INVESTIGATION OF THE DIRECT-CAPTURE REACTION, He>(a,y)Be’

Thesis by

Peter Donald MacDougall Parker

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1963



ACKNOWLEDGEMENTS

The author is happy to express his thanks to all the faculty, the
technical staff and the graduate students of the Kellogg Radiation Lab-
oratory for their assistance and encouragemén‘c that have made 1_:his
undertaking not only possible, but also enjoyable. Special thanks are
due to Professor R. W. Kavanagh for his guidance and stimulus and
for his assistance which carried this experiment over many pitfalls.
To Dr. T. A. Tombrello special thanks aré due for his continuing as-
sistance without which Part II of this thesis would hardly exist. It is
also a pleasure to acknowledge the assistance of my wife, Judy, with
many of the hum-drum but time-consuming aspects of this work.

Thanks for financial assistance go to the National Science
Foundation, the Danforth Foundation, the Woodrow Wilson Foundation
and the California Institute of Technology for fellowship grants during
the conduct of this work, as well as to the Office of Naval Research
and the United States Atomic Energy Commission for the actual sup-

port of this experiment.



ABSTRACT

7, has

The absolute cross section for the reaction, He3(a,y) Be
been measured over the range of energies 181 < Ecm < 2493 keV, using
a gas target behind a thin nickel entrance foil. Calibrated NaI(T1)
crystals were used to detect the prompt capture radiation. Over the
entire energy region the measured total cross section and branching
ratio confirm theoretical predictions based on calculations neglecting
the contfibutions to the matrix elements from the region inside the
nuclear radius. These cross-section measurements have been used
to obtain a new value for the low-energy cross-section factor, S,» for
this reabction (SO = 0,47 £ .07 keV bar.ns), and this value has been used

to reevaluate the importance of the He3(a,y)Be7 reaction in the termi-

nation of the proton-proton chain in nuclear astrophysics.



PART

TABLE OF CONTENTS

TITLE

I INTRODUCTION . . . .

.

II THEORETICAL DISCUSSION

1Ix EXPERIMENTAL APPARATUS AND

A,
B,
C.
D,

E.

Target System » o o
Detection System .

Energy Determination

Coincidence Measurement

Conclusion .+ o o o

Iv ~ ANALYSIS OF DATA

A, Conversion of Gamma-Ray Speétra. to

B.

Qo

o

o

Absolute Cross Sections

Error Analysis. o o

l & 'E o & L ] e L]
cm

ZD p o o o o o L
s o-1:Dtal cer et

4, SLE} -5 % & & =

v RESULTS .4 5 & « @

A,

‘Bo

APPENDIX I:

A,

B.

Nuclear Physical .

°

°

°

e

Astrophysical o o © © o =

Gamma-Ray Spectrometry

-

°

°

e

Efficiency Calculations « o o o o

Response Function Determinations

-

°

-3

1. Characteristics of Gamma-Ray NalI{Tl)

Response Functions .

°

-

16
16
22
25
30
31

34

34
46
46
47
50
53
54
54
59
68
68

74

74



PART TITLE PAGE

2. Experimental Measuremenf of Response
Ponctions s « & & o« % » & & = » = x » » 9
3. Calculation of Coincidence-Summing
Respbnse Functions o « = w = & @ » = = 82
C. Photo-Fraction Measurements .« « o o o « » 83
BEPERENCES » & 5 v 5 % » & % % & ¥ & & &°% & 4 & & 5 90
TABLES & « v v v v o o 4

FIGURES . - L L4 L4 - .. L o o L 9 L4



.

-I. INTRODUCTION

In the study of nuclear astrophysics, one of the important series

of nuclear reactions is the proton-proton reaction chain for converting
; 3

hydrogen into helium. Once three protons have been converted into He

by the reactions,
1 5 2 3
H(p,B8 v)D” (p,y)He™ ,

there are four 'ways that the chain might be completed by converting the

He3 into He4:

(1) He (p,v)Li*(F vime*

(2) He3(H33 5 2p)He4

(3) He’(a,y)Be (e, v)Li'(p,a)He"
3 7 8,4t 8% 4

(4) He (a,y)Be (p,y)B (B v)Be (a)He .
Termination (1) has been studied (Bashkin et al., 1959) with the conclu-
sions that Li4 is not particle stable and hence that termination (1) is not
an important way to convert He3 into I—Ie4. The relative importance of
terminations (3) and (4) has been investigated by Kavanagh (1960) with the
conclusion that termination (4) will dominate termination (3) only in stars
with effective operating temperatures greater than 20 x 106 °K. The
relative importance of terminations (2) and (3) (or (2) and (4) ) depends

on the relative rates of the two He3-burning reactions. The importance

of determining the roles of terminations (2) and (3) lies in the fact that



P
{2) requires the production of two He3‘s, via the extremely slow
I—Il(p, B+V)DZ reaction, for each I—Ie4 produced, while termination (3)
requires only one He> for évery He4 produced. Thus, in a star, with
any appreciable amount of He4, operating entirely on (3) the I—Ie4 pro-
duction rate will be doubled, and the rate of energy generation almost
doubled (x 1.95, due to the additional neutrino losses in the Be7 decay),
compared to a star operating entirely on termination (2). Hence, there
is interest in inve.stigating the relative rates of the two reactions,

3(&',’\/)]367, and, in particular, in determining

_‘E~1'33(He3, Zp)I—Ie4 and He
the magnitudes of their cross sections at energies of the order of 20
keV. These arguments indicate one of the main reasons for investi-
gating the reaction, I—IeB(a,y)Be7.

Another important reason is supplied by the theoretical interest
in the clacs of 'direct-capture'' reactions of which this reaction is a
member. Such reactions may be qualitatively visualized as a process
wherein the inéident particle is captured non-resonantly frem a con-
figuration of definite angular momentum, decaying by gamma-ray
emission to a lower lying nuclear level. Calculations of the behav-
ior of the cross.sections of such reactions have been developed inde—
pendently by Christy and Duck (1961) and Tombrello and Phillips (1961).
In the reaction He3(a,y)Be7, the entire range of bombarding energy
from 0.0 to almost 7.0 MeV is free from any interfering nuclear levels,
and thus this reaction also provides an excellent opportunity for studying
the validity of the theories noted above.

Because of these reasons, this reaction has not gone unnoticed
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until the present investigation. In 1957, on the basis of estimates by
Salpe‘ter (1952) as to the mean reaction lifetime of He3 in stars, Cameron
(1957) calculated a ''zero-energy cross-section factor'!, So’ (Burbidge
et al., 1957) of 0.6 eV-barns for this reaction. Holmgren and Johnston
(1959) investigated the reaction experimentally and arrived at a value

for So of 1.2 keV-barns, (2000x larger ‘than the previous estimates).

On the basis of this determination, Fowler (1958) has shown that for a
star with equal masses of hydrogen and helium the He?’(a, y)Be7 termi-

nations will dominate the I—Ie3(He3

ature is greater than 12.5 x 106 °K.

. 2.p)I—Ie=4 termination when the temper-

In the summer of 1959, however, Griffiths (1959) indicated that
preliminary measurements of the H3(a,.y)Li7 reaction (later subst;n—
tiated - Griffiths et al., 1961) showed a marked disagreement with those
measured by Holmgren and Johnston (1959) at the same time as their
work on the He3(a,y)Be7 reaction. Griffiths' work indicated cross sec-
tions for I—I3(a,y)Li7 approximately a factor of two larger than those
reported by Holmgren and Johnston. A preliminary investigation of the
I—Ie3(al,'\,r)Be,7 reaction in 1960 by this author indicated further disagree-
ments with the measurements of Holmgren and Johnston., In this case,
however, the cross sections of Holmgren and Johnston were a factor of
two larger than the new results.

It was in the light of these disagreements and in view of the

_ interest in and importance of the reaction, as noted above, that the

following investigation of the He3(a, y)Be7 reaction was carried out.
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II. THEORETICAL DESCRIPTION

A reasonably successful theoretical description of the class of
direct-capture reactions has been developed independently by Christy and -
Duck (1961) and Tombrello and Phillips (1961). The basis of calculations
made on this description is the '*extra-nuclear'' approximation under
which all contributions to the matrix elements from the region inside
the nuclear radius are neglected. This allows the wave functions for
the initial and final states to be expressed simply in terms of free- and
bound-state Couiomb wave functions, without any need to consider the
problem of nuclear forces, Such an approximation, neglecting the in-
terior contributions, will, of course, not aiways be valid, especially
in the neighborhood of nuclear resonances, or levels in the compound
nucleus. It will, however, tend to be- valid in regions removed from
such resonances and where the phase shifts of the principal £-waves
involved in the capture can be described in terms of hard-sphere phase
shifts over 1arge>energy ranges, indicating little or no overlap in the
nuclear region. These conditions are reasonably well satisfied in the

4 + He4) threshold at 1.587 MeV excita-

region of Be7 between the (He
tion and the neighborhood of the 7/2  state at 4.54 MeV excitation,
and therefore a study of the He3(a,y)'Be7 reaction in this region is a
good way to test the validity of this description.

In addition, rather thorough investigations of the I—Ie{i(I-E[eza,I—Ie?’)I—Ie4
elastic scattering in this region (Miller and Phillips, 1958; Jones et al .,

1962; Tombrello and Parker, 1962) have provided accurate determinations

of the various phase shifts necessary for an accurate specification of the
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initial-state wave functions needed for the calculations described below.
For these calculations the extra-nuclear approximation is retained, but
the previous descriptions are expanded to take into account the contribu-
tions from all {-waves up through £ = 3,
In general, (Moszkowski, 1955. and Weidenmuller, 1962) we can

write the differential cross section from Fermi's golden rule as

da(8) _ 27 dn (E) it | ™[
=Sy e [Hintl“ui =
m,,mg, P .

where n{E) is the density of states function,

v is the velocity of the incident particle,

P is the polarization of the emitted gamma ray,

s ~is the channel spin of the system,

5 :

is the final-state wave function with magnetic

quantum number, mg,

Y ' is the initial-state wave function with magnetic
quantum number, m,, 'and

where the interaction Hamiltonian for a gamma ray with a

nuclear system is

- A

Hint = %:- j
where T is the nuclear-charge current vector, and
A is the vector potential of the gamma-ray field,
Since we are considering the case where a photon with polariza-
tion (p) is created, we will take just the A*p part of this Hamiltonian.

Normalizing the total energy to Hw in a volume, V, we can write the



electric field strength, E, as

.l. — —
E*p - 21{;1&)2 R‘Tp o K-r

L, =>
e

A =
where ;(? is a spherical unit vector in the direction p, and

— . w
where K is the gamma-ray momentum, K = —t

Therefore,
1 — —
T

—3l . 3»—-:' - -
A"P=__§_ Znﬁw) le‘pe ik

)(Z'n"hco 2—". Y"p K- r’
4!

X" e can now be expanded in multipoles as,
erp KT z Z‘EZ“(2L+1 ) (- 1) D —b;_‘ (m)- 1pA (eﬂ
L=l M=~
E¥NLp ; " =L AEM
where DL is an element of the rotation matrix and where j - L (e)

can now be written, via Siegert's Theorem, as

= M L+l % M
] = AL (e) = -1Cce = JL(K'L') YL

L =M
—— e | LAY _(Ex) v
Kr <<1 L (2r+1)tt "L

In the same long wavelength approximation, we can write (Moszkowski,

1955)

— -*=<M &5 o K L+l eh L
j-Aq (m) (2.L+l)!! 1 m_c L+1 + {(grad r YM)

eh -y Luye M¥
+7-ﬁ]-;-5p.0‘-(gradr YL)
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where mp is the mass of the proton,
i is the magnetic moment in nuclear magnetons,
L. 1is the angular momentum operator, and
— - - -
o 1is the Pauli spin operator.

For Ml this reduces to

= M, . ,ehK |1 = —= —-M
i+ A (m) = (-1) (-x)%n; =a= (L+upe) - Xy

where Yl-'M is again a spherical unit vector.
Hence, our Hamiltonian may now be written out explicitly as

follows, limiting our interest to El, Ml and E2 transitions, since we

have indicated that we will consider only partial waves with £ < 3:

a
Factoring out the common constants, [iceK (?ﬂ’- )2] , and removing

them from the matrix element we are able to write, where the density

of states is

dn (E) _ K°V

o S
de(e) _ e”K> 1‘ i m; |
1
3o "It z o< |Hine i”bi
m.,mg, p

where H'int is now expressed as
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M 'h :}:M p — —_— —_— _M
] -—_ - i .
Hlni ™ Z{( 1) Zm ¢ Ly SR R A
M

sk e M

_ T >::M’p 2 s M
\l"ﬁ' P, By % }

Actually each of these expressions contains an implicit summa-

-1

tion over the contributions of all the nucleons in the system. Hence, we

should really write |
- . B —
(L+}Hr)""_ (ﬁj— Li+wy o)

J

>:<M Z *M
. — % 1. X 0., ¢.), etc.
1 A 8- #3)
J

This implicit summation can be made explicit, considering two parti-
cles, i.e. a He™ and a He4 nucleus, and expanding in the center-of-mass

system. In this way we can write

f.L —_— — zl ZZ AlAZ — — —
z R Latpe Tl g b= oo L i i 05, ¥ B, 05
: 3 Al A2 L2

A A z z
=M e Py 2 %M
Z 2Ny Op )= Zin) & - K57 (8.9
j 1 72 1 2
AA, 2 =z z
2 JEM 1°*2 1 2\ .2 &M
Z 5 Yoo Opdyd=gax) 5t Sl Fi Y (640, et

] ) B

where r, 0 and ¢ are now the relative coordinates of the two particles,

and we can now write H;'Ln in the form

t
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o
A A Z. z

"Mp St P 2 =, —, = M

E L™ (— + )L+p<r+pcrjx

1nt { [A1+A2A2 AZ 171 2 2 1

AA z z, '
: l4 “M,p 1 =M
-1 3 PD (A+A)( =) )rYl

._.J
™

2
AA., 2 =z Z ;
M, g 1 2 2 %M
Tg_PDz p(A+A) (= +—)Kr Y,
1. 2 Al AZ

where z; is the charge of the ith particle in units of e,

where A, is the mass of the ith particle in proton-mass units and
where these terms correspond to Ml, El and EZ radiation respec-
tively.

The differential cross section was calculated from the expression

1
ds2 2rhv 2st1

2 m m. |2
T = z < f|HL, |‘Pi 1)I

using the above form of the interaction Hamiltonian and the following

initial-state and final-state wave functions.

