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ABSTRACT

1
The theoretical validity of the linear extrapolation of con-
centration gradient usually used in Archibald measurements of

molecular weights i3 discussed.

n
Intrinsic and concentration-dependent hydrodynamic align-
ment of rod-like molecules are considered in an attempt to explain
the observed increased sedimentation coefficients with field and

concentration. An entropy mechanism ia also discussed.
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I. INTRODUC TION

Ultracentrifugal measurements afford a very useful and prac-
tical way of determining certain physical properties of macro-
molecules (1). The measurement of molecular weights, with which
this work is concerned, falls among these. The theory of the method
is based on a relatdonship connecting molecular weight with the ratio
of sedimentation and diffusion coefficlents. The ratio of sedimenta-
tion and diffusion coefficients can, in turn, be deduced from the disg=
tribution of particle concentration in the centrifuge cell (2). If the
centrifuge {s allowed to run long enough at constant speed to establish
a thermodynamic equilibrium between sedimentation and diffusion,
the distribution of particle concentration about any point in the cell
is sufficient, along with other very easily obtained parameters, to
calculate the molecular welght of & sample. In the absence of
thermodynamic equilibrium between sedimentation and diffusion, the
useful data are the particle distributions either at the inner or at the
outer boundary of the cell; however, particle concentrations at other
points within the cell are also of interest, since such data are nec-
eséary for accurate determinations of particle distributions at the
boundaries (3).

Experimentally it {8 much more convenient to work in the



absence of thermodynamic equilibrium, chiefly because it takes so
long to achieve it (a matter of days is common). A difficulty with
non-equilibriurn systems, however, ia that available methods to
measure particle distributions do not function properly at the
boundaries. This {8 due to the fact that they are based on optics
and are often plagued with interference effects there (4). To ascer-
tain the conditions at the boundary, the usual procedure is a linear
extrapolation of the quantities of interest from those found in the
regions where they can be measured to their values at the boundaries.
The problem investigated here was specifically the theoretical
validity of this extrapolation. According to an analytical solution, the
distribution of particles near the inner boundary in the absence of
thermodynamic equilibrium does not behave in a simple way as a
function of distance from the boundary. Results from a numerical
solution, however, indicate that linear extrapolation is a good thing
to do. From this it was concluded that the validity of the linear
extrapolation is not easy to understand theoretically. A possaible

means of improving the extrapolation is suggested.

II. BASIC THEORY

The derivation of the equation connecting the ratio of sedi-
mentation and diffusion coefficients with molecular weight is most
conveniently accomplished for these purposes by considering the

mathematical formulation of those processes occurring within the

cell before and during equilibrium.



Schematically the cell can be represented as in Figure 1.

0 Y, Va.

Figure 1
The coordinates chosen are the usual polar ones--r, 8, z . where

r and 8 have clear significance, and 2z refers to the thickness of
the cell. ’e\r is a unit vector pointing outward from the axis of
rotation 0. The dots within the solid lines represent macromolecules.
. None of the phenomena which will be considered possess any dependence
on 6 and =z.

When the centrifuge begins operation, the centrifugal force
of magnitude wlr per unit mass (where ® is the angular velocity
of the rotation in radians per second, and rls r % r, ) operates on
the solute macromolecules. This will induce a net flow of these
particles toward the outer boundary T, The particle velocities
80 induced in these macromolecular systems i{s small enough to allow
use of the hydrodynamic result that this velocity is proportional to

the external force applied. The proportionality constant i3 called the

sedimentation coefficient, denoted by S



PN
velocity = SO~ Y @y (1)

8 » of course, depends on the size, shape, and mass of the particles
of interest. If the concentration of particles at r is C(r,t) , then
the sedimenting number of particles or flow crossing unit area per

unit time is

A
2
ssdimenting flow = C(‘f, t) sw Y € (2)

5.:ch a sedimentation flow will, of course, cause particles to be pulled
away irom the inner boundary at T and to be packed against the
outer wall at T, A concentration gradient is therefore set up in

these two general areae, which, according to Fick's first law will

induce a diffusion flow of the solute particles. This currentis

Ct) A
diffusion flow 2 -~ D ’57_- e, (3)

where D i3 the diffusion coefficient.
The total flow is the sum of the sedimenting and diffusing flows.

QCWt) \ 4
total flow = (5 wz\/C(\/‘,t)“D ”a—';_‘_) e,

(4)
'~ Since these currents of particles are in opposite directions, they will
tend to counterbalance each other, and, if the centrifuge is run long
enough, an equilibrium between the two currents will be established

such that the total flow vanishes at each point within the cell. The



concentration is nonuniform but time independent at equilibrium. We

then have, since the flow is zero,

2C(v)  _
Swrv (e - DZ, =0

(5)
This can be rearranged to give
s _ ! ‘ d C¢v)
D W ) { | (59

If the weak dependences of s and D on concentration are neglected,

the solution to this differeantial equation is

0= o 2F (e (5 me)ere (B )
b

where C0 is the original uniform concentration throughout the cell,
Equation ¢ would then represent the concentration profile at equ-~
librium.

Another use may be made of equation 5', stating that the total
flow is zero everywhere at equilibrium. It is possible to apply
thermodynamics to the cell when 5' holds., For example, the total
thermodynamic potential per mole of solute macromolecules which is

the sum of the chemical and centrifugal pctentials,



/u'TOT "/‘*c«sm + M eemvrripvenc
A (7)
:/uo(T)P)+RTJthC(v) —-%—w“f

where v i3 the activity coefficient and M is the molecular weight,

must at equilibrium be constant throughout the cell. Differentiating:

9/“ D Mo(T, P)
= ST AmCery , d8ny 3 v) 2
Sr m0 = St R Z B D))y

_ QM (TP oP ,ij_gg_l_( I AnY 2
2P 1% +R % ‘_ra[/ncm),-/v\w 4

where p is the pressure. From a thermodynamic identity

e (T,P) —

where v is the partial specific volume of solute particles.
tp .
The quantity 5r  <8n be calculated by considering the increase
in force per unit area at r due to the external field. If the pressure

atr is p(r), then the pressure atr + dr is

'P(Y) +%-1-:—(—QJ¢ :P(Y) + fi,u"rd(volume)

aYea

= P(Y)+ fw"»'d\/

where p is the solution density. Therefore,

dP  _ 2
av - P (®




Substituting this we get

—_ E QC(H
MUF(-MTPWY = (”’;u;,ﬁaﬂ
which can be rearranged to
'RT QC(Y) (9)
M = T v vCw <H9Jm6‘w))

If this is combined with equation 5!, tha resultis

M= RT> (H,Q,@mb’

D(-7p 2 i G0 o

This is the thermodynamic relationship already referred to, which
connects the molecular weight with the ratio of the sedimentation and
diffusion coefficients.

In the case of infinite dilution, 10 becomens

- T (11)
M= S0



At infinite dilution, s and D are independent of concentration, while
the activity coefficient becomes unity. Equation 11 was first derived
by Svedberg (2), and along with equation 9 forms the theoretical base

for the determination of molecular weights in the ultracentrifuge.

IIl. USE OF THE EXPERIMENTAL DATA
Experimentally the usual quantity obtained is the refractive
index gradient (4). This is measured by taking photographs of the
cell using Schlieren optics while the centrifuge is {n operation. The
actual mechanical details are rather involved (5), but for the present
purposes are unimportant and will not be considered. The refractive
index is assumed to be proportional to the concentration gradient.
It will be assumed that this proportionality constant is available and
henceforth only concentration gradients will be used in the discussion.
1f the concentration gradient ia known throughout the cell, the

concentration can be found by the following formula (6):

ce=C, +f aLwt) g, f D) 2006 g
Y, .\ %%/ 9v

To derive this, we note that the total amount of material in the cell

{8 constant and independent of time.

2 2 Y%
3 {ZA{I — J
dv = ) - 6 (\/;t)lf v
ngcovr 6zl (5 ZLC

or

Co(B*-v32) = [c(vf)mlv



Integrate by parts

V’- o v, d
‘):[f:Cm,f)""zC( “] f v

Co(h™- Y, (13)
Use the mathematical identity
Y,
Coapr= |, S dv + Contd
Y,
to cbtain, when combined with equation 13,
{1 V‘;"__ (1 QC((;*)
cte,v = Cor [(E) T2 oy ,

Combine equation 14 with the mathematical identity

v 2C G, F)

C(t) = <5, dv' + C(v,4)

!

to obtain equation 12

2."/

C(V‘é)-C +[ QC(T){')J _}_fCL*Y QCCY‘t)J (12)

8C(r, t)
The two guantities o and C(r,t) are now available for

the calculation of molecular weights, the former being measured and
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aC(r,t)

. If
or

the latter being calculated from measured values of

an equilibrium situation is present, the ratic s/D can be computed
aC(r ,t)

or

from any conjugate pair of C(r,t) and ( ) via equation 9.

In the absence of thermodynamic equilibrium, which, as stated earlier,

{3 much more convenient experimentally, the ratio s/D can be computed
GC(R' st) BC(") t)
) C(rzl t) and ( or ).

r=r =r

from the conjugate pairs C(r l.t) and ( ==

This is due to the non-vanishing of the total flow

Crt)\ »
total flow= (Swz{ C (Y‘,‘t’) —D 2—5—;—,—'—) Cr (4)

under non-equilibrium conditions at all points in the cell except at

the boundaries r = T T At these points the total flow must clearly

2
vanish since there are physical boundaries present which material
cannot cross. Archibald (3) first pointed out the usefulness of data
extracted from the boundary. Archibald's method represents a valu-
able tool in the determination of molecular weights.

Accurate values of concentration and concentration gradient
at the boundaries are clearly necessary for Archibald calculations.
As has been stated previously, however, the optical devices available
for these measurements are inefficient at a boundary (4). The
measured concentration gradient is estimated at the boundary by
extrapolation from the ragion nearby by means of a straight line. The

inner boundary at Ty is customarily used to avoid activity effects

as much as possible. Typical pictures of concentration gradients
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obtained experimentally for short times of centrifugation have a linear
look about them. The problem investigated here is epecifically the

validity of a linear extrapolation, to remove any nagging doubts.

IV. THE APFROACH TO EQUILIBRIUM

To establish the linearity or non-linearity of the concentration
gradient curve, it is necessary to investigate the behavior of this
quantity near the boundary under non-equilibrium conditions. The
equation governing approach to equilibrium in these systems is a

simple expression of conservation of mass.

2C(nt)

oy = — div (5w2¢ Cat) D oCt) e, (15)

or

with boundary conditions

2 >
Sw‘V C[th) =D _%%f_ - V/,Y‘;—
(16)
C(f,‘t‘) = Co <o

In words, this says that the change in number of particles per {ixed
unit volume per unit time is equal to the number of particles flowing
into‘(oz' out of) this volume per unit tme. This equation was first
derived by Lamm (7).

Itis instructive to investigate physically what happens during

a short Archibald run. At t = 0, the concentration ia uniform throughout
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the cell and ( BC(r,t)) 2 0, The concentration profile is like
8r r:rl
Co
ct
Y, v‘_) Ya

Figure 2

If, for t > o, diffusion is inoperative, the solute particles will move

away {romn the inner boundary, r., and pack against the outer boundary,

1

T, due to the action of the centrifugal field. The concentration would
then be zero in a region beginning at ry and ending at some r > .
It would be some constant value corresponding to packed molecules

in another region ending at the outer boundary r_, and beginning at

2

< .
somer < r,

Between these two regions, there is initially no concentration
gradient. That, in fact, no gradient will be set up for pure sedimenta-

tion can be seen as follows:

Consider a band of solute molecules of width dr atratt O

Y, dv "
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The volume of this band is 8 zrdr at t *x 0. From equation 1
< ”~
sedimentation velocity & Sw*Y ev (1)

it follows that after a time dt the boundary at r has moved to a point
r 4+ 3w Zrdt , and the boundary at r + dr has moved to (r +dr)(1 + s» zdt).
Hence the new width of the band is

(crde) (1+s0rdt) —v (145w dt) = dv (1+5urdt)

The new volume of the band is

oz (1+sw*dt)* dv = ez dv (1+25w*dt)

The relative increase in volume during the time dt is

ozvdr (I+25u?dt) = |+25wdt
oz vdY

This {8 independent of r and demonsutrates that in the case of pure
sedimentation no concentration gradient is set up. Therefore, in the
region between the zones of zero concentration near the inner boundary
and packed molecules near the outer boundary, the concentration

is constant, independent of r, and dependent cnly on ime. The time
dependence must be such that the concentration decreases, since the
volume available to a band increases. The concentration profile

shown in Figure 2 becomes

Co T r

Ct

vi v—+  Figure 4 Va
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The flat porton betwsen the regions of zero concentration and
packed molecules is called the plateau region. Diffusion does occur,
of course, at the boundaries of this central region, but some time is
required before the plateau is destroyed. The concentration profile

actually looks more llke

) y

cT

o vV 7>
Figure 5

In the plateau region, therefore, there is no diffusion because

there is no concentration gradient, and the Lamm equation becomes

Eﬁgﬁ—)--e- div (SUJ"" C("’t))ev (17)
2t

ar

o Crt)
ot

_}___J___g__-( swty C¢) =o
v oY

oct) 5 s ()
ot . (18)

C = Co exp(-25w7¢)
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It might be mentioned that the decrease of particles in the
time interval 0-t within a region bounded by Ty and so:ne point in the
plateau region, rp say, has to be equal to the number of particles

crossing the surface r

p .t
Zf [Co - C(r,t')] ' d\/ = Swl fp [o C (‘ff)f) Ji. 6z rf’
Y

or

Y . L f_ it
ffc Cot)]vdv = SW '/f[e U de

1
After a small amount of manipulation, this becomes

(h,t)

COrt)= Co - o f
This formula can be used instead of equation 12 if a2 plateau is present.
It was first derived by Klainer and Kegeles (8).

The importance of the existence of a plateau in a treatment of
the Lamm equation is that it greatly simplifies the boundary con-
ditions. The outer boundary can be disregarded for phenomena occur-
ring near the inner boundary, if a plateau is present, and its conditions

replaced by

¢
~25w
C (co, t) - Co ¢ = constant in space

The conditions are now
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occey, ) _
s W Y, Clv,t) = D S5y Y=Y
~2swit
C (m,{:)Z Co € 25 = Constant sSpPace (20)
c(vt)= G | t <o

V. THE WORK OFf FUJITA AND MacCOSHAM
It was decided to attempt to investigate the linearity of the
concentration gradient curve by performing a numerical integration

of the Lamm equation subject to plateau boundary conditions, and
.2
8°C(r.t)

taking a careful look at the constancy of the quantity near

ar
the boundary £y None of the available analytic solutions found were

particularly useful. The exact analytic solution of Archibald (9) was
too tedioue to work with (10). Cka's solution is a formal one of no

practical value (11). Faxen (12) used an approximation

22— << 1

sw* fcz

which does not fit the conditions of the present situation.
When the numerical work was well under way, the work of

Fujita and MacCosham (13) was discovered in the literature. These
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authors have presented an approximate solution to the Lamm equation
subject to plateau boundary conditions. The analytic forin of the
results i8 not unduly complicated. 3ubject to the severity of the
approximation involved, it should be possible to deduce from their
work the concentration gradient near the boundary and thus investigate
its linearity. It was decided to go through with the numerical work

to find out how good this approximation was.

Fujita and MacCosham began with the Lamm equation

2Clvt) i 2 2Ct
——— +________ 2z s -
St v arr(Sw VC(Y,t)—’D 2 r ) o

New variables were defined

v z
CC‘; - e |88 ~\—rf'-——: e/l
r - 25wt 2D

PR
€ = \/,"LU:S

Substitution of these into the Lamm equation gave

_z 2%« I
« - o«
‘?5'%" = €¢ g z

The approximation made by Fujita and MacCosham was to neglect the

-2 N . :
variation of the factor e from unity for mathematical convenience.

_ Y, Y
et=<7—)zl



18

As to order of magnitude, r ., ~ 5.6 cm., r ~ 5.6~ cm. in the region

1

of interest. So at mnost

R
—z_ (5L) = o
e - ( 5. ¢ ) 935
or about % variation.

