
The Quantum Electron Dynamics of Materials Subjected to
Extreme Environments

by

Patrick Lauren Theofanis

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended March 8, 2012)



ii

© 2012

Patrick Lauren Theofanis

All Rights Reserved



iii

To my wife and family



iv

Acknowledgements

This thesis is the culmination of many years of intellectual preparation, nurturing and support, and

I firmly believe that one does not survive a Ph.D. program without a strong network of advisors,

friends and family. I would like to acknowledge the people who have filled those roles for me.

Research with Professor Bill Goddard has been a whirlwind experience. Professor Goddard’s

interests are broad to say the least, and the number of research fields explored in his lab and the

volume of research is astonishing. To succeed as one of Professor Goddard’s students you must

be ready to tackle any problem in any field. Fortunately Professor Goddard is enthusiastic, open-

minded, and eager to help his students. I also appreciate the freedom Dr. Goddard afforded me to

work on projects at my own pace and in my own way. If I needed his advice, he was always available

to help.

Other members of the Goddard lab deserve special mention for their support: Andres Jaramillo-

Botero mentored me on my hypervelocity impact, eFF, shock and fracture projects. Andres is

the kind of man I aspire to become: a polymath scientist, a sportsman, and a devoted father and

husband. Robert (Smith) Nielsen and Jonas Oxgaard have been excellent mentors on catalysis

projects and good friends. Without them I doubt I could have finished the projects that I did. Tod

Pascal, Will Ford, Hai Xiao, and Qi An offered advice, code, or support on research projects. Mu-

Jeng Cheng has been a good friend in the Goddard group, and I enjoyed our talks about research,

travel, and graduate student life.

Of course, in an atmosphere as stressful and intense as Caltech, one needs diversions. I can

credit my friends at Caltech for providing me with a wide variety of them. I have fond memories of

teaching introductory chemistry lab courses with Chithra Krishnamurthy, who is always willing to



v

take a coffee break to chat. Vivian Ferry and David Valley were excellent study buddies during our

first year, and good friends later in the program. I enjoyed earning my pilot’s license through the

Caltech flying club, AACIT, and serving on the board as a student representative. I am proud of

two intramural football championship titles with Playmakers and playing football with Ryan Zeidan,

Jeff Krimmel, Habib Ahmad, Michael Krout, Justin Mohr, Jonathan Young, Chiraj Dalal, Chris

Gilmore, Pat Donovan, Ken Lin, Matt Corrigan, Jon Eilbes, and Steven Becker was a blast. My old

lab mates from the Zewail group hosted some of the most fun diversions. Early morning and weekend

surfing trips to El Porto, C-street in Ventura, and San Onofre with Peter Baum, Jonas Weissenrieder,

and Andreas Gahlmann were much needed breaks from the rigors of research. Andreas Gahlmann

is a great friend, and a good surfing, swimming, cycling, and gym partner. I was proud to have him

as a groomsman at my wedding.

During my years at Caltech, my group of Pasadena family and friends has grown. In my first

year I lived in a house in South Pasadena with Siobhan Donovan, Shari Sakamoto, Harry Plotkin,

and, later Mary Cholko. Through Siobhan and Shari’s soccer team I met my wife, Kelly. Siobhan’s

brother, Patrick, and his girlfriend Heather Lander, are great friends and were roommates during

my third and fourth years of graduate school. Patrick was also one of my groomsmen. T. Boyle’s

Trivia nights with Kelly and her cousins Charlie and Kevin O’Connor and our friends Pat, Heather,

Erin Donovan, Crystal Crockett, Shari and Brendan Grubbs, are always the best way to start the

week. Kathleen McCarthy’s pastries helped keep me fat and happy, and lounging by her pool with

Kelly, and Kathleen’s daughters Meg, Molly and Claire was always a nice get-away.

Writing a thesis and research propositions involves lots of late-night writing sessions, and I am

thankful to have had a furry nocturnal friend to keep me company. My cat Lil’ Thunder always let

me know which literature reference was the most pertinent because he inevitably fell asleep on it

when I needed it most.

There’s no exaggerating the important role my family has played in my life. My Mom, Celina,

and Dad, George, nurtured my intellectual curiosity from a young age. They tolerated my chem-

istry set messes, my experiments with combustion, and my preoccupation with disassembling and



vi

reassembling household electronics. They even supplemented this research with visits to just about

every museum in Los Angeles and New York, and to archaeological sites in the Southwest. My

Grandparents, John and Beatriz Theofanis, encouraged me to question what I had been taught in

school, and encouraged me to think freely. My Abuelita Carmen to this day impresses upon me

that none of the world around us has meaning without faith. My brothers Robert and Eric, and

my beautiful little sister Raquel, were fun to grow up with, and I appreciate their support. The

level of their support is evident in this holiday misadventure: during Christmas break in 2009, at a

particularly gloomy moment in my graduate career, I admitted to my family that I was considering

dropping out of Caltech. Eric responded by saying he never thought of me as a quitter, and he

suggested that I was too stubborn to give up. He said, “It’s like being in a choke hold. I’ll bet you

would fight it and pass out instead of tapping out.” For some reason we decided to actually test

this analogy and Eric proceeded to put me in a full-on choke hold. I recall pulling one of his arms

off, but my next memory is waking up on the kitchen floor with Robert slapping my face back to

consciousness and mom screaming my name frantically. Eric was right; I was too stubborn to give

up and now I’ve accomplished what I set out to do. I’ve finally earned my Ph.D. My in-laws John

and Maureen Heintz, and my new siblings in-law, Molly, Jack and Wil have been welcoming and

supportive.

Lastly, and most importantly, I want to thank my beautiful wife, Kelly. Kelly and I started

dating during my second year of graduate school. Between then and now, we have endured living

at opposite ends of Los Angeles, two three-month separations during my internships in New Mexico

and Michigan, her stint in business school at USC, and the ups and downs of my time at Caltech.

We enjoyed vacations to Portugal, Spain, and Thailand, along with weekend trips to Monterrey,

Santa Barbara, Las Vegas, San Diego, Albuquerque, Santa Fe, Midland, and countless dinners and

outings with our families and friends. We celebrated our marriage with an incredible reception on

October 23, 2010, at the beginning of my 5th year. Kelly’s support and encouragement helped me

find the fortitude to continue working hard when research was difficult or when progress was slow.

She always has the right input when I am a loss for ideas, and her (unsolicited) advice is quite good,



vii

too. I am glad I met my partner in life during graduate school. It tested our mettle, and Kelly and

I are stronger for it. Kelly, love of my life, I look forward for the adventures that lie ahead of us.

Thank you.



viii

Abstract

Quantum wavepacket molecular dynamics simulations are used to study the effects of extreme en-

vironments on materials. The electron forcefield (eFF) method provides energies and forces from

which wavepackets can be propagated in time under conditions ranging from standard temperature

and pressure to tens of thousands of Kelvin and hundreds of GPa of pressure with strain rates as

high as 1 km per second. Using this technique nanometer scale systems with hundreds of thousands

of particles can be simulated for up to hundreds of picoseconds.

High strain rate fracture in solids is accompanied by the emission of electrons and photons,

though atomistic simulations have thus far been unable to capture such processes. The eFF method

for nonadiabatic dynamics accounts for electron emission and large potential differences consistent

with the experiments, providing the first atomistic description of the origin of these effects. The

effects that we explain are (1) loading of a crack leads to a sudden onset of crack propagation at 7 GPa

followed by uniform velocity of the crack at 2500 km/sec after initiation, and (2) voltage fluctuations

in the 10–400 mV range, charge creation (up to 1011 carriers/cm2), and current production (up to

1.3 mA). The development of an effective core potential for eFF enabled this large scale study.

Using the eFF wavepacket molecular dynamics method, simulations of the single shock Hugoniot

are reported for crystalline polyethylene (PE). The eFF results are in good agreement with previous

DFT theories and experimental data which is available up to 80 GPa. We predict shock Hugoniots

for PE up to 350 GPa. In addition, we analyze the phase transformations that occur due to heating.

Our analysis includes ionization fraction, molecular decomposition, and electrical conductivity during

isotropic compression. We find that above a compression of 2.4 g/cm3 the PE structure transforms

into a Lennard-Jones fluid, leading to a sharp increase in electron ionization and a significant increase
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in system conductivity. eFF accurately reproduces shock pressures and temperatures for PE along

the single shock Hugoniot.
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Chapter 1

Matter in Extreme Environments

1.1 Extreme Chemistry

The mid-twentieth century was host to a flurry of technological advancements that thrusted hu-

mans from an age of low-energy-density chemistry, classical electromagnetic physics, and subsonic

transportation into the age of high-energy materials, nuclear physics, amplified light, hypersonic

travel, space exploration, and advanced microdevices. These advancements either produce extreme

conditions or the technologies are exposed to these conditions in their operating environments. Con-

sequently, characterizing extreme conditions and understanding their effects on materials is critical

to enabling the next generation of technologies.

Property Range
Temperature > 1000 K
Pressure > 30 MPa
Strain Rate > 1 km/s
Radiative flux > 100 dpa
EM field > 15 T

Table 1.1: Extreme conditions

Table 1.1 contains our definitions of extreme conditions. Practical examples of extreme conditions

can be found readily. For example, the fourth generation of nuclear reactors includes supercritical-

water-cooled reactors that operate near the thermodynamic critical point of water. Conditions within

the reactor will reach 1000 °C with neutron fluxes being increased by an order of magnitude.1 At this

temperature water itself is corrosive, and the pressure of the steam imparts a high mechanical load

1Office of Science, U.S. Department of Energy: Basic research needs for materials under extreme conditions. 2008.
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on the reactor piping. The neutron flux causes material damage at the atomistic scale through heat

transfer, momentum transfer, and nuclear activation. Supercritical steam technology can also be

found in modern coal-fired power plants. Using supercritical steam raises the operating temperature

from 540 °C to 760 °C and more than doubles the pressure to 37.9 MPa. These conditions improve the

thermal efficiency of the plant to 60% from the typical 35% of current plants.2 The transportation

sector is also affected by extreme operating environments. The NASA X-43A scramjet aircraft is

capable of airspeeds in excess of 3 km/s.3 At these speeds the mechanical loads on the airframe, skin,

and wing spars are high, and the structural materials must withstand these high stresses over the

aircraft’s operational lifetime. In outer space, the Cassini-Huygens space probe was briefly clocked

at 44 km/s.4 Small molecule impacts from space debris above 10 km/s can cause chemical changes

at the atomistic scale like pitting, melting, and fracture. Above 15 km/s the energy imparted by

the impact can cause complete material failure, ionization, plasma formation, and spallation. As

aircraft and spaceships continue to increase their cruising speeds, they will need improved material

shielding to protect passengers, avionics, and power plants from particulate impacts and convective

and radiative gas flow conditions during hypervelocity flight.

The common thread among these examples is that the result of being exposed to extreme condi-

tions is premature material aging. High temperatures, either due to external heating, or in response

to a shock pressure, increase the rates of chemical reactions and this can lead to undesirable chemical

transformations and bond breaking. Mechanical loading can initiate or propagate material defects

which can also lead to failure. High radiative or particle fluxes embrittle materials. There are

numerous examples of current applications that require materials to withstand extreme conditions,

and the number is certain to grow with time. The demands on these materials require that we study

and understand material properties under extreme conditions.

Studying the response of materials in extreme conditions is complicated because in these high

2Idaho National Laboratory: Current research in nuclear energy. http://inlportal.inl.gov/portal/server.pt/comm
unity/nuclearenergy/277. 2010.

3National Aeronautics and Space Administration: X-43A Research Aircraft.
http://www.nasa.gov/missions/research/x43-main.html. 2010.

4Jet Propulsion Laboratory, California Institute of Technology: Cassini Equinox Mission. http://saturn.jpl.nasa.
gov/faq/FAQgeneral/. 2010.
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Figure 1.1: Domains of practical use for various theories. eFF is able to model systems within the
dashed box. The scope of the conditions for the two major studies presented in this thesis are plotted
for reference.

energy regimes chemicals and materials are excited out of their ground state. Density functional

theory and other ab initio quantum mechanical techniques provide excellent descriptions of matter

at low temperature and pressure, but these methods are limited to hundred of particles. Forcefield-

based methods are capable of modeling a wide variety systems and forcefields can treat systems with

millions of atoms, but because they are parameterized based on Born-Oppenheimer QM potential

energy surfaces, they are also limited to low temperature and pressure. Classical plasma theories

provide good descriptions of matter at high temperatures and, like forcefields, they can treat millions

of particles. There exists a “computational no-man’s land” between these thermodynamic regimes

that remains a challenge to theorists. The electron force field (eFF) was developed to bridge this

gap and provide good descriptions of matter near its ground state and in highly excited states.

The body of this thesis contains a compilation of eFF electron dynamics studies of materials being

subjected to extreme environments.
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1.2 This Thesis

The research presented in this thesis was performed in support of the California Institute of Technol-

ogy’s Predictive Science Academic Alliance Project (PSAAP). PSAAP is a National Nuclear Security

Administration applied research collaboration between several groups at Caltech. The overarching

objective is to understand the multi-scale physics that accompany the hypervelocity impact of metal-

lic and polymer-based impactors and targets. Melting, vaporization, dissociation, ionization, plasma

formation, luminescence, radiative transport, high-strain-rate deformation, fracture, fragmentation,

spall and ejecta, shear banding, and hydrodynamic instabilities are all expected to complicate the

application of modeling and theory. Atomistic studies of these phenomenon are intended to provide

material equation of state data and other material properties to larger-scale constitutive engineering

models. Ultimately the combined experimental and theoretical data inputs are used to drive uncer-

tainty quantification and verification and validation calculations so that failure probabilities can be

provided.

The body of this thesis contains eFF studies of important materials like crystalline silicon and

polyethylene being subjected to extreme conditions. Chapter 2 provides a detailed description of

the eFF method and clarifications for the way in which properties like temperature and pressure

are computed from eFF simulations. The electronic response of silicon to high-strain rate fracture

is examined in Chapter 3. In Chapter 4, the material and electronic responses of polyethylene

to shock-induced pressure and heating are examined. In both of these studies eFF’s ability to

model the ground and excited state dynamics of electrons is advantageously used to characterize the

material response to extreme conditions in ways that no other method can. Chapter 5 introduces

a unique core-approximation for eFF and provides validations for silicon and aluminum; this core-

approximation enabled the nanometer scale investigation of silicon fracture in Chapter 3.

The appendices contain published and unpublished but complete research projects involving ab

initio and density functional theory studies of organometallic complexes. Appendix A is a study of

rhodium-catalyzed methane C-H bond activation chemistry. Appendix B is a study of cyclometalated

platinum phosphorescing complexes wherein the excited state manifolds of several complexes are
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explored. The spin-orbit coupling between states and their potential energy surface topologies are

used to compute the rates for fluorescence, phosphorescence, and intersystem crossing. Appendix C

contains tables of raw data and the xyz coordinates of important molecular geometries. Appendix

D is a compendium of published works containing a fundamental study of the β-hydride elimination

mechanism for Wacker cycle-like substrates, and the publications corresponding to Chapters 3 and

4.
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Chapter 2

The Electron Force Field Method

2.1 Simulating Excited State Dynamics

The electron forcefield was developed by Su and Goddard and officially released in 2007 [1]. eFF

is a reactive forcefield method, though it has been described by the terms wave packet molecular

dynamics, approximate quantum dynamics, quantum electron dynamics, semiclassical molecular

dynamics, electron molecular dynamics, and electron dynamics. If these descriptions are ambiguous,

then understand that at the very least eFF is unique. This is because eFF was developed with

modeling matter under extreme conditions in mind. Figure 2.1 demonstrates eFF’s ability to model

systems in their ground state and in increasingly energetic states. Since eFF is the method used in

Chapters 3, 4, and 5, the physics behind eFF will be described in detail in the following sections.

2.1.1 Modeling Excited States is Challenging for Theorists

Quantum mechanics allows theoretical chemists to understand the details of chemical transforma-

tions in the gas, liquid, and solid phases for systems in their ground states or lowly excited states.

Unfortunately these methods, while accurate, are inefficient for studying the dynamics of materi-

als under extreme conditions because propagating the Schrödinger equation for large systems when

many electronic states are present or for many time steps is computationally expensive. eFF allows

us to parametrize the electron wavefunction so that we may quickly evaluate system energies and

forces. When used with wave packet molecular dynamics, eFF allows for practical simulations of
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Figure 2.1: A gallery of snapshots from toy calculations to demonstrate eFF capabilities. Top:
a vibrationally excited “walker” on the H3Si−SiH3 · · · SiH−3 SN2 potential energy surface. The
transition states are marked with red ‡ symbols and the surface minima is marked with a green dot.
Middle: A silicon particle colliding with and rebounding from a silicon {111} surface at 5 km/s.
Bottom: The same silicon particle colliding with and penetrating the surface at 20 km/s. Ionized
electrons are colored red.
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large systems in their excited states.

What makes modeling high energy condensed matter so difficult is the breakdown of the Born-

Oppenheimer approximation. When the system energy is high, the kinetic energy of electrons is

on the order of individual Coulomb interactions with nuclei. In such excited systems the density

of states and number of curve crossings are high, so a wavefunction based on the superposition of

stationary states is poor. In this phase space electronic motions are decoupled from nuclear motions

and we can consider electron motions to be nonadiabatic. In other words, the system does not satisfy

the assumptions of the Born-Oppenheimer approximation because small variations of the geometry

cause electronic state switching. When the density of states is sufficiently high we can model nuclear

motions classically as moving through a “mean field” of electronic states [2]. The trick then is to

treat nonadiabaticity and the electronic structure which must necessarily involve a superposition of

adiabatic states. The goal of eFF is to provide nonadiabatic couplings and gradients for excited

electronic states.

2.1.2 Traditional Molecular Dynamics Techniques

eFF is the latest development in a series of approximate quantum dynamics methods. Following

the establishment of molecular quantum theory [2–4], researchers shifted their efforts to simulating

the motions of systems of molecules. In truth, molecular dynamics methods evolved in concert

with ab initio techniques for static systems in their ground state. Ground state systems are well

behaved, and their nuclei lie on adiabatic potential energy surfaces. Small nuclear motions produce

small changes in energy. Because electrons are so much lighter than nuclei, we can assume that

for systems near their ground state, electrons instantaneously react to nuclear motions [5]. This

assumption is called the Born-Oppenheimer approximation and for the majority of earthly chemical

systems it holds true. The Born-Oppenheimer approximation allows theorists to propagate systems

forward in time using the time-independent Schrödinger equation [2]. The energy of the system is
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evaluated based on the nuclear coordinates, R:

Ĥ(R)ψ(r) = E(R)ψ(r). (2.1)

The forces on each nuclei are computed using the Hellman-Feynman theorem [6–8], and integration

of these forces provides new positions and velocities. The procedure is repeated to propagate a

system forward in time. This procedure, called Born-Oppenheimer quantum molecular dynamics

(BOQMD) [9], is accurate but slow, and it’s only valid for purely adiabatic systems. Other ab

initio molecular dynamics techniques enjoy substantial speed-ups by only partially converging the

wavefunction [10], or by using fast density functionals [11]. Despite these advances, ab initio MD

methods are still limited to hundreds of atoms over few picoseconds.

In order to extend the scope of molecular dynamics methods to larger systems and timescales,

classical forcefields were developed. Theorists fit the coefficients of standard energy expressions

to the results of static quantum calculations. These expressions, and their gradients, are called

forcefields. The energy expressions used in forcefields are physically motivated and a typical total

energy expression includes pairwise bonding terms, electrostatic terms, van der Waals interactions,

and multi-center angle and dihedral terms, all of which are functions of nuclear coordinates, R:

Etotal(R) =
∑
i<j

Ebond(Rij)+
∑
ijk

Eangle(θijk)+
∑
ijkl

Edihedral(φijkl)+
∑
i<j

qiqj
Rij

+
∑
ij

EvdW (Rij). (2.2)

Bonds are fit to bonding potentials like the Lennard-Jones or exp-6 potentials, angles are fit to har-

monic potentials, and dihedral angles are fit to periodic potentials. More sophisticated components

of (2.2), like the van de Waals expression, and other terms, like hydrogen bonding and polarizable

atomic charges, can be included, and these expressions are fit to QM data. Forcefields have become

popular methods for studying proteins [12–14], bulk liquids and solids [15, 16], and polymers [17].

While these methods offer orders of magnitude improvement in computational efficiency and scale

over BOQMD methods, they require that the system stay close to its initial bonding configuration.

So what happens if a chemical system is sufficiently excited to cause bonds to break? What
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if chemistry happens? The next generation of forcefields addresses this issue by eschewing fixed

bonds in favor of bond orders [18–20], or by considering only the most important valence bond

configurations and parametrizing energy expressions based on those [21]. These so-called reactive

forcefields allow theorists to study systems in flux, and they are gaining traction in the chemical,

materials, and solid-state physics communities.

The quantum, classical, and reactive forcefield techniques described here share their reliance on

the Born-Oppenheimer approximation. The evolution of classical and reactive forcefields increased

the variety and size of the systems that could be studied with molecular dynamics, however the issues

raised in Sections 2.1 and 2.1.1 still remain. What happens when a chemical system is excited by a

photon, heated to thousands of degrees, shock compressed, exposed to a strong electrical potential,

or bombarded by other chemicals at high velocities? In these environments the Born-Oppenheimer

approximation may not be valid and to study these systems Fermion molecular dynamics techniques

have been developed.

2.1.3 Precursors to eFF

The inspiration for the eFF wavefunction came from early floating spherical Gaussian orbital (FSGO)

methods [1]. FSGO methods, developed by Frost in the 1960s, are ab initio methods wherein each

electron is described by a single floating spherical Gaussian orbital, rather than a basis of nuclei-

centered linear combination of Gaussian orbitals or nuclei-centered Slater functions [22]. Frost’s

FSGO wavefunctions are Slater determinants of FSGOs and he evaluates the electronic energy by

a version of the Roothaan equations generalized to nonorthogonal orbitals [22, 23]. Because the

method involves two-electron integral transformations it scales like Hartree-Fock methods, O(N4)

[24]. The FSGO method gave reasonably good geometries for first-row hydrides and small iso-

electronic species [25, 26], though early versions failed to produce stable triplet species or good

geometries for higher valence species like BeH2, CH4, H2O, and others [22, 26]. By employing lin-

ear combinations of concentric FSGOs, the method was able to capture most of the Hartree-Fock

energy [27, 28]. Later versions corrected earlier issues and achieved particularly good geometries
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for saturated hydrocarbons [29]. Eventually pseudopotential methods were added and this enabled

faster and more accurate calculations on hydrocarbons and heavy group IV atoms like silicon and

germanium [30–33]. FSGO methods evidently gained traction and were applied to polymers [34],

and the prediction of photoelectron spectra of hydrocarbons [35], though this was during a time

when computational power was low, and presumably Hartree-Fock methods were too expensive to

treat these systems. Most recently, the approach was coupled to diffusion Monte-Carlo simulations

of lithium hydride [36]. These techniques demonstrate that one function per electron basis sets, if

implemented correctly, can provide reasonably good structures and energies for simple molecules.

Recognizing that the computational bottleneck in FSGO calculations is the computation of the

antisymmetrization energy, researchers devised a means to estimate it by developing so-called Pauli

potentials. By devising a pairwise function that mimics the antisymmetrization energy they could

reduce the scaling to O(N2) and still adhere to the Pauli principle. These potentials limit same-

spin electrons to regions of phase-space so that the electrons cannot occupy the same position or

momentum, thereby mimicking orbital orthogonality [37–40]. Kirschbaum’s potential successfully

reproduced the shell structure of atoms up to Z = 94 [41], but none of the potentials cited in

the previous line produce stable bonds for Z > 3. Other groups used a wavefunction orthogonality

approach to derive their Pauli potentials. In these approaches an analytic form for the kinetic energy

difference between a fully antisymmetrized wavefunction and a non-orthogonalized wavefunction is

derived [42, 43]. The latter approach is the basis for the eFF Pauli potential.

The origin of the dynamics engine behind eFF can be traced back to the wave packet molec-

ular dynamics (WPMD) techniques developed in the 1970s [1]. Heller and coworkers proved that

wavefunctions of heavy particles may be decomposed into time-dependent wave packets which then

follow nearly classical trajectories [44–46]. The details of Heller’s WPMD method will be discussed

in Section 2.3. Using WPMD, several groups devised methods to propagate quantum wave packets in

time. In these methods nuclei are treated classically and electrons are treated quantum-mechanically.

Electrons are typically treated as Gaussian functions with variable positions and width [43, 47], fully

antisymmetrized Slater sums of periodic Gaussian wave packets [48, 49], or antisymmetric products
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of localized Gaussian functions [40]. The trade-off in these methods is in managing electron cor-

relation. The fully antisymmetric approaches capture the indistinguishability of electrons at the

cost of computational efficiency. As you shall see, abandoning rigorous antisymmetrization in favor

of a pairwise spin-dependent repulsion potential captures most of the exchange correlation energy

while enabling a substantially faster calculation [50, 51]. Though these methods are ab initio, the

emphasis is on qualitatively describing the dynamics of the system rather than obtaining quantita-

tively correct values for bond energies or the electronic structure of the matter in question. WPMD

techniques have proven particularly useful for modeling the dynamics of systems in extreme envi-

ronments like plasmas [43, 52], laser-shocked deuterium [48] and hydrogen in the warm dense matter

regime [49, 50] because in these techniques the electrons can evolve independently of the nuclei.

2.2 The eFF Wavefunction and Forcefield

eFF overcomes the difficulties of modeling potentially nonadiabatic systems by evaluating the energy

of the system as a function of the nuclear coordinates and electron coordinates with a small set

of universal electron parameters. This ensures that energy may be partitioned separately into

nuclear and electronic degrees of freedom. Consequently electrons may hop between states without

concomitant nuclear motion. In eFF nuclei are described with classical point particles and electrons

are described by a wavefunction of floating spherical Gaussian orbitals. The N-electron wavefunction

is a actually a Hartree product of floating spherical Gaussian wave packets whose size and positions

are dynamical variables:

Ψ ∝
∏
j

exp
[
−
( 1

s2
− 2ps

s
i
)

(r− x)2
]
· exp[ipx · x] (2.3)

with positions x, translational momenta px, radial size s, and radial momental ps.

The full potential energy expression is the sum of standard electrostatic interactions between

nuclei (ENN ), electrons (Eee), and nuclei and electrons (ENe). Also included in this sum are two

quantum mechanical terms: the total electronic kinetic energy (Eke), and the two-electron spin-
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dependent Pauli repulsion energy (EPauli):

U(R, r, S, s) = ENN (R) + ENe(R, r, s) + Eee(r, s) + Eke(s) + EPauli(↑↓, S). (2.4)

R and r are the nuclear and electron positions, s is the electron Gaussian radius, ↑↓ is the spin

state of the electrons, and S is the overlap integral of the electrons. Energy evaluations using the

Hartree product only require O(N2) operations, a significant advantage over a fully antisymmetrized

wavefunction. This scaling advantage is achieved by avoiding the costly calculation of four-center

exchange integrals. However, using a Hartree product wavefunction violates the antisymmetry prin-

ciple for Fermions. In order to satisfy the Pauli principle, and to account for the missing orthogonality

that the antisymmetrizer would impose, a spin-dependent correction term, EPauli is added. The

derivation of the Pauli potential will be given shortly.

The electrostatic interaction energies are defined by Coulomb interactions between point charges

and Gaussian charge distributions. Of course nuclei-nuclei interactions are purely classical. They

are defined as follows:

Enuc·nuc =
1

4πε0

∑
i<j

ZiZj
Rij

(2.5)

Enuc·elec = − 1

4πε0

∑
i,j

Zj
Rij

Erf

[√
2Rij
si

]
(2.6)

Eelec·elec =
1

4πε0

∑
i<j

1

xij
Erf

[ √
2xij√
s2i + s2j

]
(2.7)

where i and j are particle indices, Z are the particle charges, Rij are internuclear distances, rij are

interelectron distances, and s are the electron radii. The error functions in (2.6) and (2.7) arise from

the fact that the electron charges are “smeared” over the volume of the Gaussian sphere. Recall

that an error function is defined as the integral over a Gaussian and its argument is the upper limit

of the integral. This formulation of the Coulomb interactions ensures that the finite sized spherical

Gaussians act like point charges at large distances from the other interacting particle.

The full Hamiltonian in equation (2.4) includes two quantum mechanical terms: the electronic
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kinetic energy and the Pauli repulsion energy.

Eke =
~2

2me

∑
i

∞∫
−∞

|∇ψi|2dV =
~2

me

∑
i

3

2

1

s2i
. (2.8)

Equation (2.8) describes the electronic kinetic energy, which should not be confused with the trans-

lational kinetic energy of the electron. (2.8) can be better understood in terms of the Heisenberg

uncertainty principle. Consider a highly localized electron: ∆x is small, and according to the un-

certainty principle ∆p must be large to compensate. This higher momentum spread corresponds to

higher kinetic energy and this is reflected in the form of (2.8). The second quantum mechanical

term is the Pauli repulsion energy for same spin and opposite spin electrons, respectively:

EPauli =
∑
σi=σj

E(↑↑)ij +
∑
σi 6=σj

E(↑↓)ij . (2.9)

Here σi,j refers to the spin state of the electrons being evaluated. The same spin Pauli energy

function is defined as

E(↑↑)ij =

(
S2
ij

1− S2
ij

+ (1− ρ)
S2
ij

1 + S2
ij

)
∆Tij , (2.10)

and the opposite spin Pauli energy is

E(↑↓)ij =

(
(1− ρ)S2

ij

1 + S2
ij

)
∆Tij . (2.11)

In (2.10) and (2.11), ∆T is the kinetic energy change upon antisymmetrization and S is the overlap

of the wavepackets. We can further define these two terms:

∆Tij =
3

2

(
1

s̄2i
+

1

s̄2j

)
−

2(3(s̄2i + s̄2j )− 2x̄2ij)

(s̄2i + s̄2j )
2

(2.12)

Sij =

(
2

s̄2i /s̄
2
j + s̄2i /s̄

2
i

)3/2

exp(−x̄2ij/(s̄2i + s̄2j )). (2.13)

The last two equations contain the only empirical parameterizations in eFF: ρ = −0.2, x̄ij =
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xij · 1.125, and s̄i = si · 0.9. These parameters were fit using a small set of hydrocarbons and light

metal hydrides [1]. ρ can be thought of as an orthogonalization parameter while x̄ and s̄ are distance

and size scaling parameters, respectively.

The Pauli energy functions in (2.10) and (2.11) are derived by taking the kinetic energy differences

of orthogonalized and non-orthogonalized wavefunctions. The full derivation of (2.10) and (2.11)

makes it easy to understand why eFF improves on bond energies and structures for more complicated

molecules, so a brief derivation will be provided here. Consider a proper fully antisymmetrized

wavefunction, ΨSlater, and a Hartree product wavefunction, ΨHartree, for two same-spin electrons:

ΨSlater =
1√

2− S2
(φ1(r1)φ2(r2)− φ2(r1)φ1(r2)) (2.14)

ΨHartree = φ1(r1)φ2(r2). (2.15)

S =
∫
φiφjdV is simply the normalization coefficient. The Pauli energy is estimated to be the

ungerade energy difference between the Slater and Hartree wavefunction kinetic energies:

Eu =
〈
ΨSlater

∣∣−1

2
∇2
∣∣ΨSlater

〉
−
〈
ΨHartree

∣∣− 1

2
∇2
∣∣ΨHartree

〉
=

S2

1− S2

(
t11 + t22 −

2t12
S

)
(2.16)

where tij =
〈
ψi
∣∣− 1

2∇2
∣∣ψj〉. Klakow assumed that E(↑↑) = Eu and E(↑↓) = 0, and the result is a

Pauli potential that fails to produce stable structures or correct bond energies for anything larger

than lithium. eFF uses the more chemically relevant valence bond wavefunction in place of the

Slater determinant to obtain E(↑↓):

ΨVB =
1√

2 + 2S2
(φ1(r1)φ2(r2) + φ2(r1)φ1(r2)). (2.17)

The gerade energy expression is computed from the VB wavefunction:

Eg =
〈
ΨVB

∣∣−1

2
∇2
∣∣ΨVB

〉
−
〈
ΨHartree

∣∣− 1

2
∇2
∣∣ΨHartree

〉
=

S2

1 + S2

(
t11 + t22 −

2t12
S

)
. (2.18)
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The final same-spin and opposite-spin Pauli energy terms in (2.9) are obtained by mixing the gerade

and ungerade expressions together:

E(↑↑) = Eu − (1− ρ)Eg (2.19)

E(↑↓) = −ρEg. (2.20)

From these two equations it is evident that the purpose of the gerade energy espression is to make the

same-spin and opposite-spin Pauli potentials more repulsive. Ironically, greater repulsion between

electrons improves eFF’s ability to describe bonds, compared to earlier methods where the tendency

of electrons to coalesce was high. The expressions in equations (2.10) and (2.11) can be obtained by

substituting a general FSGO into (2.19) and (2.20). The purpose and action of the Pauli potential

can be more easily understood in terms of orthogonal orbitals. When two same-spin electrons

approach one another, their wavefunctions increase in slope to decrease their overlap (they compress

in width). This increase in slope increases their gradient and kinetic energy is increased. Wilson

and Goddard interpret this change in energy as the Pauli repulsion energy [53]. (2.9) recovers this

energy and ensures that eFF electrons satisfy the Pauli exclusion principle.

