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Abstract

A recently proposed model for non-Fickian diffusion of penetrants into polymers
is adapted and used to study a drug-delivery problem. The model modifies Fick’s
diffusion equation by the addition of stress-induced flux and a bimolecular reaction
term. A stress evolution equation incorporating aspects of the Maxwell and Kelvin-
Voigt viscoelastic stress models completes the model. The diffusivity and relaxation
time in the polymer are taken as functions of the penetrant concentration.

The system is first studied on a doubly infinite domain under the assumption
that the penetrant’s saturation concentration is small. When the diffusivity and
relaxation time are taken to be constant, a perturbation analysis is used to show
the form and the region of stability of traveling-wave solutions. When the diffusivity
and relaxation time are taken as specified functions of the concentration, the shapes
of traveling-wave solutions are predicted by perturbation analysis and found to be
different when the equations are diffusion-driven than when they are stress-driven.
The predictions are verified by numerical integration for specified parameter values.

The system is also studied on a finite domain under the assumption that the
diffusivity is large. A perturbation analysis is used to demonstrate that the con-
centration and stress evolve according to a Fickian diffusion equation on a short
time scale. After longer time has elapsed, the concentration and stress are shown
to exhibit steep fronts in a narrow region within the domain. These predictions are
verified numerically. Finally, the equations are studied in the steady state and are
found to predict the evolution of shocks.

Work done on Fisher’s equation is presented in an appendix. When the diffusivity
is taken in the same nonlinear form as was used in the polymer-penetrant model,
a qualitatively new solution of Fisher’s equation is found, using a method which is

also applied to the polymer-penetrant system.
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Chapter 1

Introduction

Systems in which molecules diffuse through polymers exhibit interesting and var-
ied behavior. In many cases, the evolution of these systems cannot be described

accurately by Fick’s familiar diffusion equation,

ac
57 =V-(DVC).

Since growing numbers of real-world uses for non-Fickian systems are being found
[1,7,8,12], understanding these non-Fickian systems is increasingly important. To
study such a system, one must first determine what physical mechanisms are causing
its non-Fickian behavior. One then designs a mathematical model incorporating the
physical mechanisms, and uses analytical and numerical methods to examine the
model.

One area in which polymer-penetrant systems have been and continue to be
used is that of controlled delivery of drugs therapeutic to humans [17]. Such sys-
tems, in which a specified amount of the drug diffuses through a polymer into the
bloodstream, have great advantages over the more common drug-delivery systems.
Controlled-delivery systems allow the optimum concentration of the drug to circu-
late through the body for a long period of time, while pills and injections release a

burst of medicine when they are swallowed or injected, followed by a rapid drop-off
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in concentration. In this thesis, we will study a set of equations that model some of

the principal characteristics of polymer-penetrant drug-delivery systems.

1.1 Derivation of Equations

If we let C(X,T) be the concentration of a given substance in a medium at position

X and time T, then the flux J at X is
J(X,TY=-DVC, (1.1)

where D is the diffusivity of the substance in the medium. This flux is balanced by

the change in concentration in time,

aC
S7=-V-iL

If we combine these two equations, we find a single equation for C(X,T):

ac
57 = V- (DVC). (1.2)

Equation (1.2), known as Fick’s diffusion equation, is based on the postulate that
the flux is simply proportional to the concentration gradient, as in (1.1). Systems
described by equation (1.2) are called Fickian systems, and equation (1.2) provides
an accurate description of a system if the medium itself offers no encouragement or
impediment to the diffusing substance. In the case when the medium is a polymer
with a complicated internal structure of twisting channels, equation (1.2) may no
longer be accurate [1,7,8,12,22,23]. Many polymer-penetrant drug-delivery systems
exhibit non-Fickian behavior [17], so we must alter equation (1.2) in order to better
describe these systems.

Thomas and Windle [22,23] have made the fundamental observation that in many

polymer-penetrant systems, especially at or near the glass transition, the diffusive



process is coupled to a mechanical viscoelastic response. Based on this observation,
a mathematical model has been proposed by Cohen, Cox, and White [4,5,6]. We
adopt that model here, with appropria,té modifications for our problem. A brief
presentation of their model follows.

As penetrant molecules crowd into a section of the polymer, they exert ﬁressure
at various sites, and penetrant is pushed toward less-crowded areas of the polymer.
The effect of this stress-induced flux is to modify the Fickian flux (1.1), so that the

total flux J becomes

J = --(DCX + de). (1.3)

Here o > 0 is the viscoelastic stress and E is a viscoelasticity coefficient. A subscript
is used to denote partial differentiation. Both D and E can take on widely varying
functional forms. Note that expression (1.3) contains derivatives with respect to X
only; throughout this work, we will look for planar motion, with change occurring
in the X-direction only.

The interaction of penetrant molecule and polymer is taken to be a reversible
bimolecular reaction: an empty site in the polymer “reacts” with a molecule of
penetrant to form a site-molecule complex. If the molecule is large and the site small,
the site-molecule complex may be quite a stable construct. Since a large increase
in concentration behind the complex will push the molecule out, the reaction is a

reversible one. The bimolecular reaction is modeled on a macroscopic level by
R(C) = uC(k - C), (1.4)

where k is the saturation concentration of the penetrant in the polymer and the
parameter p controls the strength of the “reaction.”

If we substitute the two expressions (1.3) and (1.4) into the mass balance equation

Cr = -Jx + R(C),



we obtain an evolution equation for C(X,T):
Cr=(DCx + Eox)x + pC(k—C). (1.5)

We now need an evolution equation for the viscoelastic stress o. If we model the
polymer as a system of springs and dashpots, we can complete the mathematical

system with the fairly general equation
or + Bo = F(e,e7),

where ¢ is the strain and 1/4 is the relaxation time of the system. This equation
combines the standard Maxwell and Kelvin-Voigt viscoelasticity models [18]. If we
take € x C, we find

or + Bo = f(C,Cr). (1.6)

The function f(C, Cr) can take on many forms, simple or complicated, depending on
the geometric configuration of the polymer, the type of penetrant, and other physical

attributes of the system. Since we are defining o as a scalar quantity, we require
o(X,T)>0VX,T.

Equations (1.5) and (1.6), taken together, form a complete system of evolution equa-
tions for C(X,T) and o(X,T).

B, the inverse of the relaxation time, is in many important cases a function of
the penetrant concentration C. When the concentration is below a certain threshold
value, the polymer is said to be in a glassy state. When it is in this state, the effects
of any disturbance take a long time to die away; the disturbed polymer relaxes to
its undisturbed state very slowly. At concentrations above the threshold value, the
polymer relaxes quickly to its undisturbed state after a disturbance and is said to

be in a rubbery state. The relaxation time 1/8 is accordingly large for C' below



threshold and small for C above threshold. In many polymer-penetrant systems the
rubbery and glassy relaxation times differ by several orders of magnitude.
Equations (1.5) and (1.6), together with appropriate initial and boundary con-
ditions, constitute a well-posed system of differential equations. We note that it is
possible to eliminate the stress o from these equations and write a single integrodif-

ferential equation for C,
T
Cr=(DCx)x + [E’ (/ e~ ffﬁ(C(X,q))dqf(C’ C,-)d‘r) ] + uCk - 0).
0 xdx

We see explicitly from this equation that when 3 is large (the system is in its rubbery
state), the effects of a disturbance disappear rapidly; when 3 is small so that the

system is in its glassy state, the effects of a disturbance linger for some time.

1.2 Discussion of Equations

We will study equations (1.5) and (1.6) in two different domains. In Chapter 2, we
will look for traveling-wave solutions of the equations on the domain —oo < X <
+o0o. In Chapter 3, we will examine the equations on a finite domain.
Traveling-wave solutions of the equations are solutions of the form C = C(2),
o = 0(Z), where Z = X — VT and V is the (constant) speed of the wave. We are
interested in these solutions for two reasons. Because ideally a polymer-penetrant
drug-delivery system should send out a constant concentration of drug at a constant
speed to be most effective, we would like our model to have solutions that travel as
a set profile at a constant speed. Furthermore, if we consider a dry, finite block of
polymer into which a wavefront of penetrant at saturation concentration is moving
from one end, we see that it is very likely that all the complicated and interesting
behavior takes place at the front, with the regions behind and ahead of the front

simply in saturated, rubbery state and dry, glassy state respectively. In this case, one



method of analysis at the front would be to define locally a new length variable £ so
that the front region would be stretched over the domain —oo < £ < +00. We would
then seek traveling-wave solutions as functions of £ and T, with boundary conditions
that would match the solutions at the front to the conditions outside the front
when the distance variable was shrunk to the original X. In the context of singular
perturbation theory, the traveling wave in stretched variables often constitutes the
so-called boundary layer expansion.

In Chapter 2, we will use a perturbation analysis to study equations (1.5) and
(1.6). The small parameter we will use is the nondimensionalized saturation concen-
tration. We will find that traveling waves which satisfy C(—oo) = k and C(—f—oo)' =0
exist for a variety of special cases of the equations if the nondimensionalized satura-
tion concentration is small enough.

The first and simplest case we will examine is one in which all three of the
coefficients D, E, and 3 are taken to be constant. We will examine two different

models for the stress evolution: Model A,
or + fo = aCr, a a constant,

and Model B,
or + Bo = bC, b a constant,

and will obtain qualitatively different solution curves for the two models. In addition,
we will examine the stability of the solution curves to small perturbations. We will

then study both models under the more realistic conditions

Dr+Ds Dgr-—Dg C — Cgrg
= t —————
D(C) 5 + 5 anh o

as shown in Figure 1.1, and

B(C) = 3}2;&: + 5R;ﬁc tanh C;gRG’
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0 : CRG k

Figure 1.1: Diffusivity D(C) = 2&4+2a 1 Ba=Da ¢anp .C_';A%Ea

as shown in Figure 1.2. Here the positive parameter AC is taken to be very small
with respect to Crg. The quantity Cre is the concentration around which the
polymer undergoes its glass-rubber transition; we take Crg < k. Use of the profile
for B shown in Figure 1.2 has been justified above. It seems feasible to take a similar
form for D since we are considering a physical system in which very little happens
except at the transition between the polymer’s rubbery and glassy states; thus, we
set the diffusivity to be nearly constant except near the critical value of C, Crg.
We will study equations (1.5) and (1.6) using perturbation methods and solve them
numerically for various parameter values, and we will note the effects on the solutions
of stress driving, in which, after nondimensionalization, E *> Dpg, and of diffusion

driving, in which, after nondimensionalization, E < Dg.
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Figure 1.2: (Relaxation time)™! 8(C) = én:ztﬁa + gﬂgéﬁ tanhgi%m

In Chapter 3, we will consider the behavior of the equations on a finite domain
0 < X < L, with the initial conditions C(X,0) = o(X,0) = 0 and the boundary
conditions C(0,T) = Co, C(L,T) = Cy. This model covers polymer-penetrant drug-
delivery systems in which a reservoir of the drug is placed at one end of a dry block
of polymer and the drug diffuses through the block. If the drug is carried quickly
away in the blood as soon as it leaves the end of the polymer block opposite the
reservoir, then this opposite end of the block can be thought of as drawing on a
“reservoir” of drug with zero concentration. If, on the other hand, the bloodstream
carries the drug away so slowly that there is always dfug built up at the end of
the block opposite the reservoir, then we can consider a system with reservoirs of
nonzero concentration at both ends of the block as a step towards a good model of

the physical system.