After this approximation, the equation becomes

a

U _ _3____"_‘___._9_‘;‘..—
FE € 322 oz

or in a more condensed notation
Ue = € Ugp — U,
A new variable was defined
F 3 T
W= U exp ( 2¢  4€
whereupon the equation became

U-tzgkfié

subject to the boundary conditions

v=ep(- &) o<z<@ T=o

u - 1 é (f.z z = O ‘t‘ 7o
This equation is of the heat flow type, which has been intensely

studied by Carslaw and Jaeger (14), from which the solution was

determined to be
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%o = { f' 0"?<(Z:f)‘ )

Z+T Trz ), Z/e (21)
e (14 % (wgf—

-T-2/2 Z/é‘
\ e E+T _e:.t_)
2o - €7 [ () (20 %)

(c-2)° )
JEE w5

:L_./X;H
e (0 = |- e = |- 77 ) €



Vi. NUMERICAL INTEGRATION

The Lamm equationis

ocC
BC .12 ylsurve -D5r) =0
It v JdY

with boundary conditione

C = Co t <o
oc¢ -
Su)Z C - D —;—? )/ - {l
C _2swrt
C (w)t) =o€ = constant in space
Dimensionless variables are defined
tD
C/CO = y e = Y 2-
) Swz \Cl

Yy, = § D

Then

P _ 22 ) =0
or , + % p(ary- 3F)

orx

azr ! J¥
2¥ + A f—*“‘ —~':o
2 + 220 f 3 P 5 f 3P (23)
subject to
- hpx et P
5’ f>

- 0O
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since we are intereated in a solution with plateau present.

This differential equation is now replaced by a finite difference
equation, i.e., the derivatives are replaced by finite differences.
The basic idea behind this (13) approach is to set up a grid, or net,
in space-time, and treaty, p, and 8 as discrete rather than con-
tinuous variables.

Quantities Ap, A® are defined such that p assumes the
values 1, 1 +Ap, 1 +2Ap,¢00., 1 +mAp,...., and & assumes
values 0, 40, 2A6, 3A0,...., nASB,.... Therefore, yr:n refers

to(l+mAp, nd6). Schematically this can be represented

[} L [ [ L . [ . L3 L 3 L] .
L4 L] . [ 4 - . L4 o . - 3 L] »
. . [ . . . . . » . . . -
L4 L . » . L4 . . » . . . .
. . . . . ) » » A » » . .
erT
wvoon- ) ] )
4 . . L4 . . . . » . . []
Yo EA Y: '
e'—o . » . . . . » . . P . . »
[d (-]
_1_ V/,‘ - '

Figure 6



a2

ap and A @ should be as small as convenient to approximate as
closely as possible the actual values of the derivatives. A necessary
restriction on these quantities to prevent propagation of errors
introduced by the use of finite, rather than infinitesimal, differences

(15, 16), is that

< 4(ap)

The derivatives become

3Y Yo = ¥
99 A& (24)
9% . B = Y-
5p 7 aav
VAT 04 Y,:-zr,:_,>
L3 p2l = ( L
L2050 fap e Tap P
Since
{ A F
Pmt"{ - \:‘: AP - } z_m
fm me
the above becomaes
(Af’) [( 2“*""‘5’)) Ymer =20 (i- 2(l+m4/’)) m- '] (23)

Lamm's equation then takes the form
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Yo - I Smer =80
T:—l/\xm—)\([.f-m/sﬁ) ZAIDm

i [ map) s =205+ (12 ]

The following parameters are defined

A0 -
K=1-2ppr —2A0¢
whereupon L.ammm's equation becomes

Xy:-f-l )/ X + Xm-i-/ {ﬁ (H-mAf —-A f(l-{»maf))}

(26)

Y- {/9‘ (’fmbf Y/ f(l—/—IMAf‘J)}

This is a type of recursion relationship. It allows us to
advance in time, or gives us the values of all y?n atn+ 1l if we
know the vy 's atn,

m

The above formula does not hold for the calculation of Yz
for which the boundary condition must be used. The conditon is
22) - N

f: !

2

or

/
Y. = MY
To make use of this, we write Y, as a power series in Ap

about y 1
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Now

¥ =¥ —apy =A%

X,/: 3’1"3’0

24P
v Y —2Y + ¥
577 T

When these equations are solved for vy 0’ the resultis

Yo = Q¥ + 32 9> (27)
where

g, = - ‘

! 3+ 2/\°F 31 - 3+2/\Qf>

Lamm's equation {8 essentially now in the form of a routine
recursion relationship of the type admirably suited for digital com-
puters. A program was written for the Burroughs 220 at the Institute,
and the solution of the equation obtained there.

The scheme of calculation is strajghtforward. The parameters
in braces in equation 26 were calculated and stored in memory for
0£ m % 1000. Then the memory cells were loaded with Y:n s OT
unity. The proper new ¥y 's were computed 2ccording to equations 26
and 27, When y; and y ';0 differed in the “th decimal place, the
integration was extended by 10 units. The same was true for 7'119 and
V;O . Y;g and ygo » and so forth, Physically this just means that

the system was integrated out to the plateau and stopped, but continued
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when the plateau was pushed farther out by diffusion. After the
integration had proceeded. the equivalant of 5 minutes centrifuge time,
the computer was allowed to print out. the concentration and concen-
tration gradient data contained in memory, and then allowed to proceed
to do 5 more minutes worth,

The system picked for study was the hemoglobin system. The

data used were obtained from Dr. William Hutchinson of these labor-

atories.

8 »4.50 x lO-Uaec At =1 sec

M » 66,800 gm/mole 00 = 2.01875450 x 10°°
v =0.749 em/gm A = 21,32450842
density = 0.998 gm/cm Ap = 2.409852114 x 10”3
r, ®5.7cm € = 4.18854438 x 107>
® = 9,340 rev/min B = 0.347683752

X = 0.3047623586 AL = 8.931864990 x 10~*

Vil. COMPARISON OF COMPUTER AND FUJITA-MacCOSHAM
RESULTS

The results given by the computer were compared with thoae
predicted by the FajitasMacCosham formulas. They agreed remarke-
ably well, being within 0. 1% near the inner boundary after reasonable

ran times.
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The concentration gradient profile at 45 minutes

19 from the numezrical solution

0 \ i L

L

1

1

i

1.0024 1.0048 1.0072

v/r
"o

Figure 7

1. 0096

1.0120

1.0195

1.0169
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Y oy / op
Fujia- Fujita-
m MacCosham Computer MacCoshamm Computer
30 min.

0 . 8617 .8621 18.36 18.38
. 8826 .8832 16. 64 16. 66
10 .9016 . 9023 14.88 14. 89
15 .9186 .9191 13.10 13.12
20 .9332 . 9339 11.40 11.38
50 <9839 . 9844 3.47 3.51
100 . 9980 .9981 .01 .00

e o) .9984 . 9984 0 0

- 45 min.

0 .83z . 8331 17,75 17.76
.8532 . 8536 16. 46 16.47
10 . 9054 . 9089 12.38 12.40
15 <9197 . 9200 11,06 11.06
20 . 9319 « 9326 9.74 9.76
50 . 9679 . 9684 5.35 5.32
100 . 9956 . 9956 .55 .52

w 9917 . 9976 0 0

The excellence of agreement leads to the conclusion that the
Fujita-MacCosham formulae can serve as an excellent guide to the
theoretical line shape near the boundary of the concentration gradient
curve. The validity of the customary linear extrapolation of 9C/8r
from the region of good Schlieren definition back to the boundary can

be investigated by expanding the Fujita~-MacCosham formula in a
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Taylor series about p= 1. The coefficients will, of course, be time

2

dependent. 1f g—g— and higher terms are small relative to C(r)
ar

and -?E for times of interest, then theoretical justification of the

ér
sxtrapolation will be established.

ViII. EXPANSION OF THE FUJITA-MacCOSHAM FORMULA AND
CONCLUSIONS

Taylor's formala §s

" 3
¥(p,T) = ¥P=1, o)+ g (TP + Lo (LD (P + o) P+
Since the Fujita-MacCosham formula is most conveniently
expressed in terms of the variables z and 1, it is advantageous to

perform some mathematical transformations before calculating the

necessary derivatives with respectto p.

£,

f: ée /2

‘_2,__:2 e"yi—a—

Qf’ 22

2" P -2 3

opr ~ 18 3zr T 2¢ 55

‘93 2 Beo- 24 32 _ et ] _3%24 o
3 p3 e oz3 —l2e¢ S, T 4 ¢ 52

94’ 22 aq al 2

—_— = < _ _2z @7 2z 2__
I p4 lee 2 24 48e D23 t44 e 32+ —'/Ze‘zéa—é_"
and so forth.

In addition, the equation

Wt = Eu'ia - u.z.
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wherey = e.‘u is useful, a2 well as the boundary condition

u{l,r ) =se uz(l.'r).
Since the derivatives with respect to p are expressible in
terms of derivatives with respect to &, it is convenient to setup a2

table of z derivatives evaluated at Z = 0 (or p= 1). Define --:- .

Thenatp= ], ore =0,

uzt‘LL&

2
Uza= 'z'\‘u-; +7);:LL
Uaza = —z&f Uz +'},}—’ «
aiiea = é\—l Uer +jf3£ 244 7“/&—’6‘" &«

and so forth.

In addition,

2 _ %
L‘L[Z"—‘O/‘t) :"%‘{(2-}%}%@ **ﬁ—ée 46}

L T L _The
U (2=07) = 2¢ ‘E"‘g""& -~ yerz €

( _ e
(,(P.C(Z:a’f) =

ZTI/ﬂ-éz-

and so forth.

These expressions can be combined to giveatp= 1, or z = 0,

U(P: )\U.

‘*ff = 2A uz+/\CA—/)LL



30

Wppp = MA=1)(A-2) a + 24(20-3) u

u,off,o = 1\ [()—1)(/)*2){/8~3)u - 24 (é/‘l‘“)“r * {‘Jlutt

and so forth.
Using the data from the hemoglobin system, we have after a
45 minute run

e’ =0.9977 a = 0,834 u . = 8163.7896

X » 23,3245 “., = «33,1029
Hence

C/Co=e Tu=0.8325+ 17,7530 (p -1) ~ 523. 8765 (p -1)°

-8,115.9355 (p -1)> + 617,303.3892 (o -1) ¥ + . ..
After a run of 90 minutes, the parameters become

C/Co = 0.7689 + 16.3974 (p =1) - 300. 64 (p -1)° - 5. 102. 22 (p -1)°

4
+ 225,877 (p~1) + -

A cursory examination of these expressions will indicate that
the terms of higher order in the Taylor expansion are not small, and
-g% curves are not linear. The higher order terms alternate in sign

in a rather random fashion and apparently tend to cancel out.

It would seem that a much safer, although more laborious,
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procedure than the linear extrapolation to find -g%— at the boundary
would be to put the measurable experimental data into the Fujita«
MacCosham formula and provide some sort of best {it to determine the
parameter ¢ . Thies would most likely require aid from computers.

Cnuly ¢ is needed because it is equal to

ZZD > and thus contains the
rl sm

ratdo 8/D plus other known parameters. A possible scheme is to do
2 linear extrapolation of the % curve to get % » calculate ¢, and
then fiddle with this value of ¢ until good agreement with the Fujita-
MacCosham formula is reached.

It should be mentioned here that the concentration dependence

of s and D has not been taken into account. Also, the effects of poly«

disperesity have not been investigated.
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I. Introduction

Hearst and Vinograd have discovered that the sedimentation
coefficients of deoxyribonucleic acid and tobacco mosaic virus increase
as the angular velocity of the centrifuge increases (1). The phenomenon
is highly concentration dependent, and appears to vanish at zero con-
centration. T-4 phage DNA displays a field independent sedimentation

coefficient of about 550 S at a concentration of 01:’260 0.122, but at

0D26° 0.458, the sedimentation coefficient varies from about 280 S at

4,908 RPM to about 450 S at 20,410 RPM. E. Coli DNA at 0D26° 0.36

has a field independent sedimentation coefficient of 250 S, but at ODZ(:O
2.7 the sedimentation coefficient variee from about 130 3 at 9,945 RPM
to about 150 S at 56, 100 RPM. TMYV at 0.2 mg/ml shows a sedimenta~
tion coefficient of about 178 S at 4,908 RPM and 185 S at 20,410 RPM;
at 0. 6 mg/ ml the coefficient is about 185 S at 4,908 RPM and 193 S
at 20, 410 RPM. Although the TMV data indicate that this effect does
not extrapolate out it zero concentration, Hearst and Vinograd point
out that more work needs to be done in the low concentration region to
determine just what happens at zero concentration. It is not unreason-
able to expect the sedimentation coefficients at different fields to coin-
cide at sero concentration.

Hearst and Vinograd were unable to offer any definite theoretical

explanation of the effect. They concluded that a likely origin of the

anomaly is an alignment of the moleculea. A long rigid rod-like particle
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oriented parallel to an applied field sediments twice as fast through
the medium as a particle aligned perpendicular to the field, eo since
both particles possess rod«like characteristics, the magnitude of the
effect lles within this range. The two most obvious mechanisms for
alignment, as mentioned by Hearst and Vinograd, are concentration-
dependent hydrodynamic alignment and an entropy alignment such as
that operative in the formation of liquid crystals.

Hydrodynamic alignment 18 considered in detail here. The
model used corresponds to a rigid inflexible rod, whose properties
are much more characteristic of TMV than DNA. This work can thus
be considaered to be restricted somewhat in scope. The results of the
calculations are applied solely to TMV., They predict a dependence on
concentration for the sedimentation coefficient which is within 6% of
experiment, and indicate that the expected field and concentration
dependent hydrodynamic alignment {s sufficiently srnall that it carnot
be detected experimentally and also that the molecules tend to align
perpendicular, not parallel, to the field. Therefore, according to
these calculations, any hydrodynamic alignment present would decrease
rather than increase the sedimentation coefficient with an increase in
field.

A few preliminary comments concerning tactold formation are
presented. Itis shown that the effects of an angular anisotropy due

to the excluded volume effect are too srmall to be obgerved. This is
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true, of course, in regions .oflow concentration where no liquid
crystals are formed.

Before concentration dependent phenomena are considered,
the consequences of a sphere moving through an infinite medium and
a brief sketch of rotatory brownian motion will be discussed in order
to form a framework for later theoz:y. Algo, as a matter of complete~
ness, certain types of intrinsic alignments and sedimentation coeffici«
ents will be presented, 2ll but one of which were worked out in the

course of thia investigation.

II. Spheres under Stokes Flow {n an Infinite Medium
The equations governing the flow of incompressible viscous

fluids are the Navier-Stokes equations (2)

9(3%*3-v3)=-vp+nv%

b A ve

where p 1s the density, p the pressure, and 1| the viscosity. If the
flow ia steady state, %::L = 0. In case the velocities are low, the
- quadratic terms p.\;- 9V are neglected. To this approximation the

hydrodynamic equations are linear

2~
Moevevp

Py
geve0

For a sphere moving through the medium with velocity U 3“.

the exact solutions to these equations are (2)
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2

3!a &
vt o (1 --rz ) 5in® cosé cosg (1a)
3ya .‘2
v = 3{a (1 = ~=) sint cosd sing (1b)
y 4r r:?.
3Ua 2 a’ 2
v = sis [(14co8”8) +e—=(1~3cos9)] (1c)
‘2 4r 3r2

L8] ’e\z is the velocity of the sphere with respect to fluid infinitely far
away, a is the radius of the sphere, r is the distance from the center
of the sphere to an external point of interest, and ¢ and © are polar
angles defined in the usual manner. Atr = a, it can be easily verified
that these expressions give v, ®© Vy e 0; v ® U so that the requirement
of no alip on the sphere surface is satisfied.

If the quantity a/r becomes considerably less than unity, the

leading terms are

3Ua

Wa ex
V. E T sin® cos® coag = e :é' (2a)
3Ua . 3Ua =y
Vo W sind cosd sing = = s (2b)
r
2
IVa 2 3Ya 2
vzzz;—-(li'coa 8) = e (1+ rz) (2¢)

If the aphere had been moving in the %x' rather than 'éz. direction,

the result for a/r << 1 would have been, by symmetry,

2
3Va x
Vx ----4r (1 + ':-2- ) (3&)
ila Xy
VY = ZT F3 (3b)
r
Wa xz

Vg T ype :—2" (3¢)
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Likewise, the results for a sphere moving in the gy direction are

3VUa
vx * 4r l:% (“)

2
vy-%‘-:-? (uY-z) (4b)
} 4

3Va y=
Wt (4<)

According to Stokes' law the sphere exeits a force upon the
fluid in the direction of its motion of magnitude (m‘nau « The effect
of neglecting the higher order terms is equivalent to treating spheres
of vanishingly small radii, or point forces.