2.3 Wave Packet Molecular Dynamics

In 1975 Heller demonstrated wavepacket molecular dynamics (WPMD) as a method for simulating

systems in a semi-classical manner [44]. Rather than making a WKB approximation, wherein one

assumes that ~ is very small [54, 55], he approximated that the wavepacket exists in a local harmonic

potential. By substituting a wavefunction of the type in (2.3) into the time-dependent Schrödinger

equation with a harmonic potential, Heller derived the Hamilton equations of motion:

px = mẋ ṗx = −∇V. (2.21)
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These equations are consistent with Ehrenfest’s theorem, which states that the average position of a

wavepacket follows a classical trajectory [2]. Following the same procedure for the first exponential

in (2.3), and making the assumption that no external potential exists, we can derive the equations

of motion for the radial degree of freedom:

ps =
3

4
melecs ṗs = −∂E

∂r
. (2.22)

The factor of 3/4 in (2.22) arises because the radial coordinate varies in three dimensions. These

equations are exact for harmonic potentials, and it was shown that they performed well for simple

anharmonic potentials like the double well potential [1]. Because we do not express our wavepackets

as superpositions of multiple basis functions, there is no possibility for quantum interference. Con-

sequently our wavepacket will oscillate indefinitely without deconstructive interference “damping it

out”. It is reasonable to expect that our radial degree of freedom may become too energetic relative

to exact WPMD calculations under some circumstances. We can use the energies and forces from

the electron force field in conjunction with this WPMD scheme as a fully functioning molecular

dynamics method.

2.4 Temperature, Pressure, and Heat Capacity

Because eFF simulations include electrons as discrete particles, a discussion of how macroscopic

system properties like temperature, pressure, heat capacity, and stress are computed is warranted.

Carefully defining these properties is particularly important to this thesis since extreme conditions

are defined by extremes in temperature, pressure, strain rate, and others.

The kinetic energy of the particles in an eFF simulation is defined classically for nuclei, and

semiclassically for electrons:

Eke =
∑
i

1

2
miẋ

2
i +

∑
i

1

2

3

4
meṡ

2
i (2.23)

where ẋ is the translational velocity and ṡ is the electron radial velocity. The second term on the
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right side of equation (2.23) is null for nuclei. mi corresponds to the nuclear mass or the dynamic

electron mass. me is the true electron mass (0.000548579867 amu). In eFF the electron mass is

defined in three places: 1) in the electronic kinetic energy, (2.8), 2) in the Pauli potential, (2.9), and

3) in the kinetic energy of motion, (2.23). In the electronic kinetic energy and the Pauli potential the

electron mass is the true electron mass and it is fixed, since altering this value would change energies,

bond lengths, and other static properties of atoms and molecules. The user may adjust the dynamic

electron mass in equation (2.23). Changing the electron mass in the equations of motion varies the

overall time scale of excited electron motions, with the time scale of excitations, relaxations, and

energy transfer proportional to
√
me. This is what we refer to as changing the dynamic masses. This

does not affect the net partitioning of energy in the system nor the magnitude of the thermodynamic

parameters we are interested in measuring. This does not alter the system’s chemistry, just its

evolution in time.

Temperature is defined from the classical viral expression with a twist:

〈
Eke

〉
=

3

2
NkBT (2.24)

and rearranging this term provides the macroscopic temperature:

T =
2

3

1

kBNnuc

〈
Eke

〉
. (2.25)

Notice that the kinetic energy
〈
Eke

〉
is summed over all the particles but divided by the number of

nuclei only, Nnuc. This adjustment is valid for temperatures well below the Fermi temperature. At

intermediate temperatures the kinetic contribution to the pressure from the electrons is recovered

indirectly through the Pauli potential. Thus as temperature increases, the electrons are excited,

which causes their average size to increase, in turn raising the pressure through the Pauli potential.

At temperatures in the vicinity of and above the Fermi temperature a separate ideal gas electron

pressure correction is required.

This eFF temperature expression, (2.25), sets the heat capacity of the system to the classical heat
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capacity Cv = 3
2kBNnuc. If one measures the actual specific heat capacity of their system through

eFF simulations, one finds that it is elevated due to the presence of the electrons. The measured

specific heat capacity would equal Cv = 3
2NnuckB + 2NeleckB , since electrons obtain 1

2kB from

each of 4 degrees of freedom. This unphysical high heat capacity would be reflected in the classical

temperature definition (i.e., if you calculate T = 2/(3kBNnuc+elecs)
〈
Eke

〉
it is by definition always

lower than the eFF temperature definition). This is why it is imperative to use the temperature

definition in (2.25) when comparing eFF simulations to the results from other MD techniques.

The pressure is extracted from simulations using the virial expression [56]:

P =
1

V

[
NnuckBT +

1

d

∑
i<j

rij · fij
]

(2.26)

where V is the volume, T the eFF temperature from (2.25), and d the dimensionality of the system.

rij are the interparticle positions and fij the interparticle force vectors.

Another significant difference between eFF and true quantum methods is in the distribution of

electrons in eigenstates. In eFF electrons are simulated like classical particles interacting through

effective potentials. eFF electrons avoid one another if they are same-spin, and the Pauli potential

penalizes same-spin electrons when they approach one another. However, eFF does not produce

discrete eigenstates or eigenenergies. eFF electrons are not distributed through a rigorous Fermi-

Dirac distribution. As a result, eFF electrons match classical statistics, not quantum Fermion

statistics. eFF electrons are excited uniformly as temperature increases, unlike true electrons which

are only excited near the Fermi level. Despite this limitation, eFF has proven that it accurately

models the electron dynamics of systems near their ground state and in excited states.

2.5 eFF Successes

The beauty of eFF is in its simplicity. With only three empirical parameters it can reproduce a

variety of physical quantities like electronic shell structure, molecular structure, bond energies, ion-

ization potentials, and bulk properties. The simple nature of the energy and gradient expressions
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makes eFF perform much faster than quantum mechanics [1, 57]. eFF has been used to simulate

the behavior of hydrogen in the warm dense matter regime [58], the mechanisms of Auger-induced

chemistry, [59], the high-temperature, high-pressure phases of lithium [60], the emission of exoelec-

trons, current bursts, and voltage generation during brittle fracture (see Chapter 3) [61], and the

electron dynamics of shock in polyethylene (see Chapter 4) [62]. eFF has been incorporated into

the popular molecular dynamics software suite, LAMMPS, and this has extended the functionality

and scope of computational simulations that can be carried out with eFF [57, 63]. The remainder

of this thesis will detail eFF studies of matter subjected to extreme environments.
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[34] J. M. André, J. Delhalle, C. Demanet, and M. E. Lambert-Gerard, “A floating spherical Gaus-
sian orbital model for polymers: I. general formalism and computational procedure,” Int. J.
Quantum Chem., vol. 10, no. S10, pp. 99–105, 1976.
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Chapter 3

Nonadiabatic Electron Dynamics
During Brittle Fracture in Silicon

3.1 Abstract

The observation that brittle fracture of materials can lead to the emission of high energy electrons and

UV photons is well documented for materials ranging from polymer thermoplastics, glasses, minerals,

and semiconductor crystals [1–4]. There has been no previous atomistic description of the origin of

such processes. Although fracture in solids involves breaking of chemical bonds, which can be well

described with modern quantum mechanics (QM) methods, the observation of exo-electrons and

photon emissions indicates that the processes are not purely adiabatic, complicating the application

of QM — in particular for model systems that require more than a few hundred atoms. We show here

that the eFF method for nonadiabatic dynamics accounts for electron emission and large potential

differences consistent with the experiments, providing the first atomistic description of the origin of

these effects. In this chapter we consider the {100}
〈
011
〉

and {111}
〈
112
〉
1 fracture of silicon crystals

producing {100} and {111} fracture planes, which have been studied quite thoroughly. The effects

that we explain are (1) loading of a crack leads to a sudden onset of crack propagation at 7 GPa

followed by uniform velocity of the crack at 2500 km/sec after initiation, and (2) voltage fluctuations

in the 10–400 mV range, charge creation (up to 1011 carriers/cm2), and current production (up to

1.3 mA).

1In the materials failure community {hkl}
〈
h′k′l′

〉
notation refers to fracture that propagates in the

〈
h′k′l′

〉
direc-

tion and produces {hkl} crack faces.
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3.2 Brittle Fracture in Silicon
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Figure 3.1: A snapshot of a crack propagating in a silicon single crystal with mode I loading in
the x-direction producing a {100}

〈
011
〉

edge crack. The transparent spheres are paired electrons.
Unpaired spin up electrons are colored red, and unpaired spin down electrons are colored blue.

Historically, brittle fracture has been analyzed using continuum mechanics techniques which

predict the macroscopic driving force for crack propagation: the release of elastic energy per unit

advancement as the crack progresses. This force is a function of the applied load, the length of

the crack and the geometry of the materials [5–7]. The crack is assumed to propagate as long as

its energy release rate, G, is equal to or larger than a material- and geometry-specific factor, the

critical energy release rate, Gc. Griffith, a pioneer in fracture mechanics, equated the critical energy

release rate to 2γ, the energy needed to create two new surfaces. More recently, experimentalists

and theorists have taken to studying more complex issues like the origin of crack path instabilities

[5, 8, 9], hyperelasticity [10, 11], the emission of dislocations [12–14], and plastic flow [15, 16]; the

latter two contribute to material hardening. Theorists have moved beyond linear elastic fracture

mechanics, and they are now studying the atomistic events that precipitate brittle fracture. Some

of their approaches will be highlighted in the following paragraphs.
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Experimental studies on silicon material defects reveal a rich variety of physics, including elec-

tronic excitation. Silicon brittle fracture experiments demonstrate that low crack velocities produce

clean surfaces [17] while higher speed cracks that exceed a 2/3 of the Rayleigh wave speed produce

uneven and irregular surfaces [5, 18]. Other experiments document fracture mechanics like fracture

caused by thermal loading [19], dislocation nucleation [13, 14], and the brittle-to-ductile transition of

silicon [9, 20, 21]. There are several experiments that document dynamic electron phenomenon as a

result of fracture. Early studies documented the anomalous generation of voltages and currents as a

result of fracture [22, 23]. More recent work measured the ejection of electrons [24] and other charged

particles [25], in both cases a result of fracture. Despite the abundance of fracture experiments, the

effect of fracture nucleation on electrons is not well understood. This gap in the theory of fracture

is peculiar because fracture is precipitated by the breaking of covalent bonds. It underscores the

inability of established QM or forcefield methods to adequately describe the dynamics of electrons

during fracture.

Fracture in solids is nucleated by the breaking of atomic bonds, and quantum mechanical the-

oretical approaches are capable of describing fracture on the atomistic scale [5, 26, 27]. Some

empirical atomistic potentials have failed to reproduce the brittle fracture of silicon and instead

they produced plastic flow, or they fail to model the response of the crack velocity to increasing

loads [17, 28–30]. Recently “reactive” forcefields have succeeded where classical potentials could not

[11, 31, 32]. Because quantum mechanical methods treat electrons like waves, and because classi-

cal forcefields account for electronic effects implicitly, a theoretical description of these electronic

excitations is missing. No previous attempts were made to model the voltage fluctuations, electron

emission, and charge creation phenomena. Current time-dependent QM methods are incapable of

describing the dynamics of electron ejection excitation of highly excited states from deformation of

the crystal. QM methods are unable to attain the length and time scales (> 1,000 atoms over >

1 ps time scales) required to describe the dynamics of fracture. On the other hand, conventional

forcefields in conjunction with molecular dynamics methods can handle the relevant length and time

scales, but they do not describe ejected electrons and excited electronics states. eFF is the ideal
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tool to model electron dynamics, so in this study we will provide an explanation for the observed

voltages, currents, and charge carrier formation.

3.3 Silicon Models and Methods

For this study we developed two simulation cells. Figure 3.1 depicts our “{100}” crack model. In

this model the x-y-z directions are (100)×(011)×(011̄) direction, creating a (100) fracture plane

with a [011] fracture direction with dimensions of 3.8×25×3.8 nm3. In our “{111}” model, the

x-y-z directions are (111)×( 1̄
2
1̄
2 1̄)×( 1

2
1̄
20) which produces {111} crack surfaces with a [112] crack

propagation direction with dimensions of 2.7×47×4.0 nm3. We performed crack simulations on

fully periodic replicas and on slabs with hydrogen-passivated surfaces of the previously described

geometries. The results presented here correspond to our fully periodic system, though we found

negligible differences between the results we obtain in our fully periodic and partially periodic slab

models (see Figure 3.2). Both systems were prepared in an isothermal-isobaric ensemble using a

Nosé-Hoover thermostat and barostat, at 300 K and 1 atm, respectively. In both samples a seed

crack of length 1/5 Ly is created before a load is applied. A continuous uniaxial strain load is applied

to the cells in the x-dimension at a rate of 1.2% per ps, and the sample is allowed to crack naturally,

which allows us to test the failure modes of the system. No barostat pressure is imposed in the

strain direction. The properties of these two models are listed in Table 3.1.

Method E (GPa) Yield Strength (GPa) Gc (J/m2) Kic (MPa)
{111} expt. 163-188 [33] 7 [34] 2.3 [17] 0.76 [35, 36]
{111} eFF 166 15 3.16 0.752
{100} expt. 125-202 [37] - - 0.91 [38]
{100} eFF 157 15 2.57 0.96

Table 3.1: Comparison of experimental and computed mechanical values: Young’s modulus, E, yield
strength, Griffith critical load, Gc, and the stress intensity factor, Kic. References are in square
brackets.

Previously eFF treated all electrons of an atom, including the core electrons [39]. Describing

the very short time scales of the high energy core orbitals makes simulating picoseconds of fracture

computationally intractable on systems large enough to describe crack propagation in Si crystal.
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Instead of describing all electrons explicitly, here we replace the core electrons with an effective

core pseudo-potential while retaining the accuracy in describing the valence electrons. This allows

us to study the dynamics of electronic excitations and ejection simultaneous with nucleation and

propagation of crack fracture in silicon. The details of the effective core potential are described in

Chapter 5.

G/Gc G/Gc

(a) (b)

Figure 3.2: (a) Crack tip velocity versus reduced load for {111} fracture with experimental data from
[17], ReaxFF-Tersoff and SW data from [31], environmental dependent interatomic potential (EDIP)
and the results of a multiscale method that couples empirical potentials and quantum mechanical
tight-binding approaches (DCET) from [26]. (b) The crack tip velocity versus reduced load for the
eFF {100} model. The gray lines are visual guides.

3.4 Electron Dynamics During Brittle Fracture

3.4.1 Fracture Mechanics

Figure 3.2 shows the relationship between the crack tip velocity and the energy release rate normal-

ized by the critical energy release rate determined at the onset of fracture. We computed G from

the uniaxial stress ahead of the crack, the crack length, and the Young’s modulus that we compute

from our model: G = 1.122πP 2
xxa/E

2. Kic is computed similarly. Both the {100} and {111} models

exhibit brittle fracture and both match the experimental observation that upon reaching a critical

load, the crack velocity rapidly jumps to 4 km/s and 2 km/s, respectively, and plateaus thereafter.

Table 3.1 compares computed mechanical properties to those of experiments. The calculated Griffith

critical load for the {111} is 3.16 J/m2, which is higher than the experimental value but in agree-
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ment with the QM value of 3.1 J/m2 [5]. This indicates that our model leads to a small amount

of lattice trapping. In general, our simulations of the dynamics of fracture in silicon using the eFF

pseudopotential reproduces experimental measurements and results produced with other reactive

forcefields [31].

3.4.2 Atomistic Mechanisms of Fracture

14&

{111}&

{111}&

Figure 3.3: {100}
〈
011
〉

fracture is produced by stepwise “zig-zag” bond breaking in lower energy
{111} planes.

The use of an atomistic potential allows us to examine the chemical origins of fracture in

{100}
〈
011
〉

and {111}
〈
112
〉

cracks. Figure 3.3 shows the stepwise propagation of a crack at the

atomic scale for the {100} system. For {100}
〈
011
〉

fracture in the brittle regime, there is compe-

tition between bond cleavage in the {100} and {111} planes which intersect at 54.7° angles to the

{100} planes. While the tensile load is applied to the
〈
100
〉

direction, the resulting {100} crack

surfaces have higher energies than {111} surfaces. As a result, the crack extends by single bond

cleavage into alternating {111} planes that intersect at the crack tip. These zig-zag nanocracks,

when they occur in this fashion, lead to crack propagation in the
〈
011
〉

direction. Local crack prop-

agation along {111} planes for {100}
〈
011
〉

cracks agrees with earlier studies that suggest that {111}
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is a preferred fracture plane [32, 40]. The behavior near the crack tip has major implications for

the behavior of the crack at larger scales. If the crack tip blunts and aligns with a {111} plane it is

possible for the resulting local mode II shear to emit a dislocation [32].

Figure 3.4 shows the details of a {111}
〈
112
〉

crack propagating. While we found perfectly brittle

fracture in our {100} model, we encountered greater lattice trapping in our {111} model. {111}
〈
112
〉

fracture requires that the shuffle plane σ-bonds be broken simultaneously, unlike {100}
〈
011
〉

fracture,

wherein alternating unit cells contain a breaking σ-bond. The strongly bonded bilayers resist fracture

and trap elastic energy more effectively than the {100} system. This has the effect of decreasing

the crack tip speed (evident in Figure 3.2). Because a greater tensile load is required to break

the bonds, and because the lattice trapping is higher, we observed the emission of dislocations

and shear banding in many of our simulations. A shear band emission is highlighted in Figure

3.4c. The fracture instabilities also produce rough surfaces, a fact which is experimentally observed

[6, 18, 31, 41]. From an atomistic perspective, {111} fracture is less complex than {100} fracture.

Cracks propagate by linearly rupturing σ-bonds in the shuffle plane. Shuffle plane cleavage is favored

over glide plane cleavage by only 0.17 eV per surface atom [22, 42]. This low energy difference means

that it is not difficult for a crack to cross into and through a bilayer, and the high shear stresses

near the crack tip ensure that this happens occasionally.

3.4.3 Fracture-Induced Electron Excitation

From our simulations we ascertain that there are two prevalent modes of electron ionization: local

field-induced ionization and thermal ionization. The simulations show that ionization occurs as a

direct result of fracture. Figure 3.5 shows the evolution of a representative group of electrons as the

fracture progresses. We find that electron ionization is precipitated by the passing of the crack front.

Figure 3.7a shows that ionized electrons are excited by 5 eV, making them sufficiently energetic to

escape the Si-surface barrier [24]. The initial excitation promotes the electrons to unbound states

(total electron energy > 0) but they subsequently relax to 4.1 eV above the ground state, well

into the Si conduction band. A close examination of the energy contributions leading to ionization
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7 ps 15.3 ps6.5 ps6.5 ps 7 ps 15.3 ps

Figure 3.4: Snapshots of {111}
〈
112
〉

fracture at 6.5, 7, and 15.3 ps after the initiation of crack
propagation. At 15.3 ps a dislocation (boxed in red) is visible. The dislocation is emitted due to the
shear stresses caused by the crack tip crossing into the neighboring left bilayer. In the upper panes
electrons are depicted as transparent spheres. The lower panes show silicon nuclei.
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(b)

(a)

Figure 3.5: (a) The absolute distance between the crack tip and electrons that will ionize. (b) The
radii of ionized electrons (in color), ground state surface electrons (black dotted lines), and bulk
electrons (solid black lines).

reveals that in most cases an increase in potential energy causes ionization. The cause of this is

heterolytic bond cleavage across the crack. In rare instances a heterolytic cleavage creates an anion

on one crack face and a cation on the other crack face. As dangling bonds form 2× 1 valence bond

surface dimers, the excess electron causes Pauli exclusion clashes with adjacent surface pairs (see

Figure 3.6). As a result, the ionized electron’s radius decreases to reduce its overlap with nearby

same-spin electrons. The spin clashing forces the electron further from the surface and the electron

delocalizes (its radius increases in the eFF description). Ultimately it relaxes and settles into the

conduction band. 80 ±10% of ionized electrons are ionized because of local field effects. We do not

observe Pandey’s Si(111)-2×1 π-bonded chain surface reconstruction because the timescale of our

dynamics is too short [43].

In rare circumstances an increase in an electron’s kinetic energy after fracture causes it to ionize.

Kinetic excitation is caused by local heating so we conclude that while possible, thermal ionization

is not the predominant mechanism. In Figure 3.7 the total energy and kinetic energy of the same
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(d) (e) (f)

Figure 3.6: The stages of fracture leading to electron emission and Si(111)-2×1 surface reconstruc-
tion: (a) a tensile load is applied, (b) shuffle plane σ-bonds break, usually homolytically, but het-
erolytic cleavage is energetically possible, (c) the new surface relaxes, (d) a surface electron attempts
to pair with an adjacent anion, (e) the resulting spin clash causes an electron to ionize and detach
from the surface. (e) a {111} surface showing a 1×1 unit cell (shaded in gray) and a 2×1 surface
dimer (shaded in pink with a dashed line representing the surface dimer bond).

group of electrons depicted in Figure 3.5 are presented. In Figure 3.7b only one electron is excited

thermally — the fingerprint of thermal excitation in increased kinetic energy. We observe that elastic

energy in the stress field ahead of the crack is converted to kinetic energy in the recoil of the new

surfaces causing local heating. As mentioned previously, we estimate from our simulations that 20

± 10% of electrons are thermally ionized.

To understand the dynamics of charge carriers during silicon fracture, we compute the elec-

trostatic potential (EP) on grid points, i.e., by summing the individual Gaussian charge density

potentials. In Figure 3.8a–c, we provide snapshots of the electrostatic potential at three points dur-

ing the fracture simulation. Initially, the system has zero potential (white color). As a crack evolves,

we observe the production of negative charge carriers in the free space inside the crack (blue color).

Figure 3.8c shows the final state of the system after the crack has propagated through the unit cell,

with the crack edges outlined in black and the midline highlighted in red. Heterolytic bond cleavage
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(b)(a)

Figure 3.7: (a) The total energy of the same group of electrons as Figure 3.5. (b) The kinetic energy
of said group of electrons.

due to thermal fluctuation and hot spot formation causes 2.6×10−2± 1.3× 10−2 more electrons per

nm2 to remain on one side of the crack than the other, which results in the left crack face having

(+2.13 V) potential and the right face having (+1.12V) potential. The potential gradient across the

crack corresponds to a voltage of 1.02 V. Li and colleagues reported measuring voltages of tens of

mV with some cracks producing voltages up to 0.39 V [22]. The electrostatic potential difference

between the crack surfaces reflects the dynamics of charge carriers during silicon fracture.

(a)

10 Å
65 Å

(b) (c)

0V +5V-5V

Figure 3.8: The evolution of electrostatic potential calculated on a grid is given at (a) 0 ps, (b) 9
ps, and (c) 15 ps. Warm colors denote positive potential and cool colors signify negative potential.
The crack edges are given by solid black lines and the midline of the crack is provided in red.

We computed the number of ionized electrons at each time point in our crack trajectories and the

results are presented in Figure 3.9b. Electrons are ionized if the sum of their potential and kinetic
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energy exceeds zero:

E = Eke + 2 · Epe −
3

2
· 1

s2
> 0. (3.1)

In eFF each electron’s potential energy is recorded as half the sum of its pairwise interactions with

other particles plus its electronic kinetic energy, the second term in the middle expression. To

correctly account for the potential energy we must multiply Epe by two. We subtract the electronic

kinetic energy, 3/2 ·1/s2, because doubling the potential energy doubles the electronic kinetic energy

which is implicitly included in each particle’s potential energy (see equation (2.4) for further details

on the eFF Hamiltonian). Given the size of our {111} cell, these correspond to a total electron yield

of 5.3x1011 to 1.6x1012 cm−2. Langford and co-workers detected current transients whose integrated

area corresponded to yields of 109 or 1011 carriers/cm2, though their {111} crack velocities were

around 900 m/s [23]. They stated that faster cracks produced larger carrier yields. Our {111} crack

velocity is two times faster, which explains why we observe larger ionized electron yields.

From the equilibrium dynamics of the cracked system, we determined the electrical conductivity

using the Green-Kubo integral of the electric current correlation function by computing:

σGK =
1

3kBTV

∫ ∞
0

〈
j(t) · j(0)

〉
dt (3.2)

where j(t) is the electric current flux, and the integral argument corresponds to the electric current

velocity correlation that is expressed as

J(t) =
〈
j(t)·j(0)

〉
=

N∑
i=1

N∑
j=1

〈
qiqjvi(t)·vj(0)

〉
= Z(t)+

N∑
i=1

N∑
j 6=i

〈
qiqjvi(t)·vj(0)

〉
= Z(t)+∆(t) (3.3)

where i and j are different particles. Z(t) is the current autocorrelation and ∆(t) is the cross-

correlation term between particles. Figure 3.9a shows the current velocity correlation, J(t), for our

{111} system at 300 K and after the crack has occurred. The post-crack data trace is initially positive

because free charge carriers are moving across the gap; these carriers have strong autocorrelation

signals. Integrating these traces and applying the result to 3.2 gives us a measure of the conductivity
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of our cells before and after fracture. Before the fracture our cell has an electrical conductivity

of 2.69x10−5 S/cm; after fracture the cell has a conductivity of 3.72x10−3 S/cm. Pure silicon

samples (like our simulation cells) have conductivity as low as 10−4 S/cm and decreasing the dopant

concentration causes silicon to asymptotically approach 10−5 S/cm [44]. Our post-crack sample

has a calculated conductivity on the order of n-doped silicon samples with dopant concentrations

of 4x1012 cm−3. This indicates that the production of mobile charge carriers as a direct result of

fracture accounts for the experimentally observed fracture current bursts. It also corroborates the

observation of conduction band electrons in Figure 3.7a.

J(
t) 
[e
2 b
oh
r2 /
fs
2 ]

(b)(a)

Figure 3.9: (a) The electric current velocity correlation functions for the {111} system at equilibrium
(red) and after a crack has occurred (blue). (b) The ionized electron yield along the crack trajectory
for the {111} and {100} models.

3.5 Conclusions

We show here that our ECP for silicon in the electron force field method (eFF) provides an accurate

representation of the dynamics of material failure, including charge transfer, voltage impulses, and

electron ionization. In this study we demonstrated that eFF could replicate the physics of brittle

fracture of silicon independent of crack orientation. The equilibrium and dynamic mechanical prop-

erties computed from our simulations are in excellent agreement with experimental measurements

and the predictions of other reactive forcefields. Furthermore, we observed the generation of volt-
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ages and the production of charge carriers in good agreement with experiment. We have performed

preliminary tests to infer spectral emissions from the ground state and excited electron eigenstates

from eFF dynamics, albeit within the limitations of the Gaussian basis set representation and the

ECP approximation, by computing the autocorrelation function of the electron wavepackets and

Fourier transforming this function to obtain the eigenstates of the system. This technique allows us

to roughly estimate the emissions that accompany shock, fracture, or triboluminescence.

The significance of these results stem from the capability of eFF to accurately track the long-

term dynamics of electrons under nonadiabatic conditions. This provides new insights into the

phenomenon of electron ejection, voltage fluctuations, and charge carrier induction. Since eFF has

been demonstrated to predict the transformation of H2 and Li from ground state, to intermediate

states of warm-dense matter, to highly excited and plasma state regimes and Auger decay, we

consider that eFF is suitable for treating electronic effects in materials under a wide range of extreme

conditions.
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Chapter 4

The Electron Dynamics of Shocked
Polyethylene Crystal

4.1 Abstract

Electron force field (eFF) wavepacket molecular dynamics simulations of the single shock Hugoniot

are reported for a crystalline polyethylene (PE) model. The eFF results are in good agreement with

previous DFT theories and experimental data which is available up to 80 GPa. We predict shock

Hugoniots for PE up to 350 GPa. In addition, we analyze the phase transformations that occur

due to heating. Our analysis includes ionization fraction, molecular decomposition, and electrical

conductivity during isotropic compression. We find that above a compression of 2.4 g/cm3 the PE

structure transforms into a Lennard-Jones fluid, leading to a sharp increase in electron ionization

and a significant increase in system conductivity. eFF accurately reproduces shock pressures and

temperatures for PE along the single shock Hugoniot.

4.2 Shocked Polyethylene

The material response of polyethylene (PE) to shock and its behavior in the warm dense matter

(WDM) regime is important because it is a common ablator material in direct-drive inertial con-

finement fusion (ICF) experiments [1, 2]. Experiments at the National Ignition Facility (NIF) have

demonstrated that the capsule material can have a considerable impact on the ICF burn efficiency
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[2, 3]. Macroscopic modeling of capsule materials for these experiments requires accurate consti-

tutive engineering models. Producing quality engineering models requires a detailed microscopic

understanding of the equations of state (EOS), electrical conductivity, and optical properties for a

given material. Here, we examine the effects of electronic excitations during hydrostatic shock of

PE.

Theoretical studies of PE in extreme conditions are abundant. A variety of methods includ-

ing quantum mechanics (QM), conventional forcefields, and reactive forcefields are able to repro-

duce a common equation of state gauge: the experimental Rankine-Hugoniot curve [1, 4]. Born-

Oppenheimer quantum molecular dynamics (BOQMD) methods and conventional forcefields pre-

sume adiabaticity in their approach to simulating the high energy states of PE. This assumption

limits the scope of these techniques to temperatures well below the Fermi-temperature, near the

electronic ground state of PE [5]. Conventional and reactive forcefields are parameterized based on

Born-Oppenheimer potential energy surfaces. The result of using Born-Oppenheimer methods is

that the effects of electronic excitations are absent from the system’s EOS, and along the particular

EOS path corresponding to the Rankine-Hugoniot. Quantum mechanical finite-temperature density

functional theory (DFT) methods, unlike BOQMD approaches, allow for electron excitations, how-

ever the Kohn-Sham orbital description precludes these methods from revealing dynamic electron

effects like Auger processes [6, 7]. Finite-temperature DFT methods, like those used in [4] and [1],

are good points of comparison for eFF because they allow for thermal electron excitations.

4.3 Crystalline Polyethylene Model and Computational Meth-

ods

A crystalline PE model was created by truncating and hydrogen passivating the chains in a 2 ×

6× 3 supercell of orthorhombic polyethylene (see Figure 4.1). Truncating the chains in this fashion

prevents unnatural stresses from forming along the length of each chain. The final cell contained

12 C12H26 molecules: 1,632 particles total (144 carbon, 312 hydrogen, and 1,176 electrons). In real
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{100} {010} {001}

Figure 4.1: Three views of orthorhombic polyethylene with electrons.

samples of crystalline PE the chains are finite in length and the PE is only crystalline in small

domains with lamella ranging from 70 to 300 Å in thickness and extending several microns laterally

[8, 9]. Because eFF lacks van der Waals forces, the equilibrium volume of crystalline PE is 30%

too large in eFF. To counter this, the volume of the PE cell was adjusted so that the ground state

reference has a density of 0.95 g/cm3; this produced 1.3 GPa of stress which was subtracted from

all subsequent pressure computations. To generate points along the Hugoniot path, we prepared

samples of increasing density up to 3.0 g/cm3 by isothermally and isotropically compressing the

reference cell at 300 K. Each cell was then ramped to 1,500 K over the course of 500 fs and it was

allowed to equilibrate as an NVE ensemble at 1,500 K for another 500 fs. After heating each cell

was cooled by decreasing the temperature in 30 K steps during which 200 fs of NVT dynamics was

followed by 200 fs of NVE dynamics. The Nosé-Hoover thermostat was used for sample preparation.

In Chapter 2 the various definitions and uses of electron mass were explained. For this study we

wanted to accurately model the timescale of electronic excitations so we carefully chose the dynamic

electron mass. To do this we computed a few Hugoniot points with 1.0 amu, 0.1 amu, and 0.01

amu electrons and found negligible differences in pressure and temperature at these points. An

artificially heavy electron mass enables the use of longer integration time steps. For this study

we set the dynamic electron mass to 0.1 amu. To conserve mass in the system we subtracted the

mass of each atom’s electrons from the standard atomic mass (e.g., we set carbon atom masses to

11.4107 amu and hydrogen atom masses to 0.90794 amu). Because we used light electrons we used
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an integration time step of 0.5 attoseconds (0.0005 fs).

A Hugoniot curve is the locus of thermodynamic states that can be reached by shock compression

of an initial state. These states satisfy the Rankine-Hugoniot energy condition [10, 11]

U − U0 =
1

2
(P + P0)(V0 − V ) (4.1)

where U is the internal energy, P is the pressure of the system, and V is the cell volume. It is

assumed that each point on this seam corresponds to a state of thermodynamic equilibrium wherein

the stress state is hydrostatic. For solids, this latter condition is only valid when the yield stress is

much lower than the mean stress [12]. When the initial state variables P0, V0, and U0 are those of

the uncompressed sample at room temperature, the Rankine-Hugoniot curve is called the principal

Hugoniot. We generated states on the principal Hugoniot using the following iterative procedure.

First the volume of the system is specified, representing a particular degree of compression. How

each density point was prepared is described in the preceding paragraph. The temperature of the

system is quickly increased by changing the set-point of the thermostat. 100 fs of dynamics are run

after the thermostat jump, during which averages of the energy, temperature, and pressure of the

new state are obtained. These values are used to evaluate the residual energy of each step Eres,i,

given by

Eres,i = (U − U0)− 1

2
(P + P0)(V0 − V ). (4.2)

When |Eres,i/Eke,i| < 0.05 the Hugoniot condition is considered satisfied. If this inequality is not

satisfied an additional 100 fs iteration is performed. The new thermostat setpoint is calculated from:

Ti+1 = Ti

(
1 + 0.05

∣∣∣∣Eres,iEke,i

∣∣∣∣) (4.3)

where Eke,i is the average kinetic energy of the system at step i. Once this iterative procedure has

converged, the thermostat is turned off and the system is allowed to propagate as a microcanonical

(NVE) ensemble for an additional 1 ps. This calculation ensures that the Hugoniot condition is
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actually met and the properties of the systems were obtained from these dynamics.

4.4 Results and Discussion

4.4.1 The Principal Hugoniot

Figure 4.2 is the principal Hugoniot projected onto the pressure-density plane. For compressions

below 2.0 g/cm3 eFF matched the experimental and DFT Hugoniot points quite closely (see Figure

4.2b). At higher densities the eFF simulations overpredicted the shock pressure relative to DFT.

Above 2.0 g/cm3 the results show that eFF is systematically “stiffer” than the experimental and

DFT/AM05 [13] data. However, eFF outperforms several classical MD potentials such as AIREBO

[14], OPLS [15], and exp-6 (not shown) [16]; the data for these can be found in [4]. eFF also out-

performed the tight-binding QM method above 2.0 g/cm3. These results demonstrate the difficulty

in modeling the behavior of materials under shock compression. Figure 4.3 shows the temperature-

pressure plane of the Hugoniot calculated by the methods for which temperature data was available.

The system temperatures produced by the eFF calculations are in good agreement with conven-

tional forcefields, reactive forcefields, and QM. The raw data presented in this Chapter is available

in Appendix C, table C.6.

At high compression interesting material features appear in the principal Hugoniot. In the AM05

data series a shoulder feature appears at 2.3 g/cm3. This feature is not as pronounced in the eFF

Hugoniot, however, for both methods inflections in the temperature-density plane of the Hugoniot

curve indicate phase transitions (see Figure 4.4). Subtle temperature suppression is evident in the

eFF temperature-density curve at 2.0 and 2.6 g/cm3. These data features correspond to tangible

transitions in the the molecular structure. Mattsson reported that the AM05 shoulder at 2.3 g/cm3

corresponded to PE backbone bond breaking [4]. The causes for the eFF data features will be

discussed shortly.



47

(a)

(b)

Figure 4.2: (a) The principal Rankine-Hugoniot for PE. Experimental data from the LASL shock
compression handbook [17] and Nellis [18] is provided along with data for the classical MD potentials,
OPLS [4], and AIREBO [4], a reactive force field, ReaxFF [4], and quantum mechanical approaches,
DFT/AM05 and tight binding [19], for comparison. (b) An expansion of the low compression region
of the Hugoniot.

(a) (b)

Figure 4.3: (a) The pressure-temperature locus of the Hugoniot curve for the eFF, DFT/AM05,
OPLS, AIREBO, and ReaxFF methods. (b) The pressure-temperature seam at greater pressures.
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Density [g/cm3]

Figure 4.4: The temperature-density plane of the principal Hugoniot for the eFF (black circles) and
DFT/AM05 (open green diamonds) methods.

4.4.2 Structural Decomposition

An analysis of the pairwise radial distribution functions (RDFs) for different degrees of compression

demonstrates that significant structural decomposition occurs upon shock. Figure 4.5(a) shows that

carbon bonds are compressed as the sample is compressed. As the density of the material increases

the nearest neighbor C-C pair peak (1.55 Å) broadens and the next nearest neighbor C-C pair

distance (2.6 Å) is lost indicating that the carbon backbone is fragmented. The C-H pair distribution

function in Figure 4.5b indicates a gradual phase change to an atomic fluid of hydrogens. The 2.9

g/cm3 series resembles a Lennard-Jones fluid. At this level of shock compression the hydrogen are

totally dissociated from the PE chains. The H-H pair distribution function in Figure 4.5c also shows

that order is lost. At high compression the H-H RDF also resembles a Lennard Jones fluid. From

this data we conclude that the structure is shocked strongly enough to cause a phase transition

to a state where the carbon backbones remain partially intact but they are solvated by loosely

associated hydrogen atoms. For densities corresponding to temperatures around 3,000 K small

peaks in the H-H data in Figure 4.5c near 0.7 Å show that molecular hydrogen is formed. Mattsson

and collaborators also found hydrogen formation when their shocked PE reached 2,800–3,100 K [20].

In their simulations and in the eFF simulations this temperature range corresponded to densities of

2.2–2.3 g/cm3. For temperatures higher than 3,100 K the molecular hydrogen becomes too energetic



49

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.5: Radial distribution functions for (a) C-C atom pairs, (b) C-H pairs, and (c) H-H pairs.
The corresponding coordination number functions for (d) C-C pairs, (e) C-H pairs, and (f) H-H
pairs.
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Density [g/cm3]

Figure 4.6: Structural decomposition along the PE Hugoniot. The open black circles and open
green diamonds correspond to the % intact C-C backbone for the eFF and DFT/AM05 simulations,
respectively. The red circles are the average % ionization along the Hugoniot calculated from the
eFF simulations.

to stay bound, and at lower temperatures the hydrogen do not have enough energy to dissociate

from their polyethylene backbone. The eFF results are consistent with MD and DFT results for

equivalent temperatures.

One of eFF’s greatest assets is its ability to separate electron degrees of freedom, energies,

positions, momentum, and forces from those of the nuclei. This gives us unrivaled ability to measure

electronic physical quantities. In our investigation of PE we have used this to measure the ion fraction

at each stage of shock. To do this we measure the kinetic and potential energy of each electron at

each timestep in our simulations. Figure 4.6 shows the onset of electron ionization at 2.5 g/cm3.

Ionization increases exponentially. The rapid increase in ionization fraction above 2.6 g/cm3 is

evidently the cause of the shoulder in the temperature-density Hugoniot between 2.6 and 2.7 g/cm3.

Above this threshold electron ionization draws energy from the system and this affects the pressure

and temperature of the Hugoniot. The production of carriers in our simulations implies that PE

is conductive at high states of compression. The production of ions is precipitated by the breaking

of C-C bonds, and this relationship is evident in Figure 4.6. The percentage of intact backbone

for the DFT/AM05 study is also presented in Figure 4.6. eFF predicts that the polymer backbone

begins to fracture at 2.4 g/cm3 and DFT/AM05 predicts that fracture begins at 2.0 g/cm3. This

discrepancy is due to the fact that eFF overestimates the strength of carbon-carbon σ-bonds (for
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ethane the bond dissociation energy is 140 kcal/mol versus 90 kcal/mol experimental) [21].

4.4.3 Conductivity

(a) (b)

1.3
1.4

1.6
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1.8

1.9
2.1
2.2

2.4
2.8

2.9

1.0

2.0
3.0

Figure 4.7: (a) The direct current electrical conductivity plotted against temperature and (b) plotted
along the eFF Hugoniot curve (black circles). The blue diamonds are finite temperature DFT data
points for PE in the warm dense matter regime [1].

In order to quantify the conductivity of the shocked system we determined the direct current con-

ductivity using a classical Green-Kubo analysis [22, 23]. We determined the electrical conductivity

in the same manner described in Chapter 3.4.3. Figure 4.7 shows the results of this analysis for eFF

Hugoniot points. eFF predicts that conductivity increases exponentially along the Hugoniot curve

until the temperature reaches roughly 5000 K at which point it levels off. Indeed, FT-DFT studies

of PE in the warm dense matter [1] regime find conductivities between 3,000 and 10,000 S/cm for

samples at 1 g/cm3 and 11,605 K to 3 g/cm3 and 34,815 K. Figure 4.7a shows the temperature

dependence of the conductivity. Comparing the eFF and FT-DFT data as a whole, there is a clear

transition to a metallic state in the vicinity of 5000 K. The downward slope connecting the density

points 2.4, 2.8, and 2.9 reflects the sensitivity of the classical Green-Kubo method to thorough equi-

libration. Outliers were omitted from 4.7a, but all the data points are provided in 4.7b. Between

5000 K and 20391 K the sample has a conductivity of 2100 S/cm which is roughly equivalent to

the conductivity of shocked fluid hydrogen at 140 GPa [24]. Above 2.5 g/cm3, in the semimetallic

PE regime, the RDF analysis suggests that hydrogen is fluid. This suggests that our conductivity
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analysis might be applicable to hydrogen-rich fluids at high temperatures and pressures.

The quality of our quasi-classical Green-Kubo analysis is a result of the accuracy of the eFF po-

tential. Despite not being formulated in terms of occupied bands near the Fermi level, eFF produces

the correct excitations. The eFF potential is rigorously derived from a solution to Schrödinger’s time-

dependent equation of motion, which integrates two quantum-derived potential terms and classical

electrostatics into its Hamiltonian. In particular, the Pauli function is parametrized based on the

orthogonalization of valence bond-type orbitals. When a sample is well described by valence bond-

ing, like polyethylene, eFF will succeed in modeling the potential of each electron. Each electron

“feels” the correct potential, thus ionization potentials are accurate for Carbon and Hydrogen. In

extreme conditions, the distribution of valence and core electronic states spreads and eventually the

highest energy electrons become unbound much like the tail of a Fermi-Dirac distribution above the

Fermi level. This behavior explains why we observe the correct carrier mobilities, ionization yields,

and conductivities for eFF simulations in extreme conditions.

4.5 Conclusions

We have simulated the response of PE to hydrostatic shock compression using the eFF wavepacket

molecular dynamics method. eFF accurately reproduces previously published experimental and the-

oretical findings for high energy shock Hugoniots of PE and provides further insight into the effects

of electron excitations and ionization at extreme pressures and temperatures (e.g., above 2.4 g/cm3

the polymer backbone begins to break and electrons exponentially ionize). For 300 GPa shocks

significant structural deterioration and ionization will occur. eFF also enabled us to study the elec-

tronic conductivity of PE as it transitions at high temperatures into a plasma phase; a unique feature

that is impossible to obtain via conventional force fields or QM. The fidelity of the eFF Hugoniot

indicates that van der Waals interactions are not important under extreme shock conditions. We

expect the results presented in this paper will stimulate further work on the applicability of eFF to

open problems in high energy-density physics.



53

References

[1] D. A. Horner, J. D. Kress, and L. A. Collins, “Effects of metal impurities on the optical
properties of polyethylene in the warm dense-matter regime,” Phys. Rev. B, vol. 81, p. 214301,
Jun 2010.

[2] T. C. Sangster, R. Betti, R. S. Craxton, J. A. Delettrez, D. H. Edgell, L. M. Elasky, V. Y.
Glebov, V. N. Goncharov, D. R. Harding, D. Jacobs-Perkins, R. Janezic, R. L. Keck, J. P.
Knauer, S. J. Loucks, L. D. Lund, F. J. Marshall, R. L. McCrory, P. W. McKenty, D. D.
Meyerhofer, P. B. Radha, S. P. Regan, W. Seka, W. T. Shmayda, S. Skupsky, V. A. Smalyuk,
J. M. Soures, C. Stoeckl, B. Yaakobi, J. A. Frenje, C. K. Li, R. D. Petrasso, F. H. Sguin, J. D.
Moody, J. A. Atherton, B. D. MacGowan, J. D. Kilkenny, T. P. Bernat, and D. S. Montgomery,
“Cryogenic DT and D2 targets for inertial confinement fusion,” Phys. Plasmas, vol. 14, no. 5,
p. 058101, 2007.

[3] P. Amendt, C. Cerjan, A. Hamza, D. E. Hinkel, J. L. Milovich, and H. F. Robey, “Assessing
the prospects for achieving double-shell ignition on the national ignition facility using vacuum
hohlraums,” Phys. Plasmas, vol. 14, no. 5, p. 056312, 2007.

[4] T. R. Mattsson, M. D. Lane, K. R. Cochrane, M. P. Desjarlais, A. P. Thompson, and G. P.
Grest., “First-principles and classical molecular dynamics simulation of shocked polymers,”
Phys. Rev. B., vol. 81, p. 054103, 2010.

[5] S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, and E. K. U. Gross,
“Exact conditions in finite-temperature density-functional theory,” Phys. Rev. Lett., vol. 107,
p. 163001, Oct 2011.

[6] N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev., vol. 137,
pp. A1441–A1443, Mar 1965.

[7] R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional
theory,” Phys. Rev. Lett., vol. 55, pp. 2471–2474, Nov 1985.

[8] M. J. Doyle Polym. Eng. Sci., vol. 40, no. 2, pp. 330–335, 2000.

[9] N. K. Bourne, J. C. F. Millett, and S. G. Goveas, “The shock response of polyoxymethylene
and polyethylene,” J. Phys. D.: Appl. Phys., vol. 40, pp. 5714–5718, 2007.

[10] W. J. M. Rankine Phil. Trans. Roy. Soc., vol. 160, p. 277, 1870.

[11] H. Hugoniot J. de l’Ecole Polytechnique, vol. 57, p. 3, 1887.

[12] M. B. Boslough and J. R. Asay, High-Pressure Shock Compression of Solids. New York, NY:
Springer-Verlag, 1993.

[13] R. Armiento and A. E. Mattsson, “Functional designed to include surface effects in self-
consistent density functional theory,” Phys. Rev. B, vol. 72, p. 085108, 2005.

[14] S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A reactive potential for hydrocarbons with
intermolecular interactions,” J. Chem. Phys., vol. 112, p. 6472, 2000.



54

[15] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the opls all-
atom force field on conformational energetics and properties of organic liquids,” J. Am. Chem.
Soc., vol. 118, p. 11225, 1996.

[16] O. Borodin, G. D. Smith, and D. Bedrov, “Development of many-body polarizeable force fields
for li-battery components: 1. ether, alkane, and carbonate-based solvents,” J. Phys. Chem. B.,
vol. 110, p. 6279, 2006.

[17] S. P. Marsh, LASL Shock Handbook. Berkeley, CA: University of California Press, 1980.

[18] W. Nellis, F. Ree, R. Trainor, A. Mitchell, and M. Boslough, “Equation of state and optical
luminocity of benzene, polybutene, and polyethylene shocked to 210 gpa,” J. Chem. Phys.,
vol. 80, p. 2789, 1984.

[19] J. D. Kress, S. R. Bickham, L. A. Collins, B. L. Holian, and S. Goedecker, “Tight-binding
molecular dynamics of shock waves in hydrocarbons,” AIP Conference Proceedings, vol. 505,
no. 1, pp. 381–384, 2000.

[20] T. R. Mattsson and K. R. Cochrane, “Pair correlations for the hydrostatic shock of polyethy-
lene.” Private communication, 2010.

[21] J. T. Su, An Electron Force Field for Simulating Large Scale Excited Electron Dynamics. PhD
thesis, California Institute of Technology, Pasadena, CA, 2007.

[22] Y. Shim and H. J. Kim, “Dielectric relaxation, ion conductivity, solvent rotation, and solvation
dynamics in a room-temperature ionic liquid,” J. Phys. Chem. B, vol. 112, pp. 11028–11038,
2008.

[23] M. H. Kowsari, S. Alavi, B. Najafi, K. Gholizadeh, E. Dehghanpisheh, and F. Ranjbar, “Molec-
ular dynamics simulations of the structure and transport properties of tetra-butylphosphonium
amino acid ionic liquids,” Phys. Chem. Chem. Phys., vol. 13, pp. 8826–8837, 2011.

[24] W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen
at 140 GPa (1.4 Mbar),” Phys. Rev. B, vol. 59, pp. 3434–3449, Feb 1999.



55

Chapter 5

Core Pseudoparticles as an
Effective Core Potential

5.1 Motivation

The motivation for developing an effective core potential (ECP) for eFF is threefold. First, separating

electrons into two classes – core and valence – allows us to remove chemically inert core electrons

from the calculation. Minimizing the number of electrons required to describe each atom reduces the

computational workload and this creates the possibility of performing calculations with hundreds

of thousands of atoms. Besides reducing the total number of electrons, excluding the core electrons

permits the use of longer integration time steps, since the Nyquist rate is typically set by the

fast radial breathing modes of core electrons. Lastly, the ECP parameters can be used to improve

atomic and molecular properties for which all-electron eFF is deficient. In this chapter the theory and

rationale behind the novel ECP form will be explained and the fitting technique will be described. A

variety of validation cases are provided and the performance of the ECP is compared to all-electron

eFF.

5.2 Theoretical Development of Core Pseudoparticles

The first effective core potentials for FSGO methods became available in the early 1970s, and these

largely mimicked the function of pseudopotential methods for Hartree-Fock techniques [1, 2]. Frost’s



56

FSGO method was supplemented with a pseudopotential that replaced the core electrons of atoms

up to germanium [3] through the use of angular momentum projectors [3–5]. The general form of

the effective potential by Topiol and coworkers is

V (ri) =
−nv
ri

+
∑
i

BlPl
r2i

(5.1)

where V (ri) is the potential felt by the ith valence electron and nv is the number of valence electrons,

Bl is a parameter, and the projector onto the lth angular momentum state is

Pl =
∑
m

∣∣lm〉〈lm∣∣. (5.2)

This type of pseudopotential has the advantage of having an analytic form for each Bl in terms of

the Hartree-Fock atomic valence orbital energies. This function is also fast to integrate over the

FSGO functions [4]. Interestingly, the authors of these early studies found that more sophisticated

pseudopotentials provided poorer results [4]. The effective potential has two purposes: to replace

the Coulomb and exchange integrals over the core orbitals, and to enforce the Pauli exclusion

principle. Being that there are no Coulomb or exchange integrals in eFF, and considering the failure

of sophisticated pseudopotentials to yield the best results for similar FSGO methods, we surmised

that following the approach of traditional angular-momentum-dependent pseudopotentials might

not be the best option for eFF.

Z = 13, 13 e-
1s22s22p63s23p1 

Z = 14, 14e-
1s22s22p63s23p2 

Z = 3, 3e-
[core]3s23p1 

Z = 4, 4e-
[core]3s23p2 

Figure 5.1: The construction of core pseudoparticles from all-electron atoms: aluminum (left) and
silicon (right). The 2sp3 core electrons are visible as tan nested tetrahedra.
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In the spirit of eFF’s simplicity, we devised a novel form of effective core approximation. Our goal

was to create the simplest possible effective core potential that would be fast to evaluate, and that

would produce results at least as accurate as DFT calculations. Ultimately we devised a method

whereby the nucleus and core electrons are coalesced together to form a “core pseudoparticle”. Figure

5.1 is a conceptualization of this process. The particle’s interactions with other nuclei and valence

electrons will be determined by standard electrostatic interaction potentials and a pseudoparticle

Pauli function to enforce the Pauli principle. Because both the core pseudoparticle and the valence

electrons are spherical, this approach is termed an s-s overlap potential. The s-s overlap potential

is expected to work well for sp3 hybridized electrons, or for bonding where the electron density is

centered between the nuclei. There is no effective potential function to be evaluated, rather a simple

set of pairwise energy interactions and forces are computed between each pseudoparticle and all

other particles. This method is nicknamed “effcore”, since it is not a true pseudopotential method.

Aluminum and silicon were chosen as test cases for the development of effcore because they span

two important electron regimes despite being separated by only one period. Aluminum has metallic

electrons and silicon has covalent electrons. Besides this, aluminum is an important impactor and

target material in hypervelocity impact experiments. Silicon is probably the most important material

of the twentieth century. Each element has 10 core electrons, so significant savings are achieved by

using a pseudoparticle.

This construction of a core pseudoparticle is conceptually simple but difficult to fit parameters to.

Figure 5.1 shows the process for aluminum and silicon. In the case of aluminum, the atom contains

13 protons, 13ish neutrons, and 13 electrons. The core electron configuration is 1s22s22p33s23p1.

Combining the 10 core electrons and 13 protons into a single particle produces a core pseudoparticle

with a 3+ charge, a mass of 26.981539 amu, and an unknown radius. The three valence electrons

are kept in the description of the atom. The core pseudoparticle has the same mass as the normal

atomic mass so its dynamic properties are the same. What is left to be determined is the nature of

the pseudoparticle’s electrostatic interactions and how it remains orthogonal to other orbitals (its

Pauli potential).
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The Hamiltonian for effcore is straightforward:

U(R, r, S, s) = ENN (R) + ECC(R) + ECN (R) +

ENe(R, r, s) + ECe + Eee(r, s) + Eke(s) + EPauli(↑↓, S) + EPauli,C(S). (5.3)

The meaning of the subscripts is the same as in equation (2.3), except that we’ve also added the

core pseudoparticles with subscript C. Besides the new electrostatic terms between cores, nuclei,

and electrons, there is EPauli,C(S), the Pauli potential between pseudoparticles and other electrons.

Because we are making the assumption that cores are chemically inert, we have omitted a core

electronic kinetic energy term; this essentially fixes the core radii. As a result, the core radius is a

fitting parameter that is meant to reproduce the mean all-electron core radius under a wide variety

of chemical environments. In §5.2.1 and §5.2.2 the new potential energy terms will be presented.

5.2.1 Core Pseudoparticle Pauli Potential

Consider the eFF wavefunction corresponding to a single silicon atom; it has the form of the wave-

function in equation (2.3). We can rewrite this as a factored product of core and valence electrons:

Ψ =
∏

Ψcore

∏
Ψvalence. (5.4)

The electron density corresponding to the core electrons must be removed and replaced with an

analytic function describing the Pauli repulsion between the collective core electron density and

valence electrons (or other atom’s electrons). The core electron wavefunction is just the product of

each basis function for the core electrons:

Ψcore =

Ncore∏
j

exp
[
− (r− xj)

2

s2j

]
. (5.5)

From equations (2.10) and (2.11) it is evident that the Pauli energy is proportional to S2, the squared

overlap between the floating Gaussian functions. Consider the overlap, S, between the core electrons
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and a single valence electron:

S =

∫ ∞
−∞

ΨcoreΨv1(r− xv)dx =

∫ ∞
−∞

Ncore∏
j

exp
[
− (r− xj)

2

s2j

]
Ψv1(r− xv)dx. (5.6)

This integral is the convolution of several Gaussian functions, and the convolution of two or more

Gaussian functions is merely another Gaussian function [6, 7]. Developing an analytic expression to

fit this Gaussian would be unwieldy, and so we give it a simplified form. We define the core-valence

Pauli energy term in the following manner:

EPauli,Ce(r, s) = a · exp

[
− br2

(c+ s2val)

]
(5.7)

where the function is centered on the core-pseudoparticle and r is the distance between the valence

electron and the core pseudoparticle, and s is the radius of the valence electron. The fitting pa-

rameters, a, b, and c, serve to approximate the effects of the Pauli interactions between the core

electrons and the valence electron, and also to parameterize the Pauli interactions between the now

absent core electrons.

5.2.2 Core Pseudoparticle Electrostatic Potentials

The new electrostatic potentials between core pseudoparticles and other nuclei and electrons are

very similar to the interactions between electrons and other particles because of the Gaussian shape

of both classes of particles. The Coulomb potentials are defined as:

EC,N =
1

4πε0

∑
i,j

ZiZj
Rij

Erf

[√
2Rij

r2core,j

]
(5.8)

EC,e =
1

4πε0

∑
i,j

ZiZj
Rij

Erf

[ √
2Rij√

r2core,j + r2e,j

]
(5.9)

EC,C =
1

4πε0

∑
i,j

ZiZj
Rij

Erf

[ √
2Rij√

r2core,j + r2core,j

]
. (5.10)
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In equations (5.8), (5.9), and (5.10), Z is the particle charge, Rij is the distance between each particle,

and r refers to the particle radius. The subscripts N , C, and e refer to nuclei, core pseudoparticles,

and electrons, respectively.

5.3 Fitting Technique

In effcore the parameters to be fit are in the core Pauli potential and the radius of the core pseu-

doparticle. Adjusting these parameters influences the structure and energy of the molecule or atom

nonlinearly. For example, adjusting the core Pauli potential influences not just the radii of nearby

electrons, but also their positions. Adjusting the radius of the core pseudoparticle has the same

effect. And naturally, if bonding electrons move, so do the nuclei that they bind. This makes it

difficult to fit parameters using linear least-squares fitting schemes, and it makes it nearly impossi-

ble to fit them by hand. Contrast this to fitting parameters in conventional forcefields (see Chapter

2.1.2 for more discussion); the fitting parameters have clear physical interpretations, thus fitting is

more straightforward. Besides the fact that the fitting parameters in effcore have no clear physical

meaning, the range of potential values is unknown for cores as complicated as those of aluminum

and silicon. Fitting four parameters for effcore demanded a more sophisticated fitting scheme.

To search for a global minima in a four-dimensional parameter space where the range of values

is unknown, stochastic optimization techniques are useful tools. A genetic algorithm is a general

stochastic optimization method. Technically the method is a heuristic that seeks an optimal solution

by mimicking the natural process of evolution [8]. Sets of system parameters are encoded as strings

in a chromosome as a set of “genes”. These genes represent a candidate solution whose performance

is measured by a “fitness function”. This function is defined entirely by the user so the GA method

can be applied to nearly any type of optimization problem. The size of the population is defined by

the user, and it consists of several individuals with randomly assigned alleles. Once the population

is initiated, each member is passed through the fitness function and its performance is recorded by

the algorithm. At this stage the most fit members of the population are selected for and this is

the computational analogue of survival of the fittest. Once ranked, pairs of individuals are mated
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in a process similar to reproduction. A crossover operator determines the genetic mixing in the

reproduction process and a mutation operator can mutate certain genes. The mutation operator

allows for some genetic drift and prevents the algorithm from converging into a local minima. In some

GAs only a fraction of the individuals in the following generation are produced by reproduction;

the remainder of individuals are introduced randomly to produce entropy in the heuristic. The

algorithm continues in this manner until the maximum number of generations has been reached, or

an optimal solution meets a convergence criterion. The method is highly flexible but user inputs

like the number of generations, the population size, the mutation rate, and the initial distribution

of genes can influence the rate of convergence and parameter space coverage. The latter effect may

prevent the algorithm from converging to the global optimum.

The genetic algorithm does the hard work and the user is left to design the fitness function and

choose the molecules in the fitting library. To find optimal parameters for silicon and aluminum,

a balanced library of small molecules and bulk material values was constructed. The libraries

contained XH4, X2H4, XH3 radical, anion, and cation, X-H bond stretch intermediates, X-X bond

stretch intermediates, Si-diamond bulk , and fcc-Al bulk (X = Si, Al). From this set of molecules we

extracted geometric values, heterolytic and homolytic bond dissociation energies, optimum lattice

constants, cohesive curves, and bond curves. We aimed to include 3 to 4N metrics in the fitness

function where N is the number of parameters to be fit. The weighted differences between our

fitness metrics and available experimental or QM data were used to compose the final fitness score.

The weighting coefficients could be adjusted to favor certain properties (i.e., bond curves versus

bond lengths and angles, or cohesive energy curvature). The final values were weighted towards

optimal geometries and bond energies; bulk properties were sacrificed. The small basis size of the

eFF wavefunction ensures that the final performance of any eFF method will be a compromise. The

genetic algorithm was run with the following conditions: a four-gene chromosome (genes: a, b, c, and

rcore) defined the phenotypes of a population of 80 individuals that were allowed to evolve for 1000

generations with a mutation rate of 0.5. The parameters were constrained to {x ∈ R | 0 ≤ x ≤ 100}.

The results of these optimizations are presented in Table 5.1.
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Element a b c rcore
Al 0.486 1.049 0.207 1.660
Si 0.321 2.283 0.815 1.691

Table 5.1: Parameter fits

The results of the genetic algorithm fitting procedure are reassuring. From a large range of

potential values, the algorithm converged on a reasonable set of parameters. A striking result of the

fit is that the Al and Si core pseudoparticles’ radii are nearly the same value as Vanderbilt’s utrasoft

psuedopotential radius for these two atoms: 1.6 bohr [9]. It’s even reassuring that the algorithm

converged on nearly the same value for the Al and Si radius since these atoms share core electron

configurations. This occurred despite each atom having very different fitting libraries.

5.4 Computational Performance

(a) (b)

Figure 5.2: Single processor performance for bulk silicon: (a) The cpu time (in seconds) per timestep.
(b) The cpu time per timestep per particle (includes nuclei and electrons). Run on a Linux CentOS
4.5/RHEL 4 system with 2.33 GHz Dual Quad Core Intel Xeon processors.

Effcore benefits from three performance advantages over eFF: (1) the total number of particles

needed to model each atom is reduced, (2) energy evaluations between core pseudoparticles and

electrons are faster than normal electron-electron energy evaluations, and (3) the integration time

step that can be used for dynamics is increased significantly. Figure 5.2 shows the computational
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performance of eFF and effcore for dynamics calculations on increasingly large bulk silicon super-

cells. Figure 5.2a demonstrates that effcore is about 10 times faster for any system size, and the

computational time for both eFF and effcore scale linearly. The linear scaling is a result of using

a spline-cutoff, bins, and neighbor lists (available in the LAMMPS implementation of eFF). Figure

5.2b shows that the speed-up is not a mere consequence of reducing the number of particles per

atom. If the number of particles are normalized, effcore is still roughly 3 times faster than eFF

because the core Pauli potential is faster to evaluate than an actual core electron-valence electron

Pauli potential evaluation.
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Figure 5.3: Conservation of energy during NVE dynamics.

Figure 5.3 shows the conservation of energy for effcore NVE dynamics (energy is plotted as the

mean energy per molecule). In this representative system a gas of disilane particles is equilibrated

at 300 K and then allowed to propagate as a microcanonical ensemble for roughly 1 ps (1 atu = 1.03

fs). In a similar eFF calculation an integration time step of 0.005 atu would have to be used. The

data shows that 0.05 atu shows perfect energy conservation over 1000 atu; even 0.1 atu time steps

did not drift, though the variance is ±3 × 10−6 Hartrees per molecule. This means that 10 to 20

eFF time steps are needed where only 1 effcore time step is used. As stated earlier, this performance

advantage can be attributed to removing the fast radial breathing modes of 1s core electrons, and

to fixing the core pseudoparticle’s radius.
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(a) (b)

Figure 5.4: Comparisons of (a) internuclear distances and (b) angles between eFF1, eFFcore, and
B3LYP/6-31g** reference values for a variety of silicon hydrides and saturated silyl-hydrocarbons.

The net effect of the three performance enhancements is a 100–200× speed-up for dynamics sim-

ulations depending on the chosen integration time step. This allows the user to perform calculations

that are hundreds of times larger, or hundreds of times longer. It is worth mentioning that parallel

eFF calculations scale linearly and this means that nearly any system size can be computed if enough

processors are available [10].

5.5 Validation of the Fit Parameters

5.5.1 Silicon

This section will detail a series of validation tests for the fitted ECP. When examining these validation

tests remember that many of these properties are emergent. While certain geometric properties and

energies were explicitly fit, most were not. We begin with geometries for saturated silicon hydrides.

eFF1 produces stable geometries for silicon hydrides and silicon bulk. The eFF1 core structure is

an emergent property of the eFF Hamiltonian. 1s electrons are nuclei-centered. 2s and 2p electrons

“hybridize” into 2sp3 orbitals that arrange themselves like nested tetrahedra within the tetrahedral

valence electrons (see Figure 5.1 for an example of this shell structure). This structure is obviously

absent in effcore structures, but the nearly perfect sp3 tetrahedral bonding remains. Figure 5.4
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Si-H (Å ) Si-Si (Å )
Molecule eFFcore qm eFFcore qm
SiH4 1.44 1.437 - -
Si2H6 1.459 1.488 2.187 2.35
Si3H8 1.464 (1.486) 1.488 (1.491) 2.204 2.357
t-Si4H10 1.456 (1.518) 1.488 (1.494) 2.224 2.359
q-SiH5H12 1.466 1.488 2.246 2.361

Table 5.2: Small molecule bond lengths

H-Si-H (deg.) H-Si-Si (deg.) Si-Si-Si (deg.)
Molecule eFFcore qm eFFcore qm eFFcore qm
SiH4 109.5 109.5 - - - -
Si2H6 107.9 108.4 111 110.5 - -
Si3H8 108 (106.4) 108.5 (107.4) 110.8 (108.8) 110.8 (109.1) 115.1 112.8
t-Si4H10 108 108.5 111.3 (106.6) 110.8 (108.1) 112.2 110.8
q-SiH5H12 107.4 108.4 111.5 110.6 109.5 109.4

Table 5.3: Small molecule angles

shows the computed internuclear distances and angle of a wide variety of silicon hydrides from eFF1

and effcore compared to DFT. eFF1 produces slightly longer bonds than B3LYP/6-31g** and effcore

produces slightly shorter bonds. Both perform well.

Figure 5.5 shows the placement of electrons and structures of primary, secondary, and tertiary

substituted silicon hydrides and comparison overlays with DFT B3LYP/6-31g** structures. Specific

values for structural parameters are provided in Tables 5.2 and 5.3. In general, effcore slightly

underestimates Si-H and Si-Si bond distances. The angles (and dihedral angles) are well represented

in effcore. The Lewis bonding and hybridization of these complexes arise as a natural consequence

of the proper balance of kinetic energy, electrostatic potential, and Pauli repulsion. These qualities

also confer dynamic stability on these molecules, and indeed they are stable during NVT, NPT, and

NVE dynamics. Figure 2.1 demonstrates this for low- and high-energy systems.

The solid phases of silicon are reasonably well described by effcore. Figure 5.6a shows the

cohesive energy curves of silicon diamond for effcore, eFF1, and DFT PBE with a plane wave basis

set. Effcore is a vast improvement over eFF1 with regards to the lattice constant. Both effcore

and QM replicate the experimental lattice constant of 10.3 bohr (5.44 Å). From the curvature of

the cohesive energy curves the bulk modulus can be calculated. The experimental bulk modulus is
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SiH4 Si2H6 Si3H8

Si-adamantane

Figure 5.5: A galley of primary, secondary, tertiary, and quaternary substituted silicon hydrides.
Structures from effcore (red) are overlayed with those from B3LYP/6-31g** (blue).



67

V/V0
(a) (b)

β-Sn

diamond

Figure 5.6: (a) Cohesive energy curves for silicon diamond (A4). (b) The energy of β-Sn silicon (A5)
relative to the A4-silicon with QM values from [11].

Property Experiment eFF1 eFFcore
ionization potential [eV] 8.2 7.9 8.0
work function [eV] 4.6 4.7 3.1
bulk modulus B0 [GPa] 100† 200 200
Young’s modulus E [GPa] 160† - 160
shear modulus G [GPa] 40† - 20∗

yield strength [GPa] 7 - 15

Table 5.4: Emergent material properties. ∗Calculated from the linear elastic relationship G =
9B0E/9B0 − E. † from reference [13].

100 GPa [12], but effcore produces a bulk modulus of 200 GPa. Table 5.4 compares the values of

emergent properties between experiment, eFF1, and effcore. In general, eFF provides moduli that

are too stiff; for example the carbon diamond bulk modulus is 440 GPa, but eFF predicts 800 GPa.

We were able to find sets of parameters that produced bulk silicon with perfect bulk modulus, shear

modulus, and Young’s modulus, but these parameters also produced unstable small molecules and

poor bond energies. We chose to sacrifice the quality of our bulk properties in order to obtain good

bond energies and geometries.

Figure 5.6b shows the volumetric relative energy curves for β-Sn silicon and diamond silicon

relative to the experimental volume. The β-Sn structure of silicon is a compressed phase that

is distorted from the cubic diamond form by shortening the c lattice length so that c/a = 0.552

[11, 14, 15]. The transition to the metallic β-Sn phase occurs under 9–12.5 GPa of pressure [11, 14],



68

and being that this falls within the definition of extreme pressure, being able to describe this phase

is desirable. In the metallic β-Sn phase, each silicon is sixfold coordinated. This complicates the

placement of σ-bonding electrons since bulk silicon has a filled octet, and a valence of four. The

β-Sn structure leads to non-Lewis bonding. In the compressed structure, the radii of the electrons

decreases and their electronic kinetic energy increases, thus the potential energy of the system

increases. The degree of this response causes a gross overestimation of the potential energy and

this is reflected in Figure 5.6b. Attempts to anneal the structure, and possibly find better electron

configurations, were only marginally successful. In those cases the energy minima of the β-Sn phase

was still 1 eV per atom above the diamond reference energy. Ultimately the localized electron

description that eFF is inadequate for studying systems where electron delocalization or p-electron

character are important.

Si-Si

Si-H

Si-Si

Si-H

Figure 5.7: eFF homolytic bond dissociation energies versus reference QM or experimental data
(values closer to the line are better). See Table 5.5 for the bonds and references.

Where effcore truly outperforms eFF is in its description of bond energies. Figure 5.7 shows the

computed bond energies for a variety of compounds plotted against reference experimental values

or DFT. Poor bond energies were heavily penalized in the GAs fitness function and so it is no

surprise that effcore fixes eFF1’s inability to predict homolytic bond dissociation energies. eFF1

over-predicts the strength of Si-Si bonds in absolute terms and relative to Si-H bonds. Si-H bond

strengths are under-predicted in absolute terms and relative to Si-Si bonds. The quality of the effcore
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bond energies for Si-Si bonds is largely responsible for the success of the simulations in Chapter 3.

Bond or Reaction Reference Expt/QM eFF1 eFFcore
SiH3-H [16, 17] 91.7 164.5 92.8
Si2H5-H [16, 17] 89.1 161.9 93.6
SiH3-SiH3 [16] 76.7 185.3 74.7
Si2H5-SiH3 [16] 74.8 180.9 73.8
Si2H5-Si2H5 [16] 73.1 176.6 73.3
Si3H7-H [18] 89.4 161.7 93.5
Si4H9-H [18] 89.2 161.7 93.4
Si5H11-H [18] 89.3 162.0 92.9
Si6H13-H [18] 89.2 161.7 93.4
Si7H15-H [18] 89.2 161.7 93.5
Si8H17-H [18] 89.2 161.6 93.4
SiH3 + Si2H5 → Si3H8 [18] 76.0 180.9 73.8
SiH3 + Si3H7 → Si4H10 [18] 75.9 180.8 74.1
SiH3 + Si4H9 → Si5H12 [18] 75.8 180.8 74.0
SiH3 + Si5H11 → Si6H14 [18] 75.8 181.2 73.5
SiH3 + Si6H13 → Si7H16 [18] 75.8 180.6 74.0
SiH3 + Si7H15 → Si8H18 [18] 75.8 180.8 74.0
Si2H5 + Si4H9 → Si6H14 [18] 75.6 176.4 73.4
Si2H5 + Si5H11 → Si7H16 [18] 75.3 176.8 72.9
Si2H5 + Si6H13 → Si8H18 [18] 75.3 176.4 73.4
MeSiH3 → CH3 + SiH3 [19] 89.6 158.9 87.3

Table 5.5: Calculated bond dissociation energies (kcal/mol)

Reactive species are stable and well described by eFF. Figure 5.8 shows a series of electronic

states of SiH3. Charged species and radicals are stable in eFF and effcore, and the energies of these

species compare well to experimental and DFT values. One exception is that the electron affinity

SiH3 is incorrect. The planar SiH−3 species is unstable in effcore because it is unable to model the

electron delocalization that should exist in this species. The geometry of the silyl radical is correctly

predicted to be pyramidal instead of planar; high-level CI calculations support this result [20, 21].

Despite not being explicitely parametrized in eFF, properties like barriers to rotation and strain

energies of cyclic molecules are well described. Table 5.6 shows the ring strain energies of the different

conformers of Si6H12. Effcore performs slightly better than eFF1 and both compare well to QM.

The rotational barrier of Si2H6 is 1.12 kcal/mol, and eFF and effcore both predict 0.5 kcal/mol [22].

The validation tests in this section demonstrate that with only one basis function per electron, ef-

fcore provides accurate geometries for small molecules and bulk silicon. It predicts bond dissociation

energies, ionization energies, the relative energy of reactive species, and other emergent properties
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Figure 5.8: The energies (eV) of reactive SiH3 species. B3LYP/6-311g**++ values are in parenthesis.

with good fidelity. With the exception of a few properties, the effcore approximation meets the goal

that we initially set: it performs at least as well as DFT for a wide variety of systems. Of course,

with effcore we can study systems much larger than can be studied with DFT, and we can do this

in a broader range of conditions.

Method chair sofa twist boat RMSD
B3LYP/6-311G** 0 3.1 1.8 2.1 0
eFF1 0 2.6 0.7 0.8 1.01
eFFcore 0 2.7 1.3 1.4 0.55

Table 5.6: Ring strain of various Si6H12 conformers (kcal/mol)

5.5.2 Si(111)-7×7 Reconstruction

The elucidation of the Si(111)-7×7 surface reconstruction took some 22 years after its initial discovery

[23, 24], and it took the work of theorists and experimentalists to reveal the complicated details of

this surface. Though the structure has been resolved, the mechanism behind this transformation is

still unclear [25]. We thought this complex rearrangement would be a good test study for the newly

vetted effcore approximation for silicon.

The Si(111)-7×7 surface is produced by cleaving bulk silicon in ultrahigh vacuum along (111)
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planes. Heating the surface to at least 650 K and allowing it to cool produces the 7×7 reconstruction.

The currently accepted structure for this reconstruction is the dimer-adatom-stacking fault (DAS)

model of Takayanagi and coworkers [26]. Before beginning dynamics simulations, the surface energies

of the various surface structures that comprise the DAS must be computed.

When this study began, eFF could only handle rectangular periodic boundary conditions, so

supercells of the monoclinic structures were created and rectangular projections were extracted

from these. Figure 5.9 shows some of the reconstruction intermediates. Slabs were created so that

the z-dimension is finite and surrounded by vacuum on either side. The x and y dimensions are fully

periodic. The slabs contain 6 bulk layers (3 (111) bilayers) and each slab is passivated by hydrogen

on one side. The DAS model posits that adatoms are positioned on the top surface. Adatoms bind

to three second-layer atoms and they either sit atop a third-layer atom, as in the
√

3×
√

3T4 model,

or they sit above a hollow in the surface such that the atom beneath is a fifth-layer atom, as in

the
√

3 ×
√

3H3 model. There are no H3 adatoms in the das7×7 model. The das7×7 structure is

quite complex and an excellent description can be found in reference [25]. Simply put, the das7×7

reconstruction sits above 7×7 unit cells of Si(111). The surface contains 12 T4 adatoms, a 12 member

ring hole with a fourth-layer dangling bond in the center, 18 dimer atoms, 6 second-layer dangling

bonds in 8 member ring holes, and a stacking fault. To create this structure, the das3×3 model, and

the das5×5 model, 3 layers that contain these features are added to the 6 layers of bulk silicon. The

das3×3 model contains 2 T4 adatoms, a 12 member ring hole, a fourth-layer dangling bond, and 6

dimer atoms. The das5×5 model contains 6 T4 adatoms, a 12 member ring hole, 12 dimer atoms, 2

second-layer dangling bonds and a stacking fault. These structures were not trivial to prepare. eFF

requires its user to place σ-bonding electrons between bonded atoms and the irregular structures

and dangling bonds of the Si(111) reconstruction intermediates make this a challenging task.

The reason that the das7×7 model is the most stable annealed state of Si(111) surface is that it

minimizes the number of dangling surface electrons. The das7×7 structure eliminates 30 dangling

bonds, so 30 times the surface energy of the 1×1 unrelaxed surface (1.20 eV) is potentially gained,

but in reality the das7×7 model only stabilizes the surface by 7.54 eV (0.26 eV per removed dangling
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das 3×3

das 7×7

√3×√3H3 √3×√3T4

Figure 5.9: Si(111)-7×7 reconstruction intermediates. The das3×3 and das7×7 structures are ac-
tually rectangular 2×1 projections extracted from 2×2 supercells of the reconstruction models. T4

adatoms are colored blue, fourth-layer dangling bond atoms are colored orange, dimer atoms are
green, and second layer dangling bond atoms are colored magenta. In the das3×3 structure the 12
member ring hole is highlighted with red circles.
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bond) – this is because a significant strain penalty is incurred. To ensure that the dynamics one

observes will be correct, the surface energies of various surface states need to be computed to verify

that their relative energies are ordered correctly. The surface energy, Es, is defined by

Es =
Em − (b× Eb)− (m× n× EH1x1)

m× n (5.11)

where Em is the minimized energy of the structure in question, b is the number of silicon atoms in

the structure, Eb is the energy per silicon atom in bulk silicon, m × n is the number of 1×1 unit

cells, and EH1x1 is the energy change per hydrogen atom when passivating an unreconstructed 1×1

unit cell. The eFF analogues of the 1×1 unrelaxed structure,
√

3 ×
√

3H3,
√

3 ×
√

3T4, das3×3,

das5×5, and das7×7 structures were minimized and their surface energies were computed according

to (5.11). The results relative to the 1×1 unrelaxed surface are presented in Table 5.7.

Method unrelaxed slab
√

3×
√

3H3
√

3×
√

3T4 das3×3 das5×5 das7×7
DFT/PBE 0 0.13 -0.12 -0.15 -0.18 -0.18
effcore 0 -0.44 -0.06 1.7 1.3 0.81

Table 5.7: The energies of Si(111)-7×7 reconstruction intermediates relative to the unrelaxed surface
energy [eV]

The results show that eFF incorrectly predicts that the
√

3×
√

3H3 and
√

3×
√

3T4 surfaces are

more stable than any of the DAS reconstructions. Effcore incorrectly predicts that the H3 surface

has a lower energy than the T4 surface. While effcore predicts the correct trend in the relative

surface energies of the 3×3, 5×5, and 7×7 reconstructions, the sign and magnitude of their surface

energies are incorrect. All three should be more stable than unreconstructed, unrelaxed Si(111)

surface.

A close examination of the das7×7 model reveals the reason for this. DFT/PBE calculations show

that the bond length between T4 adatoms and second-layer neighbors is 2.49 Å and the distance to

the third-layer atom that it sits atop is 2.5 Å. Effcore predicts 2.48 and 2.9 Å for these two distances.

The effcore angle between Si-T4-Si is 84.2°, while DFT/PBE measures 94.2° [25]. Since the nearest

neighbor bond distance is correct while the next-nearest neighbor bond is too long, and since the Si-
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T4-Si angle is so acute, it is clear that the second-layer atoms are too crowded. The cell boundaries

were also minimized, so this means that the stacking faults and dimer bonds introduce strain into

the second and third layers of the reconstruction. The effcore dimer bonds measure alternating 2.57

Å and 2.47 Å as they radiate outward from the 12 member ring hole. The DFT/PBE dimer bonds

measure 2.45 Å, meaning the effcore dimer bonds are too long; perhaps if they were shorter the

T4 clusters wouldn’t be so crowded. Even the bond between the silicon atom bearing the dangling

electron in the center of the 12 member ring and bulk silicon is too short: 2.3 Å versus PBE’s 2.39 Å.

The cause of the surface strain is likely the dimer bonds which are too long. Without the flexibility

to hybridize bonds to include more p-character, the effcore σ-bonds are too s-like, and thus too long.

Since the stability of the DAS surface reconstructions is derived from balancing the elimination of

dangling surface electrons and the strain introduced by the reconstruction, accurately modeling the

energetic costs of each is critical to obtaining the correct surface energy.

5.5.3 Aluminum

The fit parameters for aluminum were validated against small aluminum hydride molecules and

aluminum bulk.

Table 5.8 shows the geometries of AlH3 and Al2H6. Effcore and eFF correctly predict the three-

center, two-electron bridged bond motif in Al2H6. The geometries indicate that both effcore and

eFF do a good job of modeling this structure. While eFF bond lengths are generally better, effcore

predicts more accurate bridge bond angles and lengths. In addition to these small molecules a series

of AlnH3n (n = 1, 2, 3. . . ) clusters were computed and their bond energies relative to the single AlH3

were compared to previous QM results and eFF. Effcore predicts the correct bond energies in both

magnitude and trend, while eFF fails to reproduce either of these attributes correctly. However, for

more complicated all-aluminum clusters (like those in references [27] and [28]), both eFF and effcore

failed to produce stable structures. In these structures 90° bonds and unusual coordination numbers

were overwhelming for eFF and effcore, which succeed with Lewis or VSEPR type bonding and fail

with delocalized or unusually hybridized bonding types.
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Bond/Angle B3LYP M06 eFF1 eFFcore
AlH3

Al-H 1.58 1.58 1.60 1.52
H-Al-H 120 120 120 120

Al2H6

Al-Al 2.58 2.61 2.20 2.67
Al-H 1.58 1.57 1.60 1.48
Al-bridge H 1.74 1.74 1.62 1.78
Al-Al-bridge H 42.1 41.4 47.1 41.5
H-Al-H 127.5 128.2 116.7 128.6
H-Al-bridge H 109.3 109.0 110.9 108.9
H-bridge H 2.68 2.70 2.65 2.66

Table 5.8: Aluminum hydride geometric values (Å and degrees)

n (AlnH3n)

Figure 5.10: The bond energies of AlnH3n clusters [eV]. QM from [28]

The fit values for effcore provide an improved description of bulk silicon. In eFF the lattice

constant of fcc-aluminum is overestimated by some 4%. The lattice constant was a metric in the

fitness function so naturally effcore matches the experimental value, 4.05 Å, perfectly. For reference,

DFT/LDA slightly underestimates the lattice constant. These three methods are compared in Figure

5.11. From the curvature of the cohesive energy curves the 0 K bulk modulus values were calculated.

eFF predicts a bulk modulus of 44 GPa while effcore predicts a value of 108 GPa while the room

temperature experimental value is 76 GPa. Studies have found that the calculation of bulk moduli

from quadratic fits to the cohesive energy tend to overestimate the moduli because they neglect

temperature and zero-point phonon effects that exist in experimental measurements [29]. Gaudoin

and coworkers found that when they removed these effects from the experimental measurement, the
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actual bulk modulus was 81 GPa. Nonetheless, effcore is too stiff. We did not compute the higher

energy bcc-Al phase, though we anticipate that, like the β-Sn phase in silicon, eFF and effcore

will predict cell energies that are too high. This was also an issue in eFF studies on lithium; eFF

predicted that the fcc phase is the ground state when actually the bcc phase is [30]. Partially periodic

slabs are currently unstable with the Al effcore parameters listed in Table 5.1, and it is unclear why.

Al slabs are stable with eFF1, but they become amorphous during minimization with effcore. This

will have to fixed before the effcore description of Al can be used in high velocity impact studies of

Al.
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Lattice Constant [Å]

0
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0.4
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En
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Figure 5.11: fcc-Al bulk cohesive energy curves. DFT/LDA from [29]

5.6 Future Directions

As mentioned in §5.2, the ECP presented in this chapter is based on the overlap and interaction

of s-electrons. Consequently it works particularly well for systems where bonding is tetrahedral,

or where electrons have a high degree of s-character. eFF2 [31] demonstrated that it is possible to

model p-like electrons with s-like Gaussian functions if functions are used to describe the nature of

the electron based on its position relative to other nuclear coordinates. A similar strategy could be

used to extend the ECP to p-like systems. Alternatively, ellipsoidal basis functions could be used,

but this would require re-deriving the equations of motion for the electrons. Future efforts to extend
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this ECP should place an emphasis on describing double and triple bond energies, and the energies

of heteroatom bonds and ionization potentials — eFF2 failed to improve on these features [31]. eFF

has enormous potential as a fast method to study the dynamics of large complex systems, but much

more work is needed so that elements like oxygen, nitrogen, and heavier atoms can be included in

simulations.
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Appendix A

Ligand Effects in Rhodium
Catalyzed Methane Activation

A.1 Introduction

Developing homogeneous catalysts for the conversion of natural gas products to liquid chemicals is an

important industrial and academic goal. Despite the interest in this field, few working systems have

been discovered. While many systems succeed at activating the alkyl or arene C-H bond, far fewer

are capable of functionalizing the metal alkane bond to yield oxo-functionalized products [1–3]. Thus

far the most successful catalytic cycles have relied on electronegative redox-active cations in oxy-acid

solvents [4–7]. The high electronegativity of cations such as Pt(II), Hg(II), Pd(II), and Au(III) makes

reductive heterolysis or elimination of M-R intermediates of these metals facile. C-H activation is

also well established in earlier transition metals. For metals like Re, Os, Ir, and Ru, the relative

electron-richness of the metal center makes C-H activation easy, but the electropositivity of these

metals renders functionalization difficult [8, 9]. So far early transition metal-based catalysts have

not been successfully incorporated into catalytic cycles which activate alkanes without free radicals,

carbocations, or carboanions, and which oxo-functionalize the M-R species. In this contribution we

wish to present theoretical findings that suggest a suitable catalyst for accomplishing this task in a

mildly acidic aerobic solution.

Our work in this area began with studying the C-H activation mechanisms of Periana’s Hg(II)/sulfuric

acid system and Shilov’s chloroplatinate/sulfuric acid system [4, 8]. Encouraged by acid protection
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of the activated methyl group, we focused our studies on C-H activation by late transition metals

in neat base. In studying these systems we developed an electrophilic paradigm for C-H activa-

tion in which electron-donating ancillary ligands are used to labilize coordinated solvent molecules

[2, 8, 10, 10–15]. While the ancillary ligand allows for coordination of methane, it also decreases

the electrophilicity of the metal center, thereby increasing the barrier to C-H activation by inser-

tion. The barrier to substitution in these systems is decreased because the ancillary ligand increases

the basicity of the coordinated base’s lone pairs by donating electron density through the metal’s

d-orbitals. This paradigm led to the successful engineering of Pt(bpy), Pt(bpym), (NO)Pt, and

(NNC)Pt systems for C-H activation [16]. The consequence of increasing electron density at the

metal center is that the rate of functionalization may be concomitantly decreased, owing to the

fact that this step is likely reductive. This was demonstrated in the Pt(bpym) work. Thus, more

electron-rich metals such as Ir, Ru, and Zr are less likely to be incorporated successfully into catalytic

cycles that create oxy-functionalized products.

We hypothesized that pairing a relatively electron-rich transition metal like Ir or Rh with a

π-acidic ligand would help temper the metal’s electron richness. In fact, oxidative addition of

rhodium to carbon-hydrogen bonds is already known [17–19]. With such a system the fine balance of

electronics needed for the C-H activation and functionalization steps might be met with compromise.

Goldberg’s C-H activation work on (PNP)Rh(I) phenoxide systems demonstrated that Rh with

an electron-donating ancillary ligand is capable of activating the arene C-H bond under aqueous

conditions [20, 21]. Our own theoretical studies on Ir revealed that Ir prefers the +3 oxidation state

because of the accessibility of the vacant 6s orbital. Rh favors the Rh(I) oxidation state over Rh(III)

because the 5s orbital is less accessible than the 4d orbitals. We expect C-H activation to be possible

from both Rh(I) and Rh(III) because there are ample examples of both [18, 19].

N-heterocyclic carbenes, particularly those in pincer ligand motifs have demonstrated their utility

in organometallic chemistry [22, 23]. Arduengo-type pincer carbenes in particular confer remarkably

high entropic chelating effects when complexed with transition metals. This stability makes them ro-

bust to a variety of conditions, and their strong σ-donating ability confers novel electronic properties
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to the complexes they form [24]. Goldberg’s work on Rh-catalyzed arene C-H activation prompted

us to examine Rh complexed with 2,6-bis(methylimidazol-2-ylidene)-pyridine (CNC) ligand, which

should be robust enough for reaction in aqueous or neat acidic or basic conditions.

Water inhibition is problematic for catalytic cycles carried out in fuming sulfuric acid, thus it

is important to consider systems that are tolerant to the presence of water. Trifluoracetic acid

is moderately acidic (pKa = 0.3) and it is volatile. Trifluoroacetate (TFA) coordinates well to

organometallic complexes, and, because it is a competent O-donor, it decreases water affinity by

increasing electron density at the metal center [10]. As a solvent, TFA or its acid allow for close

control of the reaction pH and the dielectric constant, which varies greatly based on water concen-

tration [25]. Tuning the dielectric constant of the reaction medium presents us with another variable

for optimizing barriers at various stages of the catalytic cycle. TFA may also be used as a nucle-

ophile during the functionalization step. SN2 attack on the activated methyl group yields a reduced

catalyst and methyl trifluoroacetate. Because the methyl ester of TFA has a low boiling point, TFA

is an effective functionalizing agent and product protectant. The volatility of this product ensures

that industrial separation of the product will be facile.

A.2 Computational Methods

Quantum mechanical calculations were carried out using the B3LYP density functional. This func-

tional is a combination of the hybrid three-parameter Becke exchange functional (B3) and the

Lee-Yang-Parr correlation functional (LYP) as implemented in the Jaguar 7.5 electronic structure

program [26, 27]. Geometry optimizations and solvation energy calculations were carried out using

the Hay and Wadt effective core potential for Rh, and the Pople-style 6-31G** basis for all other

atoms and the valence electrons of Rh [28]. For singlepoint energy calculations the basis set for Rh

was adapted from the 6-311G++** basis by adding two f-functions, while the effective core potential

was not changed.

Solvation energy calculations were carried out using the Poisson-Boltzmann model (PBF) [29].

For water, the dielectric constant was set to 80.37, and the probe radius was set to 1.40 Å. For neat
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trifluoroacetic acid the dielectric constant was set to 20.0 and the probe radius was set to 2.45 Å.

The dielectric constant of trifluoroacetic acid has been shown to vary with temperature and water

concentration; a dielectric constant of 20.0 was chosen to fit reaction conditions at 300K and 1M

H2O [30, 31]. We have found the calculated solvation energies of small ions like H+ and OH− to be

inaccurate, so instead we use their experimental free energies.

Stationary points and transition states were confirmed with normal-mode analysis. All geomet-

ric minima have precisely zero normal modes, while transition states have exactly one imaginary

frequency. In cases where methyl rotations led to small negative or positive frequencies, we shifted

frequencies below 50 cm−1 to 50 cm−1 and we recalculated the entropy of vibration.

The Gibbs free energies reported here are calculated as follows at a temperature of 298 K:

G = H − TS (A.1)

H = EgpZPV E + EgpSCF +Hgp
vib +Hlib + Esolv (A.2)

S = Sgpvib. (A.3)

The enthalpy we calculate is based on the gas phase zero point vibrational energy, self-consistent

field electronic energy, and vibrational enthalpy, librational enthalpy, and the energy of solvation

calculated using PBF. The librational enthalpy accounts for hindered translation-rotations in solu-

tion, and we calculate these by summing 1/2kBT for the potential and kinetic energy of the three

molecular translational and rotational modes, for a total of 6kBT per molecule. We calculate the

entropy as the gas phase entropy of vibration with the operating assumption that low frequency

modes ( < 50 cm−1) will not exist in solution.
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Figure A.1: Pathways for methane C-H activation using Rh(I) (red) and Rh(III) (blue) in solvent,
X.

A.3 Results and Discussion

A.3.1 Two Pathways to C-H Activation

We hypothesized that C-H activation can occur through either the Rh(I) or Rh(III) oxidation states

of Rh(CNC) and Rh(PNPMe) species and so we will discuss the full catalytic cycle for both oxi-

dation states in the following sections. The scope of our investigation includes aqueous solvation

with varying pH levels and solvation in trifluoroacetic acid (TFAH). Figure A.1 shows the C-H

activation mechanisms for the Rh(I) and Rh(III) species. For each pathway a precursor complex

undergoes ligand substitution with the solvent to yield a solvent-specific starting state. Coordination

of methane is followed by C-H activation. Finally reductive functionalization of the methylrhodium

species yields product and the regenerated catalyst. There are benefits and drawbacks to using each

oxidation state. If the Rh(I) precursor can be protected from oxidation to Rh(III), then the cycle can

take advantage of the comparatively low C-H activation barriers. The downside to the Rh(I) cycle

is that the stability of the Rh(III)X2CH3 species might reduce the availability of catalyst precursor.

Additionally, one is always fighting oxidation when using Rh(I). This last flaw makes C-H activation

from Rh(III) attractive, though the stability of Rh(III)X3 species can make coordination and C-H

activation barriers high. In both cycles the final step from Rh(III)X2CH3 to product is endergonic.

In the following sections we present the free energies of intermediates and transition states for
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both of these pathways and discuss the merits and deficiencies of both. We begin with the most

promising system, Rh(III) in water, and follow with other calculated pathways that guided our

search for a complete and viable pathway to C-H activation and functionalization.

A.3.2 Rh(III) in Water

Figure A.2 shows the full catalytic cycle for the conversion of methane to methanol in water catalyzed

by Rh(III)(CNC), Rh(III)(PNP), and Rh(III)(PNPCF3) at pH = 0. This cycle starts from a Rh(I)-

OH2 species like 1.1, 2.1CH3, or 2.1CF3. For 1.1 oxidation to the various protonation states (1.2,

1.3, 1.4) are energetically favored, as expected. The same is true for 2.1CH3, however, when

the PNP methyl groups are substituted with electron withdrawing -CF3 groups we find that the

oxidation is slightly disfavored. This is because the trifluoromethyl groups decrease the electron

density on 2.1CF3, and this results in an increased oxidation potential. Another attractive aspect

of the Rh(III) cycle is that in all cases, the oxidation step does not yield species lower in free energy

than the overall catalytic cycle free energy of -29.8 kcal/mol. Even after the oxidation step there is

still thermodynamic driving force for the reaction to proceed and produce CH3OH.

The relative stabilities and in-solution availabilities of species 1.2, 1.3, 1.4, 2.2R, 2.3R, 2.4R,

and 2.5R are dependent on the pH of the reaction solution, though we have shown the values for

pH = 0. Using a low pH helps reduce the amount of Rh(III)(L)(OH−)3 species, whose Rh(III)-

OH bonds are less labile than Rh(III). . .OH2 bonds. At pH 0, 1.4 is the ground state for the

Rh(III)(CNC) cycle. From 1.4, coordinating a methane and displacing an aquo ligand is produces

[Rh(III)(CNC)(OH)(OH2)(CH4)]+2 (not shown in scheme 1) which has a ∆G = 3.2 kcal/mol relative

to 1.2. From the methane complex, the internal electrophilic substitution transition state, TS-

IS.1, is only 6.5 kcal/mol uphill. The overall barrier between 1.4 and TS-IS.1 is 35.9 kcal/mol.

Analogously, the ground state in the Rh(III)(PNPCH3) cycle is 2.2CH3, though due to the high

degree of positive charge on the complex and the nature of our implicit solvation model, the validity

of this species’ calculated free energy may be called into question. 2.4CH3 is slightly less stable at

-26.7 kcal/mol. From 2.2CH3, TS-IS2CH3 is 37.6 kcal/mol uphill. If we account for alternative pH
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levels the internal substitution barriers can be decreased. Between pH 2 and 5, the barrier between

2.4CH3 and TS-IS.2CH3 is 34.4 kcal/mol. Increasing the pH to levels between 5 and 8 decreases the

barrier between 2.4CH3 and TS-IS.2CH3 to 32 kcal/mol. From 2.5CF3 the lowest barrier to C-H

activation is through TS-IS.3CF3. The plausibility of this step is improved by using a moderate

pH so that the 2.5CF3 is stabilized relative to other protonation states. The trends in the barriers

to internal electrophilic substitution indicate that a more electrophilic, or otherwise electron poor,

Rh(III) center helps stabilize the transition state. The barriers to C-H activation are higher for the

CNC species because the N-heterocyclic carbene is a good σ-donor, and it is weakly backbound to

Rh(III).

The activated methyl groups are abstracted from the catalyst by reductive functionalization.

The C-H activation products, Rh(III)(L)(CH3)(X)2, are comparatively stable. 1.5 and the final

free energy of the reaction are nearly identical, though evaporating MeOH could coax the reaction

forward. 2.6CH3 is minima in the reaction cycle by 10 kcal/mol. 2.6CF3 is more stable than any of

the 2.xCF3 protonation states, but its free energy is not as low as 2.6CH3 or 1.5. Most significantly,

2.6CF3 is not the minima in the reaction cycle, and this ensures that there is still thermodynamic

driving force for the production of methanol. From the rhodium-methyl species reductive functional-

ization occurs in the form of binuclear nucleophilic substitution with water acting as the nucleophile.

As the most electrophilic species, TS-SN2.3CF3 enjoys the lowest SN2 barrier. The free energy of

activation between 2.6CF3 and TS-SN2.3CF3 is merely 32.4 kcal/mol. The free energies of acti-

vation from 1.5 and 2.6CH3 are 33.9 and 39.1 kcal/mol, respectively. Presumably the SN2 barrier

for TS-SN2.3CF3 is lower because 2.6CF3 is a better nucleophile than its analogues. These results

are significant because we have predicted a complete catalytic cycle for the oxidation of methane to

methanol with barriers below 32 kcal/mol. The Rh(III)(PNPCF3)OH2 catalyst is successful because

it destabilizes 2.2-5CF3 and 2.6-7CF3, thereby decreasing the barriers to coordination, C-H activa-

tion, and functionalization. We predict that the electron-poor phosphorus atoms might be targets

for nucleophilic attack and this is a concern.
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Figure A.3: C-H activation via Rh(I) in pH = 0 water.

A.3.3 Rh(I) in Water

Figure A.3 shows the methane activation cycle of Rh(I)(CNC/PNP) in water. At pH = 0, the

precursor complexes, 3.1 and 4.1 are protonated to yield 3.2 and 4.2, which are 23.5 and 18.6

kcal/mol more stable. Oxidation of the catalyst by water to produce 3.7 and 4.7 is unlikely given

the high free energy of this transformation. However, autooxidation of 3.2 and 4.2 by splitting

the aquo ligand yields 3.8 and 4.8, and the free energy of this transformation is only uphill by 6.1

and 19.6 kcal/mol, respectively. Coordination of methane occurs by displacement of the equatorial

aquo ligands and produces 3.3 and 4.3. From 3.3 and 4.3, C-H activation proceeds by insertion.

The barriers to insertion for the CNC and PNP complexes are reasonably low, as expected. The

same trend as in the Rh(III) results is observed, the barrier to C-H activation is lower for the more

electrophilic Rh(III)PNP complexes. We found that insertion barriers were some 30 kcal/mol lower

than internal electrophilic substitution barriers (not shown). Insertion is lower than IES in these

Rh(I) complexes because square planar 3.3 and 4.3 have singly occupied dxy orbitals that help

stabilize the transfer of the hydride to the axial site. We hypothesize that either 3.3/4.3 or 3.6/4.6

will be targets for oxidation. With a free energy of -18.3 kcal/mol, 3.4 will be more abundant than

the square planar methyl intermediates 3.6 and 4.6, and we expect that oxidation will occur through

this intermediate. It is unclear whether Rh in species 3.4 and 4.4 is closer to Rh(I) or Rh(III), but

coupling these complexes to the oxygen reduction half reaction makes Rh formally Rh(III) by the

elimination of the hydride. Notice that 1.5 and 2.6CH3 are where the Rh(I) and Rh(III) pathways

converge. Unfortunately the oxidations of 3.4 and 4.4 are highly exothermic, and the resulting
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Figure A.4: The Rh(III) C-H activation catalytic cycle in pH = -7 TFAH.

species are lower in free energy than the methanol product. Functionalization of 1.5 and 2.6R was

discussed in §A.3.2.

A.3.4 Rh(III) in TFA

We calculated the Rh(III) pathway in trifluoroacetic acid (pH = -7) because we hypothesized that

the volatile CH3TFA product would be easier to recover in an experimental setting than some of the

methylsulfonate products that are formed in the Shilov methane activation chemistry. We also rea-

soned that TFA might be an effective nucleophile, and that functionalization by nucleophilic attack

might be easier with a soft nucleophile (compared to hard nucleophiles like water or hydroxide).

Figure A.4 shows the results of this study. The first and possibly most important observation

to draw when contrasting the Rh(III) pathways in water and TFA is in the relative stabilities of

the Rh(III)X3 species: TFA anions form a very strong bond with Rh(III), and the result is that

oxidation products 5.2, 5.3, 6.2R, and 6.3R are lower in energy than the various protonation

states of the aqueous Rh(III)(CNC) and Rh(III)(PNPR) complexes in Figure A.2. This produces
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comparatively lower ground states for the Rh(III) TFA systems, a fact that increases the relative

C-H activation barrier heights. Indeed the barrier for C-H activation from 5.2 is 37.9 kcal/mol and

from 6.2CH3 is 41 kcal/mol. Compare this to 35.9 kcal/mol for 1.4 and 34.4 for 2.4R. The effect of

the perfluorophenyl substituted PNP ligand is similar to the effect of the trifluoromethyl substituted

PNP ligand in §A.3.2: the electron withdrawing nature of the organofluorophosphine pincers makes

Rh(III) electron poor. Because of this, the coordination bonds that Rh(III) can make to solvent

molecules are weak relative to the unmodified Rh(CNC) and Rh(PNP) complexes. Following internal

electrophilic substitution (8.5, TS-IS.6R), the methylrhodium(III) complex can undergo reductive

functionalization by SN2 attack. A TFA anion attacks the axial methyl group and a two-electron

reduction results. From the 5.4 the activation energy of 8.5H is only 27 kcal/mol. This is a

promising finding, and we suggest that stoichiometric experiments on reductive functionalization

from 5.4 be carried out as a proof of concept test. Of course the barrier relative to the pathway

minima is much higher: 47.3 kcal/mol relative to 5.2. The free energy of activation for the SN2

attack is 43.7 kcal/mol relative for TS-SN2.6CH3 and 40.7 kcal/mol for TS-SN2.6C6F6 (relative

to the pathway groundstate Rh(III)(TFA)3 complex). The single step reductive functionalization

barriers are unexpectedly low, but because the Rh(III)(TFA)3 precursors are so stable, the catalytic

cycle is likely to halt after oxidation. In light of this, C-H activation from Rh(III) in TFA is not

promising, though we will reiterate that a stoichiometric test of the SN2 functionalization step would

be an interesting experiment to conduct.

A.3.5 Rh(I) in TFA

The final study of the two oxidation state pathways to C-H activation is for Rh(I) species in triflu-

oroacetic acid. The challenge in executing this chemistry is in avoiding oxidizing Rh(I) to Rh(III).

The pathway in Figure A.5 shows that this oxidation is highly exothermic in TFA. From 7.1, pro-

tonation of the equatorial TFA ligand makes it labile to substitution with methane. The activation

energy of coordination is 17.2 kcal/mol, and the Rh(I)CNC. . .CH4 species is an unstable complex.

With a TFAH in one axial cite the barrier to insertion is low: ∆G‡ = 17.2 kcal/mol. Interestingly,
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Figure A.5: The Rh(I) C-H activation catalytic cycle in pH = -7 TFAH.

the barrier is much higher when there is an axial TFA ligand. TS-I.7 and TS-I.8 have considerably

higher activation free energies. The products of C-H activation are also high energy species, and

as we discussed in the aqueous Rh(I) pathway, this is problematic. 7.5 and 8.5 will be present

in low concentrations so oxidation might be a slow process. This also increases the possibility of

oxidizing other intermediates, like 7.1 and 8.1. The low insertion barriers for this pathway make it

an interesting prospect, if oxidation can be avoided.

A.3.6 Decreasing the Reductive Functionalization Barrier with Bulky

Ancillary Ligands

The aqueous, acidic Rh(III)(PNPCF3) catalytic cycle in §A.3.2 satisfies the criteria for a good cat-

alytic cycle: the barriers to coordination, C-H activation, and reductive functionalization are reason-

ably low, none of the intermediates have lower free energy than the product, the starting material

is regenerated naturally, and deleterious side reactions should not damage the catalyst (as long as

the conditions are acidic enough). Of the three transition states in the cycle, the reductive SN2

attack by water or hydroxide is the most questionable. We wondered whether we could change the

structure of the ancillary ligand to destabilize the [L]-Rh(III)Me species by elongating the Rh-Me

bond so that the SN2 barrier would be lower. We achieved this by creating PNP derivatives with

bulky phosphine substituents. Figure A.6 shows some the modified PNP ligands and Table A.1

shows the results of this series of calculations.

The upper half of table one shows the results of our PNP ligand steric study when the solvent
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Rh(PNP)X Rh(PNPC6H6)XRh(PNPCF3)X

Figure A.6: Three derivatives of PNP (from left to right): PNP, PNPCF3, and PNPC6H56, and the
Rh(I) and Rh(III) C-H activation pathway.

[L] [L]Rh(I)CH3 [L]Rh(III)(X)3 [L]Rh(III)(CH3)X2 TS-SN2 CH3X
X = TFA, pH = -7

PNP -/35.6 -48.7 -35.7 -6.5 -29.9
PNPtBu - -31.7 -16.5 13.3 -29.9
PNPC6H6 22.7/29.3 -42.4 -32.2 -3.8 -29.9
Pm+PPm+ 44.5/- -22.1 - - -29.9

X = OH(2), pH = 0
PNP 18.3/30.9 -26.7 -35.6 -2.0 -30
PNPtBu - -6.3 -16.7 3.9 -30

Table A.1: Gibbs free energies (kcal/mol) along the reaction coordinate defined in figure A.6.

is pH = -7 TFAH. Interestingly, the barrier between [L]Rh(CH3)X2 and TS-SN2 does not change

much for PNP, PNPtBu, or PNPC6H6; each activation free energy is around 29 kcal/mol. What

does change is the stability of the [L]Rh(III)(X)3 species. With PNPtBu as an ancillary ligand, the

intermediates in Figure A.6 are destabilized by 17 to 20 kcal/mol. PNPC6H6 has the same effect, but

to a smaller extent; intermediates with this ligand are destabilized by 3 to 6 kcal/mol. While not the

desired effect, this is a useful finding because one of the issues with the Rh(III)(PNP) cycle is the

detrimental stability of Rh(III)PNP(TFA)3 species. Destabilizing solvent-coordinated intermediates

helps shift the equilibrium towards the product.

The lower half of Table A.1 shows the results of our PNP ligand steric study when the solvent

is pH = 0 water. In this case the result of substituting the phosphine methyl groups with a more

voluminous ligand matched our expectations. Notice that the activation free energy of SN2 attack is
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Ligand [L]Rh(I)X [L]Rh(III)X3 TS-I [L]Rh(III)CH3X2 TS-SN2 CH3X
CNC 0 -49.1 -11.2 -28.8 1.9 -29.9
CNC2 0 -23.9 24.4 -11.8 9.7 -29.9
CNC3 0 -56 -13.8 -39.4 -0.3 -29.9
CNC4 0 -36.7 2.82 -22.2 -3.1 -29.9

Table A.2: Gibbs free energies (kcal/mol) along the reaction coordinate defined in Figure A.7.

reduced to 20.6 kcal/mol from 29.2 kcal/mol relative to [L]Rh(CH3)X2 when tert-butyl groups are

substituted for methyl groups. This favorable outcome is the result of the PNPtBu ligand’s ability

to destabilize [L]Rh(III)X3 and [L]Rh(CH3)X2 without also increasing the activation energy. The

destabilization energy is on par with the level of destabilization that the PNPCF3 complex provides.

Another advantage of the steric destabilization paradigm is that it protects the phosphine group

from nucleophilic attack.

In Figure A.7 we show the modifications we made to the CNC ligand in order to study the

effect of sterics on the SN2 reductive functionalization step for CNC based catalysts in acidic water.

Like the aqueous acidic PNP catalytic cycle, the lowest energy structures in the CNC pathway

are the solvent-ligated Rh(III) complexes. Generally methyl substitutions to the methylene linkers

between the pyridine moiety of CNC have the effect of interfering with the axial sites. This reduces

the binding strength of solvent molecules in Rh(III)(CNCR)X3 and fortunately the SN2 barrier is

not proportionally destabilized. The net result is that for CNC4 the Rh(III)(CNCR)X3 complex is

increased to -36.7 kcal/mol from -49.1 kcal/mol (for the unaltered CNC ligand) and the SN2 barrier
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is actually decreased to -3.1 kcal/mol. This decreases the net barrier between these two states to

33.6 kcal/mol from 51 kcal/mol! The protonated para-pyrazine ligand, CNC2, is an interesting case.

The proton makes the complex sufficiently electropositive that the oxidation potential is increased

and the solvent ligated species are only -23.9 kcal/mol downhill. For this ligand the net barrier to

SN2 attack is 33.6 kcal/mol. The downside of this ligand is that it significantly decreases Rh(III)s

ability to mediate the internal electrophilic substitution of the methane hydride to the water ligand,

and this barrier is increased by 10.4 kcal/mol. The results of these ligand sterics studies indicate that

substituting bulky groups onto planar ligands can help interfere with coordination to the active axial

sites in Rh(III) catalysts. For both CNC and PNP we found modified ligands that decreased the

barrier to SN2 reductive functionalization while destabilizing the [L]Rh(III)X3 species that can be

thermodynamic sinks in the catalytic cycle. The only downside to such an approach is the decrease

in solubility that we expect for the hydrocarbon-substituted CNC and PNP ligands.

A.4 Conclusions

The C-H activation mechanism for Rh(I) and Rh(III) CNC and PNP complexes has been iden-

tified in two solvents. We found that in general the Rh(III) catalytic cycle was more favorable

because increasing the electrophilicity of the metal center decreases the barriers to C-H activation

and functionalization. Using a relatively electron-poor metal center also decreases the extent to

which oxidation can interfere with the desired transformations. Rh(III)(PNPCF3) in acidic water

was the most successful catalytic system that we examined, and we suggest experimental studies

using this catalyst. We also found that a “soft” nucleophile like TFA− could effectively functionalize

the Rh(III)Me product of C-H activation, and the barriers to reductive functionalization can be

reduced by introducing sterically bulky substituents to the ancillary ligand. Future studies will in-

clude the results of coupling mild one-electron oxidants like vanadyl phosphate to the C-H activation

cycle. Using one-electron oxidations helps to avoid some of the excessively stable oxidation products

that result from O2 oxidation.
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Appendix B

Estimating Phosphorescence
Lifetimes in Cyclometalated
Platinum Phosphors

B.1 Phosphorescent Cyclometalated Platinum Complexes

Coordinatively unsaturated square planar cyclometallated Pt(II) complexes have attracted much

attention in recent years because of their potential applications as organic light emitting diodes

(OLEDs) [1, 5, 7, 9, 11, 20, 34–37, 39], chemosensors [8], photooxidants [24], liquid crystal optical

storage materials [6], photochemical energy converters [24], and non-linear optical materials [23].

These complexes are particularly attractive because of their high phosphorescence quantum yields

and short emission lifetimes; both qualities are requisites for effective OLEDs [31]. Besides being

strongly emissive, Pt(II) cyclometalated complexes are interesting because their emission charac-

teristics are sensitive to local environments [17, 21, 33], their square planar geometries allow for

interesting stacking effects and intermolecular interactions [16, 19], and some complexes have even

emitted white and near-infrared light [2, 3, 29, 32].

In a phosphorescent OLED, the exitons created by electron-hole recombination are triplets so

emission must come from the triplet manifold [3]. Theoretically this implies that 100% quantum

efficiency is attainable, but this also means that radiative relaxation is competing with non-radiative

decay processes. Pt(II) complexes are effective because intersystem crossing between the singlet and

triplet excited manifolds is promoted by strong spin-orbit coupling from the Pt center [4, 18, 32].
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Once the excited wavepacket is in a triplet metal-to-ligand charge transfer state (3MLCT) or triplet

ligand centered (3LC) state it can borrow transition dipole moment from the 1MLCT state via

spin-orbit coupling and relax to the singlet ground state. Several groups have documented cy-

clometalated Pt(II) complexes that exhibit the photophysics just described. Che and co-workers

demonstrated that adding electron-donating substituents to the 4-position of the terpyridine ligand

in [Pt(tpy)Cl]+ leads to emission at room temperature in fluid with lifetimes in the microsecond

range [15]. Thompson and co-workers synthesized a series of Pt(II)-based complexes with CˆN-

type monoanion cyclometalating ligands that demonstrated emission across the visible spectrum

and quantum yields between 0.02 and 0.25 with lifetimes shorter than 30 microseconds [22]. Pt(II)

complexes with tridentate coordinated ligands of the form NˆCˆN were synthesized and are capa-

ble of emitting with quantum efficiencies up to 0.6 in degassed solution with lifetimes shorter than

20 microseconds [11]. Swager and coworkers synthesized a variety of new Pt(II) complexes whose

emission blue-shifts and upon detection of the cyanogen halides with high quantum efficiency and

short lifetimes [11]. Platinum dyads with CˆN ligands synthesized by the Thompson group demon-

strated modest improvements over their monomeric analogues [22]. In recent years several studies

have attempted to improve luminescence characteristics by tuning the ancillary ligand with varying

success [27, 36, 38]. The weakly luminescent complexes in these studies have a common character-

istic: the presence of geometrically distorted metal centered (MC) d-d* excited states that provide

non-radiative decay channels that lead away from the ground state. In fact, for strongly luminescent

complexes, a strong induced ligand field in the metal-to-ligand bond raises the energy of the metal

centered d-d* states above the 3MLCT states and this effect is what makes Pt(II) complexes such

efficient emitters.

The Thompson group discovered that two isomers based on their CˆN Pt(II)(β-diketonato) tem-

plate (see Figure B.2), (1-naphthylpyridine)Pt(II)(bis-(2,2,6,6-tetramethyl-3,5-heptadionato-O,O)

) (1NpPt) and (2-naphthylpyridine)Pt(II)(bis(2,2,6,6-tetramethyl-3,5-heptadionato-O,O)) (2NpPt),

exhibited similar absorption patterns but drastically different emission characteristics and emission

lifetimes. Both complexes absorb between 350 and 480 nm, corresponding to a 1MLCT excitation,
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Figure B.1: The experimental absorption spectra (left) and combined absorption-emission spectra
(right) of 1NpPt and 2NpPt.

with weaker absorption peaks above 500 nm and below 600 nm, corresponding to 3MLCT excitation

(Figure B.1). The emission spectra reveal that 1NpPt emits at 572 nm and 2NpPt emits at 520 nm.

This is curious given the similarity between these two isomers. In fact, 2NpPt emission is similar to

the emission spectra of the free Np ligand. The measured lifetimes for 1NpPt and 2NpPt are 14 µs

and 380 µs in 2-MeTHF at 77 K, respectively. 2NpPt has another curious emission characteristic:

at room temperature its emission peak red shifts to 572 nm from 520 nm at 77 K. 1NpPt also red

shifts at room temperature, but only to 590 nm from 572 nm. The similarity between their absorp-

tion spectra indicates that in both isomers the S1 and S2 states are similar in energy. Intersystem

crossing occurs but then there must be a difference in the triplet manifold energies for 1NpPt and

2NpPt since their emission wavelengths and lifetimes are so different.

In this study we will explore the electronic factors that cause the NpPt isomers to phosphoresce

differently, and we will examine two similar molecules, (7,8-benzoquinoline)Pt(II)(acetylacetonato

-O,O), (bzqPt), and (2-phenylpyridine)Pt(II)(acetylacetonato-O,O), (ppyPt), for reference and to

verify any trends that may emerge. Using TD-DFT and multi-configuration self-consistent field

calculations we compute their excitation energies and explore their excited state manifolds. Besides

probing energies and geometries at select points on the ground and excited state manifolds, we

will compute the spin-orbit coupling of these states and use the values to estimate photophysical
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1NpPt 2NpPt bzqPt ppyPt

Figure B.2: The subjects of this study: (CˆN)Pt(II)(acac). CˆN = 1Np, 2Np, bzq, and ppy.

quantities like the S1-T1 intersystem crossing rates and phosphorescence rates.

B.2 Computational Methodology

In order to understand the lifetime discrepancy between the two NpPt complexes, their photophysics

were investigated using density functional- and wavefunction-based quantum chemical theories. To

reduce computation burden we replaced the bis-(2,2,6,6-tetramethyl-3,5-heptadionato-O,O) groups

on 1NpPt and 2NpPt with acetylacetonato (acac) groups. This should not affect energies signifi-

cantly since the removed alkyl groups are inert to excitation in the visible spectrum. Two series of

calculations were performed: a TD-DFT investigation of vertical excitation energies, and a complete

active space self-consistent field (CASSCF) study of excitation energies, spin-orbit coupling, and

non-ground state potential energy surfaces.

Ground state singlet geometries were generated by performing DFT geometric minimizations

using the B3LYP, PBE, M06, M06-2X, and M06-HF functionals in the Jaguar 7.5 electronic structure

program. From these minimized geometries TD-DFT excitation calculations were performed and the

first 10 excitation energies were computed. These results can be found in Table B.1. The geometry

optimizations were conducted using the Hay and Wadt (Los Alamos core potential) effective core

potential for Pt [14], and the Pople-style 6-31G** basis for all other atoms and the valence electrons

of Pt; this basis is commonly referred to as lacvp**. The TD-DFT excitation energies were calculated

using the same Hay and Wadt ECP but the Gaussian basis was changed to 6-311G**++.

The CASSCF and CI calculations in this chapter were performed using the GAMESS-US suite of
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codes [28]. Since PBE produced the best excitation spectra, its computed ground state geometries

were used for CASSCF calculations. The CASSCF gradients of the PBE S0 geometries were below

3×10−3 Hartree/bohr so we did not reoptimize the ground state geometries. For these calculations

the SBKJC effective core potential and valence basis set were used. The SBKJC ECP removes 60

core electrons from platinum and 2 from nitrogen, carbon, and oxygen [30]. The valence electron

basis set for SBKJC is 3-21g* for H, C, N, and O. The DFT optimized structures were used to

generate a set of CASSCF orbitals from which an appropriate active space was chosen. The active

space was increased systematically — to help convergence — using the orbitals involved in excitation

(as determined by TD-DFT). Finally, an active space of eighteen electrons in twelve orbitals was

formed for each complex; the active space includes the highest energy transition-metal-based and

ligand-based orbitals, as well as three virtual orbitals. The (18,12) active spaces created the best

wavefunctions for the complexes given the amount of computer memory and time available. After

the configuration interaction coefficients are optimized in the CASSCF routine, the density matrix

for a specified root (i.e., S1) can be optimized to produce the wavefunction for an excited state.

The wavefunctions from CASSCF(18,12) were then subjected to second-order Möller-Plesset (MP2)

energy corrections to recover the correlation energies. The results of the excitation calculations are

given in Table B.3.

Excited state potential energy surfaces were explored by optimizing the geometries of excited

states and searching for minimum energy crossing points using CASSCF to compute energies and

gradients. In a minimum energy crossing point (MEXP) search, two starting wavefunctions and

a starting geometry are provided. The Newton-Raphson optimizer operates with a Lagrangian

multiplyer imposing the constraint that the energy of both wavefunctions be the same [10]. The

spin orbit coupling constants and transition dipole moments at minimum energy crossing points and

stationary states were computed using the spin-orbit configuration interaction technique in GAMESS

with the full Pauli-Breit spin-orbit operator [12].

The XYZ coordinates of the S0, T1, and MEXP geometries for the four molecules are provided

in Appendix C.
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B.3 Computing Radiative and Non-Radiative Decay Rates

B.3.1 Radiative Transitions

Computing the rates of spin-allowed and spin-forbidden radiative processes is relatively straightfor-

ward. The phosphorescence rate can be computed using the energy gap between the T1 minima and

the S0 manifold lying underneath. Since phosphorescence is spin-forbidden to the zeroth-order ap-

proximation, first-order corrections to the Hamiltonian must be made: spin-orbit coupling constants

between the S1 and T1 states are needed. The phosphorescence rate, kr(Tm → S0), is expressed as

follows [26, 32]:

kr(Tm → S0) =
16× 106π3E(Tm)η2

3hε0

(∑
n

〈
Tm|Ĥso|Sn

〉
E(Sn)− E(Tm)

〈
Sn|µel|S0

〉)2

(B.1)

where E(Tm) is the energy of the Tm → S0 transition,
〈
Tm|Ĥso|Sn

〉
is the spin-orbit coupling matrix

element between the Sn excited singlet state and the Tm emissive state,
〈
Sn|µel|S0

〉
is the transition

dipole moment between the excited and ground singlet states, and η is the refractive index of the

medium. This equation accounts for the transition dipole borrowing that is enabled by the strong

spin-orbit interaction between the excited Tm and Sn states. The fluorescence rate can be computed

similarly using the Einstein spontaneous emission coefficient, since fluorescence is spin-allowed:

kr(Sn → S0) =
4e2

3c3~4
(ESn − ES0)3

(〈
Sn|µel|S0

〉)2
(B.2)

where c is the speed of light, and e is the fundamental charge.

B.3.2 Non-Radiative Transitions

Calculating non-radiative unimolecular transition rates is tricker. Examples of such transitions in-

clude intersystem crossing and internal conversion. Most quantum mechanical calculations are made

within the Born-Oppenheimer approximation using zeroth-order approximations to the Hamiltonian.

That is, they exclude scalar relativistic and spin-orbit coupling terms. As a result the computed
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Figure B.3: A conceptualization of two intersecting excited state manifolds and the seam, s (green
curve), orthogonal to the crossing coordinate, h.

potential energy surfaces are diabatic. Figure B.3 shows two diabatic surfaces in red and blue. Di-

abatic surfaces may intersect one another, but there is no way for a wavepacket to cross from one

to the other since the eigenfunctions of diabatic Hamiltonians are pure spin-states. A Hamiltonian

that includes spin-orbit coupling terms, however, produces adiabatic surfaces that do not cross. To

be clear, that means that spin-orbit coupling near the crossing point produces adiabatic upper and

lower surfaces. An example of an adiabatic surface is the lower black outline of the diabatic surfaces

in Figure B.3 that shows a double well connected by a transition state at the minimum energy

crossing point. The corresponding upper surface would be the cone formed by the intersection of

the red and blue diabatic surfaces, and the space in between the upper and lower surfaces in the

crossing seam is split by spin-orbit coupling. When spin-orbit coupling operators are included in

the Hamiltonian, the eigenfunctions are mixtures of different spin states, thus a wavepacket may

traverse the minimum energy crossing point by switching from one electronic spin state to another

nonadiabatically. Computing the rates for these transitions requires nonadiabatic transition state

theory.

Imagine the red surface in Figure B.3 is the S1 manifold, and the blue surface is the T1 manifold.

Then the minimum energy crossing point between these is the point where intersystem crossing will

occur. Spin-orbit coupling in the vicinity of this point allows a wavepacket to cross between the
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S1 manifold by switching spin states. To compute the rate of this process we need to calculate the

nonadiabatic unimolecular reaction rate using RRKM theory [13]. The rate of the spin forbidden

reaction is given by

k(E) =
Ncr(E)

hρ(E)
(B.3)

where ρ(E) is the density of rovibrational states of the reactant and the effective integrated density

of states in the crossing seam, Ncr(E), is defined by:

Ncr(E) =

∫
ρcr(E − Eh)psh(Eh)dEh. (B.4)

The integrated density of states is derived by assuming that the motions in the system can be divided

into two classes. The first is motion in the hopping coordinate, h, which is orthogonal to the crossing

seam (the seam is the green parabola in Figure B.3). The second class is comprised of the spectator

degrees of freedom that are parallel to the crossing seam. The integral in (B.4) is the convolution

of the hopping probability, psh(Eh) and the density of spectator degrees of freedom corresponding

to the remaining energy in the system, ρcr(E − Eh). The hopping probability is determined from

Landau-Zener theory [25]

psh(E) = (1− PLZ)(1 + PLZ) (B.5)

where PLZ is defined as

PLZ = exp

(−2πH2
so

h∆F

√
µ

2E

)
. (B.6)

Here Hso is the spin-orbit coupling between the two states at the crossing point, ∆F is the difference

between the gradients of both surfaces at the crossing point, µ is the reduced mass, and E should be

Eh, which is the difference between the initial excitation energy (the vertical excitation energy from

S0 to S1) and the energy at the crossing point, Emex. Eh is the energy available to the spectator

degrees of freedom. The form of (B.6) ensures that the hopping probability will be zero at energies

below the minimum energy crossing point energy. Calculating the intersystem crossing rate using

this nonadiabatic-RRKM (NARRKM) method requires locating the minimum energy crossing point
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between two manifolds, calculating the spin-orbit coupling at that point, determining the gradient

of each manifold at that point, identifying the crossing coordinate, and then computing the densities

of states of the reactant and transition state. This is not a trivial task.

B.4 Results and Discussion

B.4.1 Excitation Energies

Table B.1 shows the TD-DFT excitation spectra for several popular DFT functionals and com-

pares the values of the first five excited states to peaks extracted from the experimental absorption

spectra. The states are not explicitly assigned but they are ordered T1, T2, T3, S1, T4 for the

experimental spectra. The oscillator strengths indicate the nature of excitation for the TD-DFT

calculations. Oscillator strengths > 0.01 typically indicate S0-Sn transitions since these are spin-

allowed. The RMSD values represent the deviation from the experimental spectra. An examination

of the experimental absorption spectrum, Figure B.1, shows that both compounds have absorption

peaks between 350 and 480 nm, or 50 to 80 kcal/mol, which supports the results in Table B.1. The

oscillator strength magnitudes calculated from TD-DFT correlate well with the experimental molar

absorptivities. Both experiment and theory show that the S1 and S2 states of 1NpPt and 2NpPt

are preferentially populated over the lower energy T1 and T2 states. This is not unexpected as exci-

tation from the singlet ground state to the triplet manifold is classically considered spin-forbidden.

Of the five density functionals, PBE performs the best. Among the Minnesota family of functionals,

M06 performed the best. This is somewhat surprising because M06-HF is purported to work well for

excitation energy calculations [40]. B3LYP, PBE, and M06 were on par with one another, though

PBE was the most accurate. Table B.3 shows the CASSCF(18,12) T1 and S1 vertical excitation

energies as well as the energy of the S1-T1 minimum energy crossing point (MEXP) above the S0

minima. The DFT and CASSCF calculations provide reasonably good agreement with one another.

A rudimentary examination of the orbitals reveals the nature of each type of excitation. The

orbitals of each complexes S0 state are plotted in Figure B.4. The lowest unoccupied molecular
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B3LYP PBE M06 M06-HF M06-2X
State 1NpPt
1 2.2899 1.6369 2.1683 3.5804 3.1991
2 0.6206 0.5603 0.5959 1.9857 0.8657
3 2.0965 0.8861 2.3285 0.8974 3.2573
4 3.1173 3.7131 2.6313 0.7922 0.2964
5 2.4632 0.3098 3.0208 1.5393 2.4539
State 2NpPt
1 1.6299 1.3899 1.5599 0.5581 1.8749
2 0.4134 0.2948 0.4016 3.5292 2.8902
3 1.3975 1.0177 2.2928 2.1009 2.8625
4 2.4026 1.8247 1.3986 0.0965 0.5211
5 2.3112 1.346 2.4113 0.4421 0.2767
State bzqPt
1 1.8251 1.5033 1.7366 0.4995 2.1803
2 0.4126 0.2821 0.4065 1.5646 1.0201
3 1.5614 1.7629 1.6764 1.5564 0.1392
4 3.2608 2.7162 3.044 0.5128 0.5458
5 0.8161 1.7002 0.0671 0.2101 0.2567
State ppyPt
1 1.5456 1.0543 1.4888 1.0973 2.293
2 0.5609 0.4439 0.5427 3.2797 1.2649
3 1.9064 0.6198 2.1712 0.0883 0.6927
4 2.7566 2.852 2.2575 0.6501 2.324
5 0.9411 1.8382 0.0639 0.0167 0.187

Table B.2: Transition dipole moments (Debye) from the TD-DFT calculations

Molecule T1 S1 S1-T1 MEXP
1NpPt 565 415 451
2NpPt 380 365 386
bzqPt 355 376 362
ppyPt 382 373 335

Table B.3: CASSCF(18,12) vertical excitation energies (nm)

orbital (LUMO) in the S0 manifold is occupied in the S0→ T1 vertical excitation, so the S0 LUMO

is actually the T1 highest occupied molecular orbital (HOMO). In the 1NpPt S0 LUMO, we find both

d-orbital and ligand centered π-orbital character. This indicates that the T1 state is a 3MLCT state.

Like 1NpPt, ppyPt has 3MLCT character in the T1 HOMO, and ppyPt is also fast emitter. The

presence of electron probability density on each Pt center indicates that each complex undergoes

1MLCT-to-3MLCT excitation. But why are 2NpPt and bzqPt slow emitters? Their S0 HOMO

orbitals are similar to the 1NpPt and ppyPt HOMO orbitals. There is a noTable difference between

the fast and slow emitters and that is the absence of electron probability density on 2’-C that binds
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1NpPt 2NpPt bzqPt ppyPt

lowest unoccupied molecular orbitals

highest occupied molecular orbitals

Figure B.4: The highest occupied and lowest unoccupied orbitals of the S0 optimized geometries for
1NpPt, 2NpPt, bzqPt, and ppyPt.

covalently to Pt. The S0 LUMO orbitals of the slow emitters exhibit this absence while the fast

emitters do not. Somehow this makes these states more 3LC-like in their emission spectra despite

having density on the Pt center.

With the excitation spectra accurately modeled, the excited state potential energy surfaces were

explored. To truly understand the photophysics of systems as complicated as organometallic com-

plexes, the details of the higher potential energy surfaces must be calculated.

B.4.2 Radiative Decay Rates

Table B.4 shows the energies of the S0, T1, S1, and S1-T1 MEXP manifolds relative to the T1

relaxed geometry (the local minima of the T1 manifold). Notice that the 2NpPt T1 and S1 surfaces

are both quantitatively higher than their 1NpPt counterparts. This explains emission from the T1

minima where 2NpPt emits at a shorter wavelength than 1NpPt. 1NpPt’s phosphorescence is typical

of normal Pt cyclometallates; it occurs near 570 nm, and it has a lifetime of 14 µs. 2NpPt, on the



110

other hand, has a 380 µs lifetime, and its emission is similar to the free ligand at 520 nm. This

indicates that the 2NpPt T1 state is strongly ligand centered, and coupling to a 1MLCT state must

be weak. Like 2NpPt, bzqPt has a relatively long lifetime of 122 µs. ppyPt has the shortest lifetime

of the four complexes: 8 µs. Notice that the lifetimes of these complexes are inversely proportional

to the energy gap between the T1 minima and the S0 manifold at this geometry.

Molecule S0 T1 S1 S1-T1MEXP
1NpPt -1.92 0.00 0.64 0.55
2NpPt -2.45 0.00 0.33 0.39
bzqPt -2.59 0.00 0.35 0.83
ppyPt -1.80 0.00 0.14 1.41

Table B.4: CASSCF state energies (eV) relative to the T1 state at the T1 minima

T1 minima S1-T1 mexp

Molecule
〈
ĤS0−T1
so

〉 〈
ĤS1−T1
so

〉 〈
µS0−T1
el

〉 〈
µS0−S1el

〉 〈
ĤS0−T1
so

〉 〈
ĤS1−T1
so

〉
1NpPt 25.6 18.4 0.0009 6.513 25.3 53.6
2NpPt 4.6 19.1 0.0008 0.896 30.9 27.4
bzqPt 5.1 32.1 0.0067 3.767 34.3 540.0
ppyPt 16.3 25.8 0.0038 1.944 42.9 485.1

Table B.5: CASSCF spin orbit coupling constants Ĥso (cm−1) and transition moments µel (Debye)
for states at the T1 minima and S1-T1 minimum energy crossing point

For efficient phosphorescence to occur, singlet character must be mixed into excited triplet states.

To quantify the extent of this mixing, previous experimental studies estimated the spin-orbit coupling

matrix element from the oscillator strengths and absorption frequencies of the 3LC and 1MLCT

states. Previous studies quantified the mixing by calculating the spin-orbit coupling under the one-

center approximation from TD-DFT wavefunctions. However, the one-center approximation only

allows for mixing between states of similar character like 1MLCT and 3MLCT, not 3,1MLCT and

1,3LC mixing. The approximation is therefore not useful for our purposes. Instead, the spin-orbit

coupling matrix elements and spin-mixed transition dipole moments were calculated using complete

active space-configuration interaction (CAS-CI) wavefunctions. The wavefunctions are used as a

basis that forms matrix elements over the full two-electron Breit-Pauli operator, and the resulting

matrix is diagonalized to obtain the spin-orbit coupled wavefunctions and spin-orbit eigenvalues.
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Rates (s−1)
S1 → S0 T1 → S0

Molecule Expt. CASSCF DFT/PBE CASSCF DFT/PBE
1NpPt 7.14×104 1.86×108 5.31×107 6.30×102 6.87×106

2NpPt 2.63×103 5.17×106 1.06×107 1.03×102 3.50×106

bzqPt 8.20×103 8.32×107 3.11×107 5.09×103 4.83×106

ppyPt 1.25×105 2.28×107 3.38×107 2.65×102 2.97×106

Lifetimes (µs)
S1 → S0 T1 → S0

Molecule Expt. CASSCF DFT/PBE CASSCF DFT/PBE
1NpPt 14 0.005 0.019 1588 0.146
2NpPt 380 0.194 0.094 9737 0.286
bzqPt 122 0.012 0.032 196 0.207
ppyPt 8 0.044 0.030 3779 0.337

Table B.6: The calculated rates and lifetimes for fluorescence and phosphorescence and the experi-
mental phosphorescence rates and lifetimes

This method includes all the nuclei (it is not a one-center approximation), and it includes all the two-

electron terms, so it correctly accounts for the 1MLCT/3LC mixing. The results of these calculations

are shown in Table B.5.

Equations (B.1) and (B.2) were used to compute radiative rates and lifetimes and the results of

these calculations are listed in Table B.6. From these calculations we find that, as expected, the

fluorescence rate is an order of magnitude faster than phosphorescence. The CASSCF calculations

seriously underestimate the rate of phosphorescence by four orders of magnitude. PBE and CASSCF

agree on the fluorescence rate, so the errors in the phosphorescence rate do not likely stem from the

transition dipole moments. Unfortunately neither TD-DFT nor CASSCF are able to predict the

trend in the phosphorescence lifetimes of the four complexes correctly. Either these methods are not

advanced enough to accurately compute photophysical properties for organometallic complexes, or

there are other dynamics going on which complicate the calculation of these properties.

B.4.3 Intersystem Crossing

Figure B.5 shows the S0 groundstates overlayed with the MEXP geometries for each molecule. The

structural differences are subtle; for 2NpPt, bzqPt, and ppyPt the differences are in the ligand bond

lengths reflecting the d → π* transitions. 1NpPt is the only non-planar of the four molecules in
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1NpPt 2NpPt

bzqPt ppyPt

Figure B.5: Overlays of groundstate S0 stationary points (blue) and the S1-T1 minimum energy
crossing point geometries (red) for 1NpPt, 2NpPt, bzqPt, and ppyPt.

its ground state and this is because of the steric bumping between 3-H and 3’-H. In its MEXP,

1NpPt’s rings flex even further out of the plane. It is easy to understand why intersystem crossing is

so fast considering the similarity between the MEXP and S0 minima for these four molecules. The

slightest wavepacket motion in an excited manifold could place the packet on the S0 or T1 geometries

(which like the MEXP geometries, are nearly identical to the S0 geometry). In fact, The Pt-C,N,O

bond lengths are within a hundredth of an Å no matter what the geometry of each molecule. The

structural deformations take place in the Np, bzq, ppy, and acac ligands. This of course indicates

that the predominant excitations are MLCT states, and this is reflected in the orbitals presented in

Figure B.4.

While the triplet excited states are populated to a small degree after excitation, most of the

excitation is driven into the singlet excited states, as evidenced by the oscillator strengths of these

transitions. The fact that these complexes phosphoresce implies that the excited wavepacket must
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Molecule psh kISC τISC

1NpPt 5.74×10−4 3.28×1010 3.05×10−11

2NpPt 1.54×10−4 0.56×1010 1.78×10−10

bzqPt 4.24×10−2 7.64×1012 1.31×10−13

ppyPt 6.19×10−2 9.28×1012 1.08×10−13

Table B.7: Landau-Zener hopping probabilities, intersystem crossing rates (s−1), and lifetimes (s)

intersystem cross. It is possible that the rate of ISC might determine the lifetime discrepancy

between 1NpPt and 2NpPt. To test this hypothesis, the NARRKM ISC rates were computed

from the ground state vibrational density of states, and the integrated density of states at the

minimum energy crossing point using equations (B.3), (B.4), and (B.5). Table B.7 shows the results

of these calculations. The computed intersystem crossing rates are directly proportional to the

hopping probabilities calculated based on the spin-orbit coupling at the MEXP. Because the spin-

orbit coupling between the S1 and T1 states of 1NpPt and 2NpPt is relatively weak, their hopping

probabilities are two orders of magnitude smaller than those of ppyPt and bzqPt. This is reflected

in the intersystem crossing rates, which are also smaller. Intersystem crossing is quite fast in these

complexes, with the slowest rate being 5.6 per nanosecond. bzqPt and ppyPt were the fastest to

intersystem cross because of their strong spin-orbit coupling, and the lifetime of the S1 state is

expected to be shorter than picoseconds for each of these. Nonetheless, these complexes intersystem

cross at a much faster rate than fluorescence is predicted to occur, and this accounts for the prevalence

of radiative decay through phosphorescence.

Unfortunately the results of the NARRKM calculations only reinforce what is already known

about these complexes: that the initial excitation from the S0 state drives the wavepacket onto

the S1 manifold where ultrafast intersystem crossing is enabled due to the high density of states

near the MEXP, and due to the structural similarities between the MEXP and S0 minima. Fol-

lowing intersystem crossing, spin-orbit coupling between the T1 and S1 states allows for transition

dipole borrowing and this allows for efficient phosphorescence. The NARRKM calculations do not

explain the lifetime discrepancy between 1NpPt and 2NpPt, nor can they be used to describe the

lifetime trend between the four test molecules, because the rate of ISC is much faster than the
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phosphorescence rate.

B.5 Conclusions

In this study TD-DFT and CASSCF calculations were able to crudely reproduce the excitation

spectra of 1NpPt, 2NpPt, bzqPt, and ppyPt. TD-DFT performed reasonably well given how much

faster it is than CASSCF/MP2. The spin-orbit coupling constants between the S0 and T1 states of

these complexes were used to compute their phosphorescence lifetimes, and while DFT overestimated

the rates by two to three orders of magnitude, CASSCF underestimated the rates by the same

margin. Evidently the transition dipole moments, spin-orbit coupling constants, and energy levels

predicted by these methods are too crude to be used for radiative rate calculations. Errors for the

spin-orbit coupling constants of 3rd-row metals are known to be as large as 120% [12]. Neither

method was sensitive enough to qualitatively describe the rate or lifetime trends among this set of

four complexes. Nonadiabatic RRKM calculations were used to estimate the intersystem crossing

rates and the results supported the experimentally inferred rate.

The phosphorescence rate calculations are not satisfying, so work is underway to address the

limitations of the SBKJC basis set. Using a larger number of basis functions might be too expensive

during MP2 calculations, but it might be possible to use a large basis during spin-orbit coupling

calculations. With higher precision values for spin-orbit coupling and better transition dipole mo-

ments, it might be possible to replicate the experimental trend. More work is needed to understand

why 2NpPt and bzqPt are slower emitters than 1NpPt and ppyPt.
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Appendix C

Supplemental Material

Table C.1: Experimental crack tip velocities versus reduced critical energy release rates for
{111}

〈
112
〉

fracture. The references for this data are provided in Chapter 3

G/Gc Tip Velocity (m/s) G/Gc Error Velocity Error (m/s)
1.00 1948 0.4 194
1.75 2060 0.6 207
1.83 2450 0.6 246
2.04 2199 0.7 216
2.13 2545 0.8 77
2.15 2372 0.8 90
2.36 2346 0.9 255
2.95 2493 1.1 246
3.69 2398 1.4 242
4.09 2900 1.5 290
5.38 2424 2.1 238
5.52 2926 2.1 290
5.87 3194 2.2 324
7.29 3445 2.8 346
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Table C.2: Computed eFF crack tip velocities versus reduced critical energy release rates

eFF periodic
G/Gc Tip Velocity (m/s)
0.92 0
0.92 0
0.92 0
0.97 0
1.07 1276
1.12 1134
1.15 1122
1.15 2250
1.24 2390
1.49 2321
1.56 2432
1.62 2184
1.65 2154
1.69 2217
1.73 2465
1.94 3219
1.94 2022
1.78 2518
2.05 2339
2.08 2069

eFF slab
G/Gc Tip Velocity (m/s)
1.00 823
1.10 1672
1.23 2392
1.38 2492
1.43 2292
1.62 2529
1.97 2520
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Table C.3: Computed ReaxFF crack tip velocities versus reduced critical energy release rates

G/Gc Tip Velocity (m/s)
0.35 64
0.42 127
0.50 63
0.58 57
0.68 56
0.78 68
0.89 63
1.00 2177
1.38 2536
3.11 3010
5.54 2948
8.65 3132
12.46 3273
16.96 3493
22.15 3445

Table C.4: Computed Stillinger-Weber crack tip velocities versus reduced critical energy release
rates

G/Gc Tip Velocity (m/s)
1.00 97
1.28 156
1.57 875
2.27 1964
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Table C.5: Computed multi scale-method crack tip velocities versus reduced critical energy release
rates

DCET
G/Gc Tip Velocity (m/s)
0.56 0
0.85 0
0.96 1478
1.07 2003
1.19 2508
1.44 2625
1.67 2975
1.70 2683
1.81 2781
1.96 2644
2.63 2606

EDIP
G/Gc Tip Velocity (m/s)
1.00 136
1.30 350
2.04 1108
2.36 992

Table C.6: eFF Hugoniot equation of state data for polyethylene

ρ/ρ0 P (GPa) Up (km/s) Us (km/s) T (K) % ionized electrons σ (Siemens)
1.26 6 1.2 4.9 371 0.0 44
1.37 8 1.6 5.1 423 0.0 67
1.47 11 2.1 5.8 522 0.0 10
1.58 18 2.8 7.0 658 0.0 133
1.68 23 3.2 7.4 786 0.0 309
1.79 32 4.0 8.5 984 0.0 258
1.89 48 5.0 10.0 1581 0.0 657
2.00 64 5.9 11.3 2095 0.0 95
2.11 87 7.1 12.9 2846 0.0 1227
2.21 110 8.1 14.2 3376 0.0 1398
2.32 135 9.1 15.5 4659 0.0 154
2.42 160 10.1 16.6 5684 0.1 3627
2.53 196 11.3 18.2 7041 0.4 570
2.63 232 12.5 19.6 8992 0.9 88
2.74 278 13.8 21.2 11508 1.7 355
2.84 329 15.2 22.8 12596 3.4 2487
2.95 376 16.4 24.2 16393 8.1 186
3.05 470 18.5 26.8 20391 16.8 1855



122

The S0 and T1 coordinates are from DFT
PBE/lacvp** optimizations and the S1-T1 mini-
mum energy crossing point coordinates come from
CASSCF(18,12)/SBKJC MEXP searches.

1NpPt

41

PT 0.875 0.014 0.002

N -0.154 -1.694 -0.091

C -1.700 -4.096 0.425

C 0.459 -2.982 -0.063

C -1.547 -1.641 0.076

C -2.324 -2.722 0.343

C -0.296 -4.157 0.197

H 1.536 -2.986 -0.188

H -3.387 -2.632 0.528

H 0.227 -5.117 0.218

H -2.331 -4.982 0.477

C -0.931 0.743 0.127

C -3.634 1.676 0.101

C -2.015 -0.197 0.015

C -1.225 2.158 0.300

C -2.519 2.589 0.317

C -3.389 0.282 -0.111

H -0.385 2.836 0.412

H -2.745 3.646 0.460

O 1.866 1.872 0.080

O 2.784 -0.827 -0.150

C 3.939 -0.255 -0.180

C 3.127 2.126 0.010

C 4.155 1.145 -0.112

H 5.182 1.499 -0.155

C 5.135 -1.189 -0.304

C 3.497 3.602 0.066

C -5.794 -0.018 -0.516

C -4.502 -0.543 -0.467

C -4.956 2.189 0.066

C -6.032 1.349 -0.224

H -6.626 -0.664 -0.795

H -4.345 -1.580 -0.728

H -5.118 3.250 0.252

H -7.046 1.745 -0.249

H 4.783 -2.225 -0.323

H 5.820 -1.052 0.543

H 5.691 -0.978 -1.228

H 4.581 3.751 0.015

H 3.117 4.045 0.997

H 3.024 4.133 -0.773

1NpPt_S1T1mexp

41

PT 0.863 0.047 -0.054

N -0.190 -1.649 -0.221

C -1.604 -3.988 0.708

C 0.385 -2.942 -0.332

C -1.541 -1.584 0.158

C -2.256 -2.638 0.633

C -0.294 -4.088 0.163

H 1.401 -2.978 -0.709

H -3.287 -2.531 0.959

H 0.209 -5.057 0.109

H -2.162 -4.854 1.062

C -0.943 0.797 0.166

C -3.673 1.676 0.047

C -2.020 -0.160 0.066

C -1.275 2.200 0.355

C -2.581 2.607 0.319

C -3.398 0.281 -0.113

H -0.459 2.902 0.505

H -2.835 3.661 0.459

O 1.886 1.876 0.138

O 2.746 -0.824 -0.329

C 3.914 -0.278 -0.267

C 3.153 2.098 0.116

C 4.160 1.100 -0.055

H 5.195 1.434 -0.035

C 5.094 -1.217 -0.466

C 3.567 3.555 0.274

C -5.769 -0.090 -0.624

C -4.473 -0.589 -0.475

C -4.998 2.162 -0.091

C -6.039 1.288 -0.417

H -6.578 -0.765 -0.904

H -4.273 -1.639 -0.646

H -5.197 3.225 0.050

H -7.055 1.663 -0.530

H 4.770 -2.249 -0.297

H 5.919 -0.970 0.213

H 5.465 -1.132 -1.498

H 4.657 3.665 0.279

H 3.159 3.959 1.212

H 3.150 4.140 -0.559

1NpPt_t1geom

41

Pt 2.333 0.880 -5.659

N 4.250 1.439 -5.569

C 6.954 2.049 -5.176

C 4.656 2.725 -5.520

C 5.191 0.387 -5.496

C 6.551 0.725 -5.243

C 5.993 3.078 -5.353
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H 3.853 3.463 -5.605

H 7.263 -0.078 -5.053

H 6.270 4.134 -5.323

H 7.998 2.296 -4.964

C 3.120 -0.901 -5.531

C 4.556 -3.381 -5.561

C 4.601 -0.902 -5.624

C 2.446 -2.106 -5.337

C 3.146 -3.321 -5.286

C 5.294 -2.165 -5.817

H 1.357 -2.090 -5.234

H 2.612 -4.262 -5.116

O 0.412 0.153 -5.708

O 1.637 2.913 -5.749

C 0.390 3.218 -5.793

C -0.641 0.905 -5.754

C -0.695 2.310 -5.793

H -1.693 2.754 -5.833

C 0.078 4.704 -5.851

C -1.935 0.114 -5.767

C 7.277 -3.518 -6.372

C 6.628 -2.274 -6.275

C 5.237 -4.615 -5.643

C 6.586 -4.686 -6.030

H 8.310 -3.566 -6.727

H 7.155 -1.377 -6.607

H 4.684 -5.533 -5.416

H 7.083 -5.659 -6.091

H 1.010 5.284 -5.830

H -0.555 5.003 -4.999

H -0.479 4.948 -6.771

H -2.821 0.763 -5.799

H -1.987 -0.523 -4.869

H -1.949 -0.558 -6.641

2NpPt

41

PT -0.840 -0.058 -0.001

N -0.467 1.913 -0.000

C 0.194 4.617 -0.005

C -1.443 2.851 0.000

C 0.863 2.281 -0.003

C 1.197 3.646 -0.005

C -1.151 4.213 -0.002

H -2.462 2.454 0.002

H 2.250 3.935 -0.007

H -1.967 4.939 -0.002

H 0.456 5.678 -0.007

C 1.135 -0.144 -0.003

C 3.985 0.090 0.002

C 1.783 1.147 -0.002

C 1.923 -1.285 -0.001

C 3.345 -1.207 0.001

C 3.171 1.253 -0.000

H 1.445 -2.271 -0.002

H 3.665 2.232 0.000

O -1.026 -2.086 -0.008

O -2.969 0.220 0.007

C -3.792 -0.766 0.010

C -2.164 -2.706 -0.007

C -3.451 -2.138 0.002

H -4.285 -2.846 0.004

C -5.265 -0.395 0.021

C -2.037 -4.219 -0.015

C 5.408 0.160 0.005

C 4.167 -2.370 0.004

C 5.549 -2.267 0.007

C 6.176 -0.992 0.008

H 5.886 1.146 0.005

H 3.683 -3.353 0.004

H 6.164 -3.172 0.010

H 7.268 -0.925 0.010

H -5.376 0.698 0.045

H -5.773 -0.829 0.899

H -5.774 -0.788 -0.876

H -0.977 -4.505 -0.041

H -2.549 -4.649 -0.892

H -2.506 -4.654 0.883

2NpPt_S1T1mexp

41

PT -0.833 -0.036 -0.001

N -0.469 1.915 -0.000

C 0.202 4.639 -0.005

C -1.467 2.880 0.000

C 0.851 2.306 -0.003

C 1.197 3.660 -0.005

C -1.173 4.218 -0.002

H -2.475 2.478 0.002

H 2.250 3.944 -0.007

H -1.980 4.948 -0.002

H 0.465 5.695 -0.007

C 1.115 -0.117 -0.003

C 3.996 0.069 0.002

C 1.783 1.186 -0.002

C 1.943 -1.309 -0.001

C 3.382 -1.225 0.001

C 3.154 1.263 -0.000

H 1.445 -2.278 -0.002

H 3.656 2.229 0.000

O -1.045 -2.090 -0.007

O -2.937 0.191 0.007

C -3.792 -0.774 0.010

C -2.165 -2.726 -0.007
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C -3.462 -2.150 0.002

H -4.292 -2.851 0.004

C -5.267 -0.391 0.021

C -2.041 -4.237 -0.015

C 5.398 0.161 0.005

C 4.175 -2.385 0.004

C 5.576 -2.282 0.007

C 6.181 -1.012 0.008

H 5.878 1.141 0.005

H 3.686 -3.359 0.004

H 6.181 -3.184 0.010

H 7.268 -0.930 0.010

H -5.375 0.699 0.045

H -5.767 -0.826 0.898

H -5.768 -0.785 -0.875

H -0.980 -4.512 -0.041

H -2.549 -4.654 -0.894

H -2.506 -4.659 0.885

2NpPt_t1geom

41

Pt -1.938 0.736 -6.671

N -0.008 1.298 -6.676

C 2.717 1.883 -6.687

C 0.406 2.582 -6.681

C 0.913 0.243 -6.677

C 2.297 0.561 -6.682

C 1.756 2.925 -6.687

H -0.395 3.326 -6.679

H 3.025 -0.254 -6.683

H 2.048 3.976 -6.690

H 3.786 2.119 -6.692

C -1.113 -1.046 -6.669

C 0.308 -3.547 -6.660

C 0.314 -1.053 -6.672

C -1.816 -2.269 -6.663

C -1.139 -3.537 -6.658

C 1.010 -2.312 -6.668

H -2.911 -2.249 -6.662

H 2.105 -2.337 -6.669

O -3.846 -0.008 -6.672

O -2.653 2.742 -6.666

C -3.904 3.048 -6.661

C -4.914 0.727 -6.671

C -4.981 2.133 -6.665

H -5.985 2.566 -6.662

C -4.216 4.534 -6.652

C -6.209 -0.062 -6.676

C 0.960 -4.807 -6.654

C -1.845 -4.753 -6.650

C -1.167 -6.005 -6.644

C 0.224 -6.019 -6.646

H 2.054 -4.837 -6.656

H -2.940 -4.725 -6.648

H -1.737 -6.937 -6.637

H 0.765 -6.971 -6.642

H -3.282 5.111 -6.630

H -4.826 4.801 -5.772

H -4.795 4.817 -7.547

H -5.994 -1.138 -6.698

H -6.822 0.201 -7.555

H -6.809 0.168 -5.779

bzqPt

37

PT -0.598 0.032 0.001

O -2.004 1.501 -0.003

O -2.061 -1.524 0.004

C -3.324 -1.274 0.004

C -3.920 0.006 -0.001

C -3.278 1.260 -0.005

C -4.214 -2.503 0.009

C -4.135 2.512 -0.013

H -5.013 0.035 -0.002

H -3.494 3.403 0.006

H -4.769 2.542 -0.915

H -4.807 2.529 0.860

H -5.284 -2.251 0.015

H -3.996 -3.120 -0.879

H -3.986 -3.120 0.894

C 3.363 2.811 0.004

C 3.416 1.395 0.001

C 2.176 0.696 -0.001

C 0.902 1.336 0.001

C 0.899 2.734 0.005

C 2.122 3.452 0.007

H -0.051 3.276 0.007

H 2.089 4.547 0.010

C 0.808 -2.642 -0.001

N 0.919 -1.302 -0.001

C 2.168 -0.724 -0.002

C 3.361 -1.493 -0.003

C 3.223 -2.902 -0.004

C 1.948 -3.467 -0.003

H 1.812 -4.551 -0.003

H 4.114 -3.538 -0.005

H -0.214 -3.029 0.000

C 4.625 0.611 -0.001

C 4.604 -0.766 -0.003

H 5.541 -1.334 -0.005

H 5.587 1.137 0.000

H 4.291 3.393 0.006
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bzqPt_S1T1mexp

37

PT -0.571 0.035 0.000

O -2.069 1.484 -0.002

O -2.098 -1.405 0.003

C -3.367 -1.227 0.004

C -4.011 0.052 0.000

C -3.354 1.301 -0.004

C -4.203 -2.497 0.008

C -4.198 2.568 -0.013

H -5.099 0.060 -0.000

H -3.546 3.448 0.008

H -4.822 2.602 -0.916

H -4.865 2.589 0.859

H -5.278 -2.282 0.014

H -3.957 -3.096 -0.879

H -3.947 -3.096 0.893

C 3.338 2.810 0.004

C 3.451 1.345 0.001

C 2.242 0.647 0.000

C 0.918 1.298 0.001

C 0.884 2.770 0.005

C 2.067 3.483 0.006

H -0.087 3.258 0.006

H 2.056 4.573 0.009

C 0.833 -2.690 -0.001

N 0.931 -1.324 -0.000

C 2.192 -0.780 -0.001

C 3.400 -1.507 -0.003

C 3.291 -2.982 -0.004

C 2.016 -3.523 -0.003

H 1.872 -4.605 -0.003

H 4.186 -3.605 -0.006

H -0.165 -3.116 -0.000

C 4.694 0.624 -0.001

C 4.629 -0.769 -0.003

H 5.561 -1.339 -0.004

H 5.647 1.151 -0.001

H 4.252 3.407 0.005

bzqPt_t1geom

37

Pt 0.300 0.608 0.034

O 2.327 0.833 0.050

O -0.023 2.691 0.041

C 0.939 3.554 0.054

C 2.317 3.257 0.061

C 2.925 1.982 0.057

C 0.484 4.998 0.061

C 4.437 1.894 0.058

H 3.001 4.110 0.070

H 4.751 0.842 0.100

H 4.855 2.357 -0.852

H 4.860 2.433 0.922

H 1.324 5.708 0.075

H -0.137 5.193 -0.829

H -0.154 5.179 0.942

C 0.165 -4.201 0.017

C -1.036 -3.406 0.007

C -0.858 -1.987 0.014

C 0.410 -1.356 0.029

C 1.567 -2.187 0.038

C 1.423 -3.592 0.032

H 2.560 -1.729 0.050

H 2.319 -4.222 0.040

C -2.711 1.145 0.007

N -1.686 0.215 0.014

C -1.982 -1.114 0.006

C -3.319 -1.619 -0.011

C -4.378 -0.638 -0.019

C -4.041 0.724 -0.010

H -4.826 1.485 -0.016

H -5.422 -0.962 -0.032

H -2.399 2.190 0.015

C -2.349 -3.911 -0.009

C -3.471 -3.021 -0.018

H -4.482 -3.441 -0.031

H -2.520 -4.992 -0.016

H 0.083 -5.293 0.012

ppyPt

35

PT -0.321 0.029 -0.000

O -1.721 1.511 -0.005

O -1.823 -1.500 0.006

C -3.083 -1.236 0.006

C -3.662 0.052 -0.001

C -2.998 1.295 -0.006

C -3.986 -2.454 0.016

C -3.835 2.560 -0.015

H -4.754 0.097 -0.002

H -3.180 3.442 -0.013

H -4.482 2.592 -0.907

H -4.494 2.597 0.869

H -5.054 -2.192 0.002

H -3.761 -3.087 -0.858

H -3.779 -3.060 0.914

C 3.570 2.853 0.008

C 3.661 1.458 0.006

C 2.485 0.680 0.002

C 1.197 1.298 0.000

C 1.131 2.702 0.002

C 2.304 3.469 0.006
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H 4.479 3.462 0.011

H 4.646 0.979 0.008

H 0.150 3.189 0.001

H 2.236 4.563 0.008

C 0.981 -2.642 -0.004

N 1.180 -1.304 -0.000

C 2.456 -0.778 -0.001

C 3.555 -1.654 -0.004

C 3.356 -3.035 -0.008

C 2.046 -3.541 -0.008

H 1.845 -4.614 -0.011

H 4.213 -3.714 -0.011

H 4.566 -1.239 -0.005

H -0.068 -2.950 -0.003

ppyPt_S1T1mexp

35

PT -0.309 0.027 0.000

O -1.810 1.504 -0.003

O -1.853 -1.369 0.005

C -3.136 -1.173 0.005

C -3.764 0.088 -0.001

C -3.083 1.350 -0.005

C -3.968 -2.442 0.014

C -3.917 2.623 -0.014

H -4.851 0.119 -0.001

H -3.262 3.502 -0.012

H -4.556 2.651 -0.907

H -4.569 2.656 0.869

H -5.044 -2.236 0.002

H -3.698 -3.051 -0.859

H -3.714 -3.026 0.910

C 3.581 2.800 0.007

C 3.703 1.421 0.005

C 2.522 0.626 0.002

C 1.172 1.276 0.001

C 1.120 2.738 0.002

C 2.275 3.472 0.005

H 4.479 3.419 0.010

H 4.682 0.954 0.007

H 0.140 3.206 0.000

H 2.252 4.561 0.007

C 1.007 -2.696 -0.003

N 1.180 -1.320 -0.000

C 2.469 -0.851 -0.001

C 3.602 -1.642 -0.004

C 3.442 -3.100 -0.007

C 2.137 -3.585 -0.007

H 1.940 -4.660 -0.009

H 4.310 -3.758 -0.011

H 4.595 -1.197 -0.004

H -0.014 -3.062 -0.002

ppyPt_t1geom

35

Pt 0.312 0.952 -0.003

O 2.329 0.941 0.004

O 0.203 2.978 -0.007

C 1.213 3.220 -0.005

C 2.371 2.791 -0.000

C 2.656 1.722 0.003

C 1.095 4.535 -0.007

C 3.915 1.380 0.008

H 3.191 3.509 0.001

H 4.051 0.297 0.011

H 4.391 1.798 -0.881

H 4.385 1.802 0.897

H 2.094 4.975 -0.005

H 0.555 4.853 -0.900

H 0.557 4.871 0.880

C 0.316 -3.926 0.003

C -0.897 -3.221 0.001

C -0.897 -1.814 -0.000

C 0.323 -1.116 0.002

C 1.537 -1.824 0.004

C 1.534 -3.228 0.004

H 0.313 -5.029 0.004

H -1.852 -3.773 0.001

H 2.495 -1.279 0.003

H 2.488 -3.782 0.006

C -3.281 0.949 0.129

N -2.103 0.288 0.135

C -2.152 -1.057 0.003

C -3.340 -1.765 -0.135

C -4.539 -1.058 -0.137

C -4.513 0.328 -0.002

H -5.429 0.910 0.000

H -5.485 -1.581 -0.243

H -3.334 -2.844 -0.241

H -3.207 2.028 0.237



Appendix D

Published Research



Published: August 25, 2011

r 2011 American Chemical Society 4941 dx.doi.org/10.1021/om200542w |Organometallics 2011, 30, 4941–4948

ARTICLE

pubs.acs.org/Organometallics

Understanding β-Hydride Eliminations from Heteroatom
Functional Groups
Patrick L. Theofanis* and William A. Goddard, III

Materials and Process Simulation Center, Beckman Institute (139-74), California Institute of Technology, Pasadena, California 91125,
United States

bS Supporting Information

I. INTRODUCTION

β-hydride elimination (BHE), the [2 + 2] pericyclic hydride
rearrangement, is a well-established process frequently encoun-
tered in organometallic reaction mechanisms. BHE is an extra-
ordinarily prevalent reaction mechanism, and it is commonly
presented in reports,1�8 reviews,9�11 and textbooks.12�16

Despite its literature precedence, more can be learned about
BHE, especially when heteroatoms are involved in the process.
This became apparent to us while we examined the details of the
Wacker process. Early reports on the Wacker process erro-
neously labeled the final oxidation step as a BHE from a [(1-
hydroxyethane-1-yl)PdCl] complex to form an η2-coordinated
aldehyde, [(acetaldehyde)PdCl]: Pd�CH(CH3)�O�H* f
H*�Pd(CH(CH3)dO).12,17�22 Our report onWacker oxidation23

and that of others24 investigated if BHE is a generally facile
process for coordinatively saturated ligands. We found this false.
For BHE from coordinated alkanes, we found expectedly low
barriers. For BHE from ligands with an alcohol functional group
at the β-position, we discovered prohibitive barriers insurmoun-
table in most chemical environments. A theoretical study on
Wacker-like side reactions in a palladium polymerization catalyst
also observed high barriers for this type of BHE; instead, they
attributed their oxidative side reaction to water-mediated depro-
tonation of a (2-hydroxyethane-1-yl)Pd complex, which also
yielded an aldehyde.25 This result surprised us, and we became
interested in the factors that lead to the increased barrier height
for β-hydride elimination from heteroatoms.

We have found another catalytic cycle in which β-hydride
elimination from a β-heteroatom is proposed to be involved. In
the “Hieber base reaction”, a process to create metal carbonyl

hydrides, aβ-hydride elimination from an iron�carboxyl complex is
proposed: [(CO)4Fe�C(O)�O�H*]� f [H*�Fe(CO)4]

� +
CO2.

26,27 We state the existence of this mechanism to illustrate
that authors will propose BHE from a β-heteroatom without
regard to its feasibility. Our hope is that our study will prompt
chemists to re-examine the likelihood of β-hydride elimination
from β-heteroatoms.

To begin, we should state that BHE from alkyl ligands on d8

metals such as Ni, Pd, and Pt is a well-understood process. The
necessary conditions for BHE are self-evident: a vacant coordi-
nation site on the H-accepting metal, a hydrogen atom bound to
a β-atom, and a near-planar geometry of the metal, R-atom,
β-atom, and the hydrogen whic h maximizes orbital overlap.13

Thorn and Hoffmann, who studied the microscopic reverse of
BHE, olefin insertion into a metal�hydride bond, and subse-
quently Morokuma and co-workers were the first groups to
present orbital symmetry descriptions of the BHEmechanism for
β-alkyl fragments based on ab initio calculations.28,29 These
studies do an excellent job of describing, in a qualitative sense,
the molecular orbitals (MOs) that contribute to and facilitate
β-hydride transfer. Figure 1 is a reproduction of the orbitals
identified by Morokuma and co-workers. Morokuma identifies
the orbitals that define the agostic metal�hydride interaction,
and he accurately describes the flow of orbital density throughout
the reaction coordinate. The σCH and σMR orbitals, their antibond-
ing counterparts, and their linear combination,Ψ3

TS, are especially
important because they define the active bonds during the BHE.

Received: June 23, 2011

ABSTRACT: Using density functional theory, we investigated detailed
aspects of the quintessential organometallic process, β-hydride elimina-
tion (BHE). In general, we find that most BHE processes from alkyl
functional group β-atoms are facile, while BHE processes from hetero-
atom functional groups (N and O) are prohibitively high in energy. We
present calculated molecular orbitals and atomic NBO charges obtained
from snapshots along reaction profiles to present a qualitative overview
for how heteroatoms adversely affect these processes. We discuss these
results to provide an illustration for how these processes proceed,
clarifying a sometimes oversimplified model for these reactions.
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When a heteroatom is introduced into the reactive portion of
the molecule, its lone pairs are introduced into the active set of
MOs. It is the role of theseMOs that has not been investigated to
date. This is not to say that β-heteroatom elimination has not
been studied. An important distinction must be made here. What
other groups call a β-heteroatom is actually the atom or func-
tional group at the γ-position. In conventional β-hydride elim-
ination, the γ-hydrogen is being shifted, not the β-carbon to
which it is initially bonded. We are interested in studying BHE
when the β-atom itself is a heteroatom. Several studies have
examined the energetic differences between γ-heteroatom elim-
ination and BHE on Pd(II) complexes with heteroatom func-
tional groups attached to the β-position of an alkyl ligand.30�32

They found that γ-elimination was kinetically favorable when the
heteroatom groupwas a halide, but elimination of the γ-heteroatom
group was favorable when it was an alcohol, imine, or alkoxide.33

The position of the heteroatom is critical to its affect on BHE.
BHE's from square-planar alkoxo and amido transition-metal
complexes wherein the R-atom is O or N are well-known, and they
occur readily.34�36 We aim to study the affect of a β-heteroatom on
BHE processes, something that has not been examined to date.

Other studies examined the role of the M 3 3 3H agostic inter-
action in Pd(CH2�CF2�H*) complexes: calculations have been
carried out on (2,2-difluoroethan-1-yl)Pd to measure the impor-
tance of electron donation from the CH σ-bond into the metal
vacant site. These calculations revealed that the electron-withdraw-
ing fluorine atoms were able to decrease the agostic Pd 3 3 3H
interaction and thereby raise the barrier to BHE.28 In a similar
manner the electronegativity of β-heteroatoms such as nitrogen and
oxygen might also weaken the agostic interaction. Furthermore, it is
possible that a lone pair on the β-atommight be able to stabilize the
vacant coordination site on themetal more so than the β-Hσ-bond.

Because our collective understanding of BHE failed to predict
that BHE from β-heteroatoms is more energetically costly than
BHE from alkyl groups, and because an MO treatment of BHE
from groups other than alkyl groups is largely missing from the
theoretical literature, we decided to study these systems in depth.
In particular, we want to examine the importance of the β-lone-
pair�metal interaction. Unfortunately, basic orbital symmetry
illustrations only go so far to elucidate BHE processes. Quantum
mechanics (QM) calculations are a valuable tool to extend these
illustrations and further illuminate key points; therefore, we have
used density functional theory to provide insight into BHE.

We present data showing that BHE from nitrogen and oxygen
heteroatoms is rarely energetically feasible.We report the enthalpies
of several BHE processes (in the gas phase and solvated in water),
tracing molecular orbitals and atom-centered NBO charges
along the [2 + 2] cyclization. From these data we present a
straightforward summary of events to explain the nature of BHE
processes.

II. CALCULATION DETAILS

We used the B3LYP flavor of density functional theory (DFT) as
implemented in the Jaguar 7.0 software package for all calculations. To
optimize geometries and calculate vibrational frequencies, we used the
popular B3LYP density functional with the Los Alamos electronic core
potential (ECP) basis set on metals, LACVP**, while using the 6-31G**
basis set on all other atoms. Subsequent single-point energies were
calculated with the more robust ECP LACV3P** and the 6-311G**++
basis set. We also used the PBF Poisson�Boltzmann continuum
solvation method to simulate an aqueous environment (with ε = 80.37
and the probe radius set to 1.40 Å). Solvation energy corrections were
added to our normal enthalpies. This approach has been shown to be
useful in investigations on organometallic mechanisms.6,37�41

Figure 1. Reproduction of the orbitals presented by Koga, Obara, Kitaura, and Morokuma.28
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Stationary points and transition states were found using the energy
gradient and density gradient converger algorithms available in Jaguar
7.0. We verified the authenticity of these states by ensuring that
stationary points and transition states had zero and exactly one calculated
imaginary vibrational frequency, respectively. Occasionally, we encoun-
tered small imaginary frequencies corresponding to localized rotational
mode contamination originating from the water ligand’s low rotational
barrier. We calculated energy profiles along this rotational mode to
ensure that the energy of this structure was not critically dependent on
this mode. That is, we verified that the rotation of the water ligand never
caused major changes in the structure of the molecule.
We investigated key characteristics of points along the reaction

profiles for BHE from three d8 transition metals: Ni, Pd, and Pt. The
structure template for this study is depicted in Scheme 1. We coordi-
nated three different saturated ligands to each metal: 1-methylethan-1-yl,
1-aminoethan-1-yl, and 1-hydroxyethan-1-yl. Note that in the last two
ligands a nitrogen or oxygen atom occupies the β-position, respectively.
In addition to the aforementioned ligands, our metals are coordinated to
ancillary aquo and chloride ligands. In this paper we provide information
for the isomer in which the chloride ligand is trans to the saturated
primary ligand.Water is coordinated to themetals in the cis position, and
the remaining cis site is left vacant in the reactants. This structure
template is depicted in Scheme 1. In the products the formerly vacant
site is occupied by the transferred hydride. We provide data for the cis-
chloro isomers in the Supporting Information. We effectively studied
variants on the reaction shown in Scheme 1.
We also carried out intrinsic reaction coordinate (IRC) calculations to

verify that the starting, transition state (TS), and ending structures were
the lowest energy path along the BHE reaction coordinate. At points
along these paths, we identified key orbitals involved in bond-making
and bond-breaking processes. Finally, we calculated NBO atomic
charges to provide a general picture of the electronic density around
each atom involved in BHE processes.

III. RESULTS AND DISCUSSION

BHE Theory.An empirical description of the BHEmechanism
already exists. From the experimental data, one finds that BHE
occurs most readily when a β-hydrogen is available on a transi-
tion-metal ligand and an empty coordination site on the metal
exists. Experiments have shown that BHE is most facile when the
system can adopt a planar conformation with respect to the
M�R�β-H dihedral angle.34,42,43 Presumably, this is true be-
cause such a conformation maximizes orbital overlap between
the nascent M�H and π-bonds.
Molecular orbitals from our Pd-based Wacker oxidation

system and its 1-aminoethan-1-yl and 1-hydroxethan-1-yl analo-
gues are prime examples of facile and prohibitive BHE processes.
From an inspection of each case’sMOs, and fromMOspresented in
other reports, we developed a template to identify the most

relevant symmetry allowed MOs for BHE.44 These MOs are
represented schematically in Figure 2.
[2 + 2] pericyclic rearrangements involve two key bonding

MOs: specifically, those corresponding toM�H,M�R,R�β, or
β�H bonds, depending on what point of the reaction coordinate
is being inspected. Figure 2a shows the progression of these
canonical orbitals as the reaction proceeds. In the reactant, the
two MOs of interest are the β�H and M�R σ-bonds. The two
product MOs that complete the [2 + 2] rearrangement are the
M�H σ-bonding orbital and the R�β π-bonding orbital. A
linear combination of the reactant and product MOs comprise
the MOs in the TS of this rearrangement. In Figure 2b we show a
linear combination of the two transition state orbitals, the sum of
which we call ϕBHE. In addition to these four canonical orbitals,
we considered a linear combination of transition state MOs that
would participate in BHE when a heteroatom is present: in
Figure 2c, orbitals corresponding to oxygen and nitrogen lone
pairs directed toward the metal compete for the vacant site with
the β-hydride, and we call this combination ϕBHE2.
With this template of reactive orbitals, we describe BHE in

qualitative terms. Calculated DFT data for specific examples of
BHE will now be interpreted in terms of this MO model.
BHE from Pd(II) Centers. We begin with the reactant com-

plexes that serve as starting points for β-hydride elimination
(Figure 3). Already, we find some distinguishable characteristics.
First, 1a has a well-defined agostic C�Hbond (rPd 3 3 3H = 1.78 Å)
into the Pd vacant site.
In contrast, the agostic bond between the β-H and Pd is not

present in either 2a or 3a ground state complexes (rPd 3 3 3H = 2.7

Scheme 1. Investigated β-Hydride Elimination Processesa

aNote that in each case the β-atom is totally saturated with hydrogen
atoms so that its valence is filled.

Figure 2. (a) Correlation diagram for the active orbitals in a conven-
tional BHE. (b) Linear combination of transition statemolecular orbitals
encountered when the “β” is an alkyl fragment. (c) Linear combination
of transition state molecular orbitals encountered for BHE when the “β”
is a nitrogen or oxygen atom.
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and 2.71 Å, respectively). Rather, there is a well-defined dative
bond from the lone pair of the β-heteroatom to the metal. Since
the lone pair is coordinated to the vacant site, the hydride is
rotated out of the plane of the Pd�R�β atoms.
To estimate the relative strength of these lone-pair interac-

tions, we calculated the energies of the 2a and 3a systems where
the Pd�R�β�H dihedral angles were fixed to be 0�. The ΔH
values for these structures are given in Table 1, as well as the
relative enthalpies of the transition states and products of BHE.
For 2a the planar structure is 15.5 kcal/mol higher than the fully
relaxed structure with the lone-pair dative bond. For 3a, the
planar structure is 8.4 kcal/mol higher. It is interesting that the 3a
planar reactant is lower in energy than the 2a planar reactant.
This is probably due to additional back-bonding to the Pd from
the second oxygen lone pair. The preference for lone pair
interaction versus the agostic H-bond means that each structure
will have to undergo an R�β bond rotation for BHE to occur.
Each product structure involves a Pd coordinated to an unsatu-

ratedR�β fragment. Given that the barrier to BHE from 1a to 1b is

so low, we would expect to observe this experimentally. Indeed,
there are multiple examples in the literature of these processes
occurring.5,10 The ΔH values for 2b and 3b are also favorable, but
in both cases the BHE barrier is high. The most stable products
for BHE from the 2a and 3a analogues are the η1-coordinated
species (iminoethyl-kN)Pd(H2O)Cl (2b) and (acetaldehyde-kO)Pd
(H2O)Cl (3b), rather than η2-coordinated compounds.
Our TS calculations are consistent with our previous Wacker

oxidation results on alkyl systems. BHE from an alkane β-fragment
has a very low barrier: 1 kcal/mol for 1TS. This is consistent with
the results of previous studies on similar systems.23,33 These
barriers contrast dramatically with BHE barriers from amine and
alcohol β-fragments. The BHE TS enthalpy for 2TS is 26.6 kcal/
mol. For 3TS the barrier is 21.6 kcal/mol. Including the effects of
water solvation only slightly changed the barriers to 3.8 kcal/mol
for 1TS, 34.1 kcal/mol for 2TS, and 28.2 kcal/mol for 3TS,
showing that these barriers will not be substantially affected by
solvent effects. This is expected, because these molecules do not
have large changes in charge density distribution or net charge
throughout the BHE reaction coordinate. The transition state
geometries for 1TS, 2TS, and 3TS are given in Figure 4.
TS geometries linking the reactant and product structures

reveal a distinct peculiarity in BHE mechanisms. For 1TS, the Pd,
R-C, β-C, and H atoms all lie nearly syn-coplanar (θ = 1.3�), in
accordance with the conventional BHE geometric requirements
outlined above. For 2TS, however, the Pd,R-C,β-N, andH atoms
do not lie in a plane. Rather, they orient themselves with a dihedral
angle of 21.1�. A similar dihedral angle is present in 3TS, where
the Pd, C, O, and H atoms form a dihedral angle of 21.6�. On the
basis of the large dihedral angles found in the reactant and TS
structures of 2TS and 3TS, there must be lone-pair interactions
between the β-N and β-O heteroatoms into the metal’s vacant
coordination site in the transition structure.
The MOs for these processes reveal the nature of both the

energetic barriers and geometries along the BHE reaction coordi-
nate. When “β” is CH2, ϕBHE values are nearly identical in the
starting and transition state structures. Energetically, ϕBHE in 1

TS

is only 1.0 kcal/mol greater than that of its corresponding
reactant orbital, and this energy difference in striking proximity
to the actual calculated barrier of 1.3 kcal/mol indicates that very
little electronic rearrangement needs to occur for BHE to take
place. The orientation of the orbital allows a planar geometry,
and good overlap between the hydride and Pd’s empty coordina-
tion site is maintained.
When the β-atom is N, as in 2, the most stable of the canonical

orbitals, ϕBHE2, is a linear combination of σM�R, σCH, and dxy�lp

(see Figure 2c). No orbital in this case directly resembles the
ϕBHE orbital found in the alkane case. However, if the geometry
of the Pd�R�β�H dihedral angle in the reactant is forced to be

Figure 3. Calculated reactant, transition state, and product structures
for the Pd-based compounds.

Table 1. Enthalpies for the β-Hydride Elimination in
Scheme 1a

enthalpy (kcal/mol)

species reactant planar reactant TS product

1 0 1 (3.8) �5.7 (0.9)

2 0 15.5 26.6 (34.1) �0.5 (6.9)

3 0 8.4 21.6 (28.2) �2.6 (�0.7)

4 0 31.1 26.5 (33.0) 2.2 (�9.0)

5 0 16.6 37.4 (38.6) �18.7 (�10.8)

6 0 5.8 (7.9) 3.5 (6.1)

7 0 25.5 35.3 (40.0) 5.3 (8.4)

8 0 6 28.3 (35.8) �3 (0.3)
aThe values in parentheses are solvation-corrected enthalpies. Where
planar reactant energies are provided, the R�β bond is rotated so that
the β-H is forced into in the M�R�β plane.

Figure 4. Transition state geometries for Pd complexes: (a) 1TS; (b)
2TS; (c) 3TS. The angles given are the dihedral angles Pd�R�β�H*.
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planar as in an ideal BHE, the ϕBHE orbital emerges, though the
artificially planar species is energetically destabilized by 15.5
kcal/mol. In this artificial geometry (artificial in the sense that it
does not lie along the intrinsic reaction coordinate), the overlap
between the hydride and metal d orbital is visibly weaker than
that for the alkane (rPd 3 3 3H= 2.21 Å) ϕBHE orbital. In 2

TS, we find
no orbital corresponding to ϕBHE. Instead, we find an orbital with
strong π-character orthogonal to the plane of the hydrogen
transfer (see Figure 5). This localized orbital resembles ϕBHE2 in
Figure 2c, wherein most of the density belongs to the forming π-
bond. These results imply that the energetic barrier to BHE from
nitrogen is due to the cost of breaking nitrogen’s lone pair
stabilization of the empty metal coordination site. We verified
this by taking 2a and 3a and rotating the R�β bond until the
Pd�R�β�H angle matches this angle in 2TS and 3TS. In Table 2
we give the results of these calculations. For the Pd complexes the
cost of rotating the β-H into the TS geometry is a significant
fraction of the overall barrier to BHE in each case. Additionally,
the importance of the lone pair interaction is reflected in a

“twisting” motion of the imaginary mode in the TS. This character
arises from rotating the hydride into the Pd�R�β plane.
The alcohol β-group behaves much like the amine β-group. In

fact, the lone pair of oxygen forms a stronger bond to the metal
center, as is evident by the lack of any orbital containing
significant Pd�R bonding character in 3a. Again, we artificially
created a reactant compound where H is aligned with the
Pd�R�β plane to find the BHE orbital. This orbital has even
weaker Pd�Hoverlap than that in the case of nitrogen (rPd 3 3 3H=
2.37 Å), and it is destabilized by 51.4 kcal/mol relative to the
ϕBHE2 orbital. This artificially planar structure for 3a is 8.4 kcal/
mol above the true ground state. The energy to rotate the hydride
into the TS geometry on the ground state potential energy
surface is a significant fraction of the TS barrier at 7.9 kcal/mol.
These results indicate to us that breaking the lone-pair�metal
interaction is a major contributor to the overall ΔHq value of
BHE. The imaginary vibrational mode of 3TS also has an O�H
bond stretching component and a component that represents
rotation about the R�β bond, and this is dissimilar to the linear
bond stretching found in ideal BHE imaginary modes.
An analysis of NBO charges along this reaction coordinate

provides more information about the nature of the hydride transfer.
BHE is traditionally thought of as a [2,2] pericyclic rearrange-
ment. By virtue of this category of rearrangement, charge should
be relatively conserved and should remain synchronous through-
out the rearrangement. That is, there should be minimal re-
arrangement of intranuclear charge. Table 3 contains informa-
tion about the atomic NBO charges for the reactant, TS, and
product complexes for the two different isomers of each variant.
For 1, the NBO charge on the hydride remains within 0.15e
between 1a, 1TS, and 1b. Surprisingly, the “hydride” in 1a is
actually partially positive. Even in 1TS, the “hydride” retains its
positive charge at 0.2e. In 1b, the “hydride” is nearly neutral,
which indicates that the charge from the rest of the complex has
been rearranged to repopulate electron density on the hydride.
From the charge on the β-C in 1b, it is evident that this atom
donated negative charge to the hydride and Pd. The charge on Pd
decreases by 0.1e, and the charge on β-C increases by 0.15e. In
the reactant and TS of 2 and 3, the β-hydride is highly
electropositive, as is expected for an atom bonded to electroneg-
ative atoms such as nitrogen and oxygen. In 2a and 3a the charge
on H is 0.4e and 0.49e, respectively. In the products, 2b and 3b,
the hydride’s charge is nearly neutral. Coincidentally, this agrees
quite well with a simple model of reactivity based on the relative
electronegativities of carbon, nitrogen, and oxygen. In 2a,b both
heteroatoms have drawn electron density away from the hydro-
gen, yielding an electropositive H. Consequently, the hydrogen
will then have less electron density to provide an agostic bond to
the metal center. For 2 and 3, there is an energetic cost to transfer
the hydride to the metal, since the H absorbs negative charge
during bonding to palladium. The degree of charge on the H in
the 2TS and 3TS transition states suggests that these reactions are
more akin to proton transfers than hydride transfers. Just as in 1b,
in 2b and 3b the Pd center experiences a charge decrease and β-N
and β-O donate their negative charge to the hydride with the
remainder being drawn from the rest of the complex. The timing
of the charge redistribution is interesting: for 1, we see that the
β-H maintains its charge through the transition state. Only in
the product does charge redistribution occur. In 2 and 3, the charge
redistribution is gradual and we see that the β-H has lost positive
charge in the TS. This indicates that charge reorganization is a
prerequisite for BHE to occur in β-heteroatom species and that

Figure 5. Selected molecular orbitals of the Pd reactants and transition
states. The agostic interaction is plainly visible in 1a and 1TS, whereas the
lone pairs interact with the metal center in 2a and 2b. Compare the
molecular orbitals in 2TS and 3TS with the orbital in Figure 2c.

Table 2. Enthalpies for Ground State Structures Deformed
To Have the Same Pd�r�β�H Dihedral Angle as Each
Transition-State Structure

species M�R�β�H angle (deg) enthalpy (kcal/mol)

2 21.1 26.5

3 21.6 7.9

4 28.6 36.0

5 42.4 14.9

7 16 30.3

8 36 13.0
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the prereorganization occurs on the upslope of the reaction
coordinate. This charge asynchronicity is a significant contributing
factor to the high barrier to BHE for ligands bearing β-heteroatoms.
Pt(II) Results. Our investigation continued with a study of

BHE to platinum(II), another d8 metal (Figure 6). The results
are consistent with those of palladium.
We did not find a “reactant” state for (1-methylethan-1-yl)-

Pt(H2O)Cl. This species minimized to a product structure
analogous to 1b, which indicates that there is no barrier to BHE.
The primary differences between BHE in platinum and

palladium are in the barriers to reaction. The barriers to reaction
are generally smaller for platinum, while the reaction is exother-
mic. The barrier to BHE for 4a is 26.5 kcal/mol. The barriers are
higher for the alcohol analogue: BHE from 5a is 37.4 kcal/mol
uphill with a product, 5b, energy of�18.7 kcal/mol. The barrier
heights for the alcohol and amine analogues indicate that, like the
palladium example, lone pair interactions stabilize the reactants.
The importance of the lone-pair�metal coordination is ver-

ified by the geometry of the transition states in 4TS and 5TS. In
5TS, the Pt-R�β-H dihedral angle is 42.4� in the transition state.
In 4TS, the Pt�R�β�H dihedral angle is 28.6�. As before, this
suggests that there is a strong stabilizing interaction between the
lone pairs of the heteroatoms and the vacant coordination site on
the metal. To test the strength of this, we again fixed the dihedral
angle is at 0� in the reactants. The cost of rotating the lone pair

out of the coordination site for 4a and 5a is 33.9 and 14.3 kcal/mol,
respectively.
The significance of the lone-pair�metal interaction is also

reflected in the MOs. In 4TS, we find an MO that resembles
ϕBHE2, as described in Figure 2c. There is strong overlap between
the lone pair and the metal's vacant coordination site. In the
artificially planar reactant structure, this overlap is lost, and the
reactant is destabilized by 31.1 kcal/mol. A ϕBHE orbital is
created, although the overlap between the hydride and vacant
site is weak. The energy of this orbital is 29.4 kcal/mol higher
than that of the dxy�lp orbital in the fully relaxed reactant. This
increase in energy reflects the importance of the lone-pair
stabilization. Just as we did for our palladium complexes, we
measured the energy of each Pt reactant when the R�β bond is
rotated so that the Pt�R�β�H dihedral angle matches the TS
angle. For 4a this cost 36 kcal/mol. The high cost of performing
this rotation demonstrates the strength of the lone-pair to metal
coordination energy.
The orbitals for 5a and 5TS are similar to those of 4a and 4TS.

An important difference is the strength of the oxygen lone-
pair�metal interaction. In the fully relaxed reactant, the lone pair
is strongly coordinated to platinum. This is verified by the high
cost of rotating the hydrogen into the Pt-R�β plane: fixing the
Pt�R�β�H dihedral angle at 0� leads to the formation of a
ϕBHE orbital that is 51.4 kcal/mol higher in energy than the dxy�lp

orbital. This may seem to conflict with the fact that the planar
reactant is only 16.6 kcal/mol above 5a, but it does not. Because
oxygen has two lone pairs, there is partial lone-pair stabilization
even when the hydrogen is fixed in the planar reactant structure.
This fact also partially explains why the barriers to BHE from
oxygen are lower than that of nitrogen. The TS ϕBHE2 orbital is
significantly different than the ideal BHE case that is found in
1TS. Like 2TS, 3TS, and 4TS, in 5TS there is significant twisting
character in the imaginary mode of the transition state so we can
conclude that rotation of the terminal alcohol is largely respon-
sible for the barrier to BHE.
In all cases, the transition states are late and productlike. In 4TS

rPt 3 3 3H is 1.65 versus 1.52 Å in 5b, while rC�N is 1.38 versus 1.35 Å
in the transition state and products, respectively. In 5TS rPt 3 3 3H
is 1.67 Å versus 1.52 Å in 5b, while rC�O is 1.36 versus 1.28 Å in
the transition states and products, respectively.
In the Pt complexes we observe significant charge redistribu-

tion when the β-atom is N or O. The difference in charge on the
β-H between 4b and 4a is�0.34e, and that between 5b and 5a is

Figure 6. Calculated reactant, transition state, and product structures
for the Pt-based compounds.

Table 3. NBO Charges (in Terms of e) for Selected Atoms along the Reaction Patha

reactant transition state product

species M X M H X M H X M H X

1 Pd C 0.50 0.20 �0.58 0.49 0.20 �0.58 0.40 0.05 �0.42

2 Pd N 0.47 0.40 �0.74 0.36 0.24 �0.65 0.35 0.01 �0.62

3 Pd O 0.57 0.49 �0.66 0.42 0.30 �0.55 0.47 0.04 �0.57

4 Pt N 0.43 0.40 �0.72 0.33 0.27 �0.66 0.44 0.06 �0.67

5 Pt O 0.52 0.50 �0.65 0.33 0.33 �0.61 0.51 0.04 �0.58

6 Ni C 0.66 0.20 �0.60 0.53 0.02 �0.42 0.55 �0.05 �0.44

7 Ni N 0.63 0.40 �0.76 0.51 0.17 �0.66 0.55 �0.13 �0.64

8 Ni O 0.72 0.49 �0.67 0.57 0.27 �0.57 0.62 �0.15 �0.56
aX is the β-atom, H is the transferring “hydride”, andM is the metal. Note that for the systems in which X =N, O the transferring hydrogen loses a larger
amount of positive charge along the reaction coordinate. This is indicative of proton transfer rather than hydride transfer behavior.
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�0.46e. For both heteroatoms, β-hydride elimination of an
electropositive hydrogen atom occurs, with charge being drawn
away from the β-atoms. Interestingly, Pt retains its charge
throughout the course of the BHE. Contrast this with Pd, which
loses positive charge. This is likely due to the fact that platinum
has a lower electron affinity thanNi or Pd. Between 4a and 4b the
β-N only increases by 0.05e, despite the fact that the hydride
decreases its charge by 0.36e. Similarly, between 5a and 5b, the
β-O only increases by 0.07e while the hydride decreases by 0.46e.
This cannot be related to the geometry of the products, since 2b
and 4b and 3b and 5b all have similar product geometries.
Nickel(II) Results. Our study concludes with an analysis of

BHE fromNi(II). Like platinum, the results presented here agree
with the results presented in the palladium section of this report
(Figure 7).
As expected, the barriers to BHE from Ni are generally higher

than that of Pd and Pt. The activation energy for BHE is 5.8 kcal/mol
for 6TS. Like 1a, 6a has an agostic Ni 3 3 3H interaction (rNi 3 3 3H =
1.67 Å). This agostic interaction helps to decrease the barrier
height for BHE by allowing partial Ni 3 3 3Hbond formation prior
to BHE. For 7TS the barrier is at a prohibitively high 35.3 kcal/mol.
As for the Pd cases, the 8TS activation energy is higher than taht
for the alkyl analogue but lower than that for the β-nitrogen
example: 8TS is 28.3 kcal/mol above the ground state.
The Ni�C�N�H dihedral angle for 7TS is 16�, and for 8TS

the analogous dihedral angle is 36�. As for the Pd and Pt cases,
this implies the importance of a stabilizing lone pair coordination
into the metal’s empty coordination site.
The importance of this interaction is reflected in the MOs of

the reactants and transition states. The saturated alkyl reactant,
6a contains a clear Ψ1

R orbital with the unique β-agostic
interaction that makes BHE facile. In the TS, we find a ϕBHE
orbital with strong Ni 3 3 3H bonding character.
When we fix the Ni�R�β�H dihedral in 7a angle to 0�, a

ϕBHE MO is produced and the overall energy of the structure is
25.5 kcal/mol higher in energy than the fully relaxed reactant.
The importance of the lone pair stabilization is also demon-

strated in 8a as well. In this case, it costs 6 kcal/mol to rotate the

lone pair out of the vacant site. Again, the dxy�lp orbital in the
reactant is the most stable of the canonical orbitals. When the
Ni�R�β�Hdihedral angle is fixed at 0�, the ϕBHE orbital is 70.8
kcal/mol greater in energy than the dxy�lp orbital. Again, we
stress that the only way to prepare a BHE orbital is by twisting the
hydrogen into the proximity of the empty coordination site, and
this twisting motion is present in the imaginary mode of the
transition state.
The product structures are all similar. Furthermore, 6TS, 7TS,

and 8TS all have productlike transition states, as indicated by the
similarity between the Ni�H and R�β bond lengths (see the
Supporting Information for structures).
We found that the Ni complexes behaved like the Pd com-

plexes with regard to charge redistribution when we examined
the NBO charges for the Ni BHE reaction coordinate. For the
NBO charge population details, see Table 3. In 6a, 6TS, and 6b
we observe that the hydride retains its 0.2e charge through the
transition state but it then decreases to�0.05e in the product 6b.
In the Ni complexes the product H is truly a hydride. Between 6a
and 6b, Ni decreases by 0.11e, while β-C increases by 0.16e. For
BHE starting from 7a and 8a, we find that the hydrogen loses
significantly more positive charge while the heteroatoms accu-
mulate positive charge. Over the course of BHE, β-N and β-O
gain 0.12e in 7b and 8b, respectively. A for BHE from 6a, Ni in 7
and 8 loses 0.8e and 0.1e, respectively. As stated earlier, the
necessary redistribution of charge to the heteroatoms is unfavor-
able and energetically costly. This fact, in conjunction with the
geometric changes that are also necessary, leads to the high
barriers to BHE from heteroatom functional groups.
The barrier heights for both the β-nitrogen and β-oxygen

analogues indicate that traditional BHE is not energetically
feasible for heteroatom functional groups of Ni(II) square planar
complexes.
Comparing the results of Pd, Pt, and Ni shows that all three of

these group 10 metals behave similarly. While the barrier heights
decrease as one moves down this group, the trends among their
BHE reactivity and chemical character are consistent.

IV. CONCLUSIONS

For all three transition metals, the calculated energies indicate
that the barrier to BHE from β-heteroatoms is significantly higher
than the barrier when the β-atom is carbon. These energies cor-
respond to true BHE's, and they represent the energetic cost of
tranferring a hydride in the manner traditionally depicted by
organometallic chemists. This is not to say that transferring a
hydride from a heteroatom functional group is impossible. Instead,
we wish to suggest that the chloride-mediated reductive elimina-
tion mechanism presented in our previous work is a more likely
candidate.23 Another possible route might involve deprotonation
of a precursor amine- or alcohol-bearing ligand to form an
anionic imino�, aldehyde�, or keto�metal complex such as
[(NH2CR2)M] + B�f BH + [(NHdCR2)M]� or [(HOCR2)-
M] + B� f BH + [(OdCR2)M]�. The work presented here
indicates that the scope of BHE's should be limited to β-atoms
that do not contain lone pairs.

We found that the cost of breaking the lone pair to metal
interaction for cases where the β-atom contains a lone pair is
largely responsible for the increased activation energy for BHE
from these compounds. Furthermore, in these cases the “hy-
dride” is more electropositive in the reactant than in cases where
the β-atom is carbon. After BHE, the transferred H is nearly

Figure 7. The calculated reactant, transition state and product struc-
tures for the Ni based compounds.
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charge neutral. In all cases the β-atom donates charge to the
transferring H atom. Ni and Pd lose positive charge density after
BHE while Pt retains its charge throughout the course of the
BHE. Electronegative β-atoms decrease the strength of any
agostic interaction that might exist in the TS, and the presence
of lone pairs in these atoms assures that a lone-pair�metal dative
interaction will exist in the reactant. The results presented herein
suggest that the organometallic mechanism we commonly refer
to as β-hydride elimination ought to be called β-proton elimination.

We also note that we attempted to calculate the barriers to
BHE from the second-period main-group elements Si, P, and S.
In all cases there was no barrier to BHE, owing to the fact that the
BHE reactant is not a stationary point for these molecules. In
each case the geometry optimization of the reactant converged to
the BHE product.

Given the molecular orbital picture for BHE, we can rule out
the possibility of facile BHE fromβ-heteroatoms, and this effectively
sets the scope of reagents that are susceptible to BHE. Of course,
the lack of experimental evidence for BHE from β-heteroatoms is
indirect evidence of this fact, but without a detailed theoretical
treatment, there was no way to be sure of this.
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It has long been observed that brittle fracture of materials can lead to emission of high energy electrons

and UV photons, but an atomistic description of the origin of such processes has lacked. We report here on

simulations using a first-principles-based electron force field methodology with effective core potentials to

describe the nonadiabatic quantum dynamics during brittle fracture in silicon crystal. Our simulations

replicate the correct response of the crack tip velocity to the threshold critical energy release rate, a feat

that is inaccessible to quantum mechanics methods or conventional force-field-based molecular dynamics.

We also describe the crack induced voltages, current bursts, and charge carrier production observed

experimentally during fracture but not previously captured in simulations. We find that strain-induced

surface rearrangements and local heating cause ionization of electrons at the fracture surfaces.

DOI: 10.1103/PhysRevLett.108.045501 PACS numbers: 62.20.mj, 31.15.xg, 46.50.+a

The observation that brittle fracture of materials can lead
to the emission of high energy electrons and UV photons is
well documented for materials ranging from polymer ther-
moplastics, glasses, minerals, and semiconductor crystals
[1–4]. There has been no previous atomistic description of
the origin of such processes. Although fracture in solids
involves breaking of chemical bonds, which can be well
described with modern quantum mechanics (QM) meth-
ods, the observation of exoelectrons and photon emissions
indicates that the processes are not purely adiabatic, com-
plicating the application of QM—in particular for model
systems that require more than a few hundred atoms. We
show here that the recently developed first-principles-
based electron force field (eFF) method for nonadiabatic
dynamics accounts for electron emission and large poten-
tial differences consistent with the experiments, providing
the first atomistic description of the origin of these effects.
In this Letter we consider the fracture of silicon crystals
producing f100g and f111g fracture planes which have been
studied quite thoroughly. The effects that we explain are
(1) loading of a crack leads to a sudden onset of crack
propagation at 7 GPa followed by uniform velocity of the
crack at 2500 km= sec after initiation and (2) voltage fluc-
tuations in the 10–400 mV range, charge creation (up to
1011 carriers=cm2), and current production (up to 1.3 mA).

It was not possible to explain the sudden onset of crack
propagation and constant velocity response to increasing
loads observed in the brittle fracture of silicon with earlier
force-fields-based methods (e.g., Tersoff, Stillinger-
Weber) [5–8]. However, Buehler and co-workers demon-
strated that the reactive force file, ReaxFF, correctly de-
scribes the experimentally observed crack dynamics in
silicon [9–11]. Left unexplained, however, is the genera-
tion of voltages and currents during fracture [12,13]. More
recent experimental studies have observed the ejection of
electrons [14] and other charged particles [15] during

silicon fracture dynamics. No previous attempts were
made to model the voltage fluctuations, electron emission,
and charge creation phenomena. Current time-dependent
QM methods are incapable of describing the dynamics of
electron ejection excitation of highly excited states from
deformation of the crystal. Quantum mechanical methods
are unable to attain the length and time scales (> 1000
atoms over >1 ps time scales) required to describe the
dynamics of fracture. On the other hand, conventional
force fields in conjunction with molecular dynamics meth-
ods can handle the relevant length and time scales, but they
do not describe ejected electrons and excited electronics
states. The eFF method allows us to capture the appropriate
length and time scales, and most importantly, the electron
dynamics during fracture.
The eFF method provides an approximate description of

quantum dynamics by describing every electron as a float-
ing spherical Gaussian orbital [16] whose position and size
varies dynamically while the nuclei are treated as classical
point charge particles. Here the total N-electron wave
function is written as a Hartree product of one-electron
orbitals (rather than as an antisymmetrized product).
Orthogonality resulting from the Pauli principle is enforced
with a spin-dependent Pauli repulsionHamiltonianwhich is
a function of the sizes and separations of these Gaussian
orbitals. The Pauli potential accounts for the kinetic energy
change due to orthogonalization, arising from the Pauli
principle (antisymmetrization) [17,18]. An additional
quantum-derived term in the eFF Hamiltonian is the kinetic
energy for each orbital, which accounts for the Heisenberg
principle. The full Hamiltonian in eFF also incorporates
classical electrostatic terms between nuclei or electrons.
eFF has been validated on challenging electronic phe-
nomena arising in materials subjected to extreme condi-
tions including Auger processes [19], hypervelocity
impact, and plasma formation [20].
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Previously eFF treated all electrons of an atom, includ-
ing the core electrons [21]. Describing the very short time
scales of the high energy core orbitals makes simulating
picoseconds of fracture computationally intractable on
systems large enough to describe crack propagation in Si
crystal. Instead of describing all electrons explicitly, here
we replace the core electrons with an effective core
pseudopotential while retaining the accuracy in describing
the valence electrons. This allows us to study the dynamics
of electronic excitations and ejection simultaneous with
nucleation and propagation of crack fracture in silicon.
This approximation is described in detail in the
Supplemental Material [22].

For this study we developed two simulation cells.
Figure 1 depicts our ‘‘f100g’’ crack model. In this model
the x-y-z directions are ð100Þ � ð011Þ � ð01�1Þ direction,
creating a (100) fracture plane with a [011] fracture direc-
tion with dimensions of 3:8� 25� 3:8 nm3. In our

‘‘f111g’’ model, the x-y-z directions are ð111Þ � ð�12 �1
2
�1Þ �

ð12 �1
2 0Þwhich produces 111 crack surfaceswith a [112] crack

propagation direction with dimensions of 2:7� 47�
4:0 nm3. We performed crack simulations on fully periodic
replicas and on slabs with hydrogen-passivated surfaces of
the previously described geometries. The results presented
here correspond to our fully periodic system, though we
found negligible differences between the results we obtain
in our fully periodic and partially periodic slab models (see
Fig. 2). Both systems were prepared in an isothermal-
isobaric ensemble using a Nosé-Hoover thermostat and
barostat, at 300 K and 1 atm, respectively. In both samples
a seed crack of length 1

5Ly is created before a load is

applied. A continuous uniaxial strain load is applied to

the cells in the x dimension at a rate of 1.2% per ps and
the sample is allowed to crack naturally, which allows us to
test the failure modes of the system. No barostat pressure is
imposed in the strain direction.
Figure 2 shows the relationship between the crack tip

velocity and the energy release rate normalized by the
critical energy release rate determined at the onset of
fracture. We computed G from the uniaxial stress ahead
of the crack, the crack length, and Young’s modulus that
we compute from our model: G ¼ 1:122�P2

xxa=E
2. Kic is

computed similarly. Both the f100g and f111g models
exhibit brittle fracture and both match the experimental
observation that upon reaching a critical load, the crack
velocity rapidly jumps to 4 and 2 km=s, respectively, and
plateaus thereafter (data for the eFF f100g model are in the
Supplemental Material [22]). Table I compares computed
mechanical properties to those of experiments. The calcu-
lated Griffith critical load for the f111g is 3:16 J=m2, which
is higher than the experimental value but in agreement with
the QM value of 3:1 J=m2 [29]. This indicates that our
model leads to a small amount of lattice trapping. In
general, our simulations of the dynamics of fracture in
silicon using the eFF pseudopotential reproduce experi-
mental measurements and results produced with other re-
active force fields [10].
From our simulations we ascertain that there are two

prevalent modes of electron ionization: local field-induced
ionization and thermal ionization. The simulations show
that ionization occurs as a direct result of fracture. Figure 3
shows the evolution of a representative group of electrons
as the fracture progresses. We find that electron ionization
is precipitated by the passing of the crack front. Figure 3(c)
shows that ionized electrons are excited by 5 eV, making

FIG. 1 (color online). A snapshot of a crack propagating in a
silicon single crystal with mode I loading in the x direction
producing a f100gh011i edge crack. The transparent spheres are
paired electrons. Unpaired spin-up and spin-down electrons are
shaded.

FIG. 2 (color online). Crack tip velocity versus reduced load
for f111g fracture with experimental data from [5], ReaxFF-
Tersoff and Stillinger-Weber data from [10], environmental
dependent interatomic potential (EDIP) and the results of a
multiscale method that couples empirical potentials and quantum
mechanical tight-binding approaches (DCET) from [31]. The
gray line is a visual guide.
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them sufficiently energetic to escape the Si-surface barrier.
The initial excitation promotes the electrons to unbound
states (total electron energy >0), but they subsequently
relax to 4.1 eV above the ground state, well into the Si
conduction band. A close examination of the energy con-
tributions leading to ionization reveals that in most cases
an increase in potential energy causes ionization. The
cause of this is heterolytic bond cleavage across the crack.
In rare instances a heterolytic cleavage creates an anion on
one crack face and a cation on the other crack face. As
dangling bonds form 2� 1 surface dimers, the excess
electron causes Pauli exclusion clashes with adjacent sur-
face pairs. As a result, the ionized electron’s radius de-
creases to reduce its overlap with nearby same-spin
electrons. The spin clashing forces the electron further
from the surface and the electron delocalizes (its radius
increases in the eFF description). Ultimately it relaxes and
settles into the conduction band. 80� 10% of ionized
electrons are ionized because of local field effects.

In rare circumstances an increase in an electron’s kinetic
energy after fracture causes it to ionize. Kinetic excitation
is caused by local heating so we conclude that while
possible, thermal ionization is not the predominant mecha-
nism. In Fig. 2 of the Supplemental Material [22] the
kinetic energy of the same group of electrons depicted in
Fig. 3 are presented. In that figure only one electron is
excited thermally—the fingerprint of thermal excitation in
increased kinetic energy. We observe that elastic energy in
the stress field ahead of the crack is converted to kinetic
energy in the recoil of the new surfaces causing local
heating. As mentioned previously, we estimate that 20�
10% of the electrons are thermally ionized.

To understand the dynamics of charge carriers during
silicon fracture, we compute the electrostatic potential on
grid points, i.e., by summing the individual Gaussian
charge density potentials. In Figs. 4(a) and 4(b), we pro-
vide snapshots of the electrostatic potential at two points
during the fracture simulation. Initially, the system has
zero potential (light shading). As a crack evolves, we
observe the production of negative charge carriers in the
free space inside the crack. Figure 4(b) shows the final state
of the system after the crack has propagated through the
unit cell, with the crack edges outlined in black.
Heterolytic bond cleavage due to thermal fluctuation and

hot spot formation causes 2:6� 10�2 � 1:3� 10�2 more
electrons per nm2 to remain on one side of the crack than
the other, which results in the left crack face having (þ
2:13 V) potential and the right face having (þ 1:12 V)
potential. The potential gradient across the crack corre-
sponds to a voltage of 1.02 V. Li and colleagues reported
measuring voltages of tens of mV with some cracks pro-
ducing voltages up to 0.39 V [12]. The electrostatic poten-
tial difference between the crack surfaces reflects the
dynamics of charge carriers during silicon fracture.
We computed the number of ionized electrons at each

time point in our crack trajectories (see the Supplemental
Material for details and a plot [22]). Given the size of our
f111g cell, these correspond to a total electron yield of
5:3� 1011 to 1:6� 1012 cm�2. Langford and co-workers
detected current transients whose integrated area corre-
sponded to yields of 109 or 1011 carriers=cm2, though their
f111g crack velocities were around 900 m=s [13]. They
stated that faster cracks produced larger carrier yields. Our
f111g crack velocity is 2 times faster, which explains why
we observe larger ionized electron yields.
From the equilibrium dynamics of the cracked system,

we determined the electrical conductivity using the Green-
Kubo integral of the electric current correlation function as

TABLE I. Comparison of experimental and computed me-
chanical values: Young’s modulus E (GPa), yield strength
(GPa), Griffith critical load Gc (J=m2), and the stress intensity
factor Kic (MPa). References are in square brackets.

Method E Yield strength Gc Kic

f111g expt. 163–188 [23] 7 [24] 2.3 [5] 0.76 [25,26]

f111g eFF 166 15 3.16 0.752

f100g expt. 125–202 [27] � � � � � � 0.91 [28]

f100g eFF 157 15 2.57 0.96

FIG. 3 (color online). (a) The absolute distance between the
crack tip and electrons that will ionize. (b) The radii of ionized
electrons (shaded), ground state surface electrons (black dotted
lines), and bulk electrons (solid black lines). (c) The total energy
of the electrons.
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�GK ¼ 1

3kBTV

Z 1

0
hjðtÞ � jð0Þidt; (1)

where jðtÞ is the electric current flux, and the integral
argument corresponds to the electric current velocity cor-
relation that is expressed as

JðtÞ ¼ hjðtÞ � jð0Þi ¼ XN
i¼1

XN
j¼1

hqiqjviðtÞ � vjð0Þi; (2)

where i and j are different particles. Figure 4(c) shows the
current velocity correlation, JðtÞ, for our f111g system at
300 K and after the crack has occurred. The postcrack data
trace is initially positive because free charge carriers are
moving across the gap; these carriers have strong autocor-
relation signals. Integrating these traces and applying the
result to (1) gives us a measure of the conductivity of our
cells before and after fracture. Before the fracture our cell
has an electrical conductivity of 2:69� 10�5 S=cm; after
fracture the cell has a conductivity of 3:72� 10�3 S=cm.
Pure silicon samples (like our simulation cells) have con-
ductivity as low as 10�4 S=cm and decreasing the dopant
concentration causes silicon to asymptotically approach
10�5 S=cm [30]. Our post crack sample has a calculated
conductivity on the order of n-doped silicon samples with
dopant concentrations of 4� 1012 cm�3. This indicates
that the production of mobile charge carriers as a direct
result of fracture accounts for the experimentally observed

fracture current bursts. It also corroborates the observation
of conduction band electrons in Fig. 3(c).
We show here that our effective core potential (ECP) for

silicon in the electron force field method provides an accu-
rate representation of the dynamics of material failure,
including charge transfer, voltage impulses, and electron
ionization. In this study we demonstrated that eFF could
replicate the physics of brittle fracture of silicon indepen-
dent of crack orientation. The equilibrium and dynamic
mechanical properties computed from our simulations are
in excellent agreement with experimental measurements
and the predictions of other reactive force fields.
Furthermore, we observed the generation of voltages and
the production of charge carriers in good agreement with
experiment. We have performed preliminary tests to infer
spectral emissions from the ground state and excited elec-
tron eigenstates from eFF dynamics, albeit within the limi-
tations of the Gaussian basis set representation and the ECP
approximation, by computing the autocorrelation function
of the electron wave packets and Fourier transforming this
function to obtain the eigenstates of the system. This tech-
nique allows us to roughly estimate the emissions that
accompany shock, fracture, or triboluminescence.
The significance of these results stems from the capa-

bility of eFF to accurately track the long-term dynamics of
electrons under nonadiabatic conditions. This provides
new insights into the phenomenon of electron ejection,
voltage fluctuations, and charge carrier induction. Since
eFF has been demonstrated to predict the transformation of
H2 and Li from ground state to intermediate states of
warm-dense matter to highly excited and plasma state
regimes and Auger decay, we consider that eFF is suitable
for treating electronic effects in materials under a wide
range of extreme conditions.
The authors would like to thank Julius Su for useful

discussions on the original eFF methodology and Markus
Buehler for providing his ReaxFF results for the f111g
crack simulations. This material is based upon work sup-
ported by the Department of Energy National Nuclear
Security Administration under Award No. DE-FC52-
08NA28613.

*ajaramil@caltech.edu
†wag@wag.caltech.edu

[1] T. Shiota and K. Yasuda, Mater. Sci. Eng. B 173, 248
(2010).

[2] K. Yasuda et al., Philos. Mag. A 82, 3251 (2002).
[3] F. Urakaev, Phys. Chem. Miner. 35, 231 (2008).
[4] J. T. Dickinson, E. E. Donaldson, and M.K. Park, J. Mater.

Sci. 16, 2897 (1981).
[5] J. A. Hauch et al., Phys. Rev. Lett. 82, 3823 (1999).
[6] D. Holland and M. Marder, Phys. Rev. Lett. 80, 746

(1998).
[7] F. F. Abraham et al., Europhys. Lett. 44, 783 (1998).

FIG. 4 (color online). The evolution of electrostatic potential is
given at (a) 0 ps and (b) 15 ps. After fracture negative potential is
distributed asymmetrically between the crack faces (solid black
lines). (c) The electric current velocity correlation functions for
the f111g system at equilibrium (lower curve) and after the crack
has occurred (upper curve).

PRL 108, 045501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 JANUARY 2012

045501-4



[8] J. G. Swadener, M. I. Baskes, and M. Nastasi, Phys. Rev.
Lett. 89, 085503 (2002).

[9] M. J. Buehler, A. C. T. van Duin, and W.A. Goddard,
Phys. Rev. Lett. 96, 095505 (2006).

[10] M. J. Buehler et al., Phys. Rev. Lett. 99, 165502 (2007).
[11] D. Sen et al., Phys. Rev. Lett. 104, 235502 (2010).
[12] D. G. Li et al., Phys. Rev. Lett. 73, 1170 (1994).
[13] S. C. Langford, D. L. Doering, and J. T. Dickinson, Phys.

Rev. Lett. 59, 2795 (1987).
[14] C. J. Kaalund and D. Haneman, Phys. Rev. Lett. 80, 3642

(1998).
[15] E. Busch et al., Appl. Phys. Lett. 73, 484 (1998).
[16] A. Frost, J. Chem. Phys. 47, 3707 (1967).
[17] C.Wilson andW. Goddard, Chem. Phys. Lett. 5, 45 (1970).
[18] J. Su, Ph.D. thesis, California Institute of Technology, 2007.
[19] J. T. Su and W.A. Goddard, III, J. Chem. Phys. 131,

244501 (2009).
[20] A. Jaramillo-Botero et al., J. Comput. Chem. 32, 497

(2011).
[21] J. T. Su and W.A. Goddard, III, Phys. Rev. Lett. 99,

185003 (2007).

[22] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.108.045501 for a de-
tailed explanation of the eFF method, additional electron
dynamics data, ionization yields, stress energy release rate
calculation details, and validation of the effective core
potential. Animated trajectories can be found at http://
www.its.caltech.edu/~ptheofan.

[23] M. T. Kim, Thin Solid Films 283, 12 (1996).
[24] G. T. A. Kovacs, Micromachined Transducers Sourcebook

(McGraw-Hill, Boston, 1998).
[25] A.M. Fitzgerald et al., J. Mater. Res. 17, 683 (2002).
[26] A.M. Fitzgerald et al., Sens. Actuators A, Phys. 83, 194

(2000).
[27] B. Bhushan et al., J. Mater. Res. 12, 54 (1997).
[28] F. Ericson et al., Mater. Sci. Eng. A 105–106, 131 (1988).
[29] J. R. Kermode et al., Nature (London) 455, 1224

(2008).
[30] R. Hull, Properties of Crystalline Silicon (Institute of

Electrical Engineers, Herts, England, 1999), pp. 413–414.
[31] N. Bernstein and D.W. Hess, Phys. Rev. Lett. 91, 025501

(2003).

PRL 108, 045501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 JANUARY 2012

045501-5



PHYSICAL REVIEW B 85, 094109 (2012)

Electron dynamics of shocked polyethylene crystal

Patrick L. Theofanis, Andres Jaramillo-Botero,* and William A. Goddard III†

California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E. California Boulevard,
Pasadena, California 91125, USA

Thomas R. Mattsson and Aidan P. Thompson
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

(Received 12 January 2012; published 22 March 2012)

Electron force field (eFF) wave-packet molecular-dynamics simulations of the single shock Hugoniot are
reported for a crystalline polyethylene (PE) model. The eFF results are in good agreement with previous
density-functional theories and experimental data, which are available up to 80 GPa. We predict shock Hugoniots
for PE up to 350 GPa. In addition, we analyze the structural transformations that occur due to heating. Our analysis
includes ionization fraction, molecular decomposition, and electrical conductivity during isotropic compression.
We find that above a compression of 2.4 g/cm3, the PE structure transforms into an atomic fluid, leading to a
sharp increase in electron ionization and a significant increase in system conductivity. eFF accurately reproduces
shock pressures and temperatures for PE along the single shock Hugoniot.
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I. INTRODUCTION

The material response of polyethylene (PE) to shock and its
behavior in the warm dense matter (WDM) regime is important
because it is a common ablator material in direct-drive
inertial confinement fusion (ICF) experiments.1,2 Experiments
at the National Ignition Facility (NIF) have demonstrated
that the ICF burn efficiency can be non-negligibly impacted
by the capsule material, so it is crucial to understand the
properties of this material.2,3 Macroscopic modeling of capsule
materials for these experiments requires accurate constitutive
engineering material models. Producing quality engineering
models requires a detailed microscopic understanding of the
equations of state (EOS), electrical conductivity, and optical
properties for a given material. Here, we examine the effects
of electronic excitations during hydrostatic shock of PE.

Theoretical studies of PE in extreme conditions are abun-
dant. A variety of methods including quantum mechanics
(QM), conventional force fields, and reactive force fields are
able to reproduce a common equation of state gauge: the
experimental Rankine-Hugoniot curve.1,4 Born-Oppenheimer
quantum molecular-dynamics (BOQMD) methods and con-
ventional force fields presume adiabaticity in their approach
to simulating the high-energy states of PE. This assumption
limits the scope of these techniques to temperatures well below
the Fermi temperature, near the electronic ground state of
PE.5 Conventional and reactive force fields are parametrized
based on Born-Oppenheimer potential energy surfaces. The
result of using Born-Oppenheimer methods is that the effects
of electronic excitations are absent from the system’s EOS,
and along the particular EOS path corresponding to the
Rankine-Hugoniot. Quantum-mechanical finite-temperature
density-functional theory (DFT) methods, unlike BOQMD
approaches, allow for electron excitations, however the Kohn-
Sham orbital description precludes these methods from re-
vealing dynamic electron effects such as Auger processes.6,7

Finite-temperature DFT methods, like those used in Refs. 4
and 1, are good points of comparison for the electron force
field (eFF) because they allow for thermal electron excitations.

II. THE ELECTRON FORCE FIELD

The first-principles-based electron force field is a mixed
quantum-classical approach for studying nonadiabatic reactive
dynamics based on floating spherical Gaussian wave packets.8

In the past, eFF was successfully applied to nonadiabatic
processes such as Auger decay,9 H2 in the WDM regime,10

the hydrostatic11 and dynamic12 shock Hugoniot, and exo-
electron emission due to fracture in silicon.13 eFF is unique in
that electronic and nuclear degrees of freedom are separate,
which allows for nonadiabatic motion to occur naturally.
eFF is many orders of magnitude faster than QM, which
allows us to perform large-scale and long-time-scale dynamics
simulations.12

The eFF method provides an approximate description of
quantum dynamics by describing every electron as a floating
spherical Gaussian orbital whose position and size vary
dynamically while the nuclei are treated as classical point-
charge particles.14 Here the total N -electron wave function is
written as a Hartree product of one-electron orbitals (rather
than as an antisymmetrized product). Orthogonality resulting
from the Pauli principle is enforced with a spin-dependent
Pauli repulsion Hamiltonian that is a function of the sizes
and separations of these Gaussian orbitals. The Pauli potential
accounts for the kinetic energy change due to orthogonaliza-
tion, arising from the Pauli principle (antisymmetrization).8,15

An additional quantum-derived term in the eFF Hamiltonian
is the kinetic energy for each orbital, which accounts for
the Heisenberg principle. The full Hamiltonian in eFF also
incorporates classical electrostatic terms between nuclei or
electrons.

eFF energies and forces are used to propagate the nuclei
and electron wave function in time using semiclassical wave-
packet molecular dynamics.16 The Gaussian wave packets are
subject to the potential produced by neighboring nuclei and
electrons; this potential is anharmonic, so the size of each
Gaussian is stable at low and intermediate energies. The fact
that the wave packets are stable is vindication of the harmonic
assumption made during the derivation of the wave-packet
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translational and radial equations of motion.8,12,16 If an electron
is excited sufficiently, it may escape its local potential and
its radius may expand, causing the collapse of the wave
function; this is the eFF analog of electron delocalization.
A radial restraint is used to prevent excited electrons from
expanding infinitely (which would lead to infinite kinetic
energy): Eres = 1/2ks(s − Lmin/2)2 for s > Lmin/2, where
Lmin is the smallest box bound and s is the Gaussian radius.
ks is arbitrarily set to 1 hartree per bohr, and the resulting
force is Fres = −ks(s − Lmin/2). The conditions that invoke
this restraint were not encountered in our simulations, though
had they been, the effect on the validity of the simulation
would be minimal. A large electron imparts a force on those
electrons and nuclei that it overlaps with, which is manifested
in an increase in pressure. Invoking the radial restraint limits
the increase in pressure and kinetic energy.

For this study we used a parallel version of eFF which is
included in the LAMMPS software package.12,17 The LAMMPS
website provides performance comparisons of eFF and other
conventional and reactive force fields.18 eFF is roughly 300
times slower (cpu time per time step per particle) than a
conventional Lennard-Jones potential, yet it has been demon-
strated to have linear strong and weak scaling over a broad
range of system sizes and number of processors in LAMMPS.
It is important to note that electrons are explicitly described
in eFF, i.e., it takes one carbon, two hydrogen, and eight
electrons to describe a single CH2 unit. Consequently, using
the true electron mass in eFF requires the use of much shorter
integration time steps, on the order of attoseconds.

III. COMPUTATIONAL DETAILS

A crystalline PE model was created by truncating and
hydrogen passivating the chains in a 2 × 6 × 3 supercell
of orthorhombic polyethylene. Truncating the chains in this
fashion prevents unnatural stresses from forming along the
length of each chain. The final cell contained 12 C12H26
molecules: 1632 particles total, 144 carbon, 312 hydrogen, and
1176 electrons. In real samples of crystalline PE, the chains
are finite in length and the PE is only crystalline in small
domains with lamella ranging from 70 to 300 Å in thickness
and extending several microns laterally.19,20 Because eFF lacks
van der Waals forces, the equilibrium volume of crystalline
PE is 30% too large in eFF. To counter this, the volume of the
PE cell was adjusted so that the ground-state reference has a
density of 0.95 g/cm3; this produced 1.3 GPa of stress, which
was subtracted from all subsequent pressure computations. To
generate points along the Hugoniot path, we prepared samples
of increasing density up to 3.0 g/cm3 by isothermally and
isotropically compressing the reference cell at 300 K. The
temperature was controlled with a Nosé-Hoover thermostat so
that the temperature, number of particles, and volume (NV T )
were defined. Each cell was then ramped to 1500 K over
the course of 500 fs and it was allowed to equilibrate as a
microcanonical ensemble with a fixed energy, volume, and
number of particles (NV E) at 1500 K for another 500 fs. After
heating, each cell was cooled by decreasing the temperature
in 30 K steps during which 200 fs of NV T dynamics was
followed by 200 fs of NV E dynamics.

FIG. 1. (Color online) (a) The principal Rankine-Hugoniot
for PE. Experimental data from the LASL shock compression
handbook24 and Nellis25 are provided along with data for the
classical MD potentials (OPLS and AIREBO).4 A reactive force
field (ReaxFF4) and quantum-mechanical approaches (DFT/AM05
and tight binding26) are included for comparison. (b) An expansion
of the low compression region of the Hugoniot .

In the eFF method, the electron mass is defined in three
separate locations: (i) in the electronic kinetic energy (i.e.,
wave function), (ii) in the spin-dependent Pauli energy, and
(iii) in the equations of motion.8,12 The effect of modifying
the electron mass in (i) and (ii) affects the sizes of electrons
in atoms and the lengths of bonds in molecules, therefore
we keep these fixed to avoid disrupting the chemistry of the
system. In all potential energy terms, the electron mass is set
to the true electron mass (5.486 × 10−4 amu). However, the
user may define a different dynamic electron mass to evolve
the kinetic equations of motion.8,12 Changing the mass in the
equations of motion varies the overall time scale of excited
electron motions, with the time scale of excitation relaxations
and energy transfer proportional to

√
me. We refer to this as

changing the dynamic masses. This does not affect the net
partitioning of energy in the system nor the magnitude of the
thermodynamic parameters we are interested in measuring.
This does not alter the system’s chemistry, just its evolution
in time. We verified this by computing a few Hugoniot points
with 1.0, 0.1, and 0.01 amu dynamic mass and found negligible
differences in pressure and temperature at these points. An
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artificially heavy electron mass enables the use of longer
integration time steps. For this study, we set the dynamic
electron mass to 0.1 amu. To conserve mass in the system,
we subtracted the mass of each atom’s electrons from the
standard atomic mass (e.g., we set carbon atom masses to
11.4107 amu and hydrogen atom masses to 0.907 94 amu).
With this dynamic electron mass, we used an integration time
step of 0.5 attoseconds (0.0005 fs).

The temperature in eFF (like pressure) is extracted from
the dynamics simulation using classical virial expressions
summing the kinetic energies of all the nuclear and electronic
degrees of freedom:

Eke = 3
2NkBT . (1)

The kinetic contribution to the heat capacity is set to 3
2kB by

setting N to the number of nuclei, which is valid for temper-
atures well below the Fermi temperature. The temperatures
presented in this paper were computed using Eq. (1).

A Hugoniot curve is the locus of thermodynamic states
that can be reached by shock compression of a specific
initial state. These states satisfy the Rankine-Hugoniot energy
condition21,22

U − U0 = 1
2 (P + P0)(V0 − V ), (2)

where U is the internal energy, P is the pressure of the
system, and V is the cell volume. It is assumed that each
point along this curve corresponds to a state of thermodynamic
equilibrium wherein the stress state is hydrostatic. For solids,
this latter condition is only valid when the yield stress is
much lower than the mean stress.23 When the initial-state
variables P0, V0, and U0 are those of the uncompressed sample
at room temperature, the Rankine-Hugoniot curve is called
the principal Hugoniot. We generated states on the principal
Hugoniot using the following iterative procedure. First the
volume of the system is specified, representing a particular
degree of compression. How each density point was prepared
is described in the preceding paragraph. The temperature of
the system is quickly increased by changing the set point of

the thermostat. A total of 100 fs of dynamics are run after
the thermostat jump, during which averages of the energy,
temperature, and pressure of the new state are obtained. These
values are used to evaluate the residual energy for a time step
i, Eres,i , given by

Eres,i = (U − U0) − 1
2 (P + P0)(V0 − V ). (3)

When |Eres,i |/Eke,i < 0.05, the Hugoniot condition is consid-
ered satisfied. If this inequality is not satisfied, an additional
100 fs iteration is performed. The new thermostat set point is
calculated from

Ti+1 = Ti

(
1 − 0.05

Eres,i

Eke,i

)
, (4)

where Eke,i is the average kinetic energy of the system at step i.
Once this iterative procedure has converged, the thermostat is
turned off and the system is allowed to evolve for an additional
3 ps. This calculation ensures that the Hugoniot condition is
actually met and the properties of the systems were obtained
from these dynamics.

IV. RESULTS AND DISCUSSION

A. The principal Hugoniot

Figure 1 is the principal Hugoniot projected onto the
pressure-density plane. For densities below 2.0 g/cm3, eFF
matched the experimental and DFT Hugoniot points quite
closely [see Fig. 1(b)]. At higher densities, the eFF simulations
overpredicted the shock pressure relative to DFT. Above 2.0
g/cm3, the results show that eFF is systematically “stiffer” than
the experimental and DFT/AM05 (Ref. 27) data. However,
eFF provides better agreement with the experimental Hugoniot
points than typical classical MD potentials such as AIREBO,28

OPLS,29 and exp-6 (not shown);30 the data for these can
be found in Ref. 4. eFF also outperformed the tight-binding
QM method above 2.0 g/cm3. These results demonstrate the
difficulty in modeling the behavior of materials under shock
compression. Figure 2 shows the temperature-pressure plane

FIG. 2. (Color online) (a) The pressure-temperature locus of the Hugoniot curve for the eFF, DFT/AM05, OPLS, AIREBO, and ReaxFF
methods. (b) An expansion of the pressure-temperature seam for lower pressures.
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of the Hugoniot calculated by the methods in Fig. 1 for which
temperature data were available. The system temperatures
produced by the eFF calculations are in good agreement with
conventional force fields, reactive force fields, and QM.

At high compression, interesting material features appear
in the principal Hugoniot. In the AM05 data series, a shoulder
feature appears at 2.3 g/cm3. This feature is not as pronounced
in the eFF Hugoniot; however, for both methods, inflections
in the temperature-density plane of the Hugoniot curve
indicate structural transitions (see figure 1 of the supplemental
material). Subtle temperature suppression is evident in the eFF
temperature-density curve at 2.0 and 2.6 g/cm3. These data
features correspond to tangible transitions in the molecular
structure. Mattsson reported that the AM05 shoulder at
2.3 g/cm3 corresponded to PE backbone bond breaking.4 The
causes for the eFF data features will be discussed shortly.

B. Structural decomposition

An analysis of the pairwise radial distribution functions
(RDFs) for different degrees of compression demonstrates
that significant structural decomposition occurs upon shock.31

Figure 3(a) shows that carbon bonds are compressed as the
sample is compressed. As the density of the material increases,
the nearest-neighbor C-C pair peak (1.55 Å) broadens and
the next-nearest-neighbor C-C pair distance (2.6 Å) is lost,
indicating that the carbon backbone is fragmented. The C-H
pair distribution function in Fig. 3(b) also demonstrates that
tetrahedral order is lost due to shock compression. The H-H
pair distribution function in Fig. 3(c) also shows that geminal
(normally 1.95 Å), synclinal (2.4 Å), and antiperiplanar (3.2 Å)
nearest-neighbor hydrogen peaks are lost at high compression.
The 2.9 g/cm3 series resembles a classical Lennard-Jones
fluid. For densities between 2.0 and 2.1 g/cm3 corresponding
to temperatures around 3000 K, small peaks in the H-H data
in Fig. 3(c) near 0.7 Å reveal the formation of molecular
hydrogen. Mattsson and collaborators also found H2 formation
when their shocked PE reached 2800–3100 K.32 In their
simulations and in the eFF simulations, this temperature
range corresponded to densities of 2.2–2.3 g/cm3. Select pair
correlation functions near DFT/AM05 Hugoniot points are
available in the supplemental material. For temperatures higher
than 3100 K, the molecular hydrogen dissociates, while at
lower temperatures the hydrogen atoms do not have enough
energy to dissociate from the polyethylene backbones. At high
degrees of compression (>2.2 g/cm3), the RDFs collectively
reveal a fluid phase. The eFF results are consistent with MD
and DFT results for equivalent temperatures.

One of eFF’s greatest assets is its ability to separate
electron degrees of freedom, energies, positions, momentum,
and forces from those of the nuclei. This gives us an unrivaled
ability to measure electronic physical quantities. In our
investigation of PE, we have used this to measure the ion
fraction at each stage of shock. To do this, we measure the
kinetic and potential energy of each electron at each time step
in our simulations.

Figure 4 shows the onset of electron ionization at 2.5 g/cm3.
Ionization increases exponentially for higher densities. The
rapid increase in the ionization fraction above 2.6 g/cm3 is
evidently the cause of the shoulder in the temperature-density

FIG. 3. (Color online) Radial distribution functions for (a) C-C
atom pairs, (b) C-H pairs, and (c) H-H pairs. Each curve corresponds
to a different density point (g/cm3) defined by the colors in the legend.

Hugoniot between 2.6 and 2.7 g/cm3. Above this threshold,
electron ionization draws energy from the system and this
affects the pressure and temperature of the Hugoniot. The
production of carriers in our simulations implies that PE is
conductive at high states of compression. The production of
ions is precipitated by the breaking of C-C bonds, and this
relationship is evident in Fig. 4. The percentage of intact
backbone for the DFT/AM05 study is also presented in Fig. 4.
eFF predicts that the polymer backbone begins to fracture at
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FIG. 4. (Color online) Structural decomposition along the PE
Hugoniot. The circles correspond to the % intact C-C backbone
for the eFF simulations. The open diamonds show the results from
DFT/AM05. The secondary axis shows the % ionization along the
Hugoniot calculated from the eFF simulations in open circles.

2.4 g/cm3 and DFT/AM05 predicts that fracture begins at
2.0 g/cm3.

Curiously, both the DFT/AM05 and eFF structural analyses
show that the hydrogen modes are excited concurrently with
the carbon modes. From bond dissociation energies alone,
one would expect C-C bonds (D0,expt = 83 kcal/mol) to
break more readily than C-H bonds (D0,expt = 98 kcal/mol).
eFF overestimates the strength of carbon-carbon σ bonds (for
ethane, the bond dissociation energy is 140 kcal/mol versus
110 kcal/mol zero-point energy-corrected snap bond energy).8

The loss of order in the C-H and H-H RDF functions indicates
significant excitation in the hydrogen modes. Likewise, the C-
C RDF functions are excited, but for DFT/AM05 and eFF the
nearest-neighbor peaks are well defined up to 2.6 g/cm3. We
believe that an entropic effect is the cause of this phenomenon.
Carbon atoms are constrained to the polymer backbone by
two heavy atoms while hydrogen atoms are only bound to
a single heavy atom. This effectively reduces the vibrational
flexibility of carbon atoms to pseudo-one-dimensional phonon
modes while hydrogen atoms are free to pivot and vibrate in
any direction. With a larger phase space, the hydrogen atoms
have greater entropy, which might decrease the free energy of
dissociation. Additionally, hydrogen atoms may be excited by
collisions with neighboring polyethylene chains since they are
more likely to collide before their carbon backbone.

C. Conductivity

In order to quantify the conductivity of the shocked
system, we determined the direct current conductivity using
a classical Green-Kubo analysis.33,34 We determined the
electrical conductivity from our NV E Hugoniot states using
the Green-Kubo integral of the electric current correlation
function:

σGK = 1
3kBT V

∫ ∞

0
〈j(t) · j(0)〉dt, (5)

where j(t) is the electric current flux, and the integral argument
corresponds to the electric current velocity correlation, which

FIG. 5. (Color online) The direct current electrical conductivity of
points along the eFF Hugoniot curve (circles) and finite-temperature
DFT (diamonds) from Horner.1 (a) Conductivity plotted against
temperature with densities (g/cm3) provided. (b) Conductivity plotted
against density with temperatures (K) provided.

is expressed as

J (t) = 〈j(t) · j(0)〉 =
N∑

i=1

N∑

j=1

〈qiqj vi(t) · vj (0)〉, (6)

where i and j are different particles, q is the charge on each
particle, and v(t) is the velocity of each particle. Figure 5
shows the results of this analysis for eFF Hugoniot points. eFF
predicts that conductivity increases exponentially along the
Hugoniot curve until the temperature reaches roughly 5000 K,
at which point it levels off. Indeed, FT-DFT studies of PE in
the warm dense matter1 regime find conductivities between
3000 and 10 000 S/cm for samples at 1 g/cm3 and 11 605 K
to 3 g/cm3 and 34 815 K. Figure 5(a) shows the temperature
dependence of the conductivity. Comparing the eFF and FT-
DFT data as a whole, there is a clear transition to a metallic
state in the vicinity of 5000 K. The downward slope connecting
the density points 2.4, 2.8, and 2.9 reflects the sensitivity of
the classical Green-Kubo method to thorough equilibration.
Outliers were omitted from Fig. 5(a), but all the data points
are provided in Fig. 5(b). Between 5000 and 20 391 K, the
sample has a conductivity of 2100 S/cm, which is roughly
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equivalent to the conductivity of shocked fluid hydrogen at
140 GPa.35 Above 2.5 g/cm3, in the metallic PE regime, the
RDF analysis suggests that hydrogen is fluid. This suggests that
our conductivity analysis might be applicable to hydrogen-rich
fluids at high temperatures and pressures.

The quality of our quasiclassical Green-Kubo analysis is
a result of the accuracy of the eFF potential. Despite not
being formulated in terms of occupied bands near the Fermi
level, eFF produces the correct excitations. The eFF potential
is rigorously derived from a solution to Schrödinger’s time-
dependent equation of motion, which integrates two quantum-
derived potential terms and classical electrostatics into its
Hamiltonian. In particular, the Pauli function is parametrized
based on the orthogonalization of valence bond-type orbitals.
When a sample is well described by valence bonding, like
polyethylene, eFF will succeed in modeling the potential of
each electron. Each electron “feels” the correct potential, thus
ionization potentials are accurate for carbon and hydrogen.
In extreme conditions, the distribution of valence and core
electronic states spreads and eventually the highest energy
electrons become unbound much like the tail of a Fermi-Dirac
distribution above the Fermi level. This behavior explains
why we observe the correct carrier mobilities, ionization
yields, and conductivities for eFF simulations in extreme
conditions.

V. CONCLUSIONS

We have simulated the response of PE to hydrostatic shock
compression using the eFF wave-packet molecular-dynamics
method. eFF accurately reproduces previously published

experimental and theoretical findings for high-energy shock
Hugoniots of PE and provides further insight into the effects
of electron excitations and ionization at extreme pressures and
temperatures (e.g., above 2.4 g/cm3 the polymer backbone
begins to break and electrons begin to ionize, which increases
with temperature along the Hugoniot). We find that by
300 GPa, significant structural deterioration and ionization
occur. eFF also enabled us to study the electronic conductivity
of PE as it transitions at high temperatures into a plasma phase,
a unique feature that is impossible to obtain via conventional
force fields or BOQMD. The fidelity of the eFF Hugoniot
indicates that van der Waals interactions are not important
under extreme shock conditions. We expect that the results
presented in this paper will stimulate further work on the
applicability of eFF to open problems in high-energy–density
physics.
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Appendix E

Final Thoughts

When I heard the learn’d astronomer;

When the proofs, the figures, were ranged in columns before me;

When I was shown the charts and diagrams, to add, divide, and measure them;

When I, sitting, heard the astronomer where he lectured with much

applause in the lecture-room,

How soon, unaccountable, I became tired and sick;

Till rising and gliding out, I wander’d off by myself,

In the mystical moist night-air, and from time to time,

Look’d up in perfect silence at the stars.

- Walt Whitman, Leaves of Grass, 1892


