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ABSTRACT

I
The general theory of the irreverslible thermodynamics
of chemically reacting systems interacting with radiation
is developed. From this, a limit to the efficiency of
photochemical processes is derived, and this is compared
with approximate experimental efficlencles of published

researches, which are found to be considerably lower.

9 ¢
A general cluster method of obtalining approximations
to ensemble averages of functions depending on coordinates
and/or momenta at a single time is derived, starting with
a method, due to Mazo and Zemach, valid only for short-
range forces, and proceeding to a method capable of
treating systems of particles with long and short-range

potentials, such as ionic solutions.

I
Approaches to the time evolution of distribution
functions and to time-correlation functions are discussed.,
A general perturbation seriles approach to time-correlation
functions through the exponential Liouville operator is
derived, and this is applied to the calculation of the
first-order correction to a Fokker-Planck friction constant

and to first and second-order correcticns to a momentum

autocorrelation function,
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I. IRREVERSIBLE THERMODYNAMICS OF SYSTEMS CONTAINING
RADIATION, APPLICATION TO PHOTOCHEMICAL REACTIONWS.* (1)

A. INTRODUCTION

The behavior of a radiation fleld in the presence of
absorbing matter has been extensively studied, largely from
the point of view of astrophysical applications. (2) The
chemical study of the interaction of radiation and matter
has been largely concerned with such topics as guantum
yields and the mechanisms of photochemical reactions. Of
particular interest are those photochemical reactions
which proceed with a positive free-energy increment (i.e.,
which will not go "in the dark"). Typical important
examples are photosynthesis and ozonization of oxygen in
the upper atmosphere. In this section of the thesis we
give a general treatment of the irreversible thermodyna=-
mics of systems containing radiation and apply our results
to the determination of the efficlency of photochemical
reactions which will not go "in the dark.'" Although most
of the complication inherent in the general treatment will
be unnecessary for the particular application which we make,
we nevertheless present it here, for it is not without intrin-

sic interest and possible applicability.

¥ This part of the thesis is a revision of a published
article, reference 1.



B. CENERAL THEORY

1f unpolarized radiation is in thermal equilibrium
with matter at a temperature | , Planck (3) has shown
that the specific intensity of the radiation is given
by
T (w) = 2h? |
< exp(hogr) — | ’

where L, /) is the specific intensity in units of energy

(1)

per unit area per umit time per unit solid angle per unit
frequency interval, and n denotes a unit vector giving
the direction. The conmstant h is Planck's constant, V

is the frequency, ¢ is the velocity of light, R is
Boltzmann's constant, and | 4is the temperature of the
matter in equilibrium with the radiation. 1In the case of
equilibrium, one can speak of T as being the temperature
of the radlation, [ . However, Planck (3) bas also shown
that it is often convenient to ascribe a temperature |, to
nonequilibrium radiation, defined by equation 1, which can

be solved for 'T; $

hv
JZJ%t[(Zvaéész)ﬂ-[j ;

Although _ﬂ. i{s now a function of position, direction, and

(2)

frequency, it is a useful concept when the radiation can
be considered to be in loecal thermodynamic equilibrium,

which is assumed to be the case in the following developument.
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The system under consideration is assumed to be com=
posed of a fluid and radiation from am outside source.
Discontinuities in the fluld are supposed to be negligible.
Symbols will be introduced as needed, generally following
the notation of Kirkwood and Crawford (4), who give a
discussion of the wmacroscopic equations of tramsport for
systems not containing radiation., The Stokes' operator
will be written as a total derivative, while a derivative
taken at a fixed point in the coordinate system will be
written as a partial derivative. Thus,

ﬁ :—5)—; + Y-V , (3)

The system is described by the following equations:

a) the energy-balance equation, which will be developed in

detall below; b) the equation of motion of matter,
dx X + V
= = = -9
S T e L L )

where 0 is the total stress tensor,jgg is the external
"body" or "volume" force, v is the macroscopic local
velocity, and ? is the density of the fluid; c) the equa~

\

tions of continuity of the chemical species present ,

00,
S Vg gt )= §Zu d &y ®

7z
where ©; 1is the density of the 1th component,;ﬂ is the

diffusion flux of this component relative to the local
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center of mass, )%k is the gtoichiometric coefficient in
mass units for the ith component and the kth reaction, and
A, is the progress variable of the kth reaction, also in
mass units; and the sum of these equations, the equation of
continuity of matter,

9 _ )
5. + V'CSJ!J = O ; (6)

and d) the equation of transfer of radiationm, of which only

a consequence will be needed:

& = — STapF — 9E¢
y - ot

where ge is the rate of energy absorption per unit volume

, Q)

by the matter from the radiation field, EE is the space
density of radiant emergy, and [ is the radiant energy
flux, defined by

£ = &f[Todod e §f[Toncod L ffTpdud 1, (o

where the éi are unit vectors in the x, y, and z directions
and .Q,'wa, and . are direction cosines taken from the same
directions.

An energy-balance equation is obtained by equating
the sum of the rate of increase of energy im an arbitrary

region of the system,
5
ijt(?Ek'i'%S)V +Er)‘l'v ’ (9)
v

and the rate of energy efflux through the surface of the



region,
j[js*(fEﬁ%sz)\l““ E/-dA . o
A —~

to the rate at which work is done on the matter in the

region,

iLZ:_j: ;g;JT/f+£§>g.ZJV+Af\£ r-d A Cay

Forces due to reflection of radiation at discontinue
ities, such as the boundary of the system, are neglected.

The surface integrals are transformed by using Gauss'
divergence theorem, after which the integrands may be
equated, since the region of integration is arbitrary.
This gives

% (?Ek + :?L?vﬂ_ é:r)* V,[iﬁ +(?E"~+Z!?V9,\f +Ej _

——

s
=) 4% gL v Vas
(=

In these equations, [~ | is the internal emergy per unit

mass, jE is the energy flux with respect to the local

center of mass, and X . is the external force on component i.
From equation 12:_u|1ng the equation of motion, equation

4, one obtains after rearranging terms:

E. (g_sg 4 v Tp +fv.1) +§>(%_?, N Y.'VF—LQ 4

J¥
P (§E 0T+ L AE T opTY) -

“~

DK g UL +TAg e
=1 ~
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where equation 7 has been used.

The first and fourth parentheses on the left hand side
vanish by the equation of continuity, and the second and
third can be simplified by using the Stokes' operator.
After use of the identity,

Vyes =v-Vo + -V | (14)

Equation 13 becomes .
dE4 . e v A =
— d-.- l/ '} = %
e Vs 72:2 O/ (15)
c=r :
This equation is not yet in the most useful form. We sub-
stitute !or:zg :

s _ S ) -
AV T *ZJ/L? ) e

—

where 4 is the chemical potential, £, and S, are partisl
specific quantities, and Z and j are beat fluxes defined
by equation 16, Note that the chemical potential is the
partial specific quantity, not the partial molar quantity.
We define further the nonradiative entropy flux excluding
the convective flux:

e = —;Z,—' v 2, K (7
s L =/ -~

and the gradient of the chemical potential minus the effects

of the external forces and the temperature gradient:

Va =G X+ S VL s
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After substituting the expressions for the energy flux
and the entropy flux into equation 15, we obtain:

E ‘ S pf 5, e
fﬁ{? 2 S Vﬂgﬁ—v@f%}v‘ﬁ. (19)
After some manipulation and use of the identity,

\7-@4) =aV-A +A4-Va @

the desired non=radiative energy transport equation is
obtained:

dE_ o ‘ P r R ,
PIr =0z -1 7.4, —f"m’Z-—Z:jf Vo _Z/”‘Vj«' +PE. (21)

Equation 7 is already an equation of transport for
radiant energy, but needs to be put in a more useful form,
such that the divergence of ff‘ls expressed in terms of the
entropy flux, S5 , which is defined:

S :é;j[b,,ﬁa/u)a/ﬁ-p% J[Lmebal2 + é;/ﬁ,},no/vc/rz @

From the definitions of fand g » we find

=2 [[54Arel12 *’j;)‘ ([t J [z
=2 (L2 @;’7 fﬁywaﬁﬁ/ﬂyw@dfz Cw



we know that (3)
O)é" B (25)
ST, 7 :
Thus, if conditions for interchanging the order of differ-

entiation and integration are met,

TVSE = V.- . (26)

One special case for which this is satisfied is that
of a monochromatic plane wave. Although a plane wave cannot
bave a finite intensity (3), many photochemical experiwments
are performed using nearly monochromatic, nearly unidirection-
al radiation, so we shall consider this case from here on.
One could treat the general case as a superposition of plane
waves, or perhaps by defining a mean Cemperature.

In order to investigate the entropy production, we shall

seek two partial entropy equations of the form

605 )+ V. % - Fu = (2)

and

JS ¢ Vg - é = O, (28)
It - e
which, when added, will give an expression for fs = 55“ *“és.— -

the entropy production density. Let us first traunsform
equation 27 into an equation in terms of quantities we bhave
used thus far. Using the Stokes' operator, equation 27

becoues

fa(i . Sa& 7G5+ VI -f.=°. @



Now

oq
;_-_.f :J%E + _L{'—VfDZ— V—g@_‘()-f‘j{-Vf’ :’f:v'lf ~ (30)

Therefore,

PEE VE -pSiv)-4 —o . ov

But T, _}oS;x: :ijGK » 80 equation 31 becomes

e A
Equation 28 and 32 can now be added to obtain a total entropy
equation yielding _ég A

To obtain an equation of the form of equation 32, we
differentiate the Gibbs' equation,

A&, =7, d5% - pdV+ i/a:a/wc') (33)

with respect to time, substitute for the volume in terms
of the density, 0 , and solve for LS, /o/¢, obtaining:

P dE_ £ dp Ps ol
f;aéé Tn At Pl df f;ﬁ%'ﬁ

We know also (3)

S L IE -

JE A ]
Substituting equation 7 and equation 21 into equation 35
and equation 34, we obtain the two entropy equations, which

we combine, obtaining:

< = .
G & VLT, O
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where the entropy source_j?} is a sum of

S = %C@‘%/ﬂ@-’@ ]

b2 0 TA

b-pe(F- %) (57

Each of these terms can be separated into a product of
a “ganeralized foree" with a "flux''. We chooseuf%? as a
flux and ‘Z;_4—~ 7::H/as a force, and split the other terms
in the conventional manner.

According to the theorem of Onsager, if certain hypotheses
are met (5), the entropy production is a sum of products of
forces and fluxes, and the matrix of phenomenological co-
efficients expressing the linear dependence of the forces
on the fluxes is symmetric. In an isotropic medium if the
fluxes depend on the forces linearly, then scalar fluxes
can only depend on scalar and tensor forces, but not on vector
forces. This situation arises because, to make a scalar
depend linearly on a vector, the coupling coefficient must
be a vector. In an isotropic medium, there are no available
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vectors (in the absence of external fields) which do not
depend on the vector forces. But if the coupling constant
depends on the vector forces, the hypothesis of linearity
is violated. There are, however, isotropic tensors, so
that scalars may be isotropically coupled to tensors. This
result is known in the literature as a Curie's theorem,
and the usual reference is reference 6. However, the referee
of the paper by Mortimer and Mazo (1) quite rightly pointed
out that reference 6 does not contain the above statement.

We restrict our attention to isotropic media and assume
that the relation between chemical reaction rates and the
stress tensor, temperature gradient and concentration gradients
are linear. We do not assume that the reaction rates are
linear functions of the various A&frgi or of the radiation
£flux. Such assumption would restrict our considerations
to physically uninteresting situations and is, in any case,
unnecessary. It follows that the rates of chemical reactions
will be affected only by the radiation and by the forces de-
scribed by the stress tensor; the latter effect has never
been experimentally demonstrated, and would be expected to
be very small, if found.

C. PHOTOCHEMICAL EFFICIENCY
Since we are dealing with reactions that will not pro-

ceed in the dark, the Gibbs free energy of the system will

{ncrease as these reactions proceed photochemically. This
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increase of free energy of products over reactants is in
principle completely available to do work through electro=
chemical or other processes using the reverse reactions.
We define the efficienir as follows:

7 = —;’—g A %”Z—ié (38)
Where # is the efficiency and A/ 18 the free energy
change per unit mass of reaction 4. Those reactions (call
them reactions 4+/, h+2, ... , € ) which do not happen to
be coupled through phenomenological coefficients with a
photochemical reaction of positive AfF are excluded from the
sum for vreasons we will discuss.

We require that the entropy production be non-negative,
according to the second law of thermodynamics. Since the
forces giving rise to 553 and ngy cannot influence those
giving rise to @; ; gz(,_ , and ¢$_ , by the theorem of Curie,
and since the effect of the force connected with 525; on
the chemical reactions 1s assumed negligible, we require the

sum of ?’,_ and ¢5— to be non-negative.

.f
_:f;ZA/fgéf - pe —7—/; ——%—)zo_ (39)

However, if some, say 7 — A , of the reactions are not
photochemical and are not coupled to photochemical reactions,
they obey a separate inequality, and equation 39 still holds
if these reactiomns, /u— { sy Z’. are excluded from the sum.

The free energy increments of the photochemical reactions
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we are considering are positive, so if their duk/&V are
to be positive, either fue must be positive, or else some
of the coupled reactions wust have a negative product
A{?6/4!A¥f ,» in which case our nomninally photochemical
reactions are being driven by coupled reactions instead of
pliotochemically. 1n this casc we can say nothing about
photochemical efficiency. It wmay even turn out thot 7 is
negative.

Now from eguation 39 we conclude

g = L fj AE 44 = - (40
- o Pda /,
This limit is the same functional form as the Carnot effi-
clency of a reversible heat cuagine operating between heat
reservoirs of temperature (. and % »

Clearly the maximun efficiency can be approached only
if the (negative) free energy production due to reactions
which go spontaneously ("in the dark") can be made negli-
gible. For the case of reactions which are photochemically
catalyzed, rather than driven, 7 will, in general, be
negative. 1In this case, equation 40 still holds, but tells
us nothing of interest.

In a study of the production of light from theraal
energy, weinstein (7) stated in a footnote that argunents
similar to his could be used to show that eguation 40 is

the limiting efficiency for the conversion of radiant
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energy into work. It can also be shown that a reversible
heat engine using a blackebody radiation field (photon gas)
as a working fluid has the efficiency given by equation 40
if 7. and 7, are replaced by the upper and lower tempera-
tures with which the radiation is equilibrated.

D. CALCULATIONS

Let us now compare our theoretical limit with experi-
mental average efficiencies, which may be calculated approx-
imately from data reported in the literature. The results
of such cowparisons for three published studies (8, 9, 10)
are given in Table I.

Rabinowiteh and Wood (8) studied the dissociation of
iodine gas into normal ifodine atoms by visible light from
a ecarbon arc. In order to make an approximate calculatiom,
it was necessary to compute first the radiation temperature
at their reaction vessel, and then to calculate their exper-
imental efficiency.

Since only a crude comparison can be made, only tweo
wavelengths of the continuous carbon arc spectrum were
chosen at which to calculate the radlation temperature,
the wavelength of maximum emission of the arc, and the
wavelength of maximum absorption. The radiation tempera-
tures were obtained as Hllows: The reported number of
photons absorbed per unit volume per unit time was



TABLE 1

COMPARISON OF EFFICIENCIES

Reaction 12 - 21 302 s 203 21‘!’13'9 NZ +3H2

Reference 8 9 10
Wavelength (R) 5050 5180 1295 1470 1295 1470
Approx. T, (°K) 3450 3400 4750 5225 5400 5900
Max. Eff. 0.91 0.91 0.9 0.94 0.96 0.95
Exp. Eff. 0.45 0.31 0.43
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multiplied by the energy per photon at the wavelength of
maximum absorption as an approximation to the total rate
of energy absorption per unit volume. From this, the total
incident intensity was calculated, using the reported mean
absorption coefficient, o, , of 18.0 em.latm‘l and the
given cell length of 2 em, and the reported lodine pressure
of 015 mm of mercury. These flgures yleld a transmitted
intensity of 98.4% of the incident intensity, which was
therefore approximated by the rate of energy absorption
divided by 0.016.

From this, it was possible to get the scale on the
ordinate of a graph of the spectral distribution of thelr
carbon arc given by Rabinowitch and Wood, by the use of
graphical integration. This allowed the intensity per unit
wavelength interval at any given wavelength to be read
directly from the given curve, and this quantity was con=
verted to intensity per unit frequency interval for the
two frequencies of interest.

This intensity was then converted to intensity per unit
solid angle by assuming that the arc subtended an area of
1 square centimeter and that the incident intensity came
equally from all parts of this area, which was located 16
centimeters from the reaction vessel. The radiation tempera=
ture was then calculated at the two wavelengths of interest,
5180 R and 5050 R by substitution into equation 2, giving
3400 and 3450 degrees Kelvin,
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In order to estimate the experimental efficiency,
it was assumed that it would be possible to dissociate
enough iodine molecules tc make the iodine atom con-
centration equal to the iodine molecule concentration,
and 1t was assumed that these conditions could have been
approximated by an experiment of the type done by
Rabinowitch and Wood. A standard free energy change for
the dissociation reaction of 28.9 kcal/mole was taken,

and the standard formula used:

AF =aAF° + RT76 K (41)

K K

where ZSFiois the standard free energy change, and where

CQ 18 the quotient of activities ralsed to the proper
powers (see glossary of symbols). A quantum yield of

unity was assumed, and using 55.4 kcal/einstein as the
average photon energy, the average efficlency was calcu-
lated with equation 33. The theoretical limit was calcu-
lated by equation 40 assuming that the radiation temperature
did not vary over the reaction vessel.

Groth (9) studied the formation of ozone Lrom oxygen,
using light in the vacuum ultraviolet from a xenon lamp
with a partial pressure of Xe of 0.1 mm and a partial pres=-
sure of Ne of 20 mm. Oxygen was passed through an illumi-
nated vessel at varying ratee and the ozone production
was studied as a function of this rate. The ozone for-
mation was assumed entirely due to the two emission lines

at 1295 & and 1470 X, 1In order to get the intensity per
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unit frequency interval, it is necessary to know both tﬁe
width and the shape of these lines. The literature seems
to contaln no information on the width of these lines in
the emission spectrum, but McLennar and Turnbull (11)
reported that the extreme width of the absorption line at
1470 & was about 5 & at a pressure of 20 mm, including
the wings of the line. Not knowing the shape of the line,
we make the very rough approxzimation that each line may
be approximated by a block of radiation 1 & wide. This
is a reasonable width, according to the work of Margenau
and Watson (12). A more reasonable shape would be gausslan,
but this would lead to a different radiation temperature
for each frequency over the line, and we would have to téke
some sort of average temperature. Using a square line
shape gives us effectively some sort of average temperature,
and simplifies the calculations.

The assumption was made that each line was of equal
{ntensity in pbotons per unit time. This is only very
roughly correct, since Groth reported that 73% of the abe
gorbed energy came from the 1470 A line. The approximate
incident radiation temperature was calculated as before
from equation 2, making reasonable assumptions about the
area subtended by the source and the distance from the
gource to the reaction vessel.

However, in this case, there is another complication,
gsince the absorption coefficient of oxygen at the wavelengths

in question is very large. The transmitted intensity was
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accordingly very small after the light passed through only
a few millimeters of the cell. We make the very rough approxi=-
mation that the wmean radiation temperature was about equal
to the arithmetic mean of the incident radiation temper-
ature and room temperature.

The experimental efficlency was estimated from the
reported quantum yield of about 2,0. Since no data on
aﬁtual concentrations were given, the standard free change
of the ozization reaction, was taken as an upper limit to
the actual free energy change, and equation 33 was used,
assuming equal numbers of photons abscrbed from each of the
two spectral lines.

The data of Wijmen and Taylor (1l0) were even harder to
worc with, since they used a reaction vessel surrounding
their light source, which was a xenon lamp similar to that
of Groth, except that it operated at a xenon pressure of
1.5 mm, with no other gas present. This would give sharper
emission lines than would Groth's lamp, so the radiation
temperature was approximated by repeating the calculatione
on Groth's lamp assuming a block of radiation 0.3 X wide for
each line,

In order to estimate the experimental efficiency, it
was assumed that the only products of the amwmonlia decow-
position studied were nitrogen and hydrogen, and that the
free energy change could be approximated by the standard
free energy change of 8.0 kecal per mole of Ni3. Quantum

ylelds of from 2 to 1l were reported, 8o the efficilency was
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caleulated on the basis of a quantum yileld of 11, and it
was again assumed that the two spectral lines had equal
intensities of photons per unit time. Thus the efficiency
was approximated by 1l times the standard free energy change
divided by the average energy per einstein of photons at
1295 and 470 £,

E. DISCUSSION

The preceding development has assumed local equilibrium
in the fluld system, and also in the radiatlion field. If
absolute equilibrium were attained, the radiation would
be ieotropic, no chemical reactions would occur, and the
radiation temperature would be equal to the thermal temper-
ature of the fluid, This, however, ls far from the case
we are interested in. In most photochemical experiments,
one uses nearly unidirectional radiation of rather high
radlation temperature; one should ask under what conditions
the actual state of such systems can be approximated by
assuning local equilibxrium.