It is convenient to define a tensor T (r,r'} such that the fluid
velocity at any point ; due to the action of a point force at T s

obtained as indicated in equation 5,
V() = (7, 7) - F(EY) (5)
From equations 2, 3, and 4, this tensor i3 seen to be

2 /

/ / K
1+ sinze cos © sinzﬁ aintgz/coa(p / ainO/cona/coscp

1

/ 4 7 / ,
—, uinzﬁ ‘cosy’ sinp 1+ sinae sinch sine/cosﬁ sing
8n | r'er]

T(z,%') =

/ ’
né coad /coazp / 8in® coao/slnq 1+ cosze g
(6)

The primes on the angles refer to the coordinates of the vector T'-r.

Itis sometimes convenient to write this in dyadic form

L (1 +6e 2 0e, 9 ()

T(x.7') =
. YT
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1If. Rotatory Brownian Motion Theory

In the first part of this thesis, an expression called the Lamm
equation, denoting conservation of matter, was deduced. In words,
this states that the decrease in number of particles per unit valume
per unit ime equals the divergence of current of particles across the

boundaries of unit volume.

g—s-(z-‘-g 3 - div (f-i-:w)

The same sort of relationship can be deduced for angular
orientations of rigid rod«like molecules. Call {(8 ,¢,t) the angular
distribution function, such that the fraction of rods having their long
axes aligned in the solld angle sin® dfdy at time tis £(f ,u,t)

8in® d9 d@ . There then is the quite analogous equation

%—‘-‘f—iﬂ'—'-g- = «~div{angular flow)

If there is an external force on the particle which gives rise
to a net torque, ?(9 »@,t), there will tend to be a rotational angular

flow.

‘E‘. (ao@ot)
9 7!
4

(/-n
Fz(e 2o t)

The angular velocity which this torque induces is

-

w ‘.‘7(90“".‘) ¢ 5-1

(8)
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where R is the rotational {riction tensor, which for rods is clearly
diagonal in a coordinate sy stem using the long axis of the rod as an
axis (this means that the rod tends to rotate only in the direction of
the applied force). This flow will cause points to move with velocity

::; x /‘;r’ 50 that the flow due to external forces is
- - A
€8.,5.8) (F(evo,0) - R xe,

1f £(3 , ¢, t) is nonuniform, Brownian motion will tend to destroy

the nonuniformity (4) by setting up a counterflow of velocity

‘DR . VQ f(a v‘?‘ot)

~

The symbol ¥ n means gradient with respect to angular coordinates

only. DR is the rotational diffusion tensor, which is also dlagonal

e

for rods in the same type of coordinate system.

The total angular flow is then

- -l
(e 0, ) (105, RT)xC_ D, <V, 70,9

~

and

R —>
g tf (Cawat) o . giv (total angular flow)

In steady states of interast here, (" ,s,t) is time independent

and the total flow vanishes{4). Therefore,

(F(e.0) -R™)x%, =Dy - v Inets 1) (9)
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From a generalization of a result due to Einstein (5)

Dy = kT 5"

80 that

:(9 v 5) x/c\r » kT V{2 in {5 ,0) (9"

1V. Intrinsic Distribution Functions and Ssdimentation Coefficients

Using the idesas just developed on brownian motion, four types
of angular diatributions in a Hme-indepandent external field for a
single rod will be developed. The last three are new. The four cases
will be:

A. Stokes flow in an infinite medium

B. Oseen flow in an infinlte medium

C. Stokes flow in the presence of a wall

D. Stokes flow in a radial centrifugal fleld.

IVa. Stokes Flow in an Infinite Medlum

According to the method of Kirkwood and Riseman (6), a rod-
like molecule is represented as far as hydredynamic interactions are
concerned by a system of dirnensionless hydrodynamic elements,
being 2n + 1 in number, with 0 in the center, lying all on the same

straight line a distance b apart. This model is 80 constructed that
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its length and the actual physical length of the molecule are the same.
Each hydrodynamic element is assumed to poesess the same charac-

teristic friction constant (.

sé

*—o—o—0—0—
“n-- - - . - - . .= 0N 2......

The force which element { exerts upon the fluid is
(10)
where w, is the velocity of the element with respect to the fluid

H
velocity which would exist at the location of element i if { were not

present. Itis convenient to write

- —lp b d
w, =V, -u (11)

where ;i is the velocity of the ith element with respect to the lab,

and Gi is the velocity which the fluid would possess with respect to the

lab if element | were not present. 1If 2, arises solely from velocities

i
induced by the other elements of the chain

u, > Iy 0 F, (12)
i j
Then
‘v‘r a; - > *F



43

and

Fiuc‘pich‘-c Z zij.pj (13)

i#]

For an isolated particle such as this in a space and ime constant
external field, the only source of a torque is 2 hydrodynamic one
induced internally. However, since IU does not have an antisyms=
metric part, it follows there is no such torque. This means that the
angular distribution function is uniform and that there is no tendency

toward rotation irrespective of the orientation of the molecule.

| Therefore,
Vo=V, eV
i
and
Fo=Cv-¢ ). Ty ¥y (14)
i#3

It is now advantageous to proceed according to Saito (7).
Ir stlead of viewing the action from some external, fixed coordinate
system, a position on the molecule itself is assumed, defining the ='
axis along the long axis of the rod, and the others mutually perpendicular

to it and to each other.
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Figure 1

The matrix of this transformation between laboratory and rod-fixed

coordinates is

co8? cosy ~aing sin® cose
om cosf sing cose sing siny
~8ind 0 ' cos”

Then

iR
yt
[V ¥
R
S
]
1R
=
)

r
N
=
]
YN
g s
=
¥
1R

%+,
or

(15)
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where

Bl = ¥

Equations 16, along with the further conditon

0 <
%_; 0!) =) E (17)

suffice to determine the individual g‘i' 5“ is the force magnitude per

unit mass corrected for buoyancy, M {s the molecular weight, and N

is Avogadro's number.

The sum in equation 16 is now approximated by an integral.

Here s = i/n, t= j/n.

SO e
D - O

0 1 =,
TYs) = (V' -2 ( 0) . [ LA O I

2 ) | tesl
with the condition on the kernel

1
! teal

£ n

zero otherwise

For convenience, two new functions are defined
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C TR TAR TRy (182)

%*(:)-Qy‘ - q“’(:) P

(18b)
AU R A UL (18¢)
The integral equation becomes
é“’ (s) 1 100 \y“) (v)
Dy = (1) a ] (o1o) (s -'—-‘1‘«’- (19)
| 8=t
+(9 (g) ) b looz) (4@ )
1 £ n
! a«t!

The vector components here do not mix, as opposed to equation 14,

The solutions for ¢ (1)(5) and % (Z)( s) were given by Kirkwood and

Riseman (6)

o0
Y9s) = ‘ { | + _1_)__ z(—n“ S avk ceowks
|+ 2A (ann -l) e e | -2 C@(—' (20a)

Y®e) = { (% 2wk cownir.s—l
¢ f+4~r\[L.2n—l) e Z /’4)\&(%)5(20‘))

where
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S&'(x)ﬂft Sy dy
y
o
00
Cton ] 22y

From the definitions of the ¢ 's, it follows that

-
F(s) = «~* Ees)

YW o o
-~/ -/ -,
= o« . w ol - .
¢ o Y ¢s) o) x oLV (2))
° o )

The force on the particle is taken in the minus & direction, so that

fromn equation 17

0 1 Q")(s) 0 0
%ﬁ 0 tnCzl-I 0 ﬁ(l)(a) 0 de "o + ¥
1 -1 0 0 tm(s)
(1)
Q 0 0
(1) -
= n{ ‘a;-l . 0 x(l)(l) 0 T .V
o al¥)
where

¢(3) de = I(x)

Multiplying both sides on the right by
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R
o
2
[
o~
f
o
o
2
[ ]
o~

it follows that

] )
[aB)™ o 0 0
Ve ﬂ e % 0 . [Q(l)(l)]_ 0 >‘(s-1 * 0 3
n{ N
| 0 0 [q(z)(1ﬂ4 -1
) [ )
0
- }M ﬂ. A4 1 . 1 0
nC N :171)(1) ror Q(z)(l) q“)(x)
-1
(22)
The quantity |

—m-| 1 ( 2 ) (23)
= -e_® . 'TTu 23
ZZ? n¢ 2V (1) Y a3y
is the mobility tensor. From the relationship
~{(1)
o 20 e AtSfnmed
neoo Q' ‘(1) s o n

follows
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When the particle i3 aligned parallel to its translational motion, the

sz component of this tensor is twice as large as that for a particle

aligned perpendicular to its motion. This is in agreement with results

obtained by previous methods (8).

The force which an individual element exerts on the fluid in

terms of laboratory coordinates is obtained by substituting equation 22

into equation 21. The rasult is

(@)
3‘ ul : PUes) Y
?[ s ) = ii‘ﬂ— Y ()_(/7(,) _‘?’(2)(/) =

Uig
7’0 —

It ia instructive to note that this function is even in s
F(s) = F(-s)

This is quite to be expected, since there is no hydrodynamic

external torque on the particle.

IVb. Rods under Oseen Flow in Infinite Medium

The Navier-Stokes equations are

~

9(9'-:— +3-v'\‘r)=—c1p+nq23

v~?§~o

(24)

or
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-

For steady-state phenomena of interest here, ?-:: =0, In
Section II, the terms Ve v; were completely neglected. This linearised
the equations, for which solutions had long since been worked out for a
sphere. From the sphere analysis {t was possible to deduce the Osaen
tensor.

It is possible, however, to proceed somewhat differently. It
i{s now convenient to consider the sphere at rest with respect to lab-
oratory coordinates, and allow fluld infinitely far away to be moving
with velocity ng (9). Then, instead of neglecting completely the

inertial terms v- v'\.r. these are approximated by U -a% v. Thas,

for steady-stats {low, the Navier-Stokes equations become

pUsa-é :;t-vp*‘nvz?

(25)

Veve)

These equations are called the linearized Oseen equations. Cseen
gave the solutions for spheres (3). A more or less detniled analysis

can be found {n Lamb's Hydrodynamics (9).

Define o = -‘2-’.-“9 . The approximate solutions for a sphere,

given in Lamb, are

ot Y cr* v?

U= 3Va Waco-"é[(‘i' + "")C_ '°—(("°"°’)— - a-‘co-da}(z(,a’

_gr(1-@ed)

3_\_{&-9'»-9;.;. .-‘——4./[- e . LI o covw (26b)
4 b7ty o Y

&
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3va | [ | cows +__Co_~£) LovQ-ose) ee  al 2
U= 4 [({ Y ar /€ —-E'—Y—’-_—‘{-BY’('-;CO"O) (2¢6c)

It is readily verified thatas o~ 0, these solutions coincide

with Stoikes solutions. Upon neglecting terms in az/rz and expanding

the exponentials to first order in ¢, the resultis

; va ovs o g
ux:%‘s‘wsw¢ [Y -3 "“i‘ CO‘vz&]

(27a)
3va | . ov® o I
us = 4 .£i-6 g‘nv¢ [ Y < pA C‘o‘z&} (27b)
| 21
3Va | — , cos™8® s a
Uaz= 5 [v* v Otz bt Cos’s (27¢)
The Oseen tensor constructed from this is
d+e @ 3 00
"~ r r l o l 30 -
- —— + n——— a— :
T= BT 2 0 3 ¢ BN 32 cos ;ﬁ:
8= Tr 0 0 2
(28)
1
= —

G ”~ Pal
- COEl B € ~ o
87N 2 .

It is easily seen that this tensor is to order 0° the same as the pure

Stokes Oseen tensor.

To determine the motion of a molecule in an infinite medium

to thias approximation, it is necessary to write an equation analogous

to equation 13
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- - - \ . -s l

Fp=Cvi-C ) Ty F (13)
i#j

The gaantity ;i ‘can be written

vi=v+ib's‘ xer (29)

where v is the velocity of the center of mass and ¥ is the angular
velocity of rotation. The latter term, which was not present in the
pure Stokes flow, considered in the last section, arises because there

is an antisymmetric part to Ti.i here which gives rise to aninternally

A
induced hydrodynamic torque in an {solated molecule for certain

orientations. From the symmetry of the situation, it follows that »

N
can possess only an cz(p component. According to equation 8

sa7(a)rt (8)

The main interest here, however, lies not in how a single
molecule behaves inatantaneously but in how a particle behaves on
the average. Assuming ergodicity this is egquivalent to considering
how an ensemble of hydrodynamically noninteracting particles behave .

In this case the motions on brownian motion apply, and
g -1 A
(1’(“)-5_ )xer=BR' 7 in £(0) (9)

and equation 29 becomes
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vi=v+ibBR-Vlnf(9)av+ibD SE (30)

It is important to realize that a diffusion back flow has been added
here. to satlisfy the requirements of brownian motion. This flow
exactly cancels the flow induced by the hydrodynamic torque. Hence
on the average a molecule does not rotate in any orientation.

Combining equations 30 and 13 gives

~- - B - a £i
?izcv-cz;gu-wj»fcibne %‘—9‘3—(9-) (31)
i# |

0 n
M [ =) (17)

N L. {
-1 izen
and
n
~ 9 - ~
(etxz ibFi)xerﬂkTVln (o) (32)
iz-n

suffice to determine the -E.‘"s and f(®). Equation 32 is merely a state-

ment of equation 9'.

It is convenient to separate out the symmetric and antisym-

metric parts of equation 31.

'é'l+’§' =205 -¢ ) r'rij-'i'j«r'r - F ) (33a)

i ~eiej Coej
i
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¥ .‘s‘.i=zigbr>” %—?—fﬂ e.=C ) (T, F- T F51 Gav)

i ~ i
i#j
The Cseen Oseen tensors are here
T AR (D) Fea
tomy 3 w0 ER sgn () -5'_'—))- T(6r 6,42, &) sqm (i) (342)
R oy _;:(%i f) ) ?—1‘;;- D O

. _L T A A . { /s 2 A~ A .
S’m) Cow 9 € e, Soym(c ,)-f-g——-—v7 z(e;.c,-/-e,ee).f‘gm(L—JJ

where sgn x = +1 if x> 0, and sgn x = =1 if x < 0. The signum func~-
tion comes in because the actual angles of interest in these tensors
are those of the vectora‘{ - 3‘. and 3. --{. respectively. The angles P
and ¢ which appear in the formulae are those which the molecule
makes with external axes. When? - 'j'or 3. -3 change direction, the
direction cosines of the angles of interest change sign, but ® and ¢
remain the same. To take this into account requires the factor

sgn(f - j) for terms which change sign on inversion of the molecular
long axis.

Combining equations 34a and 34b gives

| . [ PN
T.es 275~ 7 3ocovs I 57’1(4-.;)'?777 S cons €, ,n?,t(e'-j)
] (35)

—+ ?-1—:'7‘ 0"(23_— é{‘f" é\r?z.) J’?)\, (,(."J')
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‘The distribution function £(?) will now be computed. Equation

33b becomes, upon combination with equation 35,

() ~ -
‘-F"‘--.?...' :iZ(bDOG%Tj-—Z‘ €s - C ZT:J (‘F’;—-‘:_))
i
' —»
+—§—§'}— {Ec 2{ +€rz —2cows Il -cowd E,é‘,} Z F:; S‘}w(c—'-j) (36)
. 1:?.’

»
Define (E’i - ﬁ@ Eguation 3¢ then becomes to order

-i

o
&(O
c:LzCLD” >\>; ‘_JJ
7y
( _ (37)
- {W&3,+3ms@,}- ZF‘J Som (¢-j)
XTFT] <Ej

The quantity 05 F j sgn(i ~ j) can be evaluated properly to order o

vy
by substituting#dle functions worked out in section IVA, equation 24.

X
X (a
Zﬁ-" som (¢~j) = H/‘F'Cs)ds— V)/ (-Cs) ds = fﬁ'@)‘/‘r
1 X L x

o (38)
= M J]%%x) 5.3 n®w %) A9
N avw Tl avw a Py _
AN

Allowing ®i to vary continuously as ) (x) rather than discretely,
substituting 38 into 37, and approximating the sum by an integral leads

to

99»\ ) >\f &) d<j

@) =x2n{ b D% 5 [~y

L M { ( A ) 3 —"-“”X)>5,0'~6w@0

gay V(2% 29

(39)
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This equation is of the form

b)) B B
$(x) = (X) ) Ix— 3] | x=9/ n

~{

(40)

for which a general solution was given by Kirkwood and Ri'seman (6).