The initial-state wave function outside the nucleus may be written

in the usual way as a partial wave expansion of the incident Coulomb dis-

torted plane wave plus the outgoing Coulomb distorted spherical wave.

where

id m

o iaﬂ 16 -
W 041 2 _+ ] 1_- i
= E Jan(20+1) (i) ——ekr {2——“1 R, e RI}YEXL .
£=0

2

co ; ia . e '
. 4nf(24]) .0 o I I ‘%RA Wt Thnia |
2T e 2 "€ £j ¢ X1
£=1
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ik

=+ == :
Rg = cos 61 FI (kr) + sin 6'(,_

G, (kx)

FE (kr) and Gi’. (kr) are the regular andirregular Coulomb functions,

£ 3

o, = t 3

2 2, tan (n/s)

n= z2z ez/‘hv and
172 £

==
6, are the phase shifts for j = £ =

(M

The actual phase shifts used for these calculations were taken
from the elastic-scattering work éited above and are listed in Table II.
These experimentally determined phase shifts can be described as fol-
lows:
(1) 60 is consistent with the hard-sphere, s-wave phase shift
for Ro = 2.80 f. over the entire range of this experiment,
(2) 6—{ and 61— are negative but are not consistent with such a hard-
sphere description. The values of these phases were taken
from the elastic-scattering experiments, down to Ea = 3.00
MeV. At that point the p-wave, hard-sphere phase shift
was normalized to these experimental values and used to
determine the p-wave phase shifts at lower energies.
(3) &, and 6 are both consistent with the R_ = 2.80 f. hard-
Sphere, d-wave phase shift over the entire range of this
expériment. In agreement with this, 6+

2

initial wave function was simplified accordingly.

= 52, and the

(4) 6; and 6:; are not consistent with a hard-sphere descrip-
tion but are governed by the two £ = 3 resonances just

above the range of the present experiment.
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The final-state wave function may be written in the following ex-

g : . . 3 oo
pansion, considering our final states as a p-wave He~ orbiting around a

[

He
m U (r) m,-% mtE _
i £ £72 % b
/ = -1 11 J 1 1_1
Vf = {<1mf 222 a/mef> ¥, Xg_ F<lmg 3,3 a/J_.fm£>Yl X 1

where Uf(r) is taken to be the Whittaker function, W, 5 (kr), the bound-

state Coulomb function,

(0]
- - L-q
_ (ekr) % KT o -t t
W, g ={EE e Vet gty e
) (o]

where
zlzzez w/%x
B = AIAZ/{Al + A,), and

i

ad

EB is the binding energy of the final state.

The normalization of Uf(r) is defined in terms of the reduced width, 62,

such that if the Wigner limit is takento be 3?\2/21¢R02, then

, 2
82: Ro Uf (Ro)

Y
3 J U (x)ar
RO

where Rolis the nuclear radius,
Im. m
Combining L[/l Y, Lf/i and H; . and performing the necessary algebra,

one can reduce the expression for %ge—) to the form (Tofnbrello and

Parker, 1962a),

. 2 3 ~
=g E B (it < a, cos 0+ a, cos 0+ a; cos 0+ a, cos )

firom which Tiota] €D be evaluated as
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4o 4
total = 4"W_o S T Ul wl AP

The coefficients, (o-o, a, ay, a and a4), are complicated func-

a3
tions of the various radial integrals involved. The evaluation of these
integrals and their combination to form the various coefficients were
performed on the Burroughs' 220 computer,

It is probably worthwhile to pause a moment here to consider

briefly the manner in which these radial integrals were evaluated. These

integrals were all of the forms,

co

gUfr Fidr 0<ax2
Ro 0<L <3
[o0)

a

S‘Ufr Gﬁdr

R

o}

Rather than feed the individual wave functions into the bcomputer for each
case, the computer was programmed to generate Uf, F£ and Gy_ for the
various integrals, using the method of finite-~difference continuation.
The wave functions thus generated checked to better than one per cent
against the integral evaluation of Wa,ﬁ. {kr) and the Coulomb function
tables of Tubis (1957). |

The method of finite-difference continuation util\izes‘the sum of
the Taylor‘s series expansions for f(xo+6) and f(xo-é) to write, correct

to terms of order (66) s
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52 1 +8) r 52 ke -a)

l‘ 552 f'(x, ) 6
For the case of the unbound Coulomb functions, Fﬂ {p) and Gﬁ(p),

2m 2(2+1)
.

Fy (P)/F y(p) = (-1+20 ¢ T et

while for the bound-state Coulomb functions

£(4+1)
—y—i]
P

Uf )/ Ugle) = 1+ S+

Since we will be performing our integrals in increments of r, where
p = kr, (6) in the expressions above becomes (k§). Therefore, defin-
ing

5% £1(p)

q(x) =1 - S5~ e

we can now rewrite the above as
£(r +6) qlr +6) + £(r -8) qlr -6) = £(r ) [12 - qu(ro)]

where for the free Coulomb functions,

Z 2
.6k 2n | £(2+1)
gf{r) =1 I (-1 + < + --———-pz )

and for the bound-state Coulomb functions,

2. 2
_ 4 8°k" 2n |, £(24+1)

P

)
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For the bound state functions, two starting values were obtained at large
radii, RO + N6 and Ro + (N-1)6, using a WKB approximation (Tombrello
and Phillips, 1961), and the com_plete wave function was then extrapolated
inward to the nuclear radius by the method described above. Similarly,
for the irregular, free Coulomb function, GJZ (p), a corrected WKB ap-
proximation (Tombrello and Phillips, 1961) was used to obtain two start-
ing values and the rest of the function extrapolated inward as above.

For the case of the regular Coulomb function, F, (p), however,
due to problems with the accumulation of error in the inward extrapola-
tion, the process was reversed, and two starting values were calculated
at Ro and RO+6 from the expressions éf Tubis (1957), and the rest of the
function then extrapolated outwards in the manner of continuation de-
scribed above.

Once the wave functions had thus been generated, the various
radial integrals were carried out numerically by the computer, using
the trapezoidal rule ,‘ and then combined to form the coefficients, (a‘o,

a;, ay, a5 and 3“4)'

Calculations of the sort described above were carried out for
both of the possible gamma-ray transitions over the entire range of the
experiment. The results of these calculations are presented in detail
in Part V.

It is interesting to note in conclusion that the only possibly ser-
ious approximation that has been made in this discussion is the neglecting
of the contributions to the matrix elements of the interior regions of the

nucleus. That this is not, in fact, a serious approximation in the
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present case is discussed in Part V. It is also worth noting that over
the entire range of energies covered in this experiment there are only
three parameters, (the nuclear radius, RO, and the reduced widths of
the two final states), which are free to be varied to make the theoretical

predictions fit the experimental observations.
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III. EXPERIMENTAL APPARATUS AND PROCEDURE

A. Target System.

In line with what was already discussed in the introduction, we
-would like to measure the cross section for the I—Ie3(a,y)Be7 reaction
over as large a range of energies as possible. To accomplish this,
incident alpha-particle beams of various energies were utilized from
the 2-MV an.d 3-MV Van de Graaff accelerators in Kellogg and the 6-MV
Tandem Van de Graaff accelerator in Sloan. With all three of these
accelerators 90° magnetic analyzers were utilized to obtain relatively
monoenergetic incident alpha-particle beams of known energy, with
typical energy resolutions of about 0.002. One aspect of the design
of the experiment already indicated in the above is the choice of He4
as the accelerated particle rather than He3. This decision was made
because of the tremendous backgrOund reduction achieved by acceler-
ating the much more tightly bouﬁd alpha particle and in spite of the
larger energy losses involved with the alpha-particle beam and the
further reduction of the energy available in the center-of-mass sys-
tem, (3/7 of the bombarding energy for He4 as compared to 4/7 for He3).

The chemically inert ﬁature of the I—Ie3 target required the use
of a gas target; the construction and design of this target are shown
in Figures 2 and 3. This system was used for all the runs on the 3-MV
and Tandem accelerators. The system on the 2-MV accelerator, al-
though basically the same, was not as adequate in many ways such as
the prevention of carbon build—up on surfaces struck by the beam.

However, since the work on that accelerator served only as a
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preliminary investigation, the details of that work will not be discussed
here.

Beyond the image slits of the magnetic analyzers and just in
iront of the rest of the target assembly shown in Figure 2, on both the
3-MV and the Tandem accelerators was . located an orthogonal slit sys-
tem which could be used for preliminary beam definition or for further
regulation of the accelerator voltage. Also located in that region was
an oil diffusion pump with a liquid nitrogen trap and an ion gauge. Dur-

ing runs this vacuum was typically 10-6 mm or better and never worse

than 2 X 10—6 mim.

The scale drawings of Figures 2 and 3 indicate in detail the
construction of the target assembly beyond the slit system and the dif-
fusion pump. The ion gauge in the body of the Circle-Seal valve typi-
cally indicated pressures of 4 X 152 s e smanlle during runs, The
long cylindrical cold trap in the beam tube immediately down stream
from the pump and slits and just in front of the ion gauge served to
reduce the amount of organic material getting into the neighborhood
of the target. All this concern about the problem of carbon build-up
and contamination was necessitated by the serious background problems
encountered from the neutrons produced by the reaction, Cl3(a,n)016.
This was probably.the most bothersome contamination reaction in this
experiment, and consequently great effort was expended to reduce the
amount of carbon present in the region of the target. This involved
the trapping described above, the removal of all unnecessary O-rings,

the substitution of glass for lucite wherever electrical insulation was
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required and the use of special low-vapor-pressure waxes for the
necessary glass-to-metal seals. It is clear from the work of Spear,
Larson and Pea_rson (1962) that more drastic measures could have
been employed to good advantage as far as improving the vacuum and
- reducing the carbon build-up are concerned. In any case the present
set up was sufficiently efiective to make this experiment feasible.

Beyond the trap and ion gauge described above, the next sig-
nificant feature of the target assembly is the pair of beam-defining
apertures. These were made of . 010-inch tantalum, press fitted
into their stainless steel retainer and then drilled to a . 070-inch-
-diameter hole. These were used for the final beam definition, to
prevent the beam from striking any part of the foil holder, the elec-
tron suppressor or any of the insulating material. The thin-walled
stainless steel tubing immediately beyond the apertures served to
isolate the wax glass-to-metal seals from the heat dissipated by
these apertures. The pyrex glass tubing beyond this isolated the
electron suppressor electrically from these apertures, while the
second piece of pyrex tubing, on the other side of the suppressor,
served as electrical insulation between the target and the suppressor.
The suppressor itself was operated at a -300 volt d.c. potential and
served to prevent secondary electrons from reaching the target from
the beam-defining apertures.

The heart of the target assembly lies in the foil holder, the
thin nickel entrance foil and the gas cell and associated gas-handling

manifold. The entrance foil was soldered to the foil holder using
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indium metal because its low melting point reduced the danger of dam-
aging the nickel by splattering from the flux or by oxidation. For the
high-energy runs, those with initial alpha-particle energies of 2 MeV
and greater, 6,250—.& nickel foils were used. However, at energies
below 2 MeV we were forced to switch to 5, OOO-_E. nickel foils on which
about 1000 .#?. of cbpper was evaporated to improve the thermal conduc-
tivity of the foil. In this manner we were able to use beams of at
least 0.4 pA over the entire range of energies. The nickel foils were
obtained from Chromium Corporation of America, Waterbury, Con-
necticut.

The gas cell was made of stainless steel. The sides were
.006 inches thick, and the back was .014 inches thick. The cell was
then lined with an additional . 003 inches of platinum to reduce back-
ground radiation. The depth of tl;le cell was .530 inches which, allow-
ing for the platinum liner and the .180-inch insertion of the foil holder,
makes the effective length .347 inches. The size of this entire system
was limited by the requirement of being able to use it inside the 5/8-
inch-diameter well of one of the Nal(T1) detectors.

A thin metal tube was soldered into the side of the gas cell,
leading to the gas-handling system. The gas-handling system, shown
schematically in Figure 4, was deéigned to permit the target gas to be
changed quickly from He? to He® for measurement of the background
counting rate. At pressures of 100 mm and lower the pressure was
read directly on a closed-end mercury manometer. For higher pres-

sures, the measurements were made on a bourdon gauge which was
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later calibrated with a mercury manometer. Pressures used ranged
from 100 mm at low energies to 494 mm at the higher energies where
the energy loss in the target was not as severe and not as important.
‘The purity of the He3 gas was taken as stated by the supplier, Mound
Corporation, Miamisburg, Ohio. It varied from 99.13% to 99.33%.
The temperature of the gas cell (cooled by compressed air) was de-
termined as approximately 30°C. Robertson, et al. (1961) point out
that there may well also be a temperature differential within such a
gas target caused by local heating by the incident beam so that the gas
along the beam path, where the interactio.n is taking place, is actually
substantially hotter than the target chamber. Such local heating should
be proportional to the beam current (the rate of heat deposition) and
therefore should lend itself to measurement as a function of beam
current. Inthe present experiment, the effect was measured by look-

ing at the leading edge of the 1.518-MeV resonance of the reaction

10

B (Ct,p)C13 using a thick o target at the back of the target chamber

with a target of He4 at a pressure of 368 mm. The beam current was
varied from 0.5 pA to 0.1 pA, and the energy shift of the leading edge
of the resonance measured. Linear extrapolation to room temperature
at zero beam current leads to an effective temperature of 345°K for a
beam current of 0,45 pA, the typical current used in this experiment.
A simple calculation on the basis of heat transport by conductivity by
the helium gas, however, allolws a temperature differential of only 5°GC
between the beam path and the target-chamber walls. The only way to
understand the size of the observed effect, then, seems to be in terms

of intense local heating at the entrance foil and to a smaller extent at
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the beam stopper. Indeed, a similar calculation on the basis of the
conductivity of the entrance foil, yields a temperature differential of
75°C between the beam spot and the brass foil holder. From the above
information regarding the‘ length, temperature and pressure of the tar-
get it is possible to determine directly the number of target nuclei
present per cm” along the beam path, typically 10712 em™2,

The charge of the incident beam was collected in the gas tar-
get which was connected to a current integrator arranged to stop the
various scaler‘s and multi-channel pulse-height analyzers after the
accumulation of a particular amount of charge, i.e. a particular num-
ber of incident alpha particles. The entrance foil was included in the
collection system, and therefore any corrections for the effective
charge of the incident alpha particles were made unnecessary. The
target was operated at a +300 volt d.c. potential to prevent secondary
emission. For runs on the Tandem accelerator the charge collection
of the beam integrator was calibrated using a measured, constant cur-
rent and noting the time required for that current to fire the integrator.
For runs on the 3-MV accelerator the firing voltage was measured on
a meter, and the value of the capacitance was taken as 9.45 = .02 pf
as determined independently by Kévanagh aﬁd Brown by charging the
capacitor to a known voltage and then measuring the current and time
required to discharge it through a 600 volt battery in series with a high
resistance, ~ 500 M (Brown, 1962). Such calibrations, except for

the determination of the capacitance, were made at the beginning and

end of each running day. From this information the number of incident
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particles can be determined. For these runs the total charge accumu-

lated at each point was of the order of 2500 pG, 1.56 X 1O+l6

incident
alpha particles, for the I—Ie3 target and an equal amount for the He4 tar-

get.