First, the radiatlon should not be required to be
igotropic, or even nearly so, since we have assumed a
nearly homogeneous, lsotropic fluid. 1In such a fluid,
the effect of an individual photon is independent of the
direction from which it arrives, and since the photon-
photon coupling 1s very weak, one could think of the
radiation field as being couposed of essentially
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independent photons. This allows us to assume anisctropy,
such as the nearly unldirectional radiation we discuss.

Although the case in which the radiation temperature
is only slightly higher than the thermal temperature might
be of interest, it should not be necessary to assume this
case in order to use local equilibrium arguments. In the
discussion of systems without radiatiomn, it 1s sufiicient
to assume that gradients of macroscopic properties are
small on the scale of intermolecular distances. Therefore,
we ghall assume for the foregoing development that the
radiation temperature does not vary significantly over
distances of the order of intermolecular distances. This
seems equivalent to requiring local equilibrium separately
in the fluid and in the radiation field, but not requiring
equilibration of the radiation with the fluid. This cri-
terion will probably be met with sufficlent exactness in
typical photochenical systems,

The approximation which was introduced by neglecting
forces due to reflection of radiation at discontinuities
is not likely to be of importance, since most photochemical
reactions are carried ocut ir systems of sufificient size
that the surface of the system is not very important,

The two assumptions mentioned above are those of
basic importance to sections D and C. However, the crudity
of the numerical calculations of section D should probably

be emphasized again. The experiments cited were degigned
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to investigate guantum yields or reaction kinetics, and
the data necessary to calculate radiation temperatures
and experimental efficiencies were incomplete and had to
be augmented with reasonable estimates of many numbers.
However, the comparisons of Table I are expected to be
qualitatively valid.

However, it would have been more useful to compare
limiting and actual efficiencies of experiments designed
to maximize the photochemical cificlency, but no such
experiments could be found in the literature. Instead of
trying to maximize the efficiency by using the longest
wavelength that would cause thelr reactions to proceed,
for example, the investigators cited used conveniently
available wavelengths. Again, they used relatively high
intensities, making the limiting efficlency so high as to
be experimentally indistinguishable from unity.

Still, the fact remains that the actual effliclencles
were lower than the theoretical limiting efficlency, as
must be the case even with experiments designed to appfoach
this limit.

The conclusion that radiant energy cannot be fully
utilized in a photochemical process is not surprising,
gince it has been known since the time of Planck (3) that
plane waves, which one might think of as sources of pure
energy without entropy, camnot have finite intensitles.

1t has alsc long been realized that parallel bheams of
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monochronatic photons do not exist, since the womentum
and the position of even a single photon camnot be sinul-
taneously specified to arbitrary exactuess,

Indeed, the result herce obtalned aight have been
anticipated L{ one thouzght of pradiation as a wmeans of
transferring encr.y between black bodies, which could he
used as heat rceservolirs with ordinary reversible heat

engines.



GLOSSARY OF SYMBOLS

Element of area times the normal unit vector

Speed of light

Internal energy per unit mass

Partial specific intermal energy

Space density of radiant energy

Radiation energy flux (see equation 8)

Free energy change per unit mass of the kth reaction
Planck's constant

Partial specific enthalpy

Intensity of radiation per unit area per unit time
per unit solid angle per unlt frequency interval

Energy flux wi:h respect to the local center of mass
Diffusion flux of component i

Non-radiative entropy flux (see equation 17)
Boltzmann's constant

Radiant entropy intensity similar to I,

Mass of component i

Total pressure

Second law heat flux

Firet law heat flux
asay -

Q:apd...,
Gas constant

Activity quotient for reaction

Entropy per unit mass
Partial specific entropy

Space density of radiant entropy
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Radlation entropy flux (see equation 22)
Time
Thermodynamic temperature
Radiation temperature
Macroscopic local velocity
Element of volume
Mase fraction of component 1

Force on component L due to vector fields and
radlation absorption

2%‘2?L Total force as above

ééit tensor

Rate of energy absorption per unit mass
Efficiency

Progrees variable of the kth reaction
Chemical potential per unit mass

Gradient of chemical potential in an equivalent
field-free isothermal system (see equation 18)

Frequency of radiation
Density of matter
Total stress tensor
Entropy source etrength

Element of solid angle
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I1. MEAN VALUES IN ENSEMELES OF SYSTEMS OF
PARTICLES WITH LONG-RANGE POTENTIALS.

A. INTRODUCTION

1. Explanation of the Problem

The principal business of statistical mechanics is the
task of obtaining mean values, elther over an ensenble of
systems, or over an interval of time. One of the funda-
mental postulates cf statistical wmechanics is that an
ensemble average may be identified with an observed macro=
scopic variable, which is by its nature a time average.

An ensemble is an assembly of a very large number of
systems, which are all described by the same numbers
specifying a small number of degrees of freedom, usually
macroscopie, while the remaining degreess of freedom are
described by parameters distributed in a way postulated for
the kind of ensemble considered. The treatise by Hill (1)
contains 2 discussion of various ensembles and their
application to statistical thermodynamics.

This work will use the canonical ensemble, in which
the individual systems all have the same number of particles
and composition; and are in thermal contact with the same
heat reservoir.

For classical systems, the canonical distribution function,
which is proportional to the density of system phase points

in the 6=-N dimensional phase space of the Neparticle system
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(" -space), is postulated to be

)
F o) o expl- FHE k-], O

where /3::L4é7; ffil the Hamliltonian of the system, the
[5'3 are momenta, and the K 'g are coordinates of the
particles. 7 is the absolute temperature, and £ is
Boltzmann's constant. The mean value of any function of
positions and coordinates can be obtained by integrating
its product with tiwe distribution function over the entire

phase space:!

j - fa K, ---,A%)aﬂ i//% Ayl % A%,

( oy = (2)

[ Bl L ad %A%,

The denominator of the right hand side of equation 2

i1g called the partition function, CEV' Many ensemble
averages, such as equilibrium thermodynamic quantities,
can be obtained from C;b by manipulation of its definition
to give an equation of the form of equation 2. We treat
ttosa functions for which the average cannot be obtained
directly from A e
Kirkwood and his students bave sometimes used the

symbol <;<;;{u)> for a mean value, emphasizing the fact
that equation 2 has the form of a gcalar product on
rT-space of of and the normalized distribution fumetion,
f(M)E Q’v_"e'/g’q . The fact is not important for thls

work, but the canonical engemble 1is simply connected with
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thermodynamics by the formula

A = —-,éT,én 0/\/ (3)

where /‘4 is the Helmholtz free emergy, or work function.
1£ the function, o , of which we require an ensemble
average has as arguments the coordinates and/or momenta Of
only a small number of particles, say, L, we can, instead
of equation 2, use an expression in terms of reduced dige

tribution funectlons, which we define 2s follows:

(n) /)
3[(,&,.-@,/Q..,@);Jf(?ﬂ..%@@)égﬁ;,__ A7, 4%, @

where -[ w is now the normalized distribution funection,
“ﬂ H . We can similarly define reduced distribu-

tion functions, j[ (n,m)’ depending on 7 coordinates and

M momenta, where 7 #7 , or where either 71 or 7 is zero.

Using f &) , equation 2 becomes

#T (n)
(ol ok ) =i PR R L7,

Two very useful distribution functions are the t:wo-
particle coordinate distri.bution function, (g ) /@

(strictly we should write F ), and its correlation fumection,
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defined by:

) > (1) e
F&r) =g Ik mOF ®I R . (6

In £luid systems Q?Ch) is radially symmetric, and is called
the radial distribution function.

In sclutions, if we can designate one of the species
present as solvent, a useful distribution function depends
on the coordinates and/or momenta of all the solute
particles and on none of the solvent particles' coordinates
or momenta.

A useful function is the equilibrium potential of

mean force, h/wh). defined as follows:

= (n)
e W] - £ G O
The negative gradient of W with respect to the coordi-
nates of a particle can be shown to be equal to the engemble
mean force on that particle as a function of the positlons
of the other particles in the set N , averaged over.the
positions of all other particles (2).

This part of the thesis comsists cof an investigation
of mean values in an equilibrium ensemble of systems of
particles interacting with long and short range forces,
and le restricted to functions depending on coordinates
measured at only one time. Another, more difficult case,
involving coordinates and momenta measured at wore than
one time, and therefore involving all é;A/ coordinates and

momenta through the equations of motion, will be considered
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in part III of this thesis.

Due to the basic similarity between equation 2 and
equation 5, the methods developed will be applicable both
to gases of charged particles and to Lonic solutions, in
which case £ 1s interpreted as a reduced distribution
function involving only the solute ions.

An example of a function for which we might seek an
ensemble average is % 2 2z Ory; , where e 2
is the charge on fon , , [J is the dielectric comnstant,
and F; 1is the magnitude of V1 , the vector separating.
fons [ and ; . This is the';otential energy of set
of ions in a dielectric fluid., Another function of interest
might be e "f“J , of use in neutron ecattering (3).

Still another function of interest is c{(} 57;)32?- ﬁ?)
the ensemble average of which is f{}‘s(k7 &?)

We shall congider only classical systems. lowever,
for quantumemechanical cases, ensemble averages may be
written in a form formally identical with equation 2 if
Wigner distribution functions are used (4) inetead of the
density matrix formalism. Another, equivalent formalism
has been employed by Mazo and Zewmach (3), using Slater sums
to express the engemble average.

In this part of the thesis, the notation of Mayer (5)

will be followed as much as possible.
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2. Survey of the Literature

The modern statistical treatment of ionic solutions
began with the important work of Debye and Huckel (6),
based on the use of the Poisson-Boltzmann equation, the
solution of which bowever is known not to satisfy certain
integrability requivements (7). Debye and Hickel linearized
the equation, obtaining a aolution.saclsfying these ra-
quirements, and obtained their welleknown expresslon for

the radial distribution Zumection,

() 2 — KV
7 C/’Z') = /) — FEEE & o (8)
DALT K
where
fre* 7 =
o= e C; &y
A DA B

(=4
/P 1is the dielectric constant of the mediwm, Z. and
Cc; are respectively the charge number and concentration
in particles per unit volume of the lonic species Ly
€ is the magnitude of the charge oun the electron, and
ﬁ& is the scalar distance between the particular ions
of species ( and , being considered.

Equation § has had adequate experimental verification
as an exact limiting law as the concentration of electrolyte
approaches zero.

In the following three decades, many attempts wers

made to improve on the Debye-Huckel theory, including the
work of Kramers (8) and many others. Omsager {9) gives
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an early review, and the treatise by Harned and Owens (10)
contains much information about these attempts. Probably
the most fundamental contribution since that of Debye and
Hiuckel was made by Mayer (5), who obtained expressions for
the ensemble averages of the osmotié pressure of an lonic
golution and the activity coecfficients at that pressure,
valid to the next order of approximation beyoud the Debye=
Huckel theory.

He assumed the potential of mean force between ions
at infinite dilution to be a sum of two-body coulomb forces
with hardecore repulsions, and applied cluster techniques
developed for non=ideal gases (12) and extended to wixtures
by McMillan and Mayer (11). Divergences {in the cluster
integrals were taken care of by selective resummation
according to groupings of terms so as to cancel out in-
finities of opposite sign and give a finite approximation.

Since 1950, others have continued work with Ma’er's
equations. Poirier (13) has obtained numerical results and
various thermodynamic relationships, and Haga (14) has
carried the evaluation of contributions to those of order
Kfa,%wwshwrmnudmmoﬂymOMqu?.
Meeron (15) has summed some of the expressions explicitly,
and has discussed the use of a single hard-core repulsive
potential in a mixture of ioms.

Meeron has worked on expressions for the radial distri-
bution function and twoebody potential of mean force using

extensions of Mayer's technique (16), and has obtained results
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apparently valld to order K = , one order better than
the Debye-Huckel result.

Some of the more recent work on radial distributions
for classical fluids interacting with short-range forces
is of interest to this problem, since techniques developed
to treat dense systems are very similar to those developed
to treat longerange forces in dilute systems. Beginning with
the work of Salpeter (17), Van Leeuwen, Groeneveld, and
deBoer (18), and alsc Rushbrooke (19), have developed
a "hyperchain” approximation, which also involves selective
resummations, equivalent to work of Meeron (20). Morita
has also invented a "hyper-netted chain' approximation (21),
which Meeron (22) has pointed out, is also equivalent to
his work.

Priedman (23) has derived density expansions of
distribution functions without assuming the potential to be
a sum of two-body potentials, but a model for the 3ebody
and higher potentials is not furnisbed. He has also ex-
tended the Mayer theory in the same sense (24).

B. PREPARATORY DEVELOPMENT

In order to begin work on ionic solutions, it will be
necessary to lay a groundwork of more general applicability.
The formalism of Mazo and Zewach (3), which holds for
quantum as well as classical systeums, will be generalized

to multicomponent systems.
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Consider first the expression of distribution functions
in terms of Urselletype cluster functions. The distri-
A/aw/) of
2, - 50 will temporarily

bution function of the set A/ = (A A,
particles of chemical species /,
be called W, instead of f ) to follow Mazo and Zemach.
Since the mon:eni;un dependence is immediately separable
for classical systems at equilibrium, % is asswmed to
be a coordinate distribution function, and is assumed
separable, That is, if the set % is divided into the
mutually exclusive subsets 72 and {v(/ —7n , which are then

moved apart until thelr separation exceeds the range of

intermoleculay iforces, then

MZ(,C(N)/) e ,{/’ ((A/-n))m/ (‘/, (n)) (9)

The expression of % in terms of cluster fumctions,
Ly » proceeds by use of ;eneratMg functionals and
fu?:ctional differentiation. The product of parametric
functions a,fﬁ)d,(fa,)..,qd@r)..aréoﬂt) is represented by
ag ® .. dqf/‘/cr) or by a (¥) . e will fre-
quently use an underlined symbol with an underlined exponent
to represent a product of quantities ralsed to various powers
in this manner.

The generating functional for the W' fumctions is
defined

(4)

A a’f w)
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from which expression one obtains a particular W, vy

functional diffeventiation, as in Mazo and Zemach's one~

component case. (4)

i/ P S BN SR e

Ja(r)a(ﬂ(lf) Ja,n) da (1 ) q =0 =

A generating functional for a set of (4? functions is de-

fined exactly as in equation 10, and the é/ functions are
uniquely defimed by

G la) = et &,02) (12)

Just as in the one-component case, eqguation 12 relates
the (/ and W/ functions such that if the set 4/’is
separated as before, the separability of the W gunetions
implies that <Qg approaches zero.

From equations 11 and 12, one finds that

’ e
W™D = Uplie™)+ S Uhle )y () +

=0 ' = <=/

(13)

N

R AACY,
uen ?
where the right hand side of equation 13 is a sum over all
ways of dividing the set ﬁ/ into mutually exclusive clusters
(not counting permutations within a glven cluster as dis=-
tinet) . This agrees with the result of MeMilian and Mayer
(11), who aleo fuverted equation 13 by combinatorial methods,
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obtaining

Ny
GG?) =Wy (o) - 2, Wdo) g, (%),

ey "/"é/—y,/ 77%“4(@) (14)

O(=/f

=2 @ s 77‘w N
(EsMin) =

where the sum is again over all distinct ways of dividing
the set 4/ into clusters. The notation(ﬂ@lif&i)ia used
to represent a division of // into A clusters such that
Af,fﬁ, fﬁ are the seits of particles in each of these
clusters. Equation 14 can also easily be obtained by
taking the logarithm of equation 12 and then applyilng
functional differentiation.

In the previous work, we have assumed that the W/ 's
and [/ 's are symmetric functions of all the coordinates
of molecules of the same species. We now generalize this
to separable functions M{‘/,g[c (f (jui W,)X (/()) , which
are symmetric functions of coordinates of moleculee of the
same species only if they are in the same group of argu-
ments, as for example in S éd. Any number of groups of
arguments can be taken, but three groups will be chosen for

jllustration. The generating functional becomes

G, la k)
— Z |a™h% /dl/l/ o 594
w | ‘n’/fe i f s

’m>O '77‘0 >Dn/ A v
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where the £ 's and ¢ 'as are parametric functions similar

a-
to the < 's. We have used the notation 145’55'77"4;/’ ’

c=r

which will be used frow now on., +e also use the notation

o
n = Z ,zc' .

&=/

Similarly with the previous case,

Mg =2 L L

—— 74

ey .d_ (15)
da(s) Jq(m,) d 4(5y) S (x)

) At

A

M
i
tn
0

We define also,

w ~

t

G (,jg,g) = M%GU@,é/g) (17)

which again defines the Cj functions uniguely.

The integrals of the W and () functions will be of
interest, although the integrals of the ) gunctions will
diverge formally for potentials of infinite range, due to
the impossibility of separating subsets of particles to
distances greater than the range of the potential.

Equation 17 can for our purposes bLe rewritten

(M) w) (f) = (w) (1) (k)
MZ;GL bc"u{“/ﬂlk :Wéﬁ)g‘l é < U -y (18)
i v o S R w1 k2o 2
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where the parametric functions have been replaced by

constants,aﬂuqnb“”br(;f_cr_, and where we define

Wk = / Wuz(‘” (u)x( ))0(

&? ﬂ e

(19)

|

U - _/,qff =), (4) .
R / fj?j U@,q,[f( )cjwola 3/312
In order to use the above for ensemble averages, we
define M/qo,,\_; = WN :7C(A‘/J (strictlyf(/"/‘o) ), the

reduced coordinate distribution function of the set A

—

4:

(all ions), with all configurations of the solvent averaged.
All of the following will apply equally well to a gas of
charged particles, in which case ¥7Q0 would represent the
total distribution function of the particles of the gas.

We consider first functions depending asymmetrically
on' the coordinates of only two particles, defining for

the classical case,

vl f :
M/’ié;y-/.g- = o<(ﬁ-/ 55- ) ng M (20)

1f we require that M43Q”y be the distribution function,
then £  can depend on the coordinates of only the two
particles. Note that quantum-mechanical definitions can
also be made, as by Mzzo and Zemach, using Slater sums.

Functiocns H&{o/“ and M4;5)”/ also must exist, due to
PAAC 2

-~
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the assumed separability, by which they are defined.
A special case of separability which is of some interest
is that of PML;ZE =W, o =O , corresponding to

s =

Lz ot == D

(6:-Si | —=> 00
From equation 18 and the above definitions, we fird

7oy
<c>< (r,.-,gg)> = %/’“/‘4') '/- 7"_)?%4@,/1?"4; (21)
‘ M oo, i

Ia order to express the ensemble average in terms of
the (/ integrals, we restrict 7 and 22 in equation
18 to © or / . We separate all terms in the exponent
independent of the 2 's and £ 's and expand the remaining
exponential factors. Then we equate coefficients of equal

powers of the @ 's and £ 's in the resulting expression,

and obtain, for example:

- A
Eaivay 1A4¢/ Voo
/! 2d) =~
(22)
k ktp V4
— i + s =~
<[ Uk ;g ”A;eé."‘e:,;f]ﬂ/ﬂgjg Uoe £ .
However, by writing equation 12 as we did equation 18,
we find:
B — 4
o Ko
e whog = LM/ZL.@ TN (23)
£ = ’

and by equating coefficlents of C f/in equation 22 after

gsubstituting equation 23, we find
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Equation 24 rescubles a result of Mazo and Zemach,
but has multlcomponent (underlinmed) subscripts. From LU

and equation 21, we find

N1 a
U #el (25
<("S')> N(/V'JQ)Z‘(U%’H+ u’emues,:r"")}ﬁ -
n=c m=0 s

where 2, is the fugacity, in mclecular units, of cow-

ponent [ .+ We have used the relation (25)

o _ “
coN-n T  Z wo)olg (26)

—

——

Equation 26 holds true only for />>'t , uhich will oblige us
to consider an infinite system. When we allow the system to
become infinite, however, we must 2llow the concentration
of each species to remain finite and fized.

Alcthough the fugaclty, ;35 , 0f an ionic component,
cannct be measured tﬁermodynamically, mean fugacities re-
lated to 1t can, s0 we will consider eguations 25 and 26 to

be meaningful for ionic solutions. Mayer (5) and others
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(13, 15) have studled the fugacity in ilonic solutions
under an external pressure equal to the osmotic pressure,
80 we can apply their results and work from equation 25,
Mayer found that a relation of McMillan and Mayer (11)
can be modified to hold for the Coulomb potential:

I =g e = (27)

Here f:; is given by

- 7
S - 25 - (2.5 B, c” (28)
JC" JC‘_- nhz=z S J.f""-. .

The f?ﬂ are cluster integrals having as Ilntegrands sums
of all products of certain functions connected with
dlagrams in a specific way. The differentiation is siwply
a formal way to express the series desired, and although
the [ integrale diverge for the Coulomb potential, they are
considered independent of <, in the differentiation.
Mayer obtained a finite approximation by a selective re-
sumnation, 80 we shall assume S to be knowm.