. ot M ¢ rrhx
b x) £, (py e 1) (a1
x; = - : Il
I+ 2 (An2n-1) +A:—°°/—_1A G (7;“ )
F o
Where
l ek
k= {‘[ fx) e X & (42a)
k
e 1) ;;‘ A S o (42b)
[
Explicitly
az.nt Fhue (AW a® k)
;(x) - X Znb g D$ T MN nax -3 Wel D) S‘bng.cadé (43)

Since i(x) is an odd function of x here, fo is zero. Thus the solution

formally reduces to

=
C# (x) = Z sz:c‘iim (44)
4e=—00

Fo



Now

.(2.(”( x) =

_Q-(” (K) B

30 that
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P 4. e1)* Seamk si kx| (45a)
(+4 Afmzn-1) (X*TTTZ e -4 (T
k=i

oo

2 . +Q.Z e  Su rk sew rilex ) (45D)
lkl)\'(ﬂmzn—() T* k* [ -2A C,,(l‘l“—'l)

k=i

£, = =LCD® 5} (Do 2lulls)
26

+-

FM ol {(_}(—I)k_zzk b Si )
TN N

Tk

e ) (+6)

_ _ L'(‘I)k__ l.f\ (_/)/c __i_o_l'ﬂ& }%em/&
3( T’ T et -2AGEY

The second terms in the fk coming from the k' sums in the

Q(x)'s will be néglected, since they are considerably smaller than the

first terms. This follows, since for small k, Ci(vk/n) goes like

tn(y7k/n) (6), where v is Euler's constant, and thus is about -2.5

for n aboat 50; for small k then (1 - 2\ Ci(nk/n)) is larger than one.

If k is large, Ci(k/n) goes like (sinn k/n)/(~ k/n), but then the extra
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factor of 1/7k in the second terms reduces their size significantly.
s3i(2m k) is about 1.5 for any value of k allowed. In addition, A < 1.

With this simplification, equation 46 becomes

S 8 cwo) (47)

TR u( § >ﬁ-¥to) _25Me G

PN7N

and

£ .

e imel )b saxkx

Ok =4 nL¢ 09 Y 9;"7:/ S«owa> Z e /-Ma'-’,—‘t‘ (48)
A‘.I

’~ - )
This gives the e, component of i?i - F , toorder 9. There is also

-1

Y -
an Qr cormponent of Fi -F i but it gives no contribution to the torque.

The quantity
n 4 ‘
YebB= ) ib(B-FEL) (59)
£=-n =

must now be computed in order to use equation 32 to determine £(9).

Only the QQ part just calculated is of interest here. This gives

[}
n’bfpx ®¢x) dx =

4n*blns € D®® 2Lnfte) . J/"o’ oo | (50)
n n C ba | ?777 S b & 11‘1_ [ 2_,\&(’7“)

or, using the function defined by Kzrkwood and Riseman (¢),

e I = [ (51)
R,
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equation 50 becomes

l oy ) ) g/«d'g- . )A
nzklw(w?‘ €0~ 5F () "%6“%09 ‘%’;ﬂe “gmyN Sim09% (52)

and 32 gives

—g—F(%)n‘b nb {D%® nfle) _ FM e$ sdnecwe> = AT gjgf(e)

0® 8TNN (53

3olving equation 53 for g#n (9 gives
o8

aAI(Qszma-fF(:‘)n*L/_z_ 2 312 N%° ) : (54)
26 iz N \5F(")”b{D - kT sinocov 6

Assuming the value of D  which was given by Kirkwood and Riseman (6)

D*°=% B SwF( e
leadé to
aﬁ,;ﬁ(w _ Jéw;;/f;;%) b oo cones 6
which gives upon integration
Fo - K o[- SERI ) &
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where K is a hormalizing factor.

Now
27 27
where s is the sedimentation coefficient. Also
£
nb= o (59)

where £ is the length of the molecule. Combining equations 58 and 59

with 57 gives

;_ " #F*Mspn CLF(R) 25
’C(e)'ﬂ/e’/"’( 48T n* NET o ) (60)

In the centrifuge

F=atr(I1-vp (61)

where r is the distance from the axis of rotation to the point of

interest and 60 becomes

flr-K o -t hpp CLEW coune) oy

This function peaks at 8 = w /2, so there is a preferential orientation

perpendicular to the field. For TMV, the parameters are (10)



&1

3
) = 30,000 rpm p =1l1lgm/cm
2 7 - . 3
w r =6x10 cm/sec v =0,74cm”/gm
M =4x10 gm/ mole £ =4x 107> cm (63)
- -1
| = 10 2 gm/cm sec kT =3x10 4erg
s =1.85x10 " sec N =6x10%

Let d be the diameter of the rod. Assuming n = £/d, and { = 6N d/2,
and taking note that 0 < F(A /n) < 1, the argument of the exponential
is less than 2 x 107°. Using this number, the distribution function

is approximately
for=% (1- 2x10° (oo -3) ) (69

From this no observable orientation is expected to occur as a result
of this mechanism.
To find the velocity of sedimentation, equation 33a must be

considered.

F+F. =7~§7"¢Z[EJ‘%’ * -’,;‘,‘JE‘JJ (332)
\ Ty

This is conveéeniently rewritten

> > = = =T .. = 5
Fi+F.i =2 S —QZEJ '(FJ +F-) +§Z [Ty —E-J'] Fj (65)
. ’+j ixf
The last term on the right side has already been evaluated to order o

and found to be odd in i. 3ince the function %i +F i is necessarily
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even in i, the odd part of > 13 ('5"J + F ) must exactly cancel
T 1#)

AT T -j Hence the interesting part of Ei‘ is the even
i J J J

AA 3 o o
T(:j (even) - ﬂ- + ef er —_— I _1- P 3 o (66)
~ grnblc-j)  8m 2 \ o0 0 2

After removing the 'canceuing parts, equation &5 becomes

1+e.e, >
[T zC" )\Z e (Fr+F5)

ity
b 3 o o
(D)) 6
J
_ C(z(} IMo ) )\ Z:lhe.—c, (E-f-_f—z.)
B 4w7N le-51 ’ ’
: T Y

This, however, has precisely the same form as equation 14, with

-Vj J"Mc

AN e, playing the role of V. Consequently, from 2 2

{ { o
->» i 34!]"' 2 ( ) - ) . o]
U SN e avae rfr ¥R L0 n‘“(u) gy (68)

or

M 1 A A ! _ l } g).{. .f'_d.._g-’e‘*
= N [{_TY,; t ey &y (.Q"-’(:) S -1 g7

c.v

(69)

The average sedimentation velccity is
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{¥F) =fo f(e) ¥ sinede (70)

If a very long molecule i# assumed such that Q(z)( 1) = 2 :“.“)(l). the

result of this integration is

N [ ogM [(4_ QwonS —2x/0'7)
<U’>:‘5FJ(T) nsN \ 3 8Ty (71)

From equation 23 it is clear that the quantity n( ':T‘l“)(l) is to order o*

just %jsl.l."l) ) since the average of the tensorial terms in the
brackets ie 4/3 Qﬁ‘ and the mobility tensor is directly related to the

sedimentation coefficient by the formula

M _
Sz(MzzZv —N“(”Vf’) (72)
" The average velocity then becomes
>\ | _;ZM i _ -7
@ 0% n¥N (3 HO ) (73)

If there were no effect irom the Oseen correction, the average

velocity would be

= IM (4 .
(7 QUM ngw 3) (74)

It is then obvious that the order of magnitude of this effect is quite

unobeervable experimentally, and is of only academic interest, since
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-5
the sedimentation coefficient decreases by only about 10 =~ percent.

IVC. Stokes Flow in a Medium Bounded by a Wall
The componants of fluid velocity for a peint force operating
on a fluld in an infinite medium were stated in Section II. These

components satisfied the equations

2 >
NV v =-vp
VU =0
If now an infinite plane wall is inserted in the medium, the

flow is of course altered since the fluid velocity must vanish at the

wall,

This modified flow was computed by Lorentz (11) by noting that
if the quantities Vil). Vv gl). vV il). and p(l) satiafy the hydrodynamic

equations, then so do the quantities
(l)
@
vel= - " -2(z+£) ax +(z+¢)* v*v." (75a)

(l

)
ww'- “_2(z+ &) 3F ag +(z+§)*v* ”":) (75b)

I av’ g
g0 2(eE) L2 1 (246 v (75¢)
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«) o7 Iz(/)

PV = plr2(z+) 52 — 4755 (759

These formulae 75 are general for the coordinates x, y, or =,
so that in place of Vgr either v, °F vy could be substituted. The

usefulness of the formulae i{s shown as follows:
z _ fo)())O)
R &

b fimage)

Consider the point force above the plane to be situated at the origin

of a right-handed cartesian coordinate system. The z direction points
upward perpendicular to the plane, which is situated at 2 = -¢ and
extends infinitely in the x and y directions. If the plane were absent,

the solutions for velocity components would be just those for pure

Stokes flow
Vv, = F XZ&
X = 8 "'r ] (Za)
f Z 2b
v-‘ — -é_— 3 ( )

= (2¢)
V2 = g (f+"’
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Upon addition of the plane, the velocity components must
vanish at 2 = -§. The component Vo can clearly be made to vanish
by adding an image point force on the other side of the plane, in the
sarne manner as electrostatic potentials for point charges in front of
infinite conducting planes are constructed. The vx and vy components,
however, are seen to add rather than cancel, but if the components
are transformed according to equations 37, the boundary conditions
at & = «f will be satisfied upon the addition of the thus transformed
point force velocities.

The total flow for this situation is

F /X2 _ X2 _6x&(z+8)(2+25)
Vi=grp\ r® F? FS (76a)

F (YZ _YZ 6yE(z+5)(Z+2E)
VyTem\ 1P P Fe

(+ £)% (
Vg = 877;(,- r:] [ £ 2 ]+2§(z E)[—’J 2+2§)]) (76c)

(76b)

> 4
wmere 1= (rgne)t pe (e (2ees))?

When Z=—f) U'x =U’H = Vg = O . The Oseen tensor is
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Now consider a long rod in front of the plane.

) lpxt b _at L 3KT
xx'yvq{\'*r’ Pl Zé'(zw;)(’” 7 }
_'__{ x4y _ X9 , bxy§(z+§) }
= =3 =2
xy sml v P 75
T w {xs _xz __‘Kg(ZfZ;thf'f)j
x2 yrn’ Y3 r3 ol
T =T
Yy xy
T =~L—{—-'—+—2—L ~:L*—P;L—2§(a+§){:1;——1-’_ 1)} (77)
Yy 311-)) v y3 Y r Y 75
T =t {9z _ 92 _ é;tf(é+zf)(€"$)}
ye ?v7 3 73 75
- '_L_{_)i_xi-+6x§(z+zi,¥ar;’)}
2x )n’] v? y? 7S
T = {g_a_-;_e_ + by S(%fzfl’arf)}
zy 8wn Ly} ¥3 75
T a-! {-—‘.-ﬁ_g'_t_——}—ii_”iz_l.fzg/sz)(_:'_’___Z(a‘;zfz)}
an ’fr‘)l Y v3 Y ‘);3 y 7
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To compute the distribution function in this case, equation 31

is again employed

66 4,, F(a
=57 - S.ZTJ F,+ SibD e (31)
which leads to equation 33b

o o szaa_ﬁ_(_)@ - {Z[Qﬁ.— T E] (33b)

It is convenient to expand the Oseen tensor to first order in
b/ = o. Each force element as shown in the figure is treated as a
separate entlty.

Immediate relationships are

(z'—J') bsim 6 covp

®
"

(i-4) bsme SM4>

«
e
]

(¢-j) b codb (78)

£([+ 0 cot0)
2E[IHeins) coa64 % (%44 2ij cocZG)J “ 228 (1+ L (i+i)cost)

Al
#

Mt
]

ij
With these relationships, it is possible to develop the Oseen tensor

to first order in a.



ij | ( 3 :

To ;a(+%“?‘if“””“ﬁ
ot ‘_(11)

xy 3"‘7 y?

i | X& _ 3% ;e

Tea M7(r’ g5 (¢ i) 5w 0 o b)

iy L9t 3 3% (ri)cows
Tyy é?vrvy( 2 +§ 8¢ )
"

ya ?m; r’

e (“ + 3¢ (C-J)Simam4>)
zX gy g¥

o el (29 434 () siosin d)
zy STr"I r3 g5

‘ A L 23 34 (ces
. (++5 zs+4;(”ﬂa%0

These lead to the relations

(79)



el g L 3« +;) Con &
“1-j 1j
Txy = Txy
o 1) ) 3« .
T:m * z +9777 4 ¢ (C=3) 58 ot
~t-j o1 3« ) com o
yv " Ty TFm 4 (& +i)
(80)
~A-j ij | 3«
T ™ 4 22 ((-])Sin 6 Sem
ya " Tys o7 4§ (¢-3) ¢
L= i L 3a (/) Sims comd
sz = sz 2 4 ¥ (C-J)
il L g L 3« ) simo send
sy 3y gmy 4¢
T;;'J' . 'r;iz ..51_7‘_7_ _23_}‘_ (it+s) con
or
/ -
(Ctj)cons o - (€-)) 56 o0d
=) <y 3 o . . . .
T =T - 3277 % o (C+5) co0B  ~(¢~}) 58 Simd (81)
(i-j)simoCadp (i-j)sinosimd L (< +j)cCore
Equation 33b now becomes
Q,Mw) -
BoE oS ) T B 7
(%)
(82)
3w & ({+)) con e o —-(c.'—)') sf'—.o CO.'&tb
327 § o ((ej)cone ~(C-j)senl sem

5 (c-j)Sbwrd (ij)simpsm¢ 2(i+j)cono
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This equation is treated in the same way as the expressions in
section IVB.

E:-Ei ) ‘e =0®
Tii = — (ﬂ+e<2) 1= v
~! = gmynb Jx—gl r Y= I

¥ . are functions worked out in IVA, and given in equation 24. Thus

§
®x) =x(2nb§ D% %}f—(e) % Sim 8 0016)

J, | x-4 I%-yl

The solution to this equation has essentially been worked in

(83)

section IVB. It is only necessary to adapt equation 48 to the present

purposes. The proper resultis clearly

I nf(8) uZ Z s,onm@x
@) = 4(n8bD* %5 dufle) 2;‘,,’;;%5 in0o8) /T G (ER)) (89

Procedures exactly analogous to those previous give

009 luf(6) _ JaFIMS s, — P+ AlaF(8)  (85)
Ferb(nbS D% 240 Gﬁ;-?iwewe) ﬁT_S%_J

Gl

and

_ 3IMEFAT>
£(9)—K%(64¢7N.£72-§2 mze)
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IIMSFRL
e ATRE )

Using TMV data, assuming s lcmandd= 7.5x 10-7 cm, this
-7
exponential argument is less than 3 x 10 . The distribution function

is approxima tely
fe)=+% (l—3x10'7(m29 -é)) (87)

No observable orientation 18 expected.
To determine the sedimentation velocity, the analog of equation

33a gives, after cancelling odd parts and keeping terms to order 1/°%

- (14 8-8)-(F+F,) _ 38IM ¢
‘+EL=2§V"AZ ll"‘J, 47"?N§ (88)

i¥y
Using the functions of equation 24 to evaluate the last term on the

right, the resultis

’ 0 3nS A
"’ 1 ! + € ,
nNS’ [{g“’(l)+ e (53‘ o 2% ))} (3> 2mné E] (89)

Again assuming a very long molecule such that ’I'(Z)( 1) = ZQ(I)(I).

the average sedimentation velocity is

™ )
- rr g ~ 4.3nQ -8
<U'>-‘L f(6) ¥ s5in8d06 ~—'%?2‘7r,20 3 -5-2-7-;%?‘-3“0 )

nzgz‘%) (4 10 5)

(90)
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This change in sedimentatgon velocity is also unobservable experi-
mentally, and establishes that wall effects are negligible for these
molecules if they are far enough from & wall that their length relative
to the distance to the wall {s very small. It may be of some academic
interest, however, to note that there is a very slight tendency toward
orientation parallel to the wall toward which the particles are sedi-
menting, and the net effect on the average sedimentation velocity is to

decreass it by about 10"3 percent.

IVD. Particle in a Radial Field

A radial field is produced in a rotating system such as the
ultracentrifuge. The more distant & point is from the axis of rotation,
the greater the centrifugal force. In the case of a rigid rod-like
particle, it may be suspected that a torque may be induced by the
external fleld, since some parts of the particle for certain orientations
are farther from the axis of rotation than others. It can be shown that
there may indeed exist a torque due to the centrifugal fleld for particles
which do not lie in a plane perpendfcular to the axis of rotation.