Our intention in Chapter 3 is to discover the concentration and stress profiles that
emerge when B(C) is as in Figure 1.2 and the function f(C,Cr) in equation (1.6) is

chosen to combine C' and 0C/8T, so that o evolves according to
oT + ,80' = (ICT + bC,

where a and b are constants. This model allows o to exhibit different responses to
rapid change and gradual change in C. If C rises swiftly to a value Cy, (as will
happen for small times in our system near X = 0 and X = L when the penetrant
starts to flow through the dry polymer), the terms o7 and aCr will dominate, so o
will rise swiftly to aC. If C continues to evolve, more slowly, after its initial rapid
rise, o will evolve gradually to 6C/8(C) [5,9]. |

For our analysis in Chapter 3, we take 4 = 0 in equation (1.5) in order that
we may compare our results to the solutions found by Cohen and White [4], who
examined this system with ¢ = 0. As in their paper, we will take D and F as
constants, and we will scale the equations so that the nondimensionalized analogue
of both D and F is a single parameter, d. We will study the equations for large
d. Using perturbation expansion in the small parameter 1/d as well as numerical
integration of the equations, we will show that the concentration and stress originally
obey a Fickian diffusion law, but that, after a short time elapses, their profiles exhibit
a sharp jump at an interior value of X. In addition to finding the time-dependent
profiles of C' and o, we will find explicit long-time and steady-state solutions in the
limiting case AC' = 0. These solutions are very easily obtained and are qualitatively
similar to the solutions of the equations with AC # 0 but AC <« C, found using
numerical and perturbation-method techniques.

Chapter 4 contains conclusions and possible directions for future research.

In Appendix A we present analysis of Fisher’s equation,

ug = (d(u)ug)y + u(l — u),
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where

d(u) = 1;w+lgwtanhu;uuo;w<1;0<Au<<1.

This function d(u) is similar in shape to the function D(C) shown in Figure 1.1.
Fisher’s equation is used in modeling biological systems [10,11,19] and has been
studied with various functional forms for d(u), although not, to our knowledge, with
the form for d(u) mentioned above. We find that, when the equation contains our
form for d(u), a qualitatively new traveling-wave solution u emerges. Our analysis
of the equation makes use of the technique of setting Au = 0 to gain information
about the case 0 < Au < 1. The success of this analysis of Fisher’s equation led us

to try the same simplifying technique on equations (1.5) and (1.6).



Chapter 2

Traveling-Wave Solutions

We seek solutions of the form C = C(Z), 0 = 0(Z), where Z = X — VT and the

velocity V is constant, of the following system of equations:

. (D(C)%C(- ¥ E%) +uC(k - C) (2.1
2 = —BC)+] (c, %,:(’;-) . (22)
Here
C = concentration
o = stress
D(C) = diffusion coefficient
E = viscoelasticity coefficient
k = (small) amplitude of traveling wave
and saturation concentration of polymer
B(C) = inverse of polymer relaxation time
4 = proportionality constant
T = time
X = distance.

11
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In those sections of this chapter where we study the behavior of C' and & for D and

B not constant, we take the functional forms

_ DR+DG+DR—DGtanhC—CRG

2 2 AC

D(C)

and _
_Br+Bc  Br—Ba C — Crg
B(C) = 5 + 5 tanh o

which were discussed in Chapter 1.

We are interested in traveling-wave solutions that drop monotonically from full
solute saturation C' = k at Z = —o0, to zero concentration at Z = +oco. In order to
compare concentration-forced and concentration rate-forced stress models, we will
look at the two cases f(C,Cr) = aCr (Model A) and f(C,Cr) = bC (Model B).
These two models predict qualitatively different stress profiles. We will find small-
amplitude (k small) traveling waves for each model with the diffusivity and relaxation
time held constant (in which case we analyze the stability of the solutions we find),

and also with the diffusivity and relaxation time varying with C.

2.1 Model A: Evolution of ¢ Forced by Cr

We begin by studying Model A, in which f(C,Cr) = aCr. We first put equa-

tions (2.1) and (2.2) in nondimensional form. Using

C(X,T) = %iu(x, t)
4 = %s T
o(X,T) = p ,1)

_ [Br

t = ﬂRT,
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we find

uy = (6(w)ug)y + KSpr + u(y — u) (2.3)
¢ = —B(u)s+ uq, (2.4)

where subscripts are used to denote partial differentiation, and

. = Is
= I
_ ok
T Z B
Here
§(u) = Dr =3 + 5 tanh ~Au
and
_BBru/p) l4wp 1-wp w— Oy
B(u) = B =" + 5 tanh N
where A
G Ba Cra AC
Ea-<lwp=Er—<L0=——<1 = —= .
w‘s DR<1’wB R<1,0 k ,Au k <<1

The functions 6(u) and B(u) are sketched in Figure 2.1. Setting
z=z—vt
with v a constant velocity, we find the system of ordinary differential equations

(b(uw)u') + ks" +vu' +u(y —u) = 0 _ (2.5)
vs' —vu' — B(u)s = 0, (2.6)

where a prime denotes differentiation with respect to z. We seek a solution which
drops from u =y at z = —oo to u = 0 at z = +o0.

In all of the analysis in both this section and § 2.2, we will consider v to be small.
For the perturbation analysis of § 2.1.1 and § 2.2.1, v is the small parameter. When

we solve the equations numerically in § 2.1.2 and § 2.2.2, we take v = 0.1.



14

yAu

u u
0 by ¥ 0 by ¥

a: 8(u) = ¥ + 152 tanh 45 b B(u) = 1422 4 15¢2 tanh 200

Figure 2.1: Coeflicient functions §(u) and B(u)
2.1.1 Case of Constant Coefficients

The first and simplest case we consider is the case in which §(u) = 1 and B(u) = 1.
(In the original variables, this case corresponds to the polymer’s diffusivity and
relaxation time being held constant at their rubbery values.) We seek solutions
u.(2) and s.(z) of

u, + kst +ovul +uly—u) =0 (2.7)
and

vs, —vu, — s, =0, (2.8)

where the subscript ¢ refers to the fact that B(u) and §(u) are now constant. We
will find that, for ¥ small enough, we can solve equations (2.7) and (2.8) analytically,
finding traveling-wave solutions for u. and s, as power series in 7.

To this end, we rescale equations (2.7) and (2.8) as follows:

v9(€). (2.9)

£ =72, u(z) = 7p(§), se(2)
The resulting equations are

" +vkg" +vp’ +p(1 —p) =0 (2.10)
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and

yvg' — g —yvp' =0, (2.11)

with boundary conditions
p(—OO) = 1’ p(+OO) = Ov

where a prime now denotes differentiation with respect to £. We look for a solution

expressed as a series in powers of the small quantity +:

P(€) = po(€) +1p1(€) + 7Pp2(&) + - = D "pul(€)

n=0

9(8) = 90(€) + 791(6) +7¥292(&) + - - = D v"9.(8).

n=0

We insert these expansions into equations (2.10) and (2.11) and combine terms in

like powers of ~:
vpy + Po(1 = po) + Y[vpy + (1 = 2po)p1 + 1 + £g5] + O(7%) = 0

9o + (g1 + vpy — vgo) + O(7%) = 0.

If we set the coefficient of each power of 4 separately to zero and apply the boundary

conditions, we can solve the resulting equations for py, pi1, go, and g;. We find

1
po(§) = T+ Coetl (Co > 0 a constant)
go(€) = 0
and
Coeg/v Coeé/v
p(§) = (1 1 Coctl)? [ln (T Coctl)? + Cy|, C; a constant
C’oef/“

a(é) = _—_(1+0065/“)2'
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Figure 2.2: Constant-coefficient solutions u.(z) and s.(z)

As functions of z, these solutions of equations (2.7) and (2.8) are

7T
14 Coev?/v

,),ZCOe’yz/u | Coeﬂyz/v
W2(1+ Coe )2 | (1 + Coe?/*)?
,),ZCOe'yz/u

se(z) = m+0(73). (2.13)

u(z) =

+ 01 + 0% (2.12)

-+

Note that « plays no' rolz in the solutions before O(¥3). The solutions are graphed
in Figure 2.2 with the parameter values y = 0.1, v =2, Cy = 1, and Cy = In4.

We see that u.(z) drops monotonically from v to 0, exactly as we wished. We
see, also, that s.(z), the nondimensionalized stress, is localized to the relatively small
domain in which u.(z) is noticeably different from v or 0. As the wave of penetrant
moves through the polymer, stress builds up at the front of the wave. Behind the
wavefront, where the polymer is essentially saturated, the polymer will relax to a

practically unstressed state. In addition, we see that, for all z,

5.(2) < u(z).



17

In the original variables,

o(X,T) uk
B Sk Rl S ¥ b
aC(X,T) = Ag =47

where A = O(1) is a constant.
We wish to examine the stability of the solutions above for increasing time; in
particular, we would like to know if the solutions are stable to small perturbations
for some values of £ and v and unstable for others. The functions found above,
ulzt) & 7 CO;(z_ﬂ) - (2.14)
Y2 Cye @/
(1 + Coer@—/v)2’

(2.15)

se(z,t) =

are solutions, to O(y) and O(4?) respectively, of equations (2.7) and (2.8). We will
carry out a linearized stability analysis of these solutions for ¢ large, using a Laplace

transform method [13].

With B(u) = 6(u) = 1, equations (2.3) and (2.4) become

(uC)t = (uc)zz + "':(Sc)zx + uc(’)' - uc) (216)
(se)e = —8c+ (uc): (2.17)

We first solve equation (2.17) for s.(z,t) to produce

We substitute this solution into equation (2.16) and find

62

K&
ox?

{/ot e-(t—f)a%_uc(z, T)dT} = (Ue)t — (Ue)zz — uc(y — uc)- (2.18)

If we differentiate equation (2.18) once with respect to ¢ and substitute the right-hand

side of equation (2.18) into the result, we find a third-order equation for u.(z,1):

(1+ £)(Ue )zt + (Ue)ze — (ue)e — (1 — ) (ue)e — 2uc(uc)s + uc(y — uc) = 0. (2.19)
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We find it easier to work in the traveling-wave frame, so we substitute
z =z —vt, ulz,t) =U(z,1)
into equation (2.19) to find
~0(1+ K)(Be)aze + (14 K)(Fe)ase + (1= %) (@e)ax + 20(Te)ae — (Te)e

+o(1 = 7)(%e)z — (1 = 7)(We)e + 20Ue(Te )z — 2Te(Te)e + Te(y —Te) = 0. (2.20)
If we transform (2.14) into the traveling-wave frame, we find, as before, that an

approximate solution of equation (2.20), for small v, is

() = e
2 (Z) 1+Coe~/z/u’

(where we have dropped the bar from %,). We say that u(®) is a stable solution of
equation (2.20) if a small disturbance to it decays exponentially in time; that is, if

we define

ue(z,1) = ud)(2) + f(z,1),
£(2,0)] < [u{(z,0)],
where u.(z,1) is a solution of equation (2.20), we require that

tlinolo [e* f(2,t)] £ M(z) for some a > 0. (2.21)

Since u{”)(z) satisfies the boundary conditions u.(—o0) = 7, uc(+00) = 0 for all ¢,

we must set the conditions
f(—-OO,t) = 0’ f(+OO,t) = 07

in fact, we will require that f and all its ¢- and z-derivatives decay at least exponen-

tially as |z| — oo.
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Substitution of u.(z,t) into equa;tion (2.20) leads to
—0(1 4 £)(u)aze + (1 + £) frzt = (1 + £) fozz + (1= 07) )z + (1 = 0?) fuz + 20
— fu+o(1 =) (@®). + v(1 =) f: = (1 =N fi + 20uP (w?), + 20007,
+20u0).f +20ff. ~ 260 f, = 27 fo+ 1 +7f — (WO —20f — =0
We find from this equation that we must have
f(z,t) = O(v)
and that the leading-order equation for f(z,t) is

’U(l + K’)fzzz - (1 + K)fzzt + (U2 - 1)fzz - 2vfzt - 'Ufz + ftt + ft =
o(ul®); +u(y —u?) = 0.(222)

We present a stability analysis of the leading-order equation, equation (2.22). Straight-
forward perturbation expansion [16] can be used to show that the results obtained
from analysis of equation (2.22) hold to all orders in ~.