Equations similar to equation 25 can be derived for
functions, <£ , depending on coordinates of any number of

particles. For example,

/’/

N
> : 29
\&(V’;‘)> = L/_>_HTZ// B f_r'-*/: (29)
7% /.U
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and

<O</K‘) gf)'; X"k>\ - i o X
g Nel A - ‘%‘,)@5 dardek ) /

W-chli

~—
X Z—A /J}’K} TZ ‘Z(/L;/J'/D/g(_-l:!?/(alo’“(/,ﬂ‘ bl

vi=o (30)

+ X,
‘-OIKKMuQD/O,M +’L{90/’<,1mu, o 0 m

1
¢
'f_% /L/I/KW%QIQMjﬂoe/klzjﬁj

Now that the expansions of Maro and Zemach are

extended to the multicomponent case, any result of cluster
theory can in principle be obtained. 1In the following,

we shall extend the applicability of this formalism to the
case of the Coulomb potential.

C. TREATMENT OF TWO-BODY FUNCTIONS

For the case of long-range potentials, the expressions
such as equatioa 25 and 29 are not directly useful, since
almost every 7( integral diverges. The intermolecular
potential in a gas of charged particles and the interionic
potential of mean force at infinite dilution in an ionic
solution are of infinite range, so we must seek a selective

regmmation of the terms in such expressions, to get a
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finite approximation to <§x‘>> . For this, it is almost
imperative to connect the 2{ integrals or their inte-
grands with cluster diagrams. 1u order to do this using
elementary techniques, we restrict ourselves to classical
systems.

In the following, we treat explicitly the case of
equation 25. The extension to mean values of functions
depending on different numbers of coordinates, such as the
cases of equation 29 or 30, is straightforward.

Consider first the well-known connection of Mayer's
reducible eluster diagrams with his cluster integrals,
éz (which are |/ ' times our Uggn ) (11)

The potential enexgy, Or potential of mean force in

the golution case, is assumed given by a sum of two=body
D

potentials, f}b‘(ﬁg&.), dependent only on IHJ_ . The
' J
functions %Z are defined by
J
o .
P - //’ L“‘-/ }/a/)
-1.4 1/ 2 ) = §~ /5 7-; e (31)
Ity § V:.-//- T — = / =

The integrands of the <éf are sums of products of fﬁ
functions, and each term corresponds to a cluster diagram
having 7t labelled vertices representing the set 7 .

A line between two vertlces, / and 54, represents an ff

function, having as argument /. . For example,
gl

= r
VAN AR YA VAR

Lt /ukib;»
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The integrand of Z(, o~ i8 known (12) to consist of the
sun of all products of %Z functions corresponding to

"at least singly connected' (ALSC) diagrams on the set
of vertices # . ALSC diagrams are those in which every
vertex 1s connected to every other vertex either by a
line or by a path of lines and vertices. The above
statement about Cécy@ iz equivalent to equation 14, as
can be seen by writing the W 's as products of

factors for any particular set 4/ .

Je now take the logarithm of equation 17, and by

functional differentiation we find

O
RN
<~

W/ ”24

M-fels = B

~ 7 9.0 2 (4/3"3‘1 M//.,///(/—n-h:g-
E-An (33)

I

— 2 Lty
25w
R

where ngp means a sum over the distinct ways of permuting

oo e
Gl )

arguments of the set /-/:/- between the different /i/
functions in a product, and where the limits on the other
gun mean summatlion over all possible sets of numbers
Rz, g P CON N Moo M /o Ny
Comparison of equation 33 with aquation 14 shows that
a similar cluster correspondence would obtain for fumetioms,

< =a-4. , that are products of one-body functions. An
L
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UL f
equation for Ug/. o or J,‘; o, ¢  analogous with equa-

tion 33 can be obtained:

Z/j W -..”t.//-_/
o / -
0/{}.)44/_./)- a e.’/; b ——:7‘2" ZAJ (/{/o/ n MO/{/—M—/‘ (34)
g 70 < J? 4~

)
Comparison of this with equatlon 14 shows that O@/ 1) N1
Prd
consists of the sum of all products of 7C functions
corresponding to all ALSC diagrams on the set/jv/ of vertices,

multiplied by dd , where:

< (¥,

/

i) =>4, 0:)a (v ) (35)
[ g if_'/ —= o v J o
J

In the cluster diagrame for Uo .

/ -~/ - we use a
/w‘f{-—{J ’

triangle instead of a circle for the particle d
For example

24
24X /N —>ah
| !j A > ‘Qd \‘7/ )J(k ‘nyk§££(';2*)£('32k) (36)

For the terms in (/{;/ o -l » which are similar, we choose
D, L
to use a square for particle /; .
If ' = Q;d/‘ s then (//«;/,’, -1/ is a sum
of all products corresponding to ALSC diagrams on the

set 7 , such as, for % =// 2 for exawple:
%k Z%

«x| s« )y s f g i . 7

—7 7
/.
J

-
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16 o< F#A(7)q ) for finite 17 , some of
the products corresponding to disconnected graphs survive
in equation 33. If, for a particular (/;910)7_5 , equation
14 is written in diagrvam foirm, it is seen that all less
than singly connected (LTSC) diagrame cancel. (Note that
an ALSC diagram on the set 7 - 722 multiplied by an ALSC
diagram on 722 L8 equivalent to ome LISC diagram on 7L.)

1f equation 33 is written in dlagram form for a
particular W/f/, it is seen that all LTSC diagrams that
would become ALSC Ly addition of a line between A undé'
survive. We call these diagrams LTSC (1) diagrams.

These survive in pairs, one diagram with positive sizn
multiplied by <K , and one with negative sign multiplied
by - &- . 1In oxder to see that this is true in general,
let us see how the canceilation of diagrams arises in
equation 1l4.

Consider a LTSC diagram which must cancel out in
equation 4. It {8 made up of, say, N/ disconnected ALSC
pieces. This diagram will oceur, with coefficient (’f)M—é/’/f-/)./
a certain number of times, say Y, , in a sun in equation
14 having as terws products of A (ﬂ: fy By == "/) W
functions. The factor ,XA/M is not in genmeral unity, since
the A/ pleces can come from -/ clusters in a number of
ways equal to the number of ways of putting A distin-
guishable balls in A identical boxes, which is

(38)
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Here <Z_, is the number of balls in box number < ,
f;' is the number of boxes containing < balls, and the
sun is over all sets of occupation numbers.

We know from equation 14, that

%

& M-1 W,
=m0l X, = © (39)
M= 7

since the LTSC diagrams cancel in equation 14,

In equation 33, exactly the same diagrams occur, except
that particles /¢ and j are represented by a square and
o triangle, respectively, and some of the diagrams are
multiplied by o< while others are multiplied by QL-QJ- .

The following cases occur:
(a) Particles 4 and 5 are ir: the same ALSC diagram plece.
Since /L and 6 are arguments of the same W' function, all
these diagrams are multiplied by X , and they cancel
just as in equation lA.
(b) Particles /; and {/ are in different ALSC pleces say
plece A and piece 5, and /= 3. All terms in which A and B
arose from the samewwill be multiplied by =< , and all
others will be multiplied by d‘dfl . Single out those
multiplied by o< . 1In these, 4 and /5 ,together can be
considered one plece, and we have the same cancellation

as in case a) except that we now have //'-/ 'pleces".

iIn other words the LTSC diagram is multiplied by

‘54£// e | A1
P J — e 4 ==
=4 M:/( D (M) X, O

(40)
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Now look at the terms multiplied by <&, 43- 3

These have a coefficient

N M- M iy M-l M
aq| =00 ! Xy — G0 m)! X,uﬁ,,]

M= M:f )

but both sums here are zero, 3o these cancel also.
c) The last case, that of LTSC (1) diagrams is different.
Here for each diagram, a nonzero coefficient <><——Cf;é§'
remains.

We have therefore shown that Cﬁéa;gq,éAcorrespouds
to the sum of all products of .ﬁffunctions corresponding
to ALSC diagrams multiplied by K, plus all products
corresponding to LTSC (1) diagrams multiplied by < — & (/

1f we desire, we can connect diagrams with the ¢
integrals instead of their integrands, the (/ functions.
1f we do so, the diagrams are similar, but we denote omnly
the chemical species of each particle without labelling
them as though distinguishable. Of course, after inte-
gration, many terms in a given C} may make equal contri-
butions, so each distinct diagram enters with a com=
binatorial coeffieient, which is equal to the number oi
permutations of vertices of the same chemical specles
which leave the term unchanged after integration. Finding
this coefficlent for the general case is a difficult

combinatorial problem, which is not yet solved.
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We now return to equation 25, which expresses the
mean value of o< as a series, and note that the double
sum is equivalent to a sum of LTSC (1) dlagrams. However,
the combinatorial coefficlents in the integrands here are
not the same as in the 722>9/7% since permutations

between the disconnected parts are not allowed in the

UWio m We . 5  Product dlagrams. The ratio of

2Py =
the coefficients of a particular LTSC (1) diagram in

97! z-vm)!
Z{/L.’o/m Ue, 1 mm and in 2, , wust then be .

This is the inverse of the ratio of the factors in front

of the integrals, so the double sum cancels exactly the

LTSC (1) diagrams in the single sum with coefficient 4,4 .
7 J

Now if we define 12¢, ,. ., as being like 7Z( .
Yy = "/{/)1@;

except for deleting the terms wultiplied by /51;43 , its

integrand contains all products corresponding to ALSC and

LTSC (1) diagrams, all multiplied by o, and equation 25

becomes
ﬁ{\/_/tc
7 / s rd ’f—/L-/-
<o<(ﬂ.j VL)> . e = ’»"/ ’L/,‘./_j 3 f-( J (41)
e /u" - y = J e -
//g Jﬁ‘/,) /’g:o —— -
We neglect J;— compared with /%f and define:
) o —~ /
e =¥ Ui (42)
Equation 41 becowmes, using equation 27:
A1l Vi
- Ly ¥®—
- — &
<O<(\/:'/ }3)/> R 4_{4 '[Jf < ( /_?S——é 'jf' L ) 42
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where we use .é */_—,— é%‘{& +3fé .

Equation 43 is now a density expansion, at least
formally, but it is not in the most convenient form.
However, we shall work first with this form, as do Mazo
and Zemach (3).

4e begin by expanding the %T functions, following
Mayer (5), assuming the potential of mean force at
infinite dilution to be the Couloub potential Jith a

dielectric constant plus a repulsion at shorti range:

where

and **50

il =

84

Here /> is the dieleciric constant of the medium, &

is the magnitude of the electron's charge, /& is Boltzmann's
constant, and | is the temperature. The parameter o< will
1 .:tar be allowed to approach > . The function éfj

similar to fj. except that only the shorterange repulsive

potential A)‘" {s included:

/é’_. (’_/’V;. ) — /é”’%L 7") (V/LJ) /éT /

¢
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1f this repulsive potential is that of bhard spheres,

— ' A 2 -
/é r{: S t {/ < 2 (45)
/
(& V.. I
cfy =G0 o
where 4?9'18 the distance of closest approach of ions of

species . and ./ . w
Each term in a glven :Iﬂ_ iz now replaced by an
infinite numbexr of terms, each of which we associate with
another type of diagram, in which a solid line between two
vertices, say 4& and /f; represents’ (kkf_). A broken
line will represent a ,i% function, two solid lines will

represent fﬂ-?;%/, one broken and one solid line wilil
representAQQ%?Gd, etc.
For exzample,

' &

K X =1, /. )_E}(f /*ﬂ;(@)jw AL)//e'df u) (46)

VLI

yis g

— () Y
We shall call JL)?(k) the term in JLXJ corresponding
to the diagram o . The contribution to (> £rom »

is

s
e //
"/—/fj(,-z C  ex ( tff .5 ) &7)
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A row of vertices, each connected only by two solid lines,
is called a chain, If a diagram contains no chains, except
possibly chains cowposed entirely of the particles /-
and g , it is called a prototype diagram. A diagram, a
will be said to belong to a prototype, ¢ , Lf it becomes
identical to & upoun replacing all chains (execluding those
containing particles / and 41 ) by lines. Jde shall later
use a prototype dlagram to repregent the sum of all diagzrams
belonging to it, in which case we shall draw it with wiggly
lines. A typical diagram and its prototype are:

[ A S 4
——A— g % o
o : . N
/i 5‘ ,Zt' 2_/ / 7. 2‘/.

Note that / and /- remain, even Lf contained in chalns
in the diagram. In the set (9*} we call the vertices in

the chains - , and the other vertices -ygjf Expression

47 becomes

S '
I/(’f) C ,Z/x/ ;7” [/ 2” ] (59)

Mayer has shown (5), for the case of the irreducible cluster
integrals, that a sum of the form ¢§4 lez is replaced by

a sum of the original form incleding only prototype diagrams,

and that in these, instead Ofy? functions, the solid lines,
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which we now draw "wiggly"” following Salpeter, represent

(o) ~ K

2 (r) = < _ (50)
Frr
Mayer's proof of this (5) is ineluded in Appendix 1.

The theorem holds true also in our case for the
contribution in equation 49 independent of é;j ﬁgé; .
The only differences are that our definition of prototypes
must be used and that all integrands are multiplied by
cx‘(?& ij). This doesn't affect the 'chain-shrinkiag'
gince ;;.;nd [/, are never in the set /2 . The contri-
bution of a prototype, $ , we write

o ) ik
Loz & (51

The contributions from the further terms in the series

in expression 49 are slightly more complicated. For these,

we restrict ourselves to the case !2;/ = [Z;} o (Z}J.
For this case f;::f;;: amie \S;. . The sum in the bracket
in equation 49 now becomes

—— . (— \\‘D“"

S nS =5n =5 2.7 (52)

Z' 0(_:, 7

where we number the chains in 77from / to D, and 71
is the number of particles im chain { . Consider each
of the ) terms in equation 52 separately. The summation

over diagrams belonging to the prototype § will lead to
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the same result as before except for chain number K

which is replaced by

0) - — KV
/i' (r) :L;c{“d(f)wﬁ,/f/:: s = (53)
v n=o / 877 -
v v
2- (e
The contributions wultiplied by J;} ;?;I??:(KLKV¢§

give us Y* terms in expression 49. Summation over dia=-
grams belonging to a prototype, jf » 3ives a result gimilar
to the previcus case except that chain < and chain/fg

are replaced by Z? &Q}ﬂ instead of)z(%kﬂ if ca<:¢/4§ .

If 0<:7g , this chain must be replaced by

/ 17- (6T

%

: = e
?“@ . >,(—a<f)w?}9’,,(*”) = AK€ Cxv=r ) (8
, - ,

in summing over the dlagrams.

The contribution from the 55[3 sum is similar.
There are 3YQ~D(V—2;) terms with different cowbinations
of three chains replaced byﬁ;?@kﬁ) instead of e Gi),
53;;(y_4>) terms with one chain replaced by 0%}7 and

one by 2)(?) , and ) terms, each with one chain re-
placed by
7z (v) ~-2)(-K2,>1/rfﬂ(f3)= K€ (kP B3kr-1 ) (55)
= n=o LT -
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Before we can express all orders of contributions to

<?K:> , we need an expression for gf (7” , which is de-
fined:

P
(Br § 2)
i) == — )
v ¥ =0
and which we seek as follows.
First, we note that
| s
PN ) (%
g (n) =¢ A I | 2 (r) (57)
/) kc’z AJ( A 7
)
where R given by equation 50. Since 7" occurs in
the exponent of )2 (V) in the product &KV we can
write j? (?) conveniently as a polynomial in —A)" times

()b - NP )
N / - /o 2
/ 47rr‘ 9.?_ .S:O ‘f’ﬂr .
A
By operating on equatioa 58 with é§:;§-~, we obtain the
recursion relation
S X s=f

//p ~

Cpes =5 p F c, (59)
by equating equal powers of 7.

By inspection of a few special cases, we concluded that



57
the following was probably the correct expression for (i;fz

s 3 /? L5
(7; = S5, T 1 (60)

f=o Zi(s-7)/

Equation 60 can be proved by induection, but since the
proof is slightly tedious, it is relegated to the Appendixes
(Appendix 2).

(e

Now that we have ¥ (v/, we can £ind the contributions
of higher order than /5;3, simply by proceading in an
analogous manner, with obvious results.

In order to write the contribution of a given proto-
type j? , we Iintroduce left subscripts, as well as left
superscripts, on :ZL;QK)' 1€ ¢ has » chaine, there
are V left subscripté: and if the contribution is to he
wultiplied by f; #: we affix a left superscript /~ .
 $3 tbecifﬁ left subscript &s /2 , this wmeans that aftex
gumnation the‘xfﬁ chain is repluced by }3(7Z)(7”> It
is appavent that a given set of left subacripta can arise
more than once in the VU :7terms multiplieu by f?fiﬁ’- .
Since we have /9 Ss ;fi/l;i( I 5%;/ multiplied

topether, the coefficients will be the multinowial co-

efficients.

S ' (61)
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Thus the contribution of a given prototype gf to
Lo > is
= . .
) -m -gr FO y L / Y,
£ £ | Loags) =5 < fa}fv(s‘)

SRZY:
o
B (62)
/ 2 4y o
S5 —— gLy -+ -
Szf 77/7 §Tmes) _]
spe= " ’

where the sums are over all sets of left subscripts cone
sistent with =~ /% = &

Now in order to obtain an approximation to a given
4> to any order in A~ , we simply need to sum expression
62 over whatever 7% and I necessary. However, it is very
difficult to determine, a priori, which prototypes must
be considered, and it may be difficult to determine how
many terms of the series in square brackets in equation
57 to take. As a matier of fact, consideration of the form
of expression 57 leads one to conclude that an Infinite
subset of prototypes should be taken immediately to cancel
the expression Jb?ﬁ(/wfi,/ .

However, this can in effect be accouplished more
easily by returning to equationm 41 and deriving a more
useful demsity expansion, as suggested by the work of Meeron
(16) and of Salpeter (17). We gshall use the method of
Salpeter, which is illustrated in Appendix 3, where it is
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extended to the multicomponent case.

We write equation 41 in the form

( gkl oy BHES
" - - = £) ~
L ’”)b/»)> L Io_g = [ ==
At
4:/'
and recall that the integrand of qug contains all

products of { functions corresponding to ALSC and LTSC (1)
diagrams, including those containing articulation points.
(An articulation point is a vertex at which the diagram
may be severed into disconnected parts by breaking all the
lines drawn to that vertex.)

Consider now an ALSC diagram representing a teru in

the integrand of ﬂf;: in equation 63, say the diagram £ 3

In this diagram, vertices é% and Jy are articulation points,
X
and the parts of the diagram attached to the set 4{ =
3 1 t ts will alled
(Z/jjdéj&uh 4Q;Q3-3€,) :? vy at those points will be calle
appendages. The set .4% constitute an '"at least doubly
connected,” ALDC, diagram (unless there is only one chain

connecting /- and 5- ) or an "irreducible diagram”.
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An ALDC diagram contains at least two independent paths
leading between any two vertices.

We call the set of pavticles in the appendage
attached at vertax/}{5 the set ﬁﬁij%s), and this set
may be of any size (or empty) and comnected among 1lis
own members in any concelvable way, but can be attached te
no other member of /é_ except //AZS 2

When the integration in _jfii ig performed, iute-
geation in turn over the coordinates of particles re-
presented by appendage vertices gives factors multiplying
the contribution obtained by integrating over the coordinates
of the set ,{édx. Of course, since £ wmust contain the
vertex set 7. , we can write

gL
¥ e m okl = A 5 L) (5)
=) ool

The LTSC (1) dlagrams are treated in exactly the same

way, except of course for the fact l:hau:_/fé'k contains

——

only /- and {?, and there is no irreducible diagram.