The external torque due to the centrifugal fisld will be computed
as a function of particle orientation with respact to the axis of rotation.

Once this is obtained, equation 9'

%(s,ﬁxéy =LT Va Jlm§ce,4.) (9"

will be used to determine the distribution function.
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A
Define an axis of rotation in the ey direction, and place a
rod-like molecule some distance away. Define the 2 axis to pass

through the middle of the molecule.

Y
\ A
€}

The centrifugal force acting on elementi is
25, =
W R m(1-vp)
where m = mass of each individual element. The force on «iis

w? R-’_i M(I——\;f)

The torque on the particle is clearly
- n
: . A e -
T =mbw? E i e xR (I-vp) (91)
i=-n

This can be simplified somewhat. From the figure it is clear that

—

2bié + R —2F-F: =0 (92)

and

-f;:b" (€, - é‘z) 33 =b; sim Osind é} (93)
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Thus

Ri-R.i =2bibr - 2 =2bi (& -5in0 sing &) (94)

The torque can now be written

:Er(@ ¢) = w‘"bmz i & x(R-R:) (1-VP) =-Tcsinbsing (& xé;)(l—V)O)

t=20
n

wherel=2 mb Z iz(l - ;p) = moment of inertlia of the rod corrected

_ i=0
for buoyancy.
Now e - ¥ 6 S' o . N A
¥ = Sin6 Sim ¢ € + CoUBSime Eg + Cosd Eg
] A A A A A
and Crxee=e¢ e(' Xé¢=—/e\e €r Xer =0

50

T(6,8) = ~T alsin 0 5in $ (CotBSjn b 8 - coup &) )

and

?(‘.9/4’) x €p = -T w*sind sing (COaJQS/;...cﬁ €g +Cod §¢)

Then equation 8 leads to
‘9—%%(@ € + ‘%’?ﬂ &4 =L (SinOcorBsin P&, t5inh sinpreoet &)
The * part gives

In f(5) = % }%ﬁ (coaz"’* sinzc;- +A(c)) +2n K

The ¢ part gives

xmz 2 2
In £(¢) =31 z?'f‘" (sin"c cos"@ +B(8)) +&n K
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EQuaﬁng these leads immediately to
Ale) = cosch B(?) = cos?o

Therefore

flo.4)=Hopp [ 3 i 05i4] 09

Hence there is a slight tendency to align parallel to the fleld. To

first order in 193_2 » thia bacomes
kT

flod) =K (1- L& sinfbsin'd)

1f sinch is replaced by its average value %, the result ia

fle) =X (I- 2& sin?e)

The normalization condition gives to order lw Z/k'l‘
= i 2
{(e)= {J /zKT 3coa6- )} (97)

Saito and Hasegawa began work on this problem after they
found out that the present investigation had already gotten under way.

They report a similar distribution function for the same conditions (12).
f(o) =% {H— e * (3eod’e- /)}

They bave given no detalls of calculation. The origin of the discrep~
ancy of the factor # i{s unknown at present.

2
It might be mentioned that the term in % in equation 96 is
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exactly half of what is obtained if one assumes the field to be cartesian
rather than radial.

The moment of inertia corrected for buoyancy for a rigid rod

mLz(l -vp)
12

to the distribution function is

ia . Hence ior TMV itis 1.6 x 10"27. and the correction

fe)= % (1+4.5x0 7 (3eoete-) (98)

This i5 too small to see experimentally.

V. . Concentration Dependent Phenomena

The motion of a particle through a viscous medium disturbs the
fluid at points removed from it. In certain cases it is possible to
calculate approximately the magnitude of this disturbance, as was
done, for example, by Stokes for the case of spheres. This will lead
to a2 concentration dependence as follows:

Consider a particle at the origin of a coordinate system. Allow
an external force Z" to act on the particle such that it moves with respect
to the medium with a velocity

~p

Py
th'\é'ﬁ‘

where M is the mobility tensor, or the reciprocal of the {riction tensor.
This quantity has tensorial character because the velocity of motion in
the case of asymmetric particles is not necessarily in the direction of

applied external force (See section IVA).
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If the medium itself is moving with respect to an external
observer, the motion of the particles will appear to change, or alter-
natively the mobility tensor will appear to be diffierent. The medium,
however, is indeed in motion if there are other particles present which
are perturbing the fluid velocity. The degree of this perturbation will
depend on how many particles are acting on the {luid and on their posi=-
tons, or, in short, on the concentration of particles.

In the case of asymmetric particles, the orientation of a particle
has a great deal to do with the velocity with which it moves through the
medium. Very long rods, oriented parallel to the applied field, move
twice as fast as those aligned perpendicular to the fleld, as was shown
in Section IVA. Therefore, if there exists a preferential alignment of
particles, the net average sedimentation coefficlent will change over
that for 2 system of randomly oriented particles. A nonuniform align-
meﬁt with respect to the field will occur if the perturbed velocity at
the site of a long rod includes a shear, for then a hydrodynamic torque
will be exerted on the particle, the magnitude of which will be a function
of the orientation of the rod. As explained in Section III, brownian
motion will counterbalance this in such a way as to induce a nonuniform
angular distribution function. The degree of shear, if it exists, will be
a function of the concentration of particles and the magnitude of the
external force acting on them; in turn, the angular distribution function

will depend on the same parameters.
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In this connection it is of interest to investigate the effect,
at a single point, of the velocity perturbations due to a distribution of
spheres in a medium, all of the same size and moving in the & direction

with equal speeds. This perturbation is given by
—p > . / > ey,
(=2 T (FF)- F (%)
)
where g(?, ?i' ) is an appropriate Oseen tensor, and the sum is over

all spheres, or point forces. In the case of an infinite medium,

representing the spheres by point forces gives

A A
-~ _F L+erpy Crpp e
= ~ ez
v (F)= gmry 7] (99)

¢
If the diatribution of spheres is uniform throughout all space, and the

sum replaced by an integral

ﬂ 2 »A-’ ', A A
F FERPErT, o, d(vol) =>e0 €

V(F)= g ) P (100)

This infinite result is not obtained physically. The model above which
givevs the infinite result must therefore be faulty. The mathematical
origin of the infinity is the assumed additivity of eifects from different
force sources, and since these are all positive in the z direction and
die ofi like 1/r, the integral diverges like rz.

The reason this divergence does not occur physically is the

inevitable presence of a ''return flow' or "back flow.' These
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terminologies mean that on the fluid velocity given by infinite medium
S5tokes solutdons must be superposed additdonal velocities of opposite
gigns in order that the total fluid velocity vanishes on the likewlse
inevitable walls of the containing veasel, or on some other convenient
surface. Of course, the walls of the vessel are not the only inevitable
objects; there are alsoc many other spheres surrounding any given one,
and it is not unreasonable to expect these surrounding spheres to
shield relatively distant regions of the medium from the effects of a
given sphere, due to their finite rigid volume. Thus, sufficiently far
away from any given sphere one would anticipate the medium to be
‘completely and totally unaware of the actions of this given sphere. The
velocities induced by it are "reflected” off its neighbors, and this gives
rise to a "back flow.' This latter effect may be approximated by
inserting a hypothetical sphere of some convenient radius L around
any sphere of interest, with the fluid velocity arising from the perturbe
ing influence of the sphere made to vanish on the concentric hypo-
thetical sphere and assigned the value zero outside the hypothetical
sphere. It will be shown that either mechaniam for back flow gives
esaéndany equivalent results.

Therefore, there are two effects which tend to counterbalance
each other in the perturbed fluid velocities. One is the tendency of
a sphere to drag the fluid along with it, pushiug forward the spheres

ahead and pulling along those sphexes behind. This effect is the infinite
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modium Stokes part and leads to the divergence discussed. The other
effect is .t.‘ne reflected flow, either from the wall or neighboring particles,
which cancels tbe divergence. Experimentally, there is a elight excess
of back flow, which fact i{s attested by a decrease of sedimentaton
coegfficients for spheres with concentration. The results of several

studies done on glass beads hover about

Vegs (1-50) (101)

where ¢ {s the volume fraction of spheres (14).
For spheres sedimenting in a vessel, Burgers has made a
theoretical study of the expected sedimentation velocity. The analysis

i3 rather lengthy, so only the results will be given here. The predicted

velocity is
F 55 ‘
VBm (l -—-é-q)) (102’

An amount 15/8 ¢ of the correction factor comes from higher inter~
actons between apheres, such as induced rotations and double velocity

reflections. Omitting this leads to

v=-§;% (1 - 50) (103)

This term S5¢ in addition contalns consideration of the finlte size of
the spheres and the average perturbation velocity on the surface of &
test sphere in its absence, rather than the perturbation at the center.

If, using Burgers approach, the average perturbation at the center of
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a test sphere due to the action of all other spheres, approximated by
point forces, is calculated assuming a uniform distribution of the point
forces about the test sphere but taking account of the excluded volume,

the result is

F
Vuma (1 - 6e0) (104)

This value differs from experiment by only about 20% for
small « .

The primary interest in this work is in rigid rods, not spheres.
The general scheme for calculation is to treat all particles having
hydrodynamic interactions as point forces, but to take account of
excluded volumes. The space and orientation averaging processes
for rods are considerably more difficult than for spheres, and the
approximations used to do this do not warrant any more accurate

treatment.

VA. Spheres and the Wall

It will now be demonstrated how the value

Ve

s (1 -69) (104)

arises for a sphere moving perpendicularly to a plane wall of infinite

extent. Equations 77 give the Oseen tensor for this case.
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Consider a point force -F(z) 'éz acting at r as shown in the
diagram., For generality {t is considered to be a function of z. The

velocity at (0,0, 0) due to this point force is
¥(0,0,0) = -7(0,5) - F(2) &_ (105)

'Ifhe location of the force i3 now averaged over 2ll possible positions
external to the volume excluded by the test sphere at the origin, and
the average velocity perturbation at (0,0,0) thus computed. The dise
tribution of forces {58 assumed uniform, and ranges in geometrical

extent from
f: 1/)(2._,.32 = 2Q —» o0 _—_—_-E-——h

where a i5 the radius of a2 sphere, and h is arbiwary.
Clearly, the Qx and Qy components vanish on the average. The
average velocity at (0,0,0) is then

i 00 h
_V’='°fd'9‘/‘¥’d/’ dz Tzz Fzé&:
° vaa N

2T re0 h A ar o 2a
=—c'£d3.[fdf[dz Tez Flz) ez +C/°;)°'é‘dubd%zdr 7;1 F(z>€£

(106)
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From equation 77

Ts e [ o (e

8y r
(107)
:-——"'—"'L'Q’“P"‘ ~-r+r - Zﬂ——--;iil)
gmy f 9p @ r

It {s convenient to convert the first integral in equation 106 into

a surface integral

ff) ,adp dszzF(i)

/sz(z)[}a (-r+7- Zf(z*g))] -

The second integral in equation 106 is, neglecting terms of

il

(108)

order a/",

V(o) =
_2M T 2 _
c/d;o suad%erTzi “’:/M("V*’l (2. +r cod6) (109)
o 0 (]
4p*cF
37

2
where F = ﬂ_}_\?‘_ (Zo + rcos” )1 - vp) is the force due to a centrifugal

field on the perturbing particle. Note that the radial field has been
approximated by a cartesian one, but this should sufficlently approxmate
a centrifuge cell so as to lead to correct results. 3(0) is a net fluid

velocity opposite in direction to the motion of the test particle, and
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will thus tend to slow it down. The net velocity is then

— F 62 4azCF — __..E-—- -
B Mg () s

VC. Spheres and the Concentric Hypothetical Sphere
Cunningham (15) worked out the solutions to this problem many
vears ago, using the boundary conditions 0=v = vy =v, atres L,

v zv sfatre=a, andv = -evatr =a,
x y z

(>

Define

e = a’/l_ (111a)

2 1_63
B o= %(—(I_—e—s')—) (111v)

5(1-€%)
Y = ______3 lf; (I_ES) (llIC)

2_ 5

. §-5€*-4¢ (1114)

3L(1-€5)



86

Then, if an external force acts on the small inner sphere in the minus

z direction, the hydrodynamic velocitdes are (15)

4 !
v, ® “S,wec,ow&m&(B vt + ) gy (112a)
v x—&mewom¢(—Ly +L_3f ) £ (112b)
y f v? 971'7
v, ® (xr‘+i+3+(,-3mz )(zz_‘__l_. ﬁ-) £ (112¢)
z 3v ONs “3vr ¥ r? ]
aZ
I{ terms of order =3 are neglected, the Gseean tensor is then
r

m__L_ & 2 4
L g7 Yy +3,+S+(1 35428 Com 4>)(1~ y))
T =—l_ %2e%~¢m¢(—-ix{=+ _L)

Xy ?."-,]
T =z=—— Siwubcoas covd [~ 3¥Y +~L)
xz  §TY
Tyxg—r"Y
4. ) 2 arr,J. (113)
Ty *7 s (y)/ + 3y +§ + (1-354w?8 Scm 4’)( )
T =L Wemesa-a¢>(_y_w+4;)
yz 9#71 s
sza-T;E
sz‘TYZ'

T ™ ?'W(YT‘*"A"'/'S“I“(I 35”}8)(-1——' 3), )

The analog of equation 109 is
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(o) =- °‘I*v’2M d¢ sme eszz (20 + 1 cowb) r*dr &z

= S Cw"M /;»&dB 7;% (z¢+ ressd) rdr ez + (119)

2n A A 2 F 2
e M (44 [1in0d6] Tan (2.4 rceed) ridr & =—2CE 4 #ACF
N _/; ) i 9% 37

This ie the same result 2as was obtained for the effect of a wall with

2
the exception of the additional term - %EE . The velocity is
2. F 2, F F 1
— a ¢ -
V=-f— -2, dac ( -7 %)

'5—1—7—5 g 7 37 “6mI8

VC. The Hydrodynamic Interactions of Rigid Rods

Consider the following figure:
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oxis 0f votation ;Zo’

Fovce om B is

~

- w-‘——"‘—(n-—Vf’){z-,-n bocond —Rcoa® +n br’wo'}
9,

wgll

The velocity perturbations about the rod shown in box A due
to the hydrodynamic elements of the rod in box B will be calculated.
This will involve an average over regions outside the volume excluded
by the particle in box A, To enable the mathematics to be carried out,
the region excluded will be assumed to be a sphere of diameter 2nb,
where 2nb is the length of the rod. The results so obtained will be

multiplied by the factor 3d/8nb, where d is the diameter of the rod,

in order to attempt to scale down the value to correspond more closely
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to that of the actual excluded voluine, which i3 more like a disc of
radius 2nb and thickness d. The quantity 3d/8nb is the ratio of disc
volume'to sphere volume. Just how drastic this approximation is
will be teated by comparing the result to experimentally determined
values for TMV.

Call ¢' the fractional distance from the center of rod B to a
point off center. The force exerted by nbo ' on the fluid is denoted
3‘(0 Y. T(o.,0') clearly depends on %, v, ™, «', ® , ¢, ¢, 0', and R,

To get the effect at ¢ due to the entire particle in B, integrate

over o'

- .
[ T(5e) - Fle)de
21

To get the hydrodynamic perturbation at ¢ due to the particle B avers
aged over its possible orientations, integrate over © ' and ¢ ', weighted

with the proper angular distribution function f(* ').
I - ‘
fdQ' ) [nfif(fcd‘) +F (¢') do ]
Q' -

To get the average hydrodynamic perturbation at ¢ die to all the other
particles like B, average the position of the center of mass of B over
all allowable positions (assuming the radial diastribution function to be

uniform for simplicity) and multiply by the total number of particles.

c [éton [s2'F @) n[T0s) - ) do
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It can be shown that a condition analogous to equation 109

ia also true here

! ——
Viey= < [4t) [42 f(e) [ 1600) - Fie) o

(115)

excluded '
veolume

!
~ —c |dtvol) fdg'_}f(e’)h T@o') - F () do'
=1

This integral is evaluated in Appendix A,

It is interesting to consider the results when the Oseen tensor
for the hypothetical sphere-surrounded hydrodynamic elements is used
instead of the Oseen tensor for a rigid wall. The additional term over

the excluded volume term, which was »azci‘/‘)ﬂ for spheres (see

equation 114) is _ QZC (zo-nbo‘me)wzm(;_v‘,o)
InN

where a i{s the radius of 8 hydrodynamic element. This is worked out

for this case,

in Appendix B.

This term is neglected since the excluded volume term {s much
larger.

The quantity of interest then is the excluded volume integral
in equation 115. The external force operating on particle B is

WM (I-vA
= wly( Y )(Zo—hbvwe—RwGD«mbo"wg’) (116)




91

The quantities -E.‘(a ') are approximated by the functions of equation 24.

According to Appendix A, the value of thia integral is

V(o) = CO;)&Lf_d (Z 31’0‘&’6}6)(( V)O) Ex (117)

From this the average perturbation over the entire molecule is

l

2 =
V( )d cw Mdfdzo(/ VJO)

7N =

2.n+‘ (118)

s0 that the velocity of the molecule on the average, in the absence of

any preferred orientation, is

> MPZ(-TP) | cwMXd 2. (1-Vp)

ﬁ
where (, 1is the average friction constant of the entire molecule.

It i3 possaible to compare this with experiment. For example, the
sedimentation coefficient for TMV at very low concentration varies
with concentration like so(l « 4C/7) where C is given in weight percent

TMV (1¢6). The ratio of this correction term to 118 s

4sgw"zoc [OOMc 49N = 0.94
7 NC cw*MLdZ,(-Tp) (120)

This agreement with experiment is extremely gratdfying, and indicates

that the approxdmation of scaling down the excluded volume possibly
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possesses some validity.

The torgue on the particle A is given by

—~ PN
T=7 € Xn*b¥|g V) do

(121)

cw2MZL3dn §(I-V;P) é{o

TS oS TTRDTN

The factor of § comes from the fact that the field considered is
cartesian rather than radial. See the comment at the end of Section

IVvd. Equation 9' now gives

a,M =T xé, = cwlM:f;Zd;NS'(/—W) 516 Co083, (122)
{(e)= (_ CwMLdn §(1-vp) | 2 )
)= K et 3207 NET cow 6 (123)

Assuming n = gf » { = 6N d/2, the argument of this exponential is

of order 5 x 10'8 for TMV. This quite strongly indicates there is no
hydrodynamic alignment which is measurable. The sign of the argu-
ment shows a slight preference to align perpendicular to the field.

Such an alignment would in any case cause the sedimentation coefficient
to decrease, rather than increase, with an increase in field. Itis

thus doubtful, on the basis of this model, that the mechanism for speed
dependence as observed by Hearst and Vinograd has anything to do with

hydrodynamic alignment, at least for TMV.
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VI. Preliminary C.raments on Liquid Crystals

It is well known that TMV solutions in water will separate into
two phases if the concentration becomes high enough. This phenomenon
occurs at about 2% volume fraction of TMV (17). No such phase separa-
tion {s known for DNA, but these comments may throw some light on
the situation anyway.

In the case of TMV at 2% concentration, the two phases are
characterized by different concentrations and different degrees of
alignment for the rod-like molecules. In the more concentrated phase
the particles are seen to be oriented in a specific direction prefer-
entially such that a fair degree of order is exhibited (hence the name
liquid crystal), while the more dilute phase displays long-range angular
isotropy. Onsager was able to explain this on a statistical mechanical
basis, assuming pure repulsive forces of the hard cors type (18).

Now it is clear that if a situation should occur wherein 2 large
number of molecules should line up w!tl?zther and parallel to the
applicd fleld via a liquid crystal mechanism, the change in mobility
factors with direction of motion would cause an observed increase in
sedimentation coefficlent., However, in the systems studied by Hearst
and Vinograd, concentrations of TMV on the order of half a milligram
per milliliter, or about 0. 5 % were used. Thia {8 considerably balow
the concentration level required for the separation of phases; hence it

could be argued that no significant order of the liquid~crystal typs will
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be said about this proaspect shortly.

Even in the absence of liquid crystal formation there s a pos-
sibility of induced order worth considering, notably the excluded volume
effect {(19). In dilute solutons, particles possessing asymmetry have
a slight tendency to assume configurations such that the maximum
allowable volume per particle is achieved. This is due to the increase
of translational entropy with increase of available geometrical volume.
In the case of long rigid rods sach as TMYVY, the relative orientation of
two rods which gives the maximum allowed volume for each is clearly
a parallel one. Therefore, since (as was shown in Section IVD) there
is a slight tendency for each individual rod to align parallel to the

field, given by the distribution function
Ia? g.20 sz,'mzqﬁ) (96)
f(84)=Hetp (“ 2KT

the excluded volume effect will enhance this alignment.
To get the angular distribution function including the excluded
volume effect, it {s convenient to consider the definition of a one«body

angular distribution function (20)

‘F(e $)= Qv\/f ﬁ(/)d(Z) -d (W) ez)qﬂ[ kT] (123)

where N is the total number of particles in the systein, V is the volume,
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d'(1) is the volume element associated with the center of mass of
particle 1, but not its angular coordinates, d{i) i the volume and
orientation element associated with particle i, U is the total potential

energy, and “N is the configurational integral

Quef[d - dw) efp [ 5 ] (12

The potential energy is
/
U= 2. U+ Z U
s
i<j s (125)
where u_. is the interaction energy between particles { and j, and

i
u; is the potential energy due to an external fleld. From equation 96

/ 1'4.)'z

T .
Us = T3> sim Qs (126)

In addition, the approximation of hard core interactions for the uij

are assumed, such that

LY = 0 if particles { and j do not intersect (1272)

Y = oo if particles § and j intersect (127%)

Following Mayer and Mayer (21), define fij
-uij/kT
e =1+ fij (128)

so that equation 123 becomes
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3y
fi(6,4)= ﬁffd ‘“W d2)~dWe s’{‘(/+z £ 129

i<j

By employing the techniques of Mayer's cluster integrals, it

can be shown that this becomes (22, 23)

fee) =K 2.8/ ¢ (130)
/Z?D

where

ﬁ[‘l (1) d(2)--.d(L+) [Z'Trfu] ['%ﬂ e~ %TJ (131)

irredvcible

CD

and K is a normalizing constant. Then, to first order in the particle

concentration,

ﬁ(e) R =]{[V e‘w/(r‘m o ll«/xff fé_“zk;[’z d'wd@ ] (132)

The integral on the right can be evaluated by keeping the angular
variablee fixed and integrating fir st with respect to the spatial vari.

ablea of particle 2, since u, depends only on angular variables.

2
According to the hard core potentiala,

fxz = 0 if particles 1 and 2 do not intersect (133a)

fm = =] if particles 1 and 2 intersect (133b)
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This integral with respect to the coordinates of particls thus repre-
sents the negative of the volume denied by particle 2 to particle 1,
{f their orientations are kept constant. This value, according to

Onsager (18), is

(Zﬂzd P %43)51‘/&7-* [77'(/1" IZWY/) + ZE[M)’),gdZJ (134)

where £ is the length of a rod, d the diameter, vy the angle made by

the long axes of rods 1 and 2, and
2/ 2 1
’ - y s R 2
E(W*Y)*j; (1-sin®y sin?¢ ) 2 d b
The integration over the spatial coordinates of particle 1 just gives a
factor of the total volume. Since f »d, only the maximum term in

equation 134 will be kept, which is led siny. Hence, equation 132

becomes

2 U, .
-F, (@¢)=K\/e‘u‘/ﬂ[1+zd d/s;e‘ fer swyd&'az:) (135)

From equation 96,

Iw" c 2 . 2
N Sim 9,5,14045,

T 2 (136)
w © 2 C 2

u, = 2 Sain” B, Sun ¢2

Using the approximation

e ;;-;}.— T = |- —Z—ﬁ Sim. 9 St ¢ ( )
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the integral is

Tw' . . .
f(“‘ zer S8, Lw?d) siwy da, (138)
£,

The first term is elementary, but the second i3 not a trivial integration.

In Appendix G it is shown to be

fngz S 2P, S ¥ d 1, = 38T_Z(3.-54)u.15, 9,;4,14:,) (139)
‘n“l.

Equation 132 is then

¥:{9/¢):KV(Y" g:k‘;‘,’_thglmz4>' +20%d w* —
(140)

L w? STT‘—'“,QIJC- . 77 de T w™ sint p, %2¢/)
kT & T

In the future ® will hold no interest, so ainzfg- is replaced by its

average value #. Thus,

I * b 1111.&
‘F/(s) :‘KV<I‘ZZ(£)F -+ leJC_Trz _ )3Tr/w/‘7- &

+-awfa(iig>/r+7”1tdc>>
4Lt 4

Normalization glves

(141)
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f (=% [+ 4KT( ﬁ—c@’)

= To® | 20%an? I3T°Lw l de
4KT [6 KT

(eadog)f 2

When numbers are substituted into this expression, it is immediately
seen that the validity of keeping only the first order terms i{n the
concentration is in jeopardy. The reason lies in the fact that at a
concentration of ¥ % by weight, the product of concentration and excluded

volume per pair exceeds unity for TMV,
Zl,zdcn ‘. 1.8 (143)

Keeping this in mind, the previous data for TMV give, at » % by

weight concentration

fite)=z (1+42x10" Gess's-) e

This correction, as it stands, iz unobservable experimentally. The
fact that it is slightly smaller than the intrinsic correction given by

equation 98

7(:, (6) = -é—[/+4.5 XIo’x(?}sz-/)) (98)

undoubtedly reflects the invalidity of using the first order correction

to the concentration, as indicated in equation 143, Before the much
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more difficult task of using higher order terms in the concentration {s
considered, however, it is prudent to reflect if auch a procedure is
justified. The answer is clearly no, since concentration correction
terms to the alignment of order 1 will be neceasary before this mech«

anism will give anything which is experimentally observable. Note
2

]

that the alignment term will always contain the factor 1-5,31-,-— » which
isoff‘order 10.7 + and this then requires the concentration factor itaelf
to be of order 107 for thie result to be observable. It is inconceivable
that a more accurate treatment will give a correction of this size.
Therefore, since at this point the interest is in explaining an experi«

mental phenomenon and not in academic curiosities, this alignment

mechanism will be dropped as a possibility.

VI. Summary and Discussion

The main purpose of this investigation, notably to find a mech-
anism which will cause a field alignment of rod-like molecules of suf~
ficlent magnitude to perceptibly increase the observed sedimentation
coefficient, has been unsuccessful. Hydrodynamic alignment has been
investigated in some detail, and on the basis of the results obtained,
it can probably be ruled out as the origin of the phenomenon. Cne aspect
of entropy alignment, the excluded volume effect in dilute solutions,
was also shown to be insufficient in magnitude to serve as the basic

mechanism.
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Another aspect of an entropy effect which was not considered
here is the formation of small aggregates of aligned molecules. 1If
an aggraegate is formed, it should behave like 2 much larger molecule
and thus feel the aligning effects of the field more. In addition, the
larger size of an aggregate induces faster sedimentation, so if the
formation of aggregates is field-dependent such that the number and
size of these clusters increases with applied tfield, then the sedimenta-
tion coefficient will increase with applied fleld also.

A mechanism for higher stability in a cluster with increasing
field is available. It has been shown that the potential energy of a

rigid rod due to an applied radial fleld is

Tew? _. 2 -zz_I___'-P_f' 2.79
Twem4> 5 Cod (145)

where 19 is the angle made by the rod's long axis and the axis of
rotation. This tends to align the rods perpendicular to the axis of
rotation. The randomizging effect of brownian moton is thus leas ine
tense, which fact leads to a higher stability for the cluster.

There is another interesting aspect to this in its own right.
According to Onsager's theory of liquid crystals (18), the angular dise

tribution function {s given by the solution to the equation

In4m @) = A-/-cfﬂ(a?,&’),f @) de’ (146)
o
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where )\ is a Lagrangian multplier arising from a normalization
condition, and 8 (a,a') is 2 factor having to do with the excluded volume.
The critical concentration occurs when a value of ¢ is reached at which
an angularly anisotropic function f(a) leads to a system of lower free
energy than one which is isotropic at the same concentration. The
inclusion of the potential energy of the radial field leads to an additional

term in this squation

Jn AT @)= A1+ 537 ZKT & pod - /ﬂ(aa) f(a)c/sz (147)

The effect of this on the critical value of ¢ might be of interest and
perhaps should be investigated. It is clear on physical grounds that
the critical value of ¢ will be decreased, but just how much effect the

radial field will have has not as yet been studied.
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APPENDIX A

The integral of interestis

!
57(6)=-cf fdQ"F(GI)HII(O}U’)-F(G')do-’
exclvded V&' L

volume
First, it is noted that the maximum distance apart which the

centers of molecule A and molecule B enjoy within the excluded volume
is 2nb. 1t ie therefore convenient to write the limits of the variable

R from 0 to a value commensurate with given orientations of A, B,

and their relative positions. For this it i3 necessary to have R as
such a functon.

For convenience define

nbo-R . .
cosB = m_":&wQSlw@ W<§‘¢)+Go¢@ cow O

an'R = . / - _ ' /
cosy = th'IR S 6 SMv@ 004(5 ¢’/-+ CO‘@ Co &

——

> be! . . f / /
nbo - nbo’ _ i 8 gin 6’ cow($-¢) + cood Coal
cosd = n2b*oco

Then
Ed L d -
2nb = [nbo + R ~nbo‘”

or

2.2 22 2 2

y 2.2
49n'b =n b e +R $n b

a ‘2+ 2nbo R cosp - 2nbg 'R cosy~ anbzcu' coed
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This ias a quadratic equation in R

R 2, R{2nbocost «2nbo’ cosy)¢n2b202+nzbzc 2 4n2b2~2nab200'cosé = O

K4
Rsnb c'cow‘acosﬁﬂ-cz-c'awxzcosze-m’zcoszy-Zsa'cosib‘cosw&:m'cos% ]

As given here, R depends on 0,9; 8',9" 8,8 ;0 o

The integral of interest then becomes

2T L7 I 2T 17 R .
cfd{/su@ d@fda' d¢' [ su.8'de R’zdR’I(o;o") -Elot) £(&')

A very good approximation to (¢ ') should be the function given in

equation 24 of the text:

M ]!(l)( l) _ A }D(‘/(O" W(y{d.l) } 0
Flo)= ?)N{ p el <sz"’u) @) ) I

Here

F=w?(1-7f) (Zo- nba cssb- R’ cow@+nbo’ cows’)

and

| — =
T (69 = g (1+ &%)

The integral is then explicity
2T , 17 | r2" 7 R
CMw’(IﬂV/’)fd_{; /Mﬁ.‘@d@ da/;¢/%e’d9szdk/ (2, ~nboesed
gTYN A o i Jo /o > °

(/) A
0) =

—Rm@-i-nbo"wG)F(G){ “() 11+6R

é
0 zpw 0
- (Bt Bk eeoy) (B55 - &) } (?>
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Before proceeding further, it is convenient to expand R as a

Taylor series in o'. Define 4 = az + oz coszs ® X. Then

R:nb[(—cmﬂ+ﬁ> +cl<d{wji,wﬂWYL) +

2 [ (4-0*+a*codfB(-I+eon?y) — o (cosfeoay- mé‘)z) +J
+g7 2%

= nb (A+o"8 +c"zC)

Further, to order ¢ 2

nzs nzbz[Az + 2ABo ' + (BZ + 2AC)e ‘?']

3

R = n3h3[A3

2

+ 3ABo '+ 3(Azc +AB" o '2]

Actual evaluation of the integral is now begun. Itis convenient to
integrate with respect to R' first, and to expand the integrand less
the ¢ functions in powers of ¢'. To order a', the integrand is, less
certain terms which obviously vanish,

212 A2 31343 () /)
f(o) {(Zo—nbo‘we)"ﬁA - coo@n-_%ﬁ} S%‘%} (é\z+é,\q'coo@)

It is seen that the variables o', 8', and ¢’ can be integrated out
immediately, and that to this order the form of £f(¢ ') is immaterial.