We take a Laplace transform in t of equation (2.22), leading to
(14 £)F" + (v =1 = (14 £)s)F" —v(1 +28)F' + (s + s)F = g(z;5), (2.23)

* where
g(z; s)=(1+ s)f(z, 0) + ft(zvo) - (1 + ")fZZ(Zv 0) — 2UfZ(270)

and a prime denotes differentiation with respect to z. Here
oo 1 c+100
F(z;8) = / f(z,t)e™%dt; f(2,t) = — F(z;s)eds
0 21 Je—ico
are the usual Laplace-transform pair, with ¢ a real number greater than the greatest
real part among the singularities of F'(2;s) as a function of s. Qur stability condition,

equation (2.21), will hold if and only if ¢ < 0; that is,

tlirg le*f(z,t)] S M(2) <= 36> 03 c < —4. (2.24)
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Since equation (2.23) is a linear differential equation with constant coefficients,
we can solve it and determine explicitly whether any of the singularities of F'(z;s) has

positive real part. We first note that we can easily solve the homogeneous equation
v(1+8)F + (V=1 =1+ k)s)F} —v(1+28)F, + (s + $*)F, =0 (2.25)
to find the three solutions
Fi(z;8) = e1(®)2 e02(5)2 and w(®)2,

where y;, y2, and y3 are the roots of

v2—-1—-(14k)s 1+2s s+ s?
ol 143
v(1 + &) 1+« v(1 + &)

=0. (2.26)

Using the formula for the roots of a cubic equation, we find that, for s large and
positive, two of the functions y;(s), y2(3), and y3(s) are real and positive, with the
other real and negative. Using variation of parameters, we can then construct a

solution of equation (2.23) which satisfies the boundary conditions F(400;s) = 0:

Fie) = C(n - yz)l(yx —y3) /z+°°g (¢58)e™="dg
1 z or(om
- T /_oo g9(¢;8)e ( C)dc
1 + 00
(51— y3)(y2 — vs) /, 9(¢; s)e g, (2.27)

where we have chosen y, as the label of the root of equation (2.26) which is negative
when s is large and positive. The chosen limits of integration ensure that F(%oo;s) =
0 if g(z;s) — 0 sufficiently fast as |z| — oco. Since g(z;s) is defined in terms of f(z,0)
and its derivatives, and we are requiring exponential decay as |z] — oo for f(z,1)
and its derivatives, g(z; s).does decay fast enough to ensure that F(foo;s) = 0.
We must find the locations of the singularities of F'(z;s) in the complex s-plane.

We see from (2.27) that F(z;s) exhibits singularities at points s(«,v) at which one
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or more of y;(3), y2(38), y3(s) are singular, or at which any two of y;(3), y2(s), ya(s)
are equal. We use the cubic formula to find that the only singularities of the y; are

branch points. These branch points occur at points s which satisfy
A2 4 (AP +20)s + (v +(BA =20 +1) =0 (2.28)
or
A%s% + (W22 /4 + A3 + 3X%)s* + [(—2A% + 5A)v? + 3A% + 3)]s3
+[(=A/24 Do + (=220 +190/2 = 2)v® + 3A + 1]s* + [(A + 1ot + (5 = 2)v® + 1]s
+ [v8/4+ (A —1/2)* +v¥/4] = 0, (2.29)

(where we have set A =1+ &). The values of s for which two of the y; are equal are
the roots of equation (2.29).

Since the singularities of F'(2;s) occur at the roots of equations (2.28) and (2.29),
the stability condition (2.24) requires that these roots lie in s < 0. To study
these roots, we apply the Routh-Hurwitz criteria [14] to the polynomials (2.28) and
(2.29). These criteria are a chain of successively more restrictive conditions on the

polynomials: If all of the zeros of the polynomial
P(8)=Py+Pis+---+ P,_ys" 1 + P,s"

are to lie in the left half of the complex s-plane, we first require that P(s) have

positive coefficients. Furthermore, defining the “even” polynomial
Peven(s) = Py + Pys® 4 - - - + term with highest even power in P(s),
with roots a;(v, A), az(v, ), ..., and the “odd” polynomial

P,44(s) = Pys + P3s®> + - - - + term with highest odd power in P(s),
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with roots b; (v, A), by(v, A), ..., we then require that all of the roots a; and b; be pure
imaginary and simple. If this condition holds, we can order the roots by imaginary
part, defining

(root); < (root); if Z(root); < Z(root)y.
Having ordered the a; and b; in this manner, we apply the final requirement, that

the a; and b; mutually separate each other:
a1<b1<a2<bg<---

if n is even;

bl<(11<b2<(12<"’
if n is odd. If and only if this chain of conditions holds will the zeros of P(s) lie in
Rs < 0.

* The Routh-Hurwitz criteria impose no restrictions on k and v for equation (2.28);
the roots are all in s < 0. For equation (2.29), the criteria were examined numeri-

cally. The region of stability is shown in a (k,v)-plot in Figure 2.3.

2.1.2 Solution for Variable B(u) and é(u)

We hope to find a traveling-wave solution of equations (2.5) and (2.6) for nonconstant
B(u) and 6(u). If we first take v to be small and apply the change of variables (2.9)

used in § 2.1.1, we find that the leading-order solutions for u(z) and s(z) are

u(z) = ﬁ—%;m+0(72) (2.30)
7200672/11 3
=) = Blale) + Coerm T O 231
Y

where ug(2) = T Coc

The equation for the O(4?) term of u(z) cannot be solved in closed form. We note

that this solution u(z) is the same through O(%) as the solution u.(z) found in § 2.1.1,
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10 T — i

unstable

stable

kappa
Figure 2.3: Region of stability for u.(z) in («,v)-space

while

sc(z)
B(uo(z))’

where s.(z) is the constant-coefficient (§(u) = 1, B(u) = 1) solution found in § 2.1.1.

s(z) =

For those z large enough that uo(z) < 6y, we know that B(ug(z)) < 1; therefore
s8(z) > s.(z) in this region. Sketches of s(z) and s.(z) are compared in Figure 2.4.
We must realize before we continue that the system (2.5), (2.6), with its variable
coeflicients, is qualitatively different from the constant-coefficient system that we
were able to solve with a regular perturbation expansion in § 2.1.1. Near u = 6 (the
concentration at which B(u) and §(u) are in the middle of their transition from glassy
to rubbery values), 6(x) and B(u) are changing rapidly; hence, we cannot assume
that the expression (6(u)u’+ ks’)’ which appears in equation (2.5) is negligible with

respect to the other terms in the equation. The nature of the system is not regular,
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s(z)

Figure 2.4: Comparison of s.(z) and s(z)

but singular, and the regular perturbation technique which we used to produce (2.30)
and (2.31) breaks down. |

In order to find the full effects of variable B(u) and §(u) on u(z), we must examine
equations (2.5) and (2.6) numerically. We can, however, make a rough prediction
about the behavior of u(z) near u(z) = @y by assuming that Au = 0, so that B(u)
and 6(u) are piecewise constant. We used this technique to obtain new solutions of
Fisher’s equation; these results are presented in Appendix A. Our success in solving
Fisher’s equation led us to use the same technique here. ‘

In the range u > 67, B(u) =1 and §(u) =1 if Au = 0. Therefore, u(z) and s(z)
will be identical, in © > 8, to the functions u.(z) and s.(z) defined in § 2.1.1. We
assume that s(z) will be continuous across u = 64 and find the relationship between

u’ (as u approaches vy from u > 6v) and u’ (as u approaches §v from u < 6v) by
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requiring that the penetrant flux be continuous. The flux J is defined by
J = —(6(u)uy + &s;),
or, in the traveling-wave frame,
J = —(6(u)u’ + &s').
Using equation (2.6), we find
J = —(6(u)u’ + £B(u)s/v + xu').
With 6(u) and B(u) piecewise constant, we have

u>0y:—-Jp = (14 k)ugp+«ks/v
u<fy:-Jg = (ws+ K)ug+ kwgs/v,

where the subscripts R and G are used to refer respectively to the rubbery state of

the polymer (u > 6v) and its glassy state (u < 6v). If we require
Jr = Jg at u = 0y,
we find

1+ ,  £(l—-wp)
w5+ﬁ:uR+ v(ws + &)

s at u=0~. (2.32)

ug =

This formula shows the effects on u of stress driving (x large) and diffusion driving
(x small). Since we are assuming that u drops monotonically from + to 0 (so that u’

is always negative) and that s is always positive, we see from equation (2.32) that
ug| < Jul| <= ul; > u’; for large enough «,
G R G R g g

but

lug| > |uR| <= ug < uf for small enough «.
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u(z)

Figure 2.5: Predicted shape of u(z) when « is large

The sketches in Figures 2.5 and 2.6 show the behavior of u predicted by equa-
tion (2.32) for Iafge and small k. We expect that profiles of u similar to those in
Figures 2.5 and 2.6 will appear in the numerical solution of equations (2.5) and (2.6)
when Au is very small.

This analysis shows the limitations of the simple reasoning that leads to the
functions (2.30) and (2.31) as first-order solutions of equations (2.5) and (2.6). If
u’(z) is discontinuous or has a steep gradient at a point zo, we cannot assume that
u”(z) is negligible, as we do in deriving (2.30); the problem becomes a singular
perturbation problem. These formulas are still useful, however, because they provide
an easily obtainable “feel” for the general trend of u(z) and s(z), although they are
not numerically accurate.

In order to solve equations (2.5) and (2.6) numerically, we transform them into
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u(z)

z
Figure 2.6: Predicted shape of u(z) when & is small
a system of three first-order equations. By defining
u—vy=gq, v =w,
we find the system
g = w (2.33)
W= g B sl ~ sB + s
= (v+£B(g+7)/v)w - &g+ 7w’ + (¢ +7)} (2-34)
s = Blg+7)s/v+w, (2.35)

which we solve using a fourth-order accurate Runge-Kutta method [2]). In these
variables, the solution we want travels from the fixed point (¢, w, s) = (0,0,0) to the

fixed point (¢, w,s) = (——7,0,0).»
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Equation (2.35) presents a problem in numerical solution. It has an exponentially

increasing homogeneous solution
sn(2) = Apey JBO+Ed - 4 5 constant,

which will increase (or decrease, if A, is negative) without bound. We require A, =0
for a bounded solution, but any initial conditions we choose for ¢, w, and s will lead
to a solution with a nonzero value of A, because of the limited accuracy of the
computer.

To counteract the problem of exponentially increasing s, we use a multiple
shooting method. We first linearize the equations about the initial fixed point
(¢,w,s) = (0,0,0) to find a set of starting values, as described below. Within
a small neighborhood of these values we find two sets of initial values for ¢, w,
and s, one leading to a solution (g4, wy,s;) of equations (2.33), (2.34), and (2.35)
with a positive value for A, and one leading to a solution (g, w-,s_) with a neg-
ative value for A,. Because we have chosen the initial values from the same small
neighborhood, the two solutions start out close together. We set a threshold ¢, inte-
grate the equations forward, using both sets of initial values, to find the two vectors
(g4(2), we(2),54(2)) and (g-(2),w-(2),s-(2)), and accept solution values over the
range (s4(z) — s—(2)) < . We then integrate forward a test solution which starts
midway between our two old solutions, find out whether it blows up positively or
negatively, and repeat the first process with the test solution and the appropriate
old solution. In this way, we find bounded solutions for u(z) = v + ¢(z) and s(z).

