefunction basis for [a1+1 bz+i] is different from 

that for [az bz]. 

Assuming the center of the first resonator is located at x = 0, and we choose the 

wavefunction basis according to Eq. (4.101) with x 0 = 0. In the same wavefunction 

basis, the output optical wave [a 0 b0 ] after the Nth resonator is related to the incident 

wave [ ai bi] through 

( 4.107) 

We consider the simplest case where the cavity possesses mirror reflection sym-
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metry and supports only a single mode, where r can be found from Eq. (4.45) 

-i LTT l' r - ------ V 1' - .6.w + i(ro + re) Vg -k,n 'n,k . 
(4.108) 

Assuming the parity of the cavity mode is given by P, from Eq. (4.7), we have 

(4.109) 

Using this relation, Eq. (4.108) is simplified as 

. pre 
r=-i------

.6.w + i (r0 + re) . 
(4.110) 

The transmission coefficient is 

(4.111) 

Substituting Eq. (4.110) and Eq. (4.111) into Eq. (4.106), we find 

(4.112) 

To find the reflection and transmission coefficient, we calculate DN by using the 

procedure in Ref. [97]. First we obtain the eigenvalue equation of matrix D: 

re 
>..2 - 2A [ cos(kR) + .6.w + iro sin(kR)] + 1 = 0 . (4.113) 

Then we use Hamilton-Cayley theorem [98], which says that the matrix obeys the 

same equation as its eigenvalue equation 

re 
D 2 

- 2D [ cos(kR) + .6.w + iro sin(kR)] + 1 = 0 . (4.114) 



100 

Thus, if we define (3 as 

re 
cos((3R) = cos(kR) + 

6 
. 

0 
sin(kR) , 

w +ir 
( 4.115) 

we find [97] 
DN = 

0
sin(N(3R) _ 

1
sin(N - l)(3R 

sin(/3R) sin(/3R) ' 
(4.116) 

where I is the identity matrix. 

With the optical amplitude at the input and output given by Eq. ( 4.107) and the 

expression for DN given by Eq. ( 4.116), we can easily evaluate the optical transmis­

sion and reflection coefficients due to the presence of N resonators. The results in 

general depend critically on the values of 6w, r 0 /re, N and k0 R. However, under the 

condition of 6w = 0 and k0R = mr, the optical transmission and reflection coefficient 

are of simple form. In this case, D and DN can be evaluated as 

and 

DN = (-l)Nn - ~ 
[ 

1 Nrc 

pNrc 
ro 

(4.117) 

(4.118) 

The power transmission and reflection coefficients of the whole system can readily be 

calculated as 

(4.119) 

It is evident from (4.119) that under the condition of k0R = mr, the resonant trans­

mission and reflection characteristics of a waveguide coupled to N equally spaced 

single-mode resonators each with intrinsic loss r 0 are as if the waveguide is coupled 

to a single resonator with intrinsic loss r 0 
/ N, which has been analyzed in section 

4.4. In general, however, such scaling property with respect to N does not hold for 

arbitrary values of 6w and k0 R. In the rest of this section, we shall use Eq. (4.107), 

Eq. (4.115) and Eq. (4.116) to find the transmission and reflection properties of such 
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coupled waveguide-resonator system. The parameter (-j as defined in Eq. ( 4.117>) is 

very similar to the Bloch wavevector of the compound waveguide in the 1m·vio11s sec­

t.ion and can be calculated using the same assumption of linear dispersion. In all the 

calculations of 5, we choose the same RF /v9 = (J.05. 

In Fig. 4.15, we show the transmission and reflection spectrums for a wav<'guide 

coupled to N = 2 and ,V = (j resonators. \Ve assume that then' is uo loss or gain 

and k0 H = 7: /2. It is interesting to notice that for only 2 resonators, the transmission 

dip and the rdle('t,ion p<•ak are no longer Lorentzian and relatively flat. For the casP 

of lV = 6, the transmission dip arouml ~:.,; = 0 becomes extrPmcly fiat. \Ve also 

observe th<~ rapid oscillation of t.lw transmission coefficient around the transmission 

dip, ·which is caused by th<' optical intcrfrr<)TIC<~ b()tween Lhc fi resonators. 

In Fig. (4.lGa), \V<:' assume that k0 R = 0, r 0/r' = 0 and show Lh<' transmission 

spectrum for a waveguide coupled to N = 2, N = 6, and N = 20 cavities. It is 

int.cresting to notice that only the case of N = 20 resonators produces flat transmis­

sion dip. In Fig. (4.16b), we show the photonic bands in the indirect CHOW that 

rnrresponds to the coupled waveguide-resonator s~1stem in Fig. (4.16a). WP 11oticP 

tlw bandgap in the indirect CHOvV corresponds exactly to the transmission dip of 

N = 20 resonators in Fig. (4.16a). lt. is interesting that, in Fig. 4.li:> (k0 R = 1r/2), it 

only takes 6 resonators to produce a fia.t transmission dip, while under the condition 

of k0 R = 0, it requires 20 resonators. 

"\V(• have observed in the previous section that it is possible to create a wry flat 

photonic band close to ~LcJ = 0 in an indirect CHOW (see Fig. 4. I 3. when~ k0R = 3.0 

is used). "\Ve use the same value of k0R to evaluate the opLical transmission through 

a waveguide coupled to ~ lossless resonators, with :\" respectively equal to 2 and 

10. Th(' results arc shown in Fig. 4.17. For the case of N = 2. Wt' observe the 

presence of a narrow transmission peak arouud ~[,(,' = 0. For 11.T = 10, multiple high 

transmission peaks are formed within the frequency rangf' of O < ~JJ/rc < 2.3. which 

roughly corresponds to the fiat CROW band observed in Fig. 4.1:3. Thi: appeara.nc(' of 

nrnltiplP peaks instead of a plateau of high transmission is likely clue to tlir imperfect 

coupling between the unperturbed waveguide band and the fiat CROW band. 
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Figure 4.15: The transmission and reflection coefficient of a straight waveguide side 
coupled to N resonators, with N = 2 and N = 6 respectively. r 0 ;re = 0, k0 R = 1r /2, 
Rre /v9 = 0.05 are used. 
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Figure 4.16: (a) The transmission spectrum of a straight waveguide side coupled to 
N resonators, with N = 2, N = 6 and N = 20 respectively. r 0 ;re= 0 and k0 R = 0, 
and Rrc / v9 = 0.05 are used in the calculations. (b) The photonic band of a straight 
waveguide side coupled to an infinite array of resonators the same as those in (a). The 
band structures are calculated using Eq. ( 4.99), with k0R = 0 and Rrc /v9 = 0.05. 
The bandgap in (b) corresponds to the transmission dip for the case of N = 20 in 
(a). 
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Figure 4.17: The transmission spectrum of a straight waveguide side coupled to N 
resonators, with N = 2 and N = 10 respectively. We use r 0 ;re = 0, k0 R = 3.0, and 
Rre /v9 = 0.05. 
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In Sec. 4.4, we have found that the optical transmission and reflection depends 

critically on the cavity loss(gain). For a waveguide coupled to multiple resonators, 

we expect to see similar critical dependence. In Fig. 4.18, we calculate the optical 

transmission and reflection coefficient of a waveguide coupled to 6 resonators, with 

k0R = 1r /2 and Rrc /v9 = 0.05. At the presence of cavity loss, we find that the rapid 

oscillation of the transmission coefficient vanishes around the edge of the transmission 

dip. This is due to the reduced interference between the lossy resonators. When cavity 

gain is introduced, we find that the transmission and reflection is greatly enhanced at 

frequencies corresponding to the bandedge of the indirect CROW band as shown in 

Fig. 4.11. This gain enhancement is a direct consequence of the slow group velocity 

at the edge of the indirect CROW band. In Fig. 4.19, where N = 20 and k0 R = 0, we 

also find diminished transmission side-lobe at the presence of cavity loss, and sharp 

enhancement of optical transmission at the bandedge when the cavities possess gain. 