B. Detection Sysfem.

Having discussed the determination of the number of target

. nuclei and the number of incident, bombarding nuclei, we must now
concern ourselves with the detection and measurement of their inter-
action. The interaction under study involves thé emission of prompt
-gamma radiation. NalI{Tl) scintillators were used to detect this radia-
tion. {The residual nucleus, Be7, being radioactive, the experiment
could have been run by counting the 478-keV gamma rays involved in
12% of the decays. However, the 53-day half-life of Be7 and the fact
‘that such a measurement would yield no information about the branch-
ing ratio and angular distributions involved make this a much less
desirable way to proceed than detecting the prompt capture radiation.)
The scintillators were optically coupled to photomultiplier tubes, and
the signals from these fed through the usual electronic circuitry to be
stored in a multi-channel pulse-height analyzer. This analyzer was
gated by a relay in the current integrator so that the stored pulses
corresponded to interactions associated with a certain number of inci-
dent alpha particles. Since the multi-channel analyzer requires a
certain finite amount of time for the analysis of each pulse, during
which it will not accept additional pulses, there is associated with its

operation a certain amount of dead time. Corrections were made for
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this by recording for each integration the actual clock-time of the run
and the live-time of the analyzer and then multiplying the stored spec-~
trum by the ratio of the clock-time to the live-time. 7This correction
was always small, the ratio being 1.00 for more than 80% of the runs
and always less than 1,17.

Three sizes of crystals were used in the experiment, a 2" X 2"
solid cylindrical crystal, a 3" X 3" solid cylindrical crystal and a
3% % 3! cylindrical crystal with a 3/4"-diameter by 2"-deep well along
its axis. These were all obtained from The Harshaw Chemical Com-
pany, Cleveland, Chio, and were of their Integral Line type. The
geometries in which these were used are shown in Figure 5. The total
efficiency (no) of eaéh of these was calculated for the geometries in-
volved in the experiment, for both isotropic and sinze radiation patterns
-and for the range of gamma-ray energies from 0.400 MeV to 8.00 MeV,
For the details of these calculations see Appendix I,

Such calculations assume a "free" crystal, one with no shield-
ing and removed from all sources of scattering. This situation can
not be utilized in most experiments because of the necessary presence
of much heavy shielding used to reduce the amount of background radia-
tion interacting with the crystal. (In the present experiment the scin-
tillators were heavily shielded using approximately half a ton of lead,
a minimum of 4 inches in all directions and & inches in the direction of
the accelerator, defining slits, etc. and in front of the crystal on the
opposite side of the farget.) One way to convert these idealized calcu-

lations, so that they can be used in practical situations, is to limit our
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interest to the full-energy peak of the gamma-ray spectrum. (See
Appendix I for a discussion of gamma-ray spectra and theif charac-
teristic features.) Only those quanta whose interactions with the scin-
tillator leave their entire energy in the crystal can contribute counts to
the full-energy peak. Consequently the number of full-energy-~peak
counts is independent of the presence of shielding or other scattering
material, and this number can be used as a quantitative measure of
the intensity of the gamma radiation. By measuring the ratio (qbo) of
the number of full-energy counts to the total number of counts in a
"free" crystal, the number of full-energy counts in any situation can
be related to the total efficiency, and hence the number of full-energy
counts can then be used to measure the absolute intensity of the gamma
radiation. This photo-fré.ction (q’)o} was measured in this experiment
~for the 2" X 2" crystal at a gamma-ray energy of 432 keV, and for
the other two crystals over the energy range from 432 keV to 4.433
MeV. For j;he details of these measurements see Appendix I.
Furthermore, if one is to be able to measure the abs‘olute in-

tensity at the source, i.e. the absolute number of interactions, cor-
rections must also be made for the absorption by materials between
the source and the crystal, such as the housing of the crystal and the
walls of the target chamber. Such calculations were also made and
are also described in detail in Appendix I. Suffice it to say here that
each of the crystals used in this experiment was calibrated so that
from the number of counts in the full-energy peak of the spectrum the

absolute number of interactions in the target could be determined.
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C. Energy Determination.

From the above information it is possible to determine the abso-
lute cross section for the reaction under investigation. Now, however,
since such a cross section can be expected to vary with the center-of-
mass energy involved, we must determine the energy at which we have
measured the cross section. Because we are using a gas target in
which the incident beam must pass through an entrance foil before in-
teracting with the target nuclei, determining the energy at which the
interaction takes place is not just a simple matter of calibrating the 90°
analyzing magnet. There are two ways to get around this difficulty in
the present experiment, both of which were utilized. The first of these
is the obvious one of actually measuring the energy loss in the entrance
foil by observing the energy shift of a resonance resulting from placing
‘the foil in front of a suitable target. In the present experiment the
thickness of the foil was measured utilizing the narrow resonance in
the reaction, Blo(a,p)Cls, at an alpha-particle energy of 1.518 MeV.
(The measured thicknesses of these foils were always within the manu-
facturer's quoted tolerance of * 20% of the nominal value.) Once the foil
thickness is known at one energy, the energy loss in the foil can be cal-
culated at any.other energy by making use cﬁ the proton stopping-cross-
section curves of Whaling (1958). A conversion of these proton stopping -

cross-section curves to alpha particles, by the relation

—
€, = (27) “ (30/3.97)

is shown in Figure 17, where (z a) is the effective squared charge
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as also given by Whaling (1958). This, coupled with a further correc-
tion for the energy losses in the gas target and aknowledge of the initial
beam energy (Eo), allows one to determine the beam energy at the

center of the target (Ea) as

; L

By=E, e, Mnt, ., -3 €, (He) ntgas target
_3

Eem =7 Eqr

The second and more direct method of determining the center-
of-mass energy at which the interaction took place is made possible
by the nature of the direct-capture process, the fact that the energy
of the resultant gamma 1l'a.y (EY) depends on the center-of-mass energy

(Ecm) at which the interaction took place:

E =E + Q
Y cm

Hence, a measurement of the gamma-ray energy tells one directly
the value of Ecm' This more straightforward method was used for
all but a very few of the runs where the gamma-ray intensity was so
low that the gamma-ray energy could not be accurately determined
from the spectra. In these latter cases, and in a few others to check
the agreement of the two methods, the first method was used. The
comparison of the two methods was in all cases within the experimen-
tal errors.

The cases utilizing the first method were all run 6n the 3-MV
~accelerator, and for that purpose the 90° analyzing magnet on that

machine was accurately calibrated by examining the 992.0-keV
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resonance in A127(p,y) and the 1843.1-keV resonance in Niss(p,y).

Making allowance for the + 300-volt target potential, the magnet con-

stant for singly-charged alpha particles (ka) was deterrﬁined to be

ks, = 0.085295 % 0,00005 MeV e

where
E = ka
@ g2
MA:

and where E

MA

is proportional to the flux-meter current.

To make use of the second method it is necessary to be able to

determine accﬁra.tely the energy of the resultant gamma ray. Such a

determination is made possible by the fact that the NaI(T1l) detectors

are proportional counters for gamma rays; their output pulse-height

is proportional to the energy lost in the crystal. Hence, the position

of the full-energy peak in the multi-channel analyzer spectrum will be

proportional to the gamma-ray energy, and once the analyzer's re-

sponse has been calibrated this position can be used to determine the

gamma-ray energy. Such a calibration was carried out at the begin-

ning and end of each day of running, by measuring the positions of the

full-energy peaks of the following six gamma rays:

511 keV
570 keV
1064 keV
1277 keV
1768 keV

2614 keV

annihilation radiation (Na.z'z)

Bi207
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There is, however, one problem associated with this way of
determining Ecm' This arises from the fact that in a direct-capture
reaction the residual nucleus.always recoils directly forwa.fd, giving
rise to a Doppler shift in the gamma-ray energy dependent on the angle
at which the gamma ray is emitted by the forward-recoiling nucleus.
The correction for this may be calculated as follows:

2

E(0)=E N1-8
¥ Y 1-Bcos®o
where 0 is the angle at which the gamma ray is emitted relative to the
direction of the recoiling nucleus, which is traveling with a velocity, Bc.
| Since the maximum value of 8 for the recoils encountered in this exper-
iment is approximately 0.03, second order effects can be neglected,

and we can write
E (6) = E 1- 0
,® v/( B cos@)

In this experiment, runs were made in three different geome-
tries, with the solid 3" X 3" crystal at 900 and at 0° to the incident beam
and with the 3" X 3" well crystal aligned along the beam axis with the
target at the center of the crystal. (See Figure 5.) From the above

equation it is then clear that

at 90° EY EY (90%) , and

at 0° E, =E, (0°) x (1-B)

k'

I

The determination of 3, however, is somewhat circular since it involves

a knowledge of the center-of-mass energy (Ecm) or the incident alpha-
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particle energy (Ea) which in turn are determined by knowing the gamma-

ray energy. However, we can write

3 "
EY=Q+7~Ea Q=1.587 MeV
Bt Ecm

and from conservation of momentum

B(Be ) == 2 Bl

E (0% - (- fBe")) =0+ FE,
=0+ 3 (M (@)
=+ Macz(-;;c—)z g% (Be)
E,(0%) - E (0% B= Q+ 37 Mye’B”

Z 2 2 o o -
?ZMQC:I B~ + [Ey(o )] B+ (Q—Ey(O Y} =0

Therefore;

-E (o )} + JE (0°) + -B—Macz(EY(Oo) - Q)

B =
'1"6' Map
lwhere the second solution of 8 is neglected since it gives rise to negative
values for 8 which are physically meaningless. From this evaluation pf
B the true gamma-ray energy (EY) can now be determined from Ey(OO).
A plot of the calculated Doppler shift, (E\((Oo)-Ey)' as a function of EY

is shown in Figure 18. A direct determination of this shift was possible
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in a few cases where both 0° and 90° runs were made using the same
entrance foil. These determinations are also plotted in Figure 18 for
comparison with the calculated shift. They indicate that the shift was
actually about 10 keV smaller than calculated. This is easily under-
stood in terms of the large solid angle subtended by the NaI(Tl) crystal

©. The calculated shift is the maximum shift, occurring only for

at 0
gamma rays at 0°, whereas the detector received considerable num-
bers of counts in its full-energy peak from quanta emitted at angles
of 30° and larger. Such a correction to the calculated shift is not
necessary at 90° because although the same solid angle is subtended
. by the scintillator, quanta with 0 > 90° have their energy lowered by
the shift whereas quanta with 6 < 90° have their energy raised, so
that the net effect at 90° is a Doppler spread in the full-energy peak
and not a correction to the calculated shift.

For the well crystal the observed gamma-ray energy was as-
sumed to be the true gamma-ray energy, although it was actually
probably somewhat greater since there was a little more detector in
front of 90° than behind 90°. In this case, however, the large solid

angle subtended, nearly 47, gave rise to a large Doppler spread in

the full-energy peak, nearly twice the calculated Doppler shift at 0°.

D. Coincidence Measurement.

Before summarizing and concluding this chapter, we should
consider one' more aspect of the experiment, the use of a coincidence
technique to obtain an independent measurement of the cross section

for the cascade transition, as a check on the unfolding procedures



23

described in the next chapter. For this measurement a 3" X 3" and
2" X 2" NaI(Tl) were placed on opposite sides of the target chamber,
as indicated in Figure 5, and the coincidences between a Y3 event in
the 2" X 2% and a'yz event in the 3% X 3" were counted. (See Figure 1.)

The output of the 2" X 2" Nal(Tl) was fed into the multi-channel
analyzer which was gated by a triple-coincidence circuit with a meas-~
ured resolving time of 50 X 10"9 seconds, This mixer required a
"slow" coincidence between (1) the output of the 3" X 3" in the region
of the full-energy peak of Yy (2) the output of the 2" X 2" in the region
of the full-energy peak of Y3 and (3) the qutput of another mixer re-
© quiring a "fast" coincidence between the output of the 3" X 3" and the
output of the 21 X 2", A detailed description of this circuit has been

presented by Pearson (1963).

E. Conclusion.

As a conclusion to this discussion of the experimental apparatus
and procedure, it might be helpful to summarize briefly the steps in-
volved in a typical run. First the multi-channel analyzer's response
was calibrated with respect to gamma-ray energy, and the current
integrator was calibrated to determine how much collected charge was
necessary to fire the relays which terminated the data accumulation.
Then the detector geometry was arranged and measured. An alpha-
particle beam of the desired energy and intensity was then focused on
the target. Beam intensities were normally in the neighborhood of
0.45 pA, an upper limit being established by the ability of the entrance

foil to withstand the heating due to the beam and a lower limit by the
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time required and the competition of time-dependent background. Runs
for a definite number of incident alpha particles, as determined by the
current integrator, were then taken starting with He4 as a target gas
and then alternating with runs on He3 gas. The runs on He4 were

used as background runs to be subtracted from the runs on He3 to ob-
tain the net Hes(a,y)Be7 yield. Gases were normally switched every
two integrations, ending with a run on He4 so that the background ra--
diation was monitored across the entire series of runs. Runs were
approximately 500 pC each and as many as ten such runs on each gas
were taken in a series at a given energy, although typically the num-
ber of integrations on each gas was four or six, depending on the yield
at that particular energy. The runs were checked as they progressed
by using two scalers as a single-channel analyzer covering the region
of the gamma-ray full-energy peaks. In this way any change in yield
due to the build-up of carbon or other variation in the background could
be monitored and corrective measures taken.

At the low bombarding energies (Ea < 2.00 MeV) the yield from
the reaction becomes small enough so that the time-dependent background
began to become important. Due to slight variations in the beam inten-
sity during a series of runs, it was quite possible that there would be a
significant difference in the total time represented by the He3 runs and
that of the He® runs. Consequently at energies where t.he time -dependent
background was important, total time corrections were made using
spectra taken for definite lengths of time with the accelerator in opera-

tion but with the beam switched off the target. Finally after all these
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runs were made the integrator calibration was checked, the multi-
channol analyzer calibration was checked, and the geomoetry of the
detector was checked.
The detailed analysis of the spectra resulting from such a ser-

ies of runs is discussed in the next section.
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IV. DATA ANALYSIS

A, Conversion of Gamma-Ray Spectra to Absolute Cross Sections

Having described in detail in the preceding chapter how the number
of target nuclei, the number of incident nuclei and the energy of inter--
action were all determined, it is necessary to go into more detail here
to describe how the resulting gamma-ray spectra were handled to deter-
mine the number of interactions that occurred.