We study the equations numerically using the parameter values § = 0.5 and
Au = 0.01. To find the initial values for w and s, we assume that near ¢ = 0

(u = v), we can approximate w and s as

w = agq, s~ fq, (2.36)
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[ :
- 0.001 | 0.01 0.1 1 | 10 | 100
0.1 af 0.049] 0.049| 0.049| 0.049| 0.050 | none
B || —0.108 | —0.108 | —0.108 | —0.109 | —0.112 | none
03 al 0.140] 0.140| 0.141] 0.144 none | none
/11 —0.390 | —0.390 | —0.391 | —0.404 none | none
0.5 «a 0.225] 0.225| 0.227] 0.250 none | none
Bl =0.817| —0.818 | —0.828 | —1.000 none | none
0.7 «a 0.304{ 0.304] 0.310 none none | none
B 1 —1.550 | —1.556 | —1.629 none none | none
09 a 0379 0.380( 0.402 none none | none
B —3.117| —3.169 | —4.124 | none| none | none

Table 2.1: Roots a > 0 and # < 0 for v = 2

where o and B are constants. We are looking for a concentration profile which drops
monotonically from ¢ = 0 (u = 4) to ¢ = —y (u = 0) as z increases, and for a
stress profile which is nonnegative for all z. Since ¢ < 0, we thus require & > 0
and § < 0. We find a and 3 from plugging (2.36) into equations (2.33), (2.34), and
(2.35), leading to

ot L=SWBO) . B+ 9BO)
v(é(7) + %) S(MM+x - v(é(7) +x)

and
va

b= va— B(v)’
In Tables 2.1 (v = 2) and 2.2 (v = 2.75), we display the real roots o and 3 with
the desired signs for several values of v and k. For fixed v and v, there is a cutoff
value for x above which no roots a and 3 with the desired signs exist. This cutoff
decreases as v increases for fixed v, and increases as v increases for fixed .
We have taken v to be “small,” but not fixed, in order to obtain the analytical

results presented in § 2.1. The entries in Tables 2.1 and 2.2 indicate that, for fixed v
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K

~ 0.001] 0.01 [ 01 | 1 | 10 | 100
0.1 « 0.036| 0.036{ 0.036| 0.036| 0.036| 0.050
Bl —0.110 | —0.110 | —-0.110 | —0.110 { —0.111 | —0.158
03 a 0.105 0.105 0.105| 0.107 none none
B || —0.406 | —0.407 { —0.407 | —0.415 none none
0.5 « 0.171 0.171 0.172 0.182 none none
B || —0.889 | —0.890 | —0.898 | —1.000 none none
0.7 o 0.235| 0.235 0.238 none none none
81l —1.818 | —1.824 | —1.891 none none none
0.9 « 0.296 | 0.297| 0.314 none none none
B —4.327 | —4.431 | —6.353 none none none

Table 2.2: Roots a > 0 ahd_ B <0 forv=275

and &, there is no monotonically decreasing traveling-wave solution u(z) if « is too
large. The requirement that 4 be small is a necessary condition for the existence of
u.

In order to show the effects of stress driving and diffusion driving, we use widely
varying values of « and the fixed values v = 0.1, wg = 0.01, ws = 0.25, and v = 2
in our numerical solutions. In Figure 2.7 we display diffusion-driven u(z) and s(z)
profiles with & = 0.001 and « = 0.01, and, in Figure 2.8, stress-driven u(z) and s(z)
profiles with x = 1 and x = 10. The effect on u(z) of increasing « is as predicted by

equation (2.32), and the behavior of s(z) is as predicted by equation (2.31).

2.2 Model B: Evolution of ¢ Forced by C

In this section we will study Model B, for which we take f(C,Cr) = bC in equa-

tion (2.2). As before, we will put equations (2.1) and (2.2) in nondimensional form.
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32

50 — T T
B 040 |- 4
- L030 |- N
.
e 020 |- .
i
~ o010 B
- 000 - .
0 50 100 150 200 0 50 100 150 z
z 2

b: s(z) with k =1

050 - . T .

040 |

030 p-

.020

0 - 600
40 80 120 160 . 200 ] 40 80 120 180

c: u(z) with x =10 d: s(z) with k =10

Figure 2.8: Profiles of stress-driven u(z) and s(z); £ = 1 and 10

259



33

Using
_ Br
C(X’ T) = Tu(zit)
o X, T) = -Es(a:,t)
_ . [Br
zr = DRX
t = ,BRT’
we find
up = (6(uw)ug)z + pSzz +uly — u) (2.37)
s = —B(u)s+u, (2.38)
where
- _'g_b__
p= BrDRr’

and v, 6(u), and B(u) are as in § 2.1. Setting
| z=z—vl
we find the system of ordinary differential equations
(S(w)u) + ps" + v’ +u(y—u) = 0 (2.39)
vs'+u—B(u)s = 0. (2.40)
Again, we take v small and seek a solution which drops monotonically from u = v

at z=—oco0 tou =0 at z = +c0.

2.2.1 Case of Constant Coeflicients

We find some of the basic properties of the solutions of equations (2.39) and (2.40)
by looking at the simple case in which §(u) = 1 and B(u) = 1. We seek solutions
u.(2) and s.(z) of

uy + psy +vul +u(y—u) =0 (2.41)
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and

vsl +u, — 3. =0, (2.42)

where the subscript ¢ refers to the fact that B(u) and §(u) are now constant. We
will find, as before, that for vy small enough we can find solutions to equations (2.41)

and (2.42) as power series in 4.

We first apply the rescaling (2.9) to equations (2.41) and (2.42):
£ =7z, u(z) = 7p(§), sc(2) = v9(¢)

leading to

I
o

p" +vpg" + vp' + p(1 — p) (2.43)

yg'+p—g = 0 (2.44)
where a prime now denotes differentiation with respect to £. We assume that v is a

small parameter and look for solutions as power series in 4:

p(€) = po(€) + ¥p1(€) + ¥?p2(€) + -+ = Y ¥"pa(€)

n=0

9(€) = go(€) + 791(6) + ¥2g2(6) +--- = Z g ().

We insert these expansions into equations (2.43) and (2.44) and combine terms in

like powers of ~:
vpp + Po(1 — po) +7[vpy + (1 = 2po)pr + pg + pgg) + O(7*) = 0

Po—go+v(p1 — 91+ vgp) + O(7*) = 0.
If we set the coeflicient of each power of 5 separately to zero and apply the boundary

conditions, we can solve the resulting equations for py, py, go, and g;. We find

1
po(§) = T Codtl™’

1
98 = Trcan

(Co > 0 a constant)
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and

(1+ p)Coet/® Coe/”
= 1
Pl(ﬁ) v’(l + C’oeg/”)z (
_ (1L p)Coetl? Coetl* _
gl(ﬁ) = v2(1 + Coef/")z n (1 + Coeé/v)2 + C1 1+ P) .

>+ Cl} , C1 a constant

As functions of z, these solutions of equations (2.41) and (2.42) are

S S
1 + Coera/v
(L4 Py Coe™* [ Coer™
v3(1 + Coer/¥)? n (1 + Coer/¥)2
Y
TrooT

u(z) =

" +c@+m¢> (2.43)

(14 p)y2Coe™/” | Coe! 2
t v2(1 4 Cper2/v)? _hl (1 4 Coer#/v)? O +p
+0(7%). (2.46)

Both u(z) and s.(z) are equal, to first order in v, to the function graphed in Fig-
ure 2.2a.

We note several differences between these solutions (2.45) and (2.46) and the
constant-coefficient solutions (2.12) and (2.13) of the model which we studied in
§ 2.1, Model A. In Model B, the nondimensionalized concentration and stress are

equal to first order. In the dimensional variables,

o(X,T) b

C(X,T) " Br’
Furthermore, in Model B, the wave of penetrant moving into the polymer induces
a stress at the wavefront, and the region of polymer behind the wavefront remains
stressed. Finally, the parameter p, analogous to the parameter « of Model A, appears

in the O(?) terms of u(z) and s.(z). Variations in p will have more impact on u,(z)

and s.(z) when Model B holds than will variations in & in Model A.
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We wish to examine the stability of the O(«y) solutions

- v
(@) N Troaen (2.47)
se(z,t) =~ 7 (2.48)

1 + Cpele—vt)/v

for ¢t large. We use the Laplace transform method of § 2.1 to study the stability
of (2.47) and (2.48) [13]. With B(u) = 6(u) = 1, equations (2.37) and (2.38) are

(uc)t = (uc):z:a: + P(Sc)za: + uc(')’ - uc) (2.49)
(8c)e = —8c+ue. (2.50)

We first solve equation (2.50) for s.(z, ) and find
t
c 7t = —(t-T) c b d M
s.(z, ) [) e u.(z, 7)dr

We substitute this solution into equation (2.49) and find

82

9z?

{/ot e"(t—r)uc(x’, T)d'r} = (Ue)t — (Ue)zz — U(y — Ue)- (2.51)

If we differentiate equation (2.51) once with respect to ¢ and substitute the right-hand

side of equation (2.51) into the result, we find a third-order equation for u.(z,t):
(e)ozt + (14 p)(uc)zz — (e)n — (1 —7)(uc)e — 2uc(uc)e + ue(y —ue) = 0. (2.52)
In the traveling-wave frame, with
=z —vt, u(z,t) = U(z,t)
equation (2.52) becomes
=0(Te)szz + (Te)zzt + (1 + p = *)(We)zz + 20(Te)se — (Tt + v(1 — 7) (%)

= (1= 7)(Te)e + 20T (Be): — 20 (Te)s + Ty — Te) = 0. (2:53)
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If we transform (2.47) into the traveling-wave frame, we find, as before, that an

approximate solution of equation (2.53), for small v, is

uO(z) = S G
1 4 Cyeralv’

(where we have dropped the bar from %.). For u(® to be a stable solution of equa-
tion (2.53), if we define
us(z,t) = u@(2) + f(z,1),

1£(2,0)| < [ul(z,0)],
where u.(z,1) is a solution of equation (2.53), we require that
Jim le* f(z,t)| < M(z) for some a > 0, (2.54)

and that f(z,t) and its - and z-derivatives decay toward zero at least exponentially

as |z| — oco. Substitution of u.(z,t) into equation (2.53) leads to
~0(ul)szz + fort = 0oz + (L4 p = ) (U + (1 + p — ) foz + 201,
= fu + (L =N + (1 =N f = (1= fi + 2000 (), + 2000,
+20(u®). f+ 20 f f. = 2u0 f, = 2f i + 7u® + 7 f — (u®)? — 240 f — f? = 0.
We find from this equation that we must have
f(z,t) = 0(v*)
and that the leading-order equation for f(z,t) is

vfzzz - fzzt + (2)2 -1- P)fzz - 2vfzt - vfz ~+ ftt + ft =
v(u®), + u®@(y —u®) = 0. (2.55)

As in § 2.1, we will present analysis of only the leading-order equation, equa-

tion (2.55). Just as in § 2.1, standard perturbation expansion indicates that the
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leading-order results hold to all orders in v [16]. We take a Laplace transform in ¢

as before, leading to

vF" + (v =1~ p—3s)F" —v(1 +28)F' + (s + s%)F = g(z; 9), (2.56)
where
9(z;8) = (1 + 8)f(2,0) + fi(2,0) — f..(z,0) — 2vf,(z,0).
Here
00 1 c+ic0
F(z;9) E/o f(z,t)e™%dt; f(z,t) = el F(z;5)e*ds

are the Laplace-transform pair, with ¢ a real number greater than the greatest real
part among the singularities of F(z;s) as a function of s. Our stability condition,

equation (2.54), will hold if and only if ¢ < 0; that is,
tl_lfg le® f(z,t)] < M(z) <= 36 >03 ¢ < 6. (2.57)
As in § 2.1, we find that F(2;s) can be expressed in terms of the three solutions
Fi(z;8) = en(®) 205} and e¥(®)
of the homogeneous equation
vF + (v —1—p—3s)F) —v(1 +25)F, + (s + s%)F, = 0. (2.58)

Here y1, ys, and y3 are the roots of

2

vP—1—p—s s+s

¥ —(1+2s)y + =0. (2.59)

¥’ +
v v

We find from the cubic formula that, for s large and positive, y; and ys are real
and positive and y, is real and negative. Therefore, a solution of equation (2.56)

satisfying F'(doo;3) =0 is
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] - 1 roo b -v1({-2)
F(Z, 3) - (yl _ y2)(yl _ y3) '/z g(C1 8)6 dC
1 g y2(z—
T L 90k

9(¢; 9)em =g (2.60)

1 +00

(11— s)(32 — 93) /z
We must locate the singularities of F(z;s) in the complex s-plane. These sin-
gularities occur at the singularities of the y; and at any point s at which two of
the y; are equal. Using the formula for the roots of a cubic equation, we find that
the functions y1, y2, and y3 have no singularities but branch points, and that these

branch points lie at points s which satisfy
S+ (4P +20)s+ (v + (3 -2 + 1Y) =0 (2.61)

or

$° + (V¥4 + 31 + 1)s* + [(5X — 2)v® + 327 + 3)]s®
+[(A=1/2)0* + (=2X2 +192/2 = 2)02 + A3+ 3272 + [(A + Dot + (=202 +50)0? + A%)s
+ [v8/4 + (=A/2 + 1)v* + A2 /4] = 0, (2.62)

(where we have set A = 1+ p). We find also that two of the y; will be equal when and
only when s is a root of equation (2.62). Therefore, the stability condition (2.57)
requires that the roots of equations (2.61) and (2.62) lie in Rs < 0. To study
these roots, we use the Routh-Hurwitz criteria, as before [14]. We find that the
criteria impose no restrictions at all on v and p, either for equation (2.61) or for
equation (2.62); therefore, the functions (2.47) and (2.48) are stable solutions of
equations (2.49) and (2.5.0) for all v and p.
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2.2.2 Solution for Variable B(u) and é(u)

We hope to find a traveling-wave solution of equations (2.39) and (2.40) for non-
constant B(u) and 6(u). If we first take 4 to be small and apply the change of
variables (2.9) used in § 2.2.1, we find that the leading-order solutions for u(z) and

3(z) are
u(z) = Wﬂ)(y’) (2.63)
s(z) = B(uo(z))(17+ Coer=lv) +00, (2.64)

gl

where ug(2) = 1T Gl

The equations for the O(4?) terms of u(z) and s(z) cannot be solved analytically.
We note that, as when Model A holds, this solution u(z) is the same through O(«y) "

as the solution u.(2) found in § 2.2.1, while

s¢(2)

B(uo(2))’

where s.(z) is the constant-coefficient solution found in § 2.2.1. Sketches of s(z) and

3(z) =

s.(2) are compared in Figure 2.9.