L

The contribution of_g to equation 63 can be written

3y 7
\ a1 ) (e :
Lt VTM V< 1 )d3 O] Jf(m)d?(f‘f““); A9 ) o5y

V ’77 mrcd/ /
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)
The first( ([ /~ ' wust correspond to an ALDC diagram,
unless there are fewer than two paths from é; to 6- s
and the others correspond to ALSC appendages. In the
case of the LTSC (1) diagrams, iastead of the ALDC cone
tribution we have siwmply /f$</f r’ﬁ 01 c¥3f

Since we have till now regarded the par&icles as

distinguishable, we must now multiply expression €5 by

the number of ways to pick the sets .4% (?L) o /{é;é*j
™~ D~ ) J [

from the set 7% ;

N j

k! - fr//a)/
giving A48

(T xd £e Lykf (W'L 43, 0L0) £(s)

14& ALDS ébu)’,MACon [2 X (686)
A on}l A= Lipy) +udy -
*
ko R
7— Z/ -1 peS Q"'?“
If we call V ‘é'/) times the first integral, JZ&%Z&

where ¥ refers to the ALDC diagram, and call the sum

VAR
over all ALDC diagrams, on X , K 4 5 and then sum

expression 66 cver all such Y and over all ALSC diagrams

on each set'fi)g)+ ﬂ@ , e obtain
=

T( CATATV VNN B S e
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By equation A34, summing this over all 5fygzxs) for each

//&; gives

VT -
@2/;5 c T (68)

Sumning expression 68 over all 4@1 gives us a convenlent
density expansion for << > 3
/‘/ ft./

<o((r oe 3> 5‘ cf - & (59)

Now we treat this exactly as we did the term of
equation 43 independent of %§:WFJ§ ; expanding the
functions, defining new diagrams and prototypes. The only
difference is that only diagrams occur in which all
particles lie on direct paths from 4 to :j (irreduc-
ible diagrams). The chaineshrinking theorem of Mayer
applies directly, and we obtain finally after summing over

all diagrams belonging to the same prototype,

A/‘/L-‘//' i
= ( == J 1
Sl S = 2 e (70)
ol V"‘J r})"/ o - T .
27 =S
7z o
Here %ﬂ igs defined as was cizq“, , except that the
()

Lntegrand {8 a sum of products of 4 functions and tgl

functions, corresponding teo irreducible prototype diagrams.
In principle, the problem of obtaining a finite

approximation for <3<Q> i{s now solved, since all the

integrals will comverge for functions o4 of interest.
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However, we still have an infinite number of prototypes,
and there is no systematic way to pick those which must
be included toc obtain an approximation exact to soume order
in the concentration. This is due to the fact that the

iZ_ functions are concentration-dependent, due to the
dependence ofzﬁ ’)on the Debye parameter, d< . Thus, one
can not obtain an approximation to order Cf just by
taking all prototypes up to those for whieh 7 =71 , since
later 27 functions could be proportional to high inverse
powers of concentration, cancelling all or part of the
factors of concentration multiplying them.

This is a general failing of cluster integral theory,
and future work could well be concentrated on seeking a
systematic ordering scheme. Nevertheless, one can in-
vestigate the smaller prototype diagrams individually,
hope that there are no prototypes among the larger omes
that behave much differently, and thus hope to order the
contributions provisionally.
We i1llustrate the process of ordering the contributions

of prototypes by considering the case of oﬁ:J(mmﬁﬁﬁ>Jzﬁ.-&Z),
for which

Ll 1> =<J ) S Gy 1)y ;@@7/:5-) U
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Here the § s are three-dimensional Dirac delta functions
and 3(Lan) {s the radial distribution function ox
two=-body correlation function.

However, as previously stated, the radial distyibution
function in ionic solutions has been studied by diagram
techniques by Salpeter (17) and by Meeron (16), and the
work of Meeron can be used directly to order the pro-
totype contributions for the case of equation 71, and
hence indirectly for general < . Explicit expressions
for contributions reduecing to prototypes in a way different
from simply summing over chains have also been obtained.

We shall review now some of the results of Meeron®
which are applicaole to the case of &= (- fl}(ﬁ’ §7)
This work uses diagrams in which two points arve fixed
while the others are integrated over. In our schene,
these are the vertex O and the vertex v , and are ion-
tegrated over using the delta functions. The diagrams are
otherwise equivalent. A few differences in notation ave
noted. We have followed the notation of Mayer, in which
the chain bonds are called -bonds, and the ghort-range
bonds &£ -bonds. Meerxon calls the chain-bonds [ uonds,
and the short-range bonds L bonds. His = %C#’E)
but otherwise the notation is similar, except for his use
of L)* where we use +0X ., yhere the notation differs,

e present the results in our notation.

% See section 5 of reference (16h).
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It is possible to sum over protoLypes differing only
{n the number of chains jolning pailrs of vertices, and
guch summing over all numbers of chaing (excluding
unity, since that is theg’, bond) gives the " 7/ bond,"

which represents the function
= /’ C‘KO)/'/ aa
%' (_/"Z-/J-) = j‘v ("flﬁ ) T /\ ?- ( ﬁ,j}}j - (72)

where

& T
) = o[ -2 P

Nete that U differs from /~ since the contribution of
the f.-bond, —A 3‘-25-f(°{|f) muet be subtracted off, If we
use ‘/:a ling —e—e—e— to represent a 'q) bond, then

symbolically

T Kﬁ[@ @Jﬁcﬁ___o (73)
L=

(n chains)

Using ﬂ)-bonds, the sum over protoiypes is replaced
by one of the same form, but the prototypes now have any
combination of ’W =bonds and f ~bonds. The 'ij -bonde can
oeccur in chains, whereas the -bonds still cannot.

No contributions to the’radial distribution function

up to order X ? have been found, besides those of the



1)
following diagrams (for compactness, we use a product

representation, as for example TV X I 7 =

= OoE—~ ):
CD’\A—V + oy + Qg V] X

ke /% 'k
[?—r—t;f”’a“\v-tu/al‘vvhmfﬁ"‘v (74)
L e / e ‘% le
+ 207 g 4ad N +c2c/{::q\v

This corresponds to the expression, effectively

factored in the same manner as the diagrammatic expression:

(2) A
g =l [+ 2 e [ley)

r
Crr I
—LZ -:7/_ GG /g s ,(E-"»D T /54 2(’64}}]

S—i:/

/

(73)

In equation 75, C7 is the contribution of the first
three diagrams in the second bracket, for s = A 3 E;;/
is the contribution of the next diagram for <=4 and}
t=/ ; and /ZL L_is the ceontribution for the remaining
two, for s=4¢land e

These functions are given by:

/: ( V\jub-) :j[ﬁs(ﬂ&) E(@g) ALZ 22, f({)&,)fo( ﬁg)j"[ %, - v
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[;,I ()a L) =< /\ZZ" % thjff@(ﬂ';l‘,/) ,fz*(ﬂ ) A‘i(’)(@g) d Bﬂ d %t (77)

f:z z_( ﬁ;) =
BRI A PRI PR 1% Al
s tJZ— Jile 1%/7 T f (Kl f Ll K, (/,:_(78)

The second term in the integral of equation 76 can be

evaluated by the convolution theorem to obtain

2 - Kﬁ;l,‘
—">\2;%25 = %—'TK (76&)

but the first term must be done numerically. Equations
77 and 78 can be evaluated analytically; at least for
certain specific forms of 10%, We now have the radial
distribution function to order J(q', and hence by using
the same diagrams, any other twoebody function to a
similar approxzimation.

The Debye-Huckel radial distribution, equation 8,
is obtained by ignoring the [7{s in equation 75, and then
linearizing the expression for FT with respect to the

charges 2. and 2) .
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D. DISCUSSION

Although we have treated explicitly only the case
of functions depending on the coordinates of two particles,
the extension to other cases, such as functions depending
on momenta or on other ccordinates, symmetrically or un-
gymmetrically, is straight forward, and will not be
presented. In the case of a two-body function depending
on coordinates and momenta, the result of equation 70
is a function of the two momenta. Since the momenta are
separable at equilibrium multiplication of this result
by the two one-particle momentum distribution functions
followed by integration gives the final result.

This study is subject to the limitations of cluster
treatments in general. First, we assumed that the
potentiale involved are sums of two=-body potentials.

This is not strictly true, although it would be expected
to hold to a much better approximation for an ionized

gas than for an lonic solution. Friedman (23, 24) has
attempted to avoid thie limitation, and bhas formally in-
cluded 3-body, 4-body, and higher potentials. However,
his work is not of current interest, since no simple model
is available for these potentials. Our work could easily
be extended in the Friedman sense, if a model for the
higher potentials becomes avallable.

Another limitation is the use of a dielectric constant
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to represent the §olvent. Since the solvent is not a
continuous fluid, but is very inhomogeneous on a
molecular scale, this approximation 1s probably consider-
ably in error for close lon-ion approaches. However,
for sufficiently dilute solutions, such approaches
are rare, and do not justify a more complicated model.

Probably a more serioug shortcowing is the faect that
it is impossible, 48 yet, to make certain the ordericg
of the contributions of the prototypes without investi-
gating each one of the infinite number explicitly (16?).
This occurs because series such as equation 70 are not
well-ordered Taylor expansions to begin with, since the
coefficients, which themselves depend on the expansion
variables, are evaluated to all orders. It may be
possible to remedy this situation, perhaps through a very
sophisticated use of topclogy, and future worlk in this
area might be fruitful,

A related shoricoming, is that large classes of
diagrams having cross-links between chains are ignored,
or at least relegated to belong to more complicated protos
types than can be examined. For example, consider the two

diagrams

()
(79)
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and (GZ)
’:’<§ g E <> (80)

Diagram 1 belongs to the prototype

e | (e

which is easily included, and in the scheme of Meeron is

A

even included in the aimplest'y)-bend prototype

¥ (82)

whereas diagram < , which bhas only two more jz-bcmds,

belongs to the proiotype

n\@ (83)

which is not likely to be investigated at all, 1t might
be that this is as it should be, but there is no proof
that such is the case, nor is there an apparent way at
present to analyze the problem.

However, in spite of such limitations, the rise of
cluster techniquas in the past decade involving selective
resummations constitutes a conslderable advance, since
previously no way was available to obtain finite approxi-
mations.

The value of this study sbould be discussed. The
development based on ALSC and LTSC diagrame leading to

equation 62 is an original coatribution, the exact worth
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of which is yet unclear. The developuent leading to
equation 70 1s essentlally equivalent to a previous
development of the radlal distribution function (16),
but is useful in showing the exact relation between this
work and that of Mazo and Zemach (3), which formed the
starting pociat of this study.

1t may be in the future that applications will arise
for which the irreducible diagrawm development would be
inapplicable or awlkward, necessitating the use of the
development leading to equation 62. An example of such a
possibility might be a mwethod of using reducible classical
cluster diagrams to order contributions for a quantum
mechanical treatwment.

In addition, the extension of Mazo and Zemach's
work to the muiticomponent case is of interest in itself,
a8 may be the various summations of convolutions leading

to equations 53, 54, 55, and 58 through 60.
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APPENDIX 1
PROOF OF MAYER'S 'CHAIN-SHRINZING' THEOREM (35)

Consider an integral, [J}r , with an integrand cone
sisting of a sum of products yoi' f functions corresponding
to diagrams on the set of vertices ,f s including a
factox (,f/_/)_/ in the definition, and consider a series,
of which this integral, multiplied by C = is a term.

e need the following lemma, which is actually a‘
falrly simple convolution (16b), but which was originally
proved by Montroll and Mayer (2£) in a complicated fashion
using bilinear expansions in a unit cube:

If
([ otz q(m) . X
7 (@)Ugf;’( 2)¢(5) 9 (c-.,n)(yf%)d%---fa o an

where f(r) ig a radially symmetric function of r , aund

1€ (Z(t) 1is the Fourier transform of;(r] N

o0

G (L) = 4w/ ¢/ smlr pidy 42
> (£) of A= , (42)
then the transform, Qﬂ(;f)? ek ?,,(F] , is given by
A (4 o~ A ;
Qo) = [Gw)] s
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and 1if

G == > (’ixz)n )
fﬁ = = .fﬂ/
then the transform, (Q(é) , of f 6”) is given by
, /
W) = -
2iC K>+ [G@]

In our case,

I
2 = = YT,

; —/
G@® = (=2t #2)

and
— oV a4
SE T

&

JZ (r/

in the limit of o(-> © , which limit we now take.

(a4)

(45)

(a8)

(A7)

(A8)

Consider now the contribution of a particular diagram,

{7 , representing one term in the integrand of 5£ 5

after exparsion of the 7[ functions. This diagram can now

bave any number of solid lines (including zero) and
either one or no broken line, joining any two vertices.
If there are no vertices in the diagram which are
connected Ly being in chains ofﬂ -bonds, the diagram is
called a prototype. Each diagram, f(‘ » 'belongs' to a
prototype, 5’ , obtained by replacing all i -bonds
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chains U lines. In general, there will be a number,
Y, of;-'bond chains in # , and we shall call
the vertices in the chaine the set 72 . Ve call further
the set in chain nimber << the set -2¢_ . The vertices
not in chainz will be called the set ->%.
The integral of the single term corresponding to the

diagram § is B ;
a- 7) T 2 LS
» : -A%, 1
(__ /\> [;{I T J{;(I JZ(A ) ] ..(I)? (49)

where Im(g) is the integral corresponding to the prototype
.‘5, except that f n, replaces the ™ bond. The number of
chain ends attached to vertices of species S 1is 3)5 .
Note that

o
5 Y = 29

s
=1
/7

Expression 9 must be wultiplied by C < , by (1:2,/);/,
and by the total number of terms leading to 1dent1éal con=
tributions when we sum over 7 . This last combinatorial
coefficient is equal to the cominatorial coefficient of
the prototype, /42,3(;), multlplied by:

1) The number of ways of selecting the sets?l v, ... W,
from { - —m+7 , which is:

)]

/< / > [
7S T

<=/

(G X
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and 2) The number of ways of ordering the particles in

the chains, which is:

S
1 n_ !
=)
where
-
=
lnpc — (_{.J qu r

Collecting the above factors gives

Vs .
(f[e? e e m I1[eizie™ 1 7, o

TlvuJ

This now needs to be surmed over all possible chain cowmposi-
tions and lengths to zlve the summed contributions of all
diagrams belonging to the prolotype s .

First we sum over all possible compositions of the
chains for a certain set of chaip leng-;,hs,d:ﬂf) W, - = JH e
That is, we sum over all 7, . guch that = 7. =1 -

S=
This affects only the part in curly brackets, which be-

comes

—)} 77-&5

s o a i 2

1T 5 07 [EA2s)

<=t 5= T / |
Nas Nl Mas L (all)
(_-d;_- < ﬂ&’:‘ -

( 20N )
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However, by the wultinomial theorem, this is exactly
RY o~ n
- / - 2 \ e ?),_ M:,(
T{ Q—A ar ‘2?5 C5 /} = -1 [ G l)\/2> (A12)
S=| °<:l :

< = 2

where K is the Debye inverse shielding length.

Expression AlJ now becomes
v J 5/ m 2y S o /
2" |c (* -
GV [ 7 ]“ (ZT &) J iﬁff—) Lons) g

Since the integrand of :[:m (5’) has ?F n, in it for the
bonds < =12 --- -y, suming over all 7 from © to 2O
gives from expression Al3 and Mayer's lemma:
vy B ™ '
(/’/\> [;”:rzj jj = f\-"ﬂf-”lm(w (A4
., - s
y
Here I m(z) is the integral corresponding to the proto-
type ¢ with f( ) replacing all chains in the inte~
grand.

But expression Al4 has exactly the form of the con-
tribution of the prototype to the original series Zj BZ g"“/
except for the fact that bonds have been replaced by

-bonds, so we have reduced the contributions of all
diagrams to a sum of the original form, but involving only
prototype diagrams baving f; ~bonds instead of =bonds.

In such prototypes we choose to use "wiggly" lines for the
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51 -bonds, retaining brolken lines for the Az ~bondg,
following Salpeter (17).

APPENDIX 2
PROOF OF EQUATION 60

We want to show that equation 60 is the correct
expression for the coefficlents in equation 58.

We assume that equation 60 holds for all values of
/b < 71, and substitute into the right band side of

equation 58; obtalning:
S ne E=S S—1 n +/
2-1) L)t

S
Cay, = s, : + 2 (A15)
&=/

ELls-t)]  ao, EL(s- )]

< < -S St -5+ /
g Sl . (2
_— ¢ (=1) = f&;_(s—t)(gle)
£ CtI(s-t)] S zics-t)
s—/ n+/ s-T nt/ o
>tV 5T 0
f=y LIls-TI! sl o!
S Crt1) - (TS
— K - . )
= R R
=i ¢ ILsTl) .
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Thus equation 60 is established for the case S<p.
The case S = )2 remains, since we are umable to use the
recursion relation, because Cj;fﬂ is not defined. FHow=
ever, inspection of equation 37 shows that CT;f must
always equal unity, so we need only show that equation 60

gives unity for S = p .
F+i r

We assume (frr:/ and show C,., = C,. . From
equation &0, we hLave
Y+ F+’ =~ e TV
C., Z t ) > (218)
t=/ C. (!”—7:4/)1 £=¢ 2l )
Ve r+!/ ==/ = £t
= - /
— Z _t ) _—-f-‘-f _t( )) U”—tﬂ) (5‘19)

~,tyz%ut+ah’ = EH ot el

V! ot
S (D (r+1)
T % ——— ' - (..20)
= 0/ (),‘—‘f_}/)./

oy /F—S,) 5 I ) (421)

2{ (s+/) (—-l) (m/)

Now expression A2l is proportional to

v

= r—5
S (s+)) 0 ! (A22)

s=o 5! lros)] >
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which we show is zerc. Consider the quantity:
: . LS L
,X- (X’ -"/) ) = .j:) }/ﬁ '/ k——,,) _/KV - (15‘23)

We can obtain expression A22 from A23 by the followe

ing recipe:

oy - BASENTAN a T e
X ~) }, "x—/)j _ D ra) sh) x
( Ax LM -

) X = ggré sl (r-s)! X =
(a24)
— > V"“QJ) —%gﬁJ)r_/
s=o s/ (rms)l
which is the same as expression A22.
But if we operate directly on X’(:K'/,)V; Y—) or

fewer times with X C%;%X, , we note impediately that evexy
tera in the result must contain C;:—/) at least to the
first power, causing the result to vanish when X =/ 18
substituted.

Therefore

vy +/ =
C. =) =
Fé v (a23)

and equation 60 is established.
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APPENDIX 3

EXTENSION OF SALPETER'S METHOD (17)
TO THE MULTICOMPONENT CASE

For this appendix, we shall considér only the deriva-
tion of the activity coefficient expression in terms of a

fugacity series.
Equation 26 is

w@} 0} i/‘ﬂ - i M) (@) 4/ (26)

The 1ntegra1‘$uaqls is the configuration integral, but
Salpeter uses a different definition of the configuration
integral, which we adopt for this appendix and extend rO

the multicomponent case:

(A26)
N/
R o o N
\/"/\/ 7 b B i
Equation 26 becomes, for n<< s
= 7
é I 7 o (a27)
o =
1A



81

We now want an expression for

/ z, S
J; A=A (e

—_—

Consider é?,y . Assume the separability of the
potential energy, é/ , in equation A26 into palr forces,
and write éi'ygL/ as a sun of cluster terms, as is
usually done. A general term in thie expansion is vepre-
sented by a diagram with the entire set {k’as wvertices,
and an arbitrary set of lines connecting some or all of
them in one or more groups. Consider a term with a

diagram consisting of one ALSC part containing particle

Aj and the set gz , pPlus other discounected parts.

Let
- / 3 3 (£)
jz?fﬁifhx)y = L+ ‘7T1((ilyz c[.r' ) (429)
{ !
be the integral over the set <§_+—ﬂ‘ £ the product of

{? functions belonging to the ALSC part. Summing all
terms in fg}z'with the particular ALSC part and all other
discomnected parts wust zlve

Lpns
- (,[+{/7 ) pl-fe - (A30)

This we multiply by the number of ways to select the set .f?

from the set A/-/

(A1) ]
Ao SR (a31)
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The cluster integral, é;q , is defined as usual,

by = 7

. 3 éfr/)
b ({+/p,, {/ 2, Tl \/ 2 Tipy, 492

7 ([H)MZ { s

where 2577 means a sum over all ALSC diagrams on the set

X? + L .

The total contribution to 257 from all diagrams in
which /- occurs in a cluster with a set ¢ is then

(-1 )!
A Z,A(«(—/;

VI (ML o

/£+’)/€

-

Using equation A27 and summing over all sets d( s wWe

find

3
\\:
o\

This is the desired result. Extensions of other

expressions of Salpeter are similar.
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GLOSSARY OF SYMBOLS

575@%;) Parametric function in generating fumctionals

A

. Distance of closest approach of lons of type .
“ and J-

/4 Helmholtz free energy

Am(:) Combinatorial coefficient

bn Mayer's reducible cluster integral
Zy(b‘t) Parametric function similar to le{ﬁ?;)

B Mayer's irreducible cluster integral
C; Concentration of component ( in particles/unit
volume

C}(@;.) Parametric function similar to C?;(jig)
S

S
Cp Coefficient of (- AY¥) in F
D Dielectric constant
S Magnitude of the electron charge

Mayer's cluster expansion fumction

{'Gk) Distribution function of -/ particles in phase

space
h
@ Reduced distribution function depending on 72
coordinates and ¢ momenta
”
f%?L~) Reduced distribution function depending on 71

coordinates and - momenta
T Function in equation 72
o

Q%}HJ) Two-body correlation fumection or radial
; /M distribution function

99 (17,»/}‘) Punction in equation 44

Cﬁ(z) : Fourier transform of ;79'(t)



84

Gu Generating fumctional for (/ functions
Z Generating funectional for W funetions
H _ System hamlltonian

I‘z Cluster integral (see aquation 42)

Y, . 1 7T 50 ,
e (n) Contribution Lo £ from diagram {/

DI‘J 7ero order contribution of protetype <  to
"_'_‘,’[5) a 2 62
quation ol

P9 A
E ﬂ]Im(g) F th order contribution of prototype to
equation 62

_-Z-w;(S) Integral in equation A9
T3 Integral in equation Al4

Y U Cluster integral in equation €9

i ¢ :
. le '(;) Contribution to o i from diagram §

-

OZ::QJ Prototype cluster integral in equation 70
& Polizmann's constant

4. (V) Function in equation 4%

£* The set L = (’C;‘(z,‘ ) {r.> plus particles e
avd /;

ﬁ—x The set in the frotptype part of a diagram
in "chain=shrinking’ proof

n The set in the chains of a diagram

s Total number of particles in set 7L

M Set of particles in chain =X

4/ Set of all charged particles

4 Momentum of particle ¢

75 Polynomial in ¢ Per)

s (F‘J"Jf ) General chain-éeplucing function

,Qn [ v) Function in Appendix 1 (see equation A1)
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Fourier transform of £ . (r)

Partition function

Coordinates of particle <

The scalar separation of particles /.