The first step was to check the reliability of the series of runs at
a particular energy to see if a reasonably accurate background subtraction
could be performed. This testing was done first by checking the runs
using a single—cﬁannel analyzer, as described in the previous chapter,
and second by comparing the individual spectra from such a series of
runs. This latter phase consisted of checking that those runs on He4 all
matched each other reasonably well and similarly for the He3 runs,
and that all the spectra matched in the high-energy region beyond the
structure of the gamma rays from He3(u,y)Be7. These requirements
could not always be satisfied, but it was possible to accept, in addition,
tf-xose cases where there was.only a small, but smooth variation in the
spectra, since the method of alternating the target gas throughout the

series of runs compensated for such an effect, Once a set of runs ata

particular energy had been found acceptable as described above, the

)

Burroughs' 220 computer was used to reduce the spectra by (1) applying
dead-time corrections to the individual spectra, (2) combining all He®
runs and all < M runs, (3) applying any necessary total-time corrections

and (4) then subtracting the total He4 runs from the total He3 runs to
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yield the net He3(ﬂ-,y)Be7 gamma-ray spectrum, (See Figure 19.)
Having thus reduced the data to yield the spectrum of the gamma
radiation due only to the He3(cl-, Y) Be7 reaction, the direction in which
further analysis proceeded depended on the set of runs involved, since
slightly different conditions involved in various rur;s invalidated the
application of certain of the methods of analysis. To understand better
the specific problems involved, it is perhaps best to elaborate briefly
at this point on the.nature and energy of the gamma rays involved in
this expe rirnent.. From Figure 1, it is apparent that a direct-capture
‘event in the energy range, 0.0 =<E = 6.0 MeV, can produce two
specific gamma-ray events:
(1) The ground-state transition with only one gamma ray,
() EYl = (1. 587 +;} E,) MeV.
’ (2) The cascade transition with one gamma ray, (YZ),
followed by a second gamma ray, (y3).
B, = (1.155 + 3 E ) MeV , and

E

0.432 MeV.
Y3

Since the spin of the 432-keV state is known to be 1/2, the angular
correlation between y, and Y3 will Be isotropic, Further, since the
energy difference between Y, and Y, is 432 keV, the full-energy peak

- of Y, will‘lie only 79 keV above the single-escape peak of Yy and the
two will not be resolvable. (See Appendix I.) The same argument applies.
to the single-escape peak of Y, and the double~escape peak of Yi° It
should be noted that there will also be a peak, coincident with the full-

energy peak of Yo due to the summing of Yy and Y3 in the NaI(T1)
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detector. Because of the low energy of Y3 its full-energy peak was
always well down in the noise,and, since the fitting procedures were
never extended to such low energies, this peak was neglected in all the
analysis except for the coincidence data where its use is discussed
explicitly.

The first method of analysis is a procedure directly suggested
by Salmon (1961), although worked on by numerous other authors, |
(Childers, 1959; Mbllenauér, 1961; West, 1960; and Heath, 1962). This
involves the use- of gamma-ray shape fitting to unfold complex combi-
nations of gamma-ray spevctra using electronic computers, To accom-~
plish this the NalI(Tl) crystals involved were first calibrated with
regard to their shape responses to monoenergetié gamma rays of various
energies. See Appendix I for the details of this calibration. These
shape-response functions were then stored in the Burroﬁghs' 220 com-~
puter, and, given a gamma-ray energy in the range 1. 277 = E_ = 4.433
MeV (the range of calibration), the computer was programmed to inter-
polate the appropriate response function. In the present experiment,

E was determined either from an examination of the individual
sPictra from each run and the calibration of the multi-channel analyzer,
or from a knowledge of the beam energy, the foil thickness, the target

thickness and the Q-value of the reaction,

_ 1 |
E =Q+ Z(E_- AE, . - -zAEgas)

as described in the previous chapter, EY was taken as
' 2

E =E - 0.432 MeV
Y2 W ©
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The computer first determined the response function for Yy and then
the response function for Yo Next the response function of the crystal
for the summation of Y, and Y3 was determined by folding together
the response function of Iyz and that of Y3 stored in the computer
separately. The details of this folding procedure are discussed in
Appendix I,

Having now separately obtained the response functions for vy,
(1) when there is no summing with Y5 and (2) when there is summing
with Y32 We WOI:lld now like to combine the two into a total response
function for Y, The amount of summing in such a total response
function is determined by the efficiency of the scintillator for detecting
Y3e Considering the number of counts in the full-energy peak of each
response function, we can say first that for N cascade transitions in
the target there will be {n(2)¢0(2)q(3)¢0(3)N} counts in the full-energy
peak of the summing response function, (where n(i) is the probability |
of ' interacting with the crystal at all and d)o(i) is the; fraction of
such interacting photons which contribute counts to the full-energy peak)
since the probability vof such an interaction is the product of the proba-
bilities of both YZ. and Y3 depositing all their energy in the scintillatc‘)r.
Similarly we can say that under the same circumstances there will be
{n(Z)(ﬁO(Z)[l-n(S)] N} counts in the full energy peak of the Y, response
function, The ratio of full-energy counts in the summing response
function to the full-energy counts in the Y, Tresponse function is thus
r|(3)d)°(3)/(1—n(3) )« Therefore, the summing response function was re-

normalized to agree with the above ratio, and then the two response
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functions were combined to form the desired total cascade response
function.

The ground-state response function and the cascade response
function were then combined to give a least-squares fit to the net
He3(a,y)Be7 spectrum, utilizing all the available points or channels.
(See Figure 20.) At each of the "n" points (n typically the ordelr‘of

80 or 100) we may write the following:

C.=AX+BY+2Z,
i i i i
where

Ci = the number of counts in channel i of the net
I-Iez'(a,\{)Be7 spectrum,

Ai = the number of counts in channel i of the ground-
state response function,

Bi = the number of counts in channel i of the cascade
response function,

Z, = a random error,

i
and where the best values of X and Y are obtained by the least-squares

requirement of minimizing the following function, R, with respect to

both X and Ya

n
o 2
R = Z (C,- AX - B,Y)
i=1
8R

i

I
o

OR _ » _.
57 =0 Z (C;- A;X - B,Y)B,
i

]|
o
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Therefo re,

2 =
Xz Ai + Yz AiBi_ Z.Ai(:i
i i i
XZA.B. +Yz B?:ZB.C.
iTi i i1
i i i

Defining a, B, M, A and £ so that

aX + BY = X\
pX+nY=g
wesee‘that
- , —1/2
o On-pt) ,[ R _a_ TV

(an - g% L% (an-p?)

Y=(“§'p7§) N —'R-z 3 q1/2
(am - %) LP7% (an-p%

This method of fitting experimental gamma-ray spectra has an
advantage over the ﬁore traditional graphical approaéh, ‘where suc-
cessive full-energy peaks are fitted in order of decreasing energy,
since the least-squares method uses all the response functions at each-
point and thus does not accumulate error in the low energy direction,
Furthermore, in this particular case where the full-energy peaks of
both response functions are coincident and the secondary peaks of one
are not resolvable from those of the other, the successive graphical
peak-fitting method could only have been employed utilizing some sort

of iterative procedure.
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Having obtained a least-squares fit to the experimental spectrum,
from the number of full-energy counts in each of the fitted response
functions, [XAi] and [YBi] » and a knowledge of tl';e photo~fractions
and total efficiencies for i{.l, Y> and Y3+ as determined in Appendix I,
it is then possible to determine independently the number of ground-
state events and the number of cascade events. From this, coupled
with our measurements of thg number of target nuclei (Nt) and the
number of incident alpha Particles (Na),‘"we can determine 0(\11) and

a(yz) independently and thus also determine © and thg branching

Total
ratio, p.
R AL

N Ny, )nly3)9 {00 (v3)

oly,) =

Orotal = oYy +oly,)

p = aly,)/oly)

where Y¢(yi) is the number of counts in the full-energy peak of the
least-squares fitted response function of yi.'

The decision as to the ﬁresent-ation of the data in terms of O rotal
and p, instead of c(yl) and cr(yz), was made on the l;asis of the follow-
ing considerations. For reasons explained below, abo;\zt half of the data
could not be analyzed as described above, and the alternate methods of

analysis did not allow the independent determination of o(yl') - and O‘(YZ).

In such cases, a value of the branching ratio was assumed in line with
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measurements obtained above and a corresponding value obtaiﬁed for
O rotal® Vé.lues for cr(yl) and O’(YZ) obtained from these methods of
analysis would not have been independent,and their pllesentation as such
would have been misleading., This, coupled with the fact that Crotal is
much less sensitive to errors in p than either U(Yl) or o(yz), makes
Orotal @ much more meaningful value to present in such cases.
The cases where the least-squares method of analysis was not
applicable can be separated iﬁto the following three distinct categories:‘
(1} ‘cases where the net éxperimental spectrum hgd too few
counts to do any detailed shape fitting,
(2) cases where problems of backgréund variation prevented
accurate subtraction and thus prevented the attainment
of a good fit, and
(3) cases where the use of qbsorbers between the scintillator
and the target, to reduce the intensity of low-energy X-
rays and gamma rays, invalidated the use of the response
functions obtain'ed in the absence of such absc.arbers.
It is true that in the last case response functions could have been obtained
with each of the absorbers used, but this was deemed unnecessarily
tedious. Case (2) is certainly a highly subjective condition, and it should
be added here:that.the existence of such a poor fit was determined pri-
marily on the basis of how the total number of counts in the full-energy
peak of the net expgrimental spectrum compared to the sum of the counts

in the full-energy pe'aks of the two fitted response functions, Case '(1)

applies to data taken at the low energy end of the region covered in this
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experiment, where the total cross section has fallen to much less thanla
microbarn.

To analyze the data which fell in the above three catagories, two
methods were available. The simpler of _these il’lVO].V{%S an analysis of
iny the peak corresponding to the full-energy peak of "yl and the full-
energy peak of the sum spectrum of Yo and Y3+ It is thus clear that
such a method can not yield information about p, and to obtain any value |
for Orpota) ON€ Must assume a value for p. For such an analysis .the‘

total capture cross section, 1+ can be expressed directly in terms

% Tota
of the number of counts (N¢) in the peak in question, the branching ratio
assumed (p), and the various efficiencies of the detector.

. _ Mg (1+p)
Total = N N n{y))8 Ty, Tenly,)e Ty, Inly;)9 (v;)

The second method of analysis for the three cases noted above
involves what might be described as an integral approach. It involves
an analysis of the entire availabie spectrum and consequently is not well
suited to handling cases (2) and (3) but is instead designed for use with
case (1} where poor statistics have invalidated a point—by—poiht fitting
of the experimental spectrum, and where, instead, we now will use a
fit of the integré.ted spectrum, covering a large number of points. For
this method of analysis, once the net éxperimental spectrum has been
obtained, the various response functions are obtained and combined to
form the cascade and ground-state response functions as before. At

this point, because of the poor statistics involved, the ground-state and
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cascade response functions are further combined under the assumption
of a particular value of p to form the total response function. The
number of counts (Z) in a given region of the spectrum {excluding the
low-energy region near the full-energy peak of y3) is then divided by
‘1); the ratio of the counts in the same region of the total response
function to the total number of counts in the total response function
(excluding, as always, the contributions due to single Y3 interactions).
In t_hié way the total capture cross section is obtained as

. - = 1 +p
Total = ¥N_N [nly,] ¥ pnly,])

An upper limit for the region to be analyzed was established at
(E‘{1+ 600 keV), and the lower limit was varied to include various fractions
of the spectrum. As the lower limit of this region is moved to lower and
- lower energies and the statistics improve, one would ideally expect the
value of -?% to approach a constant. How good a value of % had been
obtained was determined by plotting this ciuantity as a function of the lower
limit of the region under analysis and looking for the ’expected asymptotic
approach to a constant value. In all four of the cases analyzed in this
manner this Wa.s found to be true, the variation of % about such a value
always becoming less.f than 4%. ' ‘
It is clear that both of the secondary methods of analysis could
also be applied to the runs which could be analyzed by the primary method -
of detailed fitting. Such a comparison of the primary and secondary

methods was carried out and in general indicated good agreement between

the three methods, deviations typically falling in the range from 0% to 3%.
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Before leaving this discussion of the methods used to obtain
O rotal and p by an analysis of the net experimental gamma-ray spec-
trum, mention should be made of the analysis of the coincidence data
obtained to check on the values of p derived from the method of least-
squares fitting. Such a check was made by meaéuring the cascade cross
section O‘(YZ) independently of the ground-state cross section by looking
only at coincidences between the Y, and Y3 members of such a cascade"
using the techrﬁques described in the preceding chapter. The net experi-
mental gamma-ray spectrum thus obtained, after the usual background
subtraction, in this case fepresents the spectrum of gamma radiation
in the 2" x 2" NaI{Tl) in the region of 432 keV in coincidence with
events in thé neighborhood of the full-energy peak of Y, in the 3" x 3"
NaI(T1l) crystal. However, this region of the gamma-ray spectrum of
the 3" x 3" crystal contains a good deal more than events due to a vy,
interacting with the crystal. Many of these events either can not give
rise to a cointl:ident pulse in the 2" x 2" crystal or will be removed by
the usual process of background subtraction. However, there are two
notable and important cases in which coincident counts not due to Y3
will occur in the second detector which can not be removed by the usual
subtraction of background. These are events due to a Y, ora Y, inter-
acting with the 3" x 3" crystal in a Compton or pair-production event in
which one of the secondary quanta escape and interact with the 2" x 2"
detector. This is possible since that portion of the 3" x 3" spectrum con-
sidered contains (1) that portion of the y; and y, spectra corresponding
to Compton events in which the low energy "backscattered" quanta escape

from this crystal, (2) that portion of the y; spectrum corresponding to
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pair-production events in which either one or two of the annihilation
quanta escape from the crystal and (3) that portion of the y, spectrum
corresponding to pair-production events in which one o.f the annihilation
quanta escape from the crystal. One would then expect to find in the

2" x 2" coincident spectrum, in addition to the peak at 432 keV due to

Y3» peaks at 511 keV due to annihilation radiation and at roughly 230 keV
~due to backscattered quanta from vy, and vy, (2.965 and 2. 533 MeV
respectiveiy for the case under consideration). Indeed, all three of
these peaks are’ observed in the spectrum. The backscattered peak is

of lqw enough energy cdmpared to E so that it can easily be corrected
for by essentially ignoring it and dealiig with only the full-energy peak
of Y3- Correction for the annihilation radiation is slightly more difficult
and involves the fitting of the 511-keV peak to the experimentally deter-
mined response function of the 2" x 2" crystal for 51l1-keV radiation and
subtracting this contribution. In this way the number of coincident counts
in the full-energy peak of Y3 (Y¢ (Y3) ), was determmed Further,

it was necessary to determine what fract1on (XZ) of the Yo response
function is included in the gating window of the 3" x 3" detector. This
was .done by ‘determining the response function for Yoo using the com-
puter program described above, and then measuring X 2 with a planimeter
(XZ, = 0.483'+7,02). The cascade cross section can now be expressed in

terms of these measurements as

c 1
o) = N N XS I8 W)
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B, Error Analys'is

Before discussing the results of the experiment we should dis-
cuss here the errors involved in the measurements described above so
as to make the results and their associated errors more meaningful,
Margenau and Murphy (1956) give the expression for Jt_:lie probable error

of a function as follows:

for’ Z = fe, Vv )

, 2 ' 2
. . iy ). 2( of
PZ_PX(-—BX) +Pyk'5_y t e

where P_ 1is the probable error of the quantity Bal
On the basis of this, for the various quantities measured and

calculated in this experiment we can calculate the following probable

errors.