We must realize that the system (2.39), (2.40) cannot be solved throughout —co <
z < 400 by a regular perturbation method; the problem is a singular perturbation
problem, as was the analogous problem solved in § 2.1. Near u = 0, the term
(6(u)u’ + ps’)’ is not negligible compared to the rest of the terms in equation (2.39),
and the results (2.63), (2.64) are invalid. In order to get a rough idea of the behavior
of u(z) near u = @+, we use the approach of setting Au = 0, as in § 2.1.2. In the
range u > 07, B(u) = 1 and §(u) = 1 if Au = 0; in u < 0y, B(u) = wp and
8(u) = ws. We assume, as before, that s(z) will be continuous across u = 6y and
find the relationship between u’ (as u approaches v from u > 6v) and v’ (as u

approaches 6+ from u < 6v) by requiring that the penetrant flux J be continuous.
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s(:)

Figure 2.9: Comparison of sc(z)A and s(2)

Using equation (2.40), we find
J = —(6(u)u’ + pB(u)s/v — pu/v).
With §(u) and B(u) piecewise constant, we have

u>0y:—Jp = up+ps/v—pufv
u<by:-Jg = wsug+ pwps/v— pufv,

where the subscripts R and G are used to refer respectively to the rubbery state of

the polymer (u > 6v) and its glassy state (u < 07). If we require
Jr=Jg at u =0y
we find

1 p(1 — ws)
¢ = —up+——5 at u = f~. .
ug wguR-*- o satu=oy (2.65)
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This formula again shows the effects on u of stress driving and diffusion driving.
Since we are assuming that u’ is always negative and that s is always positive, we

see from equation (2.65) that
lug| < |ug| <= ug > uj for large enough p,

but

lug| > |ug| <= ug < u} for small enough p.

These relations are similar to those found by the same method in § 2.1.2. When Au
is very small, we expect u(z) to look like the sketch in Figure 2.5 when p is large,
and like the sketch in Figure 2.6 when p is small.

In order to find the full behavior of the solutions of equations (2.39) and (2.40)
for variable B(u) and é(u), we solve the equations numericaliy. We first transform

them into a system of three first-order equations by setting u’ = w. We find

!

w'==g&ﬁ*MBWWﬂW-mBﬁmwhH%Mv—ﬂw~ywwﬂ

+ pBuufo? — u(y — )
s = %{B(u)s—u}.

The fixed points of this system are (u,w,s) = (v,0,v/B(v)) and (u,w,s) = (0,0,0).
(Note that B(y) ~ 1 for Au small, so v/B(v) ~ v.) We now define

U—V7=¢q, s—p=Er,

where
Y

B(y)’

7

and find the system
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d = w (2.66)
W = gy ABa D+ i)/ = pB g+ Dl + )

+ (p/v —v)w — & (g + 7)w’ + p(a +7)B(g +7)/v* + a(g + 7)} (2.67)
¢ = B+ + ) - (g4}, (2.68)

which we solve with the same fourth-order accurate Runge-Kutta method used in
§ 2.1.2 [2]. In these variables, the solution we want travels from the fixed point
(g,w,r) = (0,0,0) to the fixed point (¢, w,r) = (—v,0,—u). As in § 2.1.2, we
must use a multiple shooting method to counteract the unbounded tendency of the

homogeneous solution of equation (2.68),
ri(z) = Ahe%fB("’“(z))dz, A} a constant.

The method used on these equations is precisely the same as the one used on Model A.
We study the equations numerically using the parameter values § = 0.5 and
Au = 0.05. To find the initial values for w and r, we assume as before that near

q =0 (u = v), we can approximate w and r as
w = aq, T~ fq, (2.69)

where o and § are constants. We are looking for concentration and stress profiles
which decrease initially from the fixed point ¢ = r = 0. Since ¢ < 0, we require a > 0
and 3 > 0. We find « and § from plugging (2.69) into equations (2.66), (2.67), and
(2.68), leading to

V2= p—6()B() +pB'(Mr 2 B(1)+v  71B()

v6(7) T T sy

a3+

and

_1—uB'(y)

= B —va’



K
v 0.001| 0.01 | 0.1 1 10 100
0.1 «}0.049]0.049 | 0.049 | 0.048 | 0.040 | 0.022
g 1.108]1.108 [ 1.108 | 1.105 | 1.088 | 1.048
0.3 o} 0.140)0.140{0.139 ] 0.130 | 0.093 | 0.044
B 1.390]1.389]1.385| 1.352 | 1.228 | 1.096
0.5 af0.225]0.2240.221 | 0.198 | 0.129 | 0.058
g 111.816{1.8141.793 | 1.655 | 1.348 | 1.131
0.7 o 0.304|0.303 | 0.296 | 0.253 | 0.157 | 0.069
B 2.548 | 2.537 | 2.446 | 2.025 | 1.459 | 1.161
09 of0.378(0.3760.361|0.297 | 0.180 | 0.079
B | 4.105 ] 4.043 | 3.603 | 2.464 | 1.563 | 1.187

Table 2.3: Roots @ > 0 and 8> 0 for v =2
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There is a set of positive roots (a > O,B > 0) for all the values of v, v, and p that we

consider. We display the roots for v = 2 and several values of v and p in Table 2.3.

As we can see from Table 2.3, we cannot rule out the possibility of desirable

solutions u and s existing for large v, as we did when studying Model A, solely on

the basis of the behavior of the linearized system near u = 4. We continue, however,

to take v small, so that we can compare the Model B results to the Model A results.

In order to show the effects of stress driving and diffusion driving, we use the

values p = 0.001 and p = 1 and the fixed values v = 0.1, wg = 0.01, ws = 0.25, and

v = 2 in our numerical solutions. In Figure 2.10 we display diffusion-driven u(z) and

s(z) profiles with p = 0.001, and, in Figure 2.11, stress-driven u(z) and s(z) profiles

with p = 1. The effect on u(z) of increasing p is as predicted by equation (2.65),

and the behavior of s(z) is as predicted by equation (2.64).



45

8 —\ 1 ap -
o8 |- 1 - §
ol 1 x — . , .
0 50 100 e 2o o 50 100 0 20
a: u(z) with p = 0.001 b: s(z) with p = 0.001

Figure 2.10: Profiles of diffusion-driven u(z) and s(z); p = 0.001
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a: u(z) with p=1 b: s(z) with p=1

Figure 2.11: Profiles of stress-driven u(z) and s(z); p =1
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2.3 Conclusions

The polymer-penetrant system modeled by equations (2.1) and (2.2) possesses small-
amplitude traveling-wave solutions C(Z) and o(Z), where Z = X — VT, satisfying
the equations and the boundary conditions C(—o0) = k (k small), C(+o0) = 0,
when the diffusivity and relaxation time are taken to be essentially constant in
the glassy and rubbery regions of the polymer, varying only at the gla.ss—rubber
transition, and the stress evolution model is taken to be either purely concentration-
forced or purely concentration rate-forced. When the diffusivity and relaxation time
are both taken to be identically constant throughout the polymer, C(Z) and o¢(Z2)
can be expressed as power series in the small dimensionless parameter v. For both
stress evolution . models, C(Z) simply drops smoothly from k to 0. The stress o(Z)
exhibits different forms in the two models. In the concentration rate-forced model,
stress builds up at the front of the penetrant wave, but the polymer relaxes quickly
back to an unstressed state behind the wavefront. In the concentration-forced model,
the section of polymer behind the wavefront never relaxes; in fact, the stress behaves
throughout the polymer like the concentration, both variables exhibiting their largest
values at Z = —o0.

A stability analysis was performed on the solution C(Z). In the concentration
rate-forced model, the first term of the small-y expansion for C(Z) was found to
be stable to small perturbations for a restricted set of parameter values; in the
concentration-forced model, the first term of the small-y expansion for C(Z) was
found to be stable for all parameter values.

The equations were also studied for nonconstant diffusivity and relaxation time.
A simple approximation showed that the stress o would reach much larger values
when the relaxation time varied than when it was constant. Another approximation

indicated that the concentration C' would take different forms at the glass-rubber
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transition, depending on whether the equations were stress driven or diffusion driven.

Both effects were found when the equations were solved numerically.



Chapter 3

Solutions on a Bounded Domain

In this chapter, we turn from the solution of equations (1.5) and (1.6) on an infinite
domain to the very different préblem of solving the system on a finite domain.
We wish to discover how the concentration and stress profiles of an initially dry
block of polymer set between two penetrant reservoirs evolve through time. In this
model, the flux of penetrant depends linearly on the gradients of both the penetrant

concentration C and the induced stress o:

oc  _8C o

o7 = Poxe T Eaxe (3.1)
where D and E are constants. We take the stress evolution equation
0o aC
-a—T = —-p(C)o + agz—, + bC, (3.2)

where a and b are constants and

_Br+Bc , Pr—PBa C — Crg
B(C) = 5 + 5 ta,nh—————AC

is the function shown in Figure 1.2. This equation responds differently to a sudden
influx of penetrant than to a gradual penetrant buildup. We expect to find that
o & aC after a sudden penetrant jump, but that ¢ = bC/3(C) during a gradual

penetrant buildup.

48
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We will nondimensionalize the system (3.1), (3.2) so that the nondimensional
analogue of D and E is taken to be a single parameter d, and we will assume that
d is large. When we analyze the system under this assumption, we will find that
there is a short initial time interval during which the stress and concentration obey a
Fickian diffusion law. After this interval the solutions become nearly discontinuous,
with true discontinuity appearing in the steady state.

We look for solutions C(z,t) and o(z,t) on the domain
0<X<L, T>0,
and apply the initial conditions
C(X,0) = O‘(X, 0)=0
and the boundary conditions
C(0,T) = Co, C(L,T) = C4,

where we require

Co < Cgg < C4.

Cohen and White [4] studied the system (3.1), (3.2) in the case a = 0. They found
solutions C(X,T), o(X,T) which are smooth over most of the range 0 < X < L,
but which exhibit steep gradients in C' and o at one interior point X*. We will solve
equations (3.1) and (3.2) with a # 0 and compare our results to those of Cohen and
White. We will examine a case in which the nondimensional analogue of b dominates
the nondimensional analogue of @, and a case in which the opposite is true; in both
cases, we will compare the results C and o obtained when Cy = 0 to those obtained

when Cy # 0.
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We nondimensionalize the problem by defining

C(X,T) = Ciu(z,t)
ox,7) = 2.4
E
= X
TET
t = ﬂRT,
to obtain the equations
EUt = Uzy + Szz, (33)
8¢ + b(u)s = pu + ru, (3.4)

which hold on 0 < z < 1, t > 0. The boundary conditions transform to
u(0,t) = o, u(l,t) = 1, (3.5)

and the initial conditions become

u(z,0) = s(z,0) = 0. (3.6)
Here
1 D
E= > where d = Bnl?’

and we will study the system (3.3), (3.4) under the assumption that ¢ is very small.