Sun in Mayer expression for fugacity

Temperature

General cluster integral

Special cluster integral (see equation 41)

Cluster functions

GCeneral cluster functions

Volume of system

General separable function integrals

Short=-range repulsive potentlal

and é'

Distribution function in Mazo=Zemach formalisw

General separable function

Potential of wmean force

Charge number of ion of type

Pugacity of cowmponent

.Configuration integral in Appendix 3

(& T)

Acéivity coefficient of
Function in equation 75
Function in equation 75
Function in equation 75

Kronecker delta

component ¢ (= 7 v

(see equation 76)
(see equation 77)

(see equation 78)

c

"/

/C‘.

)
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a’(’”) Divac delta function

K Debye inverse length (see equation 8)
A = 4wme? /peT
X% Number of chains in a diagram

ﬁfv L/V) Potential function

’u‘){r) Function represented by Meeron's ' ¥ =bond"
J
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I1I. APPRCXIMATIONS TQO TIME-UEPENDENT
ENSEMBLE AVERAGES

. INTRODUCTION

1. Explsnation of the Problen

In equilibrium statisticsl thermodynauics, one 1s
generally interested in ensemble averages of varlous
functions which are not explicltly dependent on the
time, and which have time-independent enseable averages,
Tne arguments of these functions are the coordinates
and moments of particles in the system, measured at
a single tlume,

If we, however, desire the enseable averzze of a
function having as argumnents positions and xzowenta
weasured st two or more different times, we find this
average to depend on the times at wiich the coordlnates
and moments sre to te measured, even in an equillibriun
enseable,

For exauple, consider the ensemble average
<§(ﬁ>)o<(to+s>> = j{(ﬂ)&ﬂ@,)ﬂﬁfgg)d(ﬁf)dﬂadﬁ 1y

(2 and 2. are arbitrary functions of coordinates

and momenta and do not depend explicitly on time, We

writeﬂ(&) for(géﬂfa],ﬂta]) and o((to+s) for o(('{f{ﬁ,ﬂ))lf(f:ﬂf.)) "

where the time arguments cof the coordinates and monenta

where
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indicate the times at which they are to be measured,
and ﬂf’and ﬂcjrepresent the coordinates and momenta of
all particles in the system. We will usually employ
the shorthand notation,

K= RE) | - FR)
R- RO | v- O

where ¢ = To+S , In equationl, @('zﬁ,@-z‘a)
is the distribution function of the entire systeam.
Since the classical systems in our ensemble are

governed by deterministic equations of motlion,
R=K(C,As) ;: = F(RF£s) . (2)

The ensemble average in equation 1 is a function of
S (as well as being a functional of 4dﬂf pﬂarui ol ),
even in an equilibrium ensemble.

In the case that (> and o{ are the same functional

form, expression 1 is called an autocorrelation function,
or loosely, a time-correlation function, and may be of
considerable interest. If the functions are complex,
the complex conjugate of o 1is used in equation 1.
Such functions are of interest in the Kirkwood theory of
Brownian motion (1), and in the theory of nuclear spin
relaxation (2).

Time-correlation functions and other functions of the

type of equation 1 can be defined for equilibrium and for



91
non-equilibrium systems, if we assume these to be re-
presentable by a Gibbsian ensemble (3). In this case,
\FGM) depends explicitly on C .

In addition to studying ensemble averages of the
form of equation 1, non-equilibrium statistical mechanics
concerns itself directly with the related study of the
time evolution of .FT@U and its reduced distribution
functions, + () , which are also explicitly time-
dependent.

In this study, we shall consider first the evolution
of ion distribution functions in a non-equilibrium electro-
lytic solution, and shall then consider time-dependent
ensemble averages in ionic solutions and gases of charged

particles,

2. Survey of the Literafure

There 1s a considerable body of literature concern-
ing the evolution of distribution functions in non-
equilibrium ensembles, and this survey will not atteapt
to be exhaustive, or even completely representative.
In addition to this survey, some references will be
introduced in the development to follow.

In 1946, Kirkwood (1) began a long serles of papers
on irreversible statistical mechanics by deriving a
differential equation governing the evolution of a one-
particle distribution fumction under assumptions appearing

reasonable for a heavy particle immersed in a fluid of
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lighter particles, but perhaps also giving a reasonable
approximation for other cases. Thls equation is of the
form of the Fokker-Planck equation in phase space (4).
Kirkwood's derivation was later refined by Ross (5),
and Helfand (6) studied the friction constant in the
equation under a linear trajectory approximation.
Brittin (7) has extended the originmal Kirkwood formalism
to apply specifically to a fully ionized gas.

Rice and his collaborators (8) have begun an in-
vestigation of moderately demse fluids, beginning where
the original Kirkwood articles ended (9), with rigid
spheres, After considering rigld spheres, they worked
with rigld spheres having weak attractive potentials,
and essentially combined the hard-sphere and Brownian
motion treatments.

There are many other treatments of the time evolution
of distribution functions, including the elegant methods
of Prigogine (10a) which are not understood by the present
author. Weinstock (10b) has published an expansion of
the Green's function solution of Liouville's equation
for a system of hard spheres, giving the time evolution
of the distribution function, and Andrews (11) has also
treated this evolution in dense fluids,

Further survey of work on fluids in general will not
be attempted, but some relevant references from work

on plasmas and electron gases will be cited. No



0
LW}

references were {ound te work on the evolullon of dige
tpibution Turncilons ivn icomic sclutions, but there are
many articles which deal with plasmas. Theapson's
review of plasza dynasies covers up Lo zbout the end
19%2 (12), and may be consulied for references,

Since then, many articles have Leen written. One-cf
the most widely-quoted iz that of Foctoker and Rosenblutn
(13). They treat a rlasma iv which cne particle 1is
singled out as 2 test particle, apd Dy expandinz the
hierarchy of equuiions obtained by integratlon of the
Liocuville equations, obtain ar equatlon governing the
time avolutiorn of reduced distiribution functiouns,.

™ere are extentlovns and relinements of the work
of Rostoker and Rosenbluth (1%4) snd there are several
other treatments, for exauple references (15) to (17).
In nosi treatments, ovly the coulomu part of the potenticl
ig retaived, and close approaches are usually reglecied.

Zorn and Kaluzn (1%a, 19bL, 1%¢) have also studled
the interaction of 2 test particle with =2 rlasza, usiig
an spproach based on iLhe Fokker-Planck egqualion approaca
of Nasiorowicz, 'euman, and iiddell (12d4), wiich is
naged on the orisinal approach of Kirkwood 4 50

Vou Hoos has solved the Vlasov equatlon (20a), using
a diacras techrligue wnica e develored for the solutlon of
tie Liouville ecuation (20b), and which 1ls of more wanaral

tntepest. Any cother articles of interest to us will be



94

aenticned in the development to follow,

It does not anpear that there arc many arvticles
in the literature especially concerned wlih classical
time correlatlon functlons. filowever, Oppenielin and
Bloom (2) apply them to nuclear spln relaxation and
dorive somne approximate expressions for tine~displaced
reduced distributlon functions, which can be used to
obtain such averagzes. Vineyard (21) alsoc presents soue
forazl results with such 3istribution functliors., Tayler
(22) nas obtained the time correlaticn function of the
alectric field in a plasma, to 2 zeroth approzximation,
and has used it to express the dyramlcal frictlion on a

test particle.
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B. APPROACHES TO THE TIME EVOLUTION PROBLEM

In any dynamical system, the behavior in time of any
function, ¥ , of coordinates and momenta of particles

in the system is given by

g‘,—/g=§f*[/’/)§pj3 (3)
wherec¥¢ﬂa% is the time derivative of the arbitrary
function ? taken along the natural trajectory in the
6-N-dimensional phase space, <;¢b49f’ is the partial
derivative of the functional form with all the generallized
coordinates, ;2; , and all the generalized momenta, /%' ’
fixed, and

H _
Z:H,CP] = Z gffc)p ;;;;) (&)

is the Poisson bracket of / (the Hamiltonian of the
complete system) and 90

Liouville's theorem (23) states that if ¢ s
the phase space density fumction, 4?@0’ then expression

3 vanishes, so that

w) @yyassts )
..j_‘.;__— = —[M)]é- J = ¢ L'J[ . (5)
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The second equality defines the hermitian Liouville
operator, £- . Equation 5 is the starting point of
most time-dependent problems in statistlical mechanics,
but it is also possible to try to work with the equations
of motion of the individual particles. This 1s what
Pines and Bohm (24) did in thelr collective coordinate
treatument of 2 classical plasma, represented by a one-
component charged gas neutralized by a uniform background.
Their success suggests a trial of collectlive coordinates
for ionic solutions, in an attempt to avold treating the
solvent as a molecular fluid.

If we begin by taking an electrically neutral,
multi-component gas of particles interacting only through
Coulomb force, we can go through the Pines-Bohm random-
phase approximation procedure, and obtain the result
that collective oscillations occur. Presumably, all
of their work with dispersion relations, etc., could
be so extended.

Next, we can try representing the solvent as a
structureless fluid with a dielectric constant, through
which the ions move, experiencing a viscous drag. In
this system, we might hope to find suitable collective
coordinates that will show damped oscillations. Attempts
were made to find such coordinates, but the presence of
the friction terms made the problem intractable.

Even if this had been successful, we would have
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beer left with an unphysical ssyaptotic picture of
motionless iors. & stochustic teram could aave been
sd3ed, but althouzh there are uwechanlisas to excite
collective oecillations in nlusuus, to 2s8sume such in an
ionic solution would be unwirpranted, since the bombard.
ment of individu:l lons in =2 solution by solute moclecules
is certalinly not collective, o1* even collectively
stoch.stic,

iIf we ab:ndon attespts Lo work with ceollective
coordinites, there is still :nother possibLlility tc try
before we wive up tryinz to lenore the wolecular nature
of the solvent. It is known (23) that non-cconservative
systets cun be treated with Lasrungl.n wethods 1f the
dissipz2tive forces ire proportional to tine velocity of
the rnaurticles on whichi they act, If we assume this for
our iomns in thelr solvent, we c:in derive a modified
Liouville equation for the distribution function of tihe
ions.

1f we use theAflssination function ot "ayleigh,

2 7

? = :2[— L_Z:;é;( Vg +Vey * V;) . (6)

where Aé; is the friction const:int of partlicle ¢ »

gnen that the {rictionil force 1s

== L
ind the V's re velocity couponents, then Ligranze's



equ.tions becoxe (25):

Ugire ecuatior 7 instend of the ordinary Lagrimue's
esu-tions in Jeriving Liouvlille's theore.: ives, for

caritesinn cocorlivztes:

AT ! "T’b/ﬂz a‘ﬂii

where ( = i I

1 ein be shown that denslty functlomns sctislying
equ=Llon ~et:in thelr normsallz.tion for all tilze,

if we write © S

~ P

L Eﬁg, -+ 14/41 = ©

but

) ( o~y
It

/

then Zq 18 not aerultlian,.

Thig 1s not 1 serlious Jrowe-

wack unlessz we were to Lry ele~ .nt technlicuers such ud

Twnicorine's or

for L

; s
L 4n
5 2 b S

ews', wnlen require real eivenvalues

‘orve serious is the fact tnat we could wiot

)
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stochastic teras in the Lagranrian equutions, silnce
these sre neither deriviblae fron o potential ner propor-
tional to a3 velocity, resultfing ag:in in the unphyslczl
notionless state 28 = pE0 |,

we conclule tnat there is notilng to be gulned Oy
irnorine the wmoleculsr nature of the solvent, ond turn
ou; attention to the entire syetes of particles.

The dynarical behavior of the system 1z governed by
Liouville's equ:tion, ecuation 5, which lescribes the

~twe evolution of the vhase density, or dlstributlon
funotion, for all A/ particles. Tnls equation 1s valld
wheblier the enscexnble reprresents ur equlllibriun or 2 non-
equillibrium systeas,

Reginnins with eguxtion 5 srd integratlnz over the
coorlinates srd sonenta of 11 of the particles except
ore, it is possible to obtaln .n equallon of the Fokker-
Tlunck type in the phuse space of ore particle (1, 35).

The result of icss is (5):

i o =1} ") = =) -
_93_{ B P (FNR g S0 T o

-m

where the frictlon constunt, 5, s is defined:

3 am/ / £ E(R+G+1E) ﬂ“@ IgP) (D)
KC{PL/EJSC(’S’
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and where the otner sysbols .re the s:le s those of
reference (1):

— —_ K
FXo WES s 2N+ ET

e
+ kK (12)

L «e
iore <fﬁj> s thne eguilibriua ensenble ne m force ou
pirticle 1 with the position .nd nowentuz of this purticle

fizel. ne cuantid N is 5 correctlon tern »nresumed
| 4

s1:11 and net further eviluated., %lso

W

gt = (B frndidn o

QI Mg

where o
O
exh (~BW, M = B &
?fu N _@{Q}‘%/g' ~f 5(7(*%«)>0/5 (14)
y;

=

(z)
ere M41 is the egulilibriu:z potentl:l of meun force
between nartlclaes 1 nd 4?, and 7:, is a tiue larg
enouzn to .llow the interral to :ttiin . "pluleau vzlue”
whaleh “irkwood .ssumes to exist. Ilote tnut the eguatlon
smyolves bthe tise-snoothel distributlon functlon

(1) T

F et ER AL A
= ST+ d ” 5

(hpt) =~ n,p;tes) ds (15)
This Lite-smoobsing appears necesswiy te lvtroluce
irreversibillity inte the dynzrics of the systex, Fovernedld
by the tine-syuzietrical Llouville equnticn.

1y contrist to scue of the resulis of ecouillibriua
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statisgtical qechanics, there is nolthnling in Che lerivatlon

of eguxtien 10 .t reculres che noltentiuzls involveld Lo

4

nave o finite venze, nnd celfard Nas usel eguiaitlon 11
to c.lculate = frictica censtunt for & plusaa (&)

owever, the devivavlonz of Lothh ioss sand Kirkwoed ire

or

S 2n BN o ey 3 SR oA e s 5 3
sufficiently clouied by .peroxliuations that 1t 1s Jif-

fecult to tell whelhere ecuailion 11, waich correeponds
to the zero-orier teru of -n :utocorrelztion funoctlon
(the effectsy of ir:ersclecular forces ire nexlectel),

is : nroper .pproxim tior to the Irictlon constant.

{irkwool's orizinal expression for 3(18:

T
- / !/, = =3 & B
37 2T < ff(ﬁé)ffézsfii> G[f (1%)
T D
whien uses tne entire utocorrelsation funclilonm of waich

anustion 11 uses only the zero-crider terd. In iLie cise
ef donulpive rotentlals (suel: as Lard spheres), for
a¥ mple, tie linesr irajectory wpprozlastlon asy tell
very lititle =2bout =2ctusl pirticle trajectorles, .nd it
would seew aore sensible o use ecuntlion 16 ratier than
oruatlion 11. Jowever, in tie cace of izpulsive polen=-
tials, the entire derivation l1s rct vallid, ind the
Fokrer-Plancy eguatlon approac: decones guestionable.
Jige and Allnatt (2h, {c¢) treat systems asving
nardecors repulsive potenblals and solt attractive poteve
tialzs. Thelr methied eszentially senzrates tiue elfects of

P

the two pacte of che potentlal, he nard-core puart ol
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the potential gives rise to a “celllsion” integral of
the sacze type as that of Gice et al. (9), whnlle the
soft part of the potential gives rise to Fokker-Planck

terxs silmilar to those in equation 10. The resalt is

PFC -7 3 v 3af? (17
where
D]C B é;w_r E-V (')V B ) )
| = 5¢ o T A Ve F £ , (18)
and

272 GSTEAN" A4 ]

S
Here ¢ 18 the macroscoplc looal velccity of the fluild.
Thne friction coefficlent,.f y i8 the same se in equation
11, except that only the soft part of the potentlal 1=

inciuded, The "collision®” 1ntegrals,e37 and JZ are given

b —() e 1y
o :j?)(r,,r)ff[wc( U, - £) F U mapit)
B f(t)(r:,ﬂ)t)f(;)(ﬂ)PL)t)_Z‘__’K}tHéJed/z (20)

3{2)6’1?)[([{(0 O-AF; )k Vr{((r pb;t)
o 7 ot Ypst) B blbdedy, ;120

where (— is the hard-Core diameter,/;& is the reduced mass,
—_n

p 1is the lmpsct parazeter, C 1s an azlwmuthal angle, A

18 a unit vector along the line of centers at 1luwpact, and

fﬁz ig the relative zomentum.
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Rice and Allnatt have also solved eguation 17 by
s Chapman-Enskog ;rocadure, =md obtzined a result re-
quiring only _§ fﬂd.(? Cﬁﬁ for it3 evaluatloun.® A
gimilar solution for egustlon 11 was derived Ly Levowitz,
Frisech, and Helfand (29).

Ag ip thne case of Kirkwood's Feokker-Planck equation,
tnere 1s netolne in the derivation of equatlon 17 requir-
ine the forcas te ve of shori range, So thatl tne provlea
of tha time eveolution of one-body distributiorn functions
in an ismic solutior is as well in hand as that of
ordinary fluilds if the frictilen constant § can be eval-
tated. Of course, we have the addltional coapllcatlen
in cowputiryr S' that more than oue kind of potential
oceurs, 28 the solvent-solvent and sclvent lon inter-
seblons are of short range while tiie lon-icn interactlions

ave of lony ranve, It would, at flrst glance, appsar
tnat we were faced in this Fokker-Planck equation approach
with a task akin to ralsing ourselves by our bootstraps.
We ebiuin informaticn about the distribution function
throush an autocorrelation functlou, but for this we
rocuire the distribution functlion liowever, in a

spearized theory such as the Fokker-Planck gpproach of
Kirkwoed, the zero-order or equilibriur distrivutlon

functioy weuld seen to suffice for the evaluation of tne

*» Sge ecuatlon 22' of refereunce A0«
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force =utocorrelation, and thus in a second-order theory
the first-crder distribution should sulflce for whale
over averaxes aust Le taken, and so forth.
wa now turn cur attention to means of ocblalning
approxizations to autocorrelatlion functions and similar

time-dependent ensenLle nean values,
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C. TIME-DEPENDENT ENSEMYSLE AVEBATES

1. Theory

we shall consider the calculation cf enseuble
averazes such as thatl of euuatlen 1. Ve use again the
notationzgi7p)for the cocrdinates and acnenta of all
A/ particles; ¥ /2 for the coordinates and womenta of
1  particless and Q:FD for tne coordinates and momenta
of /-n particles. We also use r=Tst5 » but will later
sometines set fo =&

Since the classical systems in our ensecble are

rovermed by deterministlc equatiouns of motion,

- Re) = R (K H, s) (22)

= FE = (KR 7, s) (23)

3

In addition, of course, Yﬂ? sand Tf— are functionals of

tne functional form of the equatione of motlon,
Fgu=tion 3 becoumes, using the definition of ZJ

(equation 5 )3
5/0'4 - — L o

gince CL949Z7 = O by assumption, A formal sclution

of ecuation 24 is:
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x[vﬁf/) :2«/{45[} ouf/?ﬂj %) . (25)

We can now write equation 1@
/CV) --L‘.S[J
AR =R B30 R UR,R)ALAR (269

The ensemble average 1s now expllcltly a funotion of S ,
and we note that the integrand of the right nand silde of
equation 26 is explicitly s function of “"zeroed" vari-
ables only.

