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ABSTRACT

The total cross section for direct pair production by elec-
trons in the field of a heavy nucleus is calculated, using the Born
approximation for the nuclear Coulomb field. The calculation im-
proves on previous calculations of direct pair production in four
respects; (1) all of the first-order Feynman diagrams for the
process are included, (2) the exchange effect is included, (3) the
effect of screening is treated more accurately using the Thomas~
Fermi screening function, (4) the integration of the differential
cross section is done with increased accuracy. These improve-
ments in the calculation result in a theoretical accuracy of 10-15%
for low Z elements, and of l;he order of 25% for high Z elements,
for which the neglected Coulomb corrections are more important.

The present results are compared with previous theories
and with experiments. It is found that there is reasonable agree-
ment with experiment for energies up to about 1 Bev, but that for
higher energies the experimental situation is too uncertain to

allow a definite conclusion.
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sl
I. INTROCDUCTION

Tlirect pair production is the creation of an electron-positron
pair oy a charged particle as it passes through the eleciric field of a
aucleus. ‘Yhen the incident particle is an clectron, this process is also
called the trident process. The purpose of this thesis is to calculate,
using the methods of guantum electrodynamics, the total cross section
for direct pair production by high energy electrons, taking into account
effects which have been neglected in previous theoretical discussions
of this process.

The original theoretical work on direct pair production was
carried out 'I:;y a number of authors: notably Nishina, Tomonaga, and
Kobayasi (1), who used the Weizsacker- williams method in which the
incident charged particle is replaced by an equivalent photon spectrum,
which is then combined with the known cross section for ordinary pair
production; Racah (2), who used the nositron hole thcory; and Bhabha (),
who considered both the Weizsacker~ Williams method and the positron
hole theory.

Zach of these calculations resulted in a series expansion for the
toal cross section in decreasing powers of ln(El/m), where E1 is the
primary energy and m 1is the electron mass. The leading term, at high
encrgies, of this expansgion was the same in all the calculations, and was,
for the unscreened case, ¢ = zz(eZ/ﬁc)z(ez/mcz)Z(ZB/Z?-n}ln3(E1/m).

#lthough these various calculations obtained the same leading

term, they disagreed as to the remaining terms, and this resulted in
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large numerical disagreements. In particular, over a wide range of
energies the results of Bhabha and Racah differed by over a factor of
three. This disagreement was partially resolved by Block, King and
wada (4), who showed that it was due to the neglect by Bhabha of certain
terms of lower order in ln(l'-:;l/m) during the integration of the differ-
ential cross section. (Specifically, the neglected terms were of order
lm?‘(i‘l/m} and In (El/m} compared to the leading term of order
3_'-'.-1‘:5(111/:::‘,.) Block et al. modified the Bhabha cross section to include
these terms, and obtained a resgult which was in much better agreement
with that of Racah., However, the various theories still disagreed by
factors ranging from about 25% at 100 Bev to about 50% at 100 Mev.

More recently, the problem has been discussed by Murota, Ueda,
and Tanaka (5}, using the methods of covariant perturbation theory. These
authors were primarily interested not in improving the accuracy of the
calculation, but rather in understanding, in terms of Feynman diagrams,
the approximations made by the previous authors. The most significant
result obtained by Murota, et al. was that all of the previous authors
had made approximations which were equivalent to neglecting a certain
group of Feynman diagrams. Murota, et al. estimated that the leading
contribution from these oritited diagrams was of the same order as the
termse omitted by Bhabha but included by Racah and Block et al. As a
by=~product of their work, Murota et al. rederived the Bhabha formula
for the cross section.

The major defects in these previous theoretical calculations of

the direct pair production cross section may be summarized as follows:
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(1} In the integration of the differential cross section numerous
approximations have been made. These approximations,
besides reducing the accuracy of the final result, have resulted
in the introduction of various arbitrary parameters, of order
of magnitude one, intoc the final expression for the total cross
gection., The uncertainty of the values of these parameters
resulte in an uncertainty in the total cross section of order
an(Zl/m). compared to the leading term of ovder 1n3(E1/m).

(2} For the case ol an electron as the incident particle, all of the
previous calculations neglect the exchange effect. In terms
of Feynman diagrams.. this is eguivalent to neglecting dia-
grams a', b', ¢', and d4' shown in Figure .