However, comparing Fig. 4.19 to Fig. 4.18, we observe that it takes more cavities to 

obtain the same amount of optical enhancement when k0R = 0. Finally, we study the 

case of N = 6 and k0R = 3.0, which is shown in Fig. 4.20. With the presence of cavity 

loss r 0 /re = 0.3, we find that the transmission peaks around 6.w = 0 in the case of 

lossless cavities are greatly reduced. With cavity gain r 0 /re = -0.12, we find that 

the sharp peak of enhanced optical transmission close to 6.w = 0. Indeed, comparing 

Fig. 4. 20 to Fig. 4.18, we find that the enhancement of the optical transmission for 

k0R = 3.0 is much larger than the case of k0R = 1r /2. As a concluding remark, we 

observe that the phenomenon of effective gain enhancement is a direct consequence 

of the reduced group velocity around bandedge [96]. 
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Figure 4.19: The transmission spectrum of a waveguide coupled to 20 resonators with 
loss or gain. k0R = 0, and Rrc /v9 = 0.05 are used in the calculations. 

c 1 r 0;rc=0 CD -- .. 
~0.8 

... 
' 1°/fc=0.3 
' , , CD 

' 0 

' , , 
U0.6 

' 
, 

C 

' , , 
0 

' 
, 

"gj0.4 
k

0
R=3.0 ' , , 

.E ' "' "' " "' ~0.2 N=6 " , .. _ 
~ I 
I- 0 

-10 -5 0 5 10 
L'.co/rc 

c 10 
CD I- r 01rc=-0.121 ·13 

8 ~ 
0 
(.) 6 
C k

0
R=3.0 

0 ·u; 4 N=6 
(/) 

E 
(/) 2 C 

e> 
I- 0 

-10 -5 0 5 10 
t.co/rc 

Figure 4.20: The transmission spectrum of a waveguide coupled to 6 resonators. 
k0R = 3.0, and Rrc /v9 = 0.05 are used in the calculations. 
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Chapter 5 

Bragg Fibers and Dielectric 

Coaxial Fibers 

5.1 Introduction 

In conventional optical fibers, the light confinement is achieved through total internal 

reflection and photons propagate mainly in the high index silica core. A completely 

different confinement mechanism, Bragg reflection, provides an alternative way of 

guiding photons, and has recently attracted a lot of attention [99]-[107]. Since Bragg 

reflection and total internal reflection are completely different guiding mechanisms, 

it is not surprising that fibers with Bragg confinement offer many possibilities that 

are difficult to achieve in conventional fibers. A particularly appealing application 

of Bragg confinement is the possibility of guiding light in air instead of silica glass, 

which can lead to lower propagation loss and reduce the threshold for nonlinear effects. 

We can also utilize Bragg reflection to design a fiber that supports a single guided 

mode without azimuthal dependence. In contrast with the fundamental mode in 

conventional fibers, which is always doubly degenerate, these guided fiber modes are 

truly single mode. Consequently, many undesirable polarization dependent effects, 

such as polarization mode dispersion (PMD) and polarization dependent loss (PDL), 
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Figure 5.1: Schematic of (a) a Bragg fiber, (b) a dielectric coaxial fiber, and (c) a 
metallic coaxial cable. 

can be completely eliminated [105]. 

The possibility of guiding light using Bragg confinement was first pointed out by 

Yeh et al. [99], where the concept of Bragg fibers was proposed. The experimen­

tal fabrication of Bragg fibers has been recently reported [102]. Fig. (5.la) is the 

schematic of a Bragg fiber, which consists of a low index dielectric core surrounded 

by cladding layers with alternating high and low refractive indices. A new approach 

of using Bragg reflection to transmit optical signals was suggested in Ref. [105]. In 

this design, Ibanescu et al. proposed to use an all-dielectric coaxial fiber to overcome 

problems of polarization rotation and pulse broadening in high data rate telecommu­

nication. The coaxial fiber is essentially a Bragg fiber with an extra high index core, as 

shown in Fig. (5.lb). The cladding of the coaxial fiber is a cylindrical omnidirectional 

mirror, which can be designed such that there is a frequency range within which light 

incident from the low index medium is completely reflected back irrespective of the 

incident angle and polarization [108, 109, 110]. Thus analogy can be drawn between 

dielectric coaxial fibers and metallic coaxial cables [see Fig. (5.lb) and Fig. (5.lc)]. 

Based on this analogy, Ibanescu et al. predicted small dispersion for dielectric coaxial 

fibers. 

In both Bragg fibers and coaxial fibers, we use lD Bragg reflection to achieve 

photon confinement. It is also possible to surround the fiber core region (silica glass 

or air) with silica glass patterned with two-dimensional arrays of air holes [101, 103, 

104]. Such fibers are generally referred to as photonic crystal fibers, and shall not 

be considered here. However, we point out that as confinement mechanism, there 
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is no fundamental difference between lD Bragg reflection and 2D Bragg reflection. 

Thus properties of photonic crystal fibers should qualitatively resemble those of Bragg 

fibers or coaxial fibers. 

Due to the z translational symmetry of the aforementioned fibers, we can use 

the 2D FDTD algorithm in Sec. 2.1.1 and Sec. 2.3.2 to find dispersion and field 

distribution of the guided modes. This approach has the obvious advantage of being 

able to analyze fibers with complicated dielectric distribution. The drawback is that 

the numerical approach tends to be time consuming and physically less transparent. 

In this chapter, we shall develop an efficient analytical method for Bragg fibers and 

coaxial fibers by taking advantage of their cylindrical symmetry and radial periodicity 

of the cladding layers. 

In the original matrix formalism [99], Yeh et al. used four independent parameters 

to describe the solution of Maxwell equations in each layer of the Bragg fiber, and the 

parameters in neighbor dielectric layers were related via a 4 x 4 matrix (see also Sec. 

5.2.1). Unlike the case of conventional fibers, in this approach the confined modes 

in a Bragg fiber were treated as quasimodes whose propagation constant and field 

distribution were found by minimizing the radiation loss [99]. The extra complexity 

associated with this matrix approach is due to the difficulty in finding the eigenmode 

in fiber cladding layers. For a planar air core Bragg waveguide, the eigen solution that 

decays in the cladding structure can be easily found according to the Bloch theorem 

[9]. For a cylindrically symmetric geometry, which is strictly speaking not periodic 

and the Bloch theorem does not apply, we cannot single out an eigen solution that 

decays in the fiber cladding layers. As a result, it is no longer feasible to find an 

exact analytical equation that determines mode dispersion by matching the cladding 

solution and core solution at the waveguide core-cladding interface, as in the case of 

conventional optical fibers [69] or planar Bragg waveguides [9]. 

We observe that in the asymptotic limit, the exact solutions of Maxwell equations, 

which take the form of Bessel functions, can be approximated as exp( ikr) / Jr and 

exp( -ikr) / Jr [68]. In this form, the solutions in cylindrical Bragg cladding resemble 

those in planar Bragg stacks and eigen solutions in the fiber claddings can be similarly 
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Figure 5.2: Schematic of the r - z cross-section of a fiber with Bragg cladding. The 
dielectric layers of the Bragg fiber are classified into two regions: the core region and 
the cladding region, which are separated by the dash line in the figure. 

found [106]. In Ref. [107], we treat the first several dielectric layers exactly and 

approximate the rest of the dielectric cladding structures in the asymptotic limit. We 

can use this method to find the dispersion relation of Bragg fibers within any desired 

precision simply by increasing the number of inner layers that are treated exactly. 

The accuracy of the asymptotic approximation can also be estimated by comparing 

results obtained from treating different number of inner layers exactly, as will be 

demonstrated shortly hereafter. 

5.2 Asymptotic Matrix Theory 

We begin the asymptotic analysis by separating the Bragg fiber or coaxial fiber into 

two regions: the core region and the cladding region. The core region consists of N 

concentric layers each with refractive index n~
0 

and thickness l~0 , i = 1 · · · N. The 

fiber cladding region is composed of pairs of alternating layers of different dielectric 

materials. Layer type I has refractive index n~1 and thickness l~1• Layer type II has 

refractive index n~z and thickness l~1, as shown in Fig. 5.2. 
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5.2.1 Exact Solution in the Core Region 

In the asymptotic matrix formalism, we apply exact solutions of Maxwell equations 

to describe the fields in the core region. It should be emphasized that the refractive 

index and thickness of layers in the core region can be chosen arbitrarily. If we take 

the z axis as the direction of propagation, due to the translational symmetry, every 

field component has the following form [99] 

1/J(r, 0, z, t) = 1/J(r, 0)ei(f3z-wt) , (5.1) 

where '!p can be Ez, Er, E0, Hz, Hr, and Ho, w is the mode frequency, and /3 is the 

propagation constant. 

As in conventional fibers, the transverse field components can be represented by 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

where n is the refractive index of the dielectric medium. 

Due to the cylindrical symmetry of Bragg fibers, we can take the azimuthal de­

pendence of the field components as cos(m0) or sin(m0). For each m, the general 

solutions of Ez and Hz are the superposition of either lm(x) and Ym(x), or Im(x) and 

Km(x) [68]. In this section, we assume the solutions are given by lm(x) and }~(x). 

As a result, the electromagnetic field at radius r, which is within the ith core layer, 
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can be written in the following matrix form [99] 

Ez 

i1H0 

Hz 

-i1E0 

The matrix M(n~0 ,k~0 ,r) is defined as 

M(n~0 , k~0 , r) 

lm(k~0 r) }~(k~0 r) 

WEo(n~0 )2 J' (ki r) 
k~

0
(3 m co 

WEo(n~ol2 Y' ( ki r) 
k~

0
(3 m co 

0 0 

(kc)2rlm(k~or) (kc)2r }~ ( k~or) 

0 

(kC)2rJm(k~or) 

lm(k~0 r) 

wµo J' (ki ) ki f3 m cor co 

(5.6) 

(5.7) 

0 

(k~J 2 r Ym ( k~0 r) 

r~(k~0 r) 

wµo Y' (ki r) k~
0

(3 m co 

where k~0 = j(n~0 w/c) 2 - {J2. The coefficients Ai, Bi, Ci, and Di are constant within 

the ith layer. We emphasize that as long as /3 :S n~
0
w / c, Eq. (5.6) and Eq. (5.8) are 

the exact solution of Maxwell equations, with no approximation involved [99]. 