1. E ‘
cm

In the case of our determination of the center-of-mass energy
at which a particular measurement was made there are two types of
errors to produce an uncertainty in our determination. First, there is
simply the inaccuracy of our determination; this was approximately
£ 10 keV both in the cases where Ecm was determined from an exami-
nation of the position of the full-energy peak of Y, and in the cases where
Ecm was found from a measurement of the thickness of the entrance
foil. Second, a lack of definition in Ecm was introduced by the spread
in energy of our supposedly monoenergetic beam. This spread was

caused by straggling in the entrance foil and by the thickness of the gas
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target. In the case of foil-straggling the effect was measured by ob-
serving the width of the 1. 518 MeV-resonance in Blo(a, p)C13 with and
without entrance foils in front of the target. The straggling was found
to be approximately 60 keV (in the lab system) at this energy; and,
since the theory of straggling by Bohr {1915) predicts that straggling
should be independent of the energy of the incident particle, this figure
was assumed to hold over the whole range of alpha particle energies
used in this experiment. Any error in this assumption is probably not
too serious since at high energies, where such an error would occur,
straggling amounts to only about 12% of the total error in Ecm' In the
case of beam width induced bjr the thickness of the target, the spread
can be calculated simply from the energy of the beam in the target and
the number of atoms per crm2 in the target; the spread is just equal to
the mean energy loss of the beam from the front to the back of the target.

Thus the probable error of the center-of-mass energy is

1 2 3 igs 2
= -Z-AEgaS(lab) 1<+ (-7- » 30 keV} "+ (10 ke V)",

For the cases where a least-squares fit was possible we have

shown above that the branching ratio (p) is given by

p = oly,)/ely,)

) Yolvytys)  Yely)
- N Naly, 18 v nly 08 () N Npnlyo (v}

Yoty Inly,)9 v Inly3)9 (vs)
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Therefore,

(A)(

AY 4 (2+3) AY¢(1)

) (48" <“"5 o) + (5
7 AN

aY (3)

5+

Ad (2)
) (‘%’z%‘”r) Sxen

(e

Errors in the efficiency, mn, are contributed from two sources,
the accuracy of the calculation and the accuracy with which the source-
detector georr;etry could be determined. The first of these is assigned
a value of *3% on the basis of the accuracy of the tabulated cross sections
(Grodstein, 1957). The second is determined by the accuracy with which
the distance from the crystal to the source could be measured; this was
typically of the order of =* {1/64)/{25/64)" or #4%. When this is then
compared to the efficiency curves (Figures 7-9, 11-14) it yields an error
of #2% in efficiency in the region of interest. Hence (Amn/n) is assigned
a value of %3.5%.,

The errors in determining the photo-fraction, QSO, were normally
approximately *4%, with =3,5% due to inability to accurately dete rmiﬁe
the zero-intercept as described in Appendix I and #1% due to the use of
the planimeter, In the case of Y3 however, due to problems of back-
ground subtraction this figure should be somewhat more generous, or
of the ord’er of *£6% overall.

In considering the errors associated with the various terms in
the expression for p we see right away that errors in "q(\(l) and ‘n(yz)

will cancel each other since both ‘q(yl) and 'r](yz) are determined
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by interpolation from the same set of calculations. Identical arguments
apply to ¢ (v} and ¢ _(v,).

To determine the errors associated with Yd){yl) and ‘Y¢(y2) we
must recall in detail how these terms are obtained. They represent the
number of counts in the full-energy peaks of the response function for
vy and the response function for the summation of (y2+ y-3) after

‘these response functions have been fitted to the net éxperimental speé—
trum. It is evident then that the sources of error for the Y(b's are in
(1) the statistics of fhe net experimental spectrum, (2) the accuracy of
the least-sql.yla.res fit and (3) the accuracy of the response functions.

The latter contribution was taken to be = 5 %.

Therefore,
FAY, {y,) .2 3 41/2 2 2 ,
o\l 4 (He” + He™) (AX 2
L Ystn) 1 [( He- He™ ) %) 00 }

AY(#(V + v

) 3 4,1/2
Y3 (He3+ HeY) AY 2 2
Yelvatvs) ] [( 15 B® ) ( ) i G S S 0 :l

where the first term in these expressions represents the statistical
accuracy of thenet experimental spectrum and where X and Y are
the coefficients determined by the least-squares-analysis discussed .

" earlier in this chapter. AX/X and AY/Y were typically = 2% and
+ 5% respectively. It should be noted tha’r., Y(b(y2+ y3) has two terms
due io inaccuracies of the response functions, ‘/siﬁce the response
functions for (\{2+ \[3) were not determined experimentally but are

rather a combination of two experimentally determined response functions.
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As a further simplification, it should be noted that, in the case
of the branching ratio, the statistical errors of the net spectrum cancel

out., Furthermore, the errors in the response functions for Yy and Yy,

A

E and since both functions are obtained
Y1 Y2
by the same interpolation routine from the same data. Hence, we are

will also cancel since E

able to reduce our expression for Ap/p to
. B s B 2 :
A ) ~ (AX) AY) 2 2 2
_(_Ep = (58) +(5F) +10.05)%+(0.035)%+ (0. 06)°.

3. O.Tota.l

In the case of the least-squares-fitting method of analysis,
OTotal = 9V +olyp)

Yoly) Yoy, *vs)
+
N nly)o (y;) N Nnly,le (v, inly3)e (y,)

U

Therefore,

AY (1)

AN_ 2 AN,
A%rotal = [ (Na"- UTotal‘) N (_Nt GTotaI») +( Y" (1) "(Vl)-)

AY,(2+3)

2
* ("Y_(z_ﬂ)‘ oly,) ) (?m' "“’1)) + (SR oty,)

0;11) (

Ao (1) a¢ (2)

+( A““’cwz)) + (53 otv,))

Ad (3) 1/2
(g o) |

U(Yz )
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(ANa/No.) was taken to be £0.01. The stability of the instruments
used was somewhat better than that (of the order of a few tenths of a per
cent in twelve hours); however, the absolute accuracy of the integrators
was probably closer to this more generous figure.

(ANt /Nt) represents an accumulation of many errors. Errors
due to the measurement of the length of the target chamber and any
variation in effective target thickness due to the angular spread of the
beam in passing through the entrance foil (mean scattering angle ~ 4°)
are less than = .0.. 01 and have been neglected compared to the other
uncertainties.  The uncertainty in the pressure measurement varies from
1% to 4% depen&ing on the magnitude of the pressure. The temperature
correction due to local heating in the target chamber amounts to 17%
above room temperature, and is accurate to about * 30% so that it repre-
sents an uncertainty in Nt of + 5%, (ANt/Nt) thus is in the range from
£ 5% to % 795.' |

(AY,(11/¥,(1) ), (An(i)/n(i) ) and (8é (1)/¢ (i) ) are all detex-
mined as dlscussed.above in the error analysis of the branching ratio.

In the case of the integral method of analysis,

o . _Z (1+p)
Total = ®N_N_ mly;) ¥ pnly,)

a

Ao

Total [ (AZ) (a2 (AN ) (____t) e 1411(%)2

% Total
1/2
(i) (w ﬂ%%)‘)]



B2

(AZ/Z) is determined by the counting statistics and by how well
the value of {£/®) approaches a constant.

(A(f’/CI)) is determined on the same basis as (Ad}o(i)/d)o(i) ) and
as such is assigned a value of = 4%. -

(Ap/p) is determined from an anaiysis of the variou; deter-
minations of p made by the least-squares fitting. From such an anlysis
By fo) = & 15%.

The remaining terms are discussed in the case of the least-

squares analysis above.

Finally in the case of the single, full-energy peak analysis,

Y
_ ¢ 1+p
“Total = N _N_ nﬁﬁ?ﬂ) T pn(vzm v,)n{v3)9, (v3)

Ao ' AN 2
Total
%Total [( ) ( ) ( )
2 2
(An(1) (1) )2+ (A9 _(Wn(1) )
[a()$ (1) + pn(2)6_(2)n(3)6_(3)] °

+

2
. (en(2)¢, (2)n(3)9 _(3) ) o
[nf1)é (1) + pn(2)9_(2)n(3)9 (3)] 2 n{2}

G (—1%—) G

n(1$ (1) - n(2)¢ _(2)n(3)$ _(3) 2 ,ql/2
(1+p)r Tap 6y +pn(2)¢72)n(3)ﬂ3ﬂ ) (&) ]
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(AY¢/Y¢) is determined by counting statistics, while the re-

maining terms have all already been described in the cases above.

4. S(E__)

For the cross-section factor, S(Ecm), defined by Burbidge et al.

cm

(1957) the errors discussed above for o and E have the follow-
Total cm

ing combined effect:

_ 1/2_-1/2
Ecm) E o ° SXP (31. 28 ZIZoA Ecm )

S(E__) s

em! T GTotal(

where Zl and ZO are the atomic numbers of the interacting nuclei and
A is the reduced mass of the system in amu.

Therefore,

1/2

AE 23
-G ) g il (Y

where (AGTotal/oTotal) and (AEcm/Ecm) are determined as indicated
on the preceding several pages.
Having described in detail the methods used to obtain and analyze

the data, we now pass on to a discussion of the results of all of this.
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V. RESULTS

A. Nuclear Physical

As indicated in the discussions above, the primary object of all
of this work was to obtain absolute measurements, as a function of
the center-‘of-mass energy, of the direct-capture cross section for the
reaction, He3(a,y)Be7, and to use these measurements, (1) to obtain
a value for the SO croas—s;ection factor for this reaction ‘gt stellar
energies and (2) to compare with the theoretical predictions for this
type of reaction.

The experimentally determined total cross section for the re-
action (including both possible gamma transitions) is shown in Figure 21
and tabulated in Table I. These values of oq . , Were obtained (as
described in the prévious chapter) in some cases by summing the cross
sections for each t-ransition and in other cases by analysis assuming a
value for the branching ratio involved. Included in Table I is a notation
as to which method of analysis was used in each case. These measure-
ments cover the entire region from 181 keV to 2493 keV in the center-of-
mass system, or roughly 6.0MeV in the lab system,- and cover a vari-
ation of the cross section by a factor of more than 200 from 0,018 pbarns
té) 3. 90 pbarns.

Attempts were made to extend the me asurements up into the
region of the 7/2  level in Be7 at an excitation of 4. 54 MeV

(E

i

2950 keV); however, the rapid rise in the background radiation

in this region, dus to Cls(a,_ n\:)Ol6 and Clz(a, a'y)Clz, made this im-

cm

possible. A hint at the problems encountered is seen in the larger
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relative error associated with the point at 2493 keV due primarily
to poor statistics and background subtraction problems.

Since in roughly half of the cases it was possible to determine
the cross sections for each transition independently, it was possible
to obtain a measurement of the branching ratic between these two
transitions as a function of energy. This is plotted in Figure 23,
where the branching ratio is defined as the ratio of the cascade transi-
tion's cross section to that of the crossover transition. From the
experimental measurements it is not possible to say much about the
energy dependence of p other than that it is essentially constant. -

Analysis as such indicates that over this energy region
p=0,374 = 0,056,

or, in other words, that 73% of the captures proceed directly to the
ground state via y];, while- 27% go through the 432 keV excited state
via y,.

The energy range covered in these measurements is somewhat
smaller than in the total cross-section measurements, mainly due to
the fact that at alpha-particle energies of 4 MeV and higher, thin
lead absorbers were used between the crystal and the target to reduce
tl;e amount of low-energy' radiation swamping the detector and thereby
invalidated the shape fitting technique described in the last chapter.

The errors indicated on these plots are the relative errors
described in the pi‘eceding chapter and do not include the absolute un-
certainties of the experiment., In the case of the branching ratio, how-

ever, due to its insensitivity to such absolute errors, the value of 0. 374
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can be quoted independent of any absolute errors. For the case of the
total cross section, however, when the allbsolute uncertainty is com-
bined with the roughly 10% relative uncertainty in each point, the total
uncertainty should probably be quoted as = 15%.

Also indicated on both of these plots are the theoretical pre-
dictions as to the energy behavior of these two quantities as derived
from Part II. In both of these cases the agreement between theory and
experiment is very close. It should also be remembered, as noted at
the end of Part iI, that only three parameters are available to obtain
these fits, the nuclear radius (Ro) and the reduced widths for each final
state (92/2 and 912/2), where the subscript denotes the J-value of the
state. R0 was varied around the value of 2, 80 fermis deduced from
the elastic scattering of He3 and He4 (Miller and Phillips,‘ 1958;
Jé‘mes SE.é’l' ,» 1962; Tombrello and Parker, 1962), and for each value of
Ro the two reduced widths were varied to normalize each of the two

curves to the data, Listed below are the resulting values of the param-

eters,
, eg/z = 1.86
Ro = 2.4 fermis— >
__?1/2 =1,55
"—eg/z =1.25
Ro = 2.8 fermis-—+» >
=Gl/2 =1.05
2
, 93/2 = 0.88
Ro = 3, 2 fermis— > ‘
Actually it turned out that the fits of O rotal and p were completely

independent of the choice of R,, and so the value of 2.80 fermis was



-57 -

adopted in agreement with the elastic scattering analysis cited above
and in agreement with the value of 2. 84 fermis obtained by Hofstadter
(1957). Hence, it can be said that the fits shown were obtained with the
use of only two energy independent parameters.

It is somewhat surprising that the extra-nuclear approximation
under which the theoretical calculations were made should be valid over
such a large range of energy as demonstrated by the guality of the fits
obtained. The validity of this approximation depends, it was noted, on
the closeness of the various phase shifts to their corresponding hard-
sphere phase shifts. It has been shown in the various elastic scattering
experiments (Miller and Phillips, 1958; Jones et al, , 1962; and Tombrello
and Parker, 1962) that the s-wave phase shift and both the d-wave phase
shifts are accuratély described by their hard-sphere phases for a nuclear
radius of 2. 80 fermis, over the entire region covered in this experiment.
The p-wave and thé f-wave phase shifts, however, do not satisfy this
condition. In the case of the f-waves this is due to the efiects of the
two £ = 3 resonances just above this region. (See Table IL. )

Figure 22 depicts graphically the way in which the varicus 4£-
waves contribute to the total cross section in the theoretical calculations,
These curves indicate vividly that almost all the contributions to the
total cross section come from the El transitions which are contributed
by the s- and d-waves, ‘ The contributions of the p-waves and f-waves,
combined in the Ml and E2Z cross sections, never amount to more than
four per cent of the fotal cross section, This, combined with the agree-

ment of the s- and d-wave phase shifts with the Ro = 2.80 fermis
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hard-sphere phases, indicates why we were able to obtain such a good
fit over such a large region of energy in spite of our neglect of the
céntributions to our matrix eiements from the region inside the nuclear
radius. Any change in o(Ml} or o{E2) from such contributions, even
to the extent of increasing them by a factor of 5 or so, would not have
had an appreciable effect on the total cross section.

Before leaviﬁg Figure 22 it is also interesting to note that it is
the rapidly increasing d-wave cross section that is keeping the total
non-resonant cr.oss section still rising almost linearly at E = 6.00 MeV,
while the s-wave contribution has almost completely leveled off at
aﬁout 2.0 pbarns.

As noted in the previous sections, to check the accuracy of the
shape-fitting and unfolding analysis utilized above,a.point was taken
using a coincidence technique to measure only the cross section for the-
cascade transition, G('yz). This measurement agreed well with the

other determinations of c(yz) and, converted to © using the

Total
measured branching ratio, is shown on Figure 21 at a center-of-mass
energy of 1378 keV as the solid square.

Attempts were also made to measure the angular distribution
of the capture radiation as a function .of enefgy in order to compare it
with the theoretically predicted values of the parameters aps ay, ag
and Ay Measurements of the yield were made with the solid crystal
at 90° and 0° to the incident beam and with the ﬁrell crystal,. However,

due mainly to the poor angular resolution of the crystals in the close-

up geometry necessitated by the low cross sections involved, the results
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were indefinite and the best that could be said was that ther radiation
was isotropic to #* 20%. Therefore, all the data were analyzed under
the assumption thai the radiation pattern was isotropic. A plot of the
theoretically predicted values of ai- as a function of alpha-particle
energy is shown in Figure 24. From these curves it is apparent that
any predicted anisotropy is small. A calculation at 3.00 MeV, near
the maximum anisotropy, predicts a 0° to 90° asymmetry of only
7%. Applying smoothing due to the crystal geometry reduces the effect

to 3% and shows that such an effect is well buried in our 10% uncertainties.

B. Astrophysical
The final phase of the discussion of the results of this experiment
involves the conversion of the experimental and theoretical cross sections

to the cross-section factor defined by Burbidge et al. {1957),

_ 1/2_1/2
S(Ecm) = G(Ecm)Ecmexp (31. 28 leoA Ecm YkeV-barns.

This quantity is tabulated in Table I and plotted in Figure 25. On the
basis of the accuracy of the theoretical fit to the experimental measure-
ments, the theoretical calculation was used to extrapolate S(E) to

zero-energy and obtain the low-energy cross-section factor, So’

So =0,47 £ 0,07 keV-barns.

This is considerably smallexr than the value of 1,2 keV-barns arrived
at by Holmgren and Johnston (1959) and substantially reduces the impor-
tance of this reaction (Fowler, 1960) as a termination for the proton-

proton chain at temperatures below 15 x 106 K.
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+ 2
The expression for the reaction rate (rpp) of the Hl(p, B v)D
reaction has been given by Burbidge et al. (1957). The e production

rate (Ra) may then be related to rpp as follows,

where F(1 is one-half the factor ¢(a) defined by Fowler (1958) since
we are relating Ru. to rpp and not to the equilibrium rate of the
H§:3(He3, 2p)He4 reaction. Hence, once equilibrium has been estab-

lished between the He3 -producing and the He3-destzroying reactions

Q¥ n stars ke Gis sunk. T ds

{at a temperature of about 10 x 10 -

given by the following expression,

e b [1-60s (B,

where

2
(£34534)7 | Xpge 2

£ = )
£1511%33533 MEXKye

exp (-100 Tgl/?’ ),

and where

‘S =S for He3(a,y)Be7

34 o)
+ 2
S;; =S, for Hp,p™)D
3 3 4
S33 = So for He (He™, 2p)He . .

The f's are the respective electron screening corrections (see Fowler,
'1960); the Xi’s are the concentrations by mass, and ‘Té is the tem-
perature in 106 o

F, was calculated in this manner over the range 10 = T, = 30,

using the following values of the various parameters (Fowler, 1962),
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and is plotted in Figure 28:

S =3.5x 0°%% eV -Baras £,8, =3.7x 10"2% keV-barns
833 = 1300 keV-barns f33833 = 1600 keV-barns
S,4 = 0.47 keV-barns £,4S54 = 0.59 keV-barns
(i(%ﬁ =10
H
At temperatures below 10 x 106 OK, where equilibrium has not

been established between the" Hl(p, B+

v)D2 reaction and the various ter-
mination reactions, Fo. is governed by the fact that the proton-proton
chain at such temperatures tends to stop at the production of He3, re-
ducing Fo. to zero at 5 x 106 °K. In this region Fc. is independent
of the value of S34 measured in this experiment; hence, it can be
taken correctly as one-half of the factor, ¢(a), plotted by Fowler (1960)
and is plotted as such in Figure 28 for temperatures below 10 x 106 8z,
The variation of F_ over the range 5= T, = 30 can be sum-
marized qualitatively as follows: N
(1) In the region 5= T6 =< 10 the He3(He3, Zp)He4 reaction
rate decreases rapidly, and the proton-proton chain tends
to stop at the production of He3, reducing F‘; to zero
at 5 x 10° °K.
(2) When equilibrium is first reached betwe_‘en the He3-
producing and the He3-destroying reactions in the
neighborhood of 10 x 10‘6 OK, Fa takes on the value of

0. 500 since at that temperature all of the terminations

go through the He3(He3, 2p)He4 reaction which requires
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two Hl(p,[3+v)Dz reactions for the production of each He4.
(3) At this point, the alternate tern'xina.tions through the

He3(a‘,\r)Be7 reaction which require only one Hl(p, B+V)D2

oAl fow each, B produced begin to become im-

portant, and Fa gradually increases to its new equili-

brium value of 1.00 at tem'pe.ratures in excess of
20 % 10° °k,
Once Fa. has been calculated in this manner, it is of interest to

determine what .frac‘tion of the H64 is formed through each termination,

it can be shown that the fraction going through the Be7 terminations is’

given by

4
Be' /He* =2 - & .

a

The fraction going through the HeB(He?’, 2p)He4 reaction is therefore,

7
4.
{He3(He3, Zp)He‘]/HeJ& = 1 - Be4
He
= _Fi =ik g
a

Furthermore, there are two possible ways that the Be7 termination

may go

Be7 (e”, V)Li7(p, a)H64
3 7" : :
He™ (a,y)Be

A

Be' (p, v)B (g VB’ (@)He™.

The fraction going through the B8 reaction is given by
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T

-3 7 _ e
B"/Be' = o
e P
where s is the mean lifetime of Be7 for electron—éapture in a fully
ionized region,
i/2
10 T4

‘ = 2
’re 1.83 pil 'I-XH} days, (Dbl '196 )

and where ';‘P is the mean lifetime of Be7 for proton-capture,

-10 . T
r o= Qe 93;53 XSIO (32- ) days, {Burbidge et al., 1957)
B PRty T
. 1/3
/
T =42,48 (7272 ;f}_) T,
\"o“1 16

1
p is the density of the medium; i is the concentration by mass oi
hydrogen, The Z's are the atomic numbers of the interacting nuclei,

and A is the reduced mass of the systems, Sl'?- = So for BeY(p,-y)BS,

and f17 is the screening factor mentioned above,
The fraction (BS/Be7) was calculated in this manner over the
range, 10 = Té = 30, using the following values for the parameters

( Fowler, 1962):

5., =0,030 keV-barns

iz 7 _
17 0,037 keV-barns

£7517
Xy = 0. 50,

The fraction of Be7 terminations going through the LiT re-

acticn is thus



1l foe’ = 1 -

Be

4 x
and these two fractions may now be combined with the Be7 /He™ fraction
to determine the fraction of the He4 produced through each termination.

In summary, therefore,

7
[He (He?, 2p)He®] /He® =1 - B2
He
7.7
4 iy
Ly e = B w e
g 7
ie Be
7 8
18 e o Js.b/i B -
He Be

11 three of these curves and the ratio, Be7/He4, are plotted
in Figure 26 to show the way that the importance of each termination
varies with temperature, The dependence of the ratio Be7 /He4 on
the relative abundances of helium andhydrogen is shown in Figure 27 for
the cases of (XHe/XH) = 0,25, 1.00 and 2,00, The first value corre-

sponds roughly to the initial conditions in the sun {Fowler, 1958), while

ot

he present sun as a whole falls near the value of 1,00, approaching

2,00 at the center (Bahcall et 2l., 1963}. This indicates that in the
present sun, with an effective temperature of 15 x 106 OK {Fowler,

1962), the proton-proton chain goes to completion through the He3(a,y)Be7
reaction approximately one-half of the time.

Once the fraction of He4 produced through each termination is

known, it is of interest to calculate the way in which the rate of energy
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production (RE} also varies with temperature because of the differ-

. 4 . : N e
ences in the He -production rates of the various terminations and the
differences in the effective Q's of those terminations due to the various
neutrino energy losses,

: 4 .
Consistent with the fact that at high temperatures one He  is
1 S A . e . _ ;
produced for each H(p, B V}D” reaction and with the fact that the maxi-

mum effective Q for the completed chain is 26, 2 MeV, we may write

where

€  =26.2r  MeV
pp - 238

{This is just twice the value given by Burbidge et al, {1957} under the

3’H A 2p)He4 reaction, )

assumption that the only termination was the He
FC, the energy generation rate factor similar to Fa’ can now
 be calculated on the basis of a knowledge of the effective Q's for each

4
termination and a knowledge of the fraction of He  produced through

each of those terminations as determined above. Hence,

i 8
— Be __r]_ 250 B \ 19.1 .
te=Fq Q'-}zé) ( 2% T ( 4)726.2|
e & 2

This curve-is plotted in Figure 28 with Fa’ and, as is the case
of Fa’ the region below T() =10 is taken from: Fowler (1960).
The variation of FE over the range 5 = T(_3 = 30 can be des-

cribed qualitatively as follows:
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(1) At temperatures below 10 x 106 °K the p-p chain tends
>
to terminate at the D“(p,\/)He3 reaction, and FE decreases,

approaching at 5 x 106 °K a value of 0, 255, the ratio of

the effective Q for the formation of He3

irom three pro-
tons (6, 68 MeV) to the maximum effective Q for the chain
(26,2 MeV),

(2) After equilibrium has been reached between the termination
reactions and the I—Il(p, B+V)D2 reaction in the neighbor-

hood of 10 x 106 OK, F_ becomes 0,500 since at that point
€ _ ,

4
all of the terminations go through the He3(He3, 2p)He
reaction which requires two Hl(p, BTV}DZ reactions for each
4
He™ produced.
(3) As the temperature is increased, the Li7 termination
becomes increasingly important, and, requiring only one
el ¥ 2 : 4
H{p,B v)D” reaction for each He  produced, pushes FE
up towards 0, 98.
{4) As the temperature continues to increase, however, the
onset and eventual domination of the BS termination,
with its large energy losses due to the energetic [-decay
of BS, prevent F_ from reaching 0,98, and after geing
through a maximum of 0, 89 at just above 20 x 106 R’ F€
‘approaches a value of 0,73, the ratio of effective Q of

the BS termination (19,1 MeV} to the maximum effective

Q (26,2 MeV),
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SUMMARY

The absolute cross section for‘the Hea(a, \/)Be7 reaction has
been measured with a total error of = 15% over the range of center-
of-mass energies from 181 keV to 2493 keV. Over this entire range
these rneasﬁrements have confirmed the direct-capture theories of
Christy and Duck (1961} and Tombrello and Phillips (1961}, The measure-
ments have been used to obtain a new value for thé low;energy Cross-
section factor, - SO = 0,47 £ 0,07 ke'\‘/—barns, for this reacfion, ‘and this
value of S_ has been used to recompute the effect of this reaction on

the termination of the proton-proton chain in nuclear astrophysics.
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APPENDIX I

Gamma-Ray Spectrometry

Although there are other ways of detecting gamma radiation,
such as geigér counters, ionization chambers, pair-specirometers,
etc., the inability of the first two devices to determine the gamma-ray
energy without the use. of a2 series of absorbers and the bulkiness of the
last device ‘together with its ins ensitivity to gamma radiation with
energy below the pair-production threshold, as well as the low efficiency
of all such devices, have made the use of scintillation phosphors with
their high sensitivity to gamma radiation and the proportionality of their
response to the energy of the incident gamma ray, the standard method
for detecting nuclear gamma radiation. Of the various scintillation
phosphors available, NaI(Tlj is the one accepted for general use when
considering all the {rarious characteristics of density, decay time and
felétive pulse height. For pérticular applications where one of these
factors may be especially critical, however, the choice may be quite
different. For instance, by going from NaI{Tl} to a liquid phosphor a
reduction of the decay time by a factor of 100 ié possible (Harshaw, |

1962).

A. Efficiency Calculations

In general, given a source and a detector, in order to say any-
thing gquantitative about how many interaction or decays take plabe in
the target we must be able to say (1} how many gamma rays have inter-

acted with the crystal and (2) what fraction of the emitted gamma rays
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interact with the NaI(Tl) crystal. Considering the second point first,
because its solution is much more straightforward, we will discuss
below the calculation of the efficiencies of Nal{Tl} crystals for detecting
gamma rays. |

The probability of a gamma ray interacting with a NaI{Tl} crystal
is {1 - e_gpﬁ} where o is the total cross section for such an inter-
action in (cmZ/g) as tabulated by Grodstein {1957}, p is the density of
Nal {3.667 g/cm3) and £ 1is the length of the path which the gamma ray
travels in the c1l'ysta1., For a particular source-crystal geomestry and a
particular gamma-ray energy we can then calculate the total efficiency
{’r}o} of the crystal by multiplying the probability of interaction by the
number of gamma rays per steradian {(dN{6¢; ), dividing by the total
number of such gamma rays {N_; emitted by the source and then inte-
grating the expression over the whole crystal.

The number of gamma rays per steradian is given by,

N
dN{0, ¢} = Z;T?W(e,qS} sin 6 d9O d¢
where W(8,¢) depends on the angular distribution of the gamma rays
emitted by the source. In the present case efficiencies were calculated

. 5 : i B e i8]
ior the cases of isotropic and sin 0 radiation patterns.

: N
AN{8, 8} tropic = 7o Sin © dO d¢
3N .
o 4+ 3
AN(0, ), 2 o = = sin” 0 do d¢

Thus,we can write
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ng(iso) = 11? S'S' [1-e9PL(8:8) .50 0 do a9,

crystal

n,(sin%0) = 2= S‘S‘ [1- e~ 0PL{89)] 4,36 dp a¢.
crystal

In the present experiment the geometries of interest were (1) the well
crystal with the beam axis (6 = 00) along thé axis of the crystal for
both isotropic and ainZB radiation, (2) the solid crystal at 0° and 90°
for isotropic radiation and (3) the splid crystal at 0° and 900 for “
sin2 e ra,di‘ation. In all but the last case (sinze.at 900) f_here_ is sufficient
cylindrical symmétry so that .t(é,tﬂ = £(9), and we may write

n (ise.) = = § N L R

crystal
‘no(sinZB @0°) = % y {L = o PP (0G0 % ap,
crystal -

In order to eliminate the ¢-dependence in the sinze efficiency

at 90° we can reexpress the integral as

ﬂo '217
‘n_(sin”6 @ 90°) = 3—-3 y dBS' de 8108 ain pl1 L o~ 7PHIB)
o 1T 0
0

where a and B correspond to ¢ and 6 respectively in the crystal’s
coordinate system, Then after the method of Rose (1953) we can re-

v Bop,
express sin”0 as
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Sin8 = -g—(l - P,(cos 0) )

Pz(cos 0) = Pz(cos .6‘)132(005 90°} + ... cos a +... cos 2a.

Therefore,

p

o a2 9
. 2 oy _ 3 { - -~ o - o ~opL(B)
n {sin”6 @ 907} = Sﬁf ds)o da3[l~r2P2(cos B)] sin B{1 - e )
B
o 2 .
+-§— ‘dJSS‘ dai?i[.,.. cos a +... cos 2a] sin B(l—e—dpﬂ(m),
TJg 0 3

where the second double integral goes to zero on integration over a.

i Pa
M (sin“e @ 90°) = %go ap 2 (1 +301 - 3 sin?p) )sin p (1 - o PP
{30 X
= .%[ Ig. (l - e_o.p‘,'{ﬁ)"g sin B dﬁ
\ Jo
By .
- %&) {1 - e B35 ap

3 5 1 . L
= é-no(lso) = —Z—no(sux 0 @0°.

The integrals in question were evaluated numerically using
Simpson®s rule on the Burroughs' 220 computer, using the following

expressions for £(0), (see Figure 6):
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Well crystal: (Figure 6B)

0°=<ese 2(8) = b /cos 8
" R
; . bta 1
‘6159-59,2 L6} = cos @  sin ©
6, =0s6, £(0) = (R,- Rl)/sin 8
R
| _ b+a 1
Ggmim iy Eig) = IcoséT_- " sin ©

Solid crystal: (Figure 6A)

0°=e6=s Y £(8) = b/cos ©
' - R a
s Skl z(e)—‘sin@ " Cos ©

The efficiencies thus calculated over the range of gammaf-.-ray energies
from 0.400 to 8.00 MeV a-re presented in Figures 7, 8, 9, 11-14.
Before leaving the problem of efficiency calculations, it should
be noted that while the above calculations have assumed a point source,
in the cé.ses where the detector is at. 00‘ (Figure 5A) the target region
in which fhe gamma rays are produced is actually a line source perpen-
dicular to the face of the crystal. The effective efficiency in this con-

figuration, assuming a uniform source, can be written as
© b _
no = a0 ax/ (- a)

o
a

where (b - a} is the length of the line source. These calculations were
also carried out for the present experiment but were not considered of

general enough interest to be presented in detail,
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Having thus determined Wy for all the cases of interest, it is
further necessary to apply absorbtion corrections to 71 to take into
account the loss of photons in the various materials between the target
and the crystal, namely the platinum liner in the target chamber, the
target chamber and the crystal housing, as well as the lead absorbers
used in a few cases. This correction was performed by multiplying M,

. -Zo.p.d

by the attenuatioh factor, e 1T where O.s Py and Ei are the terms

discussed previously for t.he‘ various 'materials.
Hence
-Z o. 3P .E
n =mge i
where .ﬂi was taken as an average value of the thickness of material
traversed by the gamma rays. An exact calculation of this attenuation
would have required the expansion of .Ei as Ei(G, ¢), and the integration
of the expression over the solid angle of the crystal as

| | -Zo.p.2.(6,)
1’1=§ E%w(e,d;)-[l_ N 1 d’)]e °1f1 sin 0 d6 d¢ .

crystal

Since the attenuation correctmn typically amounted to only about 2, 5%
this exact calculatmn was considered unnecessary and the approx1mate
expres*‘siou,noted above was utilized,

‘In this way then, the number of gamma-ray interactions in the
detector was related to the number of gamma rays emitted by the source
for all the situations en_counte‘red in the experi'meﬁt, and we are now

brought to the problem of deciding how many interactions take place in
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the crystal.

B, Response Function Determination
l. Characteristics of Gamma-Ray Response Functions
Given a monochromatic gamma-ray source, a NaI{Tl) detector
ahd_a-pulse-heigkm analyzer one soon discovers that the pulse-height
spectrum of the; output of the scintillator is not characterized by a
simple pu‘lsre-heigh‘t distribution. Instead, one finds that the output
pulée-height distribution has as many as four dr five peaks superimposed
on a broad distribution stretching from zero-energy to almost the full -
photon energy. See, for example, Figures 15 and 16. Furthermore,
the number of peaks in this spectrum as well as their relative impor-
tance and shape and the magnitude of the broad, underlying structure,
depends strongly on the gamma-ray energy, the‘ size of the crystal and
the geometry involved.
The complicated pulse-height distribution of the output of such
a spectrometer is caused by the large variety of ways in which.a gamma
ray can interact with the NaI(Tl) crystal. Evans (19_55) lists the
following four different kinds of interactions that the photons can.have
with matter:
(1) Interaction with atomic electrons,
(2) Interaction with nucleons,
{3) Interaction with the electric field sur‘rounding the
nuclei and electrons, and
(4) Int’eracti.on with the meson field surroﬁnding the

nucleons.
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In each of these interactions the photon may be either fully absorbed,
elastically scattered or inelastically scatferea, thus providing a total
of twelve different events that may occur, Only three of these turn
out to be important for the interaction of gémma ‘rays with NalI(TI)
crystals, in .the energy range 0.400 = EY =< 4,500 MeV., These are

‘ (.1) photoelectric absorbtion, (2) Compton scattering and (3) pair pro-
duction. Detailed discussions of the nature of these interactions and
their dependence on the energy of the incident gamma ray are available
elsewhere, e. g. Evans (1955), and there seems little to be géined A
from repeating that information here, We will pause here only briefly
to diécuss the characteristic features of such a gamma-ray spectrum
and their origins in the various mechanisms by which the gamma ray
can interact with the scintillator,

In photoelectric events the entire energy of the incident photon
is transferred to an atomic electron. If this electron is stopped within
the scintillator the entire energy of the gamma ray is transferred to the
crystal, . and the output pulse of the spectrometer corresponds’to the
full energy of the incident quantum. If the size of the crystal is large
. compared to the range of the photo-ejected electron, then sﬁéﬁ.ﬁﬂl—
energy events {Will' be the most likely result of a photoelectric inter-
action, and one would expect the output spectrum of such events to have
a large peak at the high energy end of the spectrum (the full-energy
peak) followed by a smooth tail stretching to lower energies and corre-
sponding to cases where the electron escaped from the crystal before

losing all its energy.
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The range of such secondary electrons in Nal{Tl) is given

approximately by Woodbury (1953} as,
(1) E_ <2 MeV, the range is L 2 mm/MeV.

(2) E, > 3 MeV, the range is 1. 5 mam/MeV.

Hence, for an electron with an energy of 4 MeV (the maximum encountered
in this experiment) the Vrange is only of the order of 6 mm and is there-
fore much smaller than the crystal dimensions of three inches or ap-
proximately 75 mm.

In Compton scattering the incident photon of energy (EY) is
scattered by an atomic electron through an angle © and degraded to an

energy (E\;) where
. 2E \
E /(1 + =2EE. = E
[z ==,
o

the upper limit holding for the case of forward scattering (0 = 00)
~where no energy is transferred to the crystal and lower limit for the
case of backward scattering (0 = 1800). The energy of the scattered

electron is thus given by

and from this interaction one would thus expect some sort of a broad
distribution of pulse-heights stretching from zero energy to some limit

or shoullder at ‘&EY - ——.\ZI—E— ‘). The s.‘catter‘ed photon, however, still
1+

2
moC,
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has the possibility of further interacting with the crystal so as to

eventually lose its entire energy to the crystal. Such events would

yield further contributions to the full-energy peak discussed above.
Finally, for the case of pair production the entire energy of

the incident photon'is-t:ansferred into an electron-positron pair. As

discussed al_:ove if the size of the scintillator is large cofnpared to

the ranges of the pair, their entire kinetic energy (Ey_ Zmocz) will

be transferred to the crystal. The remaining 1. 322 MeV of the energy

appears in the two 511-keV gamma rays arising from the annihilation

of the created positron. These two gamma rays are, of course, free

to further interact with the scintillator or to escape from it completely.

The latter situation ‘will_give rise to another peak in the pulse height

spectrum 1. 022 MQV lower than the full-ene rgy peak which will be

referred to as ‘the double-escape peak. If one of the annihilation quanta

loses its fuil energy to the crystal it will give rise to another peak 511

keV below the full energy peak (the sinéle-esc’ape peak), and if both of

the annihilation quanta é.re completely absorbed in the crystal the event

will contribute a count to the full-energy peak. Further, of course,

these annihilation quanta may interact but not lose their entire energy

to the crystal, undergoing Compton scattering and giving rise to additionall

Compton distributions between the double- and single-escape peaks and .7

between the single-escape and full-energy peaks. The latter is, however,

" the position of t‘he shoulder of the primary Compton distributioﬁ, and

this will unacubtedly mask the secondary erffect.

Hence, in conclusion, starting from the full-ene rgy peak we would
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expect to find the following characteristic features in the pulse~height
spectrum of a monoenergetic gamma ray, assuming that the range of

all glectrons and positrons is small compared to the crystal di:rﬁensions:
(Naturally those structures applying to pair production will occur only
for gamma rays whose energy is greater than the threshold for sucl} an
interaction, 1,022 MeV)

(1) the full-energy peak at (E"I) with contributions from
photoelectric events, Compton scattering events where
the scattered quantum eventually loses its entire energy
to the crystal and pair production events in which both
of the annihilation quanta are totally absorbed in the
crystal,

(2) the shoulder of the primary Compton distribution,

(3) the single-escape peak at (EY - 511 keV}),

(4) the shoulder of the Compton distribution for one annihi- -
lation quantum,

(5) the double-escape peak at (EY - 1022 keV), and ,

(6) the tail of the primary Compton distribution.

All of these features may indeed be seen in Figures 15 and 16, the re-
sponse' functions of the crystals used in this experiment. |

It is interesting to note one significant difference in the appearance
of the response functions of these two crystals in the shape of the shoulder
of the primary Compton distribution; for thésmlid 3" x 3" crystal this
shoulder is much sharpe.r and more .pronounced than for the 3" x 3" well
crystal. This can easily be understood by reé.lizing that events in this

part of the'Com'pton distribution arise from cases where the incident
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photon is scattered backwards and the low-energy back—s_cattered
quantum escapes from the crystal, In the case of the well crystal,

since the source is in the center of the crystal, in almost all direction;
a back-scattered photon must travel through at least 1.125 inches of the
crystal before completely escaping, whereas in the entire front one
third of the solid 3" x 3" crystal it is possible for the back-scattered
quanta to escape through less crystal than tha-t. Hence, since the half-
thickness of NalI{Tl) to such a back-scattered quantum is approximately
3/8%, in the well crystal it is always extremely likely that the back—‘
scattered gamma ray will be absorbed in the crystal transferring the

event from the Compton distribution to the full-energy peak.

2. Experimental Measurement of Response Functions

Given such a complicated spectral responsle, if only one gamma-
ray transition is involved {i.e. a monoenergetic source) the analysis of
the spectrum, although somewhat indefinite, is none-the-less reasonably _
straightforward. When a second gamma-ray transition is added to the
spectrum, however, any analysis of the two transitions must require a
separation of the total spectrum into its two component spectra, one for
each transition, each of which can then be handled indépendently as the
spectrum of a monoenergetic source. Such a prerequisite separation
can be performed 6nly if the response ;functior}s of the detector for the
. various gamma-ray ene.rgies are known, and since such response
functions are highly dependent on E\/ and the experimental arrangement,

the only logical way to approach the problem is to obtain these response
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functions experimentally under conditions closely approximating those
of the experiment to be analyzed. |

In the present case, since the gamma;ray energies encountered
cover the range 0.432 = 'EY = 4.080 MeV, the response functions of
each of the various scintillators were measured at a‘number of points
covering this region so as to allow reasonably accurate interpolation for
intermediate energies. The choice of the reactions to be used to obtain
such functions is governed by the considerations (1) that there be no
sfr'ong competin.g gamma radiation which might confuse thc'ﬂ,d_e_sired-
function and (2) that the reaction be reasonably strong so that the sub-
traction of background can be accomplished with rea.sonable accuracy
and reliability. On the basis of such considerations the following re;
actions were chosén' for variocus values of EY covering the energy

range noted above:

E, = 0.432 Mev . B, a)Be’
1.277 MeV . EJg(a,plnqezz
1.632 MeV Na?3 (p, c.j.)Ne20
1.980 MeV 0'%(p, p))0™°
2.367 MeV e B
3.51 MeV G2 i, BT
3.560 MeV Be’(p, a,)Li®
4,433 MeV NP (p, oLl.)c12

In each of these cases, runs on the target in question were made
for a definite charge accumulation and then iinrnediately followed by-

background runs in the same geometry for an identical accumulation of
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charge. Deépending on the reaction, these background runs were made
either at exactly the same energy on the. farget backing or on exactly the
same target at a beam energy just slightly removed from the resonant
energy. DBecause of the dependence of such response fuﬁctions on the
targetmcr}.rstal geometry and shielding, all of these runs were taken in |
geornetries as close as possible to those of the data-runs and with
identical shielding. Dead time corrections were applied to each _of the
‘spectra by multiplying them by the ratio of the clock-time for the run
fo the live-time of the analyzer during the run. The background spectrum
was then subtracted from the target spectrum, the net spectrum nor-
malized to 1. 000 at the top of the full energy peak and this spectrum then
plotted as a function of (E - E\{]. Such a calibration was carried out
over the full range of energies listed above for the 3" x 3" crystal
(Figure 15) and the 3" x 3" well crystal (Figure 16), A similar cali-
bration was performed for thé 2" x 2% crystal over the range from
432 keV to 661 keV, since it was used only in the coincidence experiment
and then only in the energy region around 432 keV,

The use of (E - ‘EY) as an abscissa was suggestedrby a paper of
. Okano (1960), The actual decision to use this coordinate wésmr-hade on
the basis that in such a representation related structures (e.g. the single-
escape peaks) remain fixed thus eliminating 2ll problems due to the
crossing of these structures as they move along the abscissa, making
the interpolation functions monotonic and facilitating interpolation since
as the gamma-ray ener>gy is varied only one coordinate of the various

structures changes, their height relative to that of the full-energy peak.
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3. Calculation of Coincidence-Summing Response Functions

Before discussing the use of these response functions to sort out
complex gamma-ray spectra, we should pause a moment to describe
how these single response functions can be combined to give the coinci-
dence-sum respoﬁse function corresponding to two single gamma rays
interacting with the crystal simultaneously to produce a pulse-height
distribution with a full-energy peak at an energy corresponding to thé
sum of the individual gamma-ray energies. It is clear that the proba-
bility of finding é, count in a particular energy interval of the sum
spectrum is just the sum of the probabilities of all possible coincidences
which have a total energy in that interval, where these latter probabilities
are just determined by the individual response functions. Denoting the

response function of a particular gamma ray as ‘IJ\I (E), we can express

. i
this as

: E
‘Il'Yl"'Yz(E) = Z \Ifyl(Ei) \IIYZ(E—Ei) o

E.=0
i

For the case of three or more coincident gamma rays, the extension

of this is clear, e.g. for the case of three coincident gamma rays,

o) E-E.
1 .
v E =$ ¥ ({E. Z b . E-E.-E.).
i i '

The Burroughs' 220 was programmed to carry out this summing for the
case of two coincident gamma rays, the case encountered in the present

~experiment with the cascade transition.
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From the calibration described on the preceding pages one
can then interpolate the response function at any intermediate gamma-
ray energy for a single gamma ray and produce the sum spectrum of
the coincidence of any two sucl;l gamma rays. However, these responsé
functions are normally limited to the high energy end of the spectra,
-1, 20 MeV g (E - EY), because of the difficulties in obtaining calibra-
tion spectra which are anywhere near accurate over their whole extent
due to such problems as (1} the tremendous increase in background at
the low-energy énd of the spectrum, (2) the frequent occurrence of -
strong, low-energy trmsiﬁons arising from Coulomb excitation of the
target backing, (3) the near impossibility of finding calibrations in which
there are no other gamma rays in the spectrum either from contaminants
or from the target itself, or {4) the scattering of photons by material
such as shielding in the vicinity of the crystal. Tilis practical limitation,
however, i.s not a complete tfagedy, as a knowledge of the spectrum in
just the high-energy region is usually quite sufficient. I%‘or quantitative
work, however, it will require additional knowledge as to what fraction

of the total spectrum is in this high-energy regi:on.

C. Phéto-Fraction Measurements

As one can easily see, it‘turns out that actually the only part of
tile spectrum which is not effected by the presence of heavy shielding
around the crystal is the full-energy peak, since only those quanta which
leave their entire energy in the crystal can contribute’to thét peak,
Hence, we must know the ratio, (éo), of the counts in the full-energy

peak, (Y,), to the total number of counts in the response function, in
; ¢ i b
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order to relate the full-energy peak to the number of gamma rays of that

energy emitted by the source, (No).,

Yqb (71 : (bo): No

To accomplish this the most difficult task is to obtain response
functions, in the absence of all scattering material, from which the total
number of counts in the spectrum due to the gamma ray can be deter-
mined reliably. This Waé achieved in the present experiment by re-
moving all of the lead shielding and as much of the other material as

»ogsible from the vicinity of the crystal. The response functions of the

w

crystal were then redetermined using the same reactions and the same
techniques listed previously, The same problems were, of course, en-
countered in the low-energy region of these spectra, thus preventing

an immediate determination of the total number of counts in the sl;ec—
trum. The customary way of getting around this problem has been to

use the spectrum as far back as possible and then use a horizontal

extrapolation to zero-energy. Zerby and Moran {1961}, however, have

W

ointed out a more sensible way to approach the problem by calculating
exactly the zero-intercept of the response function and using this point
to interpolate the function through the region where it is distorted by

the efiects noted previously. The zero-intercept is subject to an exact

calculation since the only events which can give rise to a count in that

energy interval are events in which the incident gamma ray is scattered

exactly forward giving up no energy to the crystal.
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The "number-energy" distribution of Compton electrons (i.e.
the Compton distribution in a Nal{Tl) spectrum) can be expressed as

(Evans, 195l5)

. : 2
do _ do 27 [ fdal- ncaa i ]
dT © a% a’m o (1-’ra)z- a(2+a}cosz¢r

where
2 -V 2 T
T ;I A Ti E
do _ "o [ Ty v Y .
- R & ) =4 = '3.1“9)
Y E
Y
and where
_ 2
O'"Ey/moc

'E_\{is the initial gamma-~ray energy,
Eyl is the scattered gamma-ray energy,
© 1is the scattering angle of the photon, and

¢ is the scattering angle of the electron.

As the energy transfer'goes to zero, 0O — OO; ¢ — 900, and it is clear

that

Since we are interested in the number of counts in a finite energy region
we can integrate this over the zeroth channel of the analyzer, assuming

do/dT 1is roughly constant, to get

2
o 2mr m ¢

G(O‘LH channel) = ... (
E

}s

2 Echannel :
Y
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The number of quanta incident on the crystal is given by

No S-Zw eo
-— \  d¢ g dO sin 6.
4 0 0

{ these,

o
N 2m o /
2 ‘S‘ e_cpﬁ\e)sin 0

—_— dg de

4 0 ‘)O
have no other interaction with the crystal. The number of available
electrons/cm2 in the crystal is just Ne' 2(8) where N(a is the electron

density. Therefore, the number of zero-energy interactions is given by

NeNo‘ rimoc \ eo -opl(©)
—— KZ"_—E’T-} (AE ) ‘Sﬁo 2(0)e” sin © dO,

<

and the fraction (fo) of a response function in the last channel becomes

, Ne'rrrcz)rnoc2 peo ~opl {6)
f = =52 02 (AE ) ) £{6)sin 6e 7P de.
o- ”QEZ channel’ | 0

X

fo‘ was evaluated numerically on the Burroughs ' 220 computer
using the 'exéressions for £{6) listed previously. From f_ the zero
intercept of a response functicn can be determined by a process of
iterative integrations of the function.

With the zero-intercept determined, the total number of counts
in the "free-crystal” response function can then be determined and thus

the photo-fraction, d)o. This was carried out for the crystals used in
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this experiment and the resulting photo-fractions are shown graphi-
cally in Figures 10 and 14,

From the combination of these calculations of the efficiehcy
(n) and the photo-fraction (qbo) into the photo-efficiency (ngbo) togethei'
with the response-function calibration of the crystals, we are thus in a
position, given a complex spectrum, to sort out the various gamma -
ray contributions and from the area of their full-energy peaks deter--
“mine the number of each of the gamma rays emitted from the target.

All of this sounds fine on paper and is in any event the most
sensible way to approach the problem of determining absolute gamma-
ray yields. In the present experiment, however, a serious difficulty
was found in a comparison of the absolute determinations of the 3" x 3"
solid and the 3" x 3" well crystals. This comparison indicated that
the photo-efficiency of one of the crystals was off by approximately
15 to 20%, independent of gamma-ray energy. A check against other
crystals indicated that the trouble was probably in the well crystal, and
so the photo-efficiency of the well crystal was measured directly at one
éne;-gy to check with the photo-efficiencies derived above.

This measurement was carried out at 2 gamma-ray energy of
L. 277 MeV using a Nazz source. The source ﬁas placed in the well
crystal and two 3" x 3" NaI(Tl) crystals placed on either side of the
well crystal. A coincidence was then required between a 511 keV
annihilation quantum in each of the 3" x 3% crystals, using the same type
of fast-slow coincidence mixer described in Part IIl of the text. The

well-crystal spectrum was stored in the multi-channel analyzer gated
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by the coincidences of the two annihilation quanta. Background runs
were mad-e with the two 3" x 2" crystals at 90° to each othes té remove

+ Feal coincideﬁces that were not double-annihilation coincidences. Ran-
dom coincidences were removed using the singles spectrum. For every
. double-annihilation coincidence there was a possibility (just the photo-
efficiency} of there being a count stored in the maulti-channel analyzer
in the full-energy peak of the 1. 277 MeV gamma ray spectrum. The
photo-efficiency (nqbo) is thus just the ratio of full-energy counts to

double-annihilation coincidences. This measurement gave
n(bo(l, 277 MeV) = 0,167 = 0,001,

This, compared to the value of 0,144 determined for . n(bo by a calcu-
lation of 7 an& a measurement of qbo as described previously, shows
just the expected discrepancy of 16.1% in the proper direction to make
* tion for this discrepancy with the well crystal has been found. The
measured point, corrected upwards to (T]cho = 0,172) is plotted in
Figure 14 and a line drawn through it parallel to the other T}O“qbo line
indicating a 16.1% éorrection applied uniformly at all energies, in line
with the fact that this discrepancy was observed to be independent of
gamma-ray energy,

Thus, in conclusion, it can be said that with the techniques des-
cribéd in this appendix each of the crystals used in the experiment des-~
cribed iﬁ the body of fhis thesis was calibrated so that complex spectra

could be sorted out, and so that from the full-energy peaks of the resulting
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components the absolute number of gamma decays occurring in the target

could be determined.
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TABLE It Experimental Total Cross Sections (O and Cross-

3 Tota.l‘}
Section Factors (S(E)) for He”(a,vy)Be? as a Function

of the Center-of-Mass Energy (Ecm)"

The tot‘al cross sectidné are derived from the gamma-ray
spectra as described in Part IV (A). The last column notes the method
of analysis used in each case: "L, S," — least-squares analysis, see
page 36, "F.E," — analysis of only the full-energy peak, sece page
42, and "Int, " — ana;lysis of the integrated spectrumn, see page 42.

See text page 54 and Figure 21.
S(E) is the cross-section factor defined by Burbidge et al.

(1957). See text page 59 and Figure 25.
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TABLE I (Cont.)

- | O rotal ' S{E cm) Notes
(keV) {p.-Barns) {(keV-Barns)

1038 = 33 1.706 = 0,148 0.286 = 0.032 L. 8
1041 = 30 1.744 = 0,133 0.291 = 0,032 F. E.
1093 % 32 1.530 = 0, 134 0.237 = 0,026 F.E.
1138 = 28 1.965 = 0,150 0.287 = 0,030 F.E.,
1141 = 31 ‘1,805 = 0,156 0,253 = 0,028 -
1145 = 31 1.709 = 0, 147 . 0.248 £ 0,027 i 8,
1243 # 30 2,057 £ 0.175 0.266 + 0,028 Eo Bl
1243 = 30 1. 684 = 0,148 0,218 = 0,023 F. E.
1248 = 30 1.768 £ 0.153 0,228 = 0,024  L.S.
1248 = 30 1.984 = 0,171 0,255 & 0, 027 . 5
1340 = 28 1.814 = 0,157 © 0,213 % 0,022 F.E,
1343 = 28 2,009 = 0,174 0,235 = 0,024 L. S.
1343 = 26 2.596 = 0,197 . 0.304 = 0,031 P8
1353'#29 2,201 % 0,188 0.256 * 0,026 L. S.
1553 # 24 3:035 & 0,231 0.301 % 0, 031 F.E.
1618°E 25 2,810 & 0, 245 0.267 % 0.027 | | 'F. E.
1638 % 26 2.813 = 0, 244 0,264 = 0,027 F. E.
2096 = 23 3. 717 % 0,324 0.279 = 0,028 - F,E.
2111 =23 - 3,427 % 0,308 0.256 = 0,026 F.E.
2113 = 23 3.787 = 0,329 0.282 = 0,028 FJE,
2143 = 23 3.767 = 0,327 0.278 = 0,028 F. E.
2493 =22 3,903 % 0,508 0.259 = 0,034 F.E.

Coincident Measurement:

E = 1378 & 29 keV
cm

o{y,) = 0. 684 % 0,062 p-barns.~ ¢

Total = 24 507 * 0,355 p-barns
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7

FIGURE l: Energy Level Diagram of Be' (Lauritsen, 1962)

This diagram indicates the Q-values involved in the present
experiment as well as the locations, spins and parities of the levels
reierred to in the text., The gamma transitions referred to in the
text as vy, Yy and Y3 are labelled.

See text pages 31 and 35.
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' FIGURE 4: Gas Manifold

This is a schematic representation of the manifold system used
for filling the target with the appropriate gas and meaéuring the gas
pressure in the target. Points @ and @ are connected to
the corresponding points in Figures 2 and 3. ® 's mark the
location of Hoke needle valves.

See text page 19.
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FIGURE 5: Target-Detector Geometry

In (A) the target-detector geometry of the 3" x 3% NaI{Tl)

is indicated for the runs made at 0° and 900. The location of

i

the 2" x 2" crystal used for the coincidence run with the 3% x 3
crystal at 90° is.also shown. Sece text pages 23, 28, 31 and 72.

In (B) the target-detector geometry is shown for the well

crystal. See text pages 23 and 28,
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FIGURE 6: NaI(Tl) Scintillators

These figures define the parameters used in the calculation
of the total efficiency {1’;0) for the solid crystals (A) and for the well
crystal (B). The symmetry axis of these cylindrical crystals is
defined 2s Q.

See text pages 71 and 72,
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FIGURE 10: Photo-Fraction for 3" x 3" NaI(Tl) Crystal

The experimentally determined photo-fractions are plotted
for the 3" x 3" Nal(Tl) crystal as é. function of gamma-':;.}ay energy,
and a smooth curve drawn through the points for interpolation,
These méa.surements were made with the crystal completely un-
shielded and apprdximatély 7/16" from the target spot at 90° to
the. incident beam, |

See text page 87.
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FTIiGURE 17: Alpha-Particle Stopping Cross Sections

The alpha-particle stopping cross sections (ea) for helium gas
and nickel are plotted as a function of alpha-particle energy (EQ), These
stopping cross sections were obtained by conversion from the proton

stopping cross sections of Whaling {(1958) by the relation

Eq(Ea) = RaEp( 3,97

where Ra is the effective squared-charge as also listed by Whaling
(1958).

See text page 25.
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FIGURE 18: Gamma-Ray Doppler Shifts

The calculated max1mum Doppler shift (./.‘:\EY = E_Y(Oo) - E\{)
for gamma rays from the He3(a, \.J)Be7 reaction is plotted as a
function of gamma-ray energy (E'y)' The measured Dopéler shift
is indicated at four poiﬁts, showing the effect of the large solid
angle of the crystal at 0° in slightly decreasing the observed shift

compared to the shift calculated at Qo.

See text page 30,
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. FIGURE 19: Data Reduction I

Figures 19 and 20 represent graphically the steps of data
reduction for the case where E = 3.25 MeV with the B mp g¥
NaI(Tl) crystal at 0° with respect to the alpha-particle beam,

(= = 1248 keV, E_, = 2890 keV and E_., = 2458 keV),
o, vl :

y2
Figure 19(A) shows the appearance of the total spectra for
the rﬁns on the He3_ tax;get and for the runs on the I‘-Ie‘1 target,
(approximately 1500 pC each).
Figﬁre 19(B) shows the net experimental spectrum remaining
when the He4 spectrum is subtracted from the Her3 spectrum.
Note the good agreement between the spectra in the region above

channel 96, beyond the full-energy peak of Y-

See text ‘page 35,
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FIGURE 20: Data Reduction II

The net experimental spectrum of Figure 19(B) is plotted for
comparison with the computed, least-squares fit (curve (1) ) obtained
using response functions interpolated from Figure 15, Curve (2) is
the response function of a monoenergetic gamma ray with EY = 2890
keV, the crossover transition. Curve (3) is the cascade response
function for two gan‘nma rays with E\!= 2458 keV and 432 keV, the
cascade transition. Curve (4) is just that part of (3) which is due to
summing. The normalizations of curves {2} and (3) are determined
by the least-squares fite Curve (1) is then just the sum of (2} and (3).

The cross sections for the ground-state (yl) transition and
the cascade (yz-%- \/3) transition are now determined from these
curves by assuming that the full-energy peaks are symmetric and

determining the full-energy peak yields as
500 kev

from curves (2) and (3) respectively. These yields are then related
to the cross sections using the appropriate efficiencies and photo-
fractions.

Note the contribution of the summing events to the full-energy
peak and the lack of resolution of the various secondary peaks in the
total response function.

See text page 38,
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FIGURE 24: Angular Distribution Coefficients

The differential cross section has been shown to be of the

form:

do(0)

- 2 3 4 Ay
=5 = co(ll + a,cos 8 + a,cos 6 + aycos e + a,cos o).

The predicted behaviors of 2y, a5, ag and a, are shown in .

this graph as functions of the bomabrding energy (‘Ea) for a nuclear

radius of 2,80 f. It is clear that over this whole region the coefficients

remain fairly small. The behavior of the y,-coefficients at the high

energy end of the curves is caused by the approach of the ?F'f/Z“ level
in Be' at E_= 6,88 MeV.

See text page 59.
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FIGURE 28
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