The theory of the exponential Liouville cperator,
JL%%{?CSZJ;> » has been the subject of considerable
research.® However, the work of Prigogine and others in
his school is very ebstract, involving sophisticated
mathenatical and disgram teciiniques, znd seeus to be of =z
nature not well suited to use in eguation 26. All
previous work with the exponential Liocuville operator
geens Lo be directed towards the time evelution of dise-
tribution functions directly, through the Liouville

eguation, equatlon 5, wailch nas the solution:

F%ge) = 00,5 ¢) =

1@, at) - eplDF Rt o

? See, for example, references 1, 10, and 11,
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If we were interested only in the time evolution
of the distribution function, it would probably Le wise
to work directly with egustion 28, but there are tlme-
correlation functions, such as the one-particle wouentum
time-correlatior function, that are of interest in their
own right, so we bexin with eguatlon 25,

It 1s interesting to note that knowledge of the tiue-
dependent distribution functlion at time 7 15 not enough
to calculate a time~correlation function if we do not
use the exponential Liouville operator. Distribution
functione involving two times are necessary, such as
those of Vineyard (21). 4n altermative foramalisam can
be developed using such functions (see proposition III),

¥o now return to an approximgtion scheae using the

exponentisl Licuville operator. By the use of iHamllton's

& in
equations and F = & , we obtaln
v = N
- —— ' J 5% 29
J=! ’MJ' J J
s
where ff :"E% Ljéki) is the force on particle L/ -

and ﬁWG i its mass., At this point, we restrict our-
selves to cases in which the kinetlc energy 1s auch
greater than the potentlal energy, so that the second
ters under the sum 1n eguatlon 29 has auch lesz effect
ther the first in deterninins itrajectories of particleas

over ashort nericds of tine, Unfortunately, this case
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18 not likely to apply to ionlec asolutlons, 80 we defer

treatnent of these until later,

Ye write .
L. = 4 # L (30)
where
v F
/b — N Z H;""V
= o 5 (31)
and
N _~ Y7
- = F
L = “J—Z;; J 4 . (32)
Thus,
_.;,S/_.. —LS([—‘Q'I-L-' )

_(Z(é/ta)ze = e (33)

This exponential expression can be written usling
Feynaan's operator calculus (28), in which tlue becomes

an operator ordering parameter:
ez
) = aap FifiiE0A myf L@)a/é (30
' s

Tne argunents of the cperators do not show any explicilt

time dependence, but are sizply 1abels interpreted such

that ”
INCOINED,
means : e !
[L oFf t <t
and

tr

S -



109
We expand the second exponential factor, recenbering
that the presence of the order parauneters takes care of .
all commutation difficulties. (If L7 ana Lf were
cormuting operators, the problea would be much sinpler,)

Equation 34 becoumes

EYSRIS 0% [ T

The first, or zero-order, term on the right-hand side of
equation 35 is the only owne that would occur if there
were no forces between the particles, and use of it alone

reaulte in the linear trajectory spproximation (¢), in

b)) = plts)

FE) = i)+ S L (36)
; =

wiiich

Ve now proceed to disentanzle the operators ir
equation 35, writing each term SO that the operators act
from right to left in the usual nanner.

The first-crder teru becounes

¢ |
Ut~ (LUt ))AERNE 5 o

where we write

f(
Q) = np§c e = 2ip )L
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The seccond-=order tera is

/2% £)= Mfg”j [ )o{z‘jf‘ "f/L &)L e dé] (39

tsCo
Vhen this is disentdngled, we wust have two terus, corres-
ponding to the twe poesibililtles, fy< Zz_ and fl S Tﬁ

Ye introduce 8 step function, S 3

S(x) -5 {5 X2 (40)

> L ©
y A
Equatior 32 now bec“ @8

Ot - £ <) ,L/L €l 7[[(L kL, f(fz-t)o/é,a/g
MF[ / 44] f /g’f OGN AT

Thie exmression can be disentangled to yleld the

followingr:

)

AWets)= -1 [ (Vb)) (6)0 T 8) bt e

& ¢

. () '
;zjff Vet 6) S Tt 6T S (L)t 442

Since thnere is no reason to require a particular order
of integration, ti® two terss ln eguatiom 42 differ only

in a peranutation of integration variables, znd so are

identical.
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We write
£
(7) "o { 2 ¢ L/
£ (f,fo):—//ﬂ(fét}i/Uﬁ%,l‘z)i@)Q%;,f-)s«/éo/é, (43)
£3 e

where we change the limits of integratlon instead of
uzing the step function.

As we continue with the nighere-order terus in
equation 35, the same patiern occcurs. In the nth order
terua, PT! terms occur, differing only in vermutatlons

of integration variables, gliving
t t/ CZ“”
() ; (°) ¢ ¢ o
(017, ) <t el 2 et ) 4 LT
to &o

te

veinstock (10b) has presented, without derivation,
an expression for the Sreon's function for the Liouville
equation which is equlvalent to eguatlon 44, llowever,
equation 44 was derived independently, ard it appears
worthwhile to include thils sluple derivation. 7The
application of Weinstock 18 to systeus of hard epheres,
end ie thus wore or less unrclated to the present spplicate
ions.

Equation 44 can be glven &n interpretation similar
to tnat of Feynman's work 1n gquantun electrodynanics and
to dlagranm techmiqués in irreversible statistical
mechanicss _fzfq%&)éz> describes the propagation of

the system fron tine é‘ to tiae fg as though no
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forces acted. In eguation &4, the right-hand side is
interpreted as froe propagation from f; to f;L .
action of the potential at f}, free propagzation
froa fﬁ to fn,,, etc., The integratione vary the
times of each free progation from O to t-%. » keep-
ing their suu equal to t-t. .

Equation 2% unow becomes
. ! é% (n)
AR F) =L (bt ) (% R) =S (0 BL)«m®). s

Equation 26 becomnes

L B> = :%i f e fJﬁ(@ﬂ%)Q(Zi‘,éa)d(ﬁ#;yfdﬁ

- £ (46)
— 2—< ﬂ(ﬂ)o«(f)> o
n <=

In oprder to use only a few terms of equation 46, we
nave restricted cur discusslon to systeus in which the
potential energy is much smaller than the kinetlc energy
(with the zero of potential energy taken wiin all particles
tnfinitely separated). Ilowever, 1f we can devise a way
to include large numbers, or peraaps infinite subsetls,
of terms in ecuatlon 46, 1t can be applled to any systea,
ag ro approximatlone have been uced in its derivation.
Of course, the impliclt assuaption of convergence has
been mnde. Further investigatilon would be necessary to
justify thils, but we can obtalr convergence by avolding

racions of phsse space 1in which L. has singularities or
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otner troubles arise, Ilapulsive potentlals zight need

special attentlon,.

Tha work 01 e reced reeiiy 111 now e lie
g Che ealoul:tlon ol 8088 vro¥yia o Lo ensensle P43 Lo
08 .
., Fokier-? melir Frictlon Coalflclient
Pipa. we consider, ivacesd of Lo Folizer=Planc

Prietior coefiicient of esuntlor 11 or of eruwaticn 1o,

6

i, - “@‘/ <?(d)f?(f)>a’f. (it 7)

Talfond (8) czlealstesw S’ ysin. Lie linesr vrajeciory

zero=-crder Levs

ﬂﬁ

(®)
fw - ~*-J F(O)FLH>

Y'e Jow Clotla g Tirsc=goler covragnior to

N
pris
e

Y2 v L, |

& pign 8%, whic

f \F[o?) @0 alf

_fdt[cjﬁaﬁf;‘{/f fo)F/ﬁ)/OJéQ"(%HF@?) 79 [fo)F@) (49)
o Bt f:@g) )

% ke Y Lot {58 T 3M OGO e £ o
o

<) e Lo 3 b it 1
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In equation 49,

) — — 5 z
Q2 G)E@®) = F(R+48 ) b
RLare —f/'m aeans §¥ Fx + g‘[,/y‘“" + é’_i_‘pf?- “+ -

- m, -, g
e e/\ A Z
r Swx fux + wy tvr  + €z Foz the valocity vector
L] Uy Ty

—_—

U~ in 3N-dimensiounal spz=ce). Inserting eguation 50

into equation 49 ~ives:

T = W oy )
[<FoFw>dt- [A[d A€ £ (% £0)

(51)
(o . =
Ut)HR)TER A E )
Since the 1?2 occur only with the jﬁzg ’ we can write
instesd of TJ%Z the operator tV‘C%Z /4% s LY which
we mesn
==\ Yo
g’jjjgh (Vklxégx ﬁ_‘fn7;? - F /?J2 +
(o ‘fto Z?/b
(52)
[ /& o & ) 5
y i (S £ E Bk = _2 ~
71,0 % O, 'U"ay,,, )
Fquatilon 51 becores
R T ).
[<EORBSAE (A€ [dt, [l el R 050 x
o o
($3)

F/Un)f—(/fﬁft) -\f(pfttﬂy/:—(*fﬂf?f)f
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—
Ve wmrite F= hVﬁU , 2nd now consider the casge of

v
Helfand, in whicn F )(ﬁfg) O) can be replzced by the

ecuilibrium distrivution functien,

Q;/ MFCL 17 /<) .e/yf(—/ga@g)) -
[0 G [N,

go an integrsticn by parts glives

/(.—- = (‘) B ( Tt P
£<Ef°)ﬁ[l‘)>dt= Q’;F‘E{a’é]fa/fdﬁ? Pk P

Y ow

%

' v‘“g Ve tign WG E0V) T ¥ U f( 54)
A
= Gl firage e A,

x 3 vy0-wvd + VU-V7 U } ' (55)

Ye assume U@) = % 2 (Y{/) and use the Fourler

tpanafoim of 70

—

. kT
/2{(/},’-}) e 4/3 ’L(,C/Z/)e jCJ;/é _ (56)

ey

Enoh differentiatior 18 equivalent to zultiplication by

—_—
;[//Q or + J//Q , 8o equstion 55 Lecomess
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fC/f<F(o)F/)O) -_! Z;fjé (LR s -sU
{’ZQ»L [ [ AR

?a[/‘é/ dé; KUH& ({tt]\/ (_tt]l/—t &L ftz,)fx

an)® (2n )3

QW’?}KZE—L ([t SR ek (.- Z'V,)Ex

3
(:hr) (2m) & 2

v o

db b O 5 o fgf k([T [115)- (61T,

(;21:) (;T!} d=3 =3

143-
Li-diy B4R
o f ik Ty ik 03 1, b (B k)
J/{( y Rt [ fea ks ’ (57)
e nssune U e /é interpratlicons € e dotie
@ e ensenJle ava i, aad of for
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We know that for equilibrium:

/Mf(‘z% )> = 24P ’éu/oU’m) (55)

Coxp ity - 1 [E ) Gm?SE) | e

~

where 69 iz the Pouriar transifora of ?ff—{ and (?9‘

i the radlal distribution function. In order to proceed,
we must make some approximation for the terms iluvolving two
fleld particles (particles other then nuaber 1), If we

nerlect correlaticn betwesen the ield rarticles, then

i) — 969 o

i1f 2 and 3 are field particles. Under this epproximation
ki Ey o LT
=t " —L\ - Y, _— @
SRR R e v"[Gfk <) Gu'(”é‘)

+ (@) {I@ZD@Q A)+( Tr)BG/k(k,) & EZ; )

,(:;Tr)“ O(@T) J@) (60)
<€—Ck,* %-@» ._‘,éz-)/u> = -l’/!‘;_ [GZQ (ﬁl)é:(jz;;/g:)
1 o) oy B ) (VR B ) +Gn) S k) Coyy Chr )
(51)

¢ GrES) Ik
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ote that we oan leave cut iseedliately all cf the terms
proportional to 5{2 )cr* J(jj ) since every integrand
nas the factor /5 /g . Equatic*’ 57=-61 yleld:

ﬁ%@h%ﬁ—~ _ﬁﬁ%ﬁ,&éd&x

an)? (an)?

[g’ G, Chith, )z‘zdé)a &)M@gr [tEk)- z‘,éjJZ

J’L

X '5 /él (k,é +/é /é )
2 LG e

= .= J o > 2 g
i Wé;z;ﬁf-w e 6

xiféjg%v_j (62)

ﬂxmm/{;‘ﬂ is tne reduced mass, )7 7”,"5 --/(’VVL( -f’}’W/;) .
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The tnree double tlze intesrals in equation 62

are of the same fornms

-/c/f/c/c‘ t e "C‘f _ (A a8te) o

wiere the /{1)12;) (.. «ere fuanciions of _4£/ Ly L

gy and 27, , but independent of f and é, .

Corprleting the scwire lves:

¢ 2
7 § 4 B tTAS (At~ Bt
; :ijrcﬁffipc;t:+-éi /i (;%é;ﬁéf At )l

gEl ot ﬁl intesral I:L and let Aact, H% =X
| t (4~ Bu/AL)
(x + &lye A X
Ay

~B /4,
2 o Z 42 z- 2
== :'/_ii rgdt 64"‘ %&.)—e o /’40(’]
<AL L

L i A M

I_(:/O;Cz’fuf(fi'r&t { [ [Ia_,
_e"ZfLB,&/A_, éﬁ([ﬂ[;x%[f_[/‘h— )j %Z[ Zfbl]j}

(£7)

(£5)
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The first two terss cavn Le integrated to zive error

functions, bLDut the last two are likes

b i ZL?‘ E;Z.__fszz'
Ly = [ e Jtdr , (68)

where tip ZE; and T are functious of S« sand /4x R

Equation 58 can te slwplifiled by a partiel integration

o yield
b~ e (F
o e : ( T) (49)
Fe [T 7 e -
! Z/f:(nj FrES Jﬂ%(’“ «rEs L)

Thus tji4‘13 given by

[,9 A//_d—ﬁ“fmg&\

CoctAL— 2B

ff7 7 ,e/'zjé /f‘? )
:ﬁ& ng ~dr r(&‘:zo« jﬁf% )

4/4‘.,1\3 (C:* —- B 4{-{

-+ Cfla~ Eu/nu (/ AﬁAuﬁ£1E%£7?>

ml ,1@ / (70)
st gl
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In the foregoing, /4.< 5 5,( and C:( are given Ly
A= 4
e (
! —_—
ALy

B = &-Chih)

C = (k&)
/3 My
. A /
A A G )
B, = /E (/;Zz_) 7 ,&(71
et 237
(’7_ - @—‘:7"2}’)—& "‘_{_‘é’j + /&«_ ,L_

(»3 o (ng“?L—@é: + //*’r?_

Ry = ? e

%—o( o FO\ - 6‘*2_/ /‘4&

and
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Our 1lst crder correction to thie friction coefficient

i2 now proportionsl to:

T .- W,
Jol kot -~ | db db [5.505).

Clﬂ) C;UUB J E

X éyé%)ﬂazzé)féﬂ%t¢(jéj%2+,¥g4£) ]E

4 25, Cuk)G (4R lh)
bt Fh - RE) T,

N

LS, SN Glhink )+ @', (IR |

ZEZ.J =2
Vs

Jﬁé)&’fé:) /}7% (}:E) L.
o

13

low that the tilue interrals hiave ooen evaluated,

we 1ave procseded as far as we ©av witlhicut chocsing a

rarticular potentinl and subsil tl*i  actual Tunctilons

into equation 72 for ’ﬁé%) (2% Cyé;) o« 1in other

words, equation Y2 is our result for s zeneral potential,
Since the :Zx are Tairly cospllioated, we mske the zame
approximation used vy !elfand in nls zerg-order tern,

that of lettinz T — oo .« If 21l orders were in

& (=
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cluded, this should force 37 to vanisn, but it does not
make.}[q)and _SCL)vanish. so the lower orders Laken
by theumselvees may be geaninzful, snd at least it 1s of

interest to compare

Lo S BrE@S e

T ao

with

T
N
2| Fokes g

200 ) 2

which 1is Helfsnd's linear tra jectory approximation.

In this limit, eguation Y0 beconmes

Lo Tilr)= J"j(CaJAI'—-z&QFﬁQ .
T AT CoBAD R C

and equetion 72, of course, retalus ihe sane form,

Substitutlion of the constanta frow equation 71

inte equation 73 cives

t oy = A ok el v s e

z (7&)
ff}b (k% 24 by ca o J(-e=)) |

where _A& :;/4k{' ] ,éa;; Léz) , emd [ 1is the angle

—
vetween the vectors Zr and _&,

coa i =coaBcoa + 2t M@ngt(%—q)z/)_ (75)
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For L,(;0) we obtaiw:

o [Rhesl Al /&j (_4. YR
Tf)= N /2 MG e
o LAY D Y S LR W T .

( Ik mb'j mgk /a,/ 7”"1:/' W,k

A /7”0
where we define
[ / / J
—— - e o __(_ e )
*%nK_—*‘7ﬂ 7 . (77)
777«/33 /e ':
I%(&z)i& jdentical, except that the index K 1is re-
rlaced everywhere Ly L .
Yow, in order te¢ proceed further, we must substitute
A -
(f; and € for soume spacific pctential and integrate
over 4%, and A%L e« If we cemasider the case of =
coulomb potential without shorterange potentizls and a
systern sufficlently dilute that tne Lebye-Huckel radicl

distribution furctlon can e used,

/

N N . )
- S 2 F e i
Uplk) =  F72EE e o)
wiiere X 18 the Debye-Hiuckel inverse lenztin,
d-
e~
= 24776;9 2 G 2s i (£0)
S=r

Here C: is the conceriration of mnarticles of typs §

in urites of particles per unit voluwe, and Z 1s thelr
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charge.

This case corresponds to & dilute plasma which is
sufficiently hot that all of the iouns are stripped of all
thelr electrons., Other cases can be considered, including
that of systems far enough from equillbrius that the
oequilibrium distribution functions carmot be used.
Subatitution of equations 74, 75, ?E: 78, and 79 into
ecuaiion 72 and integration over ,44, and 4%1_ yield our
first-order correction to the PFokker~-Planck coefficient,
but this integration will not be carried through in
thls thesis,

b, Momentum Autocorrelatlion Function

Ve now apply the perturbation serles of ecusztions
Li-44 to the calculatlon of a one-body momentun auto-
correlation function, <{f§av ﬁ;(f/:> .

First, the zero order tera iz Just the same as the

lirear trajectory approximatlon, so

()ZCO) ﬁ@)}? - (fffo) ﬁ(@) y (81)

wiiich at equilibrius 1s _jﬁ ﬂvLJQTTf e« VWe lock first

e
—

at the simplest case, in whicn we use the equilloriunm
distribution function ard nerlect correlations vetween
field particles.

The first-corder correction 1is:

¢ | |
<ﬁ(0) % t)>(1): / ((‘gf f-0) /Z/fa/é, /'—f (#+ é‘éﬂf) AR AL , (2
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or for palr potentials,

LFOp@OY =
N
= (V&% o)M % % (i Ct)i- Gy el

Using the Fourier transform of 2C , equatlon 23 bee

cones

N fda’dﬂ %) /’%/6/6 X
J"' 0)
ﬂaéﬂ @) e—u‘z r —Je i t)l/, k-E-t) 0 J_a- (84)

At eguilibrium, the momentum separates and we can
average the functions of the separate velocities sepse=

rately. Averaging the real and imaginary parts, we {ind

<£rﬂ§[m v, e—;,/;. (¢-t) 17;} >

~p»/2'éf“$)\//¢
vanishes, as it must, and taat <irﬁi zvnu e ;7

can be shown with soue effort to equal

o ﬁ é)/b M/bg;z/ziw /’L"t)%l} ' (25)

that

‘1sa, as before,

<{_i (t-¢,) k- lé.s> _ ,@4/75)%/3}, (E*Q)%L (86)
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Using these, we find for the first-order correctlion

LD t W —7
<g(o)ﬂ(z)>’:(;)@ o[ 2 (kR ) e x

(88)
K/éf f’ £4?¢£:- Lfl ”?/é 7 éé/)
The time 1rte~ration wuat now be done. We let
a’é At L
= =/ (¢ %Mﬁf(;g%[ )J?
(89)

f&/a‘ ¢ Mfgg)/]% L"ZJZ

where ¢ = (-C, , and we now let lo =0 o

We find

R z

S [M/f LL7 ], e
P e EE B X
<(}7()f[)> (Qﬂf@l/ JL

(91)
s [ L7 ]

Look at the simplest case sgain, wilth the Debye-iluckel
radizl distribution function and the coulomb peotential

witnhout short-ranze repulslon:

(k) = 42T Glh)-4725EF o
e TEh ke -
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Yo now have

LRtfe) = 22re s 3 57 % M Y

TV Jj=z

)
X % /éz D/([ a ;e/ f j

This oan be shown to equal, for aufficiently large N:

“‘{Z f/_%fzé’(//g) 2 C/a[_f_ O] (oh)

=

where ( is the concentration of specles s , and L

(93)

is the integral

an "
0 _ [ otk 2
s --/o/ bR ijQ;“u . (95)

This integral can be evaluated as follows (29): Ve

uge the 1ldentity

R Ry T It
S ;K[ €°/é e o= ) (96)
K% oA
froa which .
o FLG/%/+L>éﬂ ~$U%(
dg = /J’M/a/xe‘ (97)
J—OD )
where 525:: f-2'4%15¢ﬂ5 . Completing the square, one f{inds
=} T
) e N Ay <& (98)
C(S” gL ;/ s A x
L‘)‘K'U as _// )

—op
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which gives after agalu coupleting a square:

D= me® - @%(Aﬁ?@j

2 4

Prou equation 94, we now nave

<4f7(o)f’(f)>(i__ i yngy/), 2:2 .
)([éld( (/ e_f O(/L//ﬁ“«5+e -7 *//7 %/ZLX{@?——”](H}G)

Thig has exactly the benaviour we would expect, vanisihlng
at Z—=>C , as the linear trajectory approxlumation be-
comes valid, becouing negative for all tilmes tF >o 5
and attaining an asyaptotlc value depending on 2,) (5) X

Zg ::n'icl/@*?s for £=0,2,.-.8 |

a-
o <P£o)/76)> - dmate’ i3 2,0, o

* BJC =

Now we turn our attentiou to the second-order correct-
e
fon to <<f%@)}255W>. The entire argument proceeds as
vefore, except that there are itwo time integrations, two
/%i interrations, and alttendant complicatious,

Prou equatio 18 weh and !vé, we have

L B - [ /c/éz/y im0 @) X
L G N (102)
x 8L .@,9)%0}@0{@ g
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This elaplifies to:

oy . é%%7 Co) =
ﬂ(o)fﬂ)>~LQﬂdefﬁ°f 24,000 (LLF Vg X

—~ (103)
X E[ﬂ‘f‘/é,‘tz)%)dtfod’ﬁ

We replace ng ﬁ?(i€;+ Qg_é ) with
(z[ f)vf F/.ff(f -t > as we did in the case of
the Fokker-?lanc coefficient, We alsc assuxze that the

forces can be derived froz pailr potentials, and obtaln

(2) i 2 B < z‘:‘,
por ey = [P (R0 et [ b (66D X

A/
X ;zhc{/V ) zz, . V},17 &Ziqz(?”kﬁﬂﬂﬁp(lo')
L”/ J =1 m=2
L‘-J

where zﬁ?’ == ke, (/6—5;)'ﬁg>QWI and
R = R (£-2) 0~ ot (CE)Efom -

low we express the potentlals as Fourler integrals
as before, and obtain the followling result (since we have
broken up 3N-dimenslional vectors into suus of 3=dlumen-
cional veotors, we include 3=dimensional unlt vectors

X

e for clarity):



13 W v N _)1 ol
Y[Cfé dé].(éi'fz) “[ﬁ /“Zé/l! dﬂ-?/./%/ /L\//é )Z‘L,é.u'
o ) ’J'::. e A o

. 3 R X _""":,
c éje/" /0/%1 /&2 '7/?(_{%3,) e’Lﬁl r’n

LA & (105)
_ZZQH[M/% Fh)e <™ 5
V?:?.J:l’m

n4

a(’?fﬁ//é [/? mﬂ% L//;; E‘f7.

