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Abstract

Geometric mechanics is often commended for its breadth (e.g., fluids, circuits, con-

trols) and depth (e.g., identification of stability criteria, controllability criteria, con-

servation laws). However, on the interface between disciplines it is commonplace

for the analysis previously done on each discipline in isolation to break down. For

example, when a solid is immersed in a fluid, the particle relabeling symmetry is bro-

ken because particles in the fluid behave differently from particles in the solid. This

breaks conservation laws, and even changes the configuration manifolds. A second

example is that of the interconnection of circuits. It has been verified that LC-circuits

satisfy a variational principle. However, when two circuits are soldered together this

variational principle must transform to accommodate the interconnection.

Motivated by these difficulties, this thesis analyzes the following couplings: fluid-

particle, fluid-structure, and circuit-circuit. For the case of fluid-particle interactions

we understand the system as a Lagrangian system evolving on a Lagrange-Poincaré

bundle. We leverage this interpretation to propose a class of particle methods by

“ignoring” the vertical Lagrange-Poincaré equation. In a similar vein, we can analyze

fluids interacting with a rigid body. We then generalize this analysis to view fluid-

structure problems as Lagrangian systems on a Lie algebroid. The simplicity of

the reduction process for Lie algebroids allows us to propose a mechanism in which

swimming corresponds to a limit-cycle in a reduced Lie algebroid. In the final section

we change gears and understand non-energetic interconnection as Dirac structures.

In particular we find that any (linear) non-energetic interconnection is equivalent to

some Dirac structure. We then explore what this insight has to say about variational

principles, using interconnection of LC-circuits as a guiding example.
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Chapter 1

Introduction

Many systems exhibit couplings, and it is very common for these couplings to corrupt

information we have about the isolated subsystems. To illustrate what we mean,

consider the following examples:

1. A rigid body is well-understood as a geodesic flow on SE(3). An ideal fluid

is well-understood as a geodesic flow on the set of special diffeomorphisms,

Dµ(R3). Can the system consisting of a rigid body immersed in an ideal fluid

be understood as a geodesic flow in any sense?

2. LC circuits can be understood as Poisson systems. When we connect two LC

circuits with wires, we get another circuit, and therefore another Poisson system.

How does the Poisson structure of the connected circuit relate to the Poisson

structure of the disconnected circuits?

3. Similarly, by attaching a wheel to a circuit through an ideal motor we also get

a Poisson system. Again, how is the poisson structure of the interconnected

system related to the Poisson structure of the isolated subsystems.

A pattern is emerging. We often have information about the subsystems which we

would like to see expressed by the interconnected system. However, this information

is not expressed in the interconnected system as a simple cartesian product of the

information of the subsystems. If it were a cartesian product then the coupling is

not much of a coupling (this is the defining characteristic of a decoupled system).

Somehow, the information is transformed, and the question we seek to answer is

“What is the transformation?”. We depict this schematically in Figure 1.1
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system 1
fact 1

system 2
fact 2coupled

=
system 1 × system 2

Ψ (fact 1 , fact 2)

Figure 1.1 – Coupled systems tend to change what we know about systems in isolation.
This thesis seeks to find a map, Ψ, which expresses this change in a variety of situations.

The use of differential geometry We have found differential geometry to be

an indispensable tool in answering the questions previously posed. The examples

mentioned involve couplings of distinctly different characters. However, each can be

understood through the use of differential geometry. Why do I claim this? The

use of differential geometry necessitates the use of coordinate-free language. If one

is working on Rn, the use of coordinate-free notation is questionable. However, if

one is working on SO(3), then the use of local coordinate charts (i.e. smooth maps

ϕ : SO(3) → R3) can trick one into making assumptions about SO(3) which only

hold for Rn. Thus, the power of coordinate-free expressions lies in their ability to

communicate coordinate-free information. This is especially useful when it comes to

couplings. Ball and socket interconnections of mechanical systems do not care about

which coordinate system you use. Moreover, even if there exists a set of convenient

coordinates for two subsystems in isolation, it is unlikely that the cartesian prod-

uct of these coordinates is a convenient system for expressing a given coupling. In

conclusion, when describing coupled systems, it is not uncommon for coordinate-free

notation to have a distinct rhetorical advantage over coordinate based language. Of

course, coordinates have their purposes (e.g. creating models which can be input into

a computer). Therefore, we will use coordinates when they promote understanding,

and we will avoid coordinates when they detract from understanding.

The utility of studying couplings Finally, the findings we obtain by studying

couplings will have corollaries with substantial potential for applications. Our under-

standing of the coupling between a fluid and passive particles will have implications

for our view of particle based methods for fluids. The understanding we will ob-

tain of fluid-structure interaction will have implications for a theory of swimming

as a stable limit cycle. Finally, our understanding of the interconnection of systems
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through Dirac structures will allow us to relate the equations of motion of the discon-

nected system to equations of motion for the connected system, and thus may have

substantial benefits for modular modeling.

In the next three sections we will describe the main projects of this thesis.

1.1 A Fluid and its Particles

The first project of this dissertation seeks to a fluid flowing on a Riemannian manifold

M . For the sake of modeling, it is necessary to obtain a finite dimensional approxi-

mation to this system. Additionally, even the most fundamental expositions in fluid

dynamics view the system as a momentum equation on “volume elements” which (to

0th order approximation) may be represented as particles. Perhaps we can approxi-

mate the motion of the fluid using a finite set of particles. What are the obstacles to

doing this well? The most glaring obstacle is the fact that the fluid particles are all

coupled to each other, and so it is not clear how to ignore any of them. Moreover,

particle methods are usually developed by taking the Euler equations, which evolve

on Xdiv(M), and making approximations. However, the error analysis is fairly diffi-

cult because it is hard to describe the information lost during the approximation (see

Figure 1.2).

system on TDµ(M)

ut + u · ∇u = 0, on Xdiv(M)

particle method on TQN−body

compare?

error?

EP reduction

approximations

Figure 1.2 – A Signal Flow Diagram for the Error Analysis of Particle Methods?

However, we can start by choosing a good decomposition for the equations of

motion. In particular, we may view a fluid as evolving on the set of volume-preserving
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diffeomorphisms, Dµ(M). By applying Lagrange-Poincaré reduction with respect to

a carefully chosen symmetry group, we can write the equations of motion on the space

TQpart ⊕ E, where Qpart is the configuration manifold for a finite set of particle and

E is some infinite dimensional vector-bundle over Qpart. Armed with these equations

(which express the exact motion for the fluid) we can begin to surmise approximations

to the equations of motion (evolving on Qpart) which ignore the E component. These

approximations are equivalent to the creation of particle methods. However, unlike

particle methods such as SPH, these are derived by approximating the Lagrange-

Poincaré equations on TQpart⊕E rather than the inviscid fluid equations on Xdiv(M).

We will find that this makes determining error bounds particularly simple (see Figure

1.3).

system on TDµ(M)

system on TQN−body ⊕ E

particle method on TQN−body

compare

error

LP reduction

closure method

Figure 1.3 – A Signal Flow Diagram for the Error Analysis of Particle Methods

There is much room for development in this perspective on finite dimensional

approximations of fluid motion. In particular, there are other symmetry groups which

we could reduce which result in particles that have shape and orientation and that

satisfy analogues of the circulation theorem. Additionally, there is no reason that the

main ideas developed could not be applied to any continuum system with particle

relabeling symmetry.
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1.2 Swimming

When one watches a fish swim, something about it appears periodic. However it is not

really periodic because with each flap of the fins, the fish has changed locations and so

the state of the system has changed. In particular there is some translation and rota-

tion which relates the previous flapping of the fins to the current one. Therefore, the

motion is really only periodic modulo a (fixed) rotation and translation. Therefore,

the motion appears to be a relative closed orbit in phase-space. One would conjecture

that this motion is stable in some sense, which leads to the main conjecture of this

project:

Is swimming a relative limit cycle?

To begin thinking about this we first need to understand the system consisting of a

solid body immersed in a fluid as an unforced mechanical system. We let f ⊂ R3 be

a reference configuration, and we use the set

B := {b : f ↪→ R3 | det([
∂bi

∂xj
]) = 1}

as the set of configurations for the body. For each b ∈ B the state of the fluid may

be described by a vector field, u, on the set

eb := closure
(
R3\b(f)

)
.

Therefore, given a particular b ∈ B, the state of the system may be described by the

set

Ab := {(ḃ, u) ∈ TbB × X(eb) | ḃ = u ◦ b on ∂f}

and the phase space for the system can be given by the vector bundle over B given

by A = ∪b∈BAb. It is fairly simple to find a natural Lie bracket on sections of A, and

prove that A is a Lie algebroid. This allows us to use [Wei95] to derive the equations

of motion for a solid body in a fluid.



6

How can we use this to understand swimming as a relative limit cycle? First,

we must find a limit cycle in a reduced phase space. How do we do that? A quick

answer is provided by the averaging theorem. The averaging theorem suggests that

a sufficiently small periodic perturbation of a system on a Banach manifold with an

asymptotically stable point results in a system with a stable limit cycle. Therefore,

most of the work of this section will be directed towards proving the existence of an

asymptotically stable point in some reduced phase space, [A]. This would bring us

well on our way to interpreting swimming as a relative limit cycle.

stable submanifold ⊂ A

stable point ∈ [A]

swimming?

stable limit cycle ∈ [A]

periodic force

periodic force

reduction reduction

Figure 1.4 – A proposed understanding of swimming

Finding a stable point on [A] will require performing reduction by stages. The

first reduction is with respect to the particle relabeling symmetry and the second

reduction is with respect to frame-invariance (right-SE(3) symmetry). We will refer to

[CMR01] when we need equations of motion, and we will use [Wei95] when performing

SE(3) reduction. In any case, the left side of Figure 1.4 will be described in full.

Unfortunately, the process of adding a periodic force to get a stable limit cycle remains

at the conjecture level due to certain topological difficulties with infinite dimensional

spaces (they are not Banach). However, any finite dimensional model of a fluid which

is sufficiently well behaved (e.g. dissipates energy correctly) should exhibit these limit

cycles.

1.3 Interconnections as Dirac Structures

In the final chapter of this dissertation we will be using the following concept.

Definition 1.3.1. A linear Dirac structure D on a vector-space V is a dim(V ) di-
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mensional subspace of V × V ∗ such that

〈β, v〉+ 〈α,w〉 = 0

for any (v, α), (w, β) ∈ D.

The generalization of Dirac structure to manifolds roughly consists of applying

this definition to each fiber of the tangeant bundle. In the last few decades Dirac

structures have emerged as generalization of symplectic and Poisson structures. In

particular, there is now a new formalism which one could call the Dirac formalism

formalism function structure eq. of motion

Lagrange L δ
∫

(·)dt = 0 d
dt
∂L
∂q̇
− ∂L

∂q
= 0

Hamilton H {·, ·} ẋ = {x,H}
Dirac E D (ẋ, dE(x)) ∈ D(x)

In summary, just as Poisson and symplectic structures can be used to derive dy-

namics from a Hamiltonian, so can a Dirac structure be used to derive dynamics

from an energy function. Additionally, one could take any power-conserving cou-

pling (e.g. soldering the wires of two circuits, or connecting an electrical system to

a mechanical one through an ideal motor). By the definition of Dirac structures,

the power-conserving coupling can be written as a Dirac structure. We call the

Dirac structures which express couplings “interaction Dirac structures.” However,

the observation that power-conserving interconnections could be expressed as Dirac

structures has not been used until recently. The question we seek to answer in this

final chapter is “how do we use interaction Dirac structures?”

More specifically, given mechanical systems with Dirac structures D1 and D2 on

manifolds M1 and M2, how do we use a interaction Dirac structure, Dint on M1×M2?

In order to answer this question, we will define a product, �, and form the Dirac

structure

DC := (D1 ⊕D2) �Dint,

which is a Dirac structure over M1×M2. We will find that DC is the Dirac structure
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for the system which couples Dirac systems on Dirac manifolds (M1, D1) and (M2, D2)

using the power-conserving interconnection given by Dint.

Applications for this insight can be fairly broad. However, in this thesis we have

restricted our examples to the case of circuit-circuit interconnections and mechanical

interconnections by non-holonomic constraints.

1.4 Conclusion

We hope that this introduction has sufficiently whet the reader’s appetite. A fresh

graduate student looking for a new project to embark on should find ample material

here to start one. If there is a “moral” to this thesis, it is that much of the under-

standing known for isolated systems can carry over to coupled systems - it is just a

matter of working on the right spaces and resisting the urge to use coordinates. For

example, many couplings of Poisson systems result in Poisson systems. Ideal fluids

and rigid bodies in free space satisfy geodesic equations. We will find rigid bodies

immersed in ideal fluids satisfy geodesic equations as well. In conclusion, couplings

need not be so mysterious. Couplings may destroy desirable properties of subsystems,

but one should never lose hope. It is not uncommon for the beautiful aspects of the

subsystems to be reincarnated as new creatures in the coupled system. Working to

find these reincarnations can have significant benefits.

Reader’s Guide The chapters on particle methods and swimming require some

understanding of reduction by symmetry. A reader who is unfamiliar with the litera-

ture is encouraged to read chapter 2 and perhaps the first two chapters of [CMR01].

Chapters 3 through 5 are written such that they may be read in isolation from one

another. Therefore, the reader is generally encouraged to start with whichever project

most interests him or her.
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Chapter 2

Background Material

In this section we provide some necessary background material in geometric me-

chanics, drawing primarily from [AM00] and [CMR01]. Two of the three projects

contained in this thesis are related to fluids. Such systems evolve on spaces which

are difficult to coordinatize. Therefore, there will be a bias in favor of geometrically

intrinsic expressions over coordinate based ones. We begin with a brief statement on

interpreting commutative diagrams in §2.1. In §2.2 we will describe how the Euler-

Lagrange equations can be written in a coordinate free notation upon choosing a

Covariant derivative for the tangent bundle. Additionally, there will be a heavy use

of Lie groups and geodesics on Lie groups (in particular, SE(3) and SDiff(M)). In

§2.3 we will review the nature of Riemannian geometry and Lagrangian mechanics on

Lie groups. Finally, as Lagrange-Poincaré reduction is not thoroughly covered in most

classical mechanics courses, I will provide the minimal amount of concepts needed in

order to write down the Lagrange-Poincaré equation in §2.4. This chapter is intended

as a reference and the reader is encouraged to skip the sections for which he or she

is already familiar with. The following material is not intended as an introduction

to geometric mechanics. An advanced undergraduate level introduction to geometric

mechanics is [Hol11a] and [Hol11b]. A slightly more advanced introduction is [MR99].

Finally, [AM00] is largely considered the “Bible” of the subject.

2.1 Reading Commutative Diagams

Let f : A → A′ and g : B → B′. Let Ψ : A → B and Ψ′ : A′ → B′. We say the

diagram in figure 2.1 commutes if g(Ψ(a)) = Ψ′(f(a) for any a ∈ A. Commutative



10

A A′

B B′

f

Ψ

g

Ψ′

Figure 2.1 – A commutative square

diagrams will make a few appearances in this thesis and they will generally convey

the message ‘Ψ acts on A like Ψ′ acts on A′’ or possibly ‘f acts on A like g acts

on B’. If g is the identity, so that B = B′, we get a commutative triangle (see

Figure 2.2) which says that f will send elements of the equivalence classes Ψ−1(b)

A A′

B

f

Ψ Ψ′

Figure 2.2 – A commutative triangle

to (Ψ′)−1(b). In summary, these diagrams convey the message that some kind of

structure is preserved. For a gentle introduction to this perspective see [LS09], or for

a more advanced introduction see [Mac00].

2.2 Lagrangian Mechanics

Given a Lagrangian, L : TQ → R, on an n-dimensional configuration manifold Q,

we can express the Euler-Lagrange equations in local coordinate (q1, . . . , qn) by the

expression:
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

Implicitly we are using the Euclidean inner product on Rn to write the equations

of motion locally. If we desire a geometrically intrinsic expression for the Euler-

Lagrange equation, we need to replace d
dt

with a covariant derivative and provide

intrinsic notions to replace the partial derivatives ∂L
∂qi

and ∂L
∂q̇i

. All of these issues are
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solved by choosing a covariant derivative. For a general Q there is no canonical way

of making this choice. In the case that Q is a Riemannian manifold, however, there is.

In this section we will provide the necessary ingredients from Riemannian geometry

to write down a geometrically intrinsic expression for the Euler-Lagrange equation.

We begin by defining a connection.

Definition 2.2.1 (Connection). Let Q be a manifold. A connection is a mapping

∇ : X(Q)× X(Q)→ X(G) such that:

1. ∇X(Y + Z) = ∇X(Y ) +∇X(Z).

2. ∇X(fY ) = X[f ]Y + f · ∇X(Y ).

3. ∇X+Y (Z) = ∇X(Z) +∇Y (Z).

One can understand a connection as a way of differentiating vector fields. It is

worth noting that the first argument of a connection need not be a vector field, but

may be a single vector v ∈ TQ, while the second item need only be a vector field along

a path qε ∈ Q tangent to v. Therefore, using ∇ we can define a covariant derivative.

Definition 2.2.2 (Covariant Derivative, Geodesic). Given a path q(t) ∈ Q and a

vector field v(t) ∈ Tq(t)Q above q(t) we can define the covariant derivative

Dv

Dt
:= ∇q̇(v).

Additionally, the path q(t) is called a geodesic if

Dq̇

Dt
:= 0,

where we define q̇ = dq
dt

. Lastly, the covariant derivative acts on covector fields above

q̇ by the formula

〈Dα
Dt

, v〉 = 〈α, Dv
Dt
〉 − d

dt
〈α, v〉.
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Given a Lagrangian L : TQ → R we can define the Legendre transform ∂L
∂q̇

:

TQ→ T ∗Q by

〈∂L
∂q̇

(q, v), δq〉 :=
d

dε

∣∣∣∣
ε=0

(l(q, v + εδq)) .

It is notable that if q(t) is a curve in Q, then both ∂L
∂q̇

(q, q̇)(t) and D
Dt

(
∂L
∂q̇

)
are covector

fields above q(t). Finally we define the partial derivative ∂L
∂q

by:

〈∂L
∂q

(q, v), δq〉 :=
d

dε

∣∣∣∣
ε=0

(l(qε, vε))

for an arbitrary curve (qε, vε) ∈ TQ such that d
dε

∣∣
ε=0

qε = δε and Dvε
Dε

= 0.

The Euler-Lagrange equations are given by

D

Dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0.

We can stop here, but we have not addressed the issue of how one chooses a connec-

tion. In general, one should simply do what is easiest for the circumstances at hand.

However, if Q is a Riemannian manifold there is a “natural” choice [AM00, §2.7].

Theorem 2.2.1 (The Fundamental Theorem of Riemannian Geometry). If Q is a

Riemannian manifold with metric �,�, then there exists a unique connection, ∇,

on Q such that

∇XY −∇YX = [X, Y ]

and

X[� Y, Z �] =� ∇XY, Z � +� Y,∇XZ �

we call ∇ the Levi-Cevita connection.

The Levi-Cevita connection is given implicitly by Koszul’s formula,

2� ∇XY, Z �=X[� Y, Z �] + Y [� X,Z �]− Z[� Y,X �]

+� [X, Y ], Z � −� [X,Z], Y � −� [Y, Z], X � .
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In particular, if L(q, q̇) = 1
2
� q̇, q̇ � then the Euler-Lagrange equations become

D

Dt

(
∂L

∂q̇

)
= 0,

and are equivalent to the geodesic equations on Q with respect to the metric field,

�,� [AM00, §3.7].

2.3 Lagrangian Mechanics on Lie Groups

In this section we will review the geometry and Lagrangian mechanics of Lie groups.

In particular we will pay attention to the case of Riemannian metrics which are

invariant with respect to group translations.

Definition 2.3.1 (Group). A group, (G, ◦), is a pair which consists of a set G and

a composition ◦ : G×G→ G which satisfies the following properties:

1. The composition is associative (i.e., g ◦ (h ◦ k) = (g ◦ h) ◦ k ).

2. There exists an identity element, e ∈ G, defined by the condition e ◦ g = g for

every g ∈ G.

3. For each g ∈ G there exists an inverse g−1 defined by the condition g−1 ◦ g = e.

If G is a manifold, and ◦, and g 7→ g−1 are smooth, then G is called a Lie Group.

The examples of Lie groups most useful for this thesis are the special Euclidean

group, SE(3), and the special diffeomorphism group, Dµ(M), for a volume manifold.1

In addition to the concept of a Lie Group we will also use its infinitesimal coun-

terpart, the Lie Algebra.

Definition 2.3.2 (Lie algebra). A Lie algebra is a pair {g, [, ]} consisting of a vector

space g and a bracket [, ] : g× g→ g which satisfies the following properties:

1. The bracket satisfies the Jacobi identity, [a, [b, c]]− [b, [a, c]] + [c, [a, b]] = 0.

1This latter group is actually an infinite dimensional Lie group. The consequences of this are not
investigated in this dissertation. For more information see [BK09].
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2. The bracket is anti-symmetric, [a, b] = 0.

In particular, the Lie group, G, with identity, e, is equipped with a Lie algebra,

g = TeG. The Lie bracket is induced by the commutator of vector fields [AMR09,

Chapter 5].

Deriving Lie brackets on Lie groups . Given a Lie group, G, with identity, e,

one can use the following procedure to derive the bracket on the Lie algebra, g = TeG.

1. For each g ∈ G define the AD-map or inner automorphism ADg : G → G by

Ig(h) = ghg−1.

2. Define the Ad-map2, Adg = Te AD, which can be written as Adg(η) ≈ g ·η · g−1.

3. For each ξ ∈ g define the ad-map3 adξ = d
dt

∣∣
t=0

Adg for a curve g(t) with

ξ = dg
dt

∣∣
t=0

. This defines the Lie bracket [ξ, η] := adξ η.

Jacobi’s identity follows from interpreting elements of g as left invariant vector

fields on G. Noting that left invariant vector fields form a Lie subalgebra of the set

of all vector fields on G allows us to carry the Lie bracket on X(G) to g [AMR09,

Chapter 5].

Invariant metrics and Euler-Poincaré reduction . Let G be a Lie group with

identity, e, and a left invariant metric, �,�. Left invariance means

� v, w �=� g · v, g · w �

for any (v, w) ∈ TG⊕TG and g ∈ G. Equivalently, we can choose an inner product�

,�e on the Lie algebra g := TeG and construct the left invariant metic� v, w �:=�

λtriv(v), λtriv(w) �e using the left-trivializing diffeomorphism λtriv(g, v) = Tg−1 · v

which takes TG→ g.

2Also called the “adjoint map”
3Called the “adjoint map” as well
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If we define a Lagrangian, L(g, ġ) = 1
2
� ġ, ġ �, then the previous section tells

us that the Euler-Lagrange equations are given by

D

Dt

(
ġ[
)

= 0

where ġ[ is a curve in T ∗G given by the contraction of ġ(t) ∈ TG with the metric

tensor. We may write ġ(t) = g(t) ·ξ(t) for some curve ξ(t) ∈ g := TeG. From Koszul’s

formula one can observe that left invariance of �,� implies left invariance of the

covariant derivative, so that

T ∗g · D
Dt

(
ġ[
)

=
D

Dt

(
g∗ġ[

)
.

Let η be an arbitrary element of g and note that T ∗g · ξ[ = ġ[. Then we find along a

curve g(t) which satisfies the Euler-Lagrange equations

0 = 〈Dġ
[

Dt
, Tg · η〉

= 〈T ∗g−1 · D
Dt

(ξ[), T g · η〉

= 〈∇ξ(ξ
[), η〉

=
d

dt
� ξ[, η � −〈ξ[,∇ξη〉

= 〈dξ
[

dt
, η〉 − 1

2
〈ξ[, [ξ, η]− (ad∗ξ η

[)] − (ad∗η ξ
[)]〉.

We can simplify this further using the identities

〈ξ[, [ξ, η]〉 = 〈ad∗ξ ξ
[, η〉

〈ξ[, (ad∗ξ η
[)]〉 = 〈ad∗ξ η

[, ξ〉 = 〈η[, adξ ξ〉 = 0

〈ξ[, (ad∗η ξ
[)]〉 = 〈ad∗η ξ

[, ξ〉 = 〈ξ[, [η, ξ]〉 = −〈ad∗ξ ξ
[, η〉

which imply

0 = 〈dξ
[

dt
− ad∗ξ ξ

[, η〉.
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Letting η vary over all g implies the Euler-Poincaré equation:

dξ[

dt
= ad∗ξ ξ

[.

(see [MR99, Chap. 13] for matrix Lie groups).

Example 2.3.1 (Rigid Body on SO(3)). Consider the Lie Group SO(3). We can

equate the Lie algebra with R3 through a map ∨. Then, both the adjoint action and

coadjoint action are represented by the cross product. The Euler-Lagrange equations

for the Lagrangian

L(R, Ṙ) =
1

2

(
∨(R−1Ṙ)T · I · ∨(R−1Ṙ)

)
therefore reduce to the Euler-Poincaré equation

Π̇ = Π× Ω

where Π = I · Ω.

Finally, we could have considered a right invariant metric. That is to say, a metric

which satisfies the invariance property

� vg, wg �=� v, w � , ∀g ∈ G.

This would result in the (right) Euler-Poincaré equation

dξ[

dt
= − ad∗ξ ξ

[.

Example 2.3.2 (Ideal Fluids, [Arn66]). Let M be a Riemannian manifold and con-

sider the Lie Group, SDiff(M), consisting of the volume-preserving diffeomorphisms

of M . The Lagrangian, L : T SDiff(M)→ R, given by

L(ϕ, ϕ̇) :=
1

2

∫
M

‖ϕ̇(x)‖2dx



17

is right SDiff(M) invariant. The resulting (right) Euler-Poincaré equations occur on

the Lie algebra of SDiff(M), which is identified with the set of divergence-free vector

fields, Xdiv(M), equipped with the Lie bracket given by the commutator of vector fields.

The resulting Euler-Poincaré equations are the inviscid fluid equations ut+∇uu = ∇p.

On Rn this takes the more familiar form ut + u · ∇u = ∇p. See [AK92, Chapter 1]

for details on the Hamiltonian perspective.

2.4 Lagrange-Poincaré Equations

In this section we state the (right) Lagrange-Poincaré equations. The material of this

section is taken from [CMR01]. Let π : Q→ [Q] be a principal bundle with structure

group G induced by a right action. Given a q ∈ Q we use the notation [q] := π(q) to

denote the orbit given by q ·G. Additionally there exists a lifted action on TQ through

the tangent lift of the action of G. We denote the action of g ∈ G on q ∈ Q by qg

and on v ∈ TQ by vg. We denote the equivalence class of a v ∈ TQ by [v] = v · G.

The collection of these equivalence classes is denoted by [TQ]. Given a Lagrangian

on TQ which is right invariant with respect to the action of G there must exist a

well-defined Lagrangian on [TQ] given by l([q, v]) = L(q, v). One would expect the

Euler-Lagrange equations to have the same symmetry, since they are determined by

the Lagrangian. Such a symmetry would induce consistent dynamics on [TQ]. To

find these equations we must first understand how variations of curves in Q will lead

to variation of curves in [TQ]. Unfortunately, the quotient [TQ] is a fairly abstract

space to consider writing equations of motion on. More concrete formulations of the

equations can be found on the bundle T [Q]⊕ g̃ (to be defined), which is isomophic to

[TQ]. In this section we will produce an isomorphism from [TQ] to T [Q] ⊕ g̃ where

we will also be able to state the reduced equations of motion using suitably chosen

covariant derivatives. We start by defining the adjoint bundle, g̃.

Definition 2.4.1 (Adjoint Bundle). Given the action of G on Q we may define an

action on Q × g by (q, ξ) 7→ (qg,Ad−1
g (ξ)). The adjoint bundle is the vector bundle
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π̃ : g̃→ [Q] where

g̃ :=
Q× g

G
,

and π̃([q, ξ]) = [q]. This bundle is also equipped with a fiber-wise Lie bracket given by

[[q, ξ], [q, η]] = [q, [ξ, η]] .

Definition 2.4.2 (Principal Connection). A principal connection is a mapping A :

TQ→ g which satisfies

1. For any ξ ∈ g, A(ξQ(g)) = ξ where ξQ is the infinitesimal generator of ξ.

2. A(vg) = Ad−1
g ·A(v) for any v ∈ TQ, g ∈ G.

The definition of principal connection provided here is designed to handle symme-

tries with respect to right group action (see [CMR01] for the case of left actions). In

particular, principal connections serve as morphisms which carry the action on TQ

to the Ad-map on g. That is to say, A is designed to make the following diagram

commute.

TQ TQ TQ

g g g

g

A A

g

h

A

h

gh

gh

where we are using the right action on Q in the top row of the diagram and the right

adjoint action, Ad−1
g , on g in the bottom row.

We define the horizontal distribution to be the constraint distribution H :=

kernel(A) ⊂ TQ. Additionally, the vertical distribution is defined as

V := {ξQ(q) ∈ TQ : q ∈ Q, ξ ∈ g}.

The distributions satisfy the following properties:
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• The horizontal distribution is G invariant. That is to say, H ·G ⊂ H.

• The horizontal distribution is complementary to the vertical distribution. That

is to say, H ∩ V is the 0 section of TQ, and H⊕ V = TQ.

• The vertical distribution is integrable. This is because the infinitesimal gener-

ators satisfy [ξQ, ηQ] = [ξ, η]Q.

Since H and V are complementary distributions, we may define projection onto the

horizontal and vertical distributions, denoted by hor : TQ → H and ver : TQ → V,

respectively. Additionally, given a ẋ ∈ T [Q] and a q ∈ π−1(x), there is a unique

vector ẋ↑q ∈ TqQ such that ẋ↑q ∈ H and Tπ(ẋ↑q) = ẋ. We call the mapping, ẋ 7→ ẋ↑q

the horizontal lift of ẋ above q . One may hope that H is integrable. However, this

is generally not the case. A measurement of the integrability of H is given by the

curvature tensor.

Definition 2.4.3 (Curvature Tensor). The curvature tensor of a principal connection

A : TQ→ g is the g valued two form on Q given by the expression

B(q̇, δq) = dA(hor(q̇), hor(δq)).

Additionally, the reduced curvature tensor is g̃ valued two form on [Q] given by

B̃(ẋ, δx) = [q, B(ẋ↑q, δx
↑
q)].

The choice of a principal connection induces a bundle map from Ã : TQ → g̃

given by Ã(q, v) = [q, A(q, v)]. This makes ΨA := Tπ ⊕ Ã ◦ [τQ] : [TQ] → T [Q] ⊕ g̃

into an isomorphism. A principal connection, A, also induces a covariant derivative

on g̃, given by
D

Dt
([q(t), ξ(t)]) = [q(t), [ξ, A(q̇)] + ξ̇]

for a curve [q(t), ξ(t)] ∈ g̃. The covariant derivative on g̃ induces a covariant derivative
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on the dual bundle g̃∗, defined by the condition

〈 D
Dt

[q(t), α(t)], [q(t), ξ(t)]〉 =
d

dt
〈α(t), ξ(t)〉 − 〈 D

Dt
[q(t), ξ(t)], [q(t), α(t)]〉

for a curve [q(t), α(t), v(t)] ∈ g̃∗⊕ g̃. These notions are enough to state the Lagrange-

Poincaré reduction theorem [CMR01, Theorem 3.4.1].

Theorem 2.4.1 (Lagrange-Poincaré Reduction Theorem). Let π : Q → [Q] be a

principal bundle with structure group G. Let L : TQ→ R be a Lagrangian with right

G-symmetry. Finally, let there exist a covariant derivative on [Q]. Then given a

curve q(t) ∈ Q, the following are equivalent:

1. q(t) satisfies the Euler-Lagrange equations for L.

2. q(t) extremizes the action
∫
L(q, q̇)dt with respect to variations with fixed end-

points.

3. For x(t) = π(q(t)) ∈ [Q], ξ̃(t) = [q(t), A(q(t), q̇(t))] ∈ g̃ and l = L ◦ ΨA :

T [Q]⊕ g̃→ R the Lagrange-Poincaré equations

D

Dt

(
∂l

∂ẋ

)
− ∂l

∂x
= 〈 ∂l

∂ξ̃
, iẋ · B̃〉 on T [Q]

D

Dt

(
∂l

∂ξ̃

)
= − ad∗

ξ̃

(
∂l

∂ξ̃

)
on g̃.