The nondimensional parameters are defined by

_ bE
p= BrD
.= aF

- D

Co

= —<1

a C,

The function b(u) is given by

B(Chu) _ 1+w+1——wtanhu—uRg

ow) = =5, 2 ) Au
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b(u)
1
Au
w
u
0 o URG 1
Figure 3.1: b(u) = 3% 4 1=¢ tanh 2=tz
where

wsg%<l;uRGE%Elg<l;AuE%'T<l'
b(u) is sketched in Figure 3.1. _As we did in Chapter 2, we will take w and Au to
be very small, so that our results will reflect a large and abrupt jump in relaxation
time as the polymer changes from its rubbery state to its glassy state.
For later use, we will find it convenient to know the time history of s(z,t) at the

boundaries £ = 0 and z = 1. To find this information, we evaluate equation (3.4) at

z=0and at z = 1:

z=0: -aa—ts((),t) = —b(u(0,1))s(0,t) + pu(0,t) + r-g-t-u(o,t)
= —b(a)s(0,t) + pa
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S0
= pa —b(a)t
s(0,1) _b(a) + Ae , A a constant.
Similarly, we find
p

s(1,t) = + Be~*Mt B a constant.

5(1)

A and B are determined below.

3.1 Perturbation Analysis for ¢ Small

We begin our analysis by looking for solutions u(z,t) and s(z,t) as perturbation
series in the small parameter €. By the techniques of singular perturbation theory
[16], we find that there is an initial layer of thickness O(g) near ¢t = 0 for all z in

0 < z < 1. In the outer region away from ¢ = 0, we insert the expansions

u(z,t) = wuo(z,t) + O(e)
s(z,t) = so(z,t) + O(e)

into equations (3.3), (3.4) to find the O(1) system

0 (40)zz + (30)zz (3.7)

(s0): = —b(uo)so + puo + r(uo):- (3.8)

By solving equation (3.7) and using the boundary information for u and s, we find

readily that

uo(z,t) + so(z,) = |a + % + Ae"’("‘)‘] (1-z)+ [1 + Wpl_) + Be~t 2. (3.9)

We solve (3.9) for so(z,t) and insert the result into equation (3.8) to find a nonlinear

ordinary differential equation for ug(z, ?):
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Ouo p+buo) pa_ ~b(a)e| (1 _ P —squye| | (o)
FYa T, Yo a+b(a)+Ae (1-z)+ 1+b(1)+Be 3 G

_ =b(a)Ae @)1 — z) — b(1) Be—*Vtg
- 1+r

in which = appears only as a parameter. This equation cannot be solved analytically

, (3.10)

in general.

Before we examine equation (3.10) further, we find the behavior of u and s in the
initial layer. In this layer, equations (3.7) and (3.8) are not good approximations to
the full system (3.3), (3.4); we cannot simply neglect the term u, in equation (3.3).

We stretch the region near ¢t = 0 by setting

T=

o | -

, u(z,t) = v(z,7), and s(z,t) = w(z, 7).
To lowest order, we take
v(z,T) = vo(z, 7) + O(¢), w(z, 7) = wo(z, ) + O(€);

equations (3.3)-(3.6) then yield

(UO)T = (vo)z‘-‘l-‘ + (wO):z:an (311)
(wo)r = r(vo)r, (3.12)
v9(0,7) = @, vo(1,7) =1, (3.13)
vo(a:, 0) = ’UJQ(IB, 0) = 0. (314)

Equation (3.12) and the initial conditions (3.14) for vy and wp imply that
wo(z, 7) = rve(z, 7). (3.15)
With this form for wp, equation (3.11) becomes

(UO)T = (1 + T)(vo)m, ‘ (316)
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1.0 :

e t = 5 x 1072
et =1 x 1072
et = 1 x 1073
_________ t=1x10"*%

t=1x10"3

u(x.t)

Figure 3.2: First-order u(z,t) = s(z,t) for small t; a =0

a simple diffusion equation. We solve equation (3.16) for vo and use (3.15) to deter-

mine wp, finding

vo(z,7) = a(l—2)+c+23 -(:-1-1)-;;:—2 sinnrz e~ (1) (3.17)
n=1
wo(z,7) = rvo(x,7)
- (_l)n—a . —n222(14-r)7
= r{a(l—x)+x+2,12=:l—-;7r———smn7ra:e (+n)r 3 | (3.18)

In Figures 3.2 and 3.3, we display graphs of ve(z,7) for several values of t = e7.
We use the values ¢ = 0.05 and » = 1 in both graphs; @ = 0 in Figure 3.2 and
a = 0.5 in Figure 3.3. Since r = 1, vy and wq are equal. Note that neither p nor b(u)
plays a role, to first order, in v or w. We see that the sudden influx of penetrant has
resulted in the relation w & rv; when transformed back to the dimensional variables,
this relation becomes ¢ = aC, the result we expected to observe.

Since wq(z,T) is completely determined, we must fix the constants A and B to
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e U= 5% 1072

X
Figure 3.3: First-order u(z,t) = s(z,t) for small ¢; o = 0.5
match the boundary values of wy; that is,

Jim wo(0,7) = %ina.s(O,t)

and
Hm wo(1,7) = %in&s(l,t),
so that
_ b« _ _pa
ra = _b(a) +A= A=ra —b(a)
and

r=L+B=B=r——E—

b(1) b(1)’
Therefore, the fully specified boundary data for s are

s(0,¢) = rae @) 4 ——bl()a) [1 - e'b(a)t]
a

= pe=btWt L P [y _ b
s(L,t) = re +b(1) [1 e ]
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Since lim;_(0,t) = ra and lim;_o8(1,t) = r, stress begins to build up at the
boundaries of the polymer as soon as the penetrant starts to diffuse in.

If we set r equal to zero in (3.17) and (3.18), we obtain the same initial-layer
functions that Cohen and White found when they examined the case r = 0 [4]. Our
results with r # 0 are quite different from theirs, in that the stress s, rather than
simply equaling zero throughout the initial layer, is a nonzero function of z and ¢
with the same shape as the concentration u.

We must verify that the inner functions vy, wy and the outer functions ug, sg
are consistent with each other. We do so by evaluating vy + wo and ug + so on a
t-interval where they are both defined: We set t = nt,,, where ¢ < n(e) < 1 for all ¢.

As € — 0, keeping t, fixed, ¢t — 0 and 7 = y(¢)t, /e — oo. Therefore, as ¢ — 0,

wo(e,8) + s0(2,t) = uo(2,ntn) + So(z, 7ty)
= a [1 + 3(’(’7) + (r - ?:7%5) e'b(")”t"] (1-a2)

+ [1 + % + (r - 'Iff)) e_b(l)"t"] z

=8 A +7)a(l - z) + 2
and

'Uo(a,', T) + wo(:c, T) = ‘Uo(JL‘, ntﬂ/s) + on(.’D, ntﬂ/s)
= (14l —z)+z]

o0 (__1 n _
+2(1+r) 3 —7-)1;—“ sin nrg e~ (L+r)nin/e
n=1

2 A+l -2)+ z]

= li_z;(l,{uo(a:,t) + so(z, 1)}

The solutions in the initial layer do indeed match the solutions outside the layer to

first order.
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We have, in the functions (3.17) and (3.18), analytical expressions for the first-
order behavior of u and s for small time. In order to find the first-order behavior of
u and s for longer time, we must solve the nonlinear equation (3.10) for uo and insert
the result into the expression (3.9) to find s,. We cannot solve equation (3.10) ana-
lytically as it stands; however, we can find the approximate behavior of ug by solving
equation (3.10) in the limiting case Au — 0. In this limit, b(u) is a step function
and the equation simplifies into two first-order ordinary differential equations with

constant coeflicients:

) wt+p _ w(l+p)—alw+p) | aw+p)
Uo < URG: (Uo)t+1+ruo = T5r T+ Tor
l=-w)p—-r) _,
+ Tor ze (3.19)
_ l1+4p _ w(l+p)—aw+p) | aw+p)
to > upgt (uo)e + 1+ ruo - w(l+7) o w(l+7)

_ ol —w)(p—wr)

T+ (1-z)e™™.  (3.20)

Since these equations are to hold in the outer region away from ¢ = 0, we cannot
use the initial condition u(z,0) = 0. Instead, we use the 7 — oo limit of the initial

function vo(z,7) as the initial condition for ug:
lim vo(z,7) = a1l — z) + = = uo(, 0).

We see immediately that, when ¢ = 0,

uo(,t) < upg &>z < E%-Of = ¢re (3.21)
and
uo(z,t) > upg <= z > B 2% (3.22)

l-«a
so that initially there is no ambiguity about the domains on which equations (3.19)

and (3.20) hold. We assume that (3.21) and (3.22) hold for all time; this assumption,
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based on the lack of a flux mechanism in equation (3.10), will be shown to be valid
when we solve the system numerically below. We can easily integrate equations (3.19)

and (3.20) to find

wil+p)  (-w)p-r) _

wtp p-r—(l-w)
__(-wp-wr) s

eE e e L (3:23)

wtp _ (-w)p—wr) _.
w(l+p) wp-—wr+1-—uw]

(1-w)(p—r) e—}—}ft
+(1+p)[p—wr+1—w] } (3.24)

z < zrg: uo(z,t) = a(l—z)-{—z{

T > ZTpg: up(z,t) = x+a(1—x){

so(x,t) is obtained from uo(z,t) via equation (3.9).

We are interested in the cases p > r, in which u dominates u; in the stress
evolution equation (3.4), and p < r, in which u; dominates u. In Figures 3.4 and
3.5, we show ug and s, for several values of ¢, for the case p > r. In these figures we
use the parameter values p = 1.5, upg = (1 + @)/2, w = 0.01, and r = 1. We take
a = 0 in Figure 3.4 and a = 0.5 in Figure 3.5, so that we can see the results for both
zero and nonzero penetrant concentration incoming at z = 0. The p < r results are
displayed in Figures 3.6 and 3.7 where, again, o = 0 and a = 0.5 respectively, and
the parameter values are p = 0.001, upg = (1 + @)/2, w = 0.01, and r = 1.