(3) All of the previous calculations also neglect diagrams ¢ and
d of Figure l. iiurota et al. (5] estimate that this produces
an error in the total cross section of order lnz(El/m). How-
ever, we will show later that because of cancellations that
occur between various terms, the actual error is of order
in (El/m).

(4) The screening of the Coulomb field of the nucleus by the/
atomic electrons has been treated only under the approxima-
tion of "complete screening"rﬂ), which is only valid for

2 s s .
>> 13'47,"":,"1/3 where 2z is the nuclear charge.

EI/mc
Murota et al. (5) concluded ow the basis of defects (1} and (3}, that for
direct pair production by electrons the existing theoretical calculations

were unreliable for encrgies less than 10 Bev.
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'The purpose of the present work is to recalculate the total cross
section for direct pair production by electrons, climinating the defects
of the previous calculations. Specifically, we will include the effects of
the exchange diagrams and of diagrams ¢ aud d, we will improve the
treatnient of screening by using an analytical representation of the Ferini-
Thomas form factor, and we will improve the accuracy with which the
diffierential cross section is integrated by resorting to numerical integra-
tion on a high-gpeed electronic computor.

In this calculation we will, as is customary, ncglect the nuclear

; * ; 5 :
recoil energy , and we will treat the nucleus as the point source of a
Conlomb field. e will neglect Coulomb corrections, and will treat the
e s T ; : Lk : :
Coulomb field in first Born approximation. Wa will also neglect radi-
ative corrections. Finally, we will specialize (¢ the case where all
particle energies are extremely relativistic, and will neglect terms of

% iy 5 5 s, :

order (m/Z}°, where L is the eaergy of any particle.

In Section Il we will present an outline of the calculation, and in
saction III we will discuss cur treatment of screening., Certain terms
that cancel in the calculation of the total cross section are discussed in
section IV, and the approximations made in evaluating the traces are
discussed in Section V. The magnitude of the various exchange terms is

discussed in Section VI, and in Section VII the results obtained for the

*As our resgults will show, the dominant contribution to the total cross
section comes from the region where the nuclear recoil momentum is
of the order of 10=! Mev/c or less. This corresponds to recoil energics
oi the order of 1 ev or less,

. TR - 78 - s . .
In Section VIII we briefly discuss Coulomb corrections, and estimate
that they will be of the order of 10% for the heavy elemenis.



cross section after integrating over the momenta of the created pair are
nresented, In Section VIII the final results of the calculation are pre-
sented and their significance is discussed. Various details of the calcu-

lation are presented in the apoendices,
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II. QUTLINE OF CALCULATION

Treating the Coulomb field in first Porn approximation, the lowest
order Feynman diagrams for the direct pair production process with an
electron as the incident particle are shown in Figure 1. In these diagrams
we denote the incident electron 4~momentumn as Py the outgoing positron

4=rmomentum as p,, and the outgoing electron 4~-momenta as p, and p

I

Dagrams a', b', c¢', and d' are the resuit of the exchange effect.

The matrix element corresponding to these diagrams will be of

" *
the form

4 3 4 1/2
2 m (‘
M=t :ize \E T EE \ a%q8%(p ta-2,-p,p ) -

. an(q){/nz +/H.'; MM ]

] ] 1 L]
MM e T (2-1)
waere
on By Pulp)Ep W iy (p_-g)-m] Y, vip,)
il & = ) ‘2-’. 3 (2-2a)
(Pl"Pz) [(P_'Qt SIIL ]
w8ty alepule )y [iye (q-p ) -m]y v(p )
(pl-PZ) [(p.;.'(ﬂ‘ +m ]
e use a metric with pre =D " PgYge SO that s

f. = ""m .
e are using units such that h = ¢ l and /411 = 1/%57. Our Dirac
matrices are such that the Dirac equation for electronsg is, in momentum
space, (iy-p+mju(p) = 0, and our plane-wave spinor normalization is
u{plu(p) = 1. V is the normalization volume, and ¢ is the 4-momentum

contributed by the Coulomb tield. (Note that the recoil of the nucleus is
-q. }
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E p_iy"vip Julp,)y, iy (o +a)-m]y ulp))
i = ‘

! (2-2¢}
© (p, ) (e, +q) % +m°]
e y'vip )ilp,)y iy (p,-c)-m]y ulp,)
A= — i b Yp 1 (2-2¢)

(p,tp M (pz-mz‘imzl

N
and the exchange matrix elements M :’ , etc. are obtained from these by
L=

the interchange P =™ P_.