4. (x, ξ̃)(t) = (π(q(t)), [q(t), A((q, (̇q))(t)) ∈ T [Q]⊕g̃ extremizes the action
∫
l(x, ẋ, ξ̃)dt

with respect to variations (δx, δξ̃) ∈ T [Q]⊕ g̃ where δx is a variation of x with

fixed endpoints and δξ̃ = Dη̃
Dt
− [ξ, η] +B(δx, ẋ).

The derivatives ∂l
∂ξ̃

and ∂l
∂ẋ

can be viewed as fiber derivatives, while the derivative

∂l
∂x

should be viewed as induced by the covariant derivative on [Q] as in §2.2

Example 2.4.1 (The Kaluza-Klein Formalism for Charged Particles). Consider an

electron moving in R3. Let the configuration space be Q = R3 × S1. Consider the

Lagrangian

L(q, q̇, θ, θ̇) =
1

2
m‖q̇‖2 +

1

2
‖ω1(q) · q̇ + θ̇‖2.
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We observe that L has S1 symmetry, as it does not depend on θ. The quotient space

is [Q] = R3 and we choose the principal connection

A(q, q̇, θ, θ̇) = θ̇,

where we interpret θ̇ as a vector above θ = 0 on the right-hand side. The curvature

of A is given by B = dω. We observe that the horizontal equations are

mẍ = iẋdω

while the vertical equations are simply θ̇(t) = θ̇(0). Equating R∗ with R through

the standard Euclidean metric induces the Hodge star, which sends dx ∧ dy 7→ dz,

dz∧dx 7→ dy, and dy∧dz 7→ dx. Upon setting dω = e(B1dy∧dz+B2dz∧dx+B3dy 7→

dz) we find that the horizontal equations become mẍ = eẋ× B. This is the standard

Lorentz force law for charged particles.
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Chapter 3

Geometric Foundations for
Particle Methods

There are two major competing representations for the state of a fluid, Eulerian

and Lagrangian (alternatively described as the spatial description and the material

description). In the Lagrangian description, the fluid is represented by a volume-

preserving diffeomorphism. This diffeomorphism evolves with time and stores the

data of where fluid particles go. In contrast, the Eulerian description of fluids only

keeps track of the velocity field from the reference frame of the observer, and thus par-

ticle locations are forgotten. In this chapter we will be concerned with understanding

numerical methods for fluids which adopt the Lagrangian description.

Figure 3.1 – How a volume-preserving diffeomorphism represents the state of a fluid

A Lagrangian method of particular concern is a particle method which represents

the corresponding diffeomorphism by the motion of a finite number of particles1. Un-

like Eulerian methods, such as fixed-grid finite-difference, it is not entirely clear how

to estimate or even write down error bounds for particle methods over infinitesimal

times. In the case of Eulerian methods with fixed grids, the accuracy is controlled

1This excludes meshless methods such as the Vortex Method.
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by the grid spacing, which is decoupled from time. This separation of space and

time allows for the error analysis of most Eulerian schemes. However in the case of

particle methods, the analogue of grid spacing is particle spacing, and the spacing

of the particles is not static but governed by the dynamics of the chosen method.

Due to the time-dependence of the particle spacing, discovering error bounds for par-

ticle methods is particularly difficult. Upon encountering this problem, it becomes

desirable to find a way to move particles around to regulate particle spacing. How-

ever, this presents one with another problem. Upon moving the particles around to a

preferable arrangement, how does one choose the velocities? More specifically, given

a method for estimating vector-fields from particle positions and velocities, how does

one rearrange the particles and choose the velocities in such a way that the estimate

is unaltered? The key to answering this is to tie everything to a reconstruction map-

ping, a method which estimates the fluid velocity field given particle positions and

velocities.

R

Figure 3.2 – Schematic of a Reconstruction Map

In particular, this chapter will demonstrate the following claims:

Claim 3.0.1. Each reconstruction mapping induces a corresponding particle method.

Claim 3.0.2. Certain reconstruction mappings provide a means of moving the parti-

cles manually and choosing velocities so as to leave the estimated velocity field unal-

tered.

Claim 3.0.3. Claim 3.0.1 and Claim 3.0.2 can be combined to create particle methods

with error bounds.
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Additionally, we will attempt to analyze the smoothed particle method (SPM).

However, the correspondence between reconstruction mappings and particle methods

is many-to-one. Therefore we are faced with an arbitrary choice when trying to find

a reconstruction mapping corresponding to SPM.

Warning! One would naturally expect a chapter on numerical methods to include

computational experiments. In order to avoid creating unmet expectations, let me

warn the reader now that this will not be done in this chapter. Indeed, we will be

proposing a new framework for making new numerical methods and analyzing them.

However, the task of getting an appropriate configuration manifold for error analysis

of particle methods is a substantial one. Clearly computation is the next step in this

project, and some ideas are presented in the final section.

Problem formulation Let (M,�,�) be a Riemannian manifold filled with an

inviscid fluid. It is not difficult to imagine that the state of an incompressible fluid

may be represented by a volume-preserving diffeomorphism (see Figure 3.1).

It was proven by V. I. Arnold that the inviscid fluid equations can be derived from

the Lagrangian

L(ϕ, ϕ̇) =
1

2

∫
M

‖ϕ̇(x)‖dx

on the set of volume-preserving diffeomorphisms of M , denoted as Dµ(M). This was

done through a symplectic reduction with respect to the particle relabeling symme-

try of the system. The reduction yielded the traditional Euler equations for an ideal

fluid on the vector space of divergence-free vector fields over M , denoted Xdiv(M)

[Arn66, AK92]. However, we may reduce by other symmetries instead. In particular,

if we let Qpart be the configuration manifold for n non-overlapping point particles

embedded in M , then there exists a vector bundle, πE : E → Qpart, as well as a

symmetry reduction procedure which places the equations of motions on the vector

bundle TQpart⊕E. The significance of being able to write the equations of motion on

TQpart⊕E is that TQpart is a submanifold. Therefore, given a particle method (which

is an ordinary differential equation on TQpart) we may compare it with the exact equa-
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tions of motion. In particular, the reduction procedure is that of Lagrange-Poincaré

reduction as demonstrated in [CMR01] (see also Section §2.4) and our perspective on

error is communicated by the cartoon signal flow diagram in Figure 3.3.

system on TDµ(M)

system on TQpart ⊕ E

particle method on TQpart

compare

error

LP reduction

closure method

Figure 3.3 – A signal flow diagram for the error analysis of particle methods

The primary task of this paper is to specialize the equations and geometric con-

cepts of [CMR01] to the case of reduction by a certain Lie-subgroup, G� ⊂ Dµ(M).

Previous work There are a number of preexisting mesh-free methods which have

been applied to fluids. Motivations for the development of such methods include:

• They avoid complex mesh generation techniques.

• There is no mesh entanglement.

• They can handle odd-shaped and/or time-dependent domains with relative ease.

• They are easy to modify for use in multi-physics simulations.

We are interested in the class of methods known as “particle methods” which store the

data of the fluid on a finite number of moving particles. The most well-established

particle method today, smooth particle hydrodynamics (SPH), was introduced in

[GM77] and [Luc77] for the purpose of astrophysical simulations. It was realized that

the basic idea of SPH could be generalized to deal with a variety of partial differential

equations (PDEs) including fluids [GM82]. However, SPH was found to have a number
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of problems (e.g., consistency, boundary conditions, stability), which then motivated

the search for improvements and new methods. Most notably, the reproducing kernel

particle method (RKPM) was developed to address the inaccuracy of SPH on the

boundary of the domain [LJZ95, GL98]. Since then, a number of improvements have

been made to SPH, and a variety of other methods have appeared on the scene. Finite-

point methods approximate functions involved in a PDE through a set of moving

collocation points [OIT96, OIZ+96]. Local Petrov-Galerkin schemes use the “local

weak form” of the PDE in question via a moving set of basis functions [AS02]. A

thorough survey of mesh-free methods (including a few not mentioned here) can be

found in [Liu03]. All of these methods are designed to carry the velocity field data

by storing it, at least implicitly, on a finite number of nodes. This is distinct from

both Chorin’s vortex method and vortex blob method, where each “particle” stores

vorticity data (although a velocity field is implied by the vorticity equation) [Cho73].

In this chapter we will form geometric foundations for the creation and error anal-

ysis of methods in the spirit of SPH, where the particles carry velocity information.

In particular we will be using much work from the field of geometric mechanics and

Lie group theory. The analysis of mechanical systems on Lie groups traces back to

the time of Poincaré, and the corresponding brackets are closely related to the results

of Arnold, Kirillov, Kostant, and Souriau in the 1960s [MR99, chapter 10]. In partic-

ular, Arnold discovered that the Euler fluid equations are Euler-Poincaré equations

corresponding to the geodesic equations on the group of special diffeomorphisms of a

manifold [Arn66]. This result was then leveraged to prove local existence in time of

the Euler equations by using Sobolev norms [EM70]. Simultaneously, an understand-

ing of more general forms of reduction by symmetry were desired, and symplectic

reduction by the action of a Lie group on a symplectic manifold was articulated in

[MW74]. Since then, it has been observed repeatedly that a number of systems ap-

pear to be symmetry reduced systems by non-transitive group actions. In particular,

a number of systems in particle physics and gauge theory had this structure (see

[Ble81] and references therein). In order to understand the resulting quotient space

of reduction by non transitive group actions a principal connection is chosen which
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places the dynamics on a vector bundle (dubbed a “Lagrange-Poincaré bundle”).

This process is called Lagrange-Poincaré reduction [CMR01]. Lagrange-Poincaré re-

duction was explicitly used in [Kel98] and [KM00] to understand the locomotion of

a vehicle in potential flow. It can be argued that Lagrange-Poincaré reduction was

implicitly understood in the analysis of swimming at low Reynolds numbers [SW89],

even though this work was decades before Lagrange-Poincaré reduction took on the

form found in [CMR01].

Outline In §3.1 we seek to translate [CMR01] to the case of (right) subgroup re-

duction. That is to say, we hope to reduce a system on a Lie group G by some

subgroup Gs ⊂ G equipped with the action of right translation. We will not re-

view Langrage-Poincaré reduction in full, but only translate the concepts necessary

to write down the Lagrange-Poincaré equations. These necessary concepts are: the

quotient bundle, the adjoint bundle, the principal connection, the curvature tensor,

and the covariant derivatives. We then apply these constructions to fluids in §3.2 for

the case of reduction by the isotropy subgroup of a finite set of points, G� ⊂ Dµ(M).

We will find that the quotient manifold is isomorphic to the configuration manifold

for point particles, Qpart, and the adjoint bundle is isomorphic to the vector bun-

dle of vector fields which vanish at n-points, πE : E → Qpart. These identities put

the Lagrange-Poincaré equations on the space TQpart ⊕ E. In §3.4 we use a closure

method which effectively “ignores the vertical equation”. Additionally, a higher-order

closure method is proposed which provides an extra order of accuracy in time, while

sacrificing geometric properties in the process. This yields an ODE on TQpart which

we interpret as a particle method. We will find that smoothed particle methods fit

under this construction (modulo time reparametrization), but we will not be able to

perform error analysis on them. Additionally, we will find that under certain circum-

stances it is possible to re-arrange particles, and thus to bound the spacing between

the particles. Enforcing this bound would open the door for error analysis of a new

class of particle methods. In §3.5 we concoct a numerical method where error analysis

is possible. We find the proposed method to be accurate to second order in space (via
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the bound enforced on particle spacing) and second or third order in time, depending

on the closure method.

3.1 Subgroup Reduction

In this section we review Lagrange-Poincaré reduction in the context of reduction by

subgroups. For brevity we state all claims and theorems while referring to [CMR01]

for proofs2.

Let G be a Lie-group and Gs ⊂ G a Lie-subgroup. We equip Gs with the action

defined by right translation on G. That is to gs ∈ Gs acts on G by gs : g ∈ G 7→

ggs ∈ G for each gs ∈ Gs. Let gs denote the Lie algebra of Gs. The infinitesimal

generator of ξs ∈ gs is the vector field on G given by the map g ∈ G 7→ g · ξ ∈ TgG.

If Gs acts on a manifold X we may define the equivalence relation

x1 ∼Gs x2 ⇐⇒ ∃gs ∈ Gs such that x1 = x2 · gs

for x1, x2 ∈ X. Throughout this paper we will denote the equivalence class of x ∈ X

under a right Gs action by [x]s and the set of equivalence classes by X
Gs

. For this

section we define [G] = G
Gs

the set of equivalence classes with the quotient projection

π : g ∈ G 7→ [g]s ∈ [G].

Because Lie groups act freely and properly on themselves, their subgroups do as

well. This ensures that π : G → [G] is a principal bundle (see Proposition 4.2.23 in

[AM00], see also [Ebi70] for technicalities related to infinite dimensional Lie groups).

Additionally, Gs is equipped with a right action on TG given by tangent lift of the

2In this paper we will be concerned with reduction by right group actions. The paper [CMR01]
is concerned with left group actions. However, all the content remains intact upon substituting left
actions with right actions, Adg with Ad−1

gs and adξ with − adξs .
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action on G. That is to say

gs : v ∈ TgG 7→
d

dε

∣∣∣∣
ε=0

(gε · gs) ∈ Tg·gsG,∀gs ∈ Gs

where v = dgε
dε

∣∣
ε=0

. We may denote the quotient projection τ : TG → [TG] := TG
Gs

.

One should note that Tπ 6= τ and T [G] 6= [TG]. These quotient bundles relate to

Lagrangian mechanics for the following reason: If the Lagrangian, L : TG → R,

possesses right Gs-invariance then there exists a reduced Lagrangian l : [TG] → R

defined by the condition l ◦ τ = L. One could hypothetically compute dynamics on

[TG]. However, [TG] is not a tangent bundle but a Lie-algebroid, and we can not

resort to traditional Lagrangian mechanics3. To write the dynamics in a familiar

form it is useful to find an isomorphism to the bundle T [G] ⊕ g̃s where g̃s is the

adjoint bundle (§2.4) and T [G] is the tangent bundle of [G]. There are many such

isomorphisms, but one of particular interest is an isomorphism induced by a principal

connection (§3.1).

Principal connections for subgroups The infinitesimal action of Gs on G will

not produce the entire tangent bundle, TG, but only a sub-bundle, Vs, known as the

vertical bundle. The choice of a principal connection allows one to split any vector

in TG into a part produced by infinitesimal actions of Gs and a part which is not.

We may refer to [CMR01] for proofs with left group actions. In this paper we are

concerned with right group actions which yield a slightly different set of conventions

(see for example [MMO+07] or [Ble81]). For the case of subgroups, Definition 2.4.2 for

principal connections can be written in more specific terms. A principal connection

for a subgroup Gs ⊂ G equipped with right action on G is a gs-valued one-form

A ∈
∧1(G, gs) such that

A(v · gs) = Ad−1
gs A(v) (3.1)

A(Tg · ξs) = ξs (3.2)

3this non-traditional type of mechanics is found in [Wei95, Mar01]
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where v ∈ TG, ξs ∈ gs. Similarly the horizontal and vertical distributions take a

specific form in the case of subgroups.

Definition 3.1.1 (Vertical and Horizontal Distributions for subgroups). We define

the vertical distribution

Vs := {g · ξs : ξs ∈ gs, g ∈ G}.

Additionally, a horizontal distribution is any distribution, H, such that H⊕Vs = TG.

We say that H is Gs invariant if H ·Gs ⊂ H.

Proposition 3.1.1. Given a Gs invariant horizontal distribution, H, there exists a

unique principal connection A ∈
∧1(G, gs) such that kernel(A) ≡ H. Conversely, a

principal connection, A ∈
∧1(G, gs), induces a Gs-invariant horizontal distribution

H = kernel(A).

As Vs is the kernel of Tπ we find that Tπ restricted to H is an isomorphism

between the fiber Hg ⊂ TgG and the fiber T[g][G]. Therefore, given x ∈ [G] and

g ∈ π−1(x), there exists a mapping called the horizontal lift which takes a vector

ẋ ∈ Tx[G] to the unique vector ẋ↑g ∈ Hg, such that Tπ(ẋ↑g) = ẋ. Additionally, one can

take a curve x(t) ∈ [G], set ẋ = dx
dt

, and solve the ODE on G given by:

ġ(t) = ẋ↑g(t)(t)

for some initial condition g ∈ π−1(x(0)). The solution curve, denoted x↑g(t) ∈ G, is

called the horizontal lift of the curve x(t) ∈ [G].

Proposition 3.1.2. Given a principal connection, A : TG → gs, the induced hori-

zontal lift satisfies

ẋ↑g · gs = ẋ↑g·gs

for any vector ẋ ∈ T [G], g ∈ π−1(x), gs ∈ Gs. Moreover, for any curve x(t) ∈ [G] we

have:

x↑g0(t) · gs = x↑g0·gs(t).
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Since H ⊕ Vs = TG is a direct sum, there exist projections ver : TG → Vs and

hor : TG→ H such that v = hor(v) + ver(v) for any v ∈ TG. This allows us to state

the following corollary to 3.1.2:

Corollary 3.1.1. Given a principal connection A : TG→ gs the Lie bracket of vector

fields satisfies

[ver(X), hor(Y )] = 0

for any vector fields X, Y ∈ X(G).

We conclude this section with some thoughts on how infinitesimal loops in T [G]

should be expressed by a principal connection. Note that Vs is integrable by the

Frobenius theorem. However, the horizontal distribution, H = kernel(A), may not

be. The curvature tensor (to be defined) is a gs-valued two-form which measures the

non-integrability of H.

Moreover, the curvature tensor can also be written more specifically in the case

of subgroup reduction. Given A : TG→ gs, we define dA to be the unique gs-valued

two-form such that

〈µ, dA〉 = d〈µ,A〉

for an arbitrary µ ∈ g∗s. The curvature tensor of A is the gs valued two-form defined

by

B(v, w) = dA(v, w) + [A(v), A(w)].

From this, it may not be entirely clear how B measures non-integrability. The fol-

lowing proposition addresses this.

Proposition 3.1.3. Given vector-fields X, Y ∈ X(G) we have the identity

B(X, Y ) = A([hor(X), hor(Y )])

where [, ] is the Lie-bracket on vector-fields.

As a result, H is integrable if and only if B = 0.



32

3.2 Subgroup Reduction for Fluids

In the previous section we assembled the necessary constructions for subgroup reduc-

tion. In this section we then specialize this construction to the case of fluids. Again,

Dµ(M) is the infinite-dimensional Lie group of volume-preserving diffeomorphisms of

a Riemannian manifold (M,�,�). Let �1, . . . ,�n ∈ M be a set of points. We use

the shorthand � = (�1, . . . ,�n) and F (�) = (F (�1), . . . , F (�n)) for any map F

with domain M . We can then define the isotropy subgroup,

G� := {ϕ ∈ Dµ(M) : ϕ(�) = �}.

We will denote an arbitrary element of G� by g� and an arbitrary element of Dµ(M)

by ϕ. It is simple to observe that G� is a Lie subgroup of Dµ(M). The Lie algebra

of G� is the Lie subalgebra g� ⊂ Xdiv(M) consisting of divergence-free vector fields

ξ� on M such that ξ�(�) = 0 (see Figure 3.4 ). Additionally, note that a tangent

vector in TϕDµ(M) is a mapping δϕ : m ∈ M 7→ δϕ(m) ∈ Tϕ(m)M . This allows

us to understand the infinitesimal generator of ξ ∈ g� on Dµ(M) as the mapping

ϕ 7→ Tϕ · ξ, where we view ξ as mapping from m ∈M → TmM and Tϕ as a mapping

TmM → Tϕ(m)M .

Figure 3.4 – The vector field represents an element of g� where � is given by the red
dot.

The goal of this section will be to perform LP-reduction on TDµ(M) by the

symmetry group G�. As in the previous section, we equip G� with the right action

on Dµ(M) and set [Dµ(M)] := Dµ(M)

G�
with projection π : Dµ(M)→ [Dµ(M)].
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Proposition 3.2.1. Let Qpart be the configuration manifold for n non-overlapping

particles. That is to say,

Qpart = {(m1, . . . ,mn) ∈M × · · · ×M : i 6= j =⇒ mi 6= mj}.

Then [Dµ(M)] ≡ Qpart.

Proof. Define the set-valued map Ψ : Qpart → ℘(Dµ(M)),

Ψ(m1, . . . ,mn) := {ϕ ∈ Dµ(M) : ϕ(�) = (m1, . . . ,mn)}.

We first prove that Ψ maps to co-sets. Take an arbitrary g ∈ G. Then we find

Ψ(m1, . . . ,mn) · g = {ϕ ◦ g : ϕ(�) = (m1, . . . ,mn)}

= {ϕ ◦ g : ϕ ◦ g(�) = (m1, . . . ,mn)}

= {ϕ : ϕ(�) = (m1, . . . ,mn)}

= Ψ(m1, . . . ,mn).

This implies that Ψ maps to co-sets of G�, i.e., elements of [Dµ(M)]. Additionally

we find

Ψ−1(ϕ ·G�) = ϕ(�),

so that Ψ is a bijection between Qpart and [Dµ(M)].

This proposition highlights the link that this paper seeks to make between LP-

reduction and particle-based numerical methods for fluids. From this point on, we

may write an element q ∈ Qpart as q = (q1, . . . , qn), where qi ∈ M for i = 1, . . . , n.

Additionally, the projection map π : Dµ(M)→ Qpart is given explicitly by

π(ϕ) ≡ ϕ(�) := (ϕ(�1), . . . , ϕ(�n)).

As explained in §3.1 for arbitrary Lie subgroups, G� also acts on TDµ(M) by the

tangent lift of the right action. We can view a vector δϕ ∈ TϕDµ(M) as a mapping
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δϕ : m ∈ M → δϕ(m) ∈ Tϕ(m)M . The right-action of G on T (Dµ(M)) is given by

composition of maps. That is, δϕ · g := δϕ ◦ g. This right-action on TDµ(M) allows

us to define the quotient space [TDµ(M)] := TDµ(M)

G�
with the quotient projection

τ : TDµ(M)→ [TDµ(M)]. A Lagrangian on TDµ(M) is right invariant with respect

to G� if and only if there exists a reduced Lagrangian l : [TDµ(M)]→ R defined by

the property that l ◦ τ ≡ L.

Principal connections for fluids In this section we seek to understand principal

connections of the type A ∈
∧1(Dµ(M), g�). First, it is notable that the vertical

space above ϕ ∈ Dµ(M) is given by

V�(ϕ) ≡ {Tϕ · ξ ∈ TϕDµ(M) |ξ ∈ g�}

and the vertical bundle is the union of these vertical spaces. We begin this section

by establishing a correspondence between principal connections and reconstruction

methods for vector fields.

Definition 3.2.1 (Reconstruction Method). A reconstruction method is a linear

immersion R : TQpart ↪→ Xdiv(M) such that for (q, q̇) ∈ TQpart we have that

R(q̇)(q) = q̇.

A reconstruction mapping takes a set of velocities for n point particles and returns

a vector field on all of M such that the data at the location of the particles matches

(see Figure 3.2). Thus, R serves as a protocol for estimating the spatial velocity field

of a fluid given only the velocity of a finite set of particles. This interpretation of R

will allow us to do error analysis in the final sections of this paper.

Proposition 3.2.2. Let R : TQpart ↪→ Xdiv(M) be a reconstruction mapping. Then

R induces a horizontal distribution

H = {R(q, q̇) ◦ ϕ : q = ϕ(�)}
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and a principal connection

A(ϕ̇) = Tϕ−1 · δϕ− ϕ∗R(δϕ(�)).

Conversely, given a principal connection, A, we can define a reconstruction mapping,

R(q̇) = q̇↑ϕ ◦ ϕ−1.

Proof. Let H := {R(q, q̇) ◦ ϕ : π(ϕ) = q}. We first prove that H is a horizontal

distribution: It is simple to observe that H is a distribution because R is linear on

each tangent fiber of TQpart. We see that for an arbitrary g� ∈ G�,

H · g� = {R(q, q̇) ◦ ϕ ◦ g� : π(ϕ) = q}

= {R(q̇) ◦ (ϕ ◦ g�) : π(ϕ ◦ g�) = q}

= H.

Therefore H is G� invariant. We need only prove that H is complementary to the

vertical distribution V�. Let (q, q̇) ∈ TQpart. For an arbitrary ϕ ∈ π−1(q) we find

R(q, q̇) ◦ ϕ is not contained in the fiber V�(ϕ) since

Tπ(R(q, q̇) ◦ ϕ) = (R(q, q̇) ◦ ϕ)(�)

= R(q, q̇)(q)

= q̇.

Yet Tπ(V�(ϕ)) = 0. Since q̇ is arbitrary we find Tπ(R(TqQpart) ◦ ϕ) = TqQpart so

that H(ϕ) is complementary to V�(ϕ). Allowing q to vary we see that H and V� are

complementary distributions. Thus H is a horizontal distribution.

Finally, let A be the unique principal connection defined by the distribution H as

in Proposition 3.1.1. This would mean A satisfies

δϕ = Tϕ · A(δϕ)︸ ︷︷ ︸
vertical part

+ (δϕ(�))↑ϕ︸ ︷︷ ︸
horizontal part

.
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Upon substituting the identity R(δϕ(�)) ◦ ϕ = (δϕ(�))↑ϕ we find A(δϕ) is given by

the desired expression.

To prove the converse, let A be a principal connection with horizontal distribution

H. Let R(q, q̇) := q̇↑ϕ ◦ϕ−1, where q̇↑ϕ is the horizontal lift above some ϕ ∈ π−1(q). We

must prove that R is a reconstruction mapping. This can be done by alternatively

proving that R is independent of ϕ and is G� invariant. Let g� ∈ G�. We then find

by Proposition 3.1.2 that:

q̇↑ϕ◦g�(ϕ ◦ g�)−1 = q̇↑ϕ◦g� ◦ g
−1
� ◦ ϕ−1

= q̇↑ϕ ◦ ϕ−1.

By inspection, R is linear and injective. Lastly we note that Tπ(q̇↑ϕ) = q̇ by the defi-

nition of the horizontal lift. Finally q̇ = Tπ(q̇↑ϕ) ≡ q̇↑ϕ(�) = q̇↑ϕ(ϕ−1(q)) = R(q, q̇)(q).

Thus R is a reconstruction mapping.

Proposition 3.2.2 allows us to replace any instance of a chosen principal connection

with a reconstruction map. There are a number of constructions which are induced

by the principal connection. It would be advantageous to rewrite all of them using

reconstruction mappings instead. Whenever there is an opportunity to express a

more obscure concept with a more intuitive one, we should take it. For example,

the reduced curvature tensor will be expressed as a difference of brackets composed

with the reconstruction method. We will postpone this construction for the next

subsection.

For now we shall continue making the geometry more tractable. To begin, we will

eliminate the use of the projection hor in the curvature tensor formula (or alternatively

we will eliminate the “dA” term in the definition). However, first we must state the

following lemma which will provide a Lie bracket on the tangent fibers of Dµ(M) (as

opposed to a bracket on the set of vector fields).

Lemma 3.2.1. Let [, ]M be the Lie-bracket of vector fields on M and [, ]Dµ(M) be the

Lie bracket of vector fields on Dµ(M). Let ρtriv : TDµ(M) → Xdiv(M) be the right
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trivializing morphism δϕ 7→ δϕ ◦ ϕ−1. Then for X, Y ∈ X(Dµ(M)) we have that

[ρtriv ◦X, ρtriv ◦ Y ]M = ρtriv ◦ [X, Y ]Dµ(M).

Proof. Using the dynamic definition of Lie-derivative and evaluating at a ϕ ∈ Dµ(M)

we have that

[X, Y ]Dµ(M)(ϕ) = ∂t∂sϕt,s − ∂s∂tϕt,s

where ∂s = d
ds

∣∣
s=0

, ∂t = d
dt

∣∣
t=0

and ϕs,t is such that ϕ0,0 = ϕ and ∂tϕt,0 = X(ϕ) and

∂sϕ0,s = Y (ϕ). Applying ρtriv, we find

ρtriv([X, Y ]Dµ(M)(ϕ)) = ∂t∂s(ϕt,s ◦ ϕ−1)− ∂s∂t(ϕt,s ◦ ϕ−1)

= [ρtriv(X(ϕ)), ρtriv(Y (ϕ))]M .

The take-away message from this lemma is that for each ϕ ∈ Dµ(M)

[X, Y ]Dµ(M)(ϕ) = [X(ϕ) ◦ ϕ−1, Y (ϕ) ◦ ϕ−1]M ◦ ϕ

for X, Y ∈ X(Dµ(M)). The right-hand side only depends on the values of X and Y

at ϕ and provides a bracket on the vector space TϕDµ(M), as opposed to the set of

vector fields X(Dµ(M)). With Lemma 3.2.1, we are now prepared to derive a more

tractable expression for the curvature tensor.

Proposition 3.2.3. Given a principal connection A : TDµ(M)→ g�, the curvature

tensor B is given by

B(δϕ, ϕ̇) = A([δϕ, ϕ̇])− [A(δϕ), A(ϕ̇)]

for δϕ, ϕ̇ ∈ TϕDµ(M).



38

Proof. First we use Proposition 3.1.3 to write

B(X, Y ) = A([hor ◦X, hor ◦ Y ]Dµ(M))

for vector fields X, Y ∈ X(Dµ(M)). By Lemma 3.2.1 we can apply B to vectors

δϕ, ϕ̇ ∈ TϕDµ(M) using the expression

B(δϕ, ϕ̇) = A([hor(δϕ), ver(ϕ̇)]).

Substituting hor(δϕ) = δϕ− ver(δϕ) we find

B(δϕ, ϕ̇) = A([δϕ, ϕ̇])− A([δϕ, ver(ϕ̇)])− A([ver(δϕ), ϕ̇]) + A([ver(δϕ), ver(ϕ̇)]).

Since [hor(δϕ), ver(ϕ̇)] = 0, by Corollary 3.1.1 we see that

A([δϕ, ver(ϕ̇)]) = A([ver(δϕ), ver(ϕ̇)])

and similarly

A([ver(δϕ), ϕ̇]) = A([ver(δϕ), ver(ϕ̇)]).

Finally, given ξ, η ∈ g� such that ver(δϕ) = Tϕ · ξ and ver(ϕ̇) = Tϕ · η, we find

A([ver(δϕ), ver(ϕ̇)]) = A([Tϕ · ξ, Tϕ · η])

= A(Tϕ · [ξ, η])

= [ξ, η]

= [A(ver(δϕ)), A(ver(ϕ̇))]

= [A(δϕ), A(ϕ̇)].

Thus,

B(δϕ, ϕ̇) = A([δϕ, ϕ̇])− [A(δϕ), A(ϕ̇)].
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The adjoint bundle, g̃� In this section we prove that the adjoint bundle g̃� is

isomorphic to the set

E := {(q, ξq) ∈ Q× Xdiv(M) : ξq(q) = 0}

equipped with the bundle projection πE(q, ξq) = q and the bracket [(q, ξq), (q, ηq)] =

(q, [ξq, ηq]).
4

Proposition 3.2.4. For each q ∈ Q the map

Ψ([ϕ, ξ�]�) = (π(ϕ), ϕ∗ξ�)

is a vector bundle and bracket-preserving isomorphism from g̃� to E with inverse

Ψ−1(q, ξq) = [ϕ, ϕ∗ξq]�

for arbitrary ϕ ∈ π−1(q). That is, Ψ makes the following diagrams commute.

g̃� E

Qpart

Ψ

π̃ πE

,

g̃� ⊕ g̃� E ⊕ E

g̃� E

Ψ⊕Ψ

[, ] [, ]

Ψ

Proof. First, we check that Ψ is well defined. Let [ϕ, ξ�]� ∈ g̃�. Then in order for Ψ

to be well defined we must verify it maps the expression “[ϕ, ξ]�” to the same place

as the expression “[ϕ ◦ g�,Ad−1
g� ξ�]�” for an arbitrary g� ∈ G�. We see that:

Ψ([ϕ ◦ g�,Ad−1
g� ξ�]�) = (π(ϕ ◦ g�), (ϕ ◦ g�)∗(Ad−1

g� (ξ�)))

= (π(ϕ), Tϕ · Tg� · (Tg−1
� · ξ� ◦ g�) ◦ (ϕ ◦ g�)−1)

= (π(ϕ), Tϕ · ξ� ◦ ϕ−1)

= Ψ([ϕ, ξ�]�).

4 The notation ξq for a vector field such that ξq(q) = 0 is intentionally suggestive. The element
ξq is in the Lie algebra for the isotropy group of q, just as ξ� has stood for a Lie algebra element of
the isotropy group of �.
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Additionally, it is simple to observe that if q = ϕ(�) then ϕ∗ξ�(q) = 0, so that

Ψ([ϕ, ξ�]�) ∈ ĝ�

Second, we see that π̃ = πE ◦Ψ by inspection, so that Ψ is a bundle morphism.

Third, we find

[Ψ([ϕ, ξ�]�),Ψ([ϕ, η�]�)] = (π(ϕ), [ϕ∗ξ�, ϕ∗η�])

= (π(ϕ), ϕ∗[ξ�, η�])

= Ψ([ϕ, [ξ�, η�]]�)

= Ψ([ϕ, ξ�]�, [ϕ, η�]�).

Finally, we show Ψ is invertible. We see that

Ψ−1(Ψ([ϕ, ξ�])) = Ψ−1(q, ϕ∗ξ�) = [ϕ, ϕ∗(ϕ∗ξ�)] = [ϕ, ξ�],

and conversely,

Ψ(Ψ−1(q, ξq)) = Ψ([ϕ, ϕ∗ξq]) = (π(ϕ), ϕ∗(ϕ
∗ξq)) = (q, ξq).

Additionally, the parallel translation on g̃� given by

[ϕ, ξ�]� 7→ [φ, ξ�]�

induces a covariant derivative along a curve in [ϕt, ξ�(t)] ∈ g̃� given by

D

Dt
[ϕt, ξ�(t)] = [ϕt, [A(ϕ̇), ξ�] + ξ̇�],

where ξ̇� is the time derivative of the curve ξ�(t) ∈ Xdiv(M).

Proposition 3.2.5. The covariant derivative D
Dt

on E which satisfies the commuta-

tive diagram,
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curves in g̃� curves in g̃�

curves in E curves in E

D
Dt

Ψ Ψ

D
Dt

is given by
D

Dt
(q, ξq) = [q, [R(q̇), ξq] + ξ̇q]

above a curve q(t) ∈ Qpart with q̇ = dq
dt

.

Proof. We need to show

D

Dt
(q, ξq) = Ψ

(
D

Dt
(Ψ−1(q, ξq)

)

for an arbitrary curve (q, ξq)(t) ∈ E. Let ϕt = q↑ϕ be the horizontal lift of the curve

q(t) with the initial condition ϕ ∈ π−1(q(0)). Then we find

D

Dt

(
Ψ−1(q, ξq)

)
=

D

Dt
([ϕt, ϕ

∗
t ξq])

= [ϕ, [A(ϕ̇), ϕ∗ξq] +
d

dt
(ϕ∗ξq)].

Noting that ϕ̇ is horizontal, we see that

D

Dt

(
Ψ−1(q, ξq)

)
= [ϕ,

d

dt
(ϕ∗t ξq)].

Applying the product rule and using the dynamic definition of the Lie-derivative gives

us

D

Dt

(
Ψ−1(q, ξq)

)
= [ϕ, ϕ∗[ϕ̇t ◦ ϕ−1, ξq] + ϕ∗(ξ̇q)]

= [ϕ, ϕ∗[r(q̇), ξq] + ϕ∗(ξq)].

Applying the map Ψ to both sides completes the proof.

All of this exploration of the adjoint bundle, g̃�, is merely prelude to an under-
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standing of the coadjoint bundle, g̃∗�, the dual vector bundle to g̃�. To get a feel for

the coadjoint bundle, note that the dual space to Xdiv(M) is identical to the space

of one-forms modulo the space exact forms M (see [AK92, Arn66]). Therefore, the

coadjoint bundle is the quotient space

g̃∗� := {(ϕ, α�) ·G� : ϕ ∈ Dµ(M), α� ∈
∧1(M\�)

d
∧0(M\�)

}.

We define the bundle

E∗ := {(q, αq) ∈ Q×
∧1(M\q)
d
∧0(M\q)

}

dual to E to find that E∗ is isomorphic to g̃∗� through the isomorphism

[ϕ, α�] ∈ g̃∗� 7→ (π(ϕ), ϕ∗α�) ∈ ĝ∗�

in the same way that E is isomorphic to g̃�. In summary, E∗ ≡ (Ψ∗)−1(g̃∗�).

Last, the covariant derivative, D
Dt

, on E induces a unique covariant derivative on

E∗.

Proposition 3.2.6. Given a curve (q, αq)(t) ∈ E∗, the covariant derivative on E∗

such that

d

dt
〈(q, αq), (q, ξq)〉 = 〈 D

Dt
(q, αq), (q, ξq)〉+ 〈(q, αq),

D

Dt
(q, ξq)〉

for an arbitrary curve (q, ξq)(t) ∈ E is given by the expression

D

Dt
(q, αq) = (q, α̇q − ad∗R(q,q̇) αq)

where α̇q is the time-derivative of the curve αq(t) ∈
∧1(M\q(t))
d
∧0(M\q(t)) viewed as a one-form

on M modulo an exact form on M by arbitrary extension.
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Proof. By the required condition and the expression for D
Dt

on E, we find:

〈 D
Dt

(q, αq), (q, ξq)〉 = 〈αq,−[R(q, q̇), ξq]− ξ̇q〉+
d

dt
(〈(q, αq), (q, ξq)〉)

= 〈(q, α̇q − ad∗R(q,q̇) αq), (q, ξq)〉+ 〈(q, αq)− (q, αq), (q, ξ̇q)〉

= 〈(q, α̇q − ad∗R(q,q̇) αq), (q, ξq)〉.

Since (q, ξq) is arbitrary the result follows.

From this point on, we equate g̃� with E and casually pass between the notations

(q, ξq) and [ϕ, ξ�]� for elements of g̃� and E. In terms of calculations we will have a

preference for E. The same statement applies to g̃∗� and E∗ as well.

Proposition 3.2.7. The reduced curvature tensor (expressed on E) is given by

B̃(q̇, δq) = [R(q, q̇),R(q, δq)]−R(q, [R(q, q̇),R(q, δq)](q))

≡ verq ([R(q, q̇),R(q, δq)]) .

Proof. Simply use the definition and the map Ψ to find

B̃(q̇, δq) := [ϕ,B(q̇↑ϕ, δq
↑
ϕ)]�

≡ ϕ∗B(q̇↑ϕ, δq
↑
ϕ).

Since B(X, Y ) = A([X, Y ])− [A(X), A(Y )] and q̇↑ϕ, δq
↑
ϕ are horizontal we find.

= ϕ∗A([q̇↑ϕ, δq
↑
ϕ])

= ϕ∗
(
Tϕ−1 · [q̇↑ϕ, δq↑ϕ]− ϕ∗(R([q̇↑ϕ, δq

↑
ϕ](q)))

)
= ϕ∗

(
Tϕ−1[R(q, q̇) ◦ ϕ,R(q, δq) ◦ ϕ]

)
−R(q, [R(q, q̇),R(q, δq)](q))

= ϕ∗
(
Tϕ−1[R(q, q̇),R(q, δq)] ◦ ϕ

)
−R(q, [R(q, q̇),R(q, δq)](q))

= [R(q, q̇),R(q, δq)]−R(q, [R(q, q̇),R(q, δq)](q)).
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3.3 Equations of Motion on TQpart ⊕ E

Consider the kinetic Lagrangian, L : TDµ(M)→ R, given by

L(ϕ, ϕ̇) =
1

2

∫
M

‖ϕ̇‖2d3x.

As L is G� invariant we may alternatively use the reduced Lagrangian on TQpart⊕ g̃�

given by

l(q, q̇, ξq) =
1

2

∫
M

‖q̇↑ϕ ◦ ϕ−1 + ξq‖2d3x, (3.3)

where ϕ is an arbitrary element of π−1(q). In particular, l has the form

l(q, q̇, ξq) = Lpart(q, q̇) + L×(q, q̇, ξq) + l�(ξq), (3.4)

where

Lpart(q, q̇) :=
1

2

∫
M

‖R(q, q̇)‖2d3x :=
1

2
� q̇, q̇ �part:=

1

2
gij q̇

iq̇j,

L×(q, q̇, ξq) :=

∫
M

〈R(q, q̇), ξq〉d3x = 〈P(q, q̇), ξq〉

l�(ξq) :=
1

2

∫
M

‖ξq‖2d3x :=
1

2
� ξq, ξq �E .

We have imposed a coordinate system (q̇1, . . . , q̇N) on the finite-dimensional space

Q so that Lpart is induced by some metric tensor on Qpart given in coordinates by

gij. It is simple to observe that Lpart and l� come from inner products on the vector

bundles TQ and E, respectively, which we have denoted by�,�part: TQ⊕TQ→ R

and �,�E: E ⊕ E → R. Additionally l× comes from a vector bundle morphism

P : TQ→ g̃∗ defined by:

〈P(q, q̇), (q, ξq)〉 :=

∫
M

〈R(q, q̇), ξq〉Mdx.

Before we derive the equations of motion, we should understand the expressions
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∂l
∂q

and B̃µ in more detail.

Proposition 3.3.1. Let q(t) be a curve in Qpart and q̇(t) = dq
dt
∈ TQpart. For each

time t we can define the linear map Γq̇(t) : Tq(t)Qpart → Tq(t)Qpart by

Γq̇(t)(δq) = ∇δq(q̇).

Additionally, since R is a vector bundle map we may define the linear map on the

tangent fiber above q by Rq : TqQpart → Xdiv(M) and the dual map R∗q : (Xdiv(M))∗ →

T ∗qQpart. The fiber derivative of R above q ∈ Qpart is denoted as FRq : TqQ →

Xdiv(M). The dual is denoted as FR∗q : (Xdiv(M))∗ → T ∗Qpart. Then, the partial

derivative ∂l
∂q

= ∂Lpart

∂q
+ ∂L×

∂q
+ ∂l�

∂q
at the point (q, q̇) is the sum of the terms:

∂Lpart

∂q
= 0,

∂L×
∂q

= −R∗q · ξq[[ (R(q, q̇))] + Γ∗q̇ · FR∗q · [(ξq),

∂l�
∂q

= R∗q · ad∗ξq
(
ξ[q
)
,

where [ refers to contraction with the metric tensor �,�.

Proof. It is easiest to consider Lpart first. We find by our definition of the expression

∂
∂q

given in §2.2 that

〈∂Lpart

∂q
, δq〉 =

d

dε

∣∣∣∣
ε=0

(L(qε, q̇ε))

for some curve (qε, q̇ε), such that dqε
dε

∣∣
ε=0

= δq and Dq̇ε
Dε

= 0. However, this parallel

transport of q̇ is precisely the type of change which does not alter the value of Lpart

which comes from the metric that induced the parallel transport. Thus ∂Lpart

∂q
= 0. In

particular, the parallel transport of (q, q̇, ξ) along a curve qε yields the variations δq̇ =

∇δq q̇ and δξq = −[R(q, δq), ξq]. By applying the same idea to the other Lagrangians,

we find

〈∂L×
∂q

, δq〉 =� FR(q, q̇) · ∇δqq̇, ξq �︸ ︷︷ ︸
T1

+� R(q, q̇),−[R(q, δq), ξq]�︸ ︷︷ ︸
T2

.
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We see that

T1 =� FRq · Γq̇(δq), ξq �

= 〈ξ[q,FRq · Γq̇(δq)〉

= 〈Γ∗q̇ · FR∗qξ[q, δq〉.

By manipulations in the same spirit, we find

T2 = 〈R∗q ad∗ξq
(
ξ[q
)
, δq〉.

Thus
∂L×
∂q

= Γ∗q̇ · FR∗qξ[q +R∗ ad∗ξq
(
ξ[q
)
.

The final derivative ∂l�
∂q

is derived in the same vein.

Proposition 3.3.2. The force from the curvature term is

iq̇B̃µ = R∗q
(
ad∗R(q,q̇)

[
ver∗

(
ξ[q + (R(q, q̇))[

)])
.

Proof. Define the momentum as µ = ∂l
∂ξ

= ξ[q + (R(q, q̇))[. Thus for an arbitrary δq,

we find

〈iq̇B̃µ, δq〉 : = 〈µ,B(q̇, δq)〉

= 〈ξ[q + (R(q, q̇))[, verq ([R(q, q̇),R(q, δq)])〉

= 〈ver∗q
(
ξ[q + (R(q, q̇)[)

)
, adR(q,q̇) (R(q, δq))〉

= 〈R∗q
(
ad∗R(q,q̇)

[
ver∗q

(
ξ[q + (R(q, q̇))[

)])
, δq〉.

The result follows because δq is arbitrary.

Putting together all of the pieces, the Lagrange-Poincaré equations can then be
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written as

iq̇B̃µ =
D

Dt

(
q̇[ + P∗(q, ξq)

)
− ∂l

∂q
, (3.5)

Dξ[q
Dt

= ad∗ξq
(
P(q, q̇) + ξ[q

)
− D

Dt
(P(q, q̇)) , (3.6)

where

iq̇B̃µ = R∗q
(
ad∗R(q,q̇)

[
ver∗

(
ξ[q + (R(q, q̇))[

)])
, (3.7)

∂l

∂q
= R∗q · ad∗ξq

(
ξ[q
)
−R∗q · ξq[[ (R(q, q̇))] + Γ∗q̇ · FR∗q · [(ξq). (3.8)

These equations still evolve on the infinite-dimensional vector bundle TQpart ⊕ E

and are by most regards “more difficult” than the inviscid Euler equations. At this

point, the reader may feel as if we have taken a step backwards. Here is the upshot:

Particle methods are equivalent to ODEs on TQpart. Therefore, error analysis of

particle methods may be performed by comparing the ODE of the particle method

to equation (3.5) via the natural embedding TQpart ↪→ TQpart ⊕ E.

3.4 Particle Methods

The inner product �,�Q makes (Q,�,�Q) into a Riemannian manifold. If one

desires to estimate the dynamics in Q without reference to the bundle E, then a

simple estimate would be given by Lpart.
5 Additionally, when computing dynamics,

we could apply the non-holonomic constraint that the spatial velocity field is always

in the range of R, so that the E component remains 0 for all time. The solution of

this constrained system would be a geodesic flow on (Q,�,�Q), and would produce

a particle method for estimating fluid motion. In this section we will explore this idea

in the context of the existing method known as “smoothed particle hydrodynamics”,

and additionally create new particle methods. Lastly, the non-holonomic constraint

5This would be an entropy-minimizing approximation if we view the vertical component as a
random variable with mean 0.
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to the range of R can be relaxed to allow for a first-order (in time) correction to the

equations of motion. This will be explored in the final section on error analysis.

Smoothed particle hydrodynamics Smooth particle methods track the position

of a finite number of particles in an open set M ⊂ R3. The motion of the particles

satisfies the Euler-Lagrange equations for a Lagrangian of the form 1
2
q̇2 − V (q) using

the Euclidean metric on Rd and a potential energy of the form

V (q) =
∑
i<j

W (qi − qj).

The function W is usually taken to be a spherically symmetric function of Rd with

concentrated mass about the origin (e.g., a Gaussian blob).

The integral curves of this system are identical to those of the Lagrangian system

given by

Lspm(q, q̇) =
1

2
(E0 − V (q))

∑
i

q̇i · q̇i

where E0 is the energy of the initial condition and · is a dot product on Rd (see

“Jacobi Metric” in [AM00]).

Therefore, if there exists a principal connection, A, such that

〈q̇, δq〉Q = (E0 − V (q))
∑
i

q̇i · δqi, (3.9)

then the dynamics of the exact Lagrangian (3.4) constrained to TQpart ⊂ TQpart⊕E

will match the dynamics of a smoothed particle method. We can do this by setting

the horizontal space above q ∈ Qpart to be Hq := span{Xq
i,µ}i,µ, where we take the

vector fields {Xq
i,µ} to be an orthonormal basis. Then the vector fields Xq

i,µ must

satisfy (3.9), implying:

Xq
i,µ(qj) = δij

∂

∂xµ

∣∣∣∣
qi

, (3.10)∫
M

〈Xq
i,µ, X

q
j,ν〉dx = δijδµν ·

√
E0 − V (q). (3.11)
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However, determining the basis {Xq
i,µ} is an underdetermined problem. We could

make it well posed by defining an energy to minimize, such as

C{Xq
i,µ} =

∑
i,µ

∫
M

|shear(Xq
i,µ)|2dx

where shear(X) =
∑

i,j
∂Xi

∂xj
. If M has a boundary, we would need to impose boundary

conditions as well. This is admittedly a sizable problem of a scale which is impractical

to solve. Additionally, this cost function is chosen in a somewhat arbitrary fashion.

In summary, there does not appear to be a clear choice of the “best” principal connec-

tion for the smoothed particle method. However, there are a number of preexisting

reconstruction methods. In particular, one takes the smoothing kernel of the method,

δh(x), and defines the mapping S : TQpart → X(M) by S(q, q̇)(x) =
∑

i q̇iδh(x). How-

ever this does not produce divergence-free vector fields. Taking the divergence-free

component of S by the Hodge decomposition would provide us with a valid recon-

struction method. However, we would not have a reconstruction method that is

compatible with (3.9). We suspect that the choice of “best” reconstruction method

will depend upon circumstances which vary between scenarios. Therefore we end

our discussion of SPM here so that we can discuss the construction of new particle

methods in which the error analysis is taken into account by construction.

New particle methods In the case of smoothed particle methods it was found that

the error analysis could not be completed without choosing a principal connection

compatible with the dynamics. It was found that finding such a principal connection

was an underdetermined problem. In this section we seek to construct a particle

method by choosing this principal connection first. One advantage to building particle

methods this way is that the error analysis is clear by construction. More specifically,

new particle methods can be made by adding the constraint that the E component

be 0. This suppresses the vertical equation (3.6) and sets ∂l
∂q

= 0. The remaining
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constrained horizontal equation then reads:

iq̇B̃µ =
D

Dt

(
q̇[ + P∗(q, ξq)

)
,

iq̇B̃µ = R∗q
(

ad∗R(q,q̇)

[
ver∗ (R(q, q̇))[

])
.

We will call the integration of these equations method A. Another way to describe

method A is to consider the exact equations of motion on TQpart⊕E as a direct sum

of two vector-field X(q, q̇, ξ)⊕ Y (q, q̇, ξ). Then method A is given by the vector field

X̃ on TQpart defined by X̃(q, q̇) := X(q, q̇, 0).

Method A seeks to minimize the infinitesimal time error, but neglects much

the geometry of Lagrangian mechanics. Alternatively, one could construct methods

based on variational principles by maximizing the Lagrangian on the submanifold of

TQpart⊕E where the E component is 0 by adding a non-holonomic constraint which

forces the spatial velocity field to be in the range of some reconstruction mapping.

This would be equivalent to executing the following sequence:

1. Choose a reconstruction mapping R : TQpart → Xdiv(M).

2. Compute the inner product

� q̇, δq �part:=

∫
M

� R(q, q̇),R(q, δq)� dx.

3. Set

Lpart(q, q̇) =
1

2
� q̇, q̇ �part .

4. The Euler-Lagrange equations for Lpart are the geodesic equations on (Q,�

,�part); these equations are the numerical method induced by R.

We will call this second approach method B. In the limit of infinitesimal time

steps, method B will preserve energy (which happens to be equal to Lpart). Using

a variational integrator, method B can conserve energy over large timescales (see

[HLW02] or [MW01]).
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However, method A is more accurate than method B in infinitesimal time because

it incorporates the curvature term iq̇B̃µ. This is a major difference with traditional

smooth particle methods which do not exhibit these forces. However, introducing

the curvature term destroys the geometric structure of solving geodesic equations. If

preservation of conserved quantities such as energy and momenta are important, then

method A may be a better choice.

Infinitesimal time error analysis We can perform error analysis of method A at

time t = 0 by comparing the geodesic equations on (Q,�,�part) to the Lagrange-

Poincaré equations (3.5) and (3.6). At time t = 0 let q(0) = q0 ∈ Qpart. if u0 ∈

Xdiv(M) is the exact initial condition of a fluid spatial velocity field and q̇0 = u(q0),

then the vertical component is

ξq(0) = R(q0, q̇0)− u0 ∈ E.

The vertical component ξq at t = 0 represents the error of the estimate R(q0, q̇0) in

reconstructing u0. In the case where ξq(0) = 0, then ξq(t) satisfies the equation

Dξ[q
Dt

= − D

Dt
(P(q, q̇)) (3.12)

at time t = 0.

Additionally, at t = 0 our estimate of the horizontal equations will be wrong

because we will be missing the curvature term. In method B, we include the curvature

term. For the sake of accuracy in infinitesimal time, method B deceptively seems like

a good idea. However, method B would likely destroy the symplectic structure and

produce a non-conservative ODE on TQ.

Remeshing One may desire to remove particles from dense areas and place them

in less-dense areas in order to keep the particle spacing below some threshold. One of

the difficulties with particle methods is that it is not clear how to do this. Even if one

knows how they want to place the particles, it is not clear how to choose the velocity
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of the particles. However, the map R : TQpart → Xdiv(M) provides one means of

doing just this. Given a configuration of particles q ∈ Qpart with velocity q̇, if we

wish to move the particles to the configuration qnew ∈ Qpart we can assign them the

velocity q̇new = R(q̇)(qnew).

This change from configuration q to configuration qnew would alter the velocity

field estimate (given by R) by the amount

∆ = R(qnew, q̇new)−R(q, q̇).

Due to our choice of q̇new, the vector field ∆ ∈ Xdiv(M) is such that ∆(qnew) = 0, so

(qnew,∆) ∈ E. This is consistent with our interpretation of the vector bundle, E, as

the space which stores the error of our reconstructed estimates. For certain cases ∆ is

zero, and we can ignore it. That is, we may move from configuration q to qnew without

changing the estimated spatial velocity field. This would change the dynamics, but

it will allow us to derive an error bound. We will see such a case in the next section.

3.5 An Example on T2

In this section we will carry out this procedure on T2 viewed as C
2πZ+2πiZ . Assume the

number of particles is n = N2 for some integer N . Define the complex vector fields

Lk = iei(k1x+k2y)(k2
∂

∂x
− k1

∂

∂y
), k1, k2 = 1, . . . , N.

Each Lk corresponds to two real vector fields by taking the real and imaginary parts.

We find that

[Lk, Lj] = −i · (k2j1 − j2k1)Lk+j.
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Additionally the vector fields {Lk} form an orthogonal basis for square integrable

divergence-free vector fields (see [Zei91])6. Now let X1, . . . , Xn be the sequence

L1,0 , L2,0 , . . . , LN,0

L1,1 , L2,1 , . . . , LN,1
... ,

... , ,
...

L1,N , L2,N , . . . , LN,N .

We define the reconstruction mapping R(q, q̇) =
∑n

j=1 cj(q, q̇)Xj, where the coeffi-

cients cj(q, q̇) ∈ C are the solution to the inverse problem
∑n

j=1 cj(q, q̇)Xj(qi) = q̇i.

In matrix form, this is written as

q̇ = [w] · c,

where wij = Xj(qi), c = (c1, . . . , cn). This reconstruction mapping defines the hori-

zontal space above ϕ ∈ π−1(q) to be

H(ϕ) := span(X1 ◦ ϕ, . . . , Xn ◦ ϕ)

and the horizontal lift to be

q̇↑ϕ =
n∑
j=1

cj(q, q̇)Xj ◦ ϕ.

The kinetic energy of the particles is given by:

Lpart(q, q̇) =
n∑
j=1

‖Xj‖2‖cj(q, q̇)‖2.

6 Our integrator is different from [Zei91] because we choose a different closure method. In [Zei91]
the spatial velocity field was constrained to span(L1,1, . . . , LN,N ) by equating Lk1+N,k2 with Lk1,k2
(and similarly for Lk1,k2+N ). Here we constrain spatial velocity to span(L1,1, . . . , LN,N ) through
holonomic constraints.
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The magnitudes for each Xj can be obtained from the magnitude ‖Lk‖2 = 4π2‖k‖2.

This choice of horizontal space induces the horizontal projection

hor(ϕ, δϕ) = [δϕ(�)]↑ϕ

and the principal connection

A(ϕ, δϕ) = (δϕ− hor(ϕ, δϕ)) ◦ ϕ−1.

Finally the reduced curvature form is

B̃(q̇, δq) = ϕ∗A
(
[q̇↑ϕ, δq

↑
ϕ]
)
,

where we define the bracket on T SDiff(M) as the pullback of the standard Lie bracket

on the Lie algebra. That is, [ϕ̇, δϕ] := [ϕ̇ϕ−1, δϕ◦ϕ−1]◦ϕ. Additionally, because H(ϕ)

is spanned by the complex vector fields Lk ◦ ϕ, it is useful to calculate the curvature

in this basis. We find:

B(Lk ◦ ϕ,Lj ◦ ϕ) =

i(k1j2 − j1k2)ϕ∗A(Lk+j ◦ ϕ) if k1 + j1 > N or k2 + j2 > N

0 else

.

To discretize time and calculate trajectories we can invoke the framework of “dis-

crete Lagrangian mechanics” [MW01, MV91] by choosing the discrete Lagrangian:

Ld(q, q
+) = Lpart

(
q + q+

2
,
q+ − q
h

)
.

The integrator is equal to the discrete Euler-Lagrange equations

D2Ld(q
−, q) +D1Ld(q, q

+) = 0,

which are then solved with a root-finding algorithm, such as Newton’s method. This

produces a symplectic variational integrator with approximate conservation of energy
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over large times and exact conservation of Noetherian momenta. This would be

method A.

To implement method B, one can approximate the curvature force, iq̇Bµ, in dis-

crete time by substituting q̇ with 1
2h

(q+ − q−) to get a covector Fd, and then solving

the forced discrete Euler-Lagrange equations

D2Ld(q
−, q) +D1(q, q+) = Fd.

Infinitesimal time error analysis The complex vector fields, {Lk}, serve as a

basis for square integrable vector fields on M . Given the initial condition u0 ∈

Xdiv(M) we set q̇ = u0(�) as the initial velocity for our particle method.7 Using the

fact that R(q, q̇)(�i)−u0(�i) = 0, we find that the reconstructed vector field R(q, q̇)

satisfies the error bound

‖R(q, q̇)− u0‖∞ ≤ ‖∇u0‖∞‖∆x‖,

where ∆x is the largest distance between neighboring particles.

Method B: We can get an error bound which is second order in time. By using the

remeshing method of §3.4 to guarantee that ∆x remains below some some threshold

∆xmax, we notice that translating q to qnew does not alter the reconstructed vector

field. This is because we set:

q̇new := R(q, q̇)(qnew)

and then we find R(qnew, q̇new)(qnew) = q̇new = R(q, q̇)(qnew). This last equation places

the same constraints on the space spanned by X1, . . . , Xn and so R(qnew, q̇new) =

7This would make the estimated spatial velocity field, R(q, q̇), less then optimal (in the Euclidean
2-norm) because a better approximation would be to orthogonally project the desired initial velocity,
u0, onto the horizontal space. However, the “improved” approximation would induce an initial
condition which would lead to first order in time accuracy in predicting particle velocities. It is
imperative to get particle velocities correct at time t = 0 in order to say anything meaningful about
error for particle methods over infinitesimal times.
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R(q, q̇). Therefore, remeshing leaves the estimated spatial velocity unaltered and can

be used at each time step to keep the particles within a distance ∆xmax without

penalty. This generalizes the idea of semi-Lagrangian methods by relieving the con-

straint that we drag the data carried by the particles to predetermined nodes; instead,

we may drag the data to whatever nodes we consider convenient. Finally, the error

of method B will come from neglecting the curvature term, iq̇Bµ. If u is the exact

solution and Cu is a bound on ‖u‖ over the time interval [0,∆t], then the magnitude

of the force satisfies ‖iq̇Bµ‖ ≤ C2
uBmax, where Bmax is the supremum of the expression

“‖ivBµ‖” on unit vectors v ∈ TQpart. If there exists a bound, C∇u, on ‖∇u‖ over the

time interval [0,∆t], then the bound, Bmax, on the missing curvature term produces

the second-order error bound

‖R(q, q̇)− u‖∞ ≤ (C∇u∆xmax) ·
(
C2
uBmax

)
∆t2

for the reconstructed velocity field at time ∆t.

Method A: If the vertical component, ξq = u−R(q, q̇) = 0 at time t = 0, then we

can implement method A by including the curvature term, iq̇Bµ(q̇, 0), to get an extra

order of accuracy. If we estimate the vertical component to be 0 for all time (as a

closure method), then by equation (3.12) the error of this estimate would satisfy the

bound ‖∆ξ‖ < Cξ‖q̇0‖∆t for some constant Cξ. The important thing to note is that

this error bound is first order in time. The error ∆ξ would introduce an error of size

‖iq̇B∆ξ(q̇, 0)‖ ∼ O(∆t) in our estimate of q̈. This would produce the error bound

‖R(q, q̇)− u‖∞ ≤ (C∇u∆xmax) ·
(
C2
uCξBmax

)
∆t3.

This makes method A third-order accurate in time.

A finite time error bound A second advantage to the geometric framework is

that we can consider finite-time error bounds. That is to say, we can construct

conservative bounds on the error over times of order 1. We are able to consider



57

this possibility because we know exactly what we are missing: the dynamics on

E. We know that if ξ = 0 at time t = 0, then the exact equations of motion

would satisfy ξ̇ = R(q, q̇) · ∇ (R(q, q̇)) − ∇p. However, in the context of methods

A and B we are consistently neglecting ξ and effectively setting it to 0 for all time.

Thus, ξ stores the error of our reconstructed vector field. Forming the quantity

δe = ‖R(q, q̇) · ∇ (R(q, q̇))−∇p at each time step, we may construct an error bound

at time T given by

emax =

∫ T

0

δedt.

Assuming e can be calculated or approximated within some tolerance, we can use it

as a stopping criterion. Such stopping criteria are important when accuracy is desired

over long times.

3.6 Simple Extensions and Future Work

So far, we have illustrated how one can take the horizontal Lagrange-Poincaré equa-

tion to derive an ODE on TQpart, which can be used as a candidate particle method.

Naturally, one is reluctant to simply drop the vertical equations. From simply judg-

ing by the dimensions, the vertical equations contain “more of the action”. In this

section, we present some possible ideas for further investigation into producing higher-

accuracy meshless methods.

Higher-order isotropy groups The analysis presented in this chapter addresses

methods in which the particles carry 0th-order data about the spatial velocity field,

u ∈ Xdiv(M), of the fluid. That is, the only datum a particle carries is the velocity

of the fluid at a single point. The particles do not carry 1st order data, i.e., data

obtained from ∇u, such as the vorticity at a point or the local stretching. This is

unfortunate considering how important vorticity is for turbulence modeling [Cho94].

To address this, one could consider the isotropy group

G
(1)
� := {φ ∈ Dµ(M) : φ(�) = �, T�φ = 0}.
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This is the set of special diffeomorphisms which are equal to the identity on � to 1st

order. We can calculate the quotient Dµ(M)/G
(1)
� to be the frame bundle of Qpart.

The fibers of the frame bundle contain the vorticity and stretch data around each

particle. For example, if M is a flat Riemannian manifold then the quotient space

is the set of particle configurations with a (1, 1) tensor attached to them. The anti-

symmetric part of the time derivative of the (1, 1) is the vorticity, and the symmetric

part is the stretch. It would be interesting to see if and how vortex methods can be

approached in some limiting case of this perspective.

More generally one can consider the kth-order isotropy group

G
(k)
� := {φ ∈ Dµ(M) : φ(�) = �, T i�φ = 0, i = 1, . . . , k}.

The quotient space Dµ(M)/G
(k)
� is the kth-order frame bundle (i.e., the frame of

the frame of the frame ... bundle). If M is a flat Riemannian manifold, then the

quotient space is the set of particle configurations, each carrying tensors of rank

(1, 1), (1, 2), . . . , (1, k) above them. Thus, we can create new methods which carry

higher-order data above u using roughly the same constructions presented in this

chapter.

Navier-Stokes and complex fluids The Navier-Stokes equations can be viewed as

a dissipative version of the Euler equations (see §1.12 of [AK92]). Moreover, there are

a number of fluids on slightly more complex spaces where Euler-Poincaré reduction

has been performed, such as in magnetohydrodynamics and liquid crystals [Hol02,

GBR09]. The particle relabeling symmetry of these systems makes the procedure

presented in this chapter applicable to them as well. In the case of complex fluids,

the unreduced configuration is a semidirect product with the special diffeomorphism

group as the first component. Particle methods for complex fluids would attach data

to the particles in addition to the instantaneous velocity.

Practical considerations for implementations When obtaining a method in

any context, there are a number of things to keep in mind. Besides accuracy, we
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have not addressed some of the basic issues that one comes across when evaluating

the performance of a new method. In particular, consistency (i.e., convergence to the

exact solutions as the number of particles goes to infinity) is something which needs

to be investigated. This will likely depend on the choice of principal connection used

to estimate the spatial velocity fields. For example, consistency of the SPH method

relies heavily on the smoothness of Gaussian kernel functions. One would expect the

smoothness of the image of the reconstruction mapping to play a similar role.

Additionally, the practical performance of a method depends heavily on the cou-

pling between the particles. In the example provided in §3.5 all of the particles were

coupled to each other; for high-accuracy computation, this scales very badly. Princi-

pal connections which yield a large amount of coupling should be avoided when one

is planning on using a large number of particles. However, this constraint will likely

have some trade-off in accuracy. This also should be investigated.

Finally, the boundary conditions have not been sufficiently addressed in this chap-

ter. It is certainly possible to satisfy the boundary conditions by construction simply

by requiring that the range of the reconstruction mapping satisfy them.

3.7 Conclusion

In this chapter we have demonstrated that error analysis for particle methods is

possible. In particular, it is possible to create remeshing procedures which do not

sacrifice accuracy, and to define the error in a rigorous manner. The key insight

is that a large family of particle methods can be obtained by taking the horizontal

component of the Lagrange-Poincaré equations. Additionally, these particle methods

can be modified to include the case of Navier-Stokes fluids and complex fluids, since

one can apply Lagrange-Poincaré reduction to these systems as well. In summary, we

have a new playground for creating new particle-based methods for fluids which can

be both easily generalized and rigorously analyzed.
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Chapter 4

Interpreting Swimming as a Limit
Cycle

Figure 4.1 – The periodic motion of a jellyfish. Every other snapshot appears to
be identical modulo a rigid transformation. Photo taken from [KCDC11], courtesy of
Kakani Katija Young.

It has long been suspected that swimming via undulatory motion has a passive

component to it [AS05, LBLT03a]. This is of interest to control theorists, roboticists,

and biomechanicians because passivity would reduce demands on active controllers

and provide robustness to a variety of perturbations. In particular, we pose the

conjecture, “Is swimming is a limit cycle?”. Upon first listen, this statement may

sound like a plausible hypothesis. A basic example used in introductory control

courses is that of the damped harmonic oscillator with external forcing u,

ẍ = −kx− νẋ+ u.

We think of a signal, u(t), as an input and the state, x(t), as an output. The step

response is characterized by a transient oscillatory phase which settles to steady-state

behavior at a fixed value of x. More importantly, if one inputs a sinusoidal signal,

the output is also sinusoidal and of the same period. The goal of this chapter is to

interpret the coherent motion of an undulating body immersed in a Navier-Stokes fluid
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in a similar manner. For a shape-changing body in a viscous fluid, the contraction of

muscles will induce a change in shape and also move the surrounding fluid. After a

while, dissipation will bring the body and the fluid to rest at a new location in space,

perhaps with a different shape as well. We could view this as the step response of

the system with respect to muscle contraction. Building upon the analogy with the

damped harmonic oscillator, one could hope that time-periodic muscle contractions

could produce limit cycles of the same period in an appropriate phase space.

Moreover, we know that a dissipative Hamiltonian system with an asymptotically

stable equilibrium will produce a limit cycle when a sufficiently small periodic force

is applied (see “The Averaging Theorem” in [GH83]). A viscous fluid is a dissipative

system with an asymptotically stable fixed point (i.e., still motion). An undulating

body may exert a periodic force. It may appear that we need only write down

the Hamiltonian, the viscous friction, an oscillating shape potential, and then QED.

Right? Wrong! As we begin to probe the idea, we come across ambiguities:

(Q1) What is the configuration manifold?

(Q2) If a body moves through each cycle of undulation to a new location, then it is

not returning to its previous position. Therefore, the state of the system is not

cyclic unless the animal produces 0 net motion. Does this argument negate the

hypothesis that swimming is a limit cycle?

(Q3) Conversely, if we had a limit cycle, then the system returns to the same state it

began in. Would this imply no motion is produced?

The answers we have provided are:

(A1) The configuration manifold is a Lie groupoid. The particle relabeling symme-

try of the fluid allows us to describe the system on the the corresponding Lie

algebroid, (A, ρ, [, ]).

(A2) No. The hypothesis is not negated. The Lie algebroid, A, exhibits an SE(3)

invariance. Upon reducing by this invariance we can view swimming as a limit

cycle in a reduced algebroid, [A].
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(A3) If [γ](t) is a closed orbit in [A] then it must be reduced from a path, γ(t), in A

such that γ(T ) = z · γ(0) for some z ∈ SE(3).

These answers may be “Greek” upon first reading. We will spend the remain-

der of the paper explaining them. Additionally, while we are not able to definitively

conclude that periodic forces on the shape of a body limits to swimming, the contrac-

tion of phase space for finite dimensional dissipative Hamiltonian systems is strongly

suggestive that such limiting behavior is likely.

4.1 Background

This section is not intended as a comprehensive overview. We seek to merge a num-

ber of seemingly disparate subjects in this paper, first and foremost motivated by

observations in biology and numerical studies.

Biological, computational, and experimental evidence The passive compo-

nent to swimming is under increasingly intensive investigation. For example, fish have

been observed passively harvesting kinetic energy from the surrounding fluid vorticity

by decreasing their muscle activity when trailing a bluff body [LBLT03a, LBLT03b].

Additionally, numerical experiments involving rigid bodies with oscillating forces sug-

gest that uniform motion (i.e., flapping flight) is an attracting state for certain com-

binations of frequencies and Reynolds numbers [AS05]. Experiments with model

“bugs” suggest that the vortices shed from periodically forced bodies have the appar-

ent result of stabilizing a top-heavy body despite steady-state analysis which would

suggest instability [LRW+12]. This all suggests further investigation into the role of

non-stationary flows as means of achieving stable motion in viscous fluids.

Swimming as a gauge theory In this paper we desire to understand how changes

in the shape of a body immersed in a fluid can alter its position and orientation in

space. It is fairly common to view the system as an application of gauge theory,

where the gauge symmetry is the particle relabeling symmetry of the fluid. This was
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first investigated in detail for the case of propulsion in Stokes fluids in [SW89]. This

perspective was later expanded to the case of potential flow in [Kel98] and[KM00].

Swimming in potential flow for the case of articulated bodies was understood as a

Lagrange-Poincaré reduced system (with 0-momenta) in [KMRMH05]. The frame-

work of [KMRMH05] was used for a numerical investigation of motion planning in

[MRR06]. Finally, an understanding of shape-changing bodies immersed in ideal

fluid with nonzero circulation was proposed in [Rad03], where a monoid called the

fluid-body group was introduced in an attempt to mimic the Lie group centric the-

ory of [Arn66]. The framework of [KMRMH05] was extended to handle interactions

with point vortices in [VKM09] where the use of Lagrange-Poincaré reduction as in

[CMR01] was applied to understand the non-zero momentum. All gauge-theoretic

approaches to understanding swimming have focused on extreme Reynolds regimes.

The analysis presented in this chapter will consider the intermediate Reynolds regime

as well.

Groupoids and reduction As demonstrated by the papers mentioned in the pre-

vious paragraph, fluid structure interaction problems can be viewed as Lagrangian

systems with a gauge symmetry. Therefore, the equations of motion may be described

by reduced versions of the Euler-Lagrange equations known as the Lagrange-Poincare

equations [CMR01]. Such systems evolve on vector bundles known as Lagrange-

Poincaré bundles, for which the dual bundle is a Poisson manifold. If the quotient

space is non-trivial, the Poisson structure is partially symplectic and partially Lie-

Poisson, as predicted by the Lie-Weinstein theorem [Wei78]. Inspired by [Ves88], it

was observed in [Wei95] that Lie algebroids contained the necessary structure to pro-

duce a generalized form of Euler-Lagrange equations which satisfy a generalized form

of Hamilton’s principle. Later, a Lagrangian formalism for degenerate Lagrangian

on Lie algebroids was developed in [Mar01] providing intrinsic formulations of the

equations of motion. The Euler-Lagrange equations of Lie algebroids satisfy a vari-

ational principal that is isomorphic to the one satisfied by the Lagrange-Poincaré

equations. Thus both systems exhibit the same dynamics modulo an isomorphism
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which is determined by an arbitrarily chosen principal connection. The equivalence

of the Lagrange-Poincaré equations and the Euler-Lagrange equations on algebroids

was implicitly provided in [Wei95] for the case of non-degenerate Lagrangians. The

equivalence for degenerate Lagrangians was provided explicitly in [dLMM05]. Ad-

ditionally, the reduction theory provided in [Wei95] was verified for the degenerate

Lagrangian case in [CnNdCS07]. Due to the equivalence of the Lagrange-Poincaré

formalism of [CMR01] and Lie algebroid formalism of [Wei95], we will be invoking

each depending on convenience.

4.2 Organization of the chapter

We desire to understand the system consisting of a shape-changing body immersed

in a viscous fluid as a dissipative Lagrangian system on a Lie algebroid. As moti-

vation, and a sanity check, we will derive the known equations for a rigid body in

a fluid using Lagrange-Poincaré reduction in §4.3. We do this for both the case of

ideal fluids and viscous fluids, each of which correspond to a different configuration

manifold. In §4.4 we review Lagrangian mechanics on Lie groupoids and algebroids as

performed in [Wei95] and [Mar01]. We then discuss the relationship with Lagrange-

Poincaré reduction, which will allow us to characterize fluid-structure problems as

Lagrangian systems on Lie algebroids. Finally in §4.5 we derive a set of asymptoti-

cally stable states corresponding to immersions of the body in stagnant fluid. We find

the collection of these stable states to be an embedding of SE(3). Upon performing

an SE(3) reduction we project this stable manifold to a single asymptotically stable

equilibrium, and project the base manifold of the algebroid to the shape space of the

body. Adding an oscillating potential energy on the shape space with an isolated

minima suggests the existence of a limit cycle in the reduced algebroid. Such a limit

cycle would correspond to a time T -map in the unreduced algebroid with a constant

translation and rotation.



65

eb

f

b(f)b

Figure 4.2 – embedding of a rigid body

4.3 A Rigid Body in a Fluid

We ultimately desire to study shape-changing bodies immersed in fluids. However, to

motivate future concepts and keep our feet on the ground, we begin with rigid bodies.

The configuration manifold is introduced and related to the matrix group SE(3) in

§4.3. We then describe the rigid body in free space as a Lagrangian system on the

matrix group SE(3) in §4.3. In §4.3 we study rigid bodies immersed in ideal fluids.

The fluid component is represented with a volume-preserving diffeomorphism which

respects the movement of the body through the ambient space, R3. Additionally, the

Lagrangian exhibits particle relabeling symmetry. Therefore, it is possible to apply

Lagrange-Poincaré reduction as done in [CMR01]. By performing this reduction we

obtain the well-established equations of motion for a rigid body immersed in an ideal

fluid as would be derived from Newton’s laws and deduced by a standard reference in

continuum mechanics through the stress tensor [Tru91]. Finally, in §4.3 we extend our

theory to viscous fluids by adding a viscous dissipation force and a no-slip condition

on the boundary.

The set of rigid embeddings Consider a rigid body given by a closed 3-submanifold

with boundary, f ⊂ R3, which we represent by the zodiac Pisces. The configuration

manifold, Brb, for a rigid body is the set of rigid embeddings of f into R3. Since

SE(3) is naturally identified as the set of rigid diffeomorphisms of R3, we observe

that for any two rigid embeddings b1, b2 ∈ Brb there exists a unique z ∈ SE(3) such

that b2 = z · b1. This gives us a transitive action of SE(3) on Brb. Given a curve

bε ∈ Brb, we see that dbε
dε

= (ω, v) · b for a unique (ω, v) ∈ se(3). We call (ω, v) the
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spatial velocity of the body, and we may casually equate it with ḃb−1. More formally,

we define the right trivializing map, ρtriv : TBrb → se(3), which outputs the spatial

velocity corresponding to a vector in Brb. Similarly, for each ḃ ∈ TBrb there exists a

body velocity (Ω, V ) ∈ se(3) given by the condition ḃ = b · (Ω, V )f. This defines the

left trivializing map, λtriv : TBrb → se(3).

Proposition 4.3.1. The map, λtriv, is left invariant with respect to the lifted action

of SE(3) on TBrb. That is to say

λtriv(z · ḃ) = λtriv(ḃ) , ∀z ∈ SE(3).

Proof. Consider the defining condition of λtriv acting on z · ḃ where ḃ ∈ TbBrb. This

gives us,

z · b
(
λtriv(z · ḃ)f(x)

)
= zḃ(x) = z · b

(
λtriv(ḃ)f(x)

)
, ∀x ∈ f.

Left multiplication by b−1 ◦ z−1 gives us the result.

Finally, it is common to choose a reference configuration, b0 ∈ Brb, and describe

the dynamics relative to b0. If we do this, then we can effectively view the system

as evolving on SE(3) because each element of Brb can be reached by multiplying b0

by an element of SE(3). Therefore, choosing the initial configuration is equivalent

to first choosing a reference configuration and then viewing the rigid body system

as evolving on SE(3)( [Hol11b, Chapter 1–6]). This is undoubtedly an easier route

to take when studying free rigid body dynamics, or even the case of rigid bodies

immersed in fluids. However, in later chapters we will consider non-rigid embeddings

where the equivalence with SE(3) breaks down. Therefore, to ease the transition to

shape-changing bodies we will pay the initial cost of working with Brb to analyze rigid

bodies, rather than use SE(3).

Rigid bodies In this paragraph we will use the description of the rigid body La-

grangian (in body coordinates) as described in ( [Hol11b, Chapter 6]). In order
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to write down the kinetic energy Lagrangian it is useful to introduce the hat-map,

∧ : R3 → so(3) given by

∧(Ω) :=


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ≡ Ω̂.

In particular the hat-map has the convenient property that Ω̂ · x = Ω× x where × is

the cross product on R3. We overload the symbol, ∧, by defining a second hat-map,

∧ : R3 × R3 → se(3), given by

∧(Ω, x) =


0 −Ω3 Ω2 x1

Ω3 0 −Ω1 x2

−Ω2 Ω1 0 x3

0 0 0 1

 =

Ω̂ x

0 1

 .

We denote the inverse of both hat-maps by ∨. Given a body with density µ : f →

R+we can define the mass

M =

∫
f
µ(x)d3x

and the rotational inertia tensor

(Irot)ij =

−
∫
f µ(x)xixjd3x, i 6= j∫

f µ(x) (‖x‖2 − (xi)2) d3x, i = j

.

Finally, we define the inertia tensor I in block diagonal form as an operator on R3×R3

by

I =

Irot 0

0 M · I


where 0 is the 3× 3 null-matrix and I is the 3× 3 identity on R3.
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Using the hat-map, we define the left invariant metric on SE(3) given by

� ż, δz �rb:= trace
(
∨
[
z−1 · ż

]
· I · ∨

[
z−1 · δz

])
.

The kinetic energy Lagrangian, Lrb : T SE(3)→ R, for the rigid body is given by

Lrb(z, ż) =
1

2
� ż, ż �rb .

Note that Lrb is left invariant with respect to SE(3) because it is built from com-

position with λtriv, which is SE(3) invariant by Proposition 4.3.1. That is to say,

Lrb(z̃ · ż) = Lrb(ż). This will allows us to derive the equations of motion as an

instance of the Euler-Poincaré equations.

Proposition 4.3.2. The rigid-body equations in free space,

Π̇ := Π× Ω, Ṗ = P × Ω

where Π = I · Ω, P = M · V, (Ω, V ) = ∧(z−1ż), are equivalent to the Euler-Lagrange

equations of Lrb.

Proof. We observe that Lrb is left invariant with respect to the action of SE(3), and

that the quotient space SE(3)/ SE(3) = •. We can thus define a reduced Lagrangian,

[Lrb] : se(3) → R, by the condition [Lrb](λtriv(ḃ)) = Lrb(ḃ). The dynamics must

satisfy the Euler-Poincaré equation

d

dt

(
∂[Lrb]

∂ξ

)
= ad∗ξ

(
∂[Lrb]

∂ξ

)

paired with the reconstruction formula ξ = λtriv(ḃ) ([MR99, Chapter 13]). To do this

we must derive the bracket on the Lie algebra se(3) following the process provided in

§2.3.

If we represent SE(3) using pairs, (R, x), of rotation matrices and position vec-

tors, and the action, (R, x) · (Q, y) = (RQ,Ry + x), then we find that the inner-
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automorphism is

ADR,x(Q, y) = (RQRT ,−RQRTx+Ry).

If we substitute (R, x) with a curve (Rs, xs) such that (R0, x0) = (I, 0) is the identity

in SE(3) and d
ds

∣∣
s=0

(Rs, xs) = (Ω̂, v) ∈ se(3), and similarly substitute (Q, y) with a

curve (Qt, yt) with d
dt

∣∣
t=0

(Qt, yt) = (Γ̂, w) ∈ se(3), then we find the Lie-bracket on

se(3) is given by

[(Ω, V ), (Γ,W )] :=
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

(
RQRT ,−RQRTx+Ry

)
=

d

ds

∣∣∣∣
s=0

(
RΓ̂RT ,−RΓ̂RTx+Rw

)

(and through liberal use of the product rule from Calculus I)

=
(

Ω̂ · Γ̂− Γ̂ · Ω̂, Ω̂ ·W − Γ̂ · V
)

=
(

Ω̂ · Γ, Ω̂ ·W + V̂ · Γ
)
.

We see that, given (Π, P ) ∈ se(3)∗, the coadjoint action is given by

〈ad∗(Ω,V )(Π, P ), (Γ,W )〉 = 〈(Π, P ), (Ω̂ · Γ, Ω̂ ·W + V̂ · Γ)〉

= 〈Π, Ω̂ · Γ〉+ 〈P, Ω̂ ·W + V̂ · Γ〉

= 〈Ω̂T · Π,Γ〉+ 〈Ω̂T · P,W 〉+ 〈V̂ TP,Γ〉

= 〈Π× Ω + P × V,Γ〉+ 〈P × Ω,W 〉.

Therefore, if we set Π := ∂[Lrb]
∂Ω

= Irot·Ω and P := ∂[Lrb]
∂V

= MV , the Euler-Poincaré

equations may be written as

(Π̇, Ṗ ) = ad∗(Ω,V )(Π, P ) = (Π× Ω, P × Ω).

By the Euler-Poincaré theorem ([MR99, Theorem 13.5.3]), the above equation paired

with the reconstruction formulas are equivalent to the Euler-Lagrange equations for
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Lrb.

Ideal fluids For each rigid embedding, b : f ↪→ R3, we desire to express the region

which will be occupied by the fluid. Appropriately, we use the zodiac of Aquarius,

e, to do this. We define the set-valued function e : Brb → ℘(R3) by

e(b) ≡eb := closure
(
R3\b(f)

)
.

The fluid at time t is described by a volume-preserving diffeomorphism,

ϕt ∈ Dµ (eb0 ,ebt) ,

which approaches a rigid transformation at infinity. The map ϕt can be thought

of as representing the motion of a fluid by taking a particle position at time 0 and

outputting the particle position at time t. The construction so far allows us to define

the configuration manifold

Gb0 = {(b, ϕ)| b ∈ SE(3),

ϕ ∈ Dµ (eb0 ,eb)

lim
‖x‖→∞

‖ϕ(x)− z′ · x‖ = 0 for some z′ ∈ SE(3)}.

For convenience we replace b ∈ Brb with an element z ∈ SE(3) defined by the condition

z · b0 = b. Thus elements of Gb0 may equivalently be represented as pairs (z, ϕ) such

that z ∈ SE(3) and ϕ ∈ Dµ(eb0 ,ez·b0). This set is identical to the fluid body

group defined in [Rad03]1. Additionally, this means any vector in Brb may be written

as ż · b0 for some ż ∈ T SE(3). Thus, the left trivializing map may be written as

λtriv(ḃ) = z−1ż and the right trivializing map may be written as ρtriv(ḃ) = żz−1.

1 In [Rad03], the tangent space at the element, (e, I) ∈ Gb0 , was treated as a generalization of a
Lie-algebra. The equations of motion were generalizations of the Euler-Poicare equations (using the
+ bracket on the rigid body component, and the − bracket on the fluid). The link with Lagrange-
Poincaré reduction was obscured by this generalization.
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We denote the group of gauge symmetries by

Gb0
b0

:= {φ ∈ Dµ(eb0)| lim
‖x‖→∞

‖φ(x)− z′ · x‖ = 0 for some z′ ∈ SE(3)}

which represents the set of particle relabeling symmetries through the right action of

Gb0
b0

on Gb0 given by (z, ϕ) · φ := (z, ϕ ◦ φ). The Lie algebra of Gb0
b0

is the vector space

gb0b0 := {X ∈ Xdiv

(
R3\e(b0)

)
: X|

∂{b0(f)} ∈ X(∂{b0(f)}),

lim
‖x‖→∞

(X(x)− ξ(x)) = 0 for some ξ ∈ se(3)}.

The boundary condition on ∂{b0(f)} ensures that we only consider flows which do

not penetrate the body.

Next we define a principal connection which we will use later to perform Langrange-

Poincaré reduction.

Proposition 4.3.3. Consider the map A : TGb0 → gb0b0 defined by

A(z, ϕ, ż, ϕ̇) = Tϕ−1 · ϕ̇− Tϕ−1(żz−1) ◦ ϕ.

The map, A, is a principal connection for the Lie-algebra gb0b0 whose curvature tensor

is 0.

Proof. First we check that A truly maps to gb0b0 as we claim. It should be clear that

Tϕ−1 · ϕ̇ and Tϕ−1 · (żz−1) ◦ ϕ are both vector fields on eb0 . We must prove that

A maps to a vector field corresponding to an element of gb0b0 . In particular, we must

check that A satisfies the correct boundary condition. Let x ∈ ∂f. Since ϕ maps

the boundary of eb0 to the boundary of ezb0 for all time, it must be the case that

ϕ̇(b0(x))− ż(x) ∈ Tzb0(x)∂ezb0 . Therefore:

A(z, ϕ, ż, ϕ̇)(z(x)) = Tϕ−1(ϕ̇(x)− ż(x)) ∈ ∂eb0

for all x ∈ ∂f. Thus A maps to gb0b0 .
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We must check that A is equivariant. Let φ ∈ Gb0
b0 . Then

A(z, ϕ ◦ φ, ż, ϕ̇ ◦ φ) = φ−1ϕ−1 ◦ ϕ̇ϕ− φ∗ϕ∗
(
żz−1

)
eb

= φ∗(ϕ−1 ◦ ϕ̇− ϕ∗
(
żz−1

)
eb

)

= Ad−1
φ ·A(b, ḃ, ϕ, ϕ̇).

Additionally, the infinitesimal generator of ξ ∈ gb0b0 on Gb0 is the vector field which

maps as (z, ϕ) 7→ (z, ϕ, 0, ϕ · ξ). Thus

A(ξGb0 ) = A(b, ϕ, 0, ϕ · ξ) = ϕ−1 · ϕ · ξ = ξ

so that A is a valid principal connection. We can observe by inspection that the

kernel of A is given by the infinitesimal generators of se(3), which is an integrable

distribution. Thus the curvature is BA = 0.

Finally, we define the fluid Lagrangian,

Lf(z, ϕ, ż, ϕ̇) :=
1

2

∫
eb0

‖ϕ̇(x)‖2d3x.

This Lagrangian is degenerate with respect to motion of the body, however we are

actually going to use the total kinetic energy Lagrangian,

L(z, ϕ, ż, ϕ̇) = Lrb(z, ż) + Lf(z, ϕ, ż, ϕ̇),

to derive the equations of motion. L is non-degenerate.

Theorem 4.3.1. The Lagrangian, L, is right invariant with respect to the action of

Gb0
b0

on Gb0. The resulting Lagrange-Poincaré equations on T [Gb0 ]⊕ g̃b0b0 are equivalent
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to

du

dt
+ u · ∇u = ∇p, (4.1)

div(u) = 0, (4.2)

∨(b−1ḃ) = (Ω, V ), (4.3)

Π = Irot · Ω, P = MV, (4.4)

Π̇ = Π× Ω + τ, (4.5)

Ṗ = P × Ω + F, (4.6)

τ =

∫
∂f

(x ∧ b∗(n̂))p(b(x))dA (4.7)

F =

∫
∂f

p(b(x))b∗(n̂)dA (4.8)

where u is vector field on eb such that u(b(x)) = ḃ(x) for x ∈ ∂f.

In order to prove Theorem 4.3.1 we will be using the following lemmas:

Lemma 4.3.1. SE(3) ≡ Gb0

G
b0
b0

:= [Gb0 ].

Proof. Let z ∈ SE(3); we can equate it with the equivalence class

Cz = {(z, ϕ) : ϕ ∈ Dµ(eb0 ,ezb0)}

and we can do the converse as well, since for any two elements (z, ϕ1), (z, ϕ2) ∈ Cz
there exists a map φ ∈ Gb0

b0
such that ϕ2 = ϕ1 ◦ φ.

Lemma 4.3.2. The adjoint bundle g̃b0b0 is equivalently described by the set

{(z, ξ) : z ∈ SE(3), ξ ∈ Xdiv(eb)

ξ|
∂b(f)

∈ X(∂{Z · b0(f)})

lim
‖x‖→∞

‖ξ(x)− η(x)‖ = 0 for some η ∈ se(3)}

with the projection π̃(z, ξ) = z and the bracket [(z, ξ), (z, η)] = (z, [ξ, η]).
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Proof. Let E be the proposed bundle. We prove the equivalence by showing that the

map Ψ : g̃b0b0 → E is an adjoint-bundle isomorphism. Writing elements of Gb0 as pairs

(z, ϕ) with z ∈ SE(3), we define

Ψ([(z, ϕ), ξb0 ]) := (z, ϕ∗ξb0).

We first prove Ψ is well defined, in that it is independent of which element we choose

from the equivalence class [(z, ϕ), ξb0 ] (which we choose to represent the right-hand

side). By letting φ be an arbitrary element of Gb0
b0

, we observe:

Ψ([(z, ϕ) ◦ φ,Ad−1
φ ξb0 ]) = Ψ([(z, ϕ ◦ φ), φ∗ξb0 ])

= (z, (ϕ ◦ φ)∗(φ
∗ξb0))

= (z, ϕ∗φ∗φ
∗ξb0)

= (z, ϕ∗ξb0)

= Ψ([(z, ϕ), ξb0 ]).

Second, it can be observed that Ψ is invertible with inverse Ψ−1(z, ξ) = [(z, ϕ), ϕ∗ξ],

where ϕ is an arbitrary element of Dµ(eb0 ,ezb0).

Third, we must prove Ψ actually maps to E. Since ϕ is a volume-preserving map

which sends from eb0 to eZ·b0 , and ξb0 is a divergence-free vector field on eb0

tangent to the boundary, we see that ϕ∗ξb0 is a divergence-free vector field on ezb0

tangent to the boundary. Additionally, ϕ∗ξb0 limits to an element of se(3) at infinity

since both ϕ and ξb0 do. Thus Ψ([(z, ϕ), ξb0 ]) maps bijectively to E.

By observation, we see that the map, Ψ, sends the projection, π̃, to the projection,

(z, u) 7→ z, which makes Ψ a vector bundle morphism. Lastly, we prove Ψ preserves
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the Lie bracket.

Ψ([[(z, ϕ), ξb0 ], [(z, ϕ), ηb0 ]]) = Ψ([(z, ϕ), [ξb0 , ηb0 ]])

= (z, ϕ∗[ξb0 , ηb0 ])

= (z, [ϕ∗ξb0 , ϕ∗ηb0 ])

= [(z, ϕ∗ξb0), (z, ϕ∗ηb0)]

= [Ψ([(z, ϕ), ξb0 ]),Ψ([(z, ϕ), ηb0 ])]

Lemma 4.3.3. The covariant derivative along a curve, (z, ξ)(t) ∈ g̃b0b0, with respect

to the principal connection, A, is

D

Dt
(z, ξ) := (z, ξ̇ + [żz−1, ξ]).

Proof. We use the map, Ψ, from the previous proof, and let [(z, ϕ), ξb0 ] = Ψ−1(z, u).

Thus ξb0 = ϕ∗u. By taking the time derivative, we find that

ξ̇b0 = ϕ∗[u, ϕ̇ϕ−1] + ϕ∗u̇.

Additionally,

Ψ(
D

Dt
[(z, ϕ), ξb0 ]) = Ψ([(z, ϕ), [ϕ−1ϕ̇− ϕ∗(żz−1), ξb0 ] + ξ̇b0 ])

= (z, [ϕ̇ϕ−1 − żz−1, ξb0 ] + ϕ∗ξ̇b0)

= (z, [ϕ−1ϕ̇, u]− [żz−1, u] + [u, ϕ̇ϕ−1] + u̇)

= (Z, u̇− [żz−1, u]).

Corollary 4.3.1. The covariant derivative, D
Dt

, along a curve (z, α)(t) ∈ (g̃b0b0)
∗ is

given by
D

Dt
(z, α) = (z, α̇ + ad∗żz−1(α)).
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Proof. We apply the definition of the covariant derivative on the coadjoint bundle by

choosing an arbitrary curve ξ(t) ∈ g̃b0b0 such that π̃(ξ) = π̃α for each t. Then:

〈Dα
Dt

, ξ〉+ 〈α, Dξ
Dt
〉 =

d

dt
〈α, ξ〉 = 〈α̇, ξ〉+ 〈α, ξ̇〉.

Therefore

〈Dα
Dt

, ξ〉 = 〈α̇, ξ〉+ 〈α, ξ̇〉 − 〈α, ξ̇ − [żz−1, ξ]〉

= 〈α̇ + ad∗żz−1 α, ξ〉.

By using the above lemmas we are better prepared for a proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. We observe that L(z, ϕ, ż, ϕ̇) = Lrb(z, ż) + Lf(z, ϕ, ż, ϕ̇) is

right invariant with respect to Gb0
b0

since Lf is the kinetic energy Lagrangian for an

ideal fluid and thus exhibits particle relabeling symmetry. This symmetry allows us

to invoke the Lagrange-Poincaré equations (see §2.4). We call the reduced Lagrangian

l : T [Gb0
b0

]⊕ g̃b0b0 → R.

We first derive the vertical Lagrange-Poincaré equations. Let (z, ż, u)(t) be a curve

in T [Gb0 ]⊕ g̃b0b0 . Note that the vertical component of (z, ż, u) ∈ T [Gb0 ]⊕ g̃b0b0 is given

by ξ = u− żz−1. We find
∂l

∂ξ
= u[

where u[ is the curve in (g̃b0b0)
∗ defined by the condition 〈u[, v〉 := 1

2

∫
eb

u(x) · v(x)d3x.

The vertical equations imply

u̇[ + ad∗żz−1 u[ = − ad∗u−żz−1

(
u[
)
.

On R3 the coadjoint action on u[ is given by adv u
[ = v · ∇u − ∇p, where ∇p is a

Lagrangian parameter such that the output is a divergence-free vector field ([AK92,

§1.7]). Upon removing the [s and canceling the terms involving żz−1, the previous
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line becomes

u̇− u · ∇u = ∇p.

Since (z, u) ∈ g̃b0b0 we automatically have the condition that u ∈ Xdiv(ezb0), so that

div(u) = 0 and u is a vector field on the bulk region occupied by the fluid. Therefore

the vertical Lagrange-Poincaré equations are identical to (4.1) and (4.2).

Recall that the horizontal equation is given by

D

Dt

(
∂l

∂ż

)
− ∂l

∂z
= iżB̃µ

where B̃µ(ż, δ) = 〈 ∂l
∂ξ
, B̃(ż, δz)〉. However, we can drop this curvature force because

B = 0 =⇒ B̃µ = 0. Now let (Ω, V ) := z−1ż ≡ λtriv(ḃ). This allows us to derive the

generalized momenta

(Π, P ) := (Irot · Ω,MV ) ≡ T ∗z · ∂Lrb

∂ż
.

As in the derivation of the free rigid body equations, multiplying D
Dt

(
∂l
∂ż

)
by T ∗z

yields (Π̇− Π× Ω, Ṗ − P × Ω).

Because Lrb comes from a left-invariant metric on SE(3), we see that ∂Lrb

∂z
= 0.

Therefore, the partial derivative, ∂l
∂z

, is given by

〈 ∂l
∂z
, δz〉 = 〈∂lf

∂z
, δz〉.

To compute ∂lf
∂z

, let (zε, uε) be a curve in g̃b0b0 such that D
Dε

(zε, uε) = 0 and d
dε

∣∣
ε=0

(zε) =

δz. This implies that δu = d
dε
u = adδz·z−1(u). We can neglect variations of ż because

lf is not sensitive to them to first order. Thus we find

〈 ∂l
∂z
, δz〉 = 〈∂lf

∂u
, adδz·z−1(u)〉

= −〈ad∗u
∂lf
∂u
, δz · z−1〉

= −
∫
ezb0

(� u · ∇u−∇p) · δz · z−1 � d3x.
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We may write δz · z−1(x) = ω × x+ v for ω, v ∈ R3. Then we find

∫
ezb0

(u · ∇u) · δz · z−1d3 =

∫
eb

uj
∂ui

∂xj
(εiklωkxl + vi)d

3x

=

∮
∂ezb0

(
ujui(εiklωkxl + vi)

)
njda

−
∫
ezb0

∂uj

∂xj
ui(εijkωjxk + vi) + ujuiεijkωjδjkd

3x.

The first integral vanishes since the unit normal, n̂ = (n1, n2, n3), is orthogonal to u.

Therefore:

=

∫
ezb0

∂uj

∂xj
ui(εijkωjxk + vi) + ujuiεijkωjδjkd

3x.

The first summand vanishes from the divergence condition,
∑

j
∂uj

∂xj
= 0. Thus:

=

∫
ezb0

ujuiεijkωjδjkd
3x

=

∫
ezb0

ujuiεijjωd
3x

= 0.
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This implies:

〈∂l
∂b
, δz〉 =

∫
ezb0

∇p · (δz · z−1)d3x

=

∮
∂ezb0

(p · (ω ∧ x+ v)) · n̂da−
∫
ezb0

p
∂

∂xi
(εijkωjxk + vi)d3x

=

∮
∂ezb0

(p · (ω ∧ x+ v)) · n̂da−
∫
ezb0

pεijkωjδikd
3x

=

∮
∂ezb0

(p · (ω ∧ x+ v)) · n̂da−
∫
ezb0

pεijjωjd
3x

=

∮
∂ezb0

(p · (ω ∧ x+ v)) · n̂da.

Multiplying by T ∗z gives us the force on the body:

〈T ∗z · ∂l
∂z
, (Ω̃, Ṽ )〉 =

∮
∂f

(
p(zb0(x)) · (Ω̃ ∧ zb0(x) + Ṽ )

)
· n̂da

= −
∮
∂f

(
p(zb0(x)) · (n(zb0(x)) ∧ zb0(x)) · Ω̃) + pn̂ · Ṽ )

)
· n̂da.

Therefore, the horizontal equations (multiplied by T ∗z) imply

(Π̇− Π× Ω, P − P × Ω)− (τ, F ) = 0,

where

τ = −
∮
∂f

(p(zb0(x)) · (n(zb0(x))× zb0(x))) da

F = −
∮
∂f

pn̂da.

Having recovered the standard equations for a rigid body in an ideal fluid, the

choice of the kinetic energy Lagrangian should seem especially reasonable. Addition-

ally, the proof allows us to state the following (perhaps more significant) corollary:
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Corollary 4.3.2 (Corollary to Theorem 4.3.1). The equations of motion for a rigid

body in an ideal fluid are geodesic equations on Gb0 with respect to the metric

� (ḃ1, ϕ̇1), (ḃ2, ϕ̇2)�=� ḃ1, ḃ2 �rb +� ϕ̇1, ϕ̇2 �f .

Viscous fluids The case of viscous fluids is similar to that of inviscid fluids. In

fact, the only differences are the addition of a dissipative force from the viscosity and

a “no-slip” boundary condition. We can now consider the configuration manifold

Gb0 := {(b, ϕ) :ϕ ∈ Dµ(eb0 ,eb),

ϕ(x) = b(x) for all x ∈ ∂f} (4.9)

and the symmetry group

Gb0
b0

:= {φ ∈ Dµ(eb0) : φ(b0(x)) = b0(x) for all x ∈ ∂f}. (4.10)

The boundary constraint ensures the no-slip condition, which is the appropriate con-

dition for a Navier-Stokes fluid. The Lagrangian is the same one used in the ideal

fluids case; however, this time we include a dissipative force Fν : TGb0 → T ∗Gb0 given

by

〈Fν(ḃ, ϕ̇), (δb, δϕ)〉 = −ν
∫
eb

trace
(
[∇(ϕ̇ ◦ ϕ−1)]T [∇(δϕ ◦ ϕ−1)]

)
d3x,

where ν > 0. It is clear that Fν is symmetric with respect to particle relabeling by

Gb0
b0

since it only depends on the velocity field ϕ̇ ◦ ϕ−1. In particular, if b = b0 and

ϕ = Id, then ϕ̇ is given by a vector field, u ∈ Xdiv(eb0). This allows us to say:

〈Fν(ḃ, u), (δb, v)〉 = −ν
∫
eb

trace
(
[∇u]T [∇v]

)
d3x

= −ν
∫
eb

(∂iv
j)(∂iu

j)d3x
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(using the orthogonality of v to the unit normal of the boundary, we may add a 0

valued boundary integral)

= ν

∫
∂eb

(vj∂iu
j)nidA− ν

∫
eb

(∂iv
j)(∂iu

j)d3x

(and by reversing integration by parts)

= ν

∫
eb

vj∂i∂iujd
3x

=� ν∆u, v �f .

Thus we observe that Fν reduces to the viscous force for a Navier-Stokes fluid.

Through the particle relabling symmetry of Fν we may define the reduced force

fν : Xdiv(eb0)→ (Xdiv(eb0))
∗ by

〈fν(u), v〉 =� ∆u, v �f .

This gives us the following theorem regarding rigid bodies in viscous fluids.

Theorem 4.3.2. The forced Euler-Lagrange equations for the kinetic energy La-

grangian L on the manifold Gb0 with the force Fν are identical to the forced Lagrange-

Poincaré equations

D

Dt

(
∂l

∂ḃ

)
− ∂l

∂b
= 〈 ∂l

∂ξ
, iḃB̃〉,

D

Dt

(
∂l

∂ξ

)
= − ad∗ξ

(
∂l

∂ξ

)
+ fν(ξ),
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which can be explicitly written as

du

dt
+ u · ∇u = ∇p+ ν∆u, (4.11)

div(u) = 0, (4.12)

∨(b−1ḃ) = (Ω, V ), (4.13)

Π = Irot · Ω, P = MV, (4.14)

Π̇ = Π× Ω + τ, (4.15)

Ṗ = P × Ω + F, (4.16)

τ =

∫
∂f

(x ∧ b∗(n̂))p(b(x)) + νb∗[sym(∇u)] · (b∗(n̂) ∧ x)dA (4.17)

F =

∫
∂f

p(b(x))b∗(n̂)dA (4.18)

where sym(∇u) is the 1− 1 symmetric tensor field on eb given by (∇u) + (∇u)T .

The proof of the theorem is virtually identical to that of 4.3.1, except we have

included a dissipation force and added a no-slip condition. The constraint force which

enforces the no-slip condition on the boundary is where the term involving sym(∇u)

arises.

Additionally we can observe that fν makes 〈fν(u), u〉 into a positive semi-definite

symmetric form on the argument u. This makes fν a dissipative force, and will allow

us to use the energy as a Lyapunov function when doing proofs of stability. By

observation, the energy is minimized when the velocity of the fluid is 0 and ḃ = 0.

In particular, due to the no-slip condition, when u = 0, it is implied that ḃ = 0.

This will imply that stagnant fluid with a rigid body is an asymptotically stable state

for the system, assuming the fluid velocity at infinity is 0. That is to say, solutions

which start infinitesimally close to (b0, Id, 0, 0) ∈ TGb0 will tend towards some (b1, Id)

where b1 is close to b0. Note that the set of these equilibria forms an attractor which

is essentially an embedding of SE(3) into Gb0 . Thus if we perform an SE(3) reduction,

we can reduce this attractor to a single stable equilibrium point in the reduced space.

This is precisely what we will do in the final section.
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At this point, our sanity check is complete and it appears safe to consider more

general fluid structure interaction problems as Lagrange-Poincaré reduced systems.

From rigid to non-rigid bodies In the previous sections we let Brb be the set of

rigid embeddings of f ↪→ R3. However, we ultimately desire to understand shape-

changing bodies. Thus we define the manifold, B, consisting of volume-preserving

embeddings from f ↪→ R3. Such objects have the potential to change the shape of

the body. Of course we are free to consider various submanifolds of B, such as the

eb

f

b(f)b

Figure 4.3 – embedding of a fish

case of rigid bodies connected by a ball-socket joint. Additionally, we assume that

the body has a mass density µ(x) so that the kinetic energy of the body is

Lb(b, ḃ) =
1

2

∫
f
µ(x)‖ḃ(x)‖2dx.

In order to study interaction with Navier-Stokes fluids, we define the set Gb0 as in

equation (4.9) and symmetry group Gb0
b0

as in equation (4.10), except now we allow

b0 to be a volume-preserving embedding, rather than just a rigid one. This will be

the setup used in the remainder of the chapter. We will not be deriving equations

of motion explicitly, but we will assume that a principal connection has been chosen

so that the Lagrange-Poincaré equations can be invoked as the equations of motion

when necessary. In particular, the following theorem is merely an instance of the

Lagrange-Poincaré reduction theorem (see Theorem 2.4.1).

Theorem 4.3.3. Let B be the set of volume-preserving embeddings of f ↪→ R3 and
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let

Gb0 = {(b, ϕ) : b ∈ B,ϕ ∈ Dµ(eb0 ,eb), ϕ(b0(x)) = b(x) for x ∈ ∂f}.

Additionally, let Gb0
b0

= Dµ(eb0). Let L : TGb0 → R be

L(b, ϕ, ḃ, ϕ̇) = Lb(b, ḃ) + Lf(b, ϕ, ḃ, ϕ̇).

Then L is Gb0
b0

invariant and has a reduced Lagrangian, l, defined on the Lagrange-

Poincaré bundle, TB ⊕ g̃b0b0, through an arbitrarily chosen principal connection, A :

TGb0 → gb0b0. Moreover, the Euler-Lagrange equations of L are equivalent to the

Lagrange-Poincaré equations of l.

4.4 Groupoids and algebroids

In the case of Lagrange-Poincaré reduction we had to choose a reference configuration,

which meant we committed to a specific b0 ∈ B. In the final section we are going

to perform an SE(3) reduction, which acts on b0 as well as Gb0 . In order to reduce

clutter, it is helpful to embrace an alternative theory of mechanics which incorporates

b0 into the state of the system. For example, we can consider the manifold G given

by

G := {(b1, ϕ, b0) : b0, b1 ∈ B,ϕ ∈ Dµ(eb0 ,eb1)}.

We can then define a left SE(3) action G by z ·(b1, ϕ, b2) = (z ·b1, z ·ϕ ·z−1, z ·b2). This

augmented manifold, G, happens to be a special case of a groupoid which contains

the fluid body group, Gb0 , as a submanifold (it is a source fiber). Additionally, the

SE(3) action will be shown to be a groupoid morphism.

Here we provide definitions for Lie groupoids and Lie algebroids and discuss the

link with Lagrange-Poincaré bundles and Lagrange-Poincaré reduction.

Definition 4.4.1 (Groupoid). Let G and B be sets and let src : G→ B, tar : G→ B
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be submersions. Define the set

G2 = {(g2, g1) ∈ G×G : tar(g1) = src(g2)}.

Given a partial composition, ◦ : G2 → G, and a map, i : B ↪→ G, such that:

1. g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1,

2. for each b ∈ B there exists an identity element i(b) ∈ G such that i(b) ◦ g = g

or g ◦ i(b) = g whenever these expressions are defined,

3. for each g ∈ G there exists an inverse g−1 ∈ G such that g−1g = i(src(g)) and

gg−1 = i(tar(g)),

the collection {G, src, tar, i, ◦} is called a groupoid. If src, tar, i, ◦, and g 7→ g−1 are

smooth maps, we call {G, src, tar, i, ◦} a Lie groupoid.

Given a groupoid {G, src, tar, i, ◦} we have the following labels.

src source map

tar target map

i unit embedding

B the base

.

Example 4.4.1 (Groups). A group, G, is a groupoid where B is the singleton set,

•, src(g) = tar(g) = •, and i(•) = e is the identity element of G. If G is a Lie group

then it is also a Lie groupoid.

Example 4.4.2 (Pair groupoid). Given a manifold M we define the pair groupoid to

be the set M ×M with src(m1,m0) = m0 and tar(m1,m0) = m1. The unit embedding

is the map i(m) = (m,m) and the composition is the map (m2,m1) · (m1,m0) =

(m2,m0). Inversion is mapping (m1,m0) 7→ (m0,m1). By inspection, all of these

notions are smooth, and so the pair groupoid for a smooth manifold is a Lie groupoid.
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Example 4.4.3 (Swimming). Let B be the set of volume-preserving embeddings,

f ↪→ R3. Consider the set:

G = {(b1, ϕ, b0) :b1, b0 ∈ B,ϕ ∈ Dµ(eb0 ,eb1),

ϕ(b0(x)) = b1(x) for all x ∈ ∂f}

equipped with the source target and unit maps

src(b1, ϕ, b0) = b0

tar(b1, ϕ, b1) = b1

i(b) = (b, Id, b)

and the composition

(b2, ϕ2, b1) ◦ (b1, ϕ1, b0) = (b2, ϕ2 ◦ ϕ1, b0).

The collection {G, src, tar, i, ◦} is actually an infinite dimensional Lie Groupoid

over B. However, we are going to act as if G is a legitimate Lie groupoid. The

issues with this assumption are not clear, but such assumptions go back to the initial

observations on the group theoretic structure of hydrodynamics [Arn66].

Remark 4.4.1. By allowing the base manifold, B, to include non-rigid embeddings,

we are effectively permitting the body to change its shape. An embedding roughly

consists of a position, orientation, and a shape. Thus the quotient space, [B] =

B/ SE(3) , is refered to as the shape space. We will be performing an SE(3) reduction

later to understand how loops in shape space can lead to SE(3) motion in a fluid.

Lie algebroids The tangent space to a Lie group at the identity is known as a

Lie algebra. Additionally, the group structure is encoded into the Lie algebra by

an anti-symmetric bracket which satisfies Jacobi’s identity. Similar concepts exist

for Lie groupoids. However, a Lie groupoid has a distinct identity element for every
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single element of the base. As a result, the analogue of a Lie algebra becomes a

vector bundle over the base manifold (rather than a vector space), and the groupoid

structure is encoded with a Lie bracket on sections of this vector bundle.

Definition 4.4.2. A Lie algebroid is a vector bundle, τ : E → B, equipped with

a Lie bracket, [, ], on Γ(E)2, and a map ρ : E → TB which is also a Lie algebra

homomorphism from Γ(E) to X(B).

We call the mapping ρ the “anchor”. That ρ is a Lie algebra homomorphism

implies

[X, fY ] = f [X, Y ] + ρ(X)[f ]Y

for each X, Y ∈ Γ(E) and f ∈ C∞(B).

Example 4.4.4 (Lie algebras). A Lie algebra g is a Lie algebroid with B = •. This

forces the choice τ(ξ) = • and ρ(ξ) = 0. The bracket is inherited from the Lie bracket

of the Lie algebra.

Example 4.4.5 (Tangent bundles). A tangent bundle τM : TM → M is a Lie

algebroid with base M . In this case, τ = τM and ρ is the identity on the set of vector

fields. The bracket is the Lie bracket of vector fields on M .

Example 4.4.6 (The Lie algebroid of a Lie groupoid). The most important Lie alge-

broid for us is the Lie algebroid of a Lie groupoid. Given a Lie groupoid {G, src, tar, i, ◦}

we set A = kernel(T src). Let τG : TG → G be the tangent bundle projection so that

we may define the projection

τ = tar ◦ τG|A : A → B.

The anchor is ρ = T tar|A and the bracket is given by extending sections of A to

vector fields on G and taking the standard Lie bracket of vector fields.

In the case of the pair groupoid, M ×M , the corresponding Lie algebroid is TM .

In the case of a Lie Group, the corresponding Lie algebroid is the Lie algebra of the

group.

2The set Γ(E) refers to the set of sections of E
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Example 4.4.7 (Swimming). Let B and G be as in Example 4.4.3. The Lie algebroid

for G is the set

{(b, u) : b ∈ B, u ∈ Xdiv(eb)}

with the projection τ(b, u) = b, the anchor ρ(b, u) = u ◦ b, and the (fiberwise) bracket

[(b, u), (b, v)] = (b, [u, v]).

Mechanics on Lie algebroids In this section we review the contents of [Wei95]. A

Lagrangian on a Lie algebroid, A, is a real valued function L : A → R. The Legendre

tranformation is the mapping FL : A → A∗ defined by

〈FL(ξ), η〉 :=
d

dε

∣∣∣∣
ε=0

(L(ξ + εη))

for any (η, ξ) ∈ A ⊕ A. We say that L is weakly/strongly non-degenerate if the

bilinear mapping 〈FL(ξ), η〉 is weakly/strongly non-degenerate. In general, weak non-

degeneracy implies strong non-degeneracy. In the case that A is finite dimensional,

weak and strong non-degeneracy are the same thing.

We can construct a Poisson form on the dual algebroid, A∗ by describing how it

operates on functions which are affine on each fiber. Note that a function f ∈ C∞(B)

can be lifted to a function on A by the map f → f ◦ τ = τ ∗f . The set of function

{τ ∗f : f ∈ C∞(B)} is the set of real valued function on E that are constant on each

fiber. Additionally a section ξ ∈ Γ(A) can be viewed as a function on A∗ via the

canonical pairing. The set of sections of A are linear on each fiber. We define a

Poisson structure on A∗ by the relations

{ξ, η} = [ξ, η], {ξ, τ ∗f} = ρ(ξ)[f ], {τ ∗g, τ ∗f} = 0

for sections ξ, η ∈ Γ(A) and functions f, g ∈ C∞(B).3 If FL is weakly non-degenerate

we can pull-back the Poisson form on A∗ to get a Poisson form on A, which we denote

{·, ·}L.

3This is a modest generalization of the commutation relations described in [Mar67] for the case
of cotangent bundles.
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We define the generalized energy E : A → R by

E(ξ) = 〈FL(ξ), ξ〉 − L(ξ)

and define the equations of motion for an unforced Lagrangian system on A by

ẋ = {x,E}L (4.19)

for arbitrary coordinate functions x ∈ C∞(A).

In our case, we are concerned with dissipative systems with periodic forces. We

define a force to be a vector bundle map f : A → A∗ . Given a force, f , we defined

the forced Euler-Lagrange equations to be

ẋ = {x,E}L + ifΛL[x] (4.20)

where ΛL is the Poisson tensor of {, }L.

So far we have shown that it is hypothetically possible to do everything on alge-

broids instead of Lagrange-Poincaré bundles. The primary use of Lie algebroids in

this paper will be the economy of language they provide with respect to reduction by

symmetry. We should be able to use either framework for the following reason. The

Euler-Lagrange equations on A are derived from the usual Euler-Lagrange equations

on TGb0 via right trivialization (see Corollary 4.6 of [Wei95]). The Lagrange-Poincaré

equations are also derived from the Euler-Lagrange equations on TGb0 , but are writ-

ten on the space TB ⊕ g̃b0b0 instead of A through the isomorphism Ψ−1
A . In particular

we will be making use of the following proposition.

Proposition 4.4.1 ([Wei95]). Let A : TGb0 → gb0b0 be a principal connection. Let A

be the Lie algebroid TGb0/G
b0
b0

with base B = Gb0/G
b0
b0

. Let L be the kinetic energy

Lagrangian and f : A → A∗ be a force. Then the generalized Euler-Lagrange equation

(4.19) on A must map to the Lagrange-Poincaré equations on TB ⊕ g̃b0b0 through the

isomorphism ΨA.
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A thorough proof of Proposition 4.4.1 can also be found in [dLMM05, §9]. It is

equivalent to [Wei95, Corollary 4.6], although the isomorphism ΨA is not invoked

there.

Due to the relationship between the Lagrange-Poincaré equations and the Euler-

Lagrange equations on Lie algebroids, we should be able to use either framework. In

particular, when referencing equations of motions we will have a tendency to use the

Lagrange-Poincaré equations. However, when performing reduction we will use the

reduction theory developed on Lie algebroids. Reduction theory on Lie algebroids is

less tedious than on Lagrange-Poincaré bundles because there is one less structure to

worry about (i.e. the connection-forms). We state the reduction theorems here, the

first being [Wei95, Theorem 4.5].

Theorem 4.4.1. Let � : A → [A] be a Lie algebroid morphism which is an iso-

morphism on each fiber. Let [L] be a Lagrangian on [A] and let L = [L] ◦ �. Then

solutions to the Euler-Lagrange equations on A for the Lagrangian L project via � to

the solutions of Euler-Lagrange equations on [A] for the Lagrangian [L].

Corollary 4.4.1. Let � : A → [A], [L], L be as in Theorem 4.4.1. Let [f ] : [A]→ [A]∗

be an external force, and let f : A → A∗ be defined by the condition 〈f(ξ), η〉 =

〈[f ](�(ξ),�(η)〉 (that is to say f = �∗[f ]). Then the forced Euler-Lagrange equations

on A with force f project via � to the forced Euler-Lagrange equations on [A] with

force [f ].

4.5 Swimming

Let B be the set of volume-preserving embeddings (possibly non-rigid) from a closed

subset f ⊂ R3 into R3. At this point it should be clear that fluid-structure dynamics

in a Navier-stokes fluid in R3 with vanishing motion at infinity can be described as a

dissipative (traditional) Lagrangian systems on the source fibers, {Gb0 : b0 ∈ B}, of
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the Lie groupoid

G := {(b1, ϕ, b0) :b0, b1 ∈ B,

ϕ(b0(x)) = b1(x),∀x ∈ ∂f,

lim
‖y‖→∞

ϕ(y)− y = 0}

with src(b1, ϕ, b0) = b0, tar(b1, ϕ, b0) = b1 and i(b) = (b, Id, b) and the standard kinetic

energy Lagrangian

KG(b1, ϕ, b0, ḃ1, ϕ̇, 0) =

∫
f
µ(x)‖ḃ1(x)‖2d3x+

∫
eb0

‖ϕ̇(y)‖2d3y,

where µ : f → R+ represents the mass distribution in f. By the particle relabeling

symmetry of the system (i.e., reduction by symmetry groups {Gb0
b0

:= src−1(b0) ∩

tar−1(b0) : b0 ∈ B}) we can describe the system as a dissipative Lagrangian system

on the Lie algebroid

A := {(b, ḃ, u) :u ∈ Xdiv(eb)

(b, ḃ) ∈ TB,

u(b(x)) = ḃ(x) for x ∈ ∂f,

lim
‖y‖→∞

u(y) = 0}

with projection τ(b, ḃ, u) = b, anchor ρ(b, ḃ, u) = (b, ḃ), bracket [(b, ḃ, u), (b, δb, v)] =

(b, [u, v] ◦ b, [u, v]), and kinetic energy Lagrangian

K(b, ḃ, u) =
1

2

∫
f
µ(x)‖ḃ(x)‖2d3x+

1

2

∫
eb

‖u‖2d3x

=
1

2

(
� ḃ, ḃ�b +� u, u�f

)
.

We would like to amend this Lagrangian with a potential energy which corresponds

to the shape of the body. Animals, and even some robots, change their shape by

contracting muscles. The contraction of these muscles involves stiffening various
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biological tissues/synthetic materials/springs. Therefore it could be reasonable to

describe the potential energy in the muscles as a real-valued function on the shape

space. An animal or robot could change its shape by varying this potential and then

shifting the shape which minimizes potential energy. In the next proposition, we seek

to understand what happens if we do not vary this potential. As before, stagnate

fluid is a stable state for the system with a fixed shape.

Proposition 4.5.1. Let f ⊂ R3 be a closed subset and B be the set of volume-

preserving embeddings f ↪→ R3. Define the left SE(3) action on B by (z · b)(x) =

z · (b(x)) for z ∈ SE(3) and b ∈ B. Then we define the shape space to be [B] =

B/ SE(3). Let V : [B] → R be a potential energy with isolated minimum [s] ∈ [B].

Let fs : T [B] → T ∗[B] be such that 〈fs(·), ·〉 is a positive definite form on shape

space. Then the set of points (b, 0, 0) ∈ A for b ∈ [s] forms a stable manifold for the

Lagrangian system with Lagrangian L = K − V and dissipative forces fν and fs.

Proof. Consider the generalized energy

E(b, ḃ, u) = 〈∂L
∂ḃ
, ḃ〉+ 〈∂L

∂u
, u〉 − L(b, ḃ, u).

We see that the time derivative is

Ė =〈 D
Dt

(
∂L

∂ḃ

)
, ḃ〉+ 〈∂L

∂ḃ
,
Dḃ

Dt
〉+ 〈 D

Dt

(
∂L

∂u

)
, u〉+ 〈∂L

∂u
,
Du

Dt
〉

− 〈∂L
∂b
, ḃ〉 − 〈∂L

∂ḃ
,
Dḃ

Dt
〉 − 〈∂L

∂u
,
Du

Dt
〉

and upon invoking the forced Lagrange-Poincaré equations with the force fν on the

fluid, and fs on the shape we find

= 〈− ad∗u

(
∂L

∂u

)
+ fν(u), u〉+ 〈fs(T�(b)), T�(b)〉

= 〈∂L
∂u

,− adu(u)〉+ 〈fν(u), u〉+ 〈fs(T�(b)), T�(b)〉

= 〈fν(u), u〉+ 〈fs(T�(b)), T�(b)〉.
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Using the energy as a Lyapunov function we see that the system evolves towards

the trajectories in the kernel of fν+�∗(fs). This only includes velocity fields which are

linear in space, i.e., u(x) = Ax+ b. However, the only such velocity field which goes

to 0 at infinity is u = 0. Applying the same process to b tells us that any b ∈ [s] would

minimize E since [s] is an isolated minima. Therefore, the set {(b, 0, 0) ∈ G : b ∈ [s]}

forms a stable manifold for the system.

Frame invariance In this paragraph we prove a number of things in regards to

frame indifference. Objects such as the kinetic energy, the viscous force, and the

configuration manifold itself should alter their behavior when we rotate our heads.

In particular, we desire to study SE(3) invariance. Consider the SE(3) action on G

given by

z · (b1, ϕ, b0) := (z · b1, z · ϕ · z−1, z · b0)

for z ∈ SE(3). It can be quickly verified that for z1, z2 ∈ SE(3) and any g ∈ G we

have

z2 · z1 · g = z2 · (z1 · g) = (z2 · z1) · g,

so that this indeed is a group action. Additionally, SE(3) acts by Lie groupoid

morphisms. That is, src(z · g) = z · src(g), tar(z · g) = z · tar(g), i(z · b) = z · i(b), and

z · (g1 · g2) = (z · g1) · g2. This is equivalent to stating that the following diagrams

commute.

G
z //

src
��

G

src
��

B z
// B

G
z //

tar
��

G

tar
��

B z
// B

G
z // G

B z
//

i

OO

B

i

OO

In other words, the action preserves the structure of the groupoid. Therefore, we may

multiply the groupoid by all of SE(3) to get the reduced groupoid [G] = G/ SE(3)

over the shape space [B] = B/ SE(3). We can define a source map [src] : [G] → [B]

and target map [tar] : [G]→ [B] by the relations [tar]([g]) = [tar(g)] and [src]([g]) =

[src(g)]. These definitions are valid because of the commutativity relations. We also
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get a unit map [i] : [B] ↪→ [G] by [i]([b]) = [i(b)] and the composition

[(g2, ψ, g1)] · [(g1, ϕ, g0)] = [(g2, ψ ◦ ϕ, g0)]. (4.21)

It may not be clear that the last item is well defined, so we will verify it.

Proposition 4.5.2. The composition described in (4.21) is a well-defined composition

on [G] using the source and target maps [src], [tar].

Proof. Let (b2, ψ, b1), (b′1, ϕ, b0) ∈ G be such that [src]([(b2, ψ, b1)]) = [tar]([(b′1, ϕ, b0)]).

By the commutation relations, this means [b1] = [b′1]. Therefore, there exists a z ∈

SE(3) such that b1 = z · b′1. We can then write the composition as

[(b2, ψ, b1)] · [(b′1, ϕ, b0)] ≡ [(b2, ψ, b1)] · [(b1, z · ϕ · z−1, z · b0)]

= [(b2, ψ ◦ z · ϕ · z−1, z · b0)]

= [(b2, ψ, b1) ◦ (b1, z · ϕ · z−1, z · b0)]

= [(b2, ψ, b1)] · [(b1, z · ϕ · z−1, z · b0)].

This makes the collection {[G], [src], [tar], [i], ·} into a Lie groupoid. We can derive

the corresponding Lie algebroid, [A], as in Example 4.4.6. Or we can find the natural

action of SE(3) on A and derive the quotient space with respect to this action. The

action of SE(3) on A is given by z ·(b, u) = (z ·b, z ·u◦z−1) ≡ (zb, z∗(u)) for z ∈ SE(3)

and (b, u) ∈ A. We observe that each z ∈ SE(3) acts by Lie algebroid morphisms.

That is to say, for each z ∈ SE(3), the following diagrams commute.

A z //

τ
��

A
τ
��

B z
// B

A z //

ρ
��

A
ρ
��

TB
Tz
// TB

Γ(A⊕A) z //

[,]

��

Γ(A⊕A)

[,]

��
Γ(A) z

// Γ(A)

By using this, we can multiply A by all of SE(3) to get the reduced algebroid [A]

where each element is an orbit of SE(3). That is, [A] consists of elements of A modulo
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the equivalence

(b, u) ∼SE(3) (z · b, z∗(u)), ∀z ∈ SE(3).

We overload the symbol � as both quotient projections � : A → [A] and � :

B → [B]. Because of the commutations we can define a projection, [τ ] : [A] → [B],

and an anchor [ρ] : [A]→ T [B] by the condition

[τ ]([(b, u)]) = �(τ(b, u)), [ρ]([(b, u)]) = T� · ρ(b, u).

Finally we may define a bracket on Γ([A]⊕ [A]) given by

J[ξ], [η]K = � ([ξ, η])

for sections ξ, η ∈ Γ(A). This choice of [τ ] , [ρ], and J, K make the following diagrams

commute

A � //

τ

��

[A]

[τ ]
��

B
�
// [B]

A � //

ρ

��

[A]

[ρ]
��

TB
T�
// T [B]

Γ(A⊕A) � //

[,]
��

Γ([A]⊕ [A])

J,K
��

Γ(A)
�

// Γ([A])

and proves that [A] is a Lie algebroid over [B] with projection [τ ], anchor [ρ], and

bracket J, K. Note that [B] is the shape space.

Notice that � : A → [A] is an isomorphism on each fiber since �(b, u) = �(b, v)

if and only if there is a z ∈ SE(3) such that u = z∗v. This will eventually allow us

to use Corollary 4.4.1 to reduce the system by SE(3). Hopefully the next proposition

comes as no surprise.

Proposition 4.5.3. The kinetic energy, K : A → R, and the viscous force, fν : A →

A∗, are both SE(3) invariant.

Proof. We first prove the statement for K. Let z ∈ SE(3). We see

K(z · b, z · ḃ, z∗(u)) =

∫
f
f(x)‖zḃ‖2d3x+

∫
ez·b

‖z∗(u)‖d3x.
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Because ḃ(x) has the same magnitude as z · ḃ(x) we find

=

∫
f
f(x)‖ḃ‖2d3x+

∫
ez·b

‖z∗u‖d3x.

By applying the change of variables, x→ zx, to the second integral implies

=

∫
f
f(x)‖ḃ‖2d3x+

∫
eb

‖u‖d3x = K(b, ḃ, u).

Similarly for fν we find:

〈fν(z · b, z · ḃ, z∗u), (z · b, z · δb, z∗v)〉 =

∫
ez·b

trace(∇(z∗u)T∇(z∗u))d3x,

by change of variables x→ zx we find

=

∫
eb

trace(∇(u)T∇(u))d3x

= 〈fν(b, ḃ, u), (b, δb, v)〉.

In other words, fν ◦ z = T ∗zfν .

Corollary 4.5.1. There exists a reduced kinetic energy [K] : [A]→ R defined by the

condition

[K]([(b, ḃ, u)]) = K(b, ḃ, u)

for all (b, ḃ, u) ∈ A. There also exists a reduced viscous force [fν ] : [A]→ [A]∗ defined

by

〈[fν ]([(b, ḃ, u)]), [(b, δb, v)]〉 = 〈fν(b, ḃ, u), (b, δb, v)〉.

This gives us the following corollary to Proposition (4.5.1)

Corollary 4.5.2. Let [V ] : [B] → R be a shape potential with an isolated minimum

[b∞] ∈ [B]. Then the point ([b∞], 0, 0) ∈ [A] is a stable point for the Lagrangian

system with Lagrangian, [L] = [K] − [V ], viscous force [fν ] : [A] → [A]∗, and strong

dissipative friction force fb : T [B]→ T ∗[B].
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Proof. By the SE(3) invariance of the system and 4.4.1, a trajectory in [A] which

serves as a solution to the Euler-Lagrange equations of [L] can be lifted to a solution

to the Lagrangian L = [L] ◦ � on A. By Proposition 4.5.1, the entire equivalence

class ([b∞], 0, 0) is stable in A. Additionally, since fb is a strong dissipative force

on the shape, it will drive the shape [b] ∈ [B] to a minima of [V ], of which there

is only one ( [MR99, Chapter 7.8] ). Applying � to this maps to the single point

([b∞], 0, 0) ∈ [A].

Limit cycles and swimming In this paragraph we formalize the conjecture that

swimming can be expressed as a limit cycle. Unfortunately we stop short of a proof.

However we should state that we are motivated by the following proposition which

formalizes the cartoon in Figure 4.4.

periodic
sequence
of sinks

periodic
time

+ = limit cycle

Figure 4.4 – Each cylinder represents the augmented phase space of a time-periodic
system. On the first cylinder an asymptotically stable point is perturbed by a time-
periodic perturbation, leading to a periodic sequence of stable points. In the second
cylinder we depict the vector field which corresponds to progression of time. The third
cylinder depicts the vector field obtained by summing the first two vector fields. This
third cylinder is the phase portrait of the system and exhibits a limit cycle highlighted
in bold.

Proposition 4.5.4. Let X ∈ X(Rn) and Yθ ∈ X(Rn) be a time-periodic vector field

parametrized by θ ∈ S1. If x0 is a hyperbolic stable point of X, then there exists an

ε̄ > 0 such that the time-periodic ODE given by ẋ(t) = X(x(t)) + εYt(x(t)) exhibits a

stable limit cycle for any ε < ε̄.

The following proof is adapted from the proof of [GH83, Theorem 4.1.1].
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Proof. Let Pε be the flow for the vector field X + εYt from time 0 to 2π. For ε = 0 we

see that x0 is a stable point of P0. Additionally, because x0 is a hyperbolic stable point,

the local Lyapunov exponent of P0 at x0 are strictly negative. Because the Lyapunov

exponents depend continuously on x ∈ Rn there must exist a neighborhood U of x0

such that the local Lyapunov exponents P0 are strictly negative at each x ∈ U and

P0(U) ⊂ U . Additionally, because Pε converges to P0 as ε approaches 0 there exists

a ε̄ > 0 such that the Lyapunov exponents of TxPε are strictly negative for all x ∈ U .

This means that Pε is a contraction mapping on U . The local compactness of Rn

allows us to invoke the Banach fixed-point theorem and obtain a stable fixed point,

xε ∈ U ⊂ Rn, of the map Pε for each ε < ε̄. The fixed points, xε, correspond to a

stable limit cycles for each ε < ε̄.

Because all finite dimensional manifolds are locally homeomorphic to Rn we can

generalize the above theorem to periodically perturbed systems on manifolds. We

could then specialize to the case of dissipative Lagrangian systems on manifolds with

periodic forces. One would hope we could apply Proposition 4.5.4 to our Lagrangian

system on [A]. Unfortunately, our proof does not generalize to the infinite dimensional

manifolds because it depends on a spectral gap in the differential of the flow map. In

finite dimensions, hyperbolicity of a fixed point implies that the Lyapunov exponent

closest to zero is still a finite distance away from zero. However, for infinite dimensions

there are infinitely many eigenvalues to pay attention to, and so it is conceivable

that the spectrum gets arbitrarily close to zero. Additionally, the final step of the

proof involved the use of local compactness. However, the space [A] is not locally

compact because Dµ(M) is not locally compact [Les67]. Therefore, we cannot be

confident that these limit cycles exist always exist for arbitrary periodic forces on

the shape and arbitrary initial conditions. Proposition 4.5.4 suggests that any finite

dimensional model of swimming will exhibit the desired limit cycles, but the full

infinite dimensional system is difficult to address. To avoid a discussion beyond our

expertise, we state the remainder of our paper with the following assumption, which

would be a corollary if not for these difficulties.



99

Assumption 4.5.1. Consider the Lagrangian system on [A] with time-periodic po-

tential energy V : [B]× S1 → R, Lagrangian

L([b, u]; θ) = [K]([b, u])− V ([b]; θ),

viscous friction force [fν ] : [A] → [A]∗, and a strong dissipation force on the shape

space fs : T [B] → T ∗B. We assume there exists a set of “reasonable” initial condi-

tions such that the system exhibits a limit cycle.

If one accepts the above assumption then we have managed to express swimming

as a limit cycle. A cartoon of this perspective is sketched in Figure 4.5.

asy. stable manifold in A swimming in A

asy. stable point in [A] limit cycle in [A]

periodic force

on shape

SE(3) reduction

periodic force

on shape

SE(3) reduction

Figure 4.5 – A proposed relationship between swimming and limit cycles in [A]

Formally, if [γ](t) is the limit cycle with period T in [A], then it must integrate

to an element [g] = [(b1, ϕ, b0)] ∈ [G] via the reconstruction formula d[g]
dt

= [g] · [γ](t).

Considering [γ] is a closed curve we see that [src]([g]) = [b1] = [b0] = [tar]([g]).

However, the motion achieved after one cycle is encoded in [g]. In particular, it

is encoded as a conjugacy class of SE(3). If we define the left action of SE(3) on

itself by the inner-automorphism, AD, we define the conjugacy class of a z ∈ SE(3)

by [z] = ADSE(3)(z) = {wzw−1 : w ∈ SE(3)}. Consistent with previous notation,

we define the set of conjugacy classes of SE(3) by [SE(3)]. Conjugacy classes of

SE(3) correspond to rigid motions, modulo a choice of coordinate system. Therefore

elements of [SE(3)] represent relative motion rather than absolution motion.

Lemma 4.5.1. There exists a map [motion] : [G]→ [SE(3)] defined by the condition

that [motion]([g]) produces the unique conjugacy class [z] such that for any g ∈ [g]
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there is a unique z′ ∈ [z] such that.

tar(g) = z′ src(g)∀g ∈ [g].

Proof. We need only show [motion] is a well-defined map to a unique element of

[SE(3)]. Let g1, g2 ∈ [g] and let w ∈ SE(3) be the unique element such that g2 = wg1.

Let z1, z2 ∈ SE(3) be the unique elements such that tar(g1) = z1 src(g1) and tar(g2) =

z2 src(g2). We observe that

w tar(g1) = tar(g2) = z2 src(g2) = z2w src(g1) = z2wz
−1
1 tar(g1).

The action of an element of SE(3) on B determines that element uniquely, so that we

may drop the term tar(g1) from both sides. This gives us z2 = w−1z1w. Therefore z2

and z1 are in the same conjugacy class.

This produces the following theorem.

Theorem 4.5.1. If we take Assumption 4.5.1 to be true, then the corresponding

limit cycle , [γ](t) ∈ [A], with period T leads to a motion of the body represented

by an element of [motion]([g](T ))[SE(3)] where [g](t) is defined by the reconstruction

formula d[g]
dt

= [g](t) · [γ](t).

Theorem 4.5.1 would mean that the swimming body settles to a motion in which

each period is just a constant rotation and translation relative to the state of the

previous period.

4.6 Conclusion

In this investigation we had hoped to discover how to express swimming in a Navier-

Stokes fluid as a limit cycle. Unfortunately we have stopped just short of this. How-

ever, we managed to accomplish a number of useful things on the way:

1. We derived the equations of motion for a rigid body in an ideal fluid as an

instance of the Lagrange-Poincaré equations.
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2. We presented the Lie algebroid (A), Lagrangian, and forces necessary to study

fluid structure interaction with Navier-Stokes fluids.

3. We showed that the set of states corresponding to stagnant Navier-Stokes fluid

is an embedding of SE(3) into A.

4. We investigated the SE(3) invariance of the system and the resulting SE(3)

reduction. This sent the stable manifold corresponding to stagnant fluid to a

single asymptotically stable point in the reduced Lie algebroid, [A].

5. We conjectured how these observations could lead to a limit cycle based on a

theorem known for asymptotically stable points in finite dimensional systems.

6. Assuming the conjecture, we showed how one expresses the relative motion as

a conjugacy class of SE(3).

The findings open a number of routes for future studies. In particular we mention

the following:

• A better understanding of phase space contraction on infinite dimensional man-

ifolds could help determine criteria for when limit cycles are possible.

• Variational integrators have been constructed for fluids based on analogies be-

tween Dµ(M) and certain finite dimensional Lie groups [GMP+11]. It is con-

ceivable that one could carry out a similar project for fluid structure interaction

by using analogies with finite dimensional groupoids.

• Control theorists are commonly interested in path planning. To use the results

given here, one would likely desire upper bounds on convergence times.

• Additionally, methods for computing limit cycles could be developed. The limit

cycle should satisfy a variational principle on A with periodic boundary con-

ditions. This frames the problem of finding the limit cycle as a minimization

problem in the space of loops.
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Chapter 5

Couplings with Interaction
Dirac Structures

This final chapter concerns work done with Professor Hiroaki Yoshimura and is sig-

nificantly more general that the previous two chapters. The goal is to understand a

family on nonenergetic couplings which have sufficient structure for us to say some-

thing meaningful. A large class of physical and engineering problems can be described

in terms of Lagrangian and Hamiltonian systems. However, analysis becomes difficult

when these systems are large and heterogeneous. For example, systems which can in-

volve a mixture of mechanical and electrical components with flexible and rigid parts

and magnetic couplings (see, for instance, [Yos95, Blo03, ABM06]). To handle these

complex situations, methods of breaking the problem into simpler sub-problems have

been devised. The final step in obtaining the dynamics of the connected systems is

what we call interconnection.

5.1 Background

Early work. Early work on interconnection was developed by Kron in his book,

“Diakoptics” [Kro63]. The word “diakoptics” denotes a procedure where one tears a

dynamical system into well-understood subsystems. Each tear is associated with a

constraint on the interface between the two systems. The original system is restored

by interconnecting the subsystems through these constraints. This theory was further

developed to handle power-conserving interconnections through bond graph theory

[Pay61]. Additionally, there exist specific procedures to handle the interconnection of
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electrical networks through (nonenergic) multiports (see [Bra71, WC77]). In the case

of electrical networks, Kirchhoff’s current law provides the interconnection constraint.

In mechanics, it was shown in [Yos95] that kinematic constraints due to mechanical

joints, nonholonomic constraints, and force equilibrium conditions in d’Alembert’s

principle lead to the proper constraints.

Dirac Structures and Interconnection. It has gradually been revealed that

Dirac structures provide a natural geometric framework for describing interconnec-

tions between “easy-to-analyze” subsystems. Dirac structures generalize Poisson and

symplectic structures from maps to relations between cotangent and tangent bundles.

This generalization transforms Hamiltonian and Lagrangian systems from ODEs to

DAEs, in which case we call the resulting system an implicit Lagrangian or implicit

Hamiltonian system. In particular [vdSM95] demonstrated that certain interconnec-

tions could be described by Dirac structures associated to Poisson structures and that

nonholonomic systems and L-C circuits could be represented by implicit Hamiltonian

systems. On the Lagrangian side, [YM06b] showed that nonholonomic mechanical

systems and L-C circuits (as degenerate Lagrangian systems) could be formulated

as implicit Lagrangian systems associated with Dirac structures induced from Kirch-

hoff’s current law. Finally, [YM06c] demonstrated how the implicit Euler-Lagrange

equations for unconstrained systems could be derived from the Hamilton-Pontryagin

principle and how constrained implicit Lagrangian systems with forces could be for-

mulated in the context of the Lagrange-d’Alembert-Pontryagin principle.

Port Systems. In the realm of control theory, implicit port-controlled Hamiltonian

(IPCH) systems (systems with external control inputs) were developed by [vdSM95]

(see also [BC97], [Bla00] and [VdS96]) and much effort is devoted to understanding

passivity based control for interconnected IPCH systems ([OPNSR98]). The equiva-

lence between controlled Lagrangian (CL) systems and controlled Hamiltonian (CH)

systems was shown by [CBL+02] for non-degenerate Lagrangians. For the case in

which the Lagrangian is degenerate, an implicit Lagrangian analogue of IPCH sys-
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tems, namely implicit port-controlled Lagrangian (IPCL) systems for electrical circuits

were constructed by [YM06a] and [YM07a], where it was shown that L-C transmis-

sion lines can be represented in the context of the IPLC system by employing induced

Dirac structures.

Composition of Dirac Structures. A product dubbed composition was devel-

oped in [CvDSBn07] for the purpose of connecting IPCH systems. This provided a

new tool for the passive control of IPCH systems. In particular, it was shown that the

feedback interconnection of a “plant” port-Hamiltonian system with a “controller”

port-Hamiltonian system could be represented by the composition of the plant Dirac

structure with the controller Dirac structure. Finally, it was shown in [JY11] that the

composition operator can be written using the Dirac tensor product, and “forgetting”

the shared variables.

Goals and Main Contributions. We are concerned with the following problem.

Consider two implicit Hamiltonian or Lagrangian systems whose equations of motion

are given by Dirac structures, D1 and D2 on manifolds M1 and M2, respectively. A

non-energetic interconnection between these systems can be represented by a Dirac

structure, Dint on the manifold M1×M2. It is observed that the connected system is

also an implicit Lagrangian/Hamiltonian system, whose Lagrangian/Hamiltonian is

the sum of the Lagrangians/Hamiltonians of the separate systems. However, it is not

well known how the Dirac structure of the connected system relates to the old ones.

In this paper we propose a way to alter D1 and D2 to yield the Dirac structure of the

connected system using only Dint.

Outline In §5.2, we review the use of Dirac structures in Lagrangian mechanics

following [YM06b, YM06c]. In §5.3, we show how to take a direct sum of Dirac

structures D1 and D2 to yield a single Dirac structure D1⊕D2 on M1×M2. We then

show how a non-energetic interconnection can be represented by a Dirac structure

(usually labeled Dint in this paper). Finally, we show how one could obtain the Dirac

structure of the interconnected system by using the Dirac tensor product, �. In
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particular, the Dirac structure of the connected system is D = (D1 ⊕ D2) � Dint.

In §5.4 we explore how this procedure alters the variational structure of implicit

Lagrangian systems. In §5.5, we apply the theory to an LCR circuit, a nonholonomic

system, and a simple mass-spring system. In §5.6, we summarize our results and

mention some future work.

5.2 Review of Dirac Structures in Mechanics

Linear Dirac Structures. First, we recall the definition of a linear Dirac structure,

namely, a Dirac structure on a vector space V ; we assume that V is finite dimensional

for simplicity (see, [CW88]). Let V ∗ be the dual space of V , and 〈· , ·〉 be the natural

pairing between V ∗ and V . Define the symmetric pairing 〈〈·, ·〉〉 on V ⊕ V ∗ by

〈〈 (v, α), (v̄, ᾱ) 〉〉 = 〈α, v̄〉+ 〈ᾱ, v〉,

for any (v, α), (v̄, ᾱ) ∈ V ⊕ V ∗.

A Dirac structure on V is a subspace D ⊂ V ⊕ V ∗ such that D = D⊥, where D⊥

is the orthogonal complement of D relative to the pairing 〈〈·, ·〉〉.

Dirac Structures on Manifolds. Let M be a smooth manifold and let TM⊕T ∗M

denote the Whitney sum bundle over M , namely, the bundle over the base M and

with fiber over x ∈M equal to TxM × T ∗xM . A subbundle D ⊂ TM ⊕ T ∗M is called

an almost Dirac structure on M , when D(x) is a Dirac structure on the vector space

TxM at each x ∈ M . We may derive an almost Dirac structure from a two-form

Ω ∈
∧2(M) and a regular distribution ∆M on M as follows: For each x ∈M , set

D(x) = {(v, α) ∈ TxM × T ∗xM | v ∈ ∆M(x) and

〈α,w〉 = Ωx(v, w) for all w ∈ ∆M(x)};
(5.1)

we call the pair (M,D) a Dirac manifold .
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Integrablity. We call D an integrable Dirac structure if the integrability condition

〈£X1α2, X3〉+ 〈£X2α3, X1〉+ 〈£X3α1, X2〉 = 0 (5.2)

is satisfied for all pairs of vector fields and one-forms (X1, α1), (X2, α2), (X3, α3) that

take values in D, where £X denotes the Lie derivative along the vector field X on M .

Remark. Let Γ(TM ⊕ T ∗M) be a space of local sections of TM ⊕ T ∗M , which is

endowed with the skew-symmetric bracket [ , ] : Γ(TM ⊕ T ∗M)× Γ(TM ⊕ T ∗M)→

Γ(TM ⊕ T ∗M) defined by

[(X1, α1), (X2, α2)] := ([X1, X2] ,£X1α2 −£X2α1 + d 〈α2, X1〉)

= ([X1, X2] , iX1dα2 − iX2dα1 + d 〈α1, X2〉) .

This bracket is given in [Cou90] and does not necessarily satisfy the Jacobi identity.

It was shown by [Dor93] that the integrability condition of the Dirac structure D ⊂

TM ⊕ T ∗M given in equation (5.2) can be expressed as

[Γ(D),Γ(D)] ⊂ Γ(D),

which is the closedness condition of the Courant bracket (see [DVDS98] and [JR08]).

Pull-backs and Push-forwards. Given a covector α ∈ T ∗xM and a map ϕ : N →

M we can think of α as a real valued function and form the composition α ◦ Tyϕ for

any y ∈ N such that ϕ(y) = x. Then we see that α ◦ Tyϕ is a covector above y ∈ N .

We use this observation to define the natural notions of push-forward and pull-back

of Dirac structures.

Definition 5.2.1. Let (M,D) be a Dirac manifold and ϕ : N →M a smooth injective

map. We define the pull-back of D by ϕ as

ϕ∗D := {(Tϕ(v), α) ∈ TN ⊕ T ∗N : (v, α ◦ Txϕ) ∈ D, x = πM(α)}.
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Additionally, if ψ : M → N is smooth and surjective, we define the push-forward of

D by ψ as

ψ∗D := {(v, α ◦ Txψ) ∈ TN ⊕ T ∗N : (Tψ(v), α) ∈ D, x = πM(α)}.

Note that the push-forward and pull-back of a Dirac structure is itself a Dirac

structure ([BR03] and [YM07b]).

Notions from Lagrangian Mechanics A Lagrangian is a real valued function on

TQ. In this paper we denote a generic Lagrangian by L ∈ C∞(TQ). We define the

Legendre transformation as the mapping FL : TQ→ T ∗Q given by the condition

〈FL(q, v), w〉 :=
d

dε
(L(q, v + εw))

for arbitrary w ∈ TQ. We define the Pontryagin bundle as the Whitney sum:

TQ⊕ T ∗Q := {(v, p) ∈ TQ× T ∗Q : τQ(v) = πQ(p)},

which is locally coordinatized by the chart (q, v, p). Finally, we define the generalized

energy, EL : TQ⊕ T ∗Q→ R, to be the function

EL(q, v, p) := 〈p, v〉 − L(q, v).

When FL is invertible we say that L is non-degenerate and we define the Hamiltonian

as the function on T ∗Q given by:

H(q, p) := EL(q,FL−1(q, p)).

However, when FL is not invertible we say that L is degenerate. If L is degener-

ate and/or we impose a velocity constraint distribution ∆Q ⊂ TQ, only the subset

FL(∆Q) ⊂ T ∗Q is physically meaningful as the set of possible momenta for the sys-
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tem. Thus we define the primary constraint manifold

P := FL(∆Q).

In the following sections we will define systems which are well defined even when P

is a strict subset of T ∗Q with embedding iP : P ↪→ T ∗Q. For the remainder of this

section we will be use the following notation

Q a configuration manifold

∆Q a regular distribution on TQ

L a generic Lagrangian in C∞(TQ), possibly non-degenerate

FL the Legendre transformation of L

EL the generalized energy of L

P the primary constraint manifold FL(∆Q)

Induced Dirac Structures. Define the lifted distribution on T ∗Q by

∆T ∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q,

where πQ : T ∗Q→ Q is the cotangent projection. Let Ω be the canonical two-form on

T ∗Q. Define a Dirac structure D∆ on T ∗Q whose fiber is given for each (q, p) ∈ T ∗Q

by

D(q, p) = {(v, α) ∈ T(q,p)T
∗Q× T ∗(q,p)T ∗Q | v ∈ ∆T ∗Q(q, p) and

〈α,w〉 = Ω(q,p)(v, w) for all w ∈ ∆T ∗Q(q, p)}. (5.3)

Let us call this Dirac structure an induced Dirac structure. This is an instance of

equation (5.1). Alternatively, the induced Dirac structure can be restated by using

the bundle map Ω[ : TT ∗Q→ T ∗T ∗Q as follows:

D(q, p) = {(v, α) ∈ T(q,p)T
∗Q× T ∗(q,p)T ∗Q | v ∈ ∆T ∗Q(q, p) and

α− Ω[(q, p) · v ∈ ∆◦T ∗Q(q, p)},
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where ∆◦T ∗Q is the annihilator of ∆T ∗Q. Finally, if one desires to be terse, we could

use the includsion map i∆T∗Q : ∆T ∗Q ↪→ TT ∗Q to write the induced Dirac structure

as

D∆Q
:= i∗∆T∗Q

(
graph(Ω[)

)
.

Remark. If there exists no constraint, then ∆Q = TQ, and the Dirac structure

DTQ corresponds to the graph of the bundle map Ω[ : TT ∗Q→ T ∗T ∗Q. That is:

DTQ := {(v,Ω[(v)) ∈ TT ∗Q⊕ T ∗T ∗Q : ∀v ∈ TT ∗Q}.

Local Expressions. Let V be a model space for Q and Uq ⊂ Q an open subset. A

coordinate chart for Q is a smooth bijective map q : Uq → U ⊂ V . Since TU ≡ U×V ,

then a chart on TQ is a bijective mapping from (q, v) : TUq → U × V such that

τU ◦ (q, v) = q. Similar constructions provide charts for T ∗Q, TT ∗Q, T ∗T ∗Q given by:

(q, p) : T ∗Uq → U × V ∗

(q, p, q̇, ṗ) : TT ∗Uq → U × V ∗ × V × V ∗

(q, p, α, w) : T ∗T ∗Uq → U × V ∗ × V ∗ × V.

Using πQ : T ∗Q→ Q, locally denoted by (q, p) 7→ q, and TπQ : (q, p, q̇, ṗ) 7→ (q, q̇),

it follows that

∆T ∗Q = {(q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆(q)}

and the annihilator of ∆T ∗Q is locally represented as

∆◦T ∗Q = {(q, p, α, 0) | q ∈ U, α ∈ ∆◦(q) } .

Since we have the local formula Ω[(q, p) · (q, p, q̇, ṗ) = (q, p,−ṗ, q̇), the condition

(q, p, α, w) − Ω[(q, p) · (q, p, q̇, ṗ) ∈ ∆◦T ∗Q reads α + ṗ ∈ ∆◦(q) and w − q̇ = 0. Thus,
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the induced Dirac structure is locally represented by

D(q, p) = {((q̇, ṗ), (α,w)) | q̇ ∈ ∆(q), w = q̇, α + ṗ ∈ ∆◦(q)} , (5.4)

where ∆◦(q) ⊂ T ∗qQ is the annihilator of ∆(q) ⊂ TqQ.

Implicit Lagrangian Systems. Here we recall the definition of implicit Lagrangian

systems (sometimes called Lagrange-Dirac dynamical systems) following [YM06b] and

[YM06c]. A partial vector field on T ∗Q is locally given by writing q̇ = dq/dt and

ṗ = dp/dt as functions of (q, v, p). Formally, a partial vector field is a mapping

X : TQ⊕ T ∗Q→ TT ∗Q such that τT ∗Q ◦X = prT ∗Q.

An implicit Lagrangian system is a triple (EL, D,X), where X : TQ ⊕ T ∗Q →

TT ∗Q is a partial vector field which satisfies the constraint:

(X(q, v, p),dEL(q, v, p)|T(q,p)P ) ∈ D(q, p), (5.5)

for any (q, p) = FL(q, v) with v ∈ ∆Q.

The reader may be disturbed that dE is a covector field on TQ⊕ T ∗Q. However,

the restriction dEL(q, v, p)|T(q,p)P ∼= (−∂L/∂q, v) may be regarded as a linear function

on T(q,p)P when (q, p) = (q, ∂L/∂v) ∈ P = FL(∆Q). We can embed this covector on

P to one on T ∗Q using the cotangent lift of the embedding iP : P ↪→ T ∗Q.

Local Expressions. It follows from equation (5.4) that the implicit dynamical

system (X(q, v, p),dEL|TP (q, v, p)) ∈ D(q, p) is locally given by

p =
∂L

∂v
, q̇ = v ∈ ∆Q(q), ṗ− ∂L

∂q
∈ ∆◦Q(q).

Remark. The partial vector field of an implicit Lagrangian system is uniquely given

on the graph of the Legendre transformation. Equation (5.5) does not constrain the

partial vector field outside of the graph of the Legendre transformation, and so the
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partial vector field of an implicit Lagrangian system is generally not uniquely defined

on all of TQ⊕ T ∗Q.

For the case in which no kinematic constraint is imposed, i.e., ∆Q = TQ, we

can develop the standard implicit Lagrangian system, which is expressed in local

coordinates as

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
,

which we shall call the implicit Euler–Lagrange equation. Note that the implicit

Euler–Lagrange equation contains the Euler–Lagrange equation ṗ = ∂L/∂q, the Leg-

endre transformation p = ∂L/∂v, and the second-order condition q̇ = v. In summary,

the implicit Euler–Langrange equation provides an ODE on TQ⊕T ∗Q which handles

the degeneracy of L, while the original Euler–Lagrange equation is an ODE on TQ.

The Hamilton-Pontryagin Principle. In the absence of constraints an integral

curve, q(t) ∈ Q, of the Euler-Lagrange equation is known to satisfy Hamilton’s prin-

ciple:

δ

∫ t2

t1

L(q(t), q̇(t))dt = 0

for arbitrary variations δq(t) ∈ TQ with fixed end points. However, in the case of

a degenerate Lagrangian, L, with the constraint, ∆Q, certain variations will induce

no variation in the generalized momenta, ∂L
∂v

, and variations outside of ∆Q are not

physically meaningful. To deal with these degenerate Lagrangians and velocity con-

straints we prefer to express variational principles on TQ⊕ T ∗Q. The natural choice

is the Hamilton-Pontryagin principle (or HP-principle), and is given by the stationary

condition on the space of curves (q(t), v(t), p(t)), t ∈ [t1, t2] in TQ⊕ T ∗Q by:

δ

∫ t2

t1

L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉 dt = 0
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for variations δq(t) ∈ ∆Q with fixed end points and arbitrary fiberwise variations

δp(t) ∈ TT ∗q(t)Q and δv(t) ∈ TTq(t)Q. The HP-principle can be restated as

δ

∫ t2

t1

〈p(t), q̇(t)〉 − EL(q(t), v(t), p(t)) dt = 0.

The HP-principle was shown to be equivalent to the implicit Euler–Lagrange equa-

tions [YM06c].

Example: Harmonic Oscillators. Here we derive an implicit Lagrangian system

associated to a linear harmonic oscillator. In this case, the configuration space is

Q = R where q ∈ Q represents the position of a particle on the real line. The

Lagrangian is given by L(q, v) = v2/2−q2/2 and the generalized energy is EL(q, v, p) =

pv − v2/2 + q2/2. Recall that the canonical Dirac structure on T ∗Q is given by

D = graph(Ω[).

A partial vector field X(q, v, p) = (q, p, q̇, ṗ) for this Lagrange-Dirac system satis-

fies

(X(q, v, p), dEL(q, v, p)|T(q,p)P ) ∈ D(q, p),

where p = v ∈ P = FL(TQ). Equating (q̇, ṗ) withX(q, v, p) we find dEL(q, v, p)|T(q,p)P =

Ω[(q, p) · (q̇, ṗ). In local coordinates we may write dEL(q, v, p)|T(q,p)P = vdp+ qdq and

Ω[(q, p)(q̇, ṗ) = −ṗdq + q̇dp. Thus, the dynamics are given by the equations:

q̇ = v, ṗ = −q, p = v.

Implicit Lagrangian Systems with External Forces. In this section we discuss

how external forces alter the dynamics of implicit Lagrangian systems. This will be

useful later in describing the interaction between connected systems through interac-

tion forces. However, since the differential of the generalized energy lives in T ∗T ∗Q

and forces live in T ∗Q, we need to define the horizontal lift.

Definition 5.2.2. Given a covector F ∈ T ∗Q we define the horizontal lift above
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p ∈ T ∗Q to be the covector F̃ ∈ T ∗T ∗Q such that

〈F̃ , x〉 = 〈F, TπQ(x)〉

for any x ∈ TT ∗pQ.

Locally the horizontal lift of a covector (q, F ) ∈ T ∗qQ above p ∈ T ∗Q is given by

(q, p, F, 0) ∈ T ∗T ∗Q.

A force is a mapping F : TQ⊕ T ∗Q → T ∗Q . Given a Lagrangian L : TQ → R,

an implicit Lagrangian system with an external force field is defined by a quadruple

(EL, D,X, F ) such that for each (q, v) ∈ ∆Q and (q, p) ∈ P = FL(q, v) we have:

(X(q, v, p), (dEL − F̃ )(q, v, p)|T(q,p)P ) ∈ D(q, p). (5.6)

It follows that the local Lagrange-Dirac system in equation (5.6) may be given by

q̇ = v ∈ ∆Q(q), ṗ− ∂L

∂q
− F ∈ ∆◦Q(q), p =

∂L

∂v
. (5.7)

A curve (q(t), v(t), p(t)), t1 ≤ t ≤ t2 in TQ⊕ T ∗Q which satisfies (5.6) is called a

solution curve of (EL, D,X, F ).

The Lagrange-d’Alembert-Pontryagin principle. In this paragraph we pro-

vide a variational principle for forced implicit Lagrangian systems. Consider a me-

chanical system with kinematic constraints given by a regular distribution ∆Q on Q.

The motion of the mechanical system q : [t1, t2] → Q is said to be constrained

if q̇(t) ∈ ∆Q(q(t)) for all t, t1 ≤ t ≤ t2. Let L be a Lagrangian on TQ and

let F : TQ ⊕ T ∗Q → T ∗Q be an external force field. The Lagrange-d’Alembert-

Pontryagin principle (LAP principle) for a curve (q(t), v(t), p(t)), t1 ≤ t ≤ t2, in



114

TQ⊕ T ∗Q with the constraint v(t) ∈ ∆Q(q(t)) is given by

δ

∫ t2

t1

〈p(t), q̇(t)〉 − EL(q(t), v(t), p(t)) dt+

∫ t2

t1

〈F (q(t), v(t), p(t)), δq(t)〉 dt

= δ

∫ t2

t1

L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉 dt+

∫ t2

t1

〈F (q(t), v(t), p(t)), δq(t)〉 dt

= 0

for variations δq(t) ∈ ∆(q(t)) with fixed endpoints and arbitrary variation of v and p.

Proposition 5.2.1. A curve in TQ⊕ T ∗Q satisfies the LAP principle if and only if

it satisfies the equations of motion (5.7).

Proof. Taking an appropriate variation of q(t) with fixed end points yields:

∫ t2

t1

〈
∂L

∂q
− ṗ+ F, δq

〉
+

〈
∂L

∂v
− p, δv

〉
+ 〈δp, q̇ − v〉 dt = 0.

This is satisfied for all variations δq(t) ∈ ∆Q(q(t)) and arbitrary variations δv(t) and

δp(t), and with the constraint v(t) ∈ ∆Q(q(t)) if and only if (5.7) is satisfied.

Coordinate Representation. Let dim(Q) = n so that we may choose Rn as a

model space and we have local coordinates qi for i = 1, . . . , n on an open set U ⊂ Rn.

Additionally, TQ is locally given by local coordinates (qi, vi) on U×Rn. Similarly T ∗Q

may be locally coordinatized by charts (qi, pi) to U×Rn. The constraint set ∆Q defines

a subspace on each fiber of TQ, which can locally be expressed as a subset of Rn. If the

dimension of ∆Q(q) is n−m, then we can choose a basis em+1(q), em+2(q), . . . , en(q) of

∆(q). Recall that the constraint sets can be also represented by the annihilator ∆◦(q),

which is spanned by m one-forms ω1, ω2, . . . , ωm on Q. It follows that equation (5.7)

can be represented, in coordinates, by employing the Lagrange multipliers µa, a =
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1, ...,m, as follows:

q̇i
ṗi

 =

 0 1

−1 0

− ∂L
∂qi
− Fi

vi

+

 0

µa ω
a
i

 ,

pi =
∂L

∂vi
,

0 = ωai v
i,

where we employ the local expression ωa = ωai dq
i.

Example: Harmonic Oscillators with Damping. As before, let Q = R, L =

v2/2− q2/2, EL = pv− v2/2 + q2/2, and D = graph(Ω[). Now consider the force-field

F : TQ ⊕ T ∗Q → T ∗Q defined by F (q, v, p) = −(rv)dq, where r > 0 is a positive

damping coefficient. Then, F̃ (q, v, p) = (q, p, rv, 0). The formulas in equation (5.7)

give us the equations:

q̇ = v, ṗ+ q + rv = 0

with the Legendre transformation p = v.

5.3 Interconnection of Dirac Structures

The interconnection of physical systems is executed in a variety of ways. Examples

are massless hinges, soldering of wires, conversion of current into torque by a motor,

interaction potentials, etc. Many of these interconnections are expressed by Dirac

structures. For example, in the case of interconnection of two mechanical systems by

a massless ball-socket joint we could consider the velocity constraint of the form

∆ball-socket :={(v1, v2) ∈ TQ1 × TQ2|

velocity of hinge on system 1 = velocity of hinge on system 2}.



116

Then the annihilator, ∆◦ball-socket, contains the possible constraint forces required to

obey the ball-socket constraint. Finally, the direct sum ∆ball-socket ⊕ ∆◦ball-socket is a

Dirac structure. Additionally, if we consider an ideal motor, then the relationship

between the current/voltage through the terminals and the torque/angular velocity

of the shaft is given by the graph of a two form, and is also a Dirac structure. In

the following section we will explore in greater detail how interconnections may be

expressed as Dirac structures, which we will call interaction Dirac structures. In this

section we hope to convey how nonenergetic constraints between systems are naturally

expressed as interaction Dirac structures. In particular, we will present a tensor

product of Dirac structures, �, such that the Dirac structure of an interconnected

Lagrangian system is given by:

DC︸︷︷︸
connected system

=

non-interacting subsystems︷ ︸︸ ︷
(D1 ⊕ · · · ⊕Dn) �︸︷︷︸

tensor product

interaction︷︸︸︷
Dint

where D1, . . . , Dn are Dirac structures for disconnected subsystems. We refer to the

transition from the disconnected Dirac structures D1, . . . , Dn to the connected one,

DC , by the phrase interconnection of Dirac structures.

Interaction Dirac Structures. Here we will introduce a special interaction Dirac

structure called a interaction constraint Dirac structure.

Definition 5.3.1. Consider a regular distribution ΣQ ⊂ TQ and define the lifted

distribution on T ∗Q by

Σint = (TπQ)−1(ΣQ) ⊂ TT ∗Q.

Let Σ◦int be the annihilator of Σint. Then, an interaction constraint Dirac structure

on T ∗Q is defined by, for each (q, p) ∈ T ∗Q,

Dint = Σint × Σ◦int. (5.8)
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Alternatively, we could have written the above Dirac structure as

Dint = (πQ)∗
(
ΣQ ⊕ Σ◦Q

)
where we view ΣQ ⊕ Σ◦Q as a Dirac structure on Q. In any case, the above Dirac

structure typically appears in mechanics as Newton’s third law of action and reaction,

as shown in the next example.

Remark. We can consider a more general class of interactions, which may be defined

by a two-form Ωint and a distribution Σint on T ∗Q. In theory any Dirac structure could

be used to interconnect systems. Analysis of such a system may involve Lagrangian

reduction theory [CMR01], and will be explored in another paper. In this paper we

will only consider constraint interaction Dirac structures. However we will include the

example of a charged particle in a magnetic field and an ideal motor to demonstrate

the flexibility of this framework.

Example: A Particle Moving Through a Magnetic Field. Consider an elec-

tron moving through a vacuum. Then the equations of motion are ẍ = 0, ÿ = 0, z̈ = 0.

We could think of this system as a set of 3 decoupled systems with constant dynamics.

Now let B = Bxi + Byj + Bzk be a magnetic field (so div(B) = 0) and let B be a

closed two-form on Q = R3 defined by

iB(dx ∧ dy ∧ dz) = B,

so that

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy.

Using B, one can define a closed two-form Ωint on T ∗Q = R3 × R3 by

Ωint = −e
c
π∗QB.
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The force on a charged particle moving through the magnetic field B is given the

Lorentz force, α = −(e/c) ivB. This force couples the dynamics of the x, y, and z

coordinates. If we desire to express this coupling in the form of an interaction Dirac

structure, one could define the Dirac structure Dmagneticfield on T ∗Q by

Dmagnetic field = graph Ω[
int.

Example: An ideal motor. The form of the Dirac structure given in the previous

paragraph also describes the structure of an ideal motor. In this case the configuration

manifold is R×S1, where the first component is the electric flux through the terminals

and the second component is the angle of the shaft represented as an element of the

unit circle. When a current I passes through the terminal it experts a torque τ = J ·I

for some constant J . Geometrically, given coordinates (q, θ) on R×S1, we can express

the relationship between current and torque with the two-form B = Jdq ∧ dθ so that

τ = B(I, ·). Finally, this can all be expressed with the Dirac structure

Dmotor = graph(B)

= {((I, ω), (α, τ)) ∈ T (R× S1)⊕ T ∗(R× S1) :

α = −J · ω, τ = J · I}

where I and α are the current and voltage on the terminals of the motor, and ω and

τ are the angular velocity and torque on the shaft. Given a circuit and a mechanical

system connected by an ideal motor, the above interaction Dirac structure would

characterize the interconnection between systems.

The Direct Sum of Dirac Structures. So far we have shown how to express

interconnections as interaction Dirac structures. We intend to use these interaction

Dirac structures to connect systems on separate Dirac manifolds M1 and M2. How-

ever, before we can connect Dirac systems on separate manifolds, we should formalize

the notion of a “direct sum” of systems on separate spaces.
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Definition 5.3.2. Let (D1,M1) and (D2,M2) be Dirac manifolds. Let prMi
: M1 ×

M2 → Mi, i = 1, 2, be the natural Cartesian projection. We define the direct sum of

D1 and D2 by:

D1 ⊕D2(m) = {((v1, v2), T ∗m prM1
(α1) + T ∗m prM2

(α2)) ∈ Tm(M1 ×M2)× T ∗m(M1 ×M2)|

(v1, α1) ∈ D1(m1), (v2, α2) ∈ D2(m2)}

for each m = (m1,m2) ∈M1 ×M2.

Proposition 5.3.1. If D1 ∈ Dir(M1), D2 ∈ Dir(M2), then D1⊕D2 ∈ Dir(M1 ×M2).

To prove Proposition 5.3.1 the following lemma will be useful (see [YM06b] or

[Cou90]).

Lemma 5.3.1. A subbundle D ⊂ TM ⊕ T ∗M is maximally isotropic with respect to

〈〈·, ·〉〉 if and only if 〈〈(v, α), (v, α)〉〉 = 0,∀(v, α) ∈ D.

Proof of Proposition 5.3.1. Let (v, α) ∈ D1⊕D2(m). Notice that dim(D1⊕D2(m)) =

dim(D1(m1)) + dim(D2(m2)) = dim(M1 × M2) for each m ∈ M . By definition,

v = (v1, v2) ∈ Tm(M1×M2) and α = T ∗m prM1
(α1)+T ∗m prM2

(α2) for some α1 ∈ T ∗m1
M1

and α2 ∈ T ∗m2
M2 such that (v1, α1) ∈ D1(m1) and (v2, α2) ∈ D2(m2). Then, one has,

for (v, α) ∈ D1 ⊕D2(m) at m ∈M1 ×M2,

〈〈(v, α), (v, α)〉〉 = 2〈α, v〉

= 2〈T ∗m prM1
(α1) + T ∗m prM2

(α2), v〉

= 2〈α1, Tm prM1
(v)〉+ 2〈α2, Tm prM2

(v)〉

= 2〈α1, v1〉+ 2〈α2, v2〉

= 0,

since (v1, α1) ∈ D1(m1) and (v2, α2) ∈ D2(m2). Thus, noting that m is arbitrary, one

can prove that D1 ⊕D2 is maximally isotropic by Lemma 5.3.1.
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The Direct Sum of Induced Dirac Structures. The direct sum of Dirac struc-

ture will allow us to express a “Cartesian product” of distinct non-interacting implicit

Lagrangian systems. In particular, let Q1 and Q2 be distinct configuration spaces.

Let ∆Q1 ⊂ TQ1 and ∆Q2 ⊂ TQ2 be smooth constraint distributions which induce

the Dirac structures D1 ∈ Dir(T ∗Q1) and D2 ∈ Dir(T ∗Q2) respectively.

Let Q = Q1 × Q2 be an extended configuration manifold, and we may identify

TQ = T (Q1×Q2) with TQ1×TQ2, and T ∗Q = T ∗(Q1×Q2) with T ∗Q1×T ∗Q2. Define

the induced distribution dT ∗Q = (TπQ)−1(dQ) on T ∗Q from dQ = ∆Q1 ×∆Q2 ⊂ TQ.

Proposition 5.3.2. Let Ωi be the canonical symplectic structures on T ∗Qi and Di

the Dirac structures on T ∗Qi induced from ∆Qi ⊂ TQi for i = 1, 2. Then, D1 ⊕D2

is equal to the Dirac structure D on T ∗Q induced from dQ, which is given by:

D(q, p) = { (w, α) ∈ T(q,p)T
∗Q× T ∗(q,p)T ∗Q | w ∈ dT ∗Q(q, p)

and α− Ω[(q, p) · w ∈ d◦T ∗Q(q, p) }, (5.9)

for each (q, p) ∈ T ∗Q, where Ω[ : TT ∗Q→ T ∗T ∗Q is the bundle map associated with

Ω = Ω1 ⊕ Ω2.

Proof. Since D1 ⊕ D2 and D are distributions of identical rank, it suffices to prove

that D1⊕D2 ⊂ D. Let us choose (q, p) ∈ T ∗Q and (w, α) ∈ D1⊕D2(q, p). Then, we

may decompose (w, α) as

w = (w1, w2)

α = T ∗(q,p) prT ∗Q1
(α1) + T ∗(q,p) prT ∗Q2

(α2)

such that (w1, α1) ∈ D1(q1, p1) and (w2, α2) ∈ D2(q2, p2). Then it follows that α1 −

Ω[
1(q1, p1) · w1 ∈ ∆◦T ∗Q1

(q1, p1) and α2 − Ω[
2(q2, p2) · w2 ∈ ∆◦T ∗Q2

(q2, p2), where w1 ∈

∆T ∗Q1(q1, p1) and w2 ∈ ∆T ∗Q2(q2, p2). Noting that Ω[(q, p) = Ω[
1(q1, p1) ⊕ Ω[

2(q2, p2)

and w = (w1, w2) ∈ ∆T ∗Q1(q1, p1)×∆T ∗Q2(q1, p2), we conclude that α−Ω[(q, p) ·w ∈

∆◦T ∗Q1
(q1, p1) × ∆◦T ∗Q2

(q2, p2). Additionally, TπQ(∆T ∗Q1 × ∆T ∗Q2) = ∆Q1 × ∆Q2 =

dQ ⊂ TQ. The space dT ∗Q = ∆T ∗Q1×∆T ∗Q2 is annihilated by d◦T ∗Q = ∆◦T ∗Q1
×∆◦T ∗Q2

.
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Putting these all together gives us w ∈ dT ∗Q(q, p) and α−Ω[(q, p) ·w ∈ d◦T ∗Q(q, p), for

each (q, p) ∈ T ∗Q. Thus (w, α) ∈ D. Since (w, α) was chosen arbitrarily, D1 ⊕D2 ⊂

D.

It is notable that the direct sum of Dirac structures does not express interactions

between separate systems. The interaction is expressed using an interaction Dirac

structure but we have not yet shown how to use the interaction Dirac structure to do

anything useful. We do this in the next section.

Tensor Product of Dirac Structures. Now we show how to derive the Dirac

structure of the interconnected Dirac system using D1, D2 and an interaction Dirac

structure Dint. In order to do this we need an important mathematical ingredient

called the Dirac tensor product.

Definition 5.3.3. Let Da, Db ∈ Dir(M). Let d : M ↪→ M × M be the diagonal

embedding in M ×M . The Dirac tensor product of Da and Db is defined as

Da �Db := d∗(Da ⊕Db) =
(Da ⊕Db ∩K⊥) +K

K
, (5.10)

where

K = {(0, 0)} ⊕ {(β,−β)} ⊂ T (M ×M)⊕ T ∗(M ×M)

and its orthogonal complement K⊥ ⊂ T (M ×M)⊕ T ∗(M ×M) is given by

K⊥ = {(v, v)} ⊕ T ∗(M ×M).

Theorem 5.3.1. Under the assumption that Da⊕Db ∩K⊥ has locally constant rank

at each x ∈M , Da �Db is a Dirac structure on M .
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Remark. In previous publications we called the tensor product of Dirac structures

the bowtie product and used the symbol “./” [YJM10, JYM10] with the definition:

Da ./ Db = {(v, α) ∈ TM ⊕ T ∗M | ∃β ∈ T ∗M

such that (v, α + β) ∈ Da, (v,−β) ∈ Db}. (5.11)

Later, it was revealed that this construction was equivalent to the tensor product

of Dirac structures, �, introduced by [Gua07] in the context of generalized complex

geometry1.

Properties of the Dirac Tensor Product. In this section we will prove that

the tensor product of Dirac structures is associative and commutative, we will use

a special restricted two-form Ω∆M
induced from a Dirac structure D on M with

∆M = prTM(D) ⊂ TM , where prTM : TM ⊕T ∗M → TM ; (v, α) 7→ v and we assume

that ∆M is smooth.

Lemma 5.3.2. On each fiber of TxM × T ∗xM at x ∈ M , there exists a bilinear

anti-symmetric map Ω∆M
(x) : ∆M(x)×∆M(x)→ R defined as

Ω∆M
(x)(v1, v2) = 〈α1, v2〉 such that (v1, α1) ∈ D(x). (5.12)

This restricted two-form was initially introduced by [CW88] for linear Dirac struc-

tures (see also [Cou90] and [DW04]). We can easily generalize it to the case of general

manifolds since Ω∆M
may be defined fiber-wise.

Given a Dirac structure D ∈ Dir(M), it follows from equation (5.1) that, for each

x ∈M , D(x) may be given by

D(x) = {(v, α) ∈ TxM × T ∗xM | v ∈ ∆M(x), and

α(w) = Ω∆M
(x)(v, w) for all w ∈ ∆M(x)},

1We appreciate Henrique Bursztyn for pointing out this fact in Iberoamerican Meeting on Ge-
ometry, Mechanics and Control in honor of Hernán Cendra at Centro Atómico Bariloche, January
13, 2011.
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which may be also stated by

D(x) = {(v, α) ∈ TxM × T ∗xM | v ∈ ∆M(x), and α− Ω[(x) · v ∈ ∆◦M(x)},

where Ω[(x) : TxM → T ∗xM is the skew-symmetric bundle map that is an extension

of the skew-symmetric map Ω[
∆M

(x) : ∆M(x) ⊂ TxM → ∆∗M(x) = T ∗xM/∆◦M(x) ⊂

T ∗xM , which is defined by 〈Ω[
∆M

(x)(vx), wx〉 = Ω∆M
(vx, wx) on ∆M(x).

Proposition 5.3.3. Let Da and Db ∈ Dir(M). Let ∆a = prTM(Da) and ∆b =

prTM(Db). Let Ωa and Ωb be the Dirac two-forms for Da and Db, respectively. If

∆a ∩∆b has locally constant rank, then Da�Db is a Dirac structure with the smooth

distribution prTM(Da�Db) = ∆a ∩∆b and with the Dirac two-form (Ωa + Ωb)|∆a∩∆b
.

Proof. Let (v, α) ∈ Da �Db(x) for x ∈M . By definition of the Dirac tensor product

in (5.11), there exists β ∈ T ∗xM such that (v, α+β) ∈ Da(x), (v,−β) ∈ Db(x). Hence,

one has

Ω[
a(x) · v − α− β ∈ ∆◦a(x) and Ω[

b(x) · v + β ∈ ∆◦b(x), for each x ∈M,

where v ∈ ∆a(x) and v ∈ ∆b(x). This means (Ω[
a + Ω[

b)(x) · v − α ∈ ∆◦a(x) + ∆◦b(x)

and v ∈ ∆a ∩∆b(x). But ∆◦a(x) + ∆◦b(x) = (∆a ∩∆b)
◦(x). Therefore, upon setting

Ωc = Ωa + Ωb and ∆c = ∆a ∩∆b, we can write Ω[
c(x) · v − α ∈ ∆◦c(x) and v ∈ ∆c(x);

namely, (v, α) ∈ Dc(x), where Dc is a Dirac structure with ∆c and Ωc. Then, it

follows that Da�Db ⊂ Dc. Equality follows from the fact that both Da�Db(x) and

Dc(x) are subspaces of TxM × T ∗xM with the same dimension.

Corollary 5.3.1. If Ωb = 0, then it follows that Db = ∆b ⊕ ∆◦b , and also that

Dc = Da �Db is induced from ∆a ∩∆b and Ωa|∆a∩∆b
.

Proposition 5.3.4. Let Da, Db, Dc ∈ Dir(M) with smooth distributions ∆a = prTM(Da),

∆b = prTM(Db), and ∆c = prTM(Dc). Assume that ∆a ∩∆b, ∆b ∩∆c, and ∆c ∩∆a

have locally constant ranks. Then the Dirac tensor product � is associative and com-
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mutative; namely we have

(Da �Db) �Dc = Da � (Db �Dc)

and

Da �Db = Db �Da.

Proof. First we prove commutativity. Recall that any Dirac structure may be con-

structed by its associated constraint distribution ∆ = prTM(D) and the Dirac two-

form Ω∆. Let Ωa,Ωb, and Ωc be the Dirac two-forms corresponding to Da, Db, and

Dc, respectively. Then we find by Proposition 5.3.3 that Da � Db is defined by the

smooth distribution ∆ab = ∆a ∩∆b and the Dirac two-form Ω∆ab
= (Ω∆a + Ω∆b

)|∆ab
.

By commutativity of + and ∩, we find the same distribution, and from the two-form

for Db �Da, we have Da �Db = Db �Da.

Next, we prove associativity. Let ∆(ab)c = prTM((Da � Db) � Dc) and ∆a(bc) =

prTM(Da � (Db �Dc)) and it follows

∆(ab)c = (∆a ∩∆b) ∩∆c = ∆a ∩ (∆b ∩∆c) = ∆a(bc).

If Ω∆(ab)c
and Ω∆a(bc)

are, respectively, the Dirac two-forms for (Da � Db) � Dc and

Da � (Db �Dc), we find

Ω∆(ab)c
= [(Ω∆a + Ω∆b

)|∆ab
+ Ω∆c ]|∆(ab)c

= (Ω∆a + Ω∆b
+ Ω∆c)|∆(ab)c

= (Ω∆a + Ω∆b
+ Ω∆c)|∆a(bc)

= Ω∆a(bc)
.

Thus, we obtain

(Da �Db) �Dc = Da � (Db �Dc).
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Remark. We have shown that � acts on pairs of Dirac structures with clean in-

tersections2 to give a new Dirac structure, and also that that it is an associative and

commutative product. It is easy to verify that the Dirac structure De = TM ⊕ {0}

satisfies the property of the identity element as De � D = D � De = D for every

D ∈ Dir(M). However this does not make the pair (Dir(M),�) into a commutative

category because � is not defined on all pairs of Dirac structures. This is similar to

the difficulty of defining a symplectic category [Wei09].

The previous Propositions justify the following definition for the “interconnection”

of Dirac structures.

Definition 5.3.4. Let (D1,M1) and (D2,M2) be Dirac manifolds and let Dint ∈

Dir(M1×M2) be such that Dint and D1⊕D2 have a clean intersection. Then we call

the Dirac structure

DC := (D1 ⊕D2) �Dint

the interconnection of D1 and D2 through Dint.

Interconnections by Constraints. Let Q1 and Q2 be distinct configuration man-

ifolds and let D1 ∈ Dir(T ∗Q1) and D2 ∈ Dir(T ∗Q2) be Dirac structures induced from

distributions ∆Q1 ⊂ TQ1 and ∆Q2 ⊂ TQ2. Let Dint be a Dirac structure described

by a distribution ΣQ ⊂ TQ, as in Definition 5.3.1. Then it is clear that D1 ⊕ D2

and Dint intersect cleanly if and only if ∆Q1 ⊕ ∆Q2 and ΣQ intersect cleanly. If we

have clean intersections then the interconnection of D1 and D2 through Dint is given

locally by

D(q, p) = { (w, α) ∈ T(q,p)T
∗Q× T ∗(q,p)T ∗Q |

w ∈ ∆T ∗Q(q, p) and α− Ω[(q, p) · w ∈ ∆◦T ∗Q(q, p) },

where Ω = Ω1 ⊕ Ω2, ∆T ∗Q = Tπ−1
Q ((∆Q1 ⊕∆Q2) ∩ ΣQ).

2A clean intersection of two sub bundles of a vector bundle means that the intersection is a sub
bundle of constant rank on each component of the base.
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Interconnection of n > 2 Dirac Structures. It is simple to generalize the

preceding constructions to the interconnection of n > 2 distinct Dirac structures

D1, D2, . . . , Dn on distinct manifolds M1,M2, . . . ,Mn. Recall that the direct sum ⊕

is associative so that we may define the iterated sum

n⊕
i=1

Di = D1 ⊕D2 ⊕ · · · ⊕Dn.

By choosing an appropriate interaction Dirac structure

Dint ∈ Dir(M),

where M = M1 × · · · ×Mn, and rank(prTM(⊕Di) ∩ prTM(Dint)) is constant on each

component of M , we can define the interconnection of D1, . . . , Dn through Dint by

the Dirac structure

D =

(
n⊕
i=1

Di

)
�Dint.

Composition as an Interconnection of Dirac Structures. The notion of com-

position of Dirac structures was introduced in [CvDSBn07] in the context of port-

Hamiltonian systems, where the composition was constructed on vector spaces. In

this section we site the results of [JY11] to clarify the link between composition and

interconnection via �.

Let V1, V2, and Vs be vector spaces. Let D1 be a linear Dirac structure on V1⊕ Vs
and D2 be a linear Dirac structure on Vs⊕V2. The composition of D1 and D2 is given

by

D1||D2 = {(v1, v2, α1, α2) ∈ (V1 × V2)⊕ (V ∗1 × V ∗2 ) |

∃(vs, αs) ∈ Vs ⊕ V ∗s , such that (v1, vs, α1, αs) ∈ D1, (−vs, v2, αs, αs) ∈ D2},

where V ∗1 , V
∗

2 , and V ∗s denote the dual space of V1, V2 and Vs. It was also shown that

the set D1||D2 is itself a Dirac structure on V1 × V2. Moreover, given many shared

variables, the operation of composition is associative. However the type of interac-
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tion given by composition of Dirac structures is specifically the interaction between

systems which have shared variables. This is expressed in the next theorem which

links the notion of composition of Dirac structures with the notion of interconnection

of Dirac structures.

Proposition 5.3.5. Set V = V1 × Vs × Vs × V2 and V̄ = V1 × V2. Let Ψ : V → V̄

be the projection (v1, vs, v
′
s, v2) 7→ (v1, v2). Let Σint = {(v1, vs,−vs, v2) ∈ V } and let

Dint = Σint ⊕ Σ◦int. For linear Dirac structures D1 on V1 × Vs and D2 on Vs × V2, it

follows that

D1||D2 = Ψ∗(D1 ⊕D2) �Dint.

Proof. First, set D = (D1 ⊕D2) �Dint and observe that Σ◦int = {(0, αs, αs, 0) ∈ V ∗}.

We also observe

Ψ∗D = {(Ψ(v1, vs, v
′
s, v2), α1, α2) | (v1, vs, v

′
s, v2,Ψ

∗(α1, α2)) ∈ D}

by definition of the push-forward map. Using the facts that Ψ(v1, vs, v
′
s, v2) = (v1, v2)

and Ψ∗(α1, α2) = (α1, 0, 0, α2) ∈ V ∗,

Ψ∗D ={(v1, v2, α1, α2) | ∃vs, v′s ∈ Vs such that (v1, vs, v
′
s, v2, α1, 0, 0, α2) ∈ D}.

Since D = (D1 ⊕D2) �Dint, it follows that

Ψ∗D ={(v1, v2, α1, α2) | ∃vs, v′s ∈ Vs and ∃β ∈ V ∗ such that

(v1, vs, v
′
s, v2, α1 + β1, βs, β

′
s, α2 + β2) ∈ D1 ⊕D2,

(v1, vs, v
′
s, v2,−β1,−βs,−β′s,−β2) ∈ Dint}.

Utilizing the fact that (v1, vs, v
′
s, v2,−β1,−βs,−β′s,−β2) ∈ Dint if and only if vs = −v′s

and βs = β′s, β1 = 0, β2 = 0, we may restate the above as

Ψ∗D ={(v1, v2, α1, α2) | ∃vs ∈ Vs, αs ∈ V ∗s such that

(v1, vs,−vs, v2, α1, αs, αs, α2) ∈ D1 ⊕D2}.
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Finally, we have

Ψ∗D ={(v1, v2, α1, α2) | ∃vs ∈ Vs, αs ∈ V ∗s such that

(v1, vs, α1, αs) ∈ D1, (−vs, v2, αs, α2) ∈ D2}.

This is nothing but D1||D2.

5.4 Interconnection of Implicit Lagrangian Sys-

tems

The process of interconnection of Dirac structures allows us to couple the dynamics

of implicit Lagrangian systems using interaction Dirac structures. Specifically, given

a pair of implicit Lagrangian systems, (X1, D1, EL1) and (X2, D2, EL2), and an inter-

action Dirac structure, Dint, we derive the system (XC , DC , EL) where L = L1 + L2,

DC = (D1 ⊕D2) �Dint, and XC is a partial vector-field which satisfies the implicit

Euler-Lagrange equations with respect to the Dirac structure DC and energy EL. We

call the process of transition from (X1, D1, EL1) and (X2, D2, EL2) to (XC , DC , EL)

interconnection of implicit Lagrangian systems.

Distinct implicit Lagrangian Systems. In this section, we shall consider the

interconnection of n distinct implicit Lagrangian systems. For the remainder of this

section we have the following setup:
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Qi a configuration manifold

∆Qi a regular distribution on TQi

Di the Dirac structure induced from the distribution ∆Qi

Li generic Lagrangian in C∞(TQi), possibly non-degenerate

FLi the Legendre transformation of Li

ELi the generalized energy of Li

Pi the primary constraint manifold FLi(∆Qi)

Xi a partial vector field for the implicit Lagrangian system (Xi, Di, ELi)

for i = 1, . . . , n

.

For the n distinct implicit Lagrangian systems, (ELi , Di, Xi), i = 1, . . . , n, one has

the conditions

(Xi(qi, vi, pi),dELi(qi, vi, pi)|TPi) ∈ Di(qi, pi)

for each (qi, vi) ∈ ∆Qi with (qi, pi) = FLi(qi, vi).

Finally to save space, set

Q = Q1 × · · · ×Qn

dQ = ∆Q1 × · · · ×∆Qn ⊂ TQ

L = L1 + · · ·+ Ln

D = (D1 ⊕ · · · ⊕Dn) �Dint

and let EL : TQ⊕ T ∗Q→ R be the generalized energy associated to L.

Interconnection through an interaction Dirac Structure Let ΣQ ⊂ TQ be

a smooth distribution such that ∆Q := dQ ∩ ΣQ is a distribution of locally constant

rank.3. Define the interaction Dirac structure by Dint = Σint⊕Σ◦int as in (5.8), where

Σint = (TπQ)−1(ΣQ). Let q = (q1, ..., qn) ∈ Q, (q, v) = (q1, ..., qn, v1, ..., vn) ∈ TQ, and

(q, p) = (q1, ..., qn, p1, ..., pn) ∈ T ∗Q.

3Locally constant in this case means constant on each component of Q.
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The dynamics of the interconnected implicit Lagrangian system are given by:

q̇ = v ∈ ∆Q(q), ṗ− ∂L

∂q
∈ ∆◦Q(q), p =

∂L

∂v
. (5.13)

However, this local expression can be split between the subsystems by introducing

interaction force fields Fi : TQ⊕ T ∗Q→ T ∗Qi to yield equations

q̇i = v ∈ ∆Qi(qi), ṗi −
∂Li
∂qi

+ Fi(q, v, p) ∈ ∆◦Qi(qi), pi =
∂Li
∂vi

, i = 1, . . . , n (5.14)

along with the condition q̇ ∈ ΣQ. Note that the domain of each Fi is TQ⊕ T ∗Q, and

involves all the subsystems thus coupling the equations. We state this formally in the

following theorem.

Theorem 5.4.1. Denote the natural projections

prQi : TQi ⊕ T ∗Qi → Qi

ρTQi⊕T ∗Qi : TQ⊕ T ∗Q→ TQi ⊕ T ∗Qi; (q, v, p) 7→ (qi, vi, pi)

ρT ∗Qi : T ∗Q→ T ∗Qi

where we identify TQ with TQ1 × · · · × TQn and T ∗Q with T ∗Q1 × · · · × T ∗Qn.

Then given a curve (q(t), v(t), p(t)) in TQ ⊕ T ∗Q, the following statements are

equivalent:

(i) The curve (q(t), v(t), p(t)) satisfies

(
(q̇(t), ṗ(t)), dEL(q(t), v(t), p(t))|T(q(t),p(t))P

)
∈ D(q(t), p(t)),

where (q(t), p(t)) = FL(q(t), v(t)) ∈ P .

(ii) There exists a force field F : TQ ⊕ T ∗Q → Σ◦Q ⊂ T ∗Q such that the curves
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(qi(t), vi(t), pi(t)) satisfy

((q̇i(t), ṗi(t)), (dELi − F̃i)(q(t), v(t), p(t))|TPi) ∈ Di(qi(t), pi(t)),

where (qi(t), pi(t)) = FLi(qi(t), vi(t)) ∈ Pi, q̇(t) = (q̇1(t), ..., q̇n(t)) ∈ ΣQ(q(t))

and F = (F1, . . . , Fn).

Proof. Fix t and recall that D = (D1 ⊕ · · · ⊕Dn) �Dint, and the condition

((q̇(t), ṗ(t)),dE(q(t), v(t), p(t))|T(q(t),p(t))P ) ∈ D(q(t), p(t)), for all t1 ≤ t ≤ t2,

using the definition of �(≡./) given in (5.11), the above equation implies the existence

of a covector

(F,w) = (F1, . . . , Fn, w1, . . . , wn) ∈ T ∗(q,p)T ∗Q,

such that

(
q̇, ṗ,−∂L

∂q
− F, v + w

)
∈ D1(q1, p1)⊕ · · · ⊕Dn(qn, pn), (5.15)

and

(q̇, ṗ, F,−w) ∈ Dint(q, p). (5.16)

It follows from condition (5.15) that

(
q̇i, ṗi,−

∂Li
∂qi
− Fi, vi + wi

)
∈ Di(qi, pi), i = 1, ..., n,

and also from condition (5.16) that q̇ ∈ ΣQ(q), w = 0, and F ∈ Σ◦Q(q), where we note

∂L/∂qi = ∂Li/∂qi. Allowing t to vary, it follows that the curves (qi(t), vi(t), pi(t)), t1 ≤

t ≤ t2 satisfy the conditions

(
(q̇i(t), ṗi(t)), (dEi − Fi)(qi(t), vi(t), pi(t))

∣∣
T(qi(t),pi(t))Pi

)
∈ Di(qi(t), pi(t)), i = 1, ..., n,
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together with (qi(t), pi(t)) = FLi(qi(t), vi(t)) ∈ Pi. These conditions implicitly define

the force field F : TQ ⊕ T ∗Q → T ∗Q on the graph of the FL. One can easily check

the converse by reversing the order of the arguments given.

Variational Principles for Interconnected Systems. Because D is equivalent

to a Dirac structure induced from the constraint ∆Q, the dynamics must satisfy the

LAP principle

δ

∫ t2

t1

〈p(t), q̇(t)〉 − EL(q(t), v(t), p(t)) dt

= δ

∫ t2

t1

L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉 dt = 0,

(5.17)

for a curve (q(t), v(t), p(t)), t1 ≤ t ≤ t2 in TQ ⊕ T ∗Q with variations δq(t) ∈

∆Q(q(t)) ⊂ Tq(t)Q with fixed endpoints, unconstrained variations δv(t) and δp(t),

and q̇(t) ∈ ∆Q(q(t)) ⊂ Tq(t)Q. In this section we provide an equivalent variational

principles where each subsystem is given its own variational equation.

Definition 5.4.1. Let (q(t), v(t), p(t)) ∈ TQ⊕T ∗Q be a curve and let (qi(t), vi(t), pi(t)) =

ρTQi⊕T ∗Qi(q(t), v(t), p(t)). The interconnection of the Lagrange-d’Alembert-Pontryagin

principle through Dint is:

δ

∫ t2

t1

〈pi(t), q̇i(t)〉 − ELi(qi(t), vi(t), pi(t)) dt+

∫ t2

t1

〈Fi(q(t), v(t), p(t)), δqi(t)〉 dt

= δ

∫ t2

t1

Li(qi(t), vi(t)) + 〈pi(t), q̇i(t)− vi(t)〉 dt+

∫ t2

t1

〈Fi(q(t), v(t), p(t)), δqi(t)〉 dt

= 0, (5.18)

for variations δqi(t) ∈ ∆Qi(qi(t)) with fixed end points, arbitrary variations δvi, δpi,

and with q̇i(t) ∈ ∆Qi(qi(t)), and the condition

(q̇1, ..., q̇n) ∈ ΣQ(q1, ..., qn) and F1 ⊕ · · · ⊕ Fn ∈ Σ◦Q(q1, ..., qn). (5.19)

Proposition 5.4.1. The interconnection of the LAP principle through ΣQ given in



133

(5.18) and (5.19) for curves (qi(t), vi(t), pi(t)), t1 ≤ t ≤ t2 in TQi⊕T ∗Qi, i = 1, . . . , n

is equivalent to the LAP principle in (5.17).

Proof. It follows from (5.18) that

q̇i = vi ∈ ∆Qi(qi), ṗi −
∂Li
∂qi
− Fi ∈ ∆◦Qi(qi), pi =

∂Li
∂vi

, i = 1, ..., n.

Recall that the distribution dQ(q1, ..., qn) = ∆Q1(q1) × · · · × ∆Qn(qn) ⊂ TQ has the

annihilator d◦Q(q1, ..., qn) = ∆◦Q1
(q1)× · · · ×∆◦Qn(qn), and impose the additional con-

straints

(q̇1, ..., q̇n) ∈ ΣQ(q1, ..., qn) and F1(q1, v1, p1)⊕ · · · ⊕ Fn(qn, vn, pn) ∈ Σ◦Q(q1, ..., qn)

to arrive at the equations

(q̇1, ..., q̇n) = (v1, ..., vn) ∈ ∆Q(q1, ..., qn),(
ṗ1 −

∂L1

∂q1

, ..., ṗn −
∂Ln
∂qn

)
∈ ∆◦Q(q1, ..., qn)

(p1, ..., p2) =

(
∂L1

∂v1

, ...,
∂L2

∂v2

)

where ∆Q(q1, ..., qn) = dQ(q1, ..., qn)∩ΣQ(q1, ..., qn) ⊂ TQ is the final distribution and

its annihilator is given by

∆◦Q(q1, ..., qn) = d◦Q(q1, ..., qn) + Σ◦Q(q1, ..., qn).

Reflecting upon the last group of equations we find that we have arrived at the

Lagrange-d’Alembert-Pontryagin equations (5.13), which can also be derived from

the Lagrange-d’Alembert-Pontryagin principle in (5.17). The converse is proven by

reversing the above arguments to prove the existence of the coupling forces F1, . . . , Fn.

Thus, we obtain the following theorem:



134

Theorem 5.4.2. Let (q, v, p)(t) be a curve in TQ⊕ T ∗Q on the time-interval [t1, t2]

and set (qi, vi, pi)(t) = ρTQi⊕T ∗Qi(q(t), v(t), p(t)). Then the following statements are

equivalent:

(i) The curve (q, v, p)(t), t1 satisfies

((q̇, ṗ)(t), dEL(q, v, p)(t)|TP ) ∈ D(q(t), p(t)),

where (q(t), p(t)) = (q(t), (∂L/∂v)(t)).

(ii) There exists a force, F , such that the curves (qi, vi, pi)(t) satisfy

((q̇i(t), ṗi(t)), (dELi − ρT ∗Qi · F (q(t), v(t), p(t)))|T(qi(t),pi(t))Pi) ∈ Di(qi(t), pi(t)),

where (qi, pi = (qi, ∂Li/∂vi), and

q̇(t) ∈ ΣQ(q(t)) and F (q, v, p)(t) ∈ Σ◦Q(q(t)).

(iii) The curve (q, v, p)(t), t1 ≤ t ≤ t2 satisfies the Hamilton–Pontryagin principle:

δ

∫ t2

t1

L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉dt = 0

with respect to chosen variations δq(t) ∈ ∆Q(q(t)) with fixed end points, δv, δp

arbitrary, and the constraint q̇(t) ∈ ∆Q(q(t)).

(iv) There exists a force, F , such that the curves (qi, vi, pi)(t), t1 ≤ t ≤ t2 satisfy the

Lagrange–d’Alembert–Pontryagin principles:

δ

∫ t

0

Li(qi(t), vi(t)) + 〈pi(t), q̇i(t)− vi(t)〉dt+

∫ t2

t1

〈Fi(t), δq〉dt = 0,

for chosen variations δqi(t) ∈ ∆Qi(qi(t)) with fixed end points, arbitrary δvi(t), δpi(t),
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and the constraints q̇i(t) ∈ ∆Qi(qi(t)) and

q̇(t) ∈ ΣQ(q(t)) and F (q(t), v(t), p(t)) ∈ Σ◦Q(q(t)).

5.5 Examples

In this section we provide specific examples of interconnection of implicit Lagrangian

systems. We have chosen simple scenarios to illustrate the essential ideas concretely.

However, tearing and interconnection extend to more complicated systems. Addition-

ally, for the first couple of examples we invoke some ideas from port-systems theory

to allow for a comparison between existing theories of interconnection and the theory

presented here. In the final example we do not include any port-variables. In fact one

advantage of the theory presented in this paper is that port-variables are not needed.

(I) A Mass-Spring Mechanical System.

Consider a mass-spring system as in Figure 5.1. Let mi and ki be the i-th mass and

spring for i = 1, 2, 3.

Figure 5.1 – A mass-spring system

Tearing and Interconnection. Inspired by the concept of tearing and intercon-

nection developed in [Kro63], the mechanical system can be torn apart into two

subsystems, as in Figure 5.2, each of which can be regarded as a subsystem the

interconnected system. The procedure of tearing inevitably yields interactive bound-

aries, i.e., boundaries where dynamics or forces may be controlled externally4. Upon

tearing, the connected system is described by obeying the following condition at the

4Interactive boundaries are called “ports” in circuit theory (see, for instance, [CDK87]).
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interactive boundaries:

f2 + f̄2 = 0, ẋ2 = ˙̄x2. (5.20)

Where f2 and f̄2 are forces on ẋ2 and ˙̄x2, respectively. We call (5.20) the continuity

condition. Without the continuity condition, there would exist no interaction between

the disconnected subsystems. In other words, the original mechanical system can be

Tearing
Sub-system 1 Sub-system 2

Figure 5.2 – Torn-apart systems

recovered by interconnecting the subsystems with the continuity conditions.

The continuity conditions in (5.20) imply the continuity of power flow; namely,

the power invariance holds as

P2 + P̄2 = 0,

where P2 = 〈f2, v2〉 and P̄2 = 〈f̄2, v̄2〉. Needless to say, equation (5.20) can be under-

stood as the defining condition for an interaction Dirac structure.

Subsystems. Let us consider how dynamics of the disconnected subsystems can be

formulated as forced implicit Lagrangian systems.

The configuration space of subsystem 1 may be given by Q1 = R × R with local

coordinates (x1, x2), while the configuration space of the subsystem 2 is Q2 = R× R

with local coordinates (x̄2, x3). We can invoke the canonical Dirac structures D1 ∈

Dir(T ∗Q1) and D2 ∈ Dir(T ∗Q2) in this example. For Subsystem 1, the Lagrangian

L1 : TQ1 → R is given by

L1(x1, x2, v1, v2) =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

1

2
k1x

2
1 −

1

2
k2(x2 − x1)2,
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while the Lagrangian L2 : TQ2 → R for Subsystem 2 is given by

L2(x̄2, x3, v̄2, v3) =
1

2
m3v

2
3 −

1

2
k3(x3 − x̄2)2.

Then, we can define the generalized energy E1 on TQ1⊕T ∗Q1 byE1(x1, x2, v1, v2, p1, p2) =

p1v1+p2v2−L1(x1, x2, v1, v2), and also define the generalized energy E2 on TQ2⊕T ∗Q2

by E2(x̄2, x3, v̄2, v3, p̄2, p3) = p̄2v̄2 + p3v3 − L2(x̄2, x3, v̄2, v3). Although the original

system has no external force, each disconnected subsystem has an interconnection

constraint force at the interactive boundary. When viewing each system separately,

the constraint force acts as an external force on each subsystem. Again, this is be-

cause tearing always yields constraint forces at the boundaries associated with the

disconnected subsystems, as shown in Figure 5.2

Further, let X1 : TQ1⊕T ∗Q1 → TT ∗Q1 be the partial vector field, which is defined

at points (x1, x2, v1, v2, p1 = m1v1, p2 = m2v2) ∈ TQ1⊕P1 as X1(x1, x2, v1, v2, p1, p2) =

(x1, x2, p1, p2, ẋ1, ẋ2, ṗ1, ṗ2), where P1 = FL(TQ1). Similarly, let X2 : TQ2 ⊕ T ∗Q2 →

TT ∗Q2 be the partial vector field, which is defined at each point (x̄2, x3, v̄2, v3, p̄2 =

0, p3 = m3v3) by X2(x̄2, x3, v̄2, v3, p̄2, p3) = (x̄2, x3, p̄2, p3, ˙̄x2, ẋ3, ˙̄p2, ṗ3) ∈ TQ2 ⊕ P2,

where P2 = FL(TQ2) and we impose the consistency condition ˙̄p2 = 0.

Lagrange-Dirac System 1: We can formulate dynamics of System 1 in the context

of the forced implicit Lagrangian system (EL1 , D1, X1, F1) as

(X1,dEL1|TP1 − F̃1) ∈ D1.

The above equation may be given in coordinates by

ẋ1 = v1, ẋ2 = v2, ṗ1 = −k1x1 − k2(x1 − x2), ṗ2 = k2(x1 − x2) + f2,

and with p1 = m1v1 and p2 = m2v2.

Lagrange-Dirac System 2: Similarly, we can also formulate dynamics of System 2
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in the context of the Lagrange-Dirac dynamical system (EL2 , D2, X2, F2) as

(X2,dE2|TP2 − F̃2) ∈ D2,

which may be given in coordinates by

˙̄x2 = v̄2, ẋ3 = v3, ˙̄p2 = k3(x3 − x̄2) + f̄2, ṗ3 = −k3(x3 − x̄2),

together with p̄2 = 0 and p3 = m3v3 as well as ˙̄p2 = 0.

In the next paragraph we will interconnect these separate systems with a Dirac

structure.

Interconnection of Distinct Dirac Structures. LetQ = Q1×Q2 = R×R×R×R

be an extended configuration space with local coordinates x = (x1, x2, x̄2, x3). Recall

that the direct sum of the Dirac structures is given by D1⊕D2 on T ∗Q. The constraint

distribution due to the interconnection is given by

ΣQ(x) = {v ∈ TxQ | 〈ωQ(x), v〉 = 0},

where ωQ = dx2 − dx̄2 is a one-form on Q. On the other hand, the annihilator

Σ◦Q ⊂ T ∗Q is defined by

Σ◦Q(x) = {f = (f1, f2, f̄2, f3) ∈ T ∗xQ | 〈f, v〉 = 0 and v ∈ ΣQ(x)}.

It follows from this codistribution that f2 = −f̄2, f1 = 0, and f3 = 0. Hence, we

obtain the conditions for the interconnection given by (5.20); namely, f2 + f̄2 = 0 and

v2 = v̄2. Let Σint = (TπQ)−1(ΣQ) ⊂ TT ∗Q and let Dint be defined as in (5.8). Finally

we derive the interconnected Dirac structure D on T ∗Q given by

D = (D1 ⊕D2) �Dint.
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Interconnection. Now, let us see how the forced implicit Lagrangian systems,

namely (EL1 , D1, X1, F1) and (EL2 , D2, X2, F2), can be interconnected through Dint

to yield a single implicit Lagrangian system. Define the Lagrangian L : TQ→ R for

the interconnected system by L = L1 +L2, and hence the generalized energy is given

by EL = EL1 + EL2 : TQ⊕ T ∗Q → R. Let ∆Q = (TQ1 × TQ2) ∩ Σint. Set a partial

vector field by X = X1 ⊕ X2 : TQ ⊕ T ∗Q → TT ∗Q, which is defined at points in

∆Q ⊕ P such that P = FL(∆Q).

Finally, the interconnected system is given by (EL, D,X), where X satisfies

(X(q, v, p),dEL(q, v, p)|TP ) ∈ D(q, p)

for each (q, p) = FL(q, v) with (q, v) ∈ ∆Q.

The Lagrange-d’Alembert-Pontryagin Principle. Additionally the intercon-

nected system is known to satisfy the Lagrange-d’Alembert-Pontryagin principle:

δ

∫ b

a

L1(x1, x2, v1, v2) + p1(ẋ1 − v1) + p2(ẋ2 − v2)

+ L2(x̄2, x3, v3) + p̄2( ˙̄x2 − v̄2) + p3(ẋ3 − v3) dt = 0,

for all δx2 = δx̄2, for all δv and δp, and with v2 = v̄2.
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Dynamics for the Interconnected System in Coordinates. Finally, we can

obtain the coordinate expressions for the interconnected dynamical system as



0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0





ẋ1

ẋ2

˙̄x2

ẋ3

ṗ1

ṗ2

˙̄p2

ṗ3



=



k1x1 − k2(x2 − x1)

k2x2

−k3(x3 − x̄2)

k3(x3 − x̄2)

v1

v2

v̄2

v3



+



0

−1

1

0

0

0

0

0



f2,

together with the Legendre transformation p1 = m1v1, p2 = m2v2, p̄2 = 0, p3 = m3v3,

the interconnection constraint v2 = v̄2, as well as the consistency condition ˙̄p2 = 0.

(II) Electric Circuits

Consider the electric circuit depicted in Figure 5.3, where R denotes a resistor, L an

inductor, and C a capacitor.

Figure 5.3 – R-L-C circuit

As in Figure 5.4, we decompose the circuit into two disconnected subsystems,

“Circuit 1” and “Circuit 2”. Let S1 and S2 denote external ports resulting from the

tear. In order to reconstruct the original circuit in Figure 5.3, the external ports may

be connected by equating currents across each.

Circuit 1: The configuration manifold for circuit 1 is denoted by Q1 = R3 with local

coordinates q1 = (qR, qL, qS1), where qR, qL, and qS1 are the charges associated to the
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Figure 5.4 – Disconnected circuits

resistor R, inductor L, and port S1. Kirchhoff’s circuit law is enforced by applying a

constraint distribution ∆Q1 ⊂ TQ1 known as the KCL distribution to Circuit 1. The

distribution, ∆Q, is defined for each q1 = (qR, qL, qS1) ∈ Q1 by the subspace:

∆Q1(q1) = {v1 = (vR, vL, vS1) ∈ Tq1Q1 | vR − vL − vS1 = 0},

where v1 = (vR, vL, vS1) denotes the current vector at each q1, while the KVL con-

straint is given by its annihilator ∆◦Q1
. Then, we can naturally define the induced

Dirac structure D1 on T ∗Q1 from ∆Q1 as before.

The Lagrangian for Circuit 1, namely, L1 on TQ1, is given by

L1(q1, v1) =
1

2
L1v

2
L,

which is degenerate. Define the generalized energyEL1 on TQ1⊕T ∗Q1 byEL1(q1, v1, p1) =

〈p1, v1〉 −L1(q1, v1) on TQ1⊕ T ∗Q1. Circuit 1 also has the external force field due to

the resistor FR,1 : TQ1 ⊕ T ∗Q1 → R as

FR(q1, v1, p1) = (−RvR)dqR,

as well as a force on the variable S2 denoted by F1,port : TQ ⊕ T ∗Q → T ∗Q1. Now,

we can set up the implicit Lagrangian system (EL1 , D1, X1, FR,1 + F1,port) where X1

is a partial vector field which satisfies

(X1(q1, v1, p1), (dEL1 − F̃1 − F̃1,port)(q1, v1, p1)|TP1) ∈ D1(q1, p1),
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where (q1, p1) = FL1(q1, v2) and (q1, v1) ∈ ∆Q(q1).

Circuit 2: The configuration manifold for Circuit 2 is Q2 = R2 with local coordi-

nates q2 = (qS2 , qC), where qS2 is the charge through the port S2 and qC is the charge

stored in the capacitor. The KCL distribution is given for each q2 by

∆2(q2) = {v2 = (vS2 , vC) ∈ Tq2Q2 | vC − vS2 = 0},

and the KVL space is given by the annihilator ∆◦2(q2). This gives us the Dirac

structure D2 on T ∗Q2. Set the Lagrangian L2 : TQ2 → R for Circuit 2 to be

L2 =
1

2C
q2
C ,

and so the generalized energy EL2(q2, v2, p2) = 〈p2, v2〉 − L2(q2, v2). Circuit 2 has the

external force field due to the port F2,port. Then, we can formulate the Lagrange-

Dirac dynamical system (EL2 , D2, X2, F2,port) where X2 is a partial vector field which

satisfies

(X2(q2, v2, p2), (dEL2 − F̃2,port)(q2, v2, p2)|TP2) ∈ D2(q2, p2),

on point (q2, p2) = FL2(q2, v2) when (q2, v2) ∈ ∆Q2(q2).

The Interaction Dirac Structure. Set Q = Q1 ×Q2 and set

ΣQ = {v = (v1, v2) ∈ TQ | vS1 = vS2}.

By the tangent lift Σint = Tπ−1
Q (ΣQ), we can define the interaction Dirac structure,

Dint = Σint ⊕ Σ◦int,
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which is denoted, in local coordinates, by

Dint = {(q̇1, q̇2, ṗ1, ṗ2, α1, α2, w1, w2) ∈ TT ∗Q⊕ T ∗T ∗Q |

q̇S1 = q̇S2 = 0, w1 = 0, w2 = 0, (α1, α2) ∈ span(dqS1 − dqS2)}.

The Interconnected Circuit. Now, we can develop the interconnected Dirac

structure

D = (D1 ⊕D2) �Dint,

as the Dirac structure induced from the constraint space

∆Q = (∆1 ×∆2) ∩ Σint,

which is given, in coordinates (q1, q2) = (qR, qL, qS1 , qS2 , qC), by

∆(q1, q2) = {(v1, v2) = (vR, vL, vS1 , vS2 , vC) | vR − vL − vC = 0, vS1 = vS2 , vS1 = vC}.

Set the Lagrangian for the interconnected system as L = L1 +L2 and the external

force field F = FR. Set also EL = EL1 + EL2 . The interconnected Lagrange-Dirac

dynamical system is given by the quadruple (EL, D,X, F ), which satisfies

(X(q, v, p), (dEL − F̃ )(q, v, p)|TP ) ∈ D(q, p),

for each (q, p) = FL(q, v).

(III) A Ball Rolling on Rotating Tables

Consider the mechanical system depicted in Figure 5.5, where there are two rotating

tables and a ball is rolling on one of the tables without slipping. We assume the

system is conservative and the gears are linked by a no-slip constraint. Finally, we

assume the external torque is constant. Let I1 and I2 be moments of inertia for

the tables. We will now decompose the system into distinct three subsystems; (1) a

rotating (small) table, (2) a rotating (large) table, and (3) a rolling ball.
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system 1system 2
system 3

Figure 5.5 – A rolling ball on rotating tables without slipping

System 1. The configuration manifold for System 1 is the circle, Q1 = S1. The

Lagrangian is the rotational kinetic energy of the system given by

L1(s1, ṡ1) =
I1

2
ṡ2

1.

We employ the canonical Dirac structure on T ∗Q1 given by:

D1 = {(ṡ1, ṗs1 , αs1 , ws1) | ṡ1 = ws1 , ṗs1 + αs1 = 0}.

System 2. The configuration manifold for System 2 is also the circle, Q2 = S1 and

the Lagrangian is again the rotational kinetic energy

L2(s2, ṡ2) =
I2

2
ṡ2

2.

Again, we have the canonical Dirac structure

D2 = {(ṡ2, ṗs2 , αs2 , ws2) | ṡ2 = ws2 , ṗs2 + αs2 = 0}.

System 3. System 3 is a rolling sphere of uniform density and radius 1. The

sphere moves in space by changing its position and orientation relative to a reference

configuration. The configuration manifold is given by the special Euclidean group

Q3 = SE(3), which we parameterize as (R, u) where R ∈ SO(3), u ∈ R3. Following

[MR99], let β be the set of points of the sphere in the reference configuration. For

configuration (R, u) ∈ Q3, a point x ∈ β is transformed into R3 by the action (R, u) ·
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x = (R · x) + u. The Lagrangian is given by the kinetic energy as

L3(R, u, Ṙ, u̇) =

∫
β

ρ

2
‖Ṙx+ u̇‖2dx,

where ‖Ṙx+ u̇‖2 = xT ṘT Ṙx+ 2xT ṘT u̇+ u̇2. We use body coordinates such that the

center of the sphere in the reference configuration is at the origin so that
∫
β
xdx = 0.

Substituting these relations, the above Lagrangian is

L3 =

∫
β

ρ

2

(
xT ṘT Ṙx+ u̇2

)
dx.

Setting m3 =
∫
β
ρdx = 4

3
πρ and noting that

∫
β
xixjdx = 0 when i 6= j, one finally

obtains

L3 =
m3

2

(
tr(ṘT Ṙ) + u̇2

)
.

Since the motion along the z-direction is constrained so that the ball does not leave

the plane of table 2, we have the (holonomic) constraint

∆Q3 = {(Ṙ, u̇) | u̇3 = 0}.

This yields the induced Dirac structure

D3 = {(δR, δu, δpR, δpu, αR, αu, wR, wu) ∈ TT ∗Q3 ⊕ T ∗T ∗Q3 |

δu3 = 0, δu = wu, δR = wR, δpR + αR = 0, δpu + αu = λdz for some λ ∈ R}.

Interaction Dirac Structure. Let Q = Q1×Q2×Q3. In order to interconnect the

three subsystems, we need to impose the constraints due to the no-slip conditions.

By left trivialization we interpret TS1 as S1 × R. The interconnection constraint

between System 1 and System 2 is given by

ΣQ,1 = {(ṡ1, ṡ2, Ṙ, u̇) ∈ TQ | ṡ1 + ṡ2 = 0}
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and with its annihilator

Σ◦Q,1 = span(ω1)

where ω1 = ds1−ds2. This constraint ensures that the gears rotate (without slipping)

at the same speed in opposite directions.

Next, we consider the interconnection constraint between Systems 2 and 3. Note

that the velocity of a point located at the bottom of the sphere is given by
v1

v2

v3

 = ṘRT ·


0

0

−1

+ u̇.

Note also that a point rotating on the gear of System 2 with the axle taken to be the

origin has velocity  v′1

v′2

 =

 0 −ṡ2

ṡ2 0

 ·
 x

y

 .

So the no-slip condition between System 2 and 3 is given by

ΣQ,2 = {(ṡ1, ṡ2, Ṙ, u̇) ∈ TQ | i · (−ṘRT · k + u̇) = −ṡ2 · u2, j · (−ṘRT · k + ẇ) = ṡ2 · u1},

where i, j,k are the basis on R3. Set the interconnection constraint distribution

ΣQ = ΣQ,1 ∩ ΣQ,2,

together with its annihilator Σ◦Q = Σ◦Q,1 + Σ◦Q,2. Then, one can define Σint =

(TπQ)−1(ΣQ) and with its annihilator Σ◦int. The interaction Dirac structure is given

by

Dint = Σint ⊕ Σ◦int.
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The Interconnected Lagrange-Dirac System. The Dirac structure for the in-

terconnected system is given by

D = (D1 ⊕D2 ⊕D3) �Dint.

Note that D is defined by the canonical two-form on T ∗Q and the distribution

∆Q = (TQ1 ⊕ TQ2 ⊕∆3) ∩ Σint,

and also that the annihilator is given by

∆◦Q = ∆◦Q3
+ Σ◦int.

Letting L = L1 +L2 +L3, the dynamics of the interconnected Lagrange-Dirac system

is given by (EL, D,X), which satisfies

(X(q, v, p), dEL(q, v, p)|TP ) ∈ D(q, p),

where X : TT ∗Q ⊕ T ∗T ∗Q → TT ∗Q is a partial vector field, defined at points

(q, v, p) ∈ TQ ⊕ T ∗Q such that (q, p) = FL(q, v) with (q, v) ∈ ∆Q, and EL : TQ ⊕

T ∗Q→ R is the generalized energy of L.

5.6 Conclusions and Future Work

We hope to have shown how interaction Dirac structures can be used in a variety of

systems. Specifically, we used the tensor product of Dirac structures, �, to define

the notion of interconnection of Dirac structures and derive interconnected implicit

Lagrangian systems. This process can be repeated n-fold due to the associativity

of �. This enables us to understand large heterogenous systems by decomposing

them and keeping track of the relevant interaction Dirac structures. We also clarified

how the LAP principle of an interconnected system can be decomposed into varia-
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tional equations on separate subsystems. Lastly, we demonstrated our theory with

some examples. The result is a geometrically intrinsic framework for analyzing large

heterogenous systems through tearing and interconnection.

We hope that the framework provided here can be explored further and we are

specifically interested in the following areas for future work:

• The use of more general interaction Dirac structures such as those associated

with gyrators, motors, magnetic couplings, and so on (in this paper, we mostly

studied interaction Dirac structures of the form Σint ⊕ Σ◦int). For examples of

these more general interconnections, see, for instance, [WC77, Yos95].

• Reduction and symmetry for interconnected Lagrange-Dirac systems ([YM07b],

[YM09]). In particular, the use of the curvature tensor of a principal connec-

tion in reduction theory is related to the interaction Dirac structures mentioned

in the last bullet [CMR01]. We conjecture that such interaction Dirac struc-

tures can be derived from reducing a Lagrangian we would call the interaction

Lagrangian.

• Applications to complicated systems such as guiding central motion problems,

multibody systems, fluid-structure interactions, passivity controlled intercon-

nected systems, etc. (See, for example, [Lit83, Fea87, Yos95, VdS96] and

[OvdSME02].)

• The integrability condition for the Dirac tensor product. As to the integra-

bility condition for Dirac structures, see [Dor93] and [DVDS98]. For the link

with composition of Dirac structures as well as with symplectic categories, see

[Wei09].

• Discrete-time versions of interconnection and �. By discretizing the Hamilton-

Pontryagin principle one arrives at a discrete mechanical version of Dirac struc-

tures (see [BRM09] and [LO11]). A discrete-time version of � could allow for

notions of interconnection of variational integrators.
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• Finally, introducing noise and stochasticity into mechanical systems is at the

forefront of research in geometric mechanics. There are two major camps on

this issue. That of [CJL08] allows noise to enter the system by making the

the Hamiltonian or Lagrangian a random variable. The other camp allows

stochasticity to enter by generalizing ideas from quantization of Feynman’s path

integral, and extremizing the expected value of a “random path”. This was

successfully carried out in the case of Navier-Stokes fluids in [NYZ81]. In any

case, the symplectic structures involved in these formulations could be replaced

with Dirac structures, thus providing an understanding of how to add noise to

interconnected systems.
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Chapter 6

Conclusion

Throughout this thesis we have repeatedly demonstrated that information about iso-

lated subsystems can often be used when describing the coupled system. That is

to say, couplings do not destroy all our knowledge. However they often modify and

obscure it. This suggests the diagram in Figure 6.1 as a schematic of our experience.

system 1
fact 1

system 2
fact 2coupled

=
system 1 × system 2

Ψ (fact 1 , fact 2)

Figure 6.1 – Couplings seen in this thesis

We could claim that Figure 6.1 depicts many of the major findings within this

thesis. In Figure 6.2 through 6.4 I provide an example of a finding from each of the

three major chapters which fit into the framework of Figure 6.1.

In words, we have described a number of systems which can be viewed as coupled

systems whose subsystems are well-understood. We then found that our knowledge of

the subsystems was fairly useful in describing properties of the fully coupled system.

Additionally, we found that understanding the coupled system in this way resulted

in significant payoffs. In chapter 3 we noticed that the horizontal LP equations for

an inviscid fluid are nearly equivalent to the equations of an N-body problem. We

were able to use this insight to create new particle methods which were prone to

deeper analysis than previous methods. In chapter 4 we used our understanding of

fluid structure interaction as a system on a Lie algebroid to interpret swimming as

a relative limit cycle. Finally, in chapter 5 our use of the tensor product of Dirac

structures allowed us to view equations of motion for an interconnected system as

forced versions of the equations of motion of the decoupled system.



151

EL equations on Qpart

Hamilton’s Principle

Inviscid fluid equations on E
reduced variational principle

coupling via the Lagrangian =
LP equations on TQpart ⊕ E

LP-variational principle

Figure 6.2 – A coupling described in chapter 3

Ideal Fluid
equivalent to geodesics
equations on Dµ(M)

Rigid Body
equivalent to geodesic
equations on SE(3)

coupling via boundary condition =

Rigid body immersed
in an ideal fluid

equivalent to geodesic
equations on a Lie Groupoid

Figure 6.3 – A coupling described in chapter 4

Dirac system
with structure D1

another Dirac system
with structure D2

coupling via Dint =
Dirac system

with structure (D1 ⊕D2) �Dint

Figure 6.4 – A coupling described in chapter 5
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At this point we hope the last paragraph of the introduction to this thesis appears

to make a sensible claim. For the convenience of the reader we will repeat some of it

here. Couplings may destroy desirable properties of subsystems, but one should never

lose hope. It is not uncommon for the beautiful aspects of the subsystems to be rein-

carnated as new creatures in the coupled system. Working to find these reincarnations

can have significant benefits.



153

Index

adjoint bundle, 17

Adjoint Maps (AD , Ad, and ad), 14

boundary conditions

for particle methods, 59

bowtie product, 122

connection

covariant derivative, 11

consistency, 59

covariant derivative, 11

curvature tensor

for subgroups, 31

general, 19

Diakoptics, 102

Dirac structure

composition of, 126

interconnection of, 125

linear, 105

manifold, 105

morphism, 106

Dirac structures

direct sum, 119

tensor product, 121

dual algebroid, 88

Euler-Lagrange equations, 10

forced, 89

Euler-Poincaré equation, 16

Eulerian description of fluids, 22

force

for a Lagrangian system on a Lie

algebroid, 89

for Dirac systems, 113

for implicit Lagrangian systems, 113

groupoid, 84

Hamilton-Pontryagin principle, 111

harmonic oscillator, 112

with damping, 115

horizontal distribution, 30

horizontal lift, 30

general, 19

implicit Euler–Lagrange equations, 111

implicit Lagrangian system, 110

induced Dirac structure, 108

inner automorphism, 14

interaction constraint Dirac structure,

116
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interconnection of variational principes,

133

isotropy subgroup, 32

Jacobi identity, 13

Kaluza-Klein Formalism, 20

Koszul’s formula, 12, 15

Lagrange-d’Alembert-Pontryagin prin-

ciple, 113

Lagrange-Dirac dynamical system, 110

Lagrangian

on a Lie algebroid, 88

Lagrangian description of fluids, 22

LC circuit, 140

left trivialization, 66

left trivializing diffeomorphism, 14

Lie algebra, 13

Lie algebroid, 86

morphism, 94

Lie groupoid, 84

morphism, 93

pair groupoid, 85

Lie groups, 13

as groupoids, 85

mass-spring system, 135

motion map, 99

Poisson structure

on a Lie algebroid, 88

principal bundle, 28

principal connection, 29

for subgroups, 29

general, 18

reconstruction method, 34

reduction

by SE(3), 93

by a subgroup, 28

by particle relabeling symmetry, 70

on a Lie algebroid, 90

with forces, 90

right trivialization, 66

rigid embeddings, 65

rigid-body equations

on SE(3), 68

on SO(3), 16

rolling constraint, 143

shape space, 86

vertical distribution, 30

viscous force, 80
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