—_

We now mean by this notation that € /ﬁyg is
a vector, not a tensor, but that 1ts three compenenis
1ie in the subspace of particle o . We interchange
the order of the k integratiouns and enscuble averaglng,
aud again restrict ourselves, {or the puipose of tails
calculation, to the case of equillibriua distribution
functions, and in addition vie agaln neglect correlations
between field particles. The enseuble averages involved
are the same as those encountered before in equatlons
z8, %3a, 60, 61, and 35. Using these results and
separating the terus for 41:1/ and /n,#J' y We

obtain:



+ 4nV G (hrt) Ts Li58)

2 SC )G Lk )+ (i AN kYL,

where the :LK are double tlme integrals, and are functlions

them ss integrals over (, = t‘t] , and 3 = t-t,

J~ ﬁﬂd WVI, ° - If e V’JI‘ite

they ares

z

J_L,(f) fcf ﬂ?(’a T) T +l%?> "D" " - B G RETY t309

108 :fo [( (o) Ghtd)e OF T £ -2 L

(108)

(f) j;ﬂf/cﬂ?-€f 71);@,? -—52122 5‘:&;;2F'1-?;

5 (109)
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where the [% =

apnd (— =re as follows:
S
D= "E‘,.. El- /él zé 2.
i ;%2af ) ¥ _‘25;;" ) % = = 5
S Yl o?:’*m
DIl (Brkh), Fr= AT g Ak (B
; s L
e %'i% ‘;2/’/ 7
2
=%

i - r "é 4é2.
. completion of squares and change of variables gilves

Foy == ¢4

no=[F (B~ ) I

(B S )&
e / «
g, [ -, R (2 fe 4 — 7,[] (111)
- Ei* £ 254./_4 -
—_



and for <K =6:

. v 2.
TR = 4] (Lo v L) ot
L% —.‘Z EGSJ"’ 7
s {112)
/' —_—
¢<izh. *-/>Qé
_ 2 )Xz
réf/ Eé
4 [ (Q &
#F -5 >3 ] .
¢
Here - Jug- e i e, >
X /\_2 — e & .._X
L, :LOH “ € ] e Tolx (3
2
(E<+#¢)ﬁ
Ect ¢
€ L 2 (114)
G -
R P e Tdx
ch2 ,/o '
(ﬁ( + M) G
and
. L Er H<G
é Pl/_\j_ - =z
. -G 7 7 /
Y :/C’//Z' = e CK} (115)
SO (//15;4 /7[*) y

and /747& = -, /E



5%

n

ir /V’ and |/ are large, 1t is worthwhile to
rewrite the sums in equation 104 sc that they run
over the chemiczl species present. We now dco S0, nezlecti=
=1

ine the distinctlon between /Q;) AL = , and AL ~2
where /. 1S the number of particles of species o In

the system. Ve let = N A , and write:
O ic%a’*o’%ﬁﬁ v
@ c’< =t (3=t (2n? (am)?

—+

X ALlh) Wk, [(,4%¢,)6 (M{(/g E“> ’E]

M[F"**DQ’ 4 -4 L[ L)eEs]

—*&’iﬁeu@fl g(ﬁ [E’;*;—fj”‘%[g*i’] 0

v

5 E,J {
//é y "} ) /é Q5
( = E E] = f (116)
/
o S RGRANRLE BV A )

L

351 s £ il

@d | @ “'mﬂ
x@;&){—(ﬁs +_£_/) ,ga \)c? oéf
EC E;B/’ J i\ ElY ; >
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where we have separsied off the terq)wlth the delta
function factor and performed tne,néz_ 1ntearatlon.
The primes indicate that in the primed functions .451
hzs been replaced by »Jé? . We will find that the
factor in curly brackets in this term is proportional
to | 4] % in the 11ait L 5@ , cancelling the A

in the numerator and leaving an integral over .45,
r tional ¢ L
proportio ° fﬁl% [u(k)] G,*(//e> ;

When the éZx have been evaluated, equation 116
becomes our result for a menersl potential. As before,
it 18 in the form of an intesrsl over Fourier transfora
varisbles, and we must choose a particular potentlal in
order to proceed further.

we can see that the qualitative benavior of
<<F$@)Fﬁ%i>@) 1s what we would expect. For o ,
<ﬁ(o)ﬁft)>(l) vanishes, 2nd as ¢ —>2 1t spproaches
some function of ﬂ{qﬂm)<n9)’ﬁnnj the form of which is
not yet clesr,

e now consider the time lntegrals.

he evsluation of é?l, is elezentary, at least if

we are willing to accept tabulated functions, but éZ’{

oL
and cQ

3 require that we evaluate tne integral

(Edl/,(
Gl -
)Q& ‘//E? //// Cy@z’C/%j - (117)
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Efforts to evaluate this {for finite ‘f' Were unsuccesse
ful, but it can be evaluated for Z%-—>¢13 » We thus

content ocurselves with sn expression for

L <P @ NG

We use the series representation for the error funct-

jon under the integral of (., letting — £§_+-K/ .
7 e =l oC

JZ‘) J(e f’/ L (+*‘L/_/‘\’y—+ 70/(

L3
(118)
_ s L @ 2l . 5 T
=5, kG [pde- STy,
n =95 ")’li (&7&1 -1')) o
In the 1limit 21&—96'0 , the integral 1s a rﬂ
function, =2nd
o - 1 2Vl‘f'}
o ﬂ _/ - sl = (119)
=D & o< ;G,< v[::_}, ;V? +’/ 2 .

where 2 = o /4f;& :
This sum czn be evaluated by =z wethod of Wheelon
(30). Ve observe that Zﬁb’+'> is the Laplace trans-

form of / = éj/é‘ , and wrile:

a7

o ) E) = —/‘7 (2P -
> ¢ G,( /‘d{'ﬂ 2;06/)6 5 (120)
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where < = -2 0,2 _+,2? . This 1s & geometric

suu, BO

ﬂ_zf/i )

/ (&YQ) ‘__% CJ,/ e [
o= (121)
/ f LB
= _é /o;/(,é /.
926-( o Z_‘I';;;_{_ e_‘x , (122)

i
where L:: = .

Thus,

7 “olr 2 fr
- —f il - z [ (123)
5/"(00) 26 FENE 2G., [?— } :

O
The series in equation 119 1s divergent for Z > I .
Yowever, the right-hand side of equation 122 1s an
analytic function of # for 2ll 2 , so must hold as
the correct value of 6};(50) for all # by analytlc
continuation.
Now that we have C&Lﬁxg). we can obtain sll the

CQ/%al)Hltﬁ some algebra and a few partial integrations.
The result is

0%y = (B &) /

1(nra) [1+ CC__;:;:%L)

_ [7 AR 5724 ( 5"5/5)?@_—&»«'6‘ D:—a’/a‘)](lau)
Ext/Eq /7,
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/
HORE+IE+EE) , (129

Ileo) =

04 s —

Iy = (B RE) T
40 -2 E5) o [~ e

(126)

. (CE? + /2? = E .+ fx /e
(R~ ) SO e )]

Now that the 'CQAfE have been evaluated for the
limit i‘"%iaﬁ , equation 116 furnishes our desired
general expression for \_F’@%’f’éiﬂ:§ ’ .

For our present purposes, it 1s not necessary to carry

cut the _4%? intesrations for a particular potential, nor
i¢ 1t necessary to proceed with further applications of
the perturbatlon series, although there may be soue of

cons iderable 1nterest{
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Tt must be admitted that the research reported in
part III of this thesis enjoyed only a quallfled success.
First, the original intent was to create an spproxlimation
scheme for time-correlatlon functions wnich would be not
only valid, but alsc directly useful, for ionic solut-
ions, which are very dense sysleas.

The perturbation schems here developed is formally
valid for all systems for which the potentials are suas
of palr potentials. Also, the assunption of convergence
18 not a drastlic one, however, in the present simple
form of the scheme, large numbers of terus must perhaps
be taken for systems in which the potentisl energy is
compsrable to or lerger than the kinetic energy, which
1z the case in & condensed system.

©ti11, there is currently considerable interest in
rarefied systems such as plasuas, and the work of this
part of the thesls ls directly useful for these, and
provides a considerable improvement over treatunents
which neglect entlrely intermolecular forces, such as
the work of Taylor on electric field sutcocorrelatliouns
in a plasma (22),.

The work of Zon and Kalman (19a-c), based on the

work of JOmsiorowicz, Neuman, and Riddell (19d) 1is also
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capable of giving correctlions to the zero-order approxi=-
matien of time-dependent ensemble averages., However,
theilr work, although very detalled, does not present
a single, unified perturbatlion scheae,. Rather, it is
a sort of Taylor series expansion around an unperturbed
path, followed by approximation of the expansicn varliable.
Thie can be used for low orders, but becomes progressively
clusneier for higher orders, and furnishes no general
expressions.

The work of Prigogine's school (10) and of Andrews
(11) is beyond the present understsnding of this author,
and furnishes, by its very coumplexity, impetus for such
relatively simple-minded treatments as the preceding
scheme,

The work of this part of the thesis may be considered
as a veginning, and much more work and refinement can
surely be spent with profit on this technigue. For
exanple, if infinilte potentiale, such as herd cores,
ape introduced, the Fourier transform of the potential
diverges, and methods must be sought to overcome thils
(10b). Means of covercoming other divergences whilch can
arise must also be souzht. For example, the zero-order
Pokker-Flanck coefficlent, which was calculated by
HYelfand, diverzes for a couleab potentisl, and the in-
finite part ie presunably cancelled rigorously by hlgher-

order terms, and a means of rexoving these dlvergences
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by partial summatlons analogous to those of part II of
this thesis would seeam to be = very worthwhlle research
objective, Helfand removed the divergence by introduc-
ing 8 finite upper 1limit in a Fourier transforas integration,
but this cuteff, although commonly used in plasma treat-
ments, 1s arbitrary, snd rigorous treatment avolding this
would of course be a conslderable achlevement,

The applications of the perturbation scheme to a
Fokker=Planck coefficient snd to a momentum autocorrelat-
jon function sre illustrative of many other spplications
which could be made. In particular, it would be of
interest tc attempt treatment of a systen having hard=-
core plus coulomb potentials.

The formal simplicity of our perturbation expanslon
would make it seem very worthwhile to sesk extencions

and further sppllcations.
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PROPOSITION I

It is proposed that the results of section I of
this thesis be applied to a three-level maser, contradicting
published work of Barker (L) and Seovil and Schulz~DuBois (2).
Equation 39 of part 1 of this thesils gives the entropy
production for a system undergoing photochemical reactions

under conditions of local equilibxiuwm. It is:

z

¢ = 71 f A, alf,,gffc — = =) (1)

where §£ is the entropy production, the\?s are pro-
gress variables io molecules per unit volume, /%é. is the
negative of the free energy change perx molecule of the
reaction (the affinity), —Z; is the thermal temperature,

_ jD i the density, & is the rate per unit mass of
energy absorption from the radiation, and /. is the
radiation temperature.

We idealize a three-level maser as N identical
particles, independent of each other, but interacting
with the radiation field, and each able to occupy any one
of three energy levels.

As does Barker, we will consider the systens in each

state to be a separate 'chemical species,” By (i=1, 2, 3),
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and transitions between levels to be "'chemical reactions.”

We consider six reactlons

BL:'_L. 8, ; /J, = L~ A4 & el § = caé{ﬂ, =—dl, 1, 5 (1)

83 :;i Bz 5 Az:/aﬂd/ulj df/ - 6{2‘42: '-a-/z_ﬂj)' {(11)

55 (111)

Bs = B,; Ay = M5 45 A3 =dyn, =~dyn

B, == B+43 Ay =it s a/j cyn :vafl,rcj)' (1)

By <=3 +4 2,5 Ay =lt,- 4 C’/f =-cfpnyy M

53 - B, +Jngl5 ié -’-/f/;//z]- 3/56 :_6/‘%2 :_5443 _ (VD)

Here /if is Planck's constant the V'’s are frequencies, and
the//{é,are chemical potentials.

Je assume now that the part of the radiation field
important for maser operation can be adequately represented
by two radiation temperatures (not necessarily differeat),
one for a marrow band of frequencies around )21 and
another for a narrow band around 7%, . In other parts
of the spectrun, and perhaps in directions other than in
certain small solid angles, the radiation temperature may

be near /, . Equation 1 now becomes
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(2)

Iu the operation of our system as a maserxr, an external
source provides radiation at Cemperature 71;_ in the
narrow band around °J, , causing reactiom IV to proceed
to the left. A weak signal is introduced, causing re-
action VI to proceed to the right by stimulated emission,
giving a coherently amplified signal. The other reactions
procead in some manner.

We will now neglect spontaneous emission, as well
as any emission or absorption outside of the small solid
angles in which the pump and signal radiation is con-
centrated. Thus 3"5, ~ & , and F.Q, and g‘; are
due only to stimulated emission and absorption.

A simple calculation shows that
&

,ffij /4&_3;5 = O (3)

.

A=
for a steady state, which is the case Barker treats.

. However, he assumes that the only source of entropy
production is from reactions I, II, and 1III, which is

shown by equation 3 to be incorrect.



After writi;g
o e @)

for the entropy production, Barker expresses the £
in terms of transition probabilities and affinities,
after assuming Ay kT ; A<< kT | since
he is treating the steady state, he minimizes ¢§ with
respect to /4/ , at constant /43 (constant pump in-
tensity). Although he is able to obtain a population
expression which resembles one obtained from rate
equations, his result can not be correct, gince he does
not use the correct entropy production.

Several attempts were made at obtaining a population
expression by miniwizing the correct entropy production
expression, with the constraint /4; = constant. Since
the exact expression led to a complicated transcendental
equation, various approximations were attempted, but no
reagonable result was obtained. The probable cause for
this is that the theorem requiring minimum entropy pro-
duction for a steady state requires linear dependence
of fluxes on forces for its derivation, and a maser
cértainly does not operate in the linear range if there
is one. There may not be a linear range since it is not
apparent how to express the term fXEC%;'i—Y;ﬂ{> in
the form LXE .

We can obtain a useful piece of information from

equation 2, using equation 3; the second law, <# =0 3
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and our assumption, S = O , We find

Dty (=T ) =

, [ (5)
) ) -
))1 3 ?G /Pz, T Tr‘ )
23 v
I1f we define the maser efficiency,
?7 . 23 El
M = - - 7 (6)
—3/73 -§-5‘ )
we find from equatiom 3,
_ _
e >
= — - (7)
7M . v
s I

.3

which is a ratio of Carnot limiting efficiencies. This
differs from a result of Scovil and Schulz-DuBois, which
is /

< Rl =

(h ke ‘ (8)

The numerical difference will generally be small, but it
is apparent that their result would correspond to an

infinite '7; in the output signal, which is in principle

unattainable.
REFERENCES
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PROPOSITION IX

A derivation of a many-particle Fokker-Planeci
equation for the ioms in an founlc solution is proposed.
Kirkwood gives (1), without proof, a wany=-particle
equation of this form, which is slightly different fxom
the one we shall obtain.

Beginning with the departicle Licuville equation,
we iutegrate over the coordinates and momenta of all
solvent molecules, and apply Green's theorem. The
reduced distribuiion functiions are those of part I1

(see eguation II 4) but are now timee-dependent. e

obtain
’ ) n s o (4 >
DL = . oy = ") )
F AR R S
t = ’7?‘]/ 4 A=y
LES
y &)
::r}- -:“ '/N—_h \//V) —
:"—// V,’/"/ "'r F 1( 9/7)0//\,/
g-.-\ ﬁ | Jf
g = L=n+r /

We have assumed pairwise additivity of foxces, and
call fié the force om particle ¥/' due to particle L.
The set 7 is the set of ioms, and 42453} is the sclvent,
and we use Y: P and Ki ]i' for their respective
coordinates and mowmenta. WJe shall use 7%3 and A for
the set 4/ .

At this point, we introduce time-smoothing. This is

the artifice that introduces irrveversibility into the
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reversible Liouville equation., The time-smoothed dis=-

tribution function 1lg defiluned:

T
= @
FCp = [ F Greds ‘2’

After time-smoothing, equation 1 becomes

~(2) 4 ~(n) “C_ (
M r 5,50 Vg L2 ( =252, ) )
= J L= J7 A=nxt
L)

where

M = '_—[f(ff(éﬁ)% ) PAR As . (4)

We shall use the wmethod of Ross (2). His phase space

transformation function is defined by:

g |- eis g0 % e dn O

Equations 9 through 17 in Ross' article are directly

A)
applicable. Using our equation 5 to express 4<’ (¥+J) 5
and Ross equatlon 17, we find

L E(R, {24:/4&_}2(?5)'\7&7‘
o a2

(6)
« 17 ’J(,;, e Y~ Pino) Tf/ (& 2,004 Fol €. dpol s AR s.
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where we now use ¥ and K for the set ﬁ!‘jl“‘47 ’

Using Ross' equations 22 through 24, we have

A *)

We shall discard all terms of higher order in A_\,a > .
those linear in ATD @ , etc., as we proceed. Ross
discusses these approximations in his paper.