Once the electromagnetic field in the ith layer is known, we can easily find the field 

in the (i + l)th layer by applying the condition that Ez, E0, Hz, H0 are continuous 

at r = p~0 , the interface between the ith and ( i + 1 )th layer: 

Ai+l A i 

Bi+i 
= Ti 

Bi 
(5.8) 

Ci+l Ci 

Di+i Di 

where the transfer matrix Ti is 

T . - [~1(' i+l ki+l i )]-
1111( i ki i ) 

1 - 1 ~ nco , co , Pco nco, co, Pco · (5.9) 

It is important to notice that within the first core layer, the coefficients B 1 and D 1 
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are zero, since Ym(x) is infinite at x = 0. 

5.2.2 Asymptotic Approximation in the Cladding Region 

The electromagnetic fields in the cladding region can be described in the same way 

as the core regions fields, i.e., by Eq. (5.6) and Eq. (5.8). However, with a sufficiently 

large r, it suffices to approximate the exact solution in the asymptotic limit, which 

allows us to replace lm(x) and }~(x) with exp(ix)/Jx and exp(-ix)/Jx [68]. Under 

this condition, the field distribution in type I layer of the nth cladding pair can be 

written as [107]: 

Similarly, fields inside type II of the same cladding pair are given by 

In Eq. (5.10) and (5.11), k~1 = J(n~1w/c) 2 - /3 2 , k~1 = J(n~1w/c)2 - /3 2 , p~1, p'~z are 

defined in Fig. 5.2. It should be noted that TM component (including Ez and He) 

and TE component (including Hz and Ee) are decoupled in the asymptotic limit, 

with TM component amplitude being !TM and TE component amplitude being !TE· 

The values of !TE and !TM are constant within the whole Bragg cladding region. 

The field amplitudes in type II layer of the nth cladding pair can be easily related 

to those in type I layer of the same cladding pair. By applying the condition of Ez, 
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E0 , Hz, Ho being continuous at r = p'~1, we find 

(5.12) 

for the TM component, and 

( k

2 

) ik1 
1
1 l [ l 1 - kl'. e- c1. c1 Cn 

( 
k- ) -k1 11 1 + ~ e-i cl cl dn 

(5.13) 

for the TE component. Similarly, we can relate a~, b~, c~ and d~i to an+l, bn+l, Cn+l, 

and dn+l by applying the field continuity condition at r = p~/ 1
. This allows us to 

express an+l, bn+l, Cn+l and dn+l in terms of the corresponding parameters in the 

nth layer: 

(5.14) 

(5.15) 

The parameters ArE, BrE, ArM and BrM are respectively defined as [106]: 

. 1 1 (kl )2 + (k2 )2 ' 
A = e2

kcllcl [i cl cl sin(k2 l 2
) + cos(k2 l2 

)] 
TE 2kl k2 cl cl cl cl ' 

cl cl 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

Since ArE, BrE, ArM, and BrM are the same for all cladding layers, we can apply 
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the Bloch theorem to the cladding fields: 

ATE= Re(ArE) ± J[Re(ATE)J2 - 1, 

ATM = Re(ATM) ± J[Re(ATM )]2 - 1 . 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

These results clearly indicate that in the asymptotic limit, the properties of Bragg 

fiber cladding resemble those of planar Bragg stacks [9], which is directly due to the 

radial periodicity of the cladding layers and the fact that the asymptotic solutions 

in Eq. (5.10) and (5.11) takes the form of traveling plane waves. There are two 

solutions for ATE and ATM· In the Bragg bandgap, which is defined by the condition 

of Re(ATE) > 1 or Re(ATJ1.-1) > 1, the two solutions of ATE and ATM are real numbers, 

with one having absolute value less than one and the other greater than one. We shall 

take the solutions of ATE and ATM with absolute values less than unity, since they 

correspond to modes decaying in the Bragg cladding. 

Once we find the values of an, bn, Cn, dn, a~, b~, c~, d~ by combining Eq. (5.20) 

through Eq. (5.23), the only unknown quantities in Eq. (5.10) and Eq. (5.11), which 

give the electromagnetic field in the entire cladding region, are !TE and !TM, the 

amplitudes of the TE and TM components. The problem of finding them lies at the 

center of our asymptotic matrix formalism, and will be treated in detail in Sec. 5.2.3. 

5.2.3 Matrix Formalism 

The guided modes in a Bragg fiber are founded by matching the exact solution in the 

core region [i.e., Eq. (5.6)] with the asymptotic solution in the cladding region [i.e., 
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Eq. (5.10)] at the interfacer= P':o = p;,1 (sec Fig. 5.2), which gives us 

flN 

CN 

DN 

(3.24) 

\Ve then relate the amplitude coefficients in the Nth core layer (i.e .. AN, 13N, C,,y and 

DN) to t,Jw coefficients in the first core la~,er (i.e., A. 1 , B 1 , C1 and D1). \Ve remember 

that in the first core layer fl, = D 1 = 0 and we further denote A. 1 as A:n•vI, and C 1 as 

CTL· Applying Eq. (5.8) and (Z">.9) repeatedly, w<, have 

0 

m J (k~ f!l ) 
( / .. ! )2p l ' 'fr! co CO 

Leu, co 

() 

rn J ( 1..l I ) 
(1 .. 1 ·;2 1_ • m t,,coPco 

Leo Pt·o 

X 

Substituting Eq. (5.25) into Eq. (Zi.24), vve find the following matrix relation 

T 

0 

w,o(n}9 )
2 1·1 (1.1 1) m J (1~1 1) 

k(l_~e ' m t,,coPco fk-l )2 1 • m hcoPco 
,/,.J , ·co Pco 

c.JflO ]' (/··: l ) 
A)c,;J' 1n ''coPco 

;,,Hin fT F ( \ 1 B ) - 0(3 ~-, 1 ATE - .:- TE - Tli 
'd V k;.,r\ .. 1 

(5.2G) 
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where an overall transfer matrix T is defined as 

N II [l\1( i ki i-l)M-1( i ki i )] nco, co, Pco nco, co, Pco 
i=2 

tn t12 t13 t14 

t21 t22 t23 t24 
(5.27) 

t31 t32 t33 t34 

t41 t42 t43 t44 

In Eq. (5.26), ArM and CrE, which represent field in the first core layer, are linearly 

related to field in the first cladding layer UrM and frE) via a 4 x 4 transfer matrix 

T as defined in Eq. (5.27). Eq. (5.26) gives us four equations with four independent 

variables ArM, CrE, frM, frE, and is sufficient to determine the propagation constant 

(3 and field distribution of guided modes. To see this more clearly, we introduce eight 

new parameters g}M and g}E, j = l, · · ·, 4 as 

where tj1 , Jj2 , tj3 and tj4 are the matrix elements given in Eq. (5.27). With these new 

parameters, we can split Eq. (5.26) into two equations: 

(5.30) 
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(5.31) 

These two equations lie at the center of our asymptotic matrix method. To fully 

understand their consequences, we consider two separate cases, the TE or TM modes 

with m = 0, and the mixed modes with m #- 0. 

For modes with m = 0, we first notice that the matrix ~A1(n~
0

, k~
0

, r) is block 

diagonalized into two 2 x 2 matrices. As a result, the transfer matrix T, as defined 

in Eq. (5.27), is also block diagonalized into two 2 x 2 matrices with t 31 = t41 = t32 = 

t42 = t13 = t23 = t 14 = t24 = 0. According to the definitions in Eq. (5.28) and Eq. 

(5.29), we have gfM = gfM = 0, and g}E = g}E = 0. 

By definition, the Hz component of any TM mode must remain zero in the entire 

Bragg fiber, i.e., CTE = 0 and !TE = 0. With this condition in mind, from Eq. (5.30) 

we can easily find 
WEo ( n~0 )2 J~ ( kloP~o) 

k~of3 Jo ( k~0 P~0 ) 

(5.32) 

Once we have specified the Bragg fiber parameters and chosen the frequency w, the 

propagation constants of TM modes are found by solving for f3TM satisfying Eq. 

(5.32). We substitute the result /Jn.1r back into Eq. (5.30), and obtain the following 

relation 

A gfM f TM= TM· 
Jo(k~oP~o)Jkl1P~l 

(5.33) 

The importance of this result is that it relates the mode amplitude ATM in the first 

core layer to f TM, which determines the fields within the entire fiber cladding region. 

We can choose the normalization factor of the guided mode such that ATM = l. 

Combining this condition with Eq. (5.33), !TE = 0, and Eq. (5.10) through Eq. 