We see that these outer solutions are very different from the diffusive solutions
in the inner layer near ¢ = 0. In all cases, the outer solutions display a steep front
at the interior point zrg. When p < r, the height of the front reaches a maximum
at finite time and then collapses down; when p > r, the height of the front is still
increasing at ¢ = 50. We note also that the position of the front is determined by the
parameters upg and «, and does not vary with ¢. Finally, we observe that the slopes
of the line segments composing ug in ¢ < g and = > zpg are negative for large

time when a = 0.5 and p = 1.5, and positive in the other cases. This characteristic



ulx.,t)

s{x,t)

-
(@]

1.5

1.0

Figure 3.4: Profiles of ug and sq for large t; p=1.5; a =0; Au =0

I | i ]
ot v v e s e § 22 50
e s e £ = 10
————— e e £ = 5
_________ t=1
U N ]
i
1l
f —
!
!
I,/
-
,/’, | .
//,
-
/””
-
f’”, ,
o , ]
u3 1= ] | ] )
.2 .4 6 .8 1
X
a: ug(z,t)
T T T T :
P
/ -,
o/’ -’
rd
// //’
. rd
A e
/"4 /‘ ’//
Y \ - e
27 ‘ - //,
/// 1 / P -
Va -~
/../ /’ Pre
7 e
Vi
// /"\ /”
yd ,’ \ i
V4 ’ \ -
7 e (Yed
# .~ -
V4 -~
-
o~ rd
v -~
/ /,/ -
’ e
/ 4
7
!/
//, )
s
// P
4
2
//
2
4
| ] ] ]
.2 4 .6 8 1

X
b: so(z,1t)

39



8.0 I r ! !
et = 50 )
_ i
g0k W mmrmmee—e— t=10 N ]
—————— e e £ = 5 ! ~
_________ o i N
[ S
t=05 ! \'\
i '\
i .
. i \'\
- !
- ! . .
x 4.0 — j \ h —l
A ' .
o | A
i A
5 ;
I
!
! N
2.0 P~ > o
Py . A
B i e B
[ ™
i T T e Ty ~
il =
U
/
0! : l ] ,
- ; P 6 1.0
X
. a: UO(xa t)
\.\. i Ll N
\,\.
™.,
\,\.
\,\
25 |- o |
\,\.
N
\,\.
~.
~,
\_\
20 . i
\_\'
..
.,
~,
— ™
= !
x 15 \ |
= i
\
\
\
10 +~ ~ |
5 T e - '\_\-\- -
——————————————————— \
————————————————————— \. ~
N, e e s
et T~
0! I l |
- . 4 5 1.0

X
b: so(z,t)

Figure 3.5: Profiles of ug and s, for large t; p = 1.5; « = 0.5; Au =10

60



61

I I
Ny
L
\ ,.J.—
Y
- \ .,./ —
A
\ 3 L
\ //
o o w / //
M WD = O \ -
[ T T A
o e e e e A
I I AR
A A\
L P Wiy
I | | ///
— byl N\
I | \
L \
Poypogod N\
[ I S\
W
/
i I
o < o
-

(1'x)n

1

Y .
3 I ]
\
A
A
\
\
\
)
\
\
A
\
— \ -
A
\
\
A
\
\
\
\
\
\
\
\
f— \
\ l
—] \
-~ \
Ps \
1N A
p— \V —
T et o e P e
& [y N
\ AR
. \ W\
< \ LY
// LY
L — L\ T
\ W\ —
\ Loy
\ L
\ L
\ Yo
\ LY
AR
\ A
W\
\ A
N L
\
— / \ —
NRA
\ \
A\
\ MW
//N.
\
N
a
N\
| | |
(o] o (@] o o
@ w < o ()

.0

1

X
b: so(z,1)

Au=20

p=0.001; a = 0;

.
b)

Figure 3.6: Profiles of ug and s, for large ¢



u(x,t)

s{x,t)

| ). ———
T 7
.90 = i /z” =
e 1 = 50 e
_____________ t=10 ,'
————— e e £ = § f’
.80 - if .
_________ t=1
—_— =05
.70 —
.60 | -
”—”,:- _____________________ !
Leen I n zund
.50 ez I 1 1
0 .2 4 .6 o .8 1.0
X
a: ug(z,t)
.80 I I T I

.40 -
______________________________________ }‘__________________-___—————-——-
e !
i
%
I
.20 - i -
.00 L I ] o
.0 .2 .4 B .8 it 0

X
b: se(z,1)

Figure 3.7: Profiles of uq

and sq for large ¢; p = 0.001; = 0.5; Au=0

62



63

will be furtherbexplored in § 3.3 when we carry out a steady-state analysis of the
equations.

When Awu is not equal to zero, but is very small, equation (3.10) must be solved
numerically. Since it is a first-order ordinary differential equation in ¢, we compute its
solutions easily using a fourth-order accurate Runge-Kutta method [2]. Our results
are presented in Figures 3.8 (a = 0) and 3.9 (a = 0.5) with the parameter values
p =15, upe = (1 +¢)/2, Au = 0.01, w = 0.01, and r = 1, and in Figures 3.10
(e =0) and 3.11 (@ = 0.5) with p = 0.001, upg = (1 + @)/2, Au = 0.01, w = 0.01,
and r = 1. These functions are all very similar to the corresponding Au = 0
solutions. .

In the two sets of functions (3.17), (3.18) and (3.23), (3.24), (3.9), we have
explicit asymptotic approximations to u(z,t) and s(z,t), for small and large times
respectively. Figures 3.2 to 3.7 comprise solutions computed from these asymptotic
approximations. We will now compare them to the actual solutions, which we find

from numerical analysis of the full system (3.3)—(3.6).

3.2 Solutions of Full Equations

We wish to solve the full system (3.3)-(3.6) so that we can verify the perturbation
analysis of § 3.1 and also find the behavior of u(z,t) and s(z,t) beyond O(1) in ¢.
Because we cannot solve the equations analytically, we analyze them numerically.
We need a numerical method that will resolve both the initial layer in ¢ and the
steep front near £ = zpg. In the spirit of Kdlnay de Rivas [15], we perform a cubic

transformation on both independent variables, setting
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&€ = z—zpg

and
u(z,t) =a(,7); s(z,t) =3(¢, 7).

Near t = 0, dt/dr = 372 = 3t*/3 is very small, so a uniform mesh in 7 corresponds to

a very small mesh spacing in ¢. Similarly, dz/d¢ = 3(z — zre)?/? is very small near
T = Ipg, so a uniform mesh in ¢ corresponds to a small mesh spacing in z.

The equations change under these independent-variable transformations to

g % 0% ou O3
etz = 7 [f (rag—ﬁaz'z')‘?('a#a—eﬂ (32)
ou Js3
rar— 5 = STb@ - (3.26)

which hold on the range
§0<€<€1,T>07

where

b = - (me==)”

l—«a

(1 _URG)1/3
l—-a )

£1

]

7 satisfies the boundary conditions
U(&O’ T) =a, U(ﬁlv‘r) = 1’ (327)
% and § satisfy the initial conditions

7(€,0) = 3(¢,0) = 0. (3.28)
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Since equation (3.25) is stiff, we use an implicit method to solve it [2]. The method
used to solve equation (3.26) is also implicit, except that the nonlinear term (%) is
modeled explicitly. We integrate the equations over the range 7 = 0 to 7 = 4.642,
corresponding to the range ¢ = 0 to ¢ =~ 100, checking for accuracy at T-intervals of
0.05.

We present the results, as functions of = and ¢, in Figures 3.12 through 3.15.
As in § 3.1, in all cases we use the parameter values ¢ = 0.05, upg = (1 + «)/2,
w = 0.01, Au = 0.01, and r = 1. The four graphs cover the cases o = 0, p = 1.5;
a=05p=15 a=0p=0.001; and a = 0.5, p = 0.001. We find solutions
which look diffusive for very small ¢ (¢ = 1075 and 10~3) and shocklike for larger ¢
(t =1, 10, and 100). In all cases of the parameters a and p, the solutions are almost
identical to the corresponding functions found by perturbation techniques in § 3.1.
Due to the higher-order ¢ terms, u and s are nét composed of line segments for large

t, but of smooth curves away from z & rrg and steep curves near z x zpg.

3.3 Steady-State Solutions

We conclude our analysis by looking for the steady-state behavior of u and s. Noting
that the solutions found in the previous sections are shocklike at long times, we expect
to find shocks in the steady-state solutions [24].

If we let u,(z) and s,(z) be the steady-state solutions of equations (3.3) and

(3.4), we see immediately that u, and s, satisfy
(Us + 85)ze =0 (3.29)
b(u,)ss = pu, (3.30)
and that u, satisfies the boundary conditions

us(0) = o, us(1) = 1. (3.31)
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Figure 3.12: Profiles of u and s for small and large ¢; p = 1.5; a = 0
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Equation (3.29) can be solved immediately to yield

p po pa
us(z) + s5(x) = |:1+-5(—1—)—a——-5za—5] +a+m,

From equation (3.30) we have

_ puy(z)
ss(z) = Bus(2)) (3.32)
so that
P - A 3 TR Lo .
() [” b(us@:))] [”b(l) ) R M

(Note that, in the original, dimensional variables, relation (3.32) becomes o =
bC/B(C), the relation which we expected to find in regions where o and C evolve
slowly.)
The formula (3.33) cannot be used to express u, explicitly as a function of z, but
it can be inverted to give z as a function of u,:
us [1+ 525] ~a[1+;{~i,—)=]
L+ —all+g]

(3.34)

z(u,) =

Since we are looking for shocks in us(z), we want to know whether z(u,) possesses
any extrema in 0 < z < 1; an extremum in z(u,) will correspond to a multivalued
“solution” us(z) whose true form will be a shock (see Figure 3.16). z(u;) exhibits

an extremum at any point where z’(u,) changes sign. Now,

p ~pusb'(u»)
b(us)  [b(u)f )

2'(u,) = (const) (1 +

where 1
P 14
t)= |14+ —— — 1+ — .
cons) = (145~ |1+ 55 )
Since b(u) is nearly constant except near u = upg, the third term in the expression
for 2’(us) can be neglected near u, = @ and u, = 1, so that z'(u,) will be proportional

to the positive quantity 1+ p/b(u,) near these points. Near us = ugg, b'(u;) may be



() , ()

shock :

a: z(us) b: u,(z)

Figure 3.16: z(u,) and corresponding u,(z) with shock

large enough so that the third term in the expression for ' (us) will force z'(u;) to
be proportional to a negative quantity. Therefore, it is indeed possible for u;(z) to
contain a shock. |

To get a clearer idea of the form of u,(z), as well as some indication of the form of
ss(z), we examine the limiting case Au = 0. In this case, we can solve equation (3.34)

for uy(z), finding

u, <upg: us(z) = a4+ [Ei—lﬁ;pp_) — aJ z (3.35)
. _ alw+p) a(w+p) .
us > upg: us(z) = m + [l - (0 +P)J z, (3.36)

so that u,(z) consists of two distinct line segments; these functions are, in fact, the
t — oo limit of (3.23) and (3.24), the time-dependent, first-order, Au = 0, outer

approximations to the solution u of equations (3.3) and (3.4). If
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a<w(1+z’)

3.37
w+p ( )

b
then both segments have positive slopes, as in Figure 3.17a; if

S w(l + p)

3.38
w+p ( )

a ’

then both segments have negative slopes, as in Figure 3.17b. With w set to 0.01, as
in sections 3.1 and 3.2, relation (3.37) holds in three of the cases studied in those
sections: a = 0, p = 1.5; a = 0, p = 0.001; and a = 0.5, p = 0.001. Relation (3.38)
holds in the case a = 0.5, p = 1.5. We saw in the previous sections that, as ¢ grows
large, u(z,t) tends toward a shape with two widely separated smooth curves (or, to
first order in ¢, two line segments) connected over a short distance in = by a curve
with a steep gradient. The sign of the derivatives of these curves (to first order in
€, the slopes of the line segments) is, in all four of the parameter cases, as predicted
by (3.37) and (3.38).

When Au = 0, we can find an expression for s,(z) directly from (3.32), (3.35),
and (3.36):

us < URG: Ss(T) = %C-Y' + g [g-(ﬁfl - a] z (3.39)
_ pa(w + p) _owtp)l
Us > URG: S5(T) _w(l T7) + [1 o1 +p)] . (3.40)

8s(z) thus consists of two line segments with the same-signed slopes as u,(z).
We note that there are two special cases in which u, and s, do not contain shocks.
When p = 0, so that the stress model is forced by the concentration rate only, the

steady-state solutions are simply

us(r) = a(l—z)+«z
ss(z) = 0.
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When w = 1, so that the relaxation time 1/b(u) is identically equal to 1 and the

system (3.3), (3.4) is linear, the steady-state solutions are

a(l-z)+z

us(z)

ss(z) = pla(l —z)+1z].

In all other cases, u, and s, contain shocks.

3.4 Conclusions

When ¢ = SrL?/D is taken to be small, the polymer-penetrant system goes through
two very different phases as time elapses. When the penetrant has been moving
through the polymer for only a short time, the concentration and stress show smooth,
diffusive profiles. After a longer time has elapsed, the concentration and stress pro-
files are no longer smooth, but instead possess steep gradients at the point where the
polymer undergoes its glass—rubber transition. The steady-state solutions contain
shocks at the glass-rubber transition point.

We can write approximate representations of the concentration and stress as
explicit functions of distance and time when ¢ is taken to be small and the polymer’s
relaxation time is taken as piecewise constant, dropping where the polymer undergoes
its glass-rubber transition. While these explicit functions are only approximations to
the actual concentration and stress profiles, they provide correct information about
both the short-time and the long-time behavior of the concentration and stress. For
small times, the explicit functions predict correctly that the concentration and stress
evolve diffusively; for longer times, they predict the evolution of steep gradients in the
concentration and stress, and, in steady state, they can be used to derive a relation
among several of the problem’s parameters which predicts the correct shapes of the

concentration and stress profiles.



Chapter 4

Conclusions and Future Research
Suggestions

We have presented analysis of a mathematical model of non-Fickian polymer-pene-
trant drug-delivery systems. The model is composed of evolution equations for the

penetrant concentration C(X,T) and the viscoelastic stress o(X, T):

oC J oC oo
T ~ 3% (D(C)BY + Ea_)?) +uC(k-0) (4.1)
oo oC

We have taken the diffusivity D(C) and the relaxation time 8(C)~! to be either
constants or smoothed step functions with positive slopes. We defined these step
functions to change value near Crg, the concentration at which glass-rubber tran-
sition occurs.

This model accounts for the non-Fickian behavior of the polymer-penetrant sys-
tem by adding stress-induced flux to the Fickian flux and by modeling the interaction
of penetrant molecule with polymer site as a bimolecular reaction. The glassy poly-
mer’s resistance to diffusion and its slow relaxation after deformation are modeled

by taking D(C) and B(C) to be small in C < Cgg.
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We used perturbation analysis and numerical integration to examine the equa-
tions on two different domains. In Chapter 2, we took X € (—o0,+00) and found
traveling-wave solutions C' and o as functions of X — VT, V constant, under the
assumption that the nondimensional analogue of k£ was small. In Chapter 3, we took
g=0and D constant, and assumed that the nondimensional analogue of D and E
was a single large parameter. We examined the evolution in time of C' and o on the
finite domain X € [0, L], taking as boundary conditions infinite penetrant reservoirs
of constant concentration at X = 0 and X = L. We took the concentration in the
X = 0 reservoir to be less than Cgrg and the concentration in the X = L reservoir

to be greater than Crgs in order to find interesting behavior.

Results

In Chapter 2, we presented traveling-wave results of our study of the model. We
studied two cases for equation (4.2), a = 0 and & = 0. In both cases we started by
analyzing the equations with D(C) and 8(C) both constant. Regular perturbation
expansion then showed that in both cases there was a solution C' which dropped
smoothly from C(—o0) = k to C(400) = 0. When we took b = 0, we found that
o was very small over most of the range —oo < X — VT < 4+o00. Only where C
was markedly different from either & or zero did o rise far above zero; even at its
largest, the nondimensional analogue of o was much smaller than the nondimensional
analogue of C. On the other hand, when we took a = 0, we found that, to first order,
C and o were equal.

We analyzed the stability of C' to small perturbations in both cases. In the case
b = 0, we found a restricted range of parameter values within which C' was stable.
In the case a = 0, we found that C was always stable.

We proceeded to study both cases under the assumption that D(C) and B(C)
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were smoothed step functions. We discovered that the problem was no longer solvable
by a regular perturbation expansion; the expansion broke down near the glass-
rubber transition concentration Crg. We found the behavior of C near Crg by
approximating D(C') and f(C) as true step functions which changed values at Cpg.
We discovered that the slope of C steepened near C' = Crqg in the diffusion-driven
instance DCx > FEox; in the stress-driven instance DCx < Eoyx, the slope of
C flattened near C = Cpg. We found that we could approximate o by a regular
perturbation expansion to first order and that, both for ¢ = 0 and for 4 = 0, o reached
larger values when D and (8 were not constant than when they were constant. We
successfully tested our analytical results by integrating the equations numerically,
using a multiple shooting scheme.

In Chapter 3, we presented results of a singular perturbation analysis of the model
equations on a finite domain. We found an initial layer near T = 0. In this layer,
C and o evolved according to a Fickian diffusion equation with diffusivity D + aF.
Outside the initial layer, o could be solved for as a function of C, and C evolved
according to a nonlinear ordinary differential equation in T, in which X appeared
only as a parameter. This ordinary differential equation could be solved under the
assumption that (C) was a true step function. The resulting solutions C' and o
each consisted of two distinct line segments, with a jump at a fixed internal value
of X. When 5(C) was taken to be a smoothed step function and the equation for
C was integrated numerically, the jumps in C and o were replaced by steep, but
not infinitely steep, fronts. The full set of equations was then solved numerically;
the results were found to bear out the predictions of the perturbation analysis fully.
Finally, the steady states of C' and ¢ were examined and found to contain shocks.

In Appendix A, we presented traveling-wave solutions of Fisher’s equation

Ju 0 Ju
%= 9. (d(U)-a;) +u(l —u),
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where we took the diffusivity d(u) to be a smoothed step function like our D(C). We
found a qualitatively new traveling-wave solution u of the equation, one exhibiting

steepening of its slope near the value of u at which the diffusivity rose sharply.

Suggestions for Future Research

We begin the suggestions for future research with points about the particular model
that we studied. The existence and stability of traveling-wave solutions under the
assumptions of constant diffusivity, constant relaxation time, and small saturation
concentration have been demonstrated in Chapter 2. General existence and stability
results for the variable diffusivity, variable relaxation time cases remain to be found.
In addition, the equations have not yet been studied with both ¢ and b nonzero in
the traveling-wave frame.

The model itself could be modified. For example, changes could be made to the
coefficients in the equations. The coefficient which we have called E ought to be a
function of C satisfying E(0) = 0; when there is no penetrant present, there cannot
be any penetrant flux, no matter how large the stress gradient is. Our coefficients a
and b could also be taken as functions of C.

The model would probably produce quite different results if different relation-
ships held among the various nondimensional parameters. In both chapters we have
performed perturbation analyses about one small parameter and assumed that all
other parameters were O(1); taking the small parameter to be O(1), or taking some
of the others small as well, would change the results greatly. This consideration
leads immediately to the most pressing need for further study: quantitative com-
parison of the mathematical results presented here to experimental results from the

polymer-penetrant drug-delivery field.



Appendix A

Traveling-Wave Solutions of
Fisher’s Equation

Fisher’s equation

uy = (d(u)ug)y + u(l — u) (A.1)

arises in many biological and physical systems [10,11,19]. It has been studied ex-
tensively with many different linear and nonlinear functional forms for d(u) [10,11,
19,20,21]. Although a rather complete theory for traveling-wave solutions exists, we
believe that we have produced a novel traveling-wave profile u. This profile emerges

when we study equation (A.1) with

5 5 tanh o

d(u)=1+w+1—w U= U (A.2)
Here0<w<1,0<up<1,and 0 < Au < 1.

We were motivated to take d(u) in this form because of our interest in traveling-
wave solutions of the system (1.5), (1.6), which contains coeflicient functions of
the same shape as d(u). In fact, the analysis of Fisher’s equation presented in
this appendix led us to the correct method of attack on our polymer-penetrant
problem. Of particular interest to us is the work that has been done on existence

of traveling-wave solutions of equation (A.l). Since the equation is second-order,
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its traveling-wave solutions can be tracked easily in the phase plane. By making
use of the already existing, large body of knowledge on Fisher’s equation and the
well-understood method of phase plane analysis, we obtain traveling-wave solutions
of equation (A.1) with our choice for d(u). We can then apply our knowledge and
methods to the solution of equations (1.5) and (1.6).

We put equation (A.1l) into the traveling-wave frame by setting
z =z — vi, v constant.

The resulting equation is
(d(u)u’) + vu’ + u(l — u) = 0. (A.3)

We look for monotonically decreasing solutions of equation (A.3) satisfying 0 <

u(2) <1 and apply the boundary conditions
u(—o0) =1, u(+o00) = 0.

For d(u) = A, A a positive constant, a traveling-wave solution satisfying these bound-
ary conditions has been found by Canosa [3] as a power series in the small parameter

1/v%:

1 1 ACoe™” Coe*/ 1 )
u(z) = 1T Coclv + ‘17(1 T Coc ) In (T Cocl Y2 +Ci| +0 (v“ )

where Co and C; are constants. Furthermore, for d(u) = A > 0, traveling-wave
solutions of equation (A.3) have been searched for in the (u,u’) phase plane, with
results as in Figure A.1. Since u must lie between zero and one, we cannot accept the
solution graphed in Figure A.1b, and, therefore, we require v > 2v/A. We note that
the unacceptable solution shown in Figure A.1b looks quite reasonable near u = 1;

its deficiency becomes apparent only as it approaches u = 0.
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a: v > 2VA b: v < 2VA

Figure A.1: (u,u’) phase plane for d(u) = A

To study the behavior of equation (A.3) with d(u) as in equation (A.2), we first
consider the extreme case Au = 0. d(u) is piecewise constant in this case, so that

equation (A.3) becomes

u>ug u'4ovd+u(l—u)=0 (A4)
u<ug: wu'+ou +u(l-u)=0. (A.5)

If we require continuity of the flux J for all z, where
J = —d(u)u, = —d(u)u,
then at u = ugy we set the condition

!
1= YL
UR— 9

w

where the subscripts R and L refer respectively to the right and left halves of the

(z,u)-plane. Since w < 1 and v/(z) < 0 for all z, we see that
lug| > |ul] <= uR < u} at u = ug,

so that the profile of u(z) against z is as in Figure A.2.
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(2)

e

Ug

Figure A.2: u(z) when Au =0

Strictly speaking, the “function” u(z) thus defined is not a solution of equa-
tion (A.3). As we will see later, however, u(z) is the relation obtained from a true
solution of equation (A.3) in the limit Au — 0, so that study of the relation u(z) is
worthwhile.

We have not yet, in fact, proved the existence of a solution u(z) satisfying (A.4),
(A.5), and the boundary conditions u(—o00) = 1, u(+00) = 0. We prove the existence
of u(z) by locating it in the (u,u’) phase plane.

The stationary points of both equation (A.4) and equation (A.5) are the same:
(u,u’) = (1,0) and (u,u’) = (0,0). The point (1,0) is a saddle point in both systems,
and has an outgoing arm that moves through u < 1, v’ < 0. Therefore, in the region
u > ug where equation (A.4) holds, we have the first part of the monotonically
decreasing solution, satisfying u(—o0) = 1, that we want.

When the curve we are following reaches u = uo, it must link up to a solution
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Figure A.3: (u,u’) phase plane displaying Au = 0 solution trajectories

of equation (A.5). When v > 2./, the stationary point (u,u’) = (0,0) of equa-
tion (A.5) is a stable node. (As we see from Figure A.1lb, taking v < 2,/w leads
to unacceptable behavior near (u,u') = (0,0).) Our solution w(z) can, if v > 21/,
drop from its position (u,u’) = (ug,u}) to the solution curve of (A.5) containing the
point (u,u’) = (ug, uf/w) and follow this curve into the node (u,v') = (0,0).

In Figure A.3, we display a sketch of the (u,%’) phase plane containing the tra-
jectories discussed above. The solid curve is the solution of equation (A.4) that
satisfies u(—oo) = 1. At (u,u’) = (ug,u}), u drops onto the dashed curve, a solution
of equation (A.5) which contains the point (u,u’) = (ug, u} /w); u(z) then follows
this curve into (u,u’) = (0,0).

We note that the relationship between v and w which must obtain in order that a
meaningful solution u(z) may exist is v > 2,/w. Whatever the relationship between

v and w, the stationary point (u,u’) = (1,0) is a saddle point with an outgoing
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arm in the direction we desire. Only as our solution u(z) approaches u = 0, in the
region where u is a solution of equation (A.5), must we place any restriction on the
relationship between v and w.

If Au is not identically zero, but is very small, we must solve equation (A.3) nu-
merically. Using a fourth-order accurate Runge-Kutta method with step size control
[2], we find that the solution u(z) is very similar to the Au = 0 solution found above,
except in the region near u = uy. We display phase-plane graphs showing solutions
of equation (A.3) for several values of Au in Figure A.4. We use the parameter
values v = 1.5, up = 0.5, and w = 0.5, and decrease Au steadily toward zero in order
to compare the plots to the Au = 0 plot in Figure A.4d. Thé Au = 0 analysis proves

to be useful in predicting the form of the traveling-wave solutions of equation (A.1).
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