Now we rewrite 7C (4 ’ defining the correlation
function, §D.«(ﬂ) and JC(E’/A"/) , the conditional

dis tri.bution function.
- (V) () i
-7£ ( (’ﬁl tf@ t+5) s 7( (ﬂ} K;)' t'f-él) )({ /A'/)(’Of) ﬂ/ ¢+ )

(3)

() n
= C]D (F Fe3) 77 7( (N hﬂ f( /A'/()[/f) ﬂr//.')' tts )

We shall require this written for the set /1 +/{ instead
of for v .
) ()
Jith Rose, we assume that the —F s acted om by the
(n+1)
Vﬂk. and the ipﬁ +¢  can be replaced by the

equilibrium functions. Thus

(1)
w( (1 Fe) = /3 F., {U/ ) .

and equation 7 becomes

N+E =
{/ )/(/ {_) [’_ §AF (S) gﬂo]f/)@/zﬁ ff.S\ (10)
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'
We now obtain the following euxpression for —QJ(I 3

(5 e - N T
2l ‘%LJ j.ffj((.;.,q)g[_;__ZAﬁ-(ﬁ')-Vﬁ-]Trcg(';-m.)c((ﬁfl”n))R
c=( m=( )

[ @‘Aﬁ‘ () Px jf{/ﬂﬁﬁ)@ifﬂ)dﬁdﬁdﬁdfzdpc//?C/S

‘*(/ (11)

& =3
—J%Lf.fﬁ(%&)[ ;:AF(SJ \'7,:// 3’2 AKG) Pk. _])(

(a+1) el
¢ (i‘fb -t /(ﬁf t3 gy, dCARs

Only the terws for < in the set 7 will survive

in the < sum. Note that in equation 11, 70;,“5 )
n+1)

has been approximated by the gquilibrim function, O?mi =

Mt (n -n)
,@x/mf /3 Wn +1} . W is a potential of
mean force, defined as in part II of the thesis.

de drop terms of L/‘(’( [AFQJ.T) ,anc¢ from equation

3 we obtain

..(" f_l — _ ¢ ;r] e _(1) ~
J=I w ", 4 l:/]g? 4

4

" N T .
=25 2, E—% -fF/P,&)Jf  tes)dsdgdgdrag

JL*

)
+ % f[f‘r—;(?p ’)Z F(ﬂn f) V{ Fr‘ tﬁ)p/y@‘];t"’)"lf Qdﬂ(dbd} (12

/f]f:(ro'}/z,f:(ﬂﬂﬁ\ 2 ,({Ffffj))C( /W((g hs)d&drdﬂd&"dsa{j

)
<o ">'

Ts ) n+&/w)
( (jfjg (r .Go VT({)‘“S 07\ Pl-fm(ﬁqf)ﬁ)-tﬁ){( ; ﬁt"’yﬁdr c{r%lﬂclsa/s

volo~ ”MI
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Making the standard assumptions concerning Plateau
values in the time correlation fumction's integrals,
we find after again time-smoothing:
—~ (1 ; .
C_)‘F (—'J ) < (ﬂ)

- -~ n G
35 £ v Ve LY =

- ) ¢ o F) ) ~ ()
SO E 0L Lgr®)

Here we use the same vector notacion in phase space as

(13)

Kirkwood, and equation 13 is the same as his result

(reference (1), equation 60) except for the definitions
of some quantities in it. We define

N

= % v, 0 ' 0y > N

Fe =<XR)+2, I L(')'fi‘ ﬂ(f},gg)-fﬂ}:&ﬂ/ﬁﬂ‘f’: T w
=N+ ™y T

where FT%A

. ie a correction term to absorb all the

~

approximations made, and is hopefully small,

T
(‘p _”l: 4 L) = o - “ =
8= 2 £ e Pl g5 dbog-gw W f O
and -
W e e B S B N
z :% Zfé:[ (5 @) ds (16)
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= N
where E = 52
o L=+ s £

We use the notation of Kirkwood. A left superscript
on an ensemble average indicates particles not averaged
over, and a right super zero means an equilibrium average.
Note that equations 15 and 16 differ from Kirkwoods
definitions. Kirkwood's $,” bhas no W® in i,
and bis jéﬁ) has only .=, terms in it and has ﬁf
for the second ﬁ? . In addition, of course, we have
ﬁf (R +5 1!; /) ingtead of M,;(-L'SL) }’_—:(f5 , as does
Ross in his cne~body equation.

Up to this point, our results apply, within the
approximations made, to any system. Our particular
application in which 7t is the set of ions in a solucion,
18 no different from the case of uncharged species only,
gince all of coordinates of the particles interacting
with long range forces have been leit unintegrated.

Note that at this point;, we can, if we wish, Lnsert

the well=known approximation fot'ﬁ<fﬁi:;’ given by

’”vr ;}5_‘ 2‘-%.679{,1%.)) .
Beginning with equation 13, we can now proceed to

integrate over the coordinates and momenta of part of

the ions, say all but the set 72t , whexre - << i1 o

Either by a considerable amount of manipulation or by

recognizing that the derivation of equation 13 is formally

acceptable for lomg=range forces, we obtaln an equation

identical with equation 13 except that 7¢ is replaced by 7.
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However, when we write equation 13 for the set ™,
we must use the proper cluster expansions for the ensemble
averages in En,*) Sx(n) , and §én) , since these
quantities are sums of formally divergent terms, as
discussed in part II of this thesis. ’a2<}§i>; poses
no problem not treate§ in part 11, nor do the potentials
of mean force in ,éuj. However, the time correlation
functions, although evaluated to a linear trajectory
approximation in the Ross theory, involve all particles,

and must be treated in a differxrent way.
REFERENCES
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PRCPOSITICY I11

An alternative perturbation scheme for tilme-
correlation functions, based on a method of von dooaz (1),
is proposed.

A formal solution of Liouville's aquation nas been
published (1). However, this result, which is & serles
of scatterinz-type operastors operating on a distributlion
function, cannot be anplled directly to calculations of
time-correlzation functions®*, so we derive a result that
can be,

Von Roos uses a phase space transformation functlon
similar to that of Ross (2). The only difference ls that
the C3("%%215t—¥&3,2€zﬂ{) of von Boos 1s the retarded
Areen's function for the Liouville equation, while the
ﬁf@u (ﬁz‘fﬁ‘t }'ﬁzu’@f;d,;) of Ross satisfies the
Liouville equation, Thus, for times later than the 1ni-
tisl tize, the two functions are essentially identlecal.

We define & time-displaced distrlbution function,(?ﬁu%

W) ) / V)
7 e 810K el et ) FR e L)
, (1)
LN
Since ﬁxj'ie the probability density that the system

2 )
vhace point be at 6%/49 =zt time Z’xr it was xknown toc be at
ﬂZ;ﬁi at time fo. 2?(%/) is the Joint probabllity

# See p. 107 of this thesis.
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that the palr of polnte be observed to be the location
of the phase point at the pair of tlmes, We could also
) k(/\/)
use G instead of , arbitrarily introduclng
agymmetry in time at this polnt, but otherwise changing

nothln{’;.
Fquation 1 can be integrated over the coordinates

of //-2 particles at each time, giving

(3 @/ ; ()
j)fr;ﬁf/ﬁ)ﬁ)fo):k (mt/f’o,ﬂ,fa)f{m,/gjfo% (2)

(2)
where K"“4g tne reduced function of Bice and Allnatt (3).
We can go through an analysis of the von doos type

for ?(H) , but we work directly with <ﬁ(@ﬂ)a((r;}a)>

ag follows:
5 ~(¥)

< o)) :J,Q(fo,%)d(m)@“#‘\ V8 U A LA RA Y )

where we use the Cgca)of von HooS.

In the case /Q - J(Vo*n/)o((l/o”l/o/)
X = o[(f—l",) J(v-v’)

<(’3(£o),;<(l‘)> — /j(n) (ﬁlvjf-’) yo:\/oj(t) 2 ({)

. n)
go the mnalysis of 18 included ae a special case of

the analyeis of 4ﬂ(ta)={@>. of course, any <ﬂfé)a<(t)>

can be obtained with 57 ) s Since



159

< (@(éo)o( &) :/((G(r., Vo) X (1 u)ij)évjt)rqv,,, L‘JJ(‘JU@{,@O{VO (5

(¥)

Yow we can use the expansion of C;? glven by von

Roos (his # & and // ) directly, except that we notilce

that his Liouville eguation should have F -\ =F=W
— i
instead of Ff;vb’ on the right-hand side. Ve correct

this zinor error in the following, using

= e . o
Ezag; - Ji?.ga 0 F;' Yc& -+ - + 0y 'Q7Vy
“rnL ,mf — /—m; - ——

T oMMy
The geroth order term isd

(0 -
< ple) ) %[{9(6,%)4(@ ) { W) [R-R-T (22) [

(6)
w S(e-t) V08V t) AR VAR, AU

/
= ‘ (ﬂ?@,\)o/)d()jl/) C((V”Uo) J[V—K.‘-Vo(t“zo)] S—(_tdz") /\‘\

o - (7)
X F( (Vo ts) £ Ly, RUlet) vt el el Uelrdv, -

Now change integration varisbles to rﬁ)vgjrjxc R?—V{E‘tm% Vc

The Jacobian for this transformation 1s a triangular
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determinant with unit diagonal elements, so 1s Uunity.

Now:

CBbule)y =) 4GS S -2 1 SCE6) X
X 7C(n)/ -{)QZPO/VO[’/»J{/D a/[/c/[)? V)] (8)
- f Bl Vot £l ts)drndve

which is of course the rectilinear approximation.

Now we look at the nth term:

<(5‘(a)o</t)> =) //g [c/{ /c/g /g[rvu(ry) %

X d AL @/’zfcﬂv dv;--—-dvUa X
¥ § [T et) SV )W Erl)] X

(2)

x ERw(e-£)1.v (0rv) E[RVE) V(]

Tyl - - E(Rar(et)-5 L& L)L)

Vo SO0 £V D

Here tha‘fﬂi ._-.,;ﬂZL and Uf integrations have been

verformed.
Integration over Zﬁ7 replaces 'ﬁ?z by

ﬂ?’?f/éé)—s‘v‘/f -£) - Usldl)
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Fv

in and e by

)~ £ G ) (6t

in ﬁ . We replace V.U;O((U;—V;) by —V-U-; J(T/T,- UZ) .

etc., and then integration over Uz gives:

¢
{E)e)S =~ [l - - f clt, ﬁ/fo/%@; ol Un X
to T

X Llnv) E[(?—U’/t—t)J .V, S V=2 - = -
(10)

x FLEVE2)- 506 AT

e

; /Vﬁ_((p[r—v(é—&‘,)—é:\ﬁ -t )wnléwthe ] X
W ~ e Ul
X FRVE) £ 26,4 U AT TR

We rewrite the expression in the marmmer of von
Roos, using operators that operate only on the first
or second argument of @ or of jC &) instead of on
the . variables., Now V’U‘ is replaced by
V (L ts) V.t Vop - (s Z‘a)\fnz wnere these operate only
as followss The first term operates on the second
argunent of 6 , the second on the first argument of
(’3 , the third on the second argusent of 7;3(/\1) and

N
the last on the first argument of {() .
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Further integrations over the Qf variables give
the final reeult, %

(o) = €) ja/t a/f [ /C/m/w(w) ¥

O

-j?géjiéiiiﬁzzizgi;EZLZ' ?;a} é:kgfvlt/[&~dgv:]/k

= M

x FYevEe) ey 2

(11)

where z: V (‘LL to)VWV (ﬁ‘ t)v 2(@ é{&)Vfg .

B=d+i

In ;Q( , the first four operators operate only

as before, and each 762 in the sum operates on the
argunent of the i ?Bﬁﬂf{é—t,)] , only if [ =/3 .
Thie 1s like the work of von Roos except for the presence
of the @ , 80 we can use dlagraus like hils and re-
interpret the line to the exterlor vertex to represent
the first four terms of our El\ . Equation 11 will be
represented by ’77f disgrauns.,

The integration over 7x and VU~ aust still be

done in equation 11. This is inconvenient in the form

shown, 80 we seek another way of writing 1it, to avold
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the gradlents operating on the dlstributlon function,
Consider one term of equation 11, say the omne

represented by the dlsgram
s 4
| 2
~ ST (12)

with ,1? C;?5;71) lines to the external vertex. We

leave the terus of operators operating on /3 unchanged

and look at the clfy teras couposed of products of

V,JIS and V@'S operating on )C(M).- Say there

are b ‘U',U.Is end A-b vk's in the product of £ vh,
Now we change from‘ﬁﬂZ"U° varlables to“ﬂ?:—yj where

212 '= 0>-U (E-ts) . The Jacoblian is unity, and since

the EZQ'S are siluply a way of writln%'part of the

Yor 's , they are replaced by i%?/ 3 .

T™e term we are considering now becomes:
£ Loy

(=) /o/f e, /o/e ﬂﬂaﬁfa([rwﬂé 6] 2LX

X 17“/{ Pl -t)] P }Wf:{@ﬁ.’m@}_—gj_p UYX
R o« P T
(13)

LR e £
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/

where we use ||  to include the vertices from which an
/1
internal line begins ( n=-{ of these), (I to include
/7,

the b Upy’S and T " to include A-b [;2,

Now we apply Creen's theorem b times to the U

s
integration and {-b times to the U< integration and

obtain (assuming the surface integral vanilshes):

é é’ nJ

TG fo)/df o () g
¢ § Lt ] @ o] T (FLE et By v

. /FE%V@ L)1) f VARV (14

o

where [/ is hﬂ”€<fT] g . The divergences operate
on the entire factor to their right, which 1s a cartesian
tensor with _{ free indices (of the lth rank). The
(Vh)dk notation 1s interpreted so that by (K7:)Z

we mean V WV . , etc.

™his 18 now an ensemble average of a functlon of only

one set of coordinates and momenta.
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PROPOSITION IV

An approxizate solution for the teaperature
distribution in a reaction vessel lmmersed 1ln a
constant-temperature bath is proposed.

It 48 known (1) that temperature gradients in re-
action vessels can be appreciable for cases in which no
mixing occurs. In cases for which convection 1s negli-
gible, the teaperature distribution very nearly obeys
the equation (2):

| 7 - K g2T + ®H
It e P : (1)

Here [ 1s the teoperature, K 1s the coefficient of
thermal conductivity, 7 18 the gepecific reaction rate,

/4 18 the heat of reaction, _jD is the density, and

C is the heat capaclty.

Bengon (1) has published a solutlon for eqguation 1

hased on the assumption that T, H, JF , C, and K
are constants. Wilson (2) has published a steady-state

solution (setting /7 =© ) for the case in which
= o) [+ ENT
R e Aenp - E/RT) LI+ B L
-~ =
=42 (1+ET o2 ] ,

W :
where E is the Arrhenius activation energy, /4 is &

constant, = /- /= , /(o is the wall teuperature,
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and F? is the gas constant
We consider the case of a spherical reaction vessel

Equation 1 becomes

of radius Vo .
It f’c‘ rodp : (3)

Benson's work corresponds to @ solution of equation 3
‘We atteapt an approxiamate

with zﬂZ replaced by -ﬂ?%
solution using equation 2 for 7K

Benson's solution is:

. ﬁ?#h [,_ 12
r;L ng =« i .
(4)

Ye let M LT = 90 , and equation 3 becomee, using

equation 23
z
Jp - K 2 P - a?#mf#f o
T sl fe et - )
We assume, with Benson, that the reaction is

sufficlently slow that ZQL does not vary appreclably

with time or position in the cell.
€ince the QU are a complete set of functlous, at

least for functions having the right symmetry and obey=-
ing the right boundsry conditlons, we atteapt & solution



in the form

cp :@_H@L[ r~):j+ 5 4,(¢) ,n] )

Py (6)

e write

OF _ 9) s &Hn*S LY
St Tt oKk ax 9 > (7)

7
where K @ ”}t-)b is the derivative with respect to
tine if 17“ were a constant,

Putting equation 7 into equation 5, we find

d@ W /7/)”& 3 =
‘/df) ’ 7?}/ d’“ (fj
(8)
_ K 25 ﬁfv* ke W/L/E (70
- fC 3)’ ?C— jDC‘/’\D/

But

1

K_%,_ _ff/r
ST / “

3’52 r* F

2 (2)

© R S My L RHE o

T ok aw It pe RT.* (10)

Yow we multiply equstion 10 by Lf)m and integrate
over /7 from O te Vo . We obtaln,

& e b f% _RURE Tﬂ or >9wa/f+zn,waj

é)<)oc F?/
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due to the orthogonality of the Q{h, .
After doing the integrations and perforzling soue

manipulations, we obtain
b - K HE [MF%WZKZ_' #LM] oy
It §eRT epe | |

The Bolution of equation 12 1is:

L) =ex 5@45* JWHETpRET, Z;m }

___Z_K- ﬂug?‘ (13)
> jJCQI
Our solutlon is now:
n‘ﬂ
z_
g (A= e L ](m)
r K ; o
where Lh; is given by equaticn 13.
Wwe notice that, in order for the solution not to
diverge in the limit tjfaas , we must require
UZ#E < KT -

This 18 not surprising, since our treatzent is limited

anyway to slow reactions.
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For the following values of the paraneters:s

EZjL — 20 keal -mole ™’

T = 300 a/ej K

fc, == Ca/ cm C"/eq

¥ = )X 10 %al em™ secT ol 116)
Fs, = 5

we find that UK. must be smaller than about 2 x 10'“

mole 11ter‘1 second'l. This 1s fairly slow, but there
are reactions of interest that proceed this slowly.
Now that we have the temperature distribution, we
can, in principle, integrate a given teuperature-
dependent rate equatiocu, but this 1s likely to be lum-

poseible without a high-gpeed couputer,
REFERENCES
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PROPOSITION V

A modification is proposed of the model of Saunders
and Ross(l) for the reaction between polyadenylic acid and
polyuridylic acid.

This reaction, which forms a two-stranded helix, is
found to exhibit a decreasing rate with increasing tempera-
ture. The model of Saunders and Ross proposes a series
of steps, each having ordinary temperature-dependence, and
each adding one more cross-link to the double chain, and
is able to fit experimental data reasonably well, although
using more than one free parameter to do 8o.

The rate of the initiation reaction is assumed to

follow:
v, = %, AB - %.C, )

where 1/, is the rate, %o is the forward rate constant,
A and B are the concentrations of the two single-
strand species, 7?, is the backward rate constant and
C: is the concentration of "dimers" with only one
link,
The rate of the reaction which closes link number

) +/ in the “zipping-up” of the double helix is assumed
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to he

o= Ao - 4G, - (2)

Saunders and Soss assume that 21l the steps after the

first have the saze /ﬁk and ‘4éb y» and that 4éu_and

”42‘ are ejuzl, The first may e a reasonable approxi-

mation, especlally for L re- ©~mably large, and seeis

an unavoldable aurroxizstion. However, 1t would seex

unlikely the ”éb woull egual « » Since one reactlon

simply unzips the chains by one hydirogen-bond of aawny,

while the other resction completely separates the chaalins.
Yie assune xé‘#ég and proceed in the maunner of

Saunders and oss.

“ultiplicatior of eguation 2 by(ﬁép/ky,)c vives:

{ N ) C
N T e LT

we sun equation 3 over (L from / to M-/ (the nuaber

of links in the chair at coupletion) and add equstion

1, obtalning:

M=l . .
Z 64 :Mﬁmc%c,—@{ffbj Cy.

e now consider the rate of "zipping-up", V ,

without considerstion cf how far along the chaln the
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reaction is occurring.

"k ~/
fvz : = 448440 ~4%) T, 1

Thne sum is seen to be & zecmetrlic prozression,

A=) /é ¢ /é N

EhY = )
Fiving

o AAB(- »4) (y-4.) C(1~s o)

-k //i‘) ’é/*’b Jhe)” (7)

Now we assume thet the teamperature is less than the
helix melting temperature, sc that
/é,é& 2/ _ (8)

If this is BO,

/ Y
L/gb /é ) il ( , (9)

gince A/ >> /| 1is =assuned.

Equation 7 becomes
v :’13!5043(/'%_) +thy4) C (14 ) | (10)

The result of Saunders and Boss lg lacking the last

’
tepn, We mssuue the temperature dependence for the ﬂé'S:
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%d:Amtff‘*ﬂj/RT-f)d:Qb;{u- (A1)

and obtain

W = ABQ,M;?L{ “j/“f)[' - j['—’“/” @#/’?T)

£

~H+/ +
+C(EC},€ L ““‘/Eﬁfkiﬂ e A#/RTJJ o
i
+ 1

where AH = }49 “!45 is tne enthalpy change for
one step. The snalozous result of Ssunders and Joses,
wnich congists of the first line only, is used to fit
some experimental data, using “;FC:C> and AHX
2 keal mole~L. In order to see If the data can be fit
using all of equaticn 12, we transfeorm equation 12 to
use the independent varlable ? == Mf{’,‘l#,//ZT)
since this was the independent vsriable on the zraph
of dats, against whicn V' was a straight line of
nerative slope.

Equation 12 becomes

o
/S
v=AB f. g S ;fjg

Ny Fhu 7 L
(‘[(ij AH[ﬁ /A# C‘,[fﬁ>

(13)
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We differentiate this to obtain the slope,

obtaining:
/»/
T bhg ™ e -
4
L s */H
. —fﬁﬁa Ho Z@ﬁ \—f C( {b
-7; AH J F 2? ,
\ L
~Ho £ ¢ £ _He —
h*£iﬁ \ CA&“ {éﬂb \2§+~/f”£;ffj‘AH

- L +
- @lﬁj o /hk _ tuty Ha 7—#“/5#) (14)
T DARY te AHY o

+
Now if Saunders snd Boss assume A, =0 , they
zet a constant slope snd can fit thelr data, since thelr
result corresponds to the first line only of equation 14,
However, we can also et a constant slope, enabling

us to it = straignt line, if we set in equatlion 1l4:
T -
ub o uu - #b = (15)

enabling us to obtain s value for A H . Perhaps other
combinations of parameters can also be found to make
Cﬁv/é{? congtant,

f we have shown that the model of ijoss and Saunders,
althourh fitting the dats, is not tne only one to do BO,
and that one which is 2 priori wmore appealing can also

fit the data.
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