(5.23) in Sec. 5.2, we obtain the TM field distribution in the cladding region. The 

TM field distribution in the core region can also be easily found. In the center core 

layer, we have A1 = ATM = l, and B1 = C1 = D 1 = 0. Applying Eq. (5.8) repeatedly, 
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where the transfer matrices Ti are found from Eq. (5.8) and Eq. (5.9), we find all the 

mode coefficients Ai, Bi, Ci, and Di in the N core layers. The TM field distribution in 

the core region is simply given by substituting these mode coefficients into Eq. (5.6) 

and applying Eq. (5.8). 

For TE modes, we have ATM= 0 and Eq. (5.31) gives us 

wµo J~(k~oP~o) 

k~of3 lo(k~0 P~0 ) 

4 
9TE 

g3 ' 
TE 

3 

C 9TE 1· 
TE= ~TE· 

lo(k~0 P~o)y k~zP~z 

(5.34) 

(5.35) 

Following the same procedure as for TM modes, we can find the propagation constant 

(3 and field distribution for TE modes from the above two results: Eq. (5.34) and Eq. 

(5.35). 

For any mixed mode with m =/- 0, both Eq. (5.30) and Eq. (5.31) are needed and 

the solutions are more complicated. To simplify our final results, we introduce more 

definitions 

Hl J (kl 1 ) 4 wµo J' (kl 1 ) 3 m J (kl 1 ) 1 
TE = - m coPco 9TE + kl {3 m coPco 9TE + (kl )2 1 m coPco 9TE , 

co co Pea 
(5.36) 

H2 J (kl 1 ) 2 Wco(n~o)2 J' (kl 1 ) 1 m J (kl 1 ) 3 
TE= m coPco 9TE - kl {3 m coPco 9TE - (kl )2 1 m ~coPco 9TE ' 

co co Pea 
(5.37) 

Hl J (kl 1 ) 4 wµo J' (kl 1 ) 3 m J (kl 1 ) 1 
TM = m ''coPco 9TM - kl {3 m coPco 9TM - (kl )2 1 m coPco 9TM , 

co co Pea 
(5.38) 

H2 _ J (kl 1 ) 2 Wco(n~o)
2 

J' (kl 1 ) 1 m J (k1 1 ) 3 ( 5 39) 
TM - - m coPco 9TM+ kl {3 m coPco 9TM+ (kl )2 1 m coPco 9TM · · 

co co Pea 

To find the propagation constant f3 of any mixed mode, we first express ArM and 

CTE in terms of !TM and !TE by inverting the leftmost 2 x 2 matrix in Eq. (5.30). 

Substituting the results of ATM and CTE into Eq. (5.31), we find 

(5.40) 
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with H}E, HfE, H}M and HfM defined in Eq. (5.36) through Eq. (5.39). In order for 

Eq. (5.40) to have non-zero solutions, the determinant of the matrix must be zero, 

which gives 

(5.41) 

As can be seen from the definitions in Eq. (5.36) to Eq. (5.39), Eq. (5.27) to Eq. (5.29) 

and Eq. (5.8), the parameters H}E, HfE, H}M, and Hf M are complicated. However, 

once the Bragg fiber structure is chosen and the frequency is given, they only depend 

on (3. Therefore, the solution of Eq. (5.41) gives us the propagation constant of any 

mixed mode. 

After finding the solutions of Eq. ( 5.41) and choosing an appropriate normalization 

constant, we can determine the values of frM and frE from Eq. (5.40): 

[ 
frM ] - m [ ( 1 1 )] 2 ~ [ H}E ] - (kl )2 1 Jm kcoPco V kclPcl l · 
frE co Pea HrM 

(5.42) 

As before, by combining this result with Eq. (5.10) to Eq. (5.23) in Sec. 5.2, we can 

find the whole cladding field distribution. To obtain the fields in the fiber core region, 

we substitute Eq. (5.42) into Eq. (5.31) and find 

[ ~:: l (5.43) 

[
- ~-0~J:n(k~oP~o)(gfMHfE + gfEHfM) + Jm(k~oP~o)(gfMHfE + gfEHfM) l · 

(kJ
0

) 2p~
0 

Jm(k~oP~o)(gfNIHfE + gfEHfM) 

Thus within the first core layer, we have A1 = ArM, C1 = CrE, and B1 = D 1 = 0. 

By applying Eq. (5.6) to Eq. (5.9) in Sec. 5.2.1 throughout the entire core layers, we 

find the electromagnetic fields in the Bragg fiber core region. 
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5.2.4 Surface Modes 

In the previous sections, we assume that general solutions in any layer are given by 

lm(x) and }~(x), which only holds if {3 ::::; n~
0
w/c for all the core layers. In an air 

core Bragg fiber, a guided mode may have {3 exceeding w /c, yet satisfying {3 :S n~1w / c 

and {3 ::::; n~1w / c. Such mode is generally referred to as surface mode, since it decays 

both in the cladding layers (due to Bragg reflection) and in the air core (due to total 

internal reflection). In this case, we can still apply the asymptotic approximation to 

the cladding field and use results in Sec. 5.2.3. However, in the core region, there are 

some important differences between regular guided modes and surface modes, which 

shall be summarized in this section. 

For the ith Bragg fiber layer in which {3 > n~
0
w / c, the solutions of E 2 and H 2 are 

given by Im(k!0 r) and Km(k~0 r) [68], with k~0 defined as 

(5.44) 

We still use four parameters Ai, Bi, Ci and Di to express field components in the 

ith layer, as in Eq. (5.6). However, the matrix l'vf has a new definition: 

M(n~0 , k~0 , r) (5.45) 

Im(k!0 r) Km(k!0 r) 0 0 

_wEo(n~0)
2 J' (ki ) _wEo(nL)

2K' (ki r) -(kCJ2Jm(k~0 r) - (k1J2r Km ( k~0 r) k' j3 m car k1 0 /3 m co co 
0 0 Im(k!0 r) Km(k!0 r) 

- (kC)2rlm(k~0 r) - (kC)2rKm(k~0 r) _'!1.l!:Sl_J' (ki ) k~
0

j3 m car _'!1.l!:Sl_K' (ki ) kbo/3 m car 

If we use this new definition for Af ( n~
0

, k!
0

, r) when {3 > n~0 w / c, the overall transfer 

matrix Tis still the same as in Eq. (5.27), and g}E, g} M are still given by Eq. (5.28) 

and Eq. (5.29) respectively. If {3 > n~
0
w/c at the first core layer, Eq. (5.30) and Eq. 
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(5.31), which determine modal dispersion and field distribution, are replaced by 

From the above two equations, for TM modes we find 

WEo(n~0 )2 Ib(k~0 P~o) 
kJ0 /3 Io ( kJ0 p~0 ) 

2 
gTM 

1 ' gTM 

A gfM f 
TM = ~ TM , 

Io ( kJ0 P~0 ) y k~zP~z 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

which, respectively, give dispersion and field distribution of guided TM modes. The 

corresponding equations for TE modes are 

W µo Ib ( k~oP~o) 
---

kJo/3 Io ( kJ0 p~0 ) 

4 
9TE 

3 ' gTE 

C gfE j 
TE= ~ TE· 

Io(kJ0 P~0 )y k~zP~z 

(5.50) 

(5.51) 

The results for the mixed surface modes are more complicated. First, if /3 > 

n~0 w/c, the definitions of H,},E, HfE, H,},M, H',},M must be changed accordingly: 

H1 I (kl 1 ). 4 wµo I' (kl 1 ) 3 m I (kl 1 ) 1 
TE = - m coPco 9TE - kl /3· m coPco gTE - (kl )2 1 m coPco gTE , 

. co co Pea 
(5.52) 
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2 ( 1 1 ) 2 WEo ( n~o)2 , ( 1 1 ) 1 m, ( 1 1 ) 3 
HTE = Im kcoPco 9TE + kl (3 Im kcoPco 9TE + (kl )2 1 Im kcoPco 9TE , 

co co Pea 
(5.53) 

H1 I (kl 1 ) 4 wµo I' (kl 1 ) 3 m I (kl 1,) 1 · TM = m coPco 9TM + kl {3 m coPco 9TM + (kl )2 1 m coPco 9TM , 
co co Pea 

(5.54) 

H2 _ I (kl 1 ) 2 WEo(n~o)2 , ( 1 1 ) 1 m (kl 1 ) 3 ( ') 
TM - - m coPco 9TM - kl {3 Im kcoPco 9TM - (kl )2 1 Im coPco 9TM · 5.55 

co co Pea 

With the new definitions, Eq. (5.41) still holds for surface modes and its solutions 

give the modal dispersion. However, the expressions for cladding field coefficients and 

core field coefficients are different, and are respectively given by 

(5.56) 

[ ~:: l (5.57) 

[

-:f~J!rrJk~0 p~0 )(g}MHfE + 9fEHfM) - Im(k~oP~o)(g:}MHfE + 9fEHfM) l 
(k~

0
)2p~

0 
Im(k~oP~o)(gfMHfE + 9f EHfM) 

5. 3 Radiation Loss 

There are two sources that contribute to the propagation loss in Bragg fibers or coaxial 

fibers: the material absorption loss and the radiation loss. The material absorption 

loss depends on the choice of dielectric medium. The radiation loss mainly depends 

on the index contrast between the cladding media and the number of cladding pairs. 

In principle, the radiation loss can be reduced below any given number simply by 

using a large enough number of cladding pairs. In this case, the propagation loss in 

an air core fiber is mostly due to the residual absorption in the fiber cladding. Thus if 

appropriate cladding materials can be found, it is possible to reduce the propagation 

loss in an air core fiber below that of conventional optical fibers. In fact, this is one 

of the main reasons behind the recent interest in air core fibers [102, 104]. However, 

since using too many cladding pairs is generally undesirable or even impractical, it is 
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r 

Figure 5.3: The radiation loss of an air core Bragg fiber with N cladding pairs. Pz 
is the power flux inside the air core. Pr represents the outgoing radiation power flux 
through a cylindrical surface with radius Rand height dz. 

important to know how many layers are required to reduce the radiation loss below a 

given number. Here we give an estimate about the number of cladding pairs necessary 

to achieve 0.2dB/km radiation loss, as a comparison with typical conventional fiber 

propagation loss. 

To simplify our analysis, we study a Bragg fiber with a central air core bounded 

by N pairs of cladding layers, as shown in Fig. 5.3. We treat the air core exactly and 

apply the asymptotic approximation to the entire Bragg cladding structure. This 

means that the transfer matrix T relating the cladding region to the core region is 

simply a 4 x 4 identity matrix whose diagonal terms are 1 and the off diagonal terms 

are 0. Following Eq. (5.28) and Eq. (5.29), we find 

· ( 1 )2 
2 iwEo ncl 

9rM = - k 1 (3 (.>...rM - ArM - BrM). 
cl 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

Other values of lrE and g}M are.all zero. As a further simplification, we shall confine 

ourselves to the study of TE and TM modes. The reasons are two-fold. As we have 
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mentioned before, the modes with m = 0 are of special interest, since they do not 

have any polarization dependent effects. Secondly, in the asymptotic limit, the mixed 

modes (m =/- 0) in the cladding structure can always be classified into TE component 

and TM component. Therefore, we can expect the radiation loss of mixed modes to 

exhibit characteristics between those of TE and TM modes. 

We first consider TE modes. According to Eq. (5.6), the Hz(r) component in the 

Bragg fiber core is simply Hz(r) = CrEJo(k~0 r) and the other two components are 

[99] 

Ee= -i:~°CrEJ~(k~0 r), 
co 

(5.62) 

(5.63) 

From these expressions for Ee and Hr, we find the power flux along the z direction 

in the low index core: 

(5.64) 

If the Bragg fiber consists of an infinite number of cladding pairs, the asymptotic 

fields in the (N + l)th cladding pair can be extracted from Eq. (5.10) 

(5.65) 

wµo frE [ ikl (r- N+l) -ikl (r- N+ll] Ee= _1 ____ CN+1e ct Pc1 - dN+1e ct Pc1 . 

kct ~ 
(5.66) 

In the above expressions, we notice that the fields consist of two components: an 

outgoing wave with amplitude proportional to CN+1, and an incoming wave with 

amplitude proportional to dN+l· It can be shown that the two components are of 

equal value and cancel each other such that the Bragg fiber has no net radial power 

flux. This, however, is directly due to the assumption of infinite cladding pairs. In 

fact, we can regard the incoming component in the (N + l)th cladding pair as due 

to the reflection by the remaining Bragg cladding. Therefore, it is reasonable to 
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assume that if the Bragg fiber has only N cladding pairs, the radiation field outside 

the cladding structure can be well approximated by the outgoing component of Eq. 

(5.65) and Eq. (5.66) (i.e., we replace dN+i with 0). To calculate the radial power 

flow, let us consider a cylindrical surface with radius R and height dz that encloses 

the Bragg fiber, as shown in Fig. 5.3. Using Eq. (5.65) and Eq. (5.66) and taking 

dN+l = 0, we find the radial power flux through this surface to be 

TE 1rwµo I l2I 2 
Pr = (k~z)2 !TE CN+1 I dz. (5.67) 

For TE modes propagating along the z direction of the Bragg fiber, with the 

presence of radiation loss, the optical power decays as exp(-aTEz). The parameter 

aTE is the radiation loss constant, and from the definitions of P;E and P;E, we can 

identify aT E as 

(5.68) 

where Eq. (5.21), (5.35), (5.58), (5.64), and (5.67) are used. 

For TM modes, we can follow the same procedure to obtain the radiation loss 

constant aT M. First, we find fields in the low index core and the corresponding 

power flux in z direction 

· ( 1 )2 
H = iWEo nco A l'(kl ) 

0 kl TM O car ' 
co 

(5.69) 

(5.70) 

(5. 71) 

The outgoing radiation field outside the Nth cladding pairs can also be identified 

from Eq. (5.10) as 

(5.72) 
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(5.73) 

and correspondingly, the radial power flux is 

(5.74) 

which gives the radiation loss constant to be 

where Eq. (5.20), (5.33), (5.60), (5.71), and (5.74) are used. 

To simplify our results for °'TE and °'™, we introduce a new parameter x = k~0 p~0 • 

For the fiber structure shown in Fig. 5.3, p~1 is the same as p~
0

, which gives 

[Jo(k~oP~o)J2 k~lP~l = kl kl x[Jo(x)]2 
Jt~0 drr[J6(k~

0
r)]2 co clfoxduu[J1(u)]2' 

(5.76) 

where we have applied J6(x) = -J1(x) [68]. The exact value of this expression 

depends on our choice of x. But for an order of magnitude estimate, we can simply 

choose x = 3.8317, the first zero point of J1(x), and the integral Jtdu u[J1 (u)] 2 

becomes x2 [J2 (x)] 2 /2 [68]. Combining these results, we find 

(5.77) 

As can be seen from Eq. (5.16) to Eq. (5.23), ATE, BTE, ATE, ATJ\1, BTM, and 

ATM have the same order of magnitude. Therefore, in our estimation of radiation 

loss, we take the values of BTE/(ATE - ATE+ BTE) and BTl'vI/(ATM - ATM+ BTM) 

to be 1. Combining these approximations with Eq. (5.77), we find Eq. (5.68) and Eq. 

(5.75) become 

0 522 (k1o)3 I\ 12N 
°'TE = . -(Jkl ATE ' 

cl 
(5.78) 

(5. 79) 
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These two expressions can be further simplified by taking n~
0 

= l ( air core), A = 

21rc/ w = l.55µm, and assuming /3 = k~0 = w / --/2c, k11 = n!1w / c: 

9 1 2N 
aTE(dB/km) = 4.6 x 10 - 1 JATEI , 

ncl 
(5.80) 

(5.81) 

where the unit for radiation loss has been converted to dB /km. 

Many assumptions are made to simplify Eq. (5.68) and (5.75) into Eq. (5.80) 

and (5.81). It is worthwhile to see how we can justify the simplified results from 

an intuitive point of view. Without the Bragg cladding, the light confinement can 

only be achieved on the order of the wavelength, which means that the radiation 

loss constant must be of the order of dB/ µm = 109dB/km. With the presence of 

Bragg cladding, the light amplitude reduction due to each cladding pair is ATE for 

TE modes and ATM for TM modes. Therefore, the radiation loss for a fiber with N 

Bragg cladding pairs should be of the order of (ATE) 2
N x 109dB/km for TE modes 

and (ATM )2
N x 109dB/km for TM modes. 

The values of ATE and ATM also have complicated dependence on /3, n!z, l~1, n~1 

and l~1, as can be seen from Eq. (5.16) to Eq. (5.23). However, when the cladding 

layers form quarter wave stack (i.e., k~1l~1 = kz1lz1 = n /2) such that light is optimally 

confined, the expressions for IATEI and IATMI take simpler forms: 

(5.82) 

(5.83) 

We choose cladding layer II to be the low index medium with n~1 = 1.5, typical of 

silica glass and polymers. With this value, it can be shown that for 0 < /3 < w / c the 

minimum value of IATEI is J[(n~1) 2 - 1]/[(n!1)2 - 1], and the minimum value of IATMI 

is n~1/n!1• Substituting them into Eq. (5.80) and Eq. (5.81), we find the minimum 
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number of Bragg layer pairs required to achieve 0.2dB/km radiation loss is 

(5.84) 

for TE modes and 
23.9 + ln (n!1) 

(5.85) 

for TM modes. 

We plot Eq. (5.84) and Eq. (5.85) in Fig. 5.4. The top figure corresponds to the 

case of weak index contrast. For 6-.n less than 0.01, it takes 1000 or more cladding 

pairs to reach 0.2dB/km. Fabricating such large number of cladding pairs is likely 

to be very difficult in practice. For 6-.n between 0.1 and 1, we find that it takes 

less than 200 cladding pairs to reduce the radiation loss of TE and TM modes to 

0.2dB/km. We notice that this index contrast range corresponds to what can be 

achieved in air core PBG fiber [104]. Of course, the light confinement in PBG fibers 

is achieved through two-dimensional Bragg reflection rather than one-dimensional 

Bragg reflection. However, if we take an effective index approach and approximate 

the 2D air hole patterns as alternating layers of concentric dielectric layers with high 

and low refractive index, the index contrast between the effective refractive indices 

should fall within the range of 0.1 to 1. Thus for air core PBG fibers, 0.2dB/km 

propagation loss can be achieved with 200 or less air hole layers. The bottom figure 

in Fig. 5.4 corresponds to the case of large index contrast. We notice that for 6-.n 

between 1 and 3 (2.5 < n!1 < 4.5), 25 pairs may suffice to guide TE and TM modes 

with less than 0.2dB/km radiation loss. 

We have only discussed radiation loss for TE and TM modes so far. According 

to the discussions in Sec. 5.2.3, modes with m =/- 0 are mixtures of TE and TM 

components in the Bragg cladding layers. Therefore, their radiation loss is determined 

by the TM component, since TM component is less confined and suffers more radiation 

loss compared with TE component, as can be seen from Fig. 5.4. 

Since we use the smallest possible values for i>-rEI and i>-rMI in deriving Eq. 

(5.84) and Eq. (5.85), our results in Fig. 5.4 give the minimum number of Bragg pairs 
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Figure 5.4: The number of Bragg cladding pairs necessary to achieve 0.2dB/km ra­
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needed to achieve 0.2dB/km radiation loss and should serve as an order of magnitude 

estimate. Obtaining a better estimate of radiation loss requires values of (3, n~1, l~1, 

2 2 ' ncl, and lcl. Once they are known, we can find ATE and ArM from Eq: (5.22) and 

(5.23), and substitute them into Eq. (5.78) and (5.79) for are and a™. 

One notable exception to the above estimate is worth mentioning. In an air core 

fiber, if (3 is only slightly less than w/c, the value of k~
0 

can be very close to zero 

(whereas in deriving Eq. (5.84) and Eq. (5.85) we use (3 - k~
0 

= w/\1'2c). According 

to Eq. (5.68) and Eq. (5.75), a small k~
0 

can greatly reduce the radiation loss [100]. 

Therefore, when (3 becomes very close to w/c, it may be necessary to use Eq. (5.68) 

and Eq. (5.75) to obtain accurate results of radiation loss. 

5 .4 Bragg Fiber Dispersion 

Having developed the asymptotic formalism in the previous section, we shall apply 

it to study the dispersion properties of a Bragg fiber. The results will be compared 

with those obtained from 2D FDTD calculations to verify the validity of the asymp­

totic approach. We choose to study an air core (n~0 = 1.0) Bragg fiber with cladding 

parameters as follows: n~1 = 4.6, l!1 = 0.25A, n~1 = 1.5 and l~z = 0. 75A, where the 

parameters are defined in Fig. 5.2 and A = l~z + l~1 is the total thickness of a Bragg 

cladding pair. We choose the air core radius to be p~
0 

= l.0A. In the asymptotic 

calculations, the core region consists of 5 concentric dielectric layers. Using the no­

tations in Fig. 5.2, we explicitly write out the core region parameters as n~0 = 1.0, 

n~0 = n!0 = 4.6, n~0 = n~0 = 1.5, l~0 = l.0i\, l~0 = l!0 = 0.25A, and l~0 = l~0 = 0.75A. 

In 2D FDTD calculations, we choose A = 24 computational cells and use 3 cladding 

pairs around the air core to define the Bragg fiber. In Fig. 5.4, we find that for index 

contrast we have chosen, 10 cladding pairs are enough to reduce the radiation loss 

to approximately 0.2dB/km. Not surprisingly, 3 cladding pairs should give us well 

defined guided modes. 

Both the asymptotic results and the FDTD results are shown in Fig. 5.5, where in 

the top picture we plot the effective index neff = (3c/w as a function of w, and in the 
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Figure 5.5: The dispersion of an air core Bragg fiber with a single m = 1 mode. The 
Bragg fiber parameters are: n~0 = 1.0, p~0 = LOA, n~1 = 4.6, l~1 = 0.25A, n~1 = 1.5 and 
l~1 = 0. 75A. The solid line is from the asymptotic analysis, while the dots represent 
the 2D FDTD results. The effective indices neff is defined as (3c/w. 

Figure 5.6: The Hz field distribution of a guided Bragg fiber mode at w = 
0.291(21rc/A) and /3 = 0.143(21r/A). The parameters of the Bragg fiber are given 
in caption of Fig. 5.5. 
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bottom picture w as a function of propagation constant (3. Notice that the units for 

(3 and w are respectively 2n / A and 2nc/ A. Within the frequency range shown in Fig. 

5.5, both the asymptotic analysis and FDTD calculations show that' the Bragg fiber 

supports a single guided mode with m = 1 propagating in the air core. In Fig. 5.5, 

the two approaches agree well with each other, while the small discrepancy can be 

attributed to the discretization error in the FDTD algorithm. In fact, if we consider 

that only 6 computational cells are used for l~1, the agreement between the asymptotic 

approach and FDTD approach is quite impressive. 

In Fig. 5.6, we show the distribution of the Hz field obtained from FDTD cal­

culation. The frequency and propagation constant of the mode are respectively 

w = 0.291(2nc/ A) and (3 = 0.143(2n / A). Fig. 5.6 clearly shows that the guided 

mode has an azimuthal number m = 1 and most of the field is concentrated within 

the air core and the first cladding layer. The radiation field outside of the Bragg 

cladding can also be seen in Fig. 5.6. 

As mentioned before, our asymptotic algorithm can be arbitrarily precise by in­

corporating more and more dielectric layers into the core region. More specifically, 

if we use a superscript N to denote the asymptotic results obtained using an inner 

core region consisting of N dielectric layers, the results should converge as a function 

of N to the exact solutions. With this expectation in mind, we analyze the same 

Bragg fiber described in the caption of Fig. 5.5 and study how the results depend on 

the number of inner core region layers. We first choose a core region consisting of 

7 dielectric layers (including the center air core plus 3 cladding pairs) and calculate 

the effective index of the Bragg fiber. We denote the result as n:11 and use this as 

the standard for comparison. Then we calculate the effective indices using 1, 3 and 

5 inner core layers and respectively denote the results as n!JJ, n~ff' and n~JJ· The 

absolute value of the difference of between these values and n:ff are plotted in Fig. 

5.7 (i.e., ln!ff - n:JJI, ln~ff - n:JJI, and ln~ff - n:ffl)-

We first notice that the difference between n!JJ, where the core region consists of 

only the air core, and the standard n:ff is quite large. In fact, as frequency approaches 

0.265(2n-/ A), the cutoff frequency of the guided mode, the difference between the two 
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Figure 5.7: The deviation of the effective indices obtained using various inner core 
region layers. We use n~ff to denote the effective index obtained using a N layer 
core region. The curves labeled with "1 layer," "3 layers," and "5 layers" represent 
respectively ln!ff - n!JJI, ln:ff - n!JJI, and ln~ff - n!JJI• The parameters of the 
Bragg fiber are given in the caption of Fig. 5.5. 

values reaches 0.2, which is quite significant. On the other hand, with the addition of 

only one cladding pair into the core region, the deviation between the effective indices 

(ln:ff-n!JJI) is reduced below 0.02, a lOx reduction compared with ln!ff-n!JJI• As 

one more cladding pair added into the core region, ln~ff - n!ff I is below 0.001. This 

suggests that the difference between asymptotic results and exact solutions should 

also be of the same order of magnitude. Thus we can conclude that asymptotic 

results with inner core region consisting of the first 5 dielectric layers offer an excellent 

approximation of the exact solution. 

At the end of Sec. 5.2.3, we described how to find the field distribution using the 

asymptotic approach. Basically, we must first obtain the propagation constant using 

Eq. (5.41). Substituting the result into Eq. (5.42) and Eq. (5.43), we obtain the modal 

amplitude coefficients in the first layer of the cladding region (i.e., frM and frE) and 

those in the center air core (i.e., ArM and CrE), respectively. Then the cladding fields 
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are easily found from Eq. (5.10) and Eq. (5.11), while the core fields are obtained by 

applying Eq. (5.6) and Eq. (5.8) repeatedly. We apply this algorithm to study the 

field distribution of the guided Bragg fiber mode at w = 0.286(21rc/ A). Using a core 

region of 5 layers, we find the propagation constant to be (3 = 0.128(21r / A). The 

field distribution given by this asymptotic approach is represented by the solid lines 

in Fig. 5.8. 