Thus, the integral is
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2 g
2

s N
3 ~
—~ CM@—"—%"—?—A— } (&, + ¢, Cow ®)

To order oz

szf LkaJ@ Hz(ge fé\a Cn@)

e Stw 8 Coo® Co0 §
fodé-ﬁ%@t{é?(ZO‘ICQc"ﬁ+4—d‘-4’a'mp) @ (oo S5en P

N

1+ Cor * &
o %’Wﬁwscootﬁ
3 . .
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With these results then, the integral to seroc order ine¢'is

M) —@’tb—‘(zo‘nbtw0>(“—‘ﬂré‘iﬂun—flé\i—
31’1”)/\/ 2 3 (s

# LT o g Py nib? 2 2217 s & MA)]
i v-Co&)'/‘ [20 7 Coo’ -z—f-/f é,

)

CszniLl(l-Cf)é,z (Zié\ 32 2 A x4
°v 3
YqN

The next important term after ¢ s 0 '2. A calculation such
as that just demonstrated has been perforned for this case and the
results indicate that this contribution is quite negligible (about 1%)
compared to the @ '° contribution. It and higher terms {n o' will be
neglected, as will small terms in the @ 1@ part. Thus, the velocity

perturbation is approximately

1/ _5p) A v 33 /o
& Zoemuwrdb (o) g | emuwrnPh o'(/vP)( &e?+_£e)
3 %% EnwN

or, since 2nb = £,

€a

Zo CszfZ/‘ + CM wz.f? [
39N E# 9N
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To scale this down aas was mentioned in the text, multiply by 34d/4¢£.
Also, since the Qr terms doc not give any contribution to phyasical

observables, they are. neglected, and the velocity perturbation becomes

> cMwRIU-TP) 30 of
Ve s T ( A ¢ )
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APPENDIX B

The integral desired is

“”“’“‘Jf’)ﬁf &-@d@faaﬁ St Jo 'cl,e (Zo-nbocoss
?Trf)N

~R'too ® + nbe Caoo)%( ){«ym(«) @+ A

@y

A A ’ Gl ©
(8 b)) ] (2]

Q) n®qy /

Since L does not depend on any variables also integrated over, the

angular parts can be done first. Thus, the integral becomes

L

cMw?(1-V9) (%o*“b"’wa) f gw@c{@ RAR (1+ G+ ®)
gmwnNV 0

Since thic {3 the same integral as in equation 114, the resultis

- Csz(l—Uf’)( Zo-n boe cows)a ™

™
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APPENDIX ©
The integral of interest is

3o w
/(J ¢,_f§(;—~9v46|- Senn ¥ ;«;«.z‘&;;‘f.‘“t¢l— = d¢1/530~91401 (Qj e{)
(2]

7

[]
where
A A . A . . A
e, =e, W-'cho“@L-(’e:’ $ev b S p, + €2Co0I,
p B
=
»
v
~>
Va
!
l |
i |
|
- —
~a ! |
\\l :
N\ T~ i
\ oo~
\
7( \ )
(
(
N

It is eonvenient to transform to a new coordinate
system whose g axis 1s along Ty and to express :, in terms
of this ocoordinate system. The transformation matrix is

the same as equation 15 of the text.

cos P, oco0s ¢, - 8in ¢, 8in 9, cos ?(
bodls cos 8, sin o, cos ¢, sin g sin ¢

- 8in O, 0 eos 8,
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Therefore,
Gx cos8, cos¥, = 8ine¢ s8ine. cosy, :x!
(0 10) ﬁy =(0 1 0) /coss, 8in ¢, cos8 ¢, 8inse sine, '6,,
., - 8ino, 0 cos 8. (R
or
Gy = (cos & sin @, cos ¢, s8iné, siny )
and

oo = cos o, sin® sin ¥ cos X + cos ¢, sin?Y sin X
b 1’2 ¢
+ lin&: 'in‘Pl OO’X

2T —n- a2
fd YL sin? y ay (Qy- Srz)zz '}:‘(3 - 8inp, nin2<p,)
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PROPOSITION I

A new method of handling chronopotentiometric data by the
method of least squares is proposed.

In the theory of totally irreveraible chronopotentiometric pro~

cesses, the equation relating the various parameters is (1)

‘\@-] (1)

% nFC® an

0

Eomf—‘

where E = voltage
o = transfer coefficient
n_ = number of electrons transferred in rate-determining

step

[
L

current density
F = Faraday
C°®= concentration of material in solution reacting at the
elactrode
o
Kk = rate constant
fuon
t = time

v = time at which reacting component iz used up at the

electrode surface.

Experimentally, the measured quantities are E and t. A
characteristic of the recording apparatus is that t {s more accurately

measured than E, From the experimentally produced data, the
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parameters in the equations are adjusted to fit the data as well as
possible, and are thus considered to be determined. This is usually
done graphically by fiddling with /% until a sensibly linear plot is
obtained for E versus In(l 4+ (t/F); the slope gives RT/on F and
the intercept (RT/an_F) ln(nFcoko /i).
a fn’ o
A scheme is developed here which points out the feasibility
of accomplishing this more accurately by computer methods, using
& least squares technique.
Define
y=E
a=RT/an_F
a
b= 1/ /" (2)
' 0, o
c= (RT/rfmaF) 1In(nFC kfn“o)

x =/t

Then

y=aln(l +bx) +c (3)

Suppose there are n pleces of experimental data. It is desired
to compute from these data the quantities a, b, and ¢ such that the
principle of least squares is satisfied.

Define

Aiuyi-aln(l-tbxi)-c (4)

where the experimental gquantities v; and x, are used in this evaluation
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of Ai. The least squares condition is

JL Al _ 9zral (218 _

Jda ab dc

or

_9_;__4_‘:7:;_ A Ln(14+bx;) =0
da B ZZ ) *

or s; _ axXi  _,
2 b ) ZZA Trbx:

PR
27:132 - AzZA‘. = 0
c

These conditions lead immediately to

Z‘j;ﬂm(wh:)‘:a Z JL: (1465 +c Z L (t4bxs)

CX. - by.) K
299 - azhﬂm(l‘f +CZ X
I+by; (+by; {+bx/

Z‘jc = QZ I (14 bx:) + mc

For conciseness of notation, define the following quantities

(s)

(6a)

(6b)

(6c)

(7a)

(7v)

(7c)
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o=l lnz(l i-bxi)

vy =% ln(l+bxi)

1<|>bxi
L 1Y xl
1<Mmi
3 v xiln(l-fbx‘)
1 +bx

i
=§3yiln(l+bxi)

»

Qlfyi

Then equations 7 become

ay +cy =)\ (8a)
af +cp =¢ (8b)
ay +¢cn = 0 (8c)

If 8b and 8c are solved for a and ¢, the results are

n€ - pe

A = ng- SY (%9a)
£ - ¥s

C = ng- S¥ (9%)

When these quantities are substituted into equation 8a, the resultis

d(“g-(.O.)+X(/9D—Y§)—-A(hp_(x)-;_o (10)
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Equation 10 is an implicit transcendental expression for the parameter
b, which equation can be solved. The most convenient way is by com-
puter technigques.

For computation, a more convenient form of equation 10 is

ZZ xn’fnbaw“-" [Lj,‘x,,z L+ bX:) =Y. B (14 bx)
K

¢

(11)
2 (L Cedbra) - Ll inby)) + 2 (y.-—:m}

Using this form of the equation determining b, the tendency to
accumulate very large numbers and then take differences is somewhat
midgated. A trial calculation carried out indicated that numbers with
fourteen necessary significant figures may be involved unless the
summation order suggested by equation 11 is used. Once b has been
determined by solving equation 11, a and c are easily computed via
9a and 9b.

A program to solve equation 11 and to compute 2 and ¢ has
been written for the Burroughs 220 computer. Several trial calculations

have been performed with quite reasonable results.
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PROPOSITION 11
A table of associated Legendre polynomials expressed as the

unassociated Legendre polynomials is presented. In this form cer-

tain integrals which arise involving Legendre polynomials are easier

to evaluate when a table such as this is available.
As an example of the simplifications intended, the following

- {5 considered. z

y 4

27 i, _Jli__Ez RS,
((+t‘-2tis)’”"L F(Ig+% heo

-]
where the T;(z) are Gegenbauer polynomials, can be derived the

following expressions:

m L'm(¢A
[ ?l - *’sZZ (;{fm,l), P(msﬁ)P(coaes)e

o M=z=-%

~45)
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o® n
L, ZZZ (;’»_v_)"" m (n-m)! P (e Pulovos) simwm( $p-tg)
]v,,—ng ;f?_ \(] (n+m) ! Som 84 Sen Oy Tim (u - dg)

nz;y m=/

The first formula is fairly well known, the second possibly not so

. < . > i
much so. Here T, < Ty if ¥\ Tho the positions of T and *B

in the formulae are to be interchanged.

The usafulness of the tadble presented occurs in integrals with

- - -3
'rA ~rB[

consider the integral

7’ m Coo0g
qube fsduasdsa =5
(-4 o lYﬁ—f‘]

as a factor {n the integrand. As a specific example,

The Pp integration gives 2n 6 ::d ,» and it is immediataly apparent

that the situation is complicated compared to an integral involving

=
-

B‘ -1 » . where the only contribution is m = 0,

Since cose = P‘; (cosd), the integral becomes

EN

0dd

oo n "
- { m
41 Va "' m(n-m): P (coe 04) o w
Vs ZZ(‘@) (n+ym)l Sim G4 g"‘ P o(casy) P (wssa) deg
]

n=/ ms=i

Now since m is odd, n must be even or the integral vanishes because
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for n odd and m odd the integrand is an odd function about /2. '
The table gives odd i entries as a product of sin® and a sum of
Legendre polynomials, so the factor sinf i3 restored to the integrand
and allows use of the orthogonal properties of Lisgendre polynomials.

The purpose of the example i3 to show how interest in the table
may ariu‘. and now that this has been done, the evaluation will be
taken no further. It is clear that an infinite series i{s involved, and
the terms are much easier to compute when the P‘; (cos®) projections
on the P:‘ (cos®) are known.

The table gives values from n =1 to n = 10. All entries have
baen double-checked for accuracy. They were calculated by fitting
the highest power of cosé in Pr(cose) to the highest power of cos8
in the Pn(coae ) or the Pn_l(coae). depending on whether m happened

to be even or odd. Then the next highest power of cosd was fit, and

80 On.

0
Fo®Po

0

PP

1

Pla 8ind Po
0
plsp

2" %2

1
P, * sind (3P
2

Py ® -2P, + 2P
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sind (1320P_ . 3696P_ + 2376P

5 3 1)
-720F

pg =Py

P; = sin® (5P2 + PO)

pi = -6P, + 6P,

Pi = sing (109, + 10P )

Pz =P,

P; = 3in® (71’93 + 3P1)

pi = -12P, 4 10P, + 2P

p’i = sin (-42P_ + 42P )

p: = 24P, - 80P, + 567

pg =Py

P; = sin® (9?4 + 5P, + po)

Pg = -20P_ + 14P, + 6P,

P] = oind (-108P_ + 52P, + 56P )

P‘; = 120P - 336P, 4+ 216P

P: = gind (21613'4 - 720P2 + 504P0)

P: = P6

P, = sing (11P, + 7P, + 3P))

Pz = -30P, + 18P, + 10P, + 2P,
Z= sine (-220P_ + 112P, + 108P))
2 = 360P, - B64P, + 360P, + 144P
5
6
6
6

+ 3888I~"4 - 7920?2 + 4752P

6 0
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= P7

= sfinb (13P6 + 9P4 + 5?2 + Po)

= -42P_ + 22P_ + 14P ¢ 6P|

® #in® (-390?6 + 126194 + zmpz + 54PO)

= B40P_ - 1760P, + 392P + 528P)

= aiﬁe (46801’96 - “0“’134 + 3960P2 + 2376?0)

= -5040P, + 23760P_ - 39312P, + 20592P,

= sind (-9360?6 +50544P , - 102960P, + 61776?0)
o P8

= sin® (15?7 + 1P+ TP, + 3P))

= -56P  + 2P, + 18P, + 10P, + 2P

= gin® (-630P7 + llOPs + 322P3 + 198?1)

= 1680P8 - 3120P, + 216P  + 960P, + 264P,

= gind (1.%001:'7 - 25080P, + 2184P, + 102%?1)

-20160P _ + 84240P, - 112?521"4 + 28080P_ 4+ 20592P

8 6 2

8in® (--”IS(:OOP,7 + 1029600P5 - 1262880P_, + 308880P

3

40320P _ - 299520P, + 933120P, - 1497600P + 823680P

8 6 4 2
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P =P

9
sin® (17P

0
#

+ 13P6+9P4+5P +Po)

8 2

-723?9 + 30P7 L 4 ZZPS + 14P3 + 6Pl

sind (-952P + 43«".1?(1 + 380?2 + 88?0)

U

il

8 + Zu’.l"6

= 3024239 - 5040?’7 - 264?5 + 1344133 + 936?1

sin® (28560P; - 48360F - 7344P, + 20280P, + 68647 )

-60480?’9 + 22.6800?7 - 245520135 - 50-4015'3 + 84241(31’l

sin® (-342720?8 + 1422?20P6 - 1866240P4 + 374400?2

= 362880}"9 - Z419200P7 + 6462720P5 - 8225280P3 + 3818880?1

+ 15863040}"4— 25459200PZ+ 1400256090)

U

0

0

+ 41 1840P°)

P

0
COOVOOVNOOCL VWL OWONY ~0O

sin@ (685440P _~5091840P

8 6

0
Fi1o® Pio

Pl = sin8 (19P_ + 1.-3237 + 11?5 +7P_+ 3p1)

9 3

PIO. -90Pl° + 34P8 + 26P6 + 18P4 + l.(!F-‘2 + ZPO

PT = sin®(~1368P_ - 60P7 + 5‘?.8P‘3 + 588P_ + 312?1)

9 3

Ploﬂ 5040?10 - 7616?8 - 1144P6 + 1584i="4 + 1720P

" 8408 (57456P
6
P o® -151200P, + 5140809

-
P 10> 8in® (-1.14‘712'.0P9 5
8

P 10" 1814&00?10- 109 67040?84- 25309440?6- 2467 5840194') 3427 ZOOPZ +

+ 5091840?0

o* sing (6894720P9- 4596480013;” 122791680P5- 156280320]?3 +

+ 725587209 1
10

P 10° -3628800?104' 3427 ZOOOPB- 1422'?2000P6+ 334886400P4- 465120000P2+

+ 24186240()?0

2 + 416?0

- 83160?7 - 30096?5 + Z7720P3 + 28080Pl)

8" 449280?6- 12’.0960P4+ 151200?2# 56160?0

+ 4233600P7 - 4308480P _~ 685440?,4' 19094401?1)

9
P
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27
sinm ($2-61) 7((451) dqu

o) s (b -4
odd
! 27 Sm
3in2m ! odd 2!
’2 im + 252, S,
2 t dd >
T vam cost, 5
. Qven 20
sing , 2T Sem b, S,
even 70
COStgtz Zﬂw¢‘ Sm
. dd >
sinapzcompz 217 S“"“fi’, Cou d, S:
sin’p _cose T coo 52 2 ol 2 even> 2
T Z 2 p3 t m + ’\TS“., é W( Sﬂ’

even 2?2

m

. 2 ™ o 2 .
smq:zcos 9, 7 Sime, S”v"‘zﬁ Sim b, Cosd b S

. g .
sinstp 2 = Sim &, o + 21T 53 $ S 7
3 2
) even DL
cos BI?_C,,¢,§,m +1Tcoadq §,,
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PROPOSITION 111

There are two parts to this proposition; both are concerned
with the change of viscosity of solutions of long flexible molecules
with rate of shear. It is first proposed that Kirkwood's theory of
viscosity be applied to flexible molecules which are juat beginning
to deform, and secondly, it is proposed that the radius of gyration of
random coil molecules can be related to the rate of shear by uaing

viecosity versus shear rate data for DNA.

Part]

There exist no theoretical predictions concerning the de-
pendence of viscosity on shear rate for macromolecular solutions
except for the case of ellipsoidal molecules (1, 2) and infinitely long
rods (3). A formal theory has been dsveloped by Kirkwood (4) which
is powerful enough to handle systems with molecules of any shape,
but mathematical complexity has so far discburagod any application
other than to rigid-rod typc rnolecules.

Zimm a'md Crothers (5) have measured the change of viscosity
of DNA solutions with rate of shear, and came up with results which
look qualitatively like the results predicted by Scherega (2) for rigid
ellipsoids. Both display zero slope for viscosity as a function of

sheay rate at zero shear.
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The mechanism of viscosity versus shear rate in the case of
rigid-rod type molecules is the tendancy of the shear to align the
molecules parallel to the flow lines, which alignment decreases the
effective viscosity. The reason the viscosity decreases steadily
versus increasing shear rate is the counterbalancing randomising
effect of brownian motion, which becomes less intense as more torque
is applied.

The mechanism of viscosity variation with shear rate in DNA
solutions is probably much different, for DNA is by no means a rigid
molecule. It possesses rod-like characteristics, but is rather long
and flexible. Professor S. G. Mason and coworkers have performed
measurements on long flexible rayon fibaers and have observed their
physical behavior as a function of rate of shear {6,7). Long flexible
filarnents were noted to form ''snake turns,'' "S<turns,’ and coils.
Geometrically the simplest of these is the snake turn.