The quantity a_q(q) is given in terme of the external field An(x)

by
i o
a (g = “'L—a LA (x)e laex g%y (2-3)
n (2% 3 1
Tor a screened Coulomb field, we will have

i
C e
£
"
(W8]
N
®

a(| T ) (2-4)

where -_:(l |} is the atomic screening function and 2 is the nuclear

charge. This gives

.._.2
Ze F(gq™)
= & Y 5 -5
a,q(Cg &(g Sy’ -)Tin (2.“)3 _;2 (2-5)
where the atomic form factor (g~} is given by 4
—?2
"‘I‘:‘ii’i D= ‘n:iltr (“;1 G(| rI ) dq. : @’z (2-6)
c ' r ‘

—
we will discuss our choice for G( | r|[) in Section IIL

The matrix element will now be of the form



e fd 4 el .
M = “’g d aqdlg iRy F AP, -p -P )
= Na(ai- E,- E,- E) (2-7)
where
4 4 1/2 .,—~2
v e\“:‘l"“zlw'—"_ / q2 30
where we denote
Mag Mo Mo e g0
a b e d
(29}
A MMt M Ll
a b c d
The difierential cross section is now
(2<10})

R L% _ - _m e
do = ml L 5(1:1-4“2-}.+-.;‘)|,/v l Py

where the summation sign involves an average over initial spins and 2

swin over final spins, ,’31 is the velocity of the initial electron, end the

density of final states is

3.3 3 3
Vid pzd P.d7p_ .

it

o]

To facilitate later stages of the calculation, it will be convenient to re-

introduce the d4q integration, so that we have

N 3 .4 A2
b L_S‘dqoﬁ(qo)gd a8 (pyra-p,-p,-p_) | iV|p; (2-12)

do =
Zwp;
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/e now insert the expressions for /N and Pe and integrate over
all final states. We must multiply by a factor of 1/2 for the average over
initial spinsg. Since we will integrate d3p2 d3p_ over the entire available
phase space, we must multinly by another factor of 1/2 to correct for

the double counting of identical final states., Doing this we obtain for the

tal cross section

Z e "r m r dp, d’p d'p_
M FXEL YL N LY
27 E,8 =2 o LR
171
a2 S
o | F(q ) -4 Lot - & o Y A & .
—:g?._' o p_,o(qo)f.,;_‘onko
Ly . .
co TN N (2-13)
sp'ina
- = 2 = 3 2 218 n'ls
where a = e” /4w = 1/137.04, and r =e J4wm = 2,818 % 10" “em. e

note that the term /l .'ﬁ/hh in equation 2-13 is the non-exchange con~-
tribution, and the texm /I ?‘*/ﬁ'k is the exchange contribution,

At this point we are left with the task of evaluating the spin sum-
mation in eguation 2-13, aad then carrying out the integration over the
differential cross section. The integration is the most difficult part of
the calculation, since it involves seven non-trivial integrations. The
procedure we follow is to carry out two of the integrations analytically,
using a covariant method of integration, and then do the remaining five

inrtegrations numerically. In the remainder of this section we outline

% T 2 .
In this expression we have used the fact that Y/ M will contribute

the same zmount to the total cross section as Y/ k. and that

b Ytk o s . 1% g
iR i will contribuie the same amount as _ﬂ! N,
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the stepse in this procedure, the details of which are presented in the

following sections.

To simplify the discussion, we introduce the notatior;*

W6 T A i
Iij = m 7, /l‘i /i
spins
(2-14)
Y 6 - LnE o\
1 s ‘ i
Iij = In A.J /i, i /flj
spins
and
o dgp o d3p
w71 £ - .4 , A
Ky = - ) g 8 ‘Pz*“i'F’z'P+“P-”?J
(2=15)
3 3
~d v d
L } 9 . &4 P '-g—;)\
Y ::: i syl B - [ (01+q P=P,.~P 1.
The total cross section now becomes
z.?, 2.2 d."} -2 -7
G___z_-ﬂf 'dB{' PZi_F(q)r.
- P 4 } ) | e p J
ew ;1531 2 - aq
{' ