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Abstract

Contributions to vortex methods for the computation of incompressible un-
steady flows are presented. Three methods are investigated, both theoretically and
numerically.

The first method to be considered is the inviscid method of vortex filaments in
three dimensions, and the following topics are presented: (a) review of the method of
regularized vortex filaments and of convergence results for multiple-filament computa-
tions, (b) modeling of a vortex tube by a single filament convected with the regularized
Biot-Savart velocity applied on the centerline: velocity of the thin filament vortex ring
and dispersion relation of the rectilinear filament, and (c) development of a new regu-
larization of the Biot-Savart law that reproduces the lowest mode dispersion relation
of the rectilinear wortex tube in the range of large to medium wavelengths.

Next the method of vortex particles in three dimensions is investigated, and the
following contributions are discussed: (a) review of the method of singular vortex par-
ticles: investigation of different evolution equations for the particle strength vector
and weak solutions of the vorticity equation, (b) review of the method of regular-
ized vortex particles and of convergence results, and introduction of a new algebraic
smoothing with convergence properties as good as those of Gaussian smoothing, (c)
development of a new viscous method in which viscous diffusion is taken into ac-
count by a scheme that redistributes the particle strength vectors, and application of
the method to the computation of the fusion of two vortex rings at Re = 400, and
(d) investigation of the particle method with respect to the conservation laws and
derivation of new expressions for the evaluation of the quadratic diagnostics: energy,
helicity and enstrophy.

The third method considered is the method of contour dynamics in two dimen-
sions. The particular efforts presented are (a) review of the classical inviscid method
and development of a new regularized version of the method, (b) development of a
new vector particle version of the method, both singular and regularized: the method
of particles of vorticity gradient, (c) development of a viscous version of the method of
regularized particles and application of the method to computation of the reconnec-
tion of two vortex patches of same sign vorticity, and (d) investigation of the particle
method with respect to the conservation laws and derivation of new expressions for

the evaluation of linear and quadratic diagnostics.
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Chapter 1

Introduction

This thesis is concerned with the numerical computation, using vortex methods, of
unsteady vortical flows of an incompressible fluid. This work originally focused on
three-dimensional vortex methods. Insights gained during those investigations natu-
rally led to the development of a new two-dimensional method as well. This explains
why “three-dimensional” precedes “two-dimensional” in the title of this thesis.

Vortex methods are an alternative to Eulerian methods, i.e grid methods. They
are Lagrangian methods that only require computational elements where the “action”
is, 1.e., where the vorticity is. In many flows of physical interest, only a small fraction
of the entire flow volume is occupied by fluid that contains vorticity. The rest of the
flow is essentially vorticity free. For an incompressible fluid, it is sufficient to follow
only the evolution of the vorticity field because the velocity field can be computed
from the vorticity field (the so-called Biot-Savart induction law) and from boundary
conditions. The evolution of the vorticity field depends on whether the flow is inviscid
oT Vviscous.

For inviscid flows, it is known from the theorems of Kelvin and Helmholtz that
vortex tubes retain their identity and simply move as material volumes. Inviscid flows
can thus be represented with Lagrangian computational elements that are, roughly
speaking, sections of a vortex tube. Each element is convected with the fluid velocity,
and the vorticity vector associated to that element is strained by the local velocity
gradient. This is essentially the method of three-dimensional vortex filaments which
is reviewed in detail by Leonard (1980b,1985) (see also Saffman & Baker (1979) for a
general review of vortex interactions). When the filaments are rectilinear, then only
the projection of the filaments in the plane has to be considered. This is the method
of two-dimensional vortex particles also called method of vortexr blobs.

Two-dimensional vortex blobs have been and still are widely used. They are
computationally more affordable than three-dimensional vortex filaments and have
been used to investigate many interesting problems such as the time-developing shear
layer (Nakamura, Leonard & Spalart 1982) and the space-developing shear layer
(Ashurst 1979, Inoue 1985). The computation of separated flows has also been stud-



]

ied. Examples are Spalart & Leonard (1981), Spalart (1982) and Spalart, Leonard &
Baganoff (1983). These efforts are still in progress (Chua K., private communication).

For two-dimensional problems with piecewise constant vorticity, the method
of contour dynamics introduced by Zabusky & Hughes (1979) can be used instead
of the method of vortex particles (Zabusky & Overman 1983, Dritschel 1985,1986,
1988). In this method, the boundaries of patches of uniform vorticity are convected
by the fluid velocity. Because of the uniformity of the vorticity within each patch, the
determination of the velocity field reduces to integrals along the patch boundaries
only. This method is inviscid because it relies on the vorticity remaining uniform
within each vortex patch.

For three-dimensional problems, the method of vortex filaments has been used
to investigate already fairly complex vortical flows. Leonard (1980a,1981) used the
method to investigate the evolution of a turbulent spot in a laminar boundary layer.
Ashurst (1983) used it to study the evolution of the time-developing round jet. More
recently, the method was used by Ashurst & Meiburg (1985) for the study of the
time-developing three-dimensional shear layer and by Meiburg & Lasheras (1986)
for the study of the time-developing three-dimensional plane wake. One must keep
in mind that the method of vortex filaments is essentially inviscid and that only
problems where the viscosity plays a minor role can be investigated using that method.
Moreover, the method has problems when a single filament is used to model a physical
tube of vorticity. The equations of motion, with proper rescaling, lead to a correct
description of the dynamics of the vortex tube only when the perturbation wavelength
is much bigger than the core size of the vortex tube. For wavelengths that are of the
order of the core size, the dynamics are not resolved properly (Moore & Saffman 1972,
Leonard 1985).

For viscous flows, the vorticity field is still convected by the velocity field, but
it also diffuses. Vortex tubes do not necessarily retain their identity in time because
of the possibility of reconnection of vortex lines by viscous diffusion. The method
of vortex filaments cannot be used to compute such processes unless some form of
filament surgery is used. A major contribution of this thesis will be the development
of a viscous method of vortex particles that can take into account complex vortex
tube interactions where the viscous diffusion plays an important role.

The body of this thesis is divided into three chapters. Each chapter covers a
different method and can almost be read independently. Moreover, each chapter has
its own introduction, which contains additional details not included in the present

global introduction. The outline of the thesis is as follows:

¢ Chapter 2 is concerned with the method of three-dimensional vortex filaments.



The method of regularized filaments (Leonard 1980b, 1985) is reviewed in detail.
In particular, two issues related to the modeling of a vortex tube with a single
vortex filament evolving under the Biot-Savart velocity applied on the centerline
are investigated: 1) the velocity of the single-filament vortex ring and 2) the
dispersion relation of the perturbed rectilinear vortex filament (Leonard 1985).
Both issues are closely related. The analysis provides the appropriate scaling that
reproduces the correct velocity of the thin ring and the correct dispersion relation
of the thin vortex tube. This scaling is applied to many vorticity distributions
of numerical interest, and the numerical values for the scaling factors are also
provided. It is shown however that the vortex filament does not reproduce
the correct dispersion relation of the vortex tube as soon as the perturbation
wavelength is smaller than five times or so the vortex tube core size. This
failure is responsible for the development of spurious instabilities in numerical
computations. A new regularization of the Biot-Savart integral is proposed.
This regularization forces the single filament to correctly reproduce the exact
dispersion relation of the vortex tube of uniform vorticity in the range of large

to medium perturbation wavelengths.

Chapter 3 is concerned with the method of three-dimensional vortex particles,
also commonly called vortex sticks or vortons (Rehbach 1978, Beale & Majda
1982a, 1982b, Novikov 1983, Aksman, Novikov & Orszag 1985, Mosher 1985,
Beale 1986b, Saffman & Meiron 1986, Choquin & Cottet 1988). These vortex
particles are vector elements (vorticity vector x volume). The element is con-
vected with the fluid velocity, and the strength vector is stretched in accordance
with the velocity gradient tensor. Different evolution equations for the strength
vector are investigated. This chapter is related to Chapter 2 because a vortex
particle is, to a certain extent, a discretization of a vortex filament. Vortex par-
ticles are however not “connected” to neighbor particles for all times as opposed
to the situation for vortex filaments, where adjacent computational points are
always connected by the filament itself. The lack of connectivity introduces con-
sistency problems, because the vorticity field represented by a collection of vortex
particles does not necessarily remain divergence free for all times. However, there
is an advantage in that one can introduce viscous diffusion in the method. In
this thesis, a new viscous method is proposed in which viscous diffusion is taken
into account by a scheme that redistributes the particle strength vectors in a way
that is consistent with viscous diffusion. The treatment of viscous diffusion in
such a manner was introduced by Mas-Gallic (1987) and Degond & Mas-Gallic
(1988a,1988b) (see also Cottet & Mas-Gallic 1983,1987) in the general frame-



work of solving a convection-diffusion equation using a particle method. Their
theoretical developments are applied to the method of three-dimensional vortex
particles. It is shown numerically that the method is indeed consistent with
viscous diffusion at a quantitative level, and that complex problems can be com-
puted using this method. In particular, the viscous fusion of two vortex rings at
a Reynolds number of 400 is computed, and the numerical results are compared
not only qualitatively, but also quantitatively with the experimental results of
Schatzle & Coles (1987 and private communication). Numerical evidence is also
provided that the viscous method helps reduce the consistency problems of the
method of vortex particles by keeping the divergence of the particle vorticity

field at a low level.

Finally, Chapter 4 is concerned with vortex methods for two-dimensional flows.
Both filament (i.e., contour) and vector particle methods are investigated. The
filament method is the now classical inviscid method of contour dynamics intro-
duced by Zabusky & Hughes (1979) (see also Zabusky 1981, Zabusky & Overman
1983, Dritschel 1985, 1986). It is an inviscid method in which the boundaries of
vortex patches of constant vorticity are convected by the velocity field. The ve-
locity field only depends on the position of the boundaries. A regularized version
of the method of contour dynamics is proposed that should help solve some of the
problems encountered with the classical method, such as excessive generation of
contour length and subsequent need for contour surgery (Dritschel 1988). This
regularized version of the method of contour dynamics is also inviscid. A new
particle version of the method is also proposed, and both the inviscid and viscous
versions of the method are developed. These particles are vector elements (gra-
dient of vorticity vector x area). The element is convected by the velocity field,
and the strength vector is subjected to the two-dimensional evolution equation
for the vorticity gradient. This method is, to the method of contour dynam-
ics, what the method of vortex particles is, in three dimensions, to the method
of vortex filaments. In particular, it is shown that the viscous version of the
method can account for the process of reconnection of vortex patches by viscous
diffusion. This reconnection process, although two-dimensional, is very similar
to the three-dimensional process of vortex tube reconnection (as encountered in

the problem of the fusion of two vortex rings).
Some remarks that apply to all three chapters:

The present thesis is devoted to the improvement of vortex methods per se,

1.e., to the development of vortex methods that are accurate and that correctly
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reproduce the physics of vorticity in free space, both inviscid and viscous. The
problems related to boundary conditions and to the creation of vorticity at the
wall are of course of great physical interest but are not addressed in this thesis.

Only unbounded problems are considered.

A particular effort is placed on the correct evaluation of diagnostics. These
diagnostics are used extensively to measure the performance of the numerical

computations.

The computation of the velocity field (from the vorticity field in three dimen-
sions and from the vorticity gradient field in two dimensions) is always carried
by summing over all the computational elements. If there are N such elements,
the computational effort is thus O(N?) at every time step. It is understood that
this scheme is simple but costly and is not viable as soon as the number of com-
putational elements becomes large. Even on the CRAY XMP-48, the available
resources tend to limit the number of computational elements to N ~ 10,000.
Two-dimensional schemes that require a grid and are only O(M log M) + O(N)
(where the grid is M x M) already exist (Anderson 1986). Fast methods that
are grid free have also been developed (Appel 1985). and are still under inves-
tigation (Pepin, F., private communication). In three-dimensions, fast methods
are just emerging (Greengard 1987). The theoretical developments have been
completed but the method has not yet been implemented. The implementa-
tion of fast algorithms should be the next important step in the development
of three-dimensional vortex methods for very large scale scientific computations.
This thesis work is however oriented towards the development of accurate, widely
applicable vortex methods, not towards the development of fast vortex methods.
It is hoped that both efforts will meet eventually, and that a fast algorithm
will be combined with the three-dimensional viscous method of vortex particles

presented in this thesis.



Chapter 2

Three-dimensional vortex filaments

This chapter is concerned with the computation of three-dimensional incompressible
inviscid flows using the method of vortex filaments. It also serves the purpose of
introducing the notation used throughout the thesis. Earlier reviews of the method
along with some applications may be found in Leonard (1980b,1985).

The justification of the method of vortex filaments and the necessary back-
ground are reviewed in Section 2.1. The method itself is reviewed in detail in Sec-
tion 2.2. It is shown that singular filaments cannot be used, and that a regular-
ization of some sort is necessary. In particular, the regularized method of Leonard
(1975,1980a,1980b,1981,1985) is reviewed. A generalized Hamiltonian formulation
(Agishtein & Migdal 1986) is also presented. The behavior of the method with re-
spect to the conservation laws is reviewed as well (Leonard 1980b,1985), together with
convergence results (Greeengard 1986) related to multiple-filament computations. A
new regularization function that is algebraic but has convergence properties similar
to the Gaussian regularization is also introduced.

In the next two sections, Section 2.3 and Section 2.4, the modeling of a vortex
tube with a single filament subjected to the Biot-Savart velocity applied on the cen-
terline is examined. In Section 2.3, the velocity of the single-filament vortex ring is
examined. The asymptotic velocity formula for the thin filament vortex ring (Leonard
1985) is compared with the asymptotic formula for the thin tube vortex ring (Saffman
1970). Many vorticity distributions are investigated in detail. (The connection be-
tween three- and two-dimensional vorticity distributions is also examined in detail in
Appendix B, and tables of three- and two-dimensional regularization functions are
provided). A matching procedure that correctly reproduces the asymptotic velocity
of the thin tube vortex ring (Moore & Saffman 1972, Leonard 1985) is reviewed.
This procedure amounts to a rescaling of the filament core size with respect to the
tube core size. In Section 2.4, a related problem is examined: the linearized per-
turbations of the rectilinear vortex tube (Kelvin 1880, Widnall, Bliss & Tsai 1974,
Moore & Saffman 1972, 1975, Tsai & Widnall 1976, Widnall & Tsai 1977, Robinson
& Saffman 1984) and the linearized perturbations of the rectilinear vortex filament



evolving under the centerline velocity (Leonard 1985). In particular, the dispersion
relation for the vortex filament is computed for three typical vorticity distributions
over the full range of wavelengths. It is shown that the centerline scheme, together
with the rescaling of the core size, correctly reproduces the dispersion relation of
the vortex tube when the perturbation wavelength is large compared with the core
size. However, it is also shown that the scheme does not reproduce the dispersion
relation of the vortex tube (for the lowest order perturbation mode, i.e., the mode
with unperturbed core structure) as soon as the perturbation wavelength is smaller
than roughly five times the core size. This behavior is related to the appearance
of spurious numerical instabilities when performing single-filament computations. A
new regularization scheme for the dynamics of the vortex filament is proposed. This
scheme forces the single vortex filament to correctly reproduce the dispersion relation
of the vortex tube for the lowest perturbation mode.

Finally, Section 2.5 is reserved for the numerical results obtained using usual
regularization schemes as well as this new regularization scheme. Several problems
are analyzed: dispersion relation of the straight filament, velocity and stability of the
single-filament vortex ring, and solitary waves on a straight filament. Some multiple-
filament computations that involve vortex ring interactions are also discussed.

2.1 Some background

The three-dimensional momentum equation for a constant-density fluid can be written

as

Ou p u-u 2
—57+wAu——V(;+-2—~)+VVu, (2.1)

where u(x,t) is the velocity field, w(x,t) = VAu(x,t) is the vorticity field, p is the
pressure field, p is the density and v is the kinematic viscosity. The three-dimensional

vorticity equation is obtained by taking the curl of Equation (2.1). This gives

% + VAw Au) = v Viw, (2.2)
Using the properties that V-u = 0 and V-w = V:(VAu) = 0, Equation (2.2) can be

rewritten as

%+(u.V)w=(w-V)u+uvzw, (2'3)
or a

.6.?+V.(wu):(w-V)u+VV2w, (2.4)
or 6

ow + V. (wu) = V.(uw)+1/V2w . (2-5)

ot



Recalling that the evolution equation for a material line element 61 is given by

(Batchelor 1967)

%§+@pvyn=vayh (2.6)

it follows that, for inviscid flows, vortex lines move as material lines (Helmholtz).
A vortex tube is defined as the collection of vortex lines that pierce a given

surface patch S. The circulation of a vortex tube is defined as

F:Lw-dx:LSu-dx, (2.7)

where the last equality is obtained by the use of Stokes’ theorem with S the contour
bounding the curve S. Because V-w = 0, the circulation of a vortex tube is the same
for all oriented surface patches that define the vortex tube (Helmholtz).

Using Equation (2.1), it is easy to show that

iF:u V2u-dX=-l// VAw-dx:u/VZw-dx, (2.8)
dt s as S

where Stoke’s theorem and the identity VA(VA) = —V? + V(V:) have been used.

For inviscid flows, Equation (2.8) reduces to

d
=T =0, (2.9)

and the circulation of a vortex tube is conserved (Kelvin).

Vortex tubes are thus interesting entities in inviscid flows: they move as material
volumes, and they retain their circulation, i.e., they preserve their identity. These
facts form the basis for the method of vortex filaments.

For viscous flows, the concept of a vortex tube is not as useful. Of course one
can define vortex tubes at every instant and associate to each vortex tube a unique
circulation which is still independent of where it is measured along the vortex tube.
This is kinematics only. Unfortunately, vortex tubes do not retain their identity
because of viscous diffusion. Indeed, according to Equation (2.8), the rate of change
of the circulation in one section of a vortex tube is not necessarily the same as the
rate of change in any other section. This fact and the concept of vortex tubes with

unique circulation are incompatible unless vortex tubes are allowed to reconnect.



2.2 The method of vortex filaments

2.2.1 Singular vortex filaments

Singular vortex fillaments are space curves of zero cross-sectional area but finite cir-

where x? stands for x?(s,t), s is a Lagrangian coordinate ( not necessarily a length
coordinate! ), I'? is the circulation of the p filament and é(x) is the three-dimensional
§-function.

The velocity field u(x,t) is computed from the filament representation of the
vorticity field as the curl of a streamfunction which solves V23(x,t) = —w(x,t). Re-
calling that the Green’s function for —V? in a three-dimensional unbounded domain

is given by G(x) = 1/(4x |x|), one obtains, for the streamfunction,

B(x, 1) = G(x) * w(x, 1) Z /cr(t) P ‘963 (2.11)

where * stands for the convolution product. The velocity is taken as the curl of (2.11)
and is given by

u(x,t) = V/\zb(x t)
, 1 X7
- ZF L™ (20) A5

1 ox
= I‘P/ —_— (x—xPYA =
4r ,Z cr(t) Ix—xl’|3(x x7) A 3s *°

- er/mt) —xp)/\%;ds_(K(x)/\)*w(x,t), (2.12)

where K(x)A = — (1/ (47|x[?)) xA and is known as the Biot-Savart kernel.

It can be shown that the vorticity and the streamfunction are divergence free.
This comes as a consequence of the fact that the contours C?(t) are closed. The
velocity is also divergence free because it is taken as the curl of a streamfunction.
In the most general case, a potential velocity field, V¢, must be added to the above
velocity field in order to satisfy boundary conditions (such as a free-stream velocity
or a flow tangency condition at a solid boundary). The problems associated with
boundary conditions are not investigated in this thesis. Only unbounded problems
are considered.

The singular vortex filaments presented above are not useful in numerical com-

putations. They simply are too singular. Indeed, it is easily seen that the velocity
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induced by a singular filament diverges like 1/|x — x(s,¢)| for points approaching the
filament from a direction other than the direction of the filament itself. This diver-
gence is similar to the 1/r divergence of point vortices in two dimensions. Moreover,
a singular filament has an infinite self-induced velocity everywhere its curvature is
non-zero (Batchelor 1967). Indeed, a Taylor series expansion of x(s’,t) about x(s,?)

leads to
N O (s=9)? (0°x | Ox (s —s)® (Px  0Ox , 4
(x“x)/\as’ B 2 (532/\83 + 3 833/\85 +O((3—3))’
ox 0Ox Px Ox
2 — ' 20 25 I r_ 3| 2= 2 ' 4
Ix — x'| (s' — 3) (03 aS)-{—(s s) (832 63)+0((8 s)),
' (2.13)
so that the self-induced velocity becomes
9 r | (EEAg) o ds
Zx(s,t) = === o o’ / Ty tom|, (2.14)
Os Os

which results in a logarithmic divergence. Notice that a two-dimensional point vortex
is the projection, in the plane, of a singular filament that is straight and perpendicular
to the plane. Consequently, a point vortex has zero self-induced velocity since the
equivalent filament has no curvature.

There is an interesting point about filaments which is reported in Agishtein &

Migdal (1986): one can define the generalized Hamiltonian (i.e., the kinetic energy)

1 . _ 1 » g 1 ox?P Ox?
E-2/¢ wdx-SWZq:I‘I‘ /Cp( (

B '83’) dsds', (2.15)

t) Jeaqe) |xP — x|

and write, for the equations of motion,

2 6E ox? ox?
ﬁs—g—- (3;(1’8/\“‘5;){ . (216)
This is very similar to point vortices in two dimensions for which the Hamiltonian is
given by
1 1 Ix? — x|
E 2/¢wx 4W;FI‘og( - ) (2.17)
P#q
with the property that
2 6E dx?
——=|e,A—] . 2.1
[ 7 (e A dt)t. (2.18)

Notice that the ¢ = p term has been excluded in Equation (2.17). The Hamiltonian is

thus finite, and Equation (2.18) indeed defines the dynamics of point vortices with zero
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self-induced velocity. In Equation (2.15), the ¢ = p term cannot be excluded because
this would amount to excluding entire filaments. Consequently, the Hamiltonian is
infinite, and Equation (2.16) defines the dynamics of vortex filaments with infinite
self-induced velocity. The Hamiltonian formulation of singular vortex filaments is
thus not very useful.

The only way to obtain a finite Hamiltonian and a zero local contribution to
the self-induced velocity is to exclude parts of the filament dx? = dx? in the Hamilto-
nian. This is essentially the cut-off method as used by Hama (1962,1963) and others
(see also Leonard (1980b,1985)). In the next section, the method of regularized vor-
tex filaments as used by Moore(1972), Leonard (1975,1980a,1980b,1985), Ashurts &
Meiburg (1985), Meiburg & Lasheras (1986) and others is presented. In this method,
the vorticity distribution along the filament is regularized. The Hamiltonian is well

defined and the local contribution to the self-induced velocity is zero.

2.2.2 Regularized vortex filaments

Regularized vortex filaments yield the vorticity field
wo(X,1) = ((x) *w(x, t) =Y F"/ (o (x — xP) o ds , (2.19)
> Cr(t) Js
where (, is an appropriate regularization function (i.e., an approximation to the é-
function) which is usually taken as radially symmetric, and ¢ is a smoothing radius
(i.e., a cut-off length or core size), i.e.,

(o(x) == 03 (Ix|> , (2.20)

o

with the normalization -
47r/ C(p)pPdp=1. (2.21)
0
The function (, defines the vorticity distribution within the core of the vortex fila-
ment.

The velocity field is computed from the filament representation of the vorticity
field as the curl of a streamfunction which solves V9 _(x,t) = —w,(x,t). Defining
X(p) such that

1 d { ,dx 1 &2
—C(p) = Vix(p) = = — [p*=2 ) = - — . 2.22
(0 =V = 5 5 (5] =S loxte) . 22
one obtains, for the streamfunction,
Y, (x,t) = G(x)*w,(x,t) = Xo(x) * w(x,1)

_ ZI‘P/ e x”)%ds (2.23)



where

I
Xo(X) = —x (—) : (2.24)
A function g(p) is now defined as

go) = [ e, (2.25)
This function will be needed extensively in the present Chapter as well as in Chapter 3.
From the normalization condition (2.21), it follows that 47 g(p) — 1 as p — oco. Since
((p) is O(1) for small p, it follows that g(p) is O (p*) for small p.
The following relations between g(p), x(p) and ((p) will also prove very useful.
First, from the definition of g(p),

gl
12 = c(e). (2.26)
Second, from the definition of g(p) and x(p),
P e d d ,
o) = [ e = [ 5 (2 %) ai=—px(p). (2.27)
so that
X'(p) _ _g(p)
= — . 2.28
, 5 (2.28)
Finally, from Equation (2.26),
1.d (g(p)\ _4g'(p) 1 g(p)
5 ( =) =5 = . (2.29)

From Equation (2.28), it follows that x(p ) is O (p*) for small p and that x(p) —
1/(4rp) as p — oo.

Now, consider the velocity given by the curl of the streamfunction (2.23). Re-
calling that p = |x|/o, with 0p/dz; = z;/(o?p), one obtains, with the help of Equa-
tion (2.28),

9 _ Lo . _10p, 1 X
ax,-x"(x) = S x(p)—aaxi (p) = — = ,
1 g(p) _ glp)
—auis=-ihe (2.30)

so that the velocity finally becomes
u,(x,t) = VAY,(x,1) Z ["’/ x,,(x—x”))/\%fs—ds

cr(t)
N\ Szi_:x_”) A
;F /CP(t) |x — xp|3 (x = x7) A 0Os ds
ox?

- }:rvj o(x =) A = ds = (K, (x)A) # w(x,)

(2.31)



where

o

9.(x) =g (M) : (2.32)

and
K, (x)A = —(go(x)/[x]’) x A (2.33)

is the regularized Biot-Savart kernel. At large distances compared with o, the velocity
induced by a regularized vortex filament is the same as if the filament were singular
since 47 g(p) — 1 as p — oc. The induced velocity goes to zero as 1 — 0 since g(p)
is O (p3) for small p. In particular, the local contribution to the self-induced velocity
is proportional to [(s' — s)*ds’.

The vorticity and the streamfunction are divergence free as a consequence of
the facts that the contours CP(t) are closed and that o is constant for each filament.
The velocity is also divergence free since it is taken as the curl of a streamfunction.

The evolution equation for the vortex filaments is usually taken as

g—zx"(s, t) = u,(x,1t) (2.34)

X=XP(s,t)

There is also a generalized Hamiltonian formulation which produces the evolu-
tion equation (2.34) (Agishtein & Migdal 1986), i.e.,

51 1 OxP x4
S . ] P9 P\ [ 22 2 ' )
E 2/«;;0 w dx 2%‘1* /c»(t)/cq(t)x”(x x9) (63 ay) dsds', (2.35)

and

2 5B (axp w) 236)

ﬁ'é—xs;— —ds A —

Js ot

The Hamiltonian E is a motion invariant. In fact, this formulation is very similar to

the Hamiltonian formulation for two-dimensional regularized vortex particles, with

.1 1
== - __ P 9
E= 2/¢,wdx : pij Xo (X7 = x7) (2.37)
and .
2 OF . dxr
ﬁ’.g;,‘? = (EZA_d_t—)i . (2.38)

Notice that the Hamiltonian E = -21- 1, -w dx is not equal to the kinetic energy
of the system which is given by £ = -%fd)u - wy dx. If one takes E instead of E as
the Hamiltonian, then this produces the evolution equation

D (s,t) = (G () % u,(x,1) (2.39)

ot

X=XP(s,t)
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with the kinetic energy £ as motion invariant (Leonard 1980b). In other words,
subjecting the vortex filaments to the evolution equation (2.34) or (2.39) leads to
conservation of E or E, respectively. The only problem with the choice of E instead
of E as Hamiltonian is that E cannot, in general, be evaluated, except with some
rare choices of the regularization function {(p). The reader is referred to Appendix G,
Section G.2.1 for more information on this subject.

The reader is also referred to Appendix A, Section A.l for a review of the
conservation laws in three-dimensional unbounded inviscid flows and to Appendix G,
Section G.2.2 for the expressions of the semi-regularized helicity H = [u, - w dx
and the semi-regularized enstrophy £ = [w, - w dx of a system of regularized vortex
filaments. The expressions for the linear impulse I and the angular impulse A are

easily obtained. They are given by

1 oxP
I = - 4 P PR .
32T /Cm)x A ds, (2.40)

1 ox?
- = P P P ) .
A 5 Ep r /Cp(t)x A (x A 83) ds (2.41)

I and A are conserved with any of the two choices for the evolution equation (Leonard
1980b,1985). '

The convergence of the regularized vortex filament method has been investi-
gated by Greengard (1986). He has shown convergence, at least for some finite time
T, to the solution of the three-dimensional vorticity equation. The convergence is as
follows: the appropriate error norm for the vorticity and velocity fields goes to zero
as the number of filaments increases, and the core size ¢ decreases subjected to the
constraint that the cores overlap (i.e., o/h > 1 where k is a typical distance between
filaments). The condition of core overlapping is natural. Indeed, the representation
of a smooth function by a sum of smooth distributions, each of extent o, can only be
achieved if the typical distance between the centers of each distribution is less than
a. The error is usually composed of two terms: one term which is O (¢7) and another
term which is O (o(h/o)™). The exponent m is related to the number of derivatives
that exist of the smoothing function ((p). For most of the functions used in practice,
m is large so that it is essential that the cores do overlap (i.e., 0/h > 1) for the second
error term to vanish as ¢ — 0. The exponent r is related to the moment properties of
the smoothing function, that is {(p) has to satisfy the normalization constraint (2.21)
together with

/Oog(p)p”"dp = 0, 2<s<r-1 seven , (2.42)
0

fo I¢(p)1 p** 7 dp < 0. (2.43)
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In particular, it can be shown that r > 2 as soon as [5° |[((p)| p* dp < occ. If, moreover,
¢(p) is positive, then r = 2. A list of smoothing functions ((p), together with the
associated g(p) and x(p) functions, is given in Table B.1. Notice that the smoothings
that are r > 2, such as the super-Gaussian, are also not strictly positive. Plots of
these regularization functions are given in Figure J.1.

For instance, the Gaussian smoothing (B.8)

1

o) = (2r)3/2 el (2.44)

corresponds to m = oo, r = 2. The low order algebraic smoothing (B.10) proposed
by Rosenhead (1930) and used by Moore (1972) and others

3 1

¢(p)

gives m = co but r = 0 because the inequality (2.43) is not satisfied. So, although

this smoothing has been used extensively because of its numerical convenience (it

is algebraic !), the theoretical error estimates show that this may be a poor choice
because the first component of the error O (o") does not vanish as o — 0.

A new smoothing is proposed which will be referred to as the high order algebraic

smoothing (B.12):
15 1

8 (P D)7

This smoothing has the same convergence properties as the Gaussian smoothing (B.8)

((p) (2.46)

since it corresponds to m = oo, r = 2, but it is much easier to use in numerical
computations. Indeed, the associated x(p) and g(p) functions that are needed for
the evaluation of the streamfunction (2.23) and the velocity (2.31) have elegant and
compact forms and are cheaper and more convenient to use than the x(p) and g(p)
functions associated with the Gaussian smoothing. This smoothing will also prove
very useful in Chapter 3.

In the above regularized vortex filament method, the core size o was taken
constant for all filaments and all times. Of course, it does not have to be that way.
Each filament can be assigned its own core size o which may depend on time. For
instance, conservation of the total volume of vorticity can be achieved with the use
of the following model equation (Leonard 1980b,1985)

d

= (@) £rv) =0, (2.47)

where L£P(t) is the total length of the vortex filament. This scheme produces a local

increase in the amplitude of the vorticity within the core of the filament as L£?(t)
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increases due to vortex stretching. When each vortex filament has its own core size
o”(t), it is useful to symmetrize the evolution Equations (2.34) or (2.39) using 0?9 =
0% where o?? is the core size used to compute the influence of filament ¢ on filament
p and conversely. This ensures conservation of the linear impulse and the angular
impulse (Leonard 1980b,1985). This also preserves the Hamiltonian structure of the
method, and hence ensures conservation of the Hamiltonian. Simple symmetrization
schemes are g??? = gPo? or 0?9 = (a’ﬂ + aqz) /2.

Finally, it may be desirable to account for gradients of stretching rates along
the filament. This can be achieved with a core size that is also a function of the
coordinate s, i.e., o7 = oP(s,t) and with a model equation for the conservation of

local volume of vorticity of the form

2 (", £2(s,1)) = 0, (248)

where L?(s,t) = [ (%"f : %,%E)l/? ds is the local length of the vortex filament. Moore
& Saffman (1972) argued that variations of of along the filament produce helical
vortex lines and hence axial flow that tends to eliminate these variations. Proceeding
nevertheless, it is found that this choice does not conserve linear impulse and angular
impulse. Moreover, the Hamiltonian structure of the method is lost. The vorticity
field (2.19) and the streamfunction (2.23) are no longer divergence free. The velocity
field (2.31) is still divergence free since it is still taken as the curl of a streamfunction.
In fact, the situation is now very similar to the situation that will be encountered
with vortex particles, Chapter 3. The divergence free vorticity field that corresponds

to the curl of the velocity field is given by

Ox?P

wh¥(x,t) = EP:I‘”/CW)[C‘,(X—-X”)—Z)S—

+V (%x-;- Y (xo(x — x”)))} ds . (2.49)

This vorticity field is divergence free because the integrand itself is divergence free.
The reader is referred to Chapter 3 for the justification of this expression.

In conclusion, the choice o? = o?(s,t) leads to a loss of many nice properties
and is probably not a good choice. If intense vortex stretching is to be expected
during the course of a computation, it is probably wiser to represent the initial core
structure of a vortex tube with many filaments, each with a small core size o?(?).
Then, when intense stretching occurs, the core size of the vortex tube can become as
small as the core size of each individual filament and the physics is modeled properly
together with the conservation of the linear impulse, the angular impulse and the

Hamiltonian.
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2.3 The velocity of thin vortex rings

The motion of thin vortex rings has been a subject of interest for some time. Lamb
(1932) gave a proof of Kelvin’s formula for the velocity of a thin vortex ring with
uniform vorticity within the core. Saffman (1970) and Fraenkel (1970) gave the
expression for the velocity of a thin ring with arbitrary vorticity distribution. Fraenkel
(1972) also gave higher order asymptotic formulas that describe the shape and overall
properties of rings with uniform w/r for quite substantial cross-sections. Norbury
(1973) computed numerically the exact shape and other properties for the same case
but over the whole range of cross-sections (from the thin vortex ring with uniform
vorticity to the Hill’s spherical vortex ring).

In the present section, the velocity of thin rings of general vorticity distribution
is examined, and the numerical results obtained with two different approaches are
compared. The correct results obtained with Saffman’s formula are compared with
the incorrect result obtained by translating the vortex ring with the centerline veloc-
ity. The matching procedure which produces the asymptotically correct vortex ring

velocity is reviewed. Quite a variety of vorticity distributions are examined in detail.

2.3.1 The general case

Consider a thin vortex ring with the centerline of the vortex core given by x(8) =

Rcosfé, + Rsinfé,. The velocity induced by the vortex ring is

xxo

2 9 ox
r/ — (x ~x(6)) A d . (2.50)

If the ring velocity is taken as the self-induced velocity on the centerline, one obtains
(Leonard 1985)

2 g R[sm 0/2)|)
_ 2 2
Up = R/ 2R[sm a7y (2 s (0/2))do
g (Bsing) T 1 o(t)
= —_—,—— it dp = = | — Lt 2.51
R/ sin ¢ ¥ R Jo t(l_t2)§ ’ (2.51)

where ¢ = 8/2, t = sin ¢ and Ug stands for the translational velocity. For thin rings,
the asymptotic limit of Equation (2.51) as /R — 0 is examined by writing

Up=L1 {folg@dw/lg(%&t) (( ! v —1) dt] . (2.52)

RZE t 4] t 1 —¢2)3
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The first integral in Equation (2.52) is evaluated by parts

2R o
[ () [ ()t L)

2R 2R/c
= log( )/0 g'(p)dp — / (p)logpdp
2R 00 , 00
~ log (—)/ g(p)dp-—/ g'(p)log pdp
ag 4] 0
1 2R o .
= —tog (=) = [T g(o)ogpdp. (2.53)

For the second integral in Equation (2.52), it is appropriate to take g(2Rt/o) = 1/4n

since R/o — oo. This integral then becomes

1] 1 /2 — 1 x/2
-L/ - ”"'—'1"—? —1]dt = ——-/ Lg_o_s_y_)_du = —-/ tan(u/2)du
4r Jo t \(1 — t2)3 47 Jo sinu 47 Jo

- __};_ . /2 __ ___1__ -
= 47r[ 2log (cos(u/2))]g’ " = yp log 2 . (2.54)

Thus, when the velocity of the thin ring is taken as the velocity on the centerline, one
finally obtains (Leonard 1985)

r 4R o -
Up = R [log( - ) - 471'_/0 g (p)logpdp] . (2.55)

where ¢'(p) = p*((p).
A more careful analysis by Saffman (1970) and Fraenkel (1970) leads to the

following expression for the velocity of a thin vortex ring

ik ()b ([ [ e 0%
)

where 27gy(p) is the fraction of circulation of the two-dimensional vorticity distri-

bution (3(p) within a dimensional radius p = r/o. The connection between three-
dimensional vorticity and velocity smoothings, ((p) and g(p), and two-dimensional
vorticity and velocity distributions, (2(p) and g¢2(p), is examined in details in Ap-
pendix B.

If the two formulas are to agree, the following integral constraint must be sat-

isfied:

= ! dp o dp
47"/(; g(p)logpdp =5 —log2— (/0 (2rgg(p))2—;-)— + /1 ((2wgz(p))2 — 1) 7’_) .
(2.57)
It will be shown in Section 2.3.2 that the integral constraint is not satisfied in general.

This is due to the fact that the velocity of a vortex ring cannot be taken as the velocity
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on the centerline, even when o /R — 0. Of course, as proposed by Leonard (1985), one
can reproduce numerically the correct velocity of a thin vortex ring of given vorticity
and velocity distribution, {2(p) and g¢2(p), by choosing an appropriate smoothing of
the Biot-Savart integral in such a way as to satisfy the integral constraint (2.57). This
point will be examined further at the end of Section 2.3.2.

2.3.2 Some examples

In this section, the results obtained when using Equations (2.55) and (2.56) with usual
three-dimensional smoothings and their corresponding two-dimensional smoothings as
given in Appendix B are examined. The reader is referred to that appendix for the
details on the velocity and vorticity smoothings.

If the three-dimensional exponential smoothing (B.8) is considered, and Equa-

tion (2.55) is used, one then obtains

T 4R 2\ o, an
= o e (42) - (3) [ o

r 8R 1 0%
= R 1°g( )‘(51"82““5)]

T 8R
- = _1og (-(-f-) _ 1.05796576] , (2.58)

where v is the Euler constant, v = .577215664. Use of Equation (2.56), with the
corresponding two-dimensional Gaussian distribution (B.9) leads to

.
Al(zxgz(p))z% = /01/ (1- %z%/m [ — e 2-‘%‘-

)
_ /(;1/2 (l—e i_2/1/2 _2u uu

= (1/2)-%E(1) ——Iog?
) -

/lw((%yz(p))’—ﬂ)%’i - / (( e )

1 o _,.du /00 —udu

T 2het W het w
= %Ei(l)—-Ei(1/2), (2.59)
with Ei(z) = [["e™*/udu = —y —logz + [5(1 — e™*)/udu, so that
r 8R 1 v
Un = gz [os(5) - tog2 45 - 3)]
I

SR
= % - 2.
7 [log( - ) 90453935] (2.60)
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Thus, the centerline ring velocity (2.58) does not agree with the correct ring velocity
as given by Saffman’s formula (2.60).

A similar problem occurs when the three-dimensional smoothing (B.16), which
corresponds to the two-dimensional constant vorticity core (B.17) is considered. Using
Equation (2.53), one obtains

4%/0 g'(p)logpdp = -/ 1_ 10gpdp

_ ([(a.rcsmp p(l—p )%)logp];

7 +/ ( Y arcsin p) p)

2 1 9 ERL 1 arcsin p
= ;(0+§[p(1—p)2 +arcsxnp]0—/0 p dp)
NG S 1
= ;(Z——‘ilog2> —-—2-——10g2, (2.61)
leading to 0
r 8 1
U =57 o5 (5) - 3] (262)

Use of Saffman’s formula (2.56), with the corresponding two-dimensional constant
vorticity distribution (B.17), leads to

r 8R\ 1 1,
Un = g 08 (5) 5+ | © ]

- ()4

which is the correct expression for the ring velocity (Lamb 1932).

Actually, there exists a three-dimensional smoothing which is such that the use
of Equation (2.55) leads to the same result as the use of Equation (2.56) with the
corresponding two-dimensional smoothing. This is the case of the low order algebraic
smoothing (B.10). Indeed, the use of Equation (2.55) and [43] leads to

r 4R o p?
= 3 —_— d
U = &R log( ) /0 S p}

= o e () -3 (0 - os2)]

= 4:12 log (8R> -1] , (2.64)

and the use of Equation (2.56), with the coresponding two-dimensional smooth-
ing (B.11) leads to

1 dp v p2 \ldp 1 pt 1 \2dt
2 2—— = e T — (1————-) J—
/0( 792(p)) p /o (p2+1) p 2 t+1/) t
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&

(1og2—§-) |
w((ﬂpﬂ) "1)%‘1
-3 (- )%

_ %(logQ-{— ) (2.65)

DN | =

,_'.\.
8
N
—_~
3]
=
=Y
N
)
—
~——
[
|
o
p S
.,
< |8
I
»\.

so that one finally obtains
. r 8R
Uﬁ_m[lo (U)—-I] . (2.66)

This is thus a very special case where both formulas lead to the same result so that
the integral constraint (2.57) is satisfied. This is also a special case for another reason:
it is a case for which Equation (2.51) can be integrated in closed form so that the
velocity of a ring moving with the centerline velocity can be computed for any value
of the ratio o/ R. Indeed,

/2 ——sm a2,
Un = R/ g - ‘P I\ 9 4y = FR (2R> / sin® ;dcp
me 0 ((ZR/J) sin cp+1)

r 1
B 4wR(1+p2)%[ (1+p2)) (1+p )] (2.67)

where p = 0 /2R, K(z) and E(z) are the complete elliptic integrals of the first and

second kind, respectively. This result is of great numerical interest as it can be used
to check the accuracy of a numerical code that makes use of the low order algebraic
smoothing. The validity of the asymptotic formula (2.55) with respect to the exact
formula (2.51) can also be verified by examining the behavior of Equation (2.67) as
p — 0. Recalling that [1]

K(z) ~ log (;—;) + O(z" log z')
E(z) ~ 1+0(zlogz"), (2.68)

. 2 .
as r — 1, with 2’ = 1 — z2, one obtains
b b

ey () vo (R ()] e

which confirms (2.64).
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Finally, the three-dimensional constant smoothing (B.14) leads, with the use of
Equation (2.53), to

T AR 1,
b = gh (L) s [ e

T R

Equation (2.56) with the corresponding two-dimensional vorticity distribution (B.15)

could not be integrated in closed form.

In conclusion, the approach of computing the velocity of a vortex ring with the
centerline velocity yields the wrong result for most vorticity distributions. However,
if the asymptotically correct velocity of a thin vortex ring of given core size o2 and
vorticity distribution (3(p) and g;(p) is desired, it can be obtained by taking the
velocity of the ring as the Biot-Savart velocity applied on the centerline with some
three-dimensional smoothing ((p) and ¢g(p) and with a core size ¢ = Bo; so as to
satisfy (Leonard 1985)

log B8 + 4m /000 g'(p)logpdp
1 d
= 5~ log2 — (/ (27 ga(p))*— +/ (2rga2(p))” — 1) -;e) . (2.71)

For instance, the values of 8 that correctly reproduce the asymptotic velocity of the

ring of uniform vorticity core ok are given by

(1/21/2)¢(/2-3/4)  for the Gaussian smoothing
e~ /4 for the constant vorticity smoothing
ﬂ = 6_3/4 . . (272)

for the low order algebraic smoothing
(1/2)e"/12 for the constant smoothing

2.4 Linearized perturbations of a straight vortex filament

2.4.1 Some background

The linearized perturbations of a straight vortex filament with a uniform vorticity
distribution within the core were analyzed by Kelvin (1880). He also gave the anal-
ysis corresponding to a hollow vortex tube where the vorticity is concentrated on a
cylindrical sheet. His results apply only in the absence of a straining field and are
reviewed by Robinson & Saffman (1984). The perturbed shapes are helical distur-
bances proportional to f(r)exp(ikz + im# + iQt), where m is the azimuthal mode in

cylindrical coordinates, k is the axial wave number and Q is the circular frequency.
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The dispersion relation giving Q(I; m) implicitly is

mil®) |, m __ Kin()

§Jm(8) T 82¢ 1K (D)’ (2.73)

where

(1 = ko is the dimensionless wave number,

ok is the core radius,

c  =1/2m+ QJwe with I’ = mokwy,

2 =1P01-c)/,

Jm 1s the Bessel function of the first kind and order m

{ K, is the modified Bessel function of the second kind and order m .

According to Kelvin, the roots of Equation (2.73) are purely real and give the angular
frequency of stable bending modes of the vortex tube with ¢ in [—1,1] so that Q/ws
lies in [~1 — m/2,1 — m/2]. There is an infinite number of roots for each m and .
The case where the angular mode m = +1 corresponds to azimuthal perturbations
of the form exp(+:6) and is shown in Figure J.2 from Robinson & Saffman (1984).
Notice that the figure is symmetrical with respect to the [ axis because there are
modes corresponding to m = 1 and modes corresponding to m = —1. The first radial
bending mode (i.e., the lowest order mode) has no node in the velocity perturbation
and its dispersion curve does not cross the ! axis. Higher order bending modes have
a more complex core structure with one or more nodes in the perturbation velocity
depending on the mode order. Their dispersion relation also crosses the ! axis so
that there is a certain wave number /g for which the perturbation does not rotate.
Widnall, Bliss & Tsai (1974) conjectured that instability for both the pair of straight
vortex filaments of opposite sign circulation and the vortex ring occurs whenever the
wave number [ of the perturbation corresponds to that wave number ;. The basic
mechanism was confirmed by Moore & Saffman (1975) and by Tsai & Widnall (1976)
for the related problem of the line vortex in a uniform plane strain and confirmed
in detail by Widnall & Tsai (1977) for the thin vortex ring of uniform vorticity
core. The general mathematical analysis of Moore & Saffman (1975) actually shows
that the necessary condition for instability of the line vortex is that the dispersion
relation is degenerate, i.e., that modes of same wave number [ but different angular
dependence have same circular frequency . The explanation goes as follows: each
mode corresponds to an helical wave (as will also be seen in Section 2.4.2) of circular
frequency +§. The superposition of two modes of same wave number { but opposite
circular frequency § produces a sine wave that does not rotate and is thus unstable

in the presence of a strain field.
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The dispersion relation for the lowest bending mode was generalized to arbitrary
vorticity distribution, {>(p), by Moore & Saffman (1972) for the case of long bending
waves (i.e., for I — 0). If 2mg2(p) is the fraction of circulation within the dimensional

radius p, the asymptotic behavior of the dispersion relation is given by

D) = 1’—”2—1?-(—')

= * (é)z [log (é) +v - (/ol(%rgz(p))zé/fz + /lm ((@rga(p))? - 1) %)
+O(P log 1)] . (2.74)

as | — 0. This expression has a term similar to the expression for the asymptotic
velocity of thin vortex rings, Equation (2.56). Refer to Section 2.3.2 for the values
of the integrals of Equation (2.74) with some typical vorticity distributions. For

instance, the Gaussian distribution (B.9) gives

D) = + (é)z [log (-;-) + (1og2 + -})] . (2.75)

The low order algebraic distribution (B.11) gives

D(l) = + (éy [log (é) +(v+ %)} , (2.76)

and the uniform distribution (B.17) gives

D)=+ (é)z {log (é—) + (7 - i)] . (2.77)

2.4.2 Linearized perturbations of a vortex filament evolving under its
own induced velocity applied on the centerline

2.4.2.1 The general case

The dispersion relation for linearized perturbations on a rectilinear vortex filament
that is subjected to its self-induced velocity applied on the centerline will be exam-
ined. Of course, this analysis is much more restrictive than the full analysis conducted
by Kelvin (1880) because it will only reproduce the dispersion relation for the low-
est order mode of the case m = 1. This is to be expected because the vorticity
disturbance is fixed when representing a vortex tube with a single filament. Never-
theless, this analysis will be of great numerical interest because it will provide, for
the whole range of wave numbers [, the numerical dispersion relation of the type of

vortex filaments that one actually uses in numerical computations.
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Recall the dynamics of a vortex filament evolving under its self-induced velocity
applied on the centerline
(]x X [) O’

—Z L(x-x)A s’ , (2.78)

—-—x.st)--—F/ e

x —x'?
where x — X’ stands for x(s,t)—x(s',t), g(p) is the three-dimensional velocity smooth-

ing and s is a material coordinate which is taken here as a length coordinate. The
scaling of Equation (2.78) is done by defining y = x/o and n = s/o. This leads to

< g(ly — yl 3y

5 = 02 iy dn, (2.79)

y-y)A

where y — y’ stands for y(n,t) — y(n',t). Linearization of Equation (2.79) about a
straight filament aligned with the z axis, with y(n,t) = né, + 8y(7, t), leads to

9 © g(ln=n') ne p 28
= — é
7:0y(n.1) 02 o =T (n—n")e. a,+(y §y') A e | dy
g(ln—n ! [ ' 06y’ 5 ' } '
= — )= — (8y — 6y’)| dn’ . (2.80
/ oy |(1= 1) 50— (6y = 8y")| dn' . (2:80)
Noticing that
65 ! d 6y——6y')
Sy — 8y') = — —'2——(—-—————— : 2.81
(n=n")5 " — 8y = &y') = —(n n)an, — (2.81)
one obtains
9 L, g(ln =D <6y~5Y') '
L sy(n, 1) = — &, A 2 A A 2.82
aY =5 / a1 of \n—7 ) (2.82)
Equation (2.82) can be integrated by parts to give, using the fact that g(p) — 1/4=
as p — 0o,
9 (g(ln n l) Nt
—-6 ,t) = e,/\ sy — 8y")dn' . 2.83
y(m,t) / ) =71 ( y')dn (2.83)
Defining
1d g(p))
= —4p—— | S s 2.84
Qlp) = —irs 2 (L 280
Equation (2.83) becomes
sby(n0) = o 6 A [Coytn + [ QUn - Doy nan] . (285)
at 177 41r0_2 T bl oo 3 b1 N
where

C:—/_ Qln))d =-2/ dp..syr/oml—d-(g—(p”—))dp. (2.86)
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Notice that C is properly defined as soon as g(p) is O(p) for small p. This property
will be of importance in Section 2.4.3. For usual velocity smoothings ( i.e., when g(p)
is O(p®) for p small), there are two alternative formulas that can be used to evaluate

C and that are obtained through integration by parts:

C = S/mld(g(p)d—. 87r/ g(pdp+87r/ 9
=8x[) -‘q?é—d

oo
= 47r/0 g-l-f-g—zdp. (2.87)

However, when g¢(p) is O(p) for small p, only Equation (2.86) can be used.
Equation (2.86) is now in an appropriate form that one can take its Fourier

transform. Defining -
¥ = [ sy, ne'ndn, (2:38)

where { = ko is the dimensionless wave number, one obtains, with the use of the

convolution theorem,

500 =

T )| &: Aby(l,t)

- L G(l) &, ASy(l,t), (2.89)

4mo?

where Q(l) is the Fourier transform of Q(p) and G(I) = C + Q({). It is now easy to
find the eigenvalues and eigenvectors of Equation (2.89). Indeed,defining

Sy(1,t) = y,o(D)e' ¥, (2.90)

one obtains the following equation for the eigenvectors:

((47«;2(;(’) € ) - iQ(’)) 8yo() =0. (2.91)

The eigenvalues are solutions of

o - (2

The trivial eigenvalue, @ = 0, corresponds to a simple translation of the vortex

G(l))z) =0. (2.92)

filament along its own axis. The non-trivial eigenvalues correspond to stable helical

modes rotating at angular velocity Q({)

é(l) (E\ZO(I) = A, (8, — 18,)e D1
G( )5 byo(l) = A_(&, + i, )e It

4r

(2.93)

Q()=-90)=-

4#02
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The dispersion relation for a vortex filament subjected to its own induced velocity

applied on the centerline is thus finally given by

D(l) = Wazlfl(l)
= £56() = £(C+ Q)
= 27 [ [T Qnbdn+ [T Qaeinan]
= :11-[ 2/00 dp+2/ ) cos( lp)dp]
= +2r /w;d‘i( : )(l—cos(lp))dp. (2.94)

The most general perturbed mode can be written as

1 fe . .\ i
vty = 5 [ (4006, - ieen

+A_(I)(&, + iéz)e-*‘ﬂ(’ﬁ)e“"dz] : (2.95)
For a single-wavelength perturbation, a typical mode is given by
Sy(n.t) = R[(Be(8y — ie.)e ™ + B_(e, + ie,)e ) &il7] (2.96)

In the special case where B, = B_ = B/2, the two helical modes add up to give a

simple plane wave perturbation
8y(n,t) = Bcos(ln) (cos(Q2(1)t) &, + sin(Q(I)t) &) . (2.97)

Finally, by analogy with the formula obtained for the velocity of a thin fil-
ament vortex ring subjected to the self-induced velocity applied on the centerline
(Section 2.3.1), the following asymptotic expression for the dispersion relation of a

vortex filament also exists:

AN 1 0
D) == (§> [logl + (‘y - 5) + 4”,[, g'(p) logpdp] . (2.98)
This expression corresponds to the asymptotic value of Equation (2.94) as [ — 0.

2.4.2.2 Some examples

In this section, the dispersion relation Q({) given by the analysis of Section 2.4.2.1 is

examined for the case of some common three-dimensional velocity smoothings g(p).
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In what follows, the Fourier transform of Q(|n|) is evaluated using
Q) = 2 [ Qp cos(lp)dp
= [/ g(p) cos (Ip)dp — / glr) p cos(Ip)dp} : (2.99)

The three-dimensional Gaussw.n smoothing (B.8) leads, with the use of Equa-
tions (2.87), (2.99) and [43], to

1 00
C = 47r/ g ( )2/ e 2dp =1,
0
4r /00 2 (f) cos(lp)dp = (—) : /00 e /? cos(lp)dp = e*12
0 0

v
4%/0 g(,ao) cos(lp)dp

wg cos (lp)dp l/

[
(%) [ e’ ncos(lp dp——l/ pe’ /2s1n(lp dp+12/ ple? ﬂCl(lp)dp]

sm (lp)dp + 2 / g (p) Ci(lp)dp]

fl

R )

n=1

Ol ool DO N

il

"12/2+12( / pe p/za’p—}—/ log(1p)p®e” 124,

St [orena)

P , ) X (=1)*(2n 4+ N2
{(1-1) ’/2+1(2(2+7 log2+log’)+n§( )Q(n(.?n)!) )]

[N-R S

Q)
—(1+ PPy 2 (—21- (2 + v —log2 + log 12) +

° (=1)*(2n + 1)1 2
2 2n(2n)! ) ’

n=1

(2.100)
where Ci(z) is the Cosine Integral, Ci(z) = — [°cost/tdt = v + logz + [y (cost —
1)/tdt =y +logz + 322,(—1)"z*"/2n(2n)!. Notice that uniform convergence of the
infinite series has been assumed so as to be allowed to switch the order of the sum and
integral. Notice also the usual notation (2rn + 1)!! = 1-3---(2n + 1).The expression

for the dispersion relation finally becomes

1 ,
D) = £+ 1—(1+12)e"2/2+12(§ (2+7 - log2 + log I?)

4
{Z: -1) 2721712:;)””")], (2.101)
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The expansion of the dispersion relation (2.101) for small ! leads to

[

D)=+ (5) [log (é—) + -;-(log2 +7+ 1)+ O log l)} , (2.102)

which does not agree with Equation (2.75) obtained using Saffman’s formula (2.74)
with the corresponding two-dimensional vorticity distribution (B.9).

The three-dimensional low order algebraic smoothing (B.10) leads to

< g'(p) > 1
T 22 ldp = —dp = 2
C 4 /(: 2 dp 3/0 = 1)1 p ,

< ¢'(p) _ a e cos(lp) 3T o,
47r/0 L3 cosllp)dp = 3/0 T = 4F(5/2)1 K, (1)

= Ky,
< g(p) ] _ > cos(lp) _ N
47r/0 5 cosllp)dp = /0 ——-———————-—(p2+1)%dp (3/2)11(1(1)
= lKl(l)y
Q) = 2(IK:i() - *Ka(d)) (2.103)

where K,, is the modified Bessel function of the second kind and order m. The

dispersion relation then becomes

D(l) = i% (1+1Ki() - PKa(D) (2.104)
and the expansion for small [ leads to
2
l
D)=+ (-;—) {log <§> + (‘7 + %) + O(Plog I)] . (2.105)

which agrees with Equation (2.76) obtained using Saffman’s formula (2.74) with the
corresponding two-dimensional vorticity distribution (B.11). This is a very special
case where both formulas lead to the same result.

The three-dimensional constant smoothing (B.14) leads to

% ¢'(p) 1
c = 47r/0 —-p—z——dp=3/ dp=3,

1 l
4r / g(f cos(lp)dp = 3/ cos(lp)dp -—3-Slr—;—
0
= o) o w cos(lp)
47r/ cos(lp)dp = /0 cos(lp)dp-{—/] = dp
inl 1*{1 . .
= ——Sl? + 3 (-l— (COIS — sin l) + Cl(l))
= —-—Sl?l + % (cosl —Isinl+ lZCi(l)) ,
R inl
Q) = cosl—1sinl+ 2 Ci(l) — 42— | (2.106)

{
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so that the dispersion relation finally becomes

D(l) = i;: (3 + cos{ — I sinl + I* Ci(l) — 4-5—1?—{) . (2.107)
The expansion for small [ gives
n? ! 5 )
D(l) == (5] [log(5)+ (1og2 +y— g) +O@logl)| . (2.108)

It was not possible to integrate Saffman’s formula (2.74) in closed form with the
corresponding two-dimensional vorticity distribution (B.15).

The same conclusion as in Section 2.3 applies here. The approach of computing
the dispersion relation of a straight vortex filament by considering the velocity on the
centerline does not, in general, reproduce the results obtained with the more careful
analysis of Saffman, except in the very particular case of the low order algebraic
smoothing. However, if mimicking the correct behavior of the dispersion relation
for small ! is desired, it can be done by rescaling the core size in the same way as
explained in Section 2.3.2.

In Figure J.3, the dispersion relation for the three smoothings considered above
is given, together with Kelvin’s lowest mode dispersion relation. The core size of
each smoothing was appropriately redefined so that all dispersion relations follow the
uniform vorticity dispersion relation as | — 0. In other words, if o is the core radius
of the constant vorticity distribution, then the core size of the three-dimensional
smoothing was taken as ¢ = fok with 3 given by (2.72). Notice that there is only
one set of curves drawn, the other set being the mirror image with respect to the
! axis as in Figure J.2 from Robinson & Saffman (1984). It is interesting to note
that all curves fail to reproduce Kelvin’s dispersion relation as soon as [ = kog > 1.
Kelvin’s dispersion relation does not cross the ! axis. Instead, it approaches 1/2
asymptotically as | — oo. All curves obtained with the three-dimensional velocity
smoothings do cross the ! axis at a value of [ of around 2. There is thus a typical
wavelength for which a vortex filament subjected to its self-induced velocity applied
on the centerline does not rotate. Such a mode is very likely to become unstable in
the presence of strain. Notice also that all dispersion curves approach the negative

value —C/4 as | — oo, instead of Kelvin’s value of 1/2.

2.4.3 A three-dimensional velocity smoothing that reproduces Kelvin’s

lowest mode dispersion relation

It was shown in Section 2.4.2 that all common three-dimensional velocity smoothings

lead to a dispersion relation that does not follow Kelvin’s lowest mode dispersion
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relation as soon as { = kox > 1. This means that, as soon as A < 270k, the
dynamics of a vortex filament are poorly modeled by moving the filament with its
own velocity field applied on the centerline.

The problem of interest in the present section is the following: Is there a
three-dimensional velocity smoothing, call it ¢(p), which reproduces Kelvin’s low-
est mode dispersion relation for all wave numbers { 7 Of course very large values of
[ are not of much interest because a vortex tube perturbed with a very short wave-
length undergoes core deformations that cannot be represented with a single vortex
filament as is the case for Kelvin’s lowest mode. So, if large wave numbers (i.e.,
wavelengths that are small with respect to the core size of the vortex tube) are of
interest, one has to use many filaments, each of which with a small core size o? to
represent accurately the core structure of a vortex tube of core size 0. After all, the
method of vortex filaments converges as the number of filaments p — oo and o? — 0.
Nevertheless, it is thought that there is a range of dimensionless wave numbers, say !
up to 3 or 4 for which it still is of interest to obtain a numerical scheme that is able
to reproduce Kelvin’s lowest mode dispersion relation with only one vortex filament.
Such a scheme might help eliminate spurious numerical instabilities. This problem is
investigated in what follows.

The three-dimensional smoothing of interest ¢(p) will not be constrained to
be derived from a vorticity smoothing ((p), i.e., g(p) # J¢ ((¢)t*dt. Indeed, if ¢(p) is
constrained in that way, then it will be O(p?) for small p, since a physically acceptable
vorticity smoothing is O(1) for small p (cfr. Table B.1). ¢(p) should not be O(p?) for
small p because this is the behavior of all common smoothings g(p), and they all fail
to reproduce Kelvin’s lowest mode dispersion relation.

Thus, the following inverse problem is considered: Given Kelvin’s lowest mode
dispersion relation for the uniform vorticity core Dg(l) = 7o Q(1)/T for all I, it is
desired to find a function ¢(p) such that

Di(l) = ~3(C + Q) (2.109)
here
. 2 [ Qe [ L2 (1))
= A p)dp = 8w b, oo\ p o, (2.110)

and Q(!) is the Fourier transform of Q(|n)),

©1d
Ql / e"ting -—2/ ) cos(lp) :-—8/ ( )cosl d
( Q(Inl) n Q(p) cos(lp)d 53n \p (Ip)dp
(2.111)
Notice that the upper curve of the dispersion relation is assumed when writing Equa-

tion (2.109). This convention will be kept in all that follows, remembering that there
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are two curves that are the mirror image of each other with respect to the [ axis.
Now, since it is known that Kelvin’s dipersion relation approaches 1/2 when [ — oo,

this gives C/4 = —1/2. Thus, the following integral constraint needs to be satisfied:

4 /Ooo }152('{,3 (2%2) dp=—1. (2.112)

Equation (2.112) already shows that g(p) cannot have any O(p?) term for small p,
but does not rule out the possibility of an O(p) term. Moreover, Equation (2.109)
gives

Q) = —C —4D(l) =2 — 4 Dg(l) , (2.113)
so that Q(!) is known provided Dg(l) is known. The inverse Fourier transform of
Q(l) produces Q(p) which can then be integrated to obtain g(p)

47rg-(—p—) = — /p Q(t)t dt + constant , (2.114)
p 0

where the constant of integration is chosen so that 47g(p) — 1 as p — oo. The
principles of the method for finding ¢(p) are thus completely defined. The only
problem with the above is that Kelvin’s dispersion relation for the lowest mode is not
known explicitly in the form Dg = Dg(l). Instead it is given by an implicit relation
of the form F(Dg,l) = 0 as is shown by Equation (2.73). Kelvin’s exact dispersion
relation is therefore approximated using an expression that has the same behavior as
the exact result for small {, Equation (2.77), and that approaches 1/2 as [ — oc. An

- ((-z—‘rl T )1>(<)> " ) e

is an adjustable parameter that is real and positive. This

expression of the form

Di(l) =

o]

is assumed, where ¢?

expression approaches 1/2 asymptotically and gives, for small I,
10\ (1) 1, (1\?
D) ~ —=|= -l -(v==)|= IS
x() 2(2) log (2) (v 4)(2) +O(l* + Plog)

_ (.;.) g (3) + (+- 1) + 0 og ) (2116)

which is identical to Equation (2.77). In Figure J.4, a comparison between Kelvin’s
lowest mode exact dispersion relation and the approximation (2.115) for different
values of the free parameter ¢? is given. The best fit is obtained with ¢* = 1.43, at

least in the range of interest with wave numbers that are small to moderate.
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Use of Equation (2.115) with Equation (2.113) leads to the following approxi-

mation for Q(l ),
1 10g (1)
o) =2 41+(’) lg(2)2 ) : (2.117)
@+ () (7

The evaluation of the inverse Fourier transform of Q(I) and the subsequent

integration of Q(p) to obtain ¢(p) from Equation (2.114) are mathematically involved
and are given in Appendix C. The expression for ¢(p) that comes from the analysis
is lengthy and is also given in Appendix C, together with a listing of the Fortran
program that evaluates gq(p).

One main result is that ¢(p) behaves like

drq(p) = Ap+ Bp®+--- (2.118)

for small p, as opposed to usual velocity smoothings that are O(p®) for small p.

In Figure J.5, plots of g(p) for different values of the parameter c? are given. It
is remarkable that the ¢(p) function behaves very smoothly when the parameter ¢? is
the one that leads to the best fit of Kelvin’s dispersion relation (i.e., ¢? = 1.43), and
does not behave that smoothly otherwise. This leads to a strong belief that this g(p)
function, obtained from an inverse problem with an approximation of Kelvin’s exact
dispersion relation, is very close to the exact ¢{p) function that would be obtained if
Kelvin’s dispersion relation were known explicitly.

Now the use of the new velocity smoothing function ¢(p) for numerical com-
putations is examined. Recall the dynamics of a vortex filament evolving under the

regularized Biot-Savart velocity integral applied on the centerline

/

x x’ ax
A ZE gy .
8tx(s t) I‘/ = x’P ~x) A ds (2.119)

where x — x’ stands for x(s, t)—x(s',t), ¢(p) is the three-dimensional velocity smooth-

ing and s is a material coordinate which is not necessarily a length coordinate. With

q(p) of the form (2.118), one might suspect that the new velocity smoothing cannot

be used and that the integral diverges when s — s’. Fortunately, this is not the case,

due to the presence of the cross-product in the integrand. Indeed, recalling the Taylor

series expansion of x(s',t) about x(s,t), Equation (2.13), the limit of the integrand
is obtained as

q(xcf:)(x_x,)/\gﬁ“_ A (BZNE)

ds' 20k (g;_ax 3

Ba

+O(s' = s). (2.120)
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Thus the remarkable result is obtained that, in addition to the far field velocity
contribution that would be obtained with any usual velocity smoothing, the use of
the new g¢(p) smoothing also leads to a non-zero velocity contribution due to the
local curvature ( with usual velocity smoothings, there is no local contribution to the
self-induced velocity since the Biot-Savart law is proportional to [(s' — s)2ds’).

An important remark has to be made at this point: the fact that the inte-
grand is finite when x(s,t) — x(¢',t) in Equation (2.120) is due to the fact that the
approach to x(s’,t) is made on the filament. The integrand diverges like 1/r when
approaching x(s’,t) from any other direction. This is not surprising because the new
velocity smoothing ¢(p) was designed to only correctly reproduce the behavior of one
filament evolving under the regularized Biot-Savart integral applied on the centerline.
Consequently, the ¢(p) function should not be used for multiple-filament computa-
tions, unless the interaction in between filaments is done using some common g(p)
smoothing, reserving the ¢(p) smoothing for the influence of the filament on itself.
However, there is no theoretical support for this procedure, and it is recommended
that multiple-filament computations be done using only g(p) smoothings. For in-
stance, a vortex filament computation of a vortex tube with core deformation should
be performed using multiple filaments with overlapping of the individual cores so that
the sum of the individual vorticity distributions is capable of representing the core
structure of the vortex tube.

For single-filament computations, the use of the new velocity smoothing ¢(p) as
given by Equation (C.18) in Appendix C is costly. As an alternative, ¢(p) is stored
in a table for p = 0 to p = 20 by increment Ap = .01, and a table look up with linear
interpolation between data points is used. This method was found to give ¢(p) to less
than .01 % error. For p larger than 20, ¢(p) is approximated using an expression of
the type 4mq{p) = 1 + ¢1/p + c2/p?, where ¢; and c; are taken as the best fit.

It is also useful to decouple numerically the local velocity contribution due to
the local curvature from the far field contribution. Failure to do so might introduce
numerical problems when the vortex filament loops back on itself, i.e., when x(s,t) —
x(s',t) without s — s’. An easy way of decoupling the local influence from the far
field is to write

dmq(p) = Ap+Bp*+--
= Ape !¢ 4 4rq(p), (2.121)

where ¢.(p) is a function similar to usual g(p) smoothings, i.e., g.(p) is O(p?®) for small
p. At this point, the parameter ¢ is purely arbitrary. Whatever does not go into ¢.(p)
goes into the first term. The advantage of writing ¢(p) in this form is that the first
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term velocity contribution to the velocity can be evaluated analytically for small e.
The remaining part ¢.(p) is handled numerically in the same way as usual smoothings
g(p) are handled. One just has to store q:(p)/p> in a table and use a table look up
with linear interpolation between data points as explained above. In Figure J.6, both
q(p)/p and q.(p)/p are shown, together with g(p)/p) for the case of the low order
algebraic smoothing with the proper scaling (i.e., with 8 = e~3/%). Notice the similar
behaviors of ¢.(p)/p and g(p)/p. With ¢(p) given by Equation (2.121), the dynamics

of the vortex filament become

) A X L
x>t = “FLWK/C X X TX)A Gy ds
U (x;: ) ’ ax' ’
Cm()ﬁ-——x)/\*‘a—;;ds . (2122)

The first integral is now approximated by Laplace’s method for asymptotic behavior
of integrals {19]. Using Equation (2.13), it is found that

l(%’\'@"f)/”[(H%( NENE) (AT +)
2 (&% (4= (5 8)/ (5 %)+

o (4 () (o= (35 )0 5. 2) o
(2.123)

Using only the leading term above, it is found that Laplace’s method gives, as € — 0,

/’ieXp(—%&%— (g: g:))d’~/ ds'=2/0°°

= ___fg.’.‘....i./_;/ $=1/2 o=t gy — __.\_/__7?6_‘_7_{(_175 . (2.124)
(z.2)" o (= )
Js  Os 3s  3s

An analysis of the second term asymptotic shows an error of O(e?). The approxima-

tion to Equation (2.122) finally becomes

22X A 2X (=Xl p
D (s.t) ~ —1 | AT (5 ;) o (P53 )(x-x')/\?—’f-ds' . (2.125)
ot 8x (Q)_( _ _Q)__c_) 27 Je |x —x'P ds'

ds  Os

Numerical accuracy dictates the choice of the parameter €. ¢ has to be small
enough for the asymptotic value of the first integral above to be acceptable. However
€ cannot be too small because it then becomes difficult to capture numerically the

contribution of the integral that involves g.(p).
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Consider the velocity of a thin vortex ring that is subjected to the new velocity
smoothing. The asymptotic analysis presented in Section 2.3.1 remains valid when

g(p) is O(p) for small p. In particular, Equation (2.55) remains valid and leads to

I [ /4R o
Ur = 1% |lo8 (?:;)‘4”/0 q<””°gf’d/’]
' r 4R
= 1R L8 (“;;)"-4440]
r S8R 1
=~ &R .1°g (aK) ‘Z] ’ (2.126)

where the integral has been evaluated numerically with ¢? = 1.43. Thus, within the
accuracy of the numerical integration and evaluation of ¢’(p), the correct velocity of
the vortex ring with uniform core vorticity is recovered. This was to be expected
because of the strong analogy between Equation (2.55) and Equation (2.99) and
the fact that the new ¢(p) function was designed to reproduce Kelvin’s dispersion
relation for small !, wathever the value of ¢? is. In other words, this result comes as

a consequence of the constraint
oo 1
47r/ p)logpdp =- —log2, (2.127)

related to the behavior of the dispersion relation for small { and enforced for all values
of c.

This section is concluded by developing a simplified velocity smoothing ¢(p) that
reproduces Kelvin’s lowest mode dispersion relation to a reasonable approximation.
There is no term of O(p?) because of the need to satisfy the integral constraint (2.112)

but an O(p) term is required. One therefore considers

qlp) = Zl}’ G;—iT)% : (2.128)

which is O (p + p®) for small p. The associated vorticity smoothing

g(p) _ 1 !
- = — 2.129
is O (1/p?) for small p and cannot be thought of as a physical vorticity distribution,
even when integrated along a filament. Indeed, if a straight filament is considered,

one obtains, for the equivalent two-dimensional distributions,

s,

9:(p) ST

= ——-—p/ 11 dt
s S (pP 4 2+ 1)5(p? + £7)
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= -——p - arctan { — ——————
EAY. P+t D))

1 1
= é—;parctan (;) , (2.130)
_ @) _ 1 (1 AN
Glp) = p -—5—( arctan (p 1) (2.131)

Notice that gy(p) is O (p + p?) for small p and (3(p) is O (1/p) for small p. Thus, as
r — 0, the two-dimensional vorticity distribution diverges like 1/r and the circumfer-
ential velocity goes to a constant ( = I'/4o in this case). These are thus not physical
velocity and vorticity distributions. However it might be that the g¢(p) smoothing
used to define the dynamics of a vortex filament evolving under the centerline veloc-
ity correctly reproduces the dynamics a physical vortex tube.

The dispersion relation for a filament subjected to the velocity taken on the
centerline is obtained using Equations (2.109), (2.110), and (2.111):

C = 2/00—1-—61—(——1—7) dp
o pdp \(p?+1)7
_ __,2/00 1 —dp= -2,
(] p2+1)2

QM = - /m;(z)(p il) )cos(lp)dp,

Jr

= ——IK () =21K;(l

i () = 20K, ()

D) = 1 (C+00)

= % —;— (1 -1K (1)) , (2.132)
where K, is the modified Bessel function of the second kind and order 1. Notice
that D(l) — +1/2 as | — oo, thus showing that the dispersion relation approaches
asymptotically the same value as Kelvin’s lowest mode dispersion relation. However,

the behaviors for small [ do not match. Indeed, the expansion of D(!) for small { gives

D)=+ (é)z [log (é) + (7 - -;-) +0 (Plog 1)] , (2.133)

which is not equivalent to Equation (2.116). If the core size o is rescaled so as to obtain
the same expansion of the dispersion relation for small I, ¢ = Bog with 8 = €'/ is
obtained. The dispersion relation of this simple smoothing is given in Figure J.4.
Notice that, although D(I) = 7a*Q({)/T approaches 1/2 asymptotically, the rescaled
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dispersion relation D (1) = 7o} Q(l)/T approaches 1/(23?) asymptotically. A plot of
g(p) is also given in Figure J.5, with the core size rescaled, i.e., withp = r/og = fr/o.

If the velocity of a thin vortex ring subjected to that velocity smoothing is
computed using Equation (2.55), one obtains

I‘ %)
o = e () - [ g s
T 4R
= m log (—-) +log2}
r 8R
= 1og( >—o] . (2.134)

Again, the scaling of the core size to obtain the correct ring velocity of a uniform
vorticity core leads to o = Bok with 8 = e'/4.

In conclusion, this very simple three-dimensional smoothing can, with proper
scaling, be used instead of the algebraically complicated one. It has a similar behavior,
at least in the range of small to medium values of {. In fact, one might suspect that
any smoothing which is O(p + p?®) for small p has a dispersion relation that does
not cross the | axis and can thus be used to model Kelvin’s lowest mode dispersion

relation.

2.5 Numerical results

In this section, the numerical results that were obtained using the method of vortex
filaments described in the previous sections are presented.

The space curves x”(s,t) are always described using parametric cubic splines.
The filaments thus have a continuous second derivative, 32x/ds?, at each computa-
tional point. The integration of the Biot-Savart law is done using the information
from the cubic splines and the trapezoidal rule. The trapezoidal integration rule
has spectral convergence when the integrand is known exactly and is periodic, i.e.,
when the vortex filaments are infinite periodic curves or closed curves. Here, the
trapezoidal rule is only third order because of the cubic splines approximation of the
integrand. The parametric coordinate, s, is always taken as a Lagrangian coordi-
nate and not a length coordinate. The time integration is done using the classical
Runge-Kutta scheme of order 4 (RK4). The computations involving usual velocity
smoothings, g(p), are performed using the low order algebraic smoothing (B.10). The
reason for this choice is that, at the time the computations were performed, the new
high order algebraic smoothing (B.12) was not yet discovered. For multiple-filament

computations, the error estimates presented in Section 2.2.2 show however that it is
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important, for convergence, to consider high order regularization functions such as

the Gaussian smoothing (B.8) or our high order algebraic smoothing (B.12).
Finally, the plots of vortex filaments are done by simply connecting the com-

putational points with straight line segments instead of using the spline fits.

2.5.1 Numerical verification of the dispersion relation

An important first step in the use of the new velocity smoothing, ¢(p), presented
in Section 2.4.3 is to verify numerically the correctness of the lengthy mathematical
derivations of Section 2.4.3 and Appendix C. Does the new ¢(p) smoothing reproduce
indeed Kelvin’s lowest mode dispersion relation when used numerically ?

The numerical computation of an infinite periodic vortex filament evolving un-
der the Biot-Savart integral applied on the centerline is done following a procedure
that was first introduced by Moore (1972), but that has been modified for better
accuracy when the wavelength A of interest is not much bigger than the core size o
of the filament. The procedure is presented in detail in Appendix D.

Figure J.7 shows the numerical results obtained with an infinite periodic vortex
filament perturbed by a sine wave (i.e., the sum of two helical waves as discussed in
Section 2.4.2). N, = 40 computational points per wavelength have been used. The
numerical data obtained with the low order algebraic smoothing (B.10) fall exactly
on the theoretical curve given by Equation (2.103). The data obtained with the
new smoothing g(p) and ¢? = 1.43 fall almost exactly on Kelvin’s lowest mode curve
(actually, they fall exactly on the approximation (2.115) to Kelvin’s curve). These
results are very comforting because they imply that the mathematical developments
of Section 2.4.3 and Appendix C are indeed correct.

Figure J.8 shows the effect of the splitting of the new velocity function ¢(p) as
explained in Section 2.4.3. Different values of the splitting parameter, ¢, have been
investigated numerically for a fixed number, Ny, = 40, of computational points per
wavelength. The choice € = .1 gives the best results up to | = kog ~ 5. The choice
€ = .15 gives good results up to | ~ 4. Taking ¢ = .25 leads to poor results as soon
as | ~ 2. Of course, the smaller ¢, the better the numerical result (assuming that the
contribution of g¢.(p) is correctly captured by the discretization, i.e., that NV is large
enough !).

Figure J.9 shows the effect of the discretization, i.e., the effect of N, for a fixed
value of the splitting parameter ¢ = .15. It appears that a poor discretization of the
filament leads very quickly to a wrong numerical dispersion relation. For instance,
N, =5 is obviously not sufficient.

One conclusion of this investigation is that Ny = 10 with € = .15 is a fair choice
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if the range of interest is { < 3. Another conclusion is that, if the filament is not
expected to loop back on itself, then the full ¢(p) function should be used instead of
the split expression (2.125).

2.5.2 Results on vortex rings.
2.5.2.1 The velocity of the single-filament vortex ring

Another problem of interest is the determination of the velocity of a single-filament
vortex ring subjected to the Biot-Savart velocity applied on the centerline, and the
comparison with some known results. The results of this investigation are summarized
in Figure J.10. The exact result for the velocity of a vortex ring with the low order
algebraic smoothing (B.10), Equation (2.67), is plotted for the full range of values of
ok /R. The numerical results obtained using the new velocity smoothing g(p) with
N = 200 computational points are also plotted. These results can be compared with
the results of Lamb (1932), Fraenkel (1972) and Norbury (1973). The asymptotic
result of Lamb (1932) for the thin vortex ring with uniform vorticity is given by
Equation (2.63). The higher order asymptotic result of Fraenkel (1972) for the ring

with uniform w/r is, in the present notation, given by

2
e ke ()1 -25) (D)D) o
Notice that the definitions A = wo} for the area I' = nUgR for the circulation have
been used in order to present his results with the present notation. For instance, the
Hill’s spherical vortex corresponds to ox/R = /2.

The results of Norbury (1973) are both analytical and numerical. He gives the
computed shape and overall properties of the ring with uniform w/r over the full range
of values of ox /R and compares these results with asymptotic formulas. His results
for the velocity of the ring are also plotted in Figure J.10. Because the circulation T
18 not a constant in his numerical computation, it was rescaled properly so as to be
consistent with the above definitions of A and I'.

Notice that the ring velocity obtained with the low order algebraic smoothing
9(p) is closer to Norbury’s result than the ring velocity obtained with the new velocity

smoothing ¢(p), although the differences are small.

2.5.2.2 The stability of the single-filament vortex ring

As discussed in Section 2.4.1, the instability of a vortex ring is related to the dispersion
relation of the rectilinear vortex filament (Widnall, Bliss & Tsai 1974, Moore &
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Saffman 1975, Tsai & Widnall 1976, Widnall & Tsai 1977). Modes that do not rotate
or that rotate slowly are unstable in the presence of a weak strain. The flow near the
core of a thin vortex ring of radius R and core size o is close to that near a rectilinear
vortex in a uniform strain, the weak strain at some location along the torus being
due to the velocity field induced by the rest of the ring (Widnall, Bliss & Tsai 1974).
The principal axes of the strain are at 45° with respect to the plane of the ring,
roughly speaking. Modes that do not rotate are convected away from their disturbed
position with a velocity that is proportional to their displacement and hence become
unstable. Saffman (1978) gives formulas for the number of waves to expect on a
thin ring. For the thin ring of uniform vorticity within the core ok, the dispersion
relation of Kelvin (1880) has an enumerable infinity of zeroes (see Figure J.2 from
Robinson & Saffman 1984). The first two occur at the value of I} = kjox ~ 2.5
(mode 1) and l; = kyox =~ 4.35 (mode 2). The dispersion relation associated with
the lowest mode (mode 0) has no zero. Mode 1 is more likely to occur than mode 2.
According to Saffman’s estimate, the number of waves on the vortex ring is an integer

N, approximated by

N,=kR=40¢", (2.136)
where iR SR )
. s
= -—F- UR = lOg (E';) - Z . (2137)

For instance, with R = 1.0 and o = .50, k = 5 ~ 4.98 is obtained for mode 1. Such
a ring is thus expected to go unstable in mode 1 and with N,, = 5 wavelengths along
the torus.

The dispersion relation corresponding to usual velocity smoothing, g(p), has a
zero for mode 0 at a value of ly = koog ~ 2...3 (lp = 2.37 for the low order algebraic
smoothing). A single-filament vortex ring subjected to one of these smoothings is thus
expected to become unstable in mode 0 with approximately the correct wavelength.
On the other hand, the dispersion relation for the new velocity smoothing, ¢(p), has
no zero since it reproduces Kelvin’s dispersion relation for mode 0. A single-filament
vortex ring subjected to that smoothing is thus expected to be stable.

The results of a numerical computation presented in Figure J.11 show that this
is indeed the case. These computations are done using one filament discretized with
N = 64 computational points. Each filament has circulation I' = 1.0, radius R = 1.0
and core size ox = .50 (i.e., 0 = Box with 8 = e~%* for the low order algebraic
smoothing ¢g(p) and 8 = 1 for the new smoothing ¢(p)). At t = 0, the position of each
computational point is perturbed with a random amplitude < .0025. The direction
of the perturbation is also randomized. Both computations are started using the

same initial condition and are done with At = .10 . The core size is subjected to
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Equation (2.48). According to Saffman’s formula (2.136), it is also expected to obtain
N, = 5 wavelengths along the filament when the low order algebraic smoothing is
used. This is indeed the case as can be seen from Figure J.11 (ok(t = 50.) = .43178).
On the other hand, the single-filament vortex ring that is subjected to the new velocity
smoothing remains stable for all times (ox(t = 120.) = .50003). This is consistent
with the fact that a vortex ring cannot go unstable in mode 0, i.e., when there is no
degree of freedom to describe the core structure .

The conclusion of this section is that one has to be careful when computing
problems where the physics strongly depends on the core structure of vortex tubes.
In the above, it is pure luck that the numerical unstable mode at ly ~ 2.37 almost
identically matches the physical unstable mode at {; ~ 2.5.

In fact, the correct way of computing the instability of a vortex ring is to use a
usual smoothing g(p) that is convergent (such as the high order algebraic smoothing)
and to discretize the core structure ox with many filaments p and o << og. Then,
if one obtains instability at I; = kjox ~ 2.5 with k0P << 1, one expects that the
physics of the problem is correctly captured because of the convergence of the method

of vortex filaments.

2.5.3 Results on solitary waves on a rectilinear vortex filament

It was shown in Section 2.4.3 that the new velocity smoothing ¢(p) leads to a non-zero
local contribution to the self-induced velocity of the vortex filament everywhere its
curvature is non-zero. This is in contrast with usual velocity smoothings ¢g(p) for
which the local contribution to the self-induced velocity is zero since g{(p) is O(p>)
for small p = r/o. The large differences in their dispersion relation were also shown
in Section 2.4.3.

It is interesting to compare the usual smoothings and the new smoothing with
the so-called Localized Induction Approzimation (LIA), an asymptotic theory in which
the self-induced velocity of a vortex filament is solely due to the local curvature.
Before doing so, both the LIA approximation and the theoretical results that are
associated with it are briefly reviewed.

The LIA approximation was introduced to understand the nonlinear behavior
of a very thin vortex filament (Sante Da Rios 1906, Hama 1962, 1963 , Arms & Hama
1965). In that approximation, it is assumed that the core size, o, of the vortex filament
is 50 small than the only self-induced velocity is that due to the local curvature. More

specifically, from examining the Biot-Savart induction law with a usual smoothing (or
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cut-off ), it is found that

) r L (ZEAg
Sx(s,t) = 1 (log (;) + 0(1)) e =

, (2.138)

(52 21 AN

where L is a large scale cut-off not fully specified. In the LIA approximation, the
term log(L /o) is taken as constant, neglecting the slow variation of the log compared

with its argument. This gives

0 o (BN
-a-zx(s,t) = CM R (2.139)

where C ~ (I'/4r) log(L/o). Of course, the LIA approximation only captures the
behavior of the Biot-Savart induction law for the large scale bending of thin vortex
filaments. It is however an interesting approximation because there exists a number
of exact solutions to Equation (2.139).
The dynamics of a filament evolving under the LIA is usually described with
ax  9x

s as an arclength (i.e., <& - = 1)} and using a Frenet-Serret reference frame, an
g * Js Os g ’

orthonormal frame composed of the local tangent vector t = %’f, the principal normal

o= %—2’-’2-5/5, and the binormal b = £ A fi (Betchov 1965). x(s,t) = (%2;%‘- . %{%‘-)1/2 is

the curvature. Equation (2.139) can then be written as
?_x_ R R

ot

x = kb, (2.140)

where the overdot stands for differentiation with respect to a new time, C't (which
has the dimension of the square of a length). The coordinate vectors vary according

to Frenet-Serret formulas
'=—xkn ,A'=7b-xt ,b'=-71a, (2.141)

where the prime stands for differentiation with respect to s. 7, defined by the last
equation in (2.141), is called the torsion. k(s,t) and 7(s,t) are enough to completely
specify the space curve x(s,t). Appropriate differentiation of Equation (2.140) and
Equation (2.141) leads to a coupled system of partial differential equations for « and
r

k+ (k7)) +&'T = 0, (2.142)

" 2\/
T--(E__Tz+.'52_) = 0. (2.143)



44

Hasimoto (1972) gave solutions to Equations (2.142) and (2.143) that are soli-

tons on a straight filament with
7(8,t) =To=1c/2  aconstant ; k(s,t)=2vsech(v(s—ct)). (2.144)

These solitons have constant torsion, 7, and propagate with a constant velocity that
is twice the torsion. v is the inverse of a length scale and only defines the global size
of the solitary wave. Given v and 7, and defining T' = 74/v, the shape and position

of the soliton is given by (Hasimoto 1972):

2
= el 1 —
z s e anh(v(s — ct))
y+iz = ——-——V(l i 77 sech(v(s — ct)) T ula=cti P (14T (2.145)

Figure J.12 from Hasimoto (1972) illustrates the shape of these solitons for different
values of the torsion parameter, T'.

More recently, Ciesliniski (1985) also gave solutions to Equations (2.142) and (2.143)
that are solitons for which the generating vortex filament (of infinite or finite length)
remains in the interior of a torus moving with constant velocity.

Now the results which were obtained by subjecting an Hasimoto solitary wave
of torsion T = .50 to the full Biot-Savart induction law are presented. Two cases are
considered, a thin vortex filament with ocx = .20 and a fat vortex filament with ox =
.40 . Each case is computed twice, once with the low order algebraic smoothing (B.10)
(8 = e%*) and once with the new velocity smoothing (without splitting). The
numerical details associated with the computation of an infinite vortex filament are
presented in Appendix E. The computations are done with N = 600, I' = 1.0 and
At = .05. The results are shown in Figure J.13 and Figure J.14. With o = .20, there
is a clear tendency to preserve the shape of the initial condition in both computations.
This is consistent with the solitary wave behavior of a thin vortex filament as predicted
by the LIA theory. The results are very much alike, and the new velocity smoothing
gives a slightly lower wave speed. This slight difference is due to the small difference,
for small I = kog, in the behavior of the dispersion relation of the two smoothings
(Figure J.7). With ox = .40, the vortex filaments do not behave at all in accordance
with the LIA theory. The vortex filament is too fat to support solitary waves, and
the initial shape is not retained. Moreover, the two computations yield very different
results. This is to be expected, at least qualitatively, from the large differences, for
medium to large [, in the dispersion relation of the two smoothings. Of course, the
case with o = .40 is not of great physical significance. The vortex tube is simply

too fat with respect to the size of the wave to be represented with a single filament.
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One should really use a collection of thin filaments in order to capture the internal
structure of the vortex core. But this is another subject, and it is still felt that it is
of some interest to understand the numerical behavior of isolated vortex filaments,
thin or fat.

Finally, the collision of solitary waves is considered. The Hasimoto solitary
waves are really solitons. This means, among other things, that, when two or more of
these waves collide, each emerges from the collision in its previous form. This process
is illustrated in Figure J.15 from Aref & Flinchem (1984). One might however be
concerned about the physical significance of these collisions. Indeed, the process of
collision is such that different segments of the same vortex filament come very close to
each other. When this occurs, the assumption of localized induction fails. No matter
how small the core size ok, the velocity cannot anymore be only function of the local
curvature. Segments which are very close strongly influence each other through the
usual Biot-Savart interaction, and it seems very unlikely for the contribution from
this interaction to be negligible with respect to the LIA contribution. Computations
performed with the full Biot-Savart law confirm these suspicions. Figure J.16 illus-
trates the collision of two identical waves of torsion T' = .50. This computation is
done with N = 600, ox = .10, I = 1.0, At = .10 and the splitting of ¢(p) with
e = .15. It is clearly seen that two waves evolving under the full Biot-Savart law
do not survive a collision. The outcome of this particular collision seems to be the

production of an elongated vortex ring that moves away from the main filament.

2.5.4 Results on the interaction between vortex rings

In this section, the numerical results that were obtained with multiple-filament com-
putations are presented. Both computations presented here involve a strong inter-
action between two vortex rings. The motivation for these computations is given in
detail in Chapter 3, Section 3.5. One should thus refer to that section for additional
information. The present results are only qualitative and are presented only for com-
parison purposes with the quantitative results obtained with the method of vortex
particles.

The parameters which are common to both computations are the radius £ = 1.0
and circulation I' = 1.0 of each ring, the number of filaments P = 9 per ring (with
I'* = 1.0/9), the core size o = .20 of each filament, and the geometrical parameter
m = .04 (see Figure J.26). The computations are done using the low order algebraic
smoothing (B.10) with 8 = e~*4. The core radius of the equivalent uniform vorticity
ring is thus roughly ok ~ 0?/8 + 21, >~ .50. The core size o?(t) is also subjected to

Equation (2.48), and the interaction in between filaments is symmetrized as explained
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2.5.4.1 The problem of the fusion of two vortex rings computed using the
method of regularized vortex filaments

This computation is initialized in the configuration showed in Figure J.25 with the
two rings at a spacing s = 3.0 center to center and at an angle §, = 12.5° with respect
to the vertical. The number of computational points per filament is N, = 128 for a
total of N = 2304. The time step is At = .05

The time evolution of the vortex filaments is presented in Figure J.17. Notice the
development of helical waves near the reconnection region. These waves correspond to
regions of axial flow. It is clearly seen that the fusion process cannot occur because of
the inviscid nature of the filament method. Vortex filaments are indeed closed curves
(that support constant circulation) for all times and cannot be disconnected (except
artificially). It will be seen in Chapter 3, Section 3.5 that the viscous version of the
method of vortex particles is able to account for the process of viscous reconnection

of vortex tubes.

2.5.4.2 The problem of the two vortex rings in a “knot” configuration
computed using the method of regularized vortex filaments

This computation is initialized with the two rings in a knot configuration and a
spacing s = 1.0 center to center. The number of computational points per filament
is N, = 64 for a total of N = 1152. The time step is At = .09

The time evolution of the vortex filaments is presented in Figure J.18. The
interaction between the two rings is very violent, and the vortex tubes become quickly
very convoluted. Concentrated regions with helical waves and hence axial flow are also
present. Again, due to the inviscid nature of the filament method, the computation

cannot lead to viscous reconnection of vortex tubes and has to be aborted at some
point.
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Chapter 3

Three-dimensional vortex particles

In the present chapter, the use of vortex particles for computing three-dimensional,
incompressible vortical flows is examined. Vortex particles, also commonly called
vortex sticks or vortons, are an alternative to the use of the vortex filaments pre-
sented in Chapter 2. They are vector elements. A position vector, a strength vector
(= vorticity x volume), and in some cases a core size are associated to each element.
Each element can thus be thought of as a little section of a vortex tube (= circulation
x length). The element is convected with the local velocity, and the evolution of the
strength vector is in accordance with Helmholtz equation. The method has the advan-
tage that these particles are somewhat independent. They do not belong to a specific
vortex filament for all times. This property makes the method attractive because an
explicit treatment of viscous diffusion using a general scheme proposed by Mas-Gallic
(1987) and Degond & Mas-Gallic (1988a,1988b) can be incorporated in the method.
With that scheme, it is hoped that processes such as vortex tube reconnection can
be modeled. The method of vortex particles present however a consistency problem:
the particle vorticity field is not guaranteed to be divergence free for all times as it
should be. This is an issue of serious concern which has to be addressed.

The following issues are investigated: use of §-function particles and weak so-
lutions of the vorticity equation (Section 3.1); use of regularized particles and choice
of the regularization function (Section 3.2); representation of viscous effects by the
redistribution of element strengths (Section 3.3); and conservation laws - how to eval-
uate them 7 - are they satisfied ? (Section 3.4 and Appendix G). The last section,
Section 3.5, contains the numerical results. The new algebraic regularization func-
tion, introduced in Chapter 2, is used extensively because of its good convergence
properties and its computational efficiency. This regularization function is also a
prime choice for the evaluation of the quadratic diagnostics: energy, helicity and en-
strophy. The convergence of the method, both inviscid and viscous, is investigated on
the problem of the axisymmetric vortex ring. Particular emphasis is also placed on
the numerical computation of the viscous fusion of two vortex rings and on the com-

parison of the numerical results with the experimental results of Schatzle and Coles
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(1987). It is shown that the viscous method can indeed lead to the entire process of
vortex ring fusion and that the method can produce quantitative results. It is also
shown numerically that the viscous diffusion helps reduce the inconsistency problems
of the method, and that the particle vorticity field remains almost divergence free
during the entire course of the computation. Finally, a relaxation scheme is proposed
that forces the particle vorticity field to remain almost divergence free for all times,
regardless of the effect of viscous diffusion.

As a parenthesis, the use of three-dimensional vortex-dipoles is also investigated
theoretically. Since no numerical computations were performed using these vortex-

dipoles, the theoretical investigation is reported in an appendix (Appendix H).

3.1 Singular vortex particles and weak solution of the vor-

ticity equation

The three-dimensional vorticity equation for an incompressible flow is given by Equa-
tion (2.4). If u(x,t) is considered to be given, then Equation (2.4) is an hyperbolic
evolution equation for the vorticity field, which is the right form to be solved using
particle methods for hyperbolic equations (see Raviart 1985, 1987). Indeed, these

methods have been developed to solve equations of the type

gt—f-{»V(fu) A(w)f, (3.1)

where u(x,t) is a given velocity field and A(u) is a matrix function of u. In the
vorticity Equation (2.4), (w - V)u stands for (Vu) w, and thus, A(u) = Vu.

Now the vortex particle method is examined more specifically. The vorticity
field is discretized onto vortex particles, also called vortex sticks or vortons (Rehbach
1978, Beale & Majda 1982a, 1982b, Novikov 1983, Aksman, Novikov & Orszag 1985,
Mosher 1985, Beale 1986b, Saffman & Meiron 1986, Choquin & Cottet 1988),

wx,t) =Y wP(t)volP §(x — x"(t)) = > of(t) §(x — xP(t)) = Z w? . (3.2)

» P
Here, of course, the velocity field u(x, t) is not given. It is computed from the
particle representation of the vorticity field as the curl of a streamfunction which

solves V33 (x,t) = —w(x,t), namely
_ p(
P(x,t) = G(x) * w(x,t) Z G(x —x Z IX xP )‘ . (3.3)

where * stands for the convolutlon product. The velocity is taken as the curl of (3.3)

and is given by

u(x,t) = VAY(x,t) Z V(G{x — xP(t))) A o(t)



= ————(x — x"(t)) A aP(t) + uP(x,1)
= 2 Kx—x"(t)) Aaf(t) = (K(x)A) * w(x,1), (3.4)
4
where uP(x,t) stands for the velocity field without the contribution of the p particle,
and K(x)A = — (1/ (47|x]*)) XA is the Biot-Savart kernel.

The evolution equations for the particle position and strength vector are usually

taken as
_g{xp(t) = uP(x"(t),1), (3.5)
-;-t-a”(t) = (@) V)uP(xP(2), 1) | (3.6)

which will be referred to as the classical scheme.
A few remarks should be made at this point:

o The particle vorticity field (3.2) is not generally divergence free. Indeed,
xt)_ZV x — xP(t))} - aP(t) . (3.7)

This fact makes the method inconsistent in some sense because a basis which is
not divergence free is used to represent a vector field that should be divergence
free for all times. In other word, the particle method is only solving for some field
w according to the hyperbolic equation (2.4). In addition, it shall be seen that
the field w(x,t) can, as time evolves, become a poor representation of the real
vorticity field, even when the initial condition w(x,0) is a good representation
of the initial vorticity field.

¢ The streamfunction (3.3) is also not generally divergence free. Indeed,
P(t) - of . .
VWix0) = -5 ¥ e (X0 @0) . 68

This result is a direct consequence of the fact that V2% = —w is solved with w

not generally divergence free.

¢ The velocity field (3.4) is divergence free since it is the curl of a streamfunction.

Indeed,

V() = 12 T g~ X0 (=X A @) =0, (39)
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since (x — x?) is orthogonal to (x —x?) A a®. At x = x?, the singularity is of

removable type so that V-u = 0.

¢ As noted by Novikov (1983), one can reconstruct a divergence free vorticity field

from the particles by writing

WN(x,t) = T [a”(t) 5(x — x*(8)) + V (a”(t) v (M))] . (3.10)

p
The added term corresponds to that which is needed to close the vortex lines
(i.e., make w divergence free), and it decays only as 1/r>. Making use of suffix

notation, one obtains, for the components of this vorticity field,

St = ¥ [apm Sx = (1) + o (af(t)ai (4,,|xf xp(t),))]

i [ et -5% (af (t)4§r7;:i)((tt)))l3)]
o Ry—
( lx - xP -3 QZE:R& ;pff)(]ts)) (z; — af (t)))] , (3.11)

so that

wh(x,t) = Z[(«S(x —xP(t)) — pye ~—1x1’(t)|3) aP(t)
((x = xP(t)) - &P(2))

4r|x — xP(t)[®

+3 (x — x”(t))] . (3.12)

e If the curl of the velocity field (3.4) is taken, one obtains the vorticity field (3.10).

Indeed, making use of suffix notation, one obtains

1
(VAu);, = €ijk 5 [Z Ekim 5 (m) afn(t)]
= Z (6,',,,6]'1 + 6,'{6_,," a 62}1 47!")( — Xp ) C!fn(t)

14
a o0

=
E,,: dz; 0z; (47r|x — xP t)l) o
(o0

+5e ( dz; (47r|x —le(t)l))

3
+V(ap (47rlx—1x”(t)‘>)}i
3

I
*[™]
| s ]
R
>
=
]
|
¥
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Thus, w" = VAu = VA (VA®) = —V2¢+V(V-1). Recalling that V24 = —w,
it follows that V(V-4) = w" — w.

¢ The second term in Equation (3.10) does not contribute to the velocity field
as computed by the Biot-Savart law since it is the gradient of a scalar field.
In other words, inserting Equation (3.2) or Equation (3.10) in the Biot-Savart
integral yields the same velocity field (3.4).

Saffman & Meiron (1986) have shown that the formulation Equation (3.5), and
Equation (3.6) does not constitute a weak solution of Equation (2.4).

As noticed by Rehbach (1978) (see also Cantaloube & Huberson 1984 and
Choquin & Cottet 1988), alternative forms of the three-dimensional vorticity equa-

tion (2.4) can be written as follows:

%t‘i + V(w u) = (w . V)u R (3'14)
= (w . VT) u, (3.15)
= (e (V+9))u. (3.16)

This is so because (w . (V—VT)) u = (VAu) Aw = 0 since VAu = w. The
formulation (3.14) leads to the classical scheme (3.6) for the evolution equation of

the particle strength vector. The formulation (3.15) suggests the evolution equation

La?(t) = (?() - V7) wae(0) 1) (3.17)

This scheme will be referred to as the transpose scheme. The formulation (3.16)

suggests the evolution equation

%ap(t) = % (a(t)- (V+ V7)) u(x"(2), 1) . (3.18)

This scheme will be referred to as the mized scheme. This scheme was favored by
Rehbach because the symmetry of the matrix 1 (Vu + VTu) yields computational
savings.

All three schemes would be equivalent if the vorticity field defined by Equa-
tion (3.2) were equal to the curl of the velocity field (3.4). Unfortunately for the
particle method, this is not the case, as a consequence of the non-zero divergence
of the field (3.2). So, although Equations (3.14), (3.15) and (3.16) are equivalent
when w = VAu, they are not equivalent otherwise. Consequently, Equations (3.6),
(3.17) and (3.18) lead to different results when solving the three-dimensional vorticity

equation with vortex particles.
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The transpose scheme Equation (3.17) is very special. First of all, it leads to
the exact conservation of the total vorticity as will be seen in Section 3.4, a property
not satified by the classical scheme (3.6) or the mixed scheme (3.18). Moreover, it
leads to a weak solution of Equation (3.15) as shown by Winckelmans & Leonard
(1988). The proof is done using the same procedure as in Saffman & Meiron (1986).

First, since u?(x,t) is smooth in the neighborhood of x?, Equations (3.5)
and (3.17) imply that

9 T
@+ V)W - (w8 VT w? =0 (3.19)

at all points including x = xP. It remains to consider whether
((u—u?f) - V)w? - (w” . VT) (u—uP)=0 (3.20)

at x? in a weak sense. A local coordinate system with the origin at x? is considered
and use is made of suffix notation. The superscript, p, of the particle is dropped.
It thus remains to consider whether the following integral vanishes for an arbitrary

smooth function f(x) :

[ #x) [ 228 9 (o 0) = 6 0 o (s ";‘f")} &, (321)

r3

The first term is integrated by parts, and Equation (3.21) becomes

0
_ /5(){) [61]); Q0 - 6 (frzk) + €iik ajalf—a-; (%)] dx . (322)

The second term in Equation (3.22) is different from the one obtained using the
evolution Equations (3.5) and (3.6) as in Saffman & Meiron (1986), namely

- /6 (x) [c,,k o0 7 Bz, (ka) + €ijk ajazfg% (ﬂ)] dx . (3.23)

r3

As pointed out by Greengard & Thomann (1988), one needs to assume a radially
symmetric regularization of the é-function for the integrals above, interpreted in the
principal value sense, to be well-defined. Such a regularization is assumed in the
present context.

Being smooth, f(x) has a Taylor series

F) = F(0) + 20 f(0) + 5 2024 fus(0) 4+ (3.24)

From the symmetry of the integrand in (3.22) and (3.23), it follows that only even

powers of the coordinates need to be considered. Moreover, terms of order 4 and
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higher vanish sufficiently fast so as to cancel the é-function contribution. Thus only
the constant term and the quadratic terms need to be considered. The first part of
Equation (3.22) (or (3.23)) gives

6 )
f(O) (fkjk a‘-aj/ S:) dx — 3fljk ;0 / ——f;?-)-a:ka:l dx)

)
+f+5(0) (fkjk a;a; /-—%lx,z, dx

&(x
+6 5k dia; /-%—lx,zk dx

)
€,k 00 / ——g-)-;-)-x,xk dx
i

)
—3 €k aiaj/é%(—)-xrw,xkxz dX) . (3.25)
The first and third term in Equation (3.25) vanish since €;;x = 0. The second term

vanishes since € zxz; = 0. The fourth and fifth terms are identical since f,,(0) =
f5+(0); they are found to be zero as follows [53]:

1rs(0) €rjr s [ 2,00 dS o £14(0) €k @it b = fral0) €rjy @i =0 (3.26)
The last term is proportional to
Fro(0) €1 iy / 22,2421 dS . (3.27)
Using the result [53] that
| / 22221 dS o 638k + 661 + Subj (3.28)

it is easily seen that this term also vanishes. Thus, the first term of Equation (3.22)
(or (3.23)) vanishes. The term that does not vanish in Equation (3.23) is the second
term. It is proportional to (Saffman & Meiron 1986)

frs(0) (€ijr iy + €555 ey} (3.29)

which does not vanish in general, thus showing that the classical scheme does not
constitute a weak solution of the three-dimensional vorticity equation (3.14).

With the transpose scheme, the second term in Equation (3.22) vanishes triv-
ially even before integration since ¢ a;a; = 0. Thus, the transpose scheme con-
stitutes a weak solution of the three-dimensional vorticity equation (3.15). That
property and the conservation of total vorticity leads to the belief that the transpose

scheme is more suited than the classical scheme to the representation of three-dimensional
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vortical flows with a limited number of vortex particles. This point will be examined
further when presenting numerical results in Section 3.5
Important remarks made by Greengard & Thomann (1988) should be men-

tioned:

e The above proof that singular vortex particles evolving under the transpose
scheme form weak solutions of the vorticity equation is “fragile” and depends
on the type of regularization of the §-function. Only for a radially symmetric
regularization of the é-function are the integrals, evaluated in the principal value

sense, bounded.

e The vorticity field associated with three-dimensional singular vortex particles is
not divergence free. Consequently, a finite sum of particles cannot represent a
divergence free vorticity field. This fact is in opposition with two-dimensional
singular vortex particles (i.e., point vortices) for which the particle vorticity
field is divergence free, and is a serious obstacle to the validity of finitely many
singular particles as models for the solution of the three-dimensional vorticity

equation.

¢ A more important notion than the concept of weak solution with singular vortex
elements is the concept of convergence to a smooth solution with regularized
vortex elements. As will be seen in Section 3.2, the method of regularized vortex
particles has been shown to converge both in two and three dimensions, at least
for some finite time T. When the number of elements goes to infinity and the
smoothing goes to zero in an appropriate way, the solution of the differential
equations that govern the particle trajectories in the discrete system converges
to the exact particle trajectories, and the vorticity and velocity fields converge

as well.

In the next section, the method of regularized vortex particles is examined more
closely.
3.2 Regularized vortex particles

In this section, the regularized version of the method of vortex particles is considered.

More specifically, the vorticity field is now represented as follows:

wo(X, 1) = (o(x) xw(x,t) = Y aP(t) ((x — xP(2)) . (3.30)

p
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The three-dimensional regularization function (,(x) was already introduced in Chap-
ter 2, Section 2.2.2, together with the regularization functions for the streamfunction
xo(X) and the velocity ¢,(x). The useful relations between these functions were also
introduced in that chapter.

The velocity field is computed from the particle representation of the vorticity
field as the curl of a streamfunction which solves V?#,(x,t) = —w,(x,t). Following

the same procedure as with vortex filaments, one obtains, for the streamfunction,

Y, (x,t) = G(X)*w,(x,t) = xo(x) *w(x,1)

= Y Xo(x—xP(t)) aP(t), (3.31)
r
and, for the velocity,

U (x,t) = VAP, (x,1) =3 V(x.(x — x°(t))) A &’ (t)

(3.32)

where K,(x)A = —(g,(x)/|x|?) XA is the regularized Biot-Savart kernel. At large
distances compared with o, the velocity induced by a regularized vortex particle is
the same as if the particle were singular since 47 g(p) — 1 as p — oco. The induced
velocity goes to zero as r — 0 since g(p) is O (p?®) for small p.

The evolution equations for the particle position and strength vector are, with

the classical scheme, taken as

LX) = w00, (3.33)
Lar(t) = (@¥(t) V) u,(x(1),0) (3.34)
Again, the transpose scheme
-;—ta”(t) = (a?(t) - VT) u, (xP(t), 1) , (3.35)
or the mixed scheme
%a”(t) = % (a(t) - (V+ V7)) up(xP(2), 1) (3.36)

can be used instead of Equation (3.34). Again, the transpose scheme is the only one

that conserves total vorticity as will be seen in Section 3.4.
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In Appendix F, the details of the evolutions equations for any of the above
choices are given. They are presented in the form that is actually programmed when
performing numerical computations with these vortex particles.

Remarks made in Section 3.1 concerning singular vortex particles are also rele-

vant here:

o The particle vorticity field (3.30) is not generally divergence free. Indeed,
V- (@, 1)) = 3 V(& (x = %2(1))) - 0P(1) (3.37)
)

The regularized vortex particle method is thus also inconsistent, because a basis
which is not divergence free is used to represent a vector field that should be
divergence free for all times. w,(x,0) can be set to be initially a very good
representation of the real vorticity field but nothing guarantees that, as time
evolves, w,(X,t) remains a good representation of that field. This point will be

examined numerically in Section 3.5.

o The streamfunction (3.31) is also not generally divergence free. Indeed,

go(x — X*(1))

Ix — xP(t)]3 ((x —xP(t)) - o”(t)) . (3.38)

V- (¢o‘(x3 t)) == Z

p

This result is a direct consequence of the fact that V2t _ = —w, is solved with

w, not generally divergence free.
¢ The velocity field (3.32) is divergence free since it is the curl of a streamfunction.

o A divergence free vorticity field can be reconstructed from the particles by writing

Wi x8) = Eler(t) 6 (x = x(0) + V(@) ¥ (xo(x - 2(1) )] - (3:39)
3
The added term corresponds to that which is needed to close the vortex lines (i.e.,
to make w, divergence free) and it decays only like 1/7>. Following the same steps
as in Section 3.1, Equation (3.10), and using Equations (2.26) through (2.29), it
is easy to show that

AR 0)

wl(x,t) = Z[(Ca(x*x”(t)) m) o (t)

0, (x — x7(1) ((x = x¥(1)) - a?(1))
*@lx—vuw I~ % ()]

(x — x”(t))
(3.40)

—@m—ﬂmﬂ
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o If the curl of the velocity field (3.32) is taken, then one obtains the vorticity
field (3.39). This property is easy to show following the same steps as in Sec-
tion 3.1, Equation (3.13) but replacing G(x) = 1/(4x{x|) by x.(x) and recalling
that V2x(p) = —((p). In particular, wY = VAu, = VA(VAY,) = =V, +

V (V-¢,). Recalling that V29, = —w,, it follows that V(V-¢,) = wl — w,.

e The second term in Equation (3.39) does not contribute to the velocity field as
computed by the Biot-Savart law since it is the gradient of a scalar field. In other
words, inserting Equation (3.30) or Equation (3.39) in the Biot-Savart integral
yields the same velocity field (3.32).

The particle vorticity field (3.30), the divergence free vorticity field (3.39), and
the velocity field (3.32) are shown in Figure J.23 for two cases: an isolated vortex
particle, and an infinite array of vortex particles with o/h = 2.0, where A is the dis-
tance between particles. It is seen that, when the particles are nicely aligned and the
cores overlap sufficiently, the particle vorticity field w, is a very good representation
of the divergence free vorticity field wY. This is to be expected, since these particles
essentially represent computational points on a vortex filament. This illustration of
course does not address situafions in which the particles are not nicely aligned, as
could happen in the course of a numerical computation.

Beale & Majda (1982a,1982b), Beale (1986a,1986b), Cottet (1988) and Choquin
& Cottet (1988) have shown convergence of the regularized vortex particle method,
at least for some finite time T, to the solution of the three-dimensional vorticity
equation (3.14), (3.15) or (3.16) with any of the choices (3.34), (3.35) or (3.36).
Beale (1986b) has also obtained improved error estimates when using the mixed
scheme (3.36), due to the symmetry of the stretching operator. It is not intended,
in the present thesis, to review their work. It is only recalled that, according to
their convergence proofs, the appropriate error norm for the vorticity and velocity
fields goes to zero as the number of particles increases and the core size o decreases
subjected to the constraint that the cores overlap (i.e., o/h > 1 where A is a typical
distance in between particles). As is the case with the regularized method of vortex
filaments, Section 2.2.2, the error norm for the vorticity is composed of two terms: one
term which is O (") and another term which is O (o(h/o)™). The reader is referred
to Chapter 2, Section 2.2.2 for the relationship between the smoothing function ((p)
and the convergence exponents m and r.

A number of typical smoothing functions ((p) and their associated g(p) and
X(p) functions are collected in Table B.1. Notice that the smoothings that are r > 2,

such as the super-Gaussian, are also not strictly positive. This property will be of
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importance in Section 3.3 where the inclusion of the viscous effects in the vortex
particle method will be examined. Notice also that some smoothings have ((p) > 0
but 7(p) = —¢'(p)/p # 0. These smoothings are also poor choices when including the
viscous terms as will be seen in Section 3.3.

In the context of vortex particles, the new high order algebraic smoothing (B.12)

is very special in many respects:

e It has convergence properties that are as good as those of Gaussian smooth-
ing (B.8).

¢ The associated x(p) and g(p) functions that are needed for the evaluation of the
streamfunction (3.31) and the velocity (3.32) have elegant and compact forms
and are cheaper and more convenient to use than the x(p) and g(p) functions

associated with Gaussian smoothing (B.8).

o The gradients of the velocity field (3.32) that are needed in the computation of
the stretching term using Equations (3.34), (3.35) or (3.36) also take a simple
compact form. The final form of the evolution equations that are obtained when

using that smoothing is given in Appendix F.

¢ Finally, as will be seen in Appendix G, this smoothing is also the only one for
which one can write closed form expressions for the semi-regularized quadratic
diagnostics such as the kinetic energy E, the helicity H and the enstrophy & of

a system of regularized vortex particles.

All these qualities of the high order algebraic smoothing make it a prime choice for
numerical computations.

A important remark on the method of regularized vortex particles: what really
lacks in the convergence proofs is an error estimate for the divergence of the particle
vorticity field, V-w,. Indeed, the method of vortex particles has no built-in control
on keeping this divergence small. It will be shown in Section 3.5 that this lack
of consistency is precisely what gets the method into trouble after some time. A
relaxation scheme will also be proposed that forces the particle vorticity field to be
almost divergence free for all times, and hence makes the method suited for long time
computations.

Finally, as is the case with the method of regularized vortex filaments, Sec-
tion 2.2.2, each particle can be assigned its own core size o which may also depend

on time. For instance, the model equation

2 (07(1))? lar(t)]) =0 (3.41)



ensures conservation of volume of vorticity ( provided that the discretization is fine
enough that cores still overlap after stretching has occurred! ). With that choice, the
evolution equations for the particles position and strength vector are symmetrized
with oP? = 0% where ¢ is the core size used to compute the influence of particle ¢
on particle p and conversely. When the transpose scheme is used (see Section 3.4),
this choice ensures the conservation of total vorticity.

As mentioned at the begining of this chapter, the use of regularized vortex-
dipoles for the computation of three-dimensional incompressible flows was also ex-
amined. The conservation of the linear invariants was investigated as well. Since no
numerical experiments were carried out with that method, this theoretical investiga-

tion is presented in Appendix H.

3.3 Representation of viscous effects by the redistribution

of particle strengths

Despite the weaknesses of the vortex particle method, there is one feature that such
a method allows for and that cannot be achieved with a vortex filament method:
the possibility of taking into account viscous diffusion. This property is of course
very attractive since viscous diffusion is a necessary ingredient for the reconnection
of vortex tubes.

For viscous incompressible flows, the three-dimensional vorticity equation be-
comes

ow T .
-Et—-i-V-(wu):(w-V)u—{-qu, (3.42)
where the stretching term (w - VT )u can be replaced by any of the equivalent forms
(w-V)u or (1/2) (w- (V + VT>) u as explained in Section 3.1. The treatment of
the stretching term when using a vortex particle method was examined in Section 3.2.
The treatment of the diffusion term is examined in the this section.

The diffusion term is treated using a deterministic approach in which the
strength vectors a®(t) are redistributed among particles in a manner that is con-
sistent with viscous diffusion. This approach was introduced by Mas-Gallic (1987)
and Degond & Mas-Gallic (1988a,1988b) (see also Cottet & Mas-Gallic 1983, 1987 and
Choquin & Huberson 1988) in the general framework of solving convection-diffusion
equations using particle methods. Their work will not be reviewed, but some of the
results that are relevant in the present context will be mentioned. The theoretical
results will also be applied to the method of regularized vortex particles.

In essence, they have shown that the diffusion operator (i.e., the Laplacian) can

be approximated by an integral operator which can, in turn, be discretized using the
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particle representation of the function of interest. The results apply to a function in
R? but will only be written here in R3.

Consider a smoothing function with radial symmetry as described in Section 3.2
and which satisfies the integral constraints (2.21), (2.42) and (2.43) together with

L1l dp < oo (3.43)
Define | x|
Mo (%) = =0 (-;) : (3.44)
with
n(p) = —% : (3.45)
Then a good approximation to V2 f(x) is given by
~2 [(f(y) = F)m(x — y)dy (3.46)

in the sense that, in the appropriate norm, the difference between V?f(x) and Equa-
tion (3.46) is O(o”). Again, notice that the classical smoothing (B.10) does not
satisfy the constraint (3.43) and is therefore a poor choice for the diffusion term as
well.

The function 7n,(x) which appears in Equation (3.46) is essentially an approx-
imation to the kernel for the heat equation. The nature of the approximation may
be understood as follows. For the purpose of illustration, consider the Gaussian
smoothing (B.8) which is such that n(p) = ((p). Then, the Fourier transform of
Equation (3.46) gives

2 (3,00 1) f) = =5 (72— 1) fio)

—k? (1 +0 (k2 2)) for small k
~ F(V(x) , (3.47)

thus showing that, in the Fourier space, the integral operator is a second order ap-

1

proximation to the Laplacian when 5(p) is the Gaussian. This conclusion is consistent
with the above error estimate since the Gaussian smoothing corresponds to r = 2.

Consider now the convection-diffusion equation

aof _
A V(fu) = vV (3.48)
and the equation approximating (3.48)
vy =2v [(7(y) = F60) e~ v)dy (3.49)
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Acceptable error estimates are obtained for the difference in time between the solu-
tions of the two problems for all v, provided that n(p) > 0 for all p (which implies
that r < 2). When 7(p) is not positive for all p, acceptable errors can be obtained
only if v is small enough (v = O (0?)).

Consider a particle approximation of f(x,1),

folx,t) = 37 (fP(t) volf (1)) (o (x — xP(t)) (3.50)

4

and solve the approximate convection-diffusion problem (3.49) using a particle dis-

cretization of the integral operator. This leads to

Do) = uie(n),0),
?%volp(t) = vol’ (1) V-u(xP(2),¢) ,
L (PUyvolP(t) = 2uvol() T volt (1) (F2(1) — (1) (<P (1) — (1)

(3.51)

Then, for n{(p) > 0, the error estimates show that the replacement of the integral
operator by a discrete sum leads to an error of O (A™/o™*'). This error component
is in addition to the error of O(o”) due to the replacement of the Laplacian by the
integral operator. Thus, the particle approximation of the diffusion term leads to a
global error of O (v (0" + h™/o™*t1)). For arbitrary v, this error is higher than the
error O (0" + h™/o™) due the the particle approximation of the convective term, but
for small v (v = O(0?)), this error is lower than the error due to the convective term.
Finally, for n(p) not positive for all p and v = O (¢?), one can obtain an error estimate
of O (v(o67? + h™[o™*1)) which is still smaller than the error due to the convective
term.

An important remark: {(p) # 0 implies that n(p) # 0 but {(p) > 0 does not
guarantee that n(p) > 0. Refer to Table B.1 for examples. When computing viscous
problems, it is probably a good policy to use functions for which both {(p) > 0 and
17(p) > 0 (such as the high order algebraic smoothing (B.12)). This limits the choice
to functions that have r = 2, but it leaves the freedom of having any value for the
viscosity!

Degond & Mas-Gallic (1988b) have generalized the formulation to an operator
of the form V- (v(x,t)V ) instead of v V? with v constant. This generalization could
prove very useful if one thinks of using this method in the context of large eddy

simulation with a subgrid turbulent eddy viscosity.
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A straightforward application of the above method to solving Equation (3.42)

with regularized vortex particles leads to the following scheme

d

X ) = u(x(1),1), (3.52)
%ap(t) = (a”(t)-VT) ua(xp(t),t)

+2v Y (vol’ a®(t) — vol? a(t)) n.(x"(t) — x'(t)) .  (3.53)
q
Again, the stretching term in Equation (3.53) can be treated in alternative ways using
the classical scheme (3.34) or the mixed scheme (3.35). The evolution equations when
using the high order algebraic smoothing (B.12) are given in Appendix F.
An important consequence of the particle discretization of the integral operator

is that it is conservative, i.e.,

d

— af(t) =0 3.54
7 Z (3.54)
for the viscous part. The total vorticity is thus not affected by the treatment of
the diffusion term. Only the treatment of the stretching term can affect the total
vorticity. It will be seen in Section 3.4 that the only scheme that conserves total

vorticity is the transpose scheme (as in Equation (3.53)).

3.4 The method of vortex particles with respect to the con-

servation laws

In the present section, the behavior of the vortex particles method with respect to the
conservation laws is examined. These conservation laws are reviewed in Appendix A.

The first consideration here is to examine the conservation of the linear invari-
ants. These will be referred to as invariants when the real physical flow is understood
and as diagnostics when the flow is actually computed with the method of vortex
particles.

For a system of singular vortex particles, with the particle vorticity field defined
by (3.2), the linear diagnostics (A.1), (A.2) and (A.3) become

Q= Y o, (3.55)
Y xP(H) A aP(t), (3.56)
SO xP(t) A (XP(E) A aP(2)) . (3.57)
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For a system of regularized vortex particles, with the particle vorticity field
defined by (3.30), the above expressions for the total vorticity (3.55) and the linear
impulse (3.56) still hold. The expression for the angular impulse (3.57) has to be
replaced by

A =13 50() A () A (1)) é Co’Q, (3.58)

p

o=

where

C =4r fom ((p)p'dp. (3.59)

Notice that Equation (3.58) reduces to Equation (3.57) when €2 = 0. With the high
order algebraic smoothing (B.12), C = 3/2. With the low order algebraic smooth-
ing (B.10), C does not converge so that the angular impulse is not defined unless
=0

Equation (3.58) is obtained by taking a local coordinate system centered at x?.

Then, defining X’ = x — x?, one obtains
/x AxAw)dx = /(xp +X)A (X + %) A @) Co(x') dx’
= XA (X’ Aa”) + /x’ A(XPAaP)((x")dx

+ /x” A (XA a?)((x")dx + /x’ Ax A aP)((x")dx .
(3.60)

The second and third integrals in Equation (3.60) vanish due to symmetry of the
integrand. The fourth integral is evaluated by considering a spherical coordinate

system with dx’ = dr r d6 rsin 8 dy. In that coordinate system, x’ is written as
x' = rsind cospé; +rsind sinpé; +rcosf é; (3.61)
where &, = x?/|x?|, &; = a”/|a?| and &3 = é; Aé;. With p = |x'|/o, one then obtains
/x’/\ (X' AaP)dx' = o? ng(p)p4dp X
[/02" cos? @ dy '[rsin30d9 e A(é AaP)
+ szsin2¢d¢ [)”sinsodo & A (& A )
+ -/027r dy /(:coszo sinfdf é; A (é; A ap)]
= o [Telo)ptdo x [ (-200)] (3.62)

and this result leads to Equation (3.58) for the angular impulse of a system of regu-

larized particles.
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The conservation of the total vorticity and the linear impulse of a system of
vortex particles is now examined. It will be shown that the transpose scheme is the
only one that performs well.

First define the notation

K™ = K(x — x%(t)) oK™ _ 9

= —K(x — x%(t)) , (3.63)

X=XP(t) ' 6x,~ a.’l:. X=XP(t)

where K is the Biot-Savart kernel (Equation (3.4) for singular particles, and Equa-
tion (3.32) for regularized particles). Notice that KP? = —K% and that 0K??/0z; =
0K /0z;.

With the use of the transpose scheme, the evolution equations for the particle

position and strength vector become

d

—_— P = rq 7).

i Eq (KPP A af), (3.64)
d » _ _» oK 7] — OK? P A ot

i (Eq P ANat| = Eq Bz, (a? Aa?). (3.65)

The total vorticity is conserved by the transpose sheme as noted by Choquin
& Cottet (1988). Indeed,

dg-4 (za)z-\; X (e nan =0, (3.66)

since one sums on all pairs (p,q) and 9K??/0z; = 0K?/0z;.

The investigation of the linear impulse is more complicated. One must investi-

gate
d

1 d d ,
dt == ( E x* A a”) =3 Z (dtx” A a") + = Z (x” A :i-t-a”) . (3.67)

The first term in Equation (3.67) is equal to
- Z KrffAaaYAof = —= Z a? A(KPAa?) . (3.68)
2%
The second term of Equation (3.68) must be examined in more detail. Using suffix

notation, this term is given by

— p 4 A q
5 ; €ijk Tj - (o A a?)
1 » o OKPo 1 p, 9K
e e .. y 4 . - i ‘ ! . A q
4%6,1;:(:5] z}) B (a® A af) 4;61);(11] + i) . (af A a?)
1 JK™ ,
=7 2 €k (2§ — =) e (a? A af). (3.69)
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The second sum in Equation (3.69) has vanished since one sums on all pairs (p, q)
and 0K??/0z) = 0K /0z,.

Recalling that, for singular particles,

0K, 9 T Ok Tk
- - == 3 ; 3.70
sz 8$k ( 47T]x|3) 47r[xl3 + 47r|x|5 ( )
one obtains
Z (x" A —-a”)
P i
1 (af-2]) .
=1 g €ijk 47’|xP — qu(a A a?);
(zf — =3)(z% — =%)
- Z €ijk 47r|xP x| ((xP —x7) - (a® A %))
1 (2: ~z%) .
=L Gk i (@A (since ez, = 0)
1
= —-= Z(Km A (af A a?)),
4 P9
P.a

where the last equality has been obtained using the symmetry property KP? = — K%
and the vector identity aA(bAc)+bA(cAa)+cA(aAb)=0.

For regularized vortex particles, one obtains, using properties presented in Sec-
tion 3.2,

Q_Iﬁ,__f?__(ga())

Bxk N (?xk IXP

95(%) 9o(X) _ (T
l E 6’°+( X3 Co(x )) xE (3.72)

so that the same result as for singular vortex particles is obtained, namely

1 (x” A icr’”) = —= Z o A(KPAa?) . (3.73)
p g
Finally, combining Equations (3.68) and (3.73), one obtains, for both singular
or regularized vortex particles,
d d
I=

A E IR EED PN S P P L8

p.q

The right hand side of Equation (3.74) is essentially a particle discretization of

— [ w Audx and should be small (at least as long as the particles representation of
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the vorticity field is a good approximation of an actual vorticity field (cfr. Sections 3.1
and 3.2)). Indeed, if the alternative form of the momentum equation, Equation (2.1),
is recalled and integrated over an unbounded volume, then [ wAudx = 0. The linear
impulse is thus conserved by the transpose scheme as long as the particle discretiza-
tion of the vorticity field is almost divergence free, i.e., as long as w, ~ VAu,.

Because of the complexity of the terms involved, the conservation of the angular
impulse was not investigated theoretically. Numerical experiments in Section 3.5 will
show that the angular impulse is not conserved exactly by the method.

It is easy to see the classical scheme or the mixed scheme do not conserve any
of the linear invariants. In this respect, the transpose scheme is superior to the other

choices. For instance, with the classical scheme, Equation (3.65) is replaced by

i P _ P_a_ rq q
o = o Bz (Z (KPP Aaf), | . (3.75)

q

This leads, after some algebra, to

—x9) - aP)
Q
g-:‘ 41r|x1’ — x9(%

(xf = x) A a? (3.76)

for singular vortex particles, and to

ﬂ Z ( _g_g_X_“’_:_fQ — G (xP — xq)) ((x? — x7) - aP) (x* —xI) Aa?  (3.77)

e — 1P e — P

for regularized vortex particles. The right-hand sides above do not vanish in general.
Notice that, with any of the three schemes, there is a rate of change of the

vorticity associated with the presence of an external potential flow ¢

d 0?
—al(t) = (1)

¢(xP(1),1) (3.78)

Ozz;
and that this has a non-zero contribution to the total vorticity, i.e.,
d 9

;,—t-(; =0) =% 05

potential

S(xP(t),1) . (3.79)

So far, the conservation of the linear invariants with the inviscid method of
vortex particle, both singular and regularized, has been examined. One must now in-
vestigate the conservation of the linear invariants when the viscous method presented
in Section 3.3 is used.

First, it is easy to see that the viscous integral operator (3.46) is conservative

(i.e., conserves total vorticity). Indeed,

// X))o (x —y)dydx =0. (3.80)



67

The particle discretization (3.53) of the integral operator is also conservative since

Y (vol” a® — vol” aP) n,(x* —x%) = 0. (3.81)

»q

The total vorticity is thus not affected by the treatment of the diffusion term.
Second, as pointed out by Mas-Gallic (private communication 1988), the linear
impulse is not affected by the viscous integral operator but is affected by the particle

discretization of the integral operator. Indeed, since

0= / X' 75 (x') dx’ = / (x — ) 70 (x — y) dx (3.82)

so that
/xn,,(x——y)dx: /yna(x—y) dx , (3.83)

one obtains
[xn ] @) - we)nx-y)dy| dx

/[/xna(x-—y)dx} /\w(y)dy——//x/\w(x)n,(x_y)dydx
=-/1/

/

0

Yo(x—y) dX} Aw(y)dy — /fx A w(x)n.(x — y) dy dx

[y nw@nx-y)dxdy - [ [xAnwx)n.(x—y)dydx
, (3.84)

by interchanging the role of x and y in the first integral. If one now considers the

particle discretization of the integral operator, one obtains

Y xPA [Z (vol? a? — vol® a®) n,(xF — x")}

q

> (%7 = x7) A (vol? a® — vol? a?) 7, (xP — x7)

(3.85)

in general. It is thus a matter of discretization to conserve linear impulse with the
particle approximation of the integral operator, and it is reasonable to assume that,
as the number of particles increases, the linear impulse is better conserved. This will
be checked numerically in some of the computations presented in Section 3.5.

In conclusion, the use of the transpose scheme for the stretching term and of

the viscous operator for the diffusion term leads to

d
-2 =0 (3.86)



68

—d¥I = —> o’ A(K"AQf)
dt s
+g > (" = x%) A (vol? & — vol? ) . (3.87)
P

Total vorticity is conserved. Linear impulse is not conserved in general. The first
term in the rate of change ° the linear impulse nearly vanishes when it is a good
representation of — fw A udx, i.e., when the particle vorticity field is almost diver-
gence free. The second term in the rate of change of the linear impulse vanishes when
the number of particles increases, i.e., when the particle discretization of the viscous
integral operator is accurate.

The above analysis of the conservation of the linear invariants carries through
when each particle has its own core size o?(t) provided that the evolution equations
for the particles position and strength vector are symmetrized.

The evaluation of the semi-regularized quadratic diagnostics, such as energy E,
helicity H and enstrophy £ is difficult. The difficulty comes from the fact that the
particle representation of the particle vorticity field is not generally divergence free.
The derivation of the appropriate expressions is presented in detail in Appendix G.
It is also shown, in that appendix, that the high order algebraic smoothing (B.12) is
a prime choice as far as the evaluation of the quadratic diagnostics is concerned.

The inviscid method of vortex particles, both singular and regularized, does not
conserve kinetic energy and helicity exactly with any of the choices for the stretching
term. These quantities are thus used as diagnostics to measure the performance of the
method on a particular problem. With singular particles, it will be shown numerically
in Section 3.5 that the transpose scheme performs best on the conservation of kinetic
energy.

In viscous computations, the decay of the kinetic energy is used as a diagnostic
to check if Equation (A.8) is satisfied.

3.5 Numerical results

In this section, the numerical results that were obtained with the method of vortex
particles are examined. The use of singular and regularized particles are investigated
numerically. For the method of regularized particles, both the inviscid and viscous
versions of the method are investigated. The linear and quadratic diagnostics are
used extensively to measure the performance of the numerical computations.
Special emphasis is made on the investigation of the method for the computation

of the fusion of two vortex rings. Before presenting the computational strategy and the
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numerical results, the motivation for studying this problem is given in Section 3.5.1,

together with a review of previous work, both experimental and numerical.

3.5.1 The problem of the fusion of two vortex rings: motivation and
review of previous investigations

The problem of the fusion of two vortex rings that are initially side by side has
received, in the past ten years, much attention. It has been widely investigated, both
experimentally and numerically. This problem is of special interest for many reasons.
It is closely related to the understanting of the interaction between three-dimensional
vortex structures, a fundamental step towards the understanding of turbulent flows.
It is also an elegant problem that is somewhat well defined at time t = 0 and that
contains many of the ingredients which are present in more complex flows, such as
intense vortex stretching, interaction between regions of opposite sign vorticity and
viscous reconnection of vortex tubes.

Previous investigations, both experimental and numerical are briefly reviewed.

3.5.1.1 Experimental investigations

Many of the experiments that involve the fusion of two vortex rings are purely qual-
itative and are limited to flow vizualization. The only experiments that also provide
quantitative information are the experiments by Schatzle & Coles (1987) and Izutsu,
Oshima K. & Oshima Y. (1987).

The experiment by Schatzle & Coles is done in water. Two laminar vortex
rings, initially at a slight angle with respect to each other, collide. Both the fusion
and the fission processes are observed. These processes are illustrated in the series
of photographs from Schatzle & Coles (1987 and private communication) reproduced
in Figure J.24. Dye is used as a material line marker to vizualize the reconnection
of the vortex tubes. One must however keep in mind that the location of the dye is
not necessarily the location of the vorticity. There are two reasons: first, the vortex
cores are not completely filled with dye and second, in viscous flows, vorticity does
not behave as a material line but dye nearly does. For the fusion process, the velocity
field is measured using laser-Doppler velocimetry. The measurements are in the plane
of symmetry of the collision and are used to provide many quantitative results prior to
and during the fusion process: velocity, vorticity and strain rates contours, contours of
the different terms of the vorticity equation and global data such as the time history of
the circulation. The geometry and the vorticity profiles of each ring prior to collision
are also provided and are proposed as initial conditions for numerical computations.

Finally, time scale estimates for the reconnection process are discussed. The results
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of the numerical computations done using the viscous method of vortex particles will
be compared to the experimental results of Schatzle & Coles.

The experiment by Izutsu, Oshima K. & Oshima Y. is done in air. Velocities
are measured in the entire three-dimensional space using a X-wire probe. Computer
animations of the vorticity field computed from the measured velocity field are pro-
vided. Although their results cover a larger portion of space, their resolution is not

as good as the resolution of the experiment by Schatzle & Coles.

3.5.1.2 Numerical investigations

Early investigations of the process of the fusion of two vortex rings were done using
inviscid methods. Because the process of vortex tubes reconnection requires the
presence of some viscous dissipation, intervention of some sort is needed to force the
vortex tubes to reconnect. The earliest computation using the method of regularized
vortex filaments is by Leonard (1975). When the cores of filaments of opposite sign
vorticity overlap significantly, the geometry of the filaments is redefined so as to mimic
the reconnection process. The same type of procedure is used in the computation
by Yamashita & Oshima (1988). In the total absence of viscosity, the process of
reconnection can never fully occur since vortex lines remain connected for all times.
This is illustrated by the numerical experiment, Chapter 2, Section 2.5.4.1.

A related subject of great interest is the investigation, both theoretically and
numerically, of the possibility of a singularity developing in the inviscid vorticity
equation in finite time. Refer to Siggia (1984) and Pumir & Siggia (1987) for such
investigations using the method of vortex filaments.

The simulation of the fusion of two vortex rings using the method of regularized
vortex particle has also been tried by several investigators (Anderson & Greengard
1984, Shirayama & Kuwahara 1984). In earlier studies, flow diagnostics were not
computed and the numerical results appear questionable. In the computation by
Anderson & Greengard, the particles are subjected to a random walk that simulates
viscous diffusion. In the computation by Shirayama & Kuwahara, the method is invis-
cid, and intervention of some sort is still needed to force the vortex tubes to reconnect.
Some inviscid computations are presented in Section 3.5.3 and Section 3.5.4.

A few authors have attempted direct simulations of the Navier-Stokes equation
on this problem. Two such efforts are known: the simulation by Ashurst & Meiron
(1987), and the simulation by Chen & Oshima (1988). Ashurst & Meiron use the
method of regularized vortex filaments to start their computation. The rings are
initially co-planar. When the cores of filaments of opposite sign vorticity overlap

significantly, the computation is interrupted. A 32 x 32 x 32 grid is then placed in
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the collision area and the Navier-Stokes equations are solved on that grid with fixed
boundary conditions. The argument is that the fusion process occurs so rapidly that
it is a good approximation to freeze the rest of the vortex rings while computing the
time evolution of the fusion process inside the box only. They perform computations
over a wide range of Reynolds numbers (Re = I['/v = 10, 100 and 1,000, where T
is the circulation of one vortex ring). For the simulations at Re = 100 and 1,000,
they conclude that the time scale for the disappearance of circulation in the plane of
collision scales like the convective time scale o% /T, where o is the core radius of the
equivalent vortex ring of uniform vorticity.

In the computation by Chen & Oshima, both rings are included in the compu-
tational domain. The grid is 61 x 42 x 42 and the Reynolds number is Re = 200.
Although the number of mesh points is larger than that used by Ashurst & Meiron,
the resolution is lower since the entire problem is computed at once. For that reason,
the results are mostly qualitative (although plots of the circulation in all planes of
interest are provided).

It will be shown in Section 3.5.6 that the new viscous version of the method of
regularized vortex particles is able to produce satisfactory results without having to
reduce the computational domain to a small region.

Spectral computations of the viscous reconnection of antiparallel vortex tubes
have also been achieved (Pumir & Kerr 1987, Meiron et al. 1988). These computa-
tions are carried out using a pseudospectral code with periodic boundary conditions.
They are part of an effort to understand the reconnection of vortex tubes in general
but also to explore the possibility of a singularity developing in the Euler equations
in finite time.

Finally, some analytical work by Takaki & Hussain (1986) should also be men-
tioned. In their analysis, the local flow field is expanded into polynomials of the
coordinates, and the coefficients, which are functions of time, are obtained by sub-
stituting the expansions into the vorticity equation. They conclude that the entire
process of vortex reconnection is completed within the convective time scale o% /T,

but that the presence of viscosity is necessary for the occurrence of the process.

3.5.2 Some points that are common to all computations

The fluid mechanical aspects of the fusion of two vortex rings are studied in detail
in Section 3.5.6. Before then, the fusion of two vortex rings is only used as a test
problem for the method of singular vortex particles (Section 3.5.3) and for the inviscid
version of the method of regularized vortex particles (Section 3.5.4). In the present

section, the details that are common to all computations presented in the next five
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sections are given.

All computations are performed using the simple, but costly O(N?) algorithm
where the influence of each particle on all other particles is computed explicitly.

The ordinary differential equations for the time evolution of the particles posi-
tion and strength vector are presented in detail in Appendix F. For the regularized
method, our new high order algebraic smoothing (B.12) is used consistently for the
reasons mentioned in Section 3.2 and Section 3.3.

The time integration of the evolution equations is done using the low storage
Runge-Kutta scheme of order 3 (WRK3) introduced by Williamson (1980).

All computations presented below involve two circular vortex rings as initial
condition. The parameters that are common to all computations are the radius
R = 1.0 and circulation I' = 1.0 of each ring. The core structure of each ring is
discretized using a scheme that allocates to each vortex particle an equal area normal
to the vorticity vector. This scheme is illustrated in Figure J.26. One vortex particle
is placed at the center of the circle of radius r,. If n, = 0 then no other layer of
particles is used. If n. # 0, then 1 < n < n, a