An application of Kirkwood's theory to snake turns approximated
a9 ellipses looks difficult but feasible. It should be of interest as a
firset step toward understanding the behavior of flexible molecules
such as DNA under shear. From Mason's measurements the diameter
of a snake turn decreases as the rate of shear increases, which change
will have an effect on the viscosity. The necessary relationships for
this model will now be set up and the Kirkwood-Riseman equation

written down.
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The esaential approximations, aside from those inherent in
the Kirkwood theory, are

1. The particles will be treated as ellipses with 2n + 1 hydro«
dynamic elements a distance b apart, and each possessing the same
{riction factor { . Mason's measurements show that this approxima-
tion may not be too bad as an average non-linear configuration.

2. The effect of brownian motion will be neglected. Including
brownian motion would make an already complicated mathematical
problem prohibitively difficult. DNA molecules are anyway quite
large, though not as large as rayon fibers, and the diffusion constants
are cqrreapondingly quite small in comparison with smaller systems
such as TMV or other molecules manifesting rigid-rod characteristics.

Consider the following situation

9
—_—
X
2 ——
The arrows denote the direction of laminar motion of fluid. The fluid
velocity is
vx scy

The dissipation of energy is T\oe'z 2 (4). If a macromolecular
particle is introduced whose center of mass is at the origin of the

coordinate system, the dissipation of energy increases to some new
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value N« 2 . 1f the moleculs has 2a+ 1 hydrodynamic elements, each
with a characteristic friction factor { , the increase of energy dis-

sipation is given by (4)

(7-7.) € _§<E 0 )

where %l ia the force which the tth particle exerts on the fluid, and

° = E (Rj. ey) eX (Z)
where i: is the vector from the centar of mass of the particle to
elament £.

Substitution of 2 into 1 gives

(n-7.)e" = 6‘2 (- 8 )(R; -2y) (3)

i=

Hence

WAL 6' Y (P &) (Ri &) C,{G (4)

7" o L=-n

where GG 1s clearly
G =) (Fi &)(R%) (s)

This gives the increase in specific visgosity for one particle,

or equivalently the intrinsic viscosity when the concentration is
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expressed in number of particles per unit volume. Since the concen-
tration usually used in intrinsic viscosity is grams solute per 100
grams solvent,

n-n. _ NC G'
T JooM Y}o (6)

M]= Lim

¢ »o ¢ )7°
This is the relationship used in Kirkwood's theory.

1£7N] isa function of rate of shear, s, then

) = A0 EG) (7
[;7«)] N s (o) G (o)

This is the relationship of interest in the study of shear dependencs.

The model is an ellipse whose circumference is L.

?_1-( Ot 5 ,

‘<, ‘n n L . " :
The location of the beads is
2 2 2 2.2

2
c %, +dy£ =z ¢ d (8)

The circumierence is

L=4d [oz(t—sim*cpw‘a)":&. = 4d E (scnp) (9)
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where E(x) is the complete elliptic integral of the second kind, and
cosy = ¢/d. dand ¢ are thus not independent, but are related by
equation 9,

Since brownian motion will be neglected, the hydrodynamic
torques will be zero if the loop rotates such that the velocity of the

particle, O, located at (O,¢,C) is

— ex — ex 10
u'.° T C4d € [+ Ccoo P (10)

Kach element, of course, has the same speed, given by the absolute

value of 10, The velocity of other elements is

_(I‘-_- CJG ’éx Jt‘jl +’€\5 CzX.Q (ll)
dre (c4xi +d*¥927) ™"

| decew? B [iigr + &ycovpXa
(t Coa (d"r S,i,.}nf)(;)\/a.

The forces F necessary to determine the quantity G are

1

derived from the egquation

Fo: C-t0-CL s F ta

The signs differ from Kirkwood's equation because of a slightly dif-

ferent convention in defining the F,. The Oseen tensor here is

’



T, = = - (13)
= |Rs - R |
where
7~ - ey, »} A A
© 00" RO T (e ,x) 8 +ly -y)e) (19
.ﬁs"ﬁ!
Further

IR =R A\x, - %) - (v, - v))° (15)

The coordinate x! is determined from the condition

. ~ifXa
Sin (5,

Lb= (12 sinpsin?e)ds = E(S*"“(‘E"‘)o‘f’) (16)

where E(y,z) is the incompletq elliptic integral of the second kind.

The necesasary relationships for determining the -E:"l as functions
of d have been presented. The solution of equation 12 i{s feasible but
obviously not simple.

It {s now necessary to relate the rate of shear to the quantity d.
Once this i3 done, the viscosity as a function of rate of shear can be
calculated {rom equation é. The relationship between d and the rate

of shear is established by balancing the components of the ¥ per~

J
pendicular to the elliptical perimeter and the forces arising from the
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tendency of the ellipse to revert to a circle, which can be calculated

by knowing the bending moment per unit length of the molecule.

Part I

If it {s assumed that the DNA molecule has the configuration
of a random coil above shear rates of about 0.5 secd. the data
relating shear rate and specific viscosity advanced by Zimm and
Crothers (5) can be used along with the viscosity theory of Kirkwood
for random coil molecules to relate the average radius of gyration
of a DNA molecule to shear rate.

According to Forgacs and Mason (7), very long flexible thread-
like molecules tend to coll into knots upon application of shear. This
leads to the conclusion that DNA molecules perhaps coil into tight
knots on application of shear, with the tightness related to the mag-~
nitude of the shear. The data of Zimm demonstrate that the viscoaity
of DNA 3uspension.s decreases with shear rate increase, so the above
conclusion is at least not unreadsonable.

According to Kirkwood and Riseman (8), the intrinsic vi scoasity

for a random coil molecule is given by

R F(r, 2%)
L-Y)] ) 3600m,Me z ’ (1)

where N = Avogadro's number

{ = friction constant for a monomeric unit on the coil
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N = viscosity of medium
M = molecular weight of monomeric unit

Z = total number of monomeric units = M/Mo

xoﬂcl(’oﬂ) np
v o)
6 1 \
F(x) 2 = -5
() ol 2:1 k% 1+ /K

For large Z, the following relationship holds

Lomk )\, 2¥ F(A,2%) =(.58¢ (2)

A, 2T >

The radius of gyration of a random coil molecule is (9)

rg = bza’ | (3)

Combining 1, 2, and 3 gives

L
.58 N (bw3)* 3
En ] ol | 36i0/‘/\ Yj (4)

The important thing here is that the intrinsic viscosity is proportional
to 3. Thus, log (1] shouid vary with log rz the same as with

log ‘h:;) /ﬂg:) » which is the quantity given by Zimm and Crothers

as a function of shear rate.

It {8 now assumed that

rls) =s7r (5) (5)

in the range of interest, which, according to Zimm and Crothers'
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data, lies between shear rﬁteu of about 0.5 ste(:"l and some un~
specified upper limit greater ‘than 18.3 sec'l. The relationship
defined clearly cannot hold as thé shear rate vanishes, and this is
the reason rg(s) is introduced, which is the radius of gyration at the
bend of the viscosity versus shear rate curve, which is presumed to
lie at the beginning of the range of validity.

A plot of log 'ﬂi:)) /n(:;) versus log s is given on the graph.
The line connecting the points is remarkably straight and thus in-
dicates that the assumption of the type of dependence of the radius
of gyration on shear rate is valid in this region. The slope of this

line {8 about ~1/5, Hence,
log M1 = constant + log r:(s)
= constant + 3 log rz(s) + 3mlog s (6)
or, as just stated,

3m = .1/5

m= «1/15
Therefore,
r (s) = 15, (s) (7)
g g
From the looks of Ziram and Crothers’ graph, a good value

of rg(s) is the radius of gyration at zero shear, which can be deter~

mined from viscosity data and the formula of Kirkwood and Riseman.
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It might be pointed out that an error was discovered in the
work of Kirkwood and Riseman (9). When it was investigated, these
authors were unable to immediately predict the magnitude of its
correction. Their beat guess was that it would alter somewhat the
numerical constants. The original theory agreed excellently with
experiments on polystyrene. In any event, changing the numerical
constants will not alter equation 7, but may rmake rg(S) somewhat {11~

defined.
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PROPOSITION IV

A method of calculating fluid velocity perturbations due to
a small sphere moving perpendicularly between two infinite plane
horizontal walle is presented. The sphere {s approximated by a point
force.

Consaider a pair of parallel planes extending infinitely in the
x and y directions and separated by a distance 2b. Define the s axis
perpendicular to the planes, with the origin exactly halfway between
them. The space between the planes is filled with a viscous fluid

of viscoaity 1|, and the fluid is at rest.

2 = +b

— —
£

z = =b

Introduce at the point 2 = £, x =y =2 0 a point force -E.‘ operate

ing in the +2 direction.

z2 = +b

+— O ~—of
4
-

2 = «b
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The components of induced velocity will now be derived.

The solution for the case of one plane was given by Lorentz (1),

by noticing that if the quantities vx( 1).

vy(l), vz( l). satisfy the hydro-~

dynamic equations, so do the guantities

gy (D

vx(z) = -»vx(l)- 2(z + ) an

(2) (1)

v 2oy e 2(a ¢+ a)

y y oy

gy (1)

v (2), v “)- 2z + o)

| oz

o, (1

S ———

+ (s + u)z VZ vx(l) (1a)
+(z+a)z v?. vy(l) (1b)
+(z+a)2 Vzv (1) (1c)

In the case of two planes, it is possible to build up a series

of images, in the spirit of electrostatic potential theory, to satisfy

the boundary condition V=0 at & = +b and z # «=b, However, as might

be expected, since the functions to be added onto the original infinite

medium solution are vector functions, things are considerably more

complicated than {n electrostatic potential theory.

Itis clear that the image forces are to be installed as follows:

etc

§ tot-d g «8b -1

$ ~t-+ 6b + 2

$ 4+t 6b - 1

$ -+ 4b + £

¢ * 2b - ¢#

1

¢ - -(2b + 1)
$ +- ~(4b - 1)
§ -+~ -(6b + £)
$ +-t- -(8b - 1)

atc
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The queation now is how to transform the infinite medium solutions
for these images in order to satisfy the boundary conditons.

The images are located at the points (0,0, 'i)’ where the 8,
are given in the column to the right of the image dlagram. The + and »
notation by the arrows refers to which image is under consideration.
For example, -refers to the image of the real force across the nega~
tive, or & = b, plane. ¢ carries the analogous meaning across the
positive, or 8 = +4b, plane. ++- means similarly the image of the
image - across the positive plane. The same rules apply for the
images +=+, «t-; <tod, +eba} etc.

The components of velocity which are induced by a point force

in the +z direction acting at the origin of an infinite medium are

F xz
£ 3Z
Uy = g y3 (2b)
_F (,.L + j—i)
Ug = gm LYy  v? (2¢)

These may also be written

£ /(- 9‘)
U‘x:}‘{;}( oxoz )Y (3a)

£ 22
vy= gmn (7 9392>Y (3v)
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e

(3 )

Vg = gmn lox* 932 (3¢)
where rz-x2+yz#'aztpz+a2.
In the particular case of 2 point force at s = £, these become
E [ 22y
Ux = 977 ('QXJZ ° (4a)
2
o = (~ 9 )n (4b)
LR dyoz
F_ /2™ 91)
Vz = 2mrp { Jx™ +9j‘ Ve (4c)

where rol\/;a2+(z~l)2.

It becomes particularly advantageous to work with the undif-
ferentiated quantity r, since the modifications of the infinite field
solutions for the images can be done with this parameter, leaving
the differential operators unchanged.

It is now convenient to define the matrix R{«o)

~\+ (2+x)2 g o —2[z+¢)%
R(-o) "J o [+ (240" VP —2 (2+e) 525 >

>
o o [+ 2 (Z+e)3 2 +(Z+at) T
{ )

(5)
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and the column matrix

( 52 \
- dxOZ
ﬁ = < - 9?:;: > (6)
A 2* 2%
Ixz 9J’~
\ /

so that equations 1 become

-* (. F -
GV < g RE % v )

In terms of the quantities R and * » the velocities induced

by the images + and - are

e
D 1) R (k) K 'r (8a)

4

- = xv'z B»( L) %\[ (8b)

The requirements on these, namely that ;+ exactly cancel the effects
from the real force at z = +b, and that Vo exactly cancel the effects
from the real force at & = -b, are clearly satisfied.

The velocities arising from the images ++- and ~+ are derived
by double use of the matrix operator R. The reasults are

T ?ﬁ;? R [b) -§(~3'°) D (9a)

AN P g

U—-+:§£‘ () R(SL) % Vot (9%)
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The non-obviocus part here is that the argument of the first modificaton
operator R is ¢3b. That this is indeed the case can be most easily
demonstrated by direct substitution and verifying that v exactly

cancels v+ at 3 = -b, and that v"" exactly cancels v  ats = 4b,

Similarly,
F-r = ’”'I R(b)-R(36).R(sh)- ig’n . (10a)
et o= - 5o ? R(—b) R(-sb) P(—sb) g(_+_ (10m)

The 3 components of some of the images are, less the factor -55--“

@-g)
o | {5 53

' z ~ b
v | {70+ (2-2b+4) 2 (@-p)b L) (“3 (a_u,ﬂ))}

Y.‘. 3 h Y+3 Y+ b

(11)

2
ol A (Bezbe)T 2(2b)(btt) (z+rbel) )}
i\( +——Y—§—“"" t+ " y.3 [=3 —=

{_L . 2+4b-R)* 4 (zeabA) Z+4b-0)°
3 (( - 35— )

Ve Vi- T Yi-

gb(zﬂ)(zwb—l)(é—ﬁ) (2-4-46 -4) 7}
2L (9-15Eetetl)
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In general, the total velocity is given by

o0 Mg N
+Z([Tf R s +2‘“v+1)] W (£ (2oapubp)t)

[’]/:[/'z R(-/uiwzb /)] g(fﬂ&ﬂﬂb‘ﬂ)‘)i)

(o M
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PROPOSITION V

Criticisms of a paper (1) concerning the concentration de~
pendence of friction factors of random coil molecules are presented.
These comments should be of importance since concentration-dependent
friction factors for macromolecules are not well understood theoretic-
ally (2). 3pecifically, it will be shown that although Yamakawa's results
regarding flexible molecules are probably valid, the basic theory which
led to the relationship used to calculate these results {s highly question=
able. A more satisfactory basis for the results is presented.

The friction factor which Yamakawa presents is that one relative
to the macroscopic average velocity of the fluid with respect to the
laboratory. Of course, for sucha éase no infinities arise, but there
is no interest in this friction constant unless the average velocity with
respect to the laboratory is known. The Stokes theory which Yamekawa
uses will predict infinity for this velocity; however, since such is not
the case physically, Yamakawa implicitly assumes that this velocity
is zero. Such an assumption i3 not very enlightening physically.

To see why Yamakawa's equation 14

n -~ a2 , " Vi
SF2) =58 -5 i Foe s L 2 Kty <701 (77
{:ﬁ, ~ ,;; Jzi
§s valid if u is defined as the velocity of the center of maes of the

macromolecule with respect to the laboratory, rather than the fluid, it
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is only necessary to develop the ideas presented in the text of the
thesis concerning coucentration-dependent phenomena. There it was
found that the sifects with respect to the laboratory at the site of one
molecule due to all the other molecules was of the form

cj‘ E . -g‘ dv

volume
allowed

where T was some appropriate Oseen tensor (not the infinite medium
tensor used by Yamakawa). For both types of Csecen tensor considered
(rigid wall and hypothetical concentric spherc), this integral has the

properties

» » >
I-F—JV'-'-C IFJV + c —r-p' c{y 2 0
e

xc‘uad Volume
velom e allow ed

The Osean tensor actually used by Yamakawa is (equation 21)

[g®R) - 1] T (w)

where g(f{) is the radial distribution function and T(w) is the infinite
medium Oseen tensor. Now if g(ﬁ) is unity except in the excluded

volume where it is zero, we get

»
(3(;)-/) Tcee) - £ dy - . Cf'r’:gw). "F dv
Tov AL excluded

VeLumE ' volome
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where in both integrals infinite medium Cseen tensors are used. In

the general case when g(ﬁ) is a more reallistic radial distribution func-

tion, we have fir sﬂy

» >
ox cfr.r: dv +cf3(Z)I-FJv—ch3(;)—,] T.F du
excluded allowed ollow ed -

valume volume volume

Now in the region where {g(_ﬁ) -1 is nonzero, T=x T(wm), so that

- ks 4 o~
c{%(u TF v = cf[5ch-] T o) Fodv-c 1.F dv = cl(fa(z)-,]_r(m o

s pl il T,
which is Yamakawa's result.
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