Having obtained the field distribution using the asymptotic algorithm, naturally 

we would like to know how accurate the asymptotic approximation works without 

having to check asymptotic results using either the orginal algorithm by Yeh et al. 

or the FDTD method. We notice that the essence of the whole asymptotic algorithm 

is that the field distribution in the cladding region can be well described in the 

asymptotic limit. As long as this condition is satisfied, the asymptotic approach 

should provide a satisfactory description of the guided mode. To check the accuracy 

of the asymptotic approximation in the cladding region, we can calculate the exact 

field distribution in the cladding region by repeatedly applying Eq. (5.6) and (5.8). 

We use "exact solution" to denote results obtained this way. In other word, to find 

the "exact solution," we still need to find ArM and CrE using Eq. (5.41), (5.42) 

and (5.43), as described in the previous paragraph. The only difference between 

the "exact solution" and the asymptotic solution is that for the "exact solution," 

the field distribution in the entire Bragg fiber is obtained from Eq. (5.6) and (5.8). 

Consequently, within the core region, the "exact solution" and the asymptotic solution 

are the same. In the cladding region, the two solutions differ from each other, and 

their difference indicates how well the asymptotic approximation works. In Fig. 5.8, 

the "exact solutions" are represented by the dots. As expected, the "exact solution" 

and the asymptotic solution are the same within the core region. However, even in 

the cladding region, the difference between the two solutions are very small. Thus we 

can conclude that the asymptotic algorithm gives an accurate description of the field 

distribution of the guided mode. 

We notice that the free space wavelength of the mode is ). = 3.5A, which means 

that the ratio of the air core radius and the photon wavelength is only 0.286. Inspect-



1.---,"'v 

--:-- 0.5 
:J 

~ 0 
N 

w _o.5 

-1 '-------"' 
0 1 

5 

- 0 
:J 

~ -5 
N 

I_10 

-15 
0 1 

2 

-:::i 0 
CCI -
I02..2 

2 

2 

135 

3 4 5 6 7 
r/A 

4 5 6 7 
r/A 

3 4 5 6 7 
r/A 

7 
r/A 

Figure 5.8: The electromagnetic field distribution of the guided Brag fiber mode at 
w = 0.286(21rc/ A). The interface between the core region and cladding region is 
indicated by dash line. The exact solutions are obtained using Eq. (5.6) and (5.8) 
only. The asymptotic solutions are obtained using Eq. (5.6) and Eq. (5.8) in the core 
region, and Eq. (5.10) and (5.11) in the cladding region. 
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ing Fig. 5.7 and Fig. 5.8, we find it quite amazing that for such small air core radius, 

the asymptotic approximation with 5 inner core layers works so well. 

5.5 Coaxial Fiber Dispersion 

It is well known that the fundamental TEM mode of a metallic coaxial cable has 

no polarization effect or any modal dispersion, which make it very attractive for 

transmitting electromagnetic signals. The problem is that metals are very lossy in 

the optical range. In Ref. [105], Ibanescu et al. drew an analogy between the metallic 

coaxial cables and dielectric coaxial fibers, and proposed to use dielectric coaxial 

fibers in optical communications. There are, however, several important problems to 

be solved before coaxial fibers can find wide applications in optical telecommunication. 

Firstly, it is critical that the coaxial fiber mode has small dispersion within the entire 

telecom frequency window instead of at a single point. Secondly, we should keep 

in mind that the analogy between omnidirectional mirrors and high refractive index 

materials with metals is not perfect. For example, if the outer cladding of a metallic 

coaxial cable is taken out, the center metal rod does not support lossless propagating 

mode. Yet if we take away the Bragg cladding of the coaxial fiber, the center high 

index dielectric rod resembles an optical fiber and supports at least one propagating 

mode. Naturally we need to address the question: How does the difference between 

high index dielectric and metal influence the dispersion properties of coaxial fibers? 

In this section, we apply the asymptotic matrix theory to address the aforementioned 

problems. 

As in Bragg fibers, each guided coaxial fiber mode can be classified according to 

its propagation constant /3 (momentum in the z direction) and angular momentum 

m. Using the asymptotic method, we analyze one of the coaxial fibers studied in Ref. 

[105]. For the high index medium of the coaxial fiber cladding, we choose n!1 = 4.6 

and Z11 = (1/3)A, whereas for the low index cladding medium we have n~1 = 1.6 and 

l~1 = (2/3)A. A is the total thickness of the Bragg cladding pair. The parameters 

of the Bragg stack are chosen such that it forms an omnidirectional reflector [105]. 
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Figure 5.9: Dispersion of the coaxial fiber. The points in the shaded region indicate 
the existence of propagating TM cladding modes in the omnidirectional reflector. The 
thick solid lines are results obtained from asymptotic analysis. The dots represent 
the 2D FDTD results. The light lines in air (/3 = w / c) and in the low index medium 
of the Bragg cladding (/3 = n~1w / c) are also shown. If the omnidirectional cladding is 
taken away, the center core of the coaxial fiber resembles a conventional optical fiber 
and supports three guided modes: HE, TE and TM modes. Their dispersions are 
calculated using the formulae for conventional optical fibers and are shown as dash 
lines. The single mode windows for the TM band are illustrated in the figure as two 
boxes. 
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The refractive index and radius of the center core are respectively nco = 4.6 and 

lea = 0.4A. The refractive index and thickness of the coaxial region are respectively 

ncoax = l and lcoax = l.0A. We use four core layers in our asymptotic calculations 

and normalize the results with respect to A. The asymptotic results are shown in Fig. 

5.9 as thick solid lines. We also use the 2D FDTD algorithm to verify the validity of 

our asymptotic calculations. The FDTD results are shown in Fig. 5.9 as dots. The 

shaded region in Fig. 5.9 corresponds to the TM cladding modes that can propagate 

in the cylindrical omnidirectional reflector. 

In Fig. 5.9, the asymptotic analysis gives us four photonic bands, a TE band 

(m = 0), a TM band (m = 0), and two m = 1 bands. The asymptotic results agree 

well with FDTD calculations, considering that in FDTD analysis the thickness of the 

high index cladding is only 8 calculation cells. We point out that the TE band was 

missed in the results in Ref. [105]. We notice that the asymptotic results for the 

TM band and two m = 1 bands are confined within the region of TM gap. This is 

simply due to the fact that all three bands contain TM components [106] and that 

the TM components must decay in the Bragg cladding to define guided coaxial fiber 

modes. The TE band, on the other hand, does not contain any TM component [106] 

and asymptotic analysis gives us guided TE modes up to the light line in cladding 

medium II (/3 = n~1w/c). After crossing the light line, fields in cladding medium 

II can no longer be described by the asymptotic analysis in Sec. 5.2. The excellent 

agreement between the asymptotic analysis and FDTD calculations demonstrates the 

validity of asymptotic approach. 

As mentioned before, if we take out the Bragg cladding, the center dielectric 

core becomes a conventional optical fiber whose modal dispersion is well known [69]. 

The dispersion of these conventional fiber modes was plotted in Fig. 5.9 as dash 

lines. Comparing the conventional fiber modes with the FDTD calculations of the 

full coaxial fiber, we find excellent correspondence between the two for the region 

below the air light line /3 = w / c. This strongly suggests that once the guided coaxial 

fiber modes pass through the air light line, the main confining mechanism is actually 

provided by the center high index core. To see this point more clearly, we show two 
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(a) (b) 

Figure 5.10: The Hz field distributions of the lower m = 1 band. In (a), the guided 
mode has /3 = 0.153(21r / A) and w = 0.187(21rc/ A). In (b), the guided mode has 
/3 = 0.611(21r/A) and w = 0.229(21rc/A). 

FDTD calculations of field distribution of the lower m = 1 band. The m = 1 mode in 

Fig. (5.10a) has /3 = 0.153(21r / A), w = 0.187(21rc/ A) and belongs to the TM bandgap 

above the air light line. For any modes above light line, guiding cannot be achieved 

through total internal reflection and therefore in Fig. (5.10a) we observe a substantial 

field distribution in both the coaxial region (air) and the Bragg cladding. The m = 1 

mode in Fig. (5.10b) has /3 = 0.611(21r/A), w = 0.229(21rc/A) and is clearly below the 

air light line. As expected, the guided coaxial fiber mode becomes essentially the HE 

mode of a conventional fiber, with optical fields concentrated in the center dielectric 

core and only a negligible amount in the Bragg cladding. 

Not only does the total internal reflection play a significant role in the modal 

dispersion of the guided coaxial fiber below the light line, it also must be taken into 

account in determining the frequency window of single mode operation. The lower 

single mode window, as shown in Fig. 5.9, simply contains all the TM modes below 

the cutoff frequency of the lower m = 1 band. However, finding the higher single 

mode window is more trickier. As the lower m = 1 band enters the shaded region 

in Fig. 5.9, the TM field component loses confinement in the Bragg cladding and the 
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m = 1 band is no longer a well defined guided mode. Thus the second single TM mode 

window in Fig. 5.9 begins at the lower intersection of the m = 1 band and the TM 

gap, and ends at the smallest of the following frequencies: the cutoff frequency of the 

higher m = 1 band, the cutoff frequency of the TE band, and the higher intersection 

point of the lower m = 1 band and the TM gap where the lower m = 1 band enters 

again into the TM gap. The two single frequency windows are shown in Fig. 5.9 

as two boxes. Within the higher single frequency window, the m = 1 quasi-band, 

even though not well confined, can still have low loss due to total internal reflection 

in the coaxial air region. In fact, that is exactly why FDTD algorithm can give us 

m = 1 and TM band outside of the TM gap. To study the influence of the m = 1 

quasi-band on the single mode operation of TM band, however, is beyond the scope 

of this section. 

For the long distance communication fibers, the dispersion parameter D, which 

is defined as - 2
; 2c ~; [69], should remain small within the entire telecommunication 

window. In Fig. 5.11, we show the dispersion parameter D calculated from the asymp­

totic results. The wavelength ,,\ is normalized such that the TM band crosses air light 

line (3 = w / c at 1.55µm. The two single frequency windows are identified in Fig. 

5.11 as shaded region. We immediately notice that the dispersion parameter D takes 

very large value at most frequencies and can be both positive and negative. Around 

l.6µm [w = 0.202(21rc/ A)], D crosses the point of zero dispersion but remains small 

only within a very small frequency range. In Ref. [105], Ibanescu et al. predicted a 

point of zero dispersion. Our results in Fig. 5.11 confirm their prediction, yet at the 

same time, point out an important problem: The frequency window of small D is too 

narrow for optical signal transmission. 

In Fig. 5.12, we show Ez and He components of the TM mode at the zero disper­

sion frequency w = 0.202(21rc/A). Since the magnetic field of a TM mode contains 

only He component, from Fig. 5.12 it is obvious that there is substantial presence of 

electromagnetic field in the high index core and the optical intensity in the high index 

core is comparable to that in the air coaxial region. As a result, using this coaxial 

fiber mode to guide light does not provide much benefit in terms of reducing material 
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Figure 5.11: Dispersion parameter D of the coaxial fiber TM band. At >. = l.598µm 
[or w = 0.202(21rc/ A)], the dispersion parameter D becomes zero, which is shown as 
the dash line. In the upper diagram, the absolute values of D are show in a log scale. 
The two single mode windows in Fig. 5.9 are shown as shaded regions. To the left of 
the dash line, D is negative, whereas D is positive to the left of the dash line. In the 
lower diagram, D is shown in the linear scale. 
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Figure 5.12: The Ez and H0 fields of the TM coaxial fiber mode at w = 0.202(21rc/A). 
The unshaded, light, and dark regions respectively represent air ( ncoax = l), low 
index dielectric medium (n~1 = 1.6) and high index dielectric medium (n~1 = 4.6). 
The units for electric field and magnetic field are chosen such that co = 1 and µ0 = l. 
The asymptotic solutions and the exact solutions are obtained in the same way as in 
the caption of Fig. 5.8. 

absorption and nonlinear effects. This also illustrates that the analogy between di­

electric coaxial fibers and metallic coaxial cables is not perfect. Turning our attention 

to the cladding field, we find that the field strength in the first cladding pairs, even 

though relatively small, is not negligible. In fact, the fields in the first Bragg pairs 

cannot be neglected, since optical fields must penetrate at least one cladding pair to 

experience Bragg confinement. This also explains the large modal dispersion we find 

in Fig. 5.11, since any guided coaxial fiber mode must "feel" several different dielec­

tric media: the high index core, air in the coaxial region, the high index cladding, 

· and the low index cladding. In contrast, for conventional optical fibers, the guided 

modes are defined by the silica core and cladding whose index difference is generally 

less than 0.01. 

In conclusions, we find that both Bragg reflection and total internal reflection play 
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important roles in determining modal dispersion of the coaxial fiber. The analogy 

between dielectric coaxial fibers and metallic coaxial cable are not entirely accurate, 

and there is substantial amount of optical fields in the high index core and the Bragg 

cladding. As a result, guided coaxial fiber mode generally have large dispersion. 



144 

Chapter 6 

Conclusions 

In the previous chapters, it is demonstrated that evanescent coupling and Bragg 

reflection, as confinement mechanism, lead to many possibilities that are difficult to 

achieve using conventional guiding via total internal reflection. 

In coupled resonator optical waveguides (CROW), the photons propagate by "hop­

ping" from one resonator to its closest neighbors, which leads to substantially reduced 

group velocity and dramatically modified dispersion relation. Both these properties 

are very useful in nonlinear optics. In Sec. 3.5, we take second harmonic generation 

(SHG) as an example and derive expressions for the SHG efficiency. In the deriva­

tion, two observations are of special importance and can be applied to many other 

nonlinear optical processes besides SHG. First, we notice 

2 P ex IEI v9 , (6.1) 

where IEI stands for the strength of the electric field, Pis the power flux, and v9 is the 

group velocity of the photons. Consequently, in CROW's with small group velocity, 

a modest power input can lead to a large electric field strength, which in turn leads 

to more efficient nonlinear optical processes. Another consequence of the slow group 

velocity is that photons become much heavier. Again take SHG as an example, when 
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both the fundamental mode photons and the second harmonic mode photons travel 

much slower, the effective interaction time between them becomes longer for a given 

traveling length, as can be seen from the factor v2w,g in Eq. (3.39). This also leads to 

an enhancement of the nonlinear efficiency. Secondly, we observe that for the SHG 

process, the phase matching condition is changed into 

(6.2) 

as can be seen from Eq. (3.40). The term n21r / R in Eq. (6.2) corresponds to the Bloch 

vector of the 1D periodic structures. It is easy to see that the appearance of the Bloch 

vector in any phase matching condition should be universal, since the "real" photon 

momentum in any periodic structures is always the "crystal" momentum within the 

first Brillouin zone plus some integral multiples of the Bloch vectors of the periodic 

media. For many nonlinear optical processes, the addition of the Bloch vectors should 

make the phase matching condition easier to achieve. 

Even though only two examples of CROW's are studied in Chapter 3, the CROW 

bands appear in many other cases. In photonic crystals, many optical bands above 

the bandgap have the characteristics of CROW bands [24, 27]. We can apply tight 

binding approximation to study many interesting phenomena of those bands, such as 

superprism effect [21] and soliton propagation in CROW-type bands. 

To achieve low propagation loss in Bragg fibers and dielectric coaxial fibers, it 

is necessary to use dielectric materials with large index contrast. Consequently, the 

guided modes tend to have large modal dispersion, which makes this type of fibers 

very interesting for the purpose of dispersion compensation. However, further calcu­

lations are needed to understand the complex dispersion behavior of Bragg fibers and 

dielectric coaxial fibers. Another interesting phenomenon is that the effective index of 

guided modes in Bragg fibers and coaxial fibers can be less than one, where the phase 

velocity is greater than the speed of light in free space. This unique property cannot 

be achieved in conventional fibers, and may lead to many interesting applications. 

In the scattering theory analysis of waveguide-resonator coupling, we find that 
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the reflection/transmission characteristics of the composite system depend strongly 

on the strength of the waveguide-resonator coupling, the gain/loss of the high Q 

mode, and various properties of the cavity modes such as degeneracy and symmetry. 

Such dependence provides an efficient way of controlling the waveguide transmission 

and reflection using nonlinear optical effects, such as electro-optical effects and Kerr 

nonlinearity [111]. The improved efficiency is mainly due to two effects. First, at the 

cavity resonance, the cavity field amplitude is enhanced by a factor of Q, as shown 

in Eq. ( 4.32). Second, both the waveguide-resonator coupling and the cavity loss 

can be made very small. In this case, to completely change the transmission and 

reflection coefficients of the coupled system, we only need to modify the waveguide­

resonator coupling by a small amount comparable to the cavity loss and vice versa 

(i.e., "critical coupling" in Ref. [87]). Another possibility is to modify the group 

velocity of the indirect CROW through changing the waveguide-resonator coupling. 

The above mentioned effects are all classical effects in the sense that they can 

be understood purely from Maxwell equations. However, by strongly modifying the 

photonic density of states, periodic dielectric materials can also fundamentally change 

the interaction between atoms and photons. A well know example is the enhancement 

or the inhibition of the spontaneous emission rate by embedding the atoms in a high 

Q cavity [43] or photonic crystals [12]. A fascinating consequence of the modified 

spontaneous emission rate is the dramatically reduced threshold for nonlinear optical 

phenomena [112]. It should be emphasized that this effect is completely different 

from the enhancement of nonlinear optical efficiency due to group velocity reduction. 

Another interesting application of photonic crystals is to introduce a high Q defect 

cavity to increase the atom-photon coupling. \Vhen the atom-photon coupling is 

much larger than the cavity photon decay rate and atomic dephasing rate, the atom­

photon coupling enters into the strong-coupling regime, which is of great interest in 

cavity QED [113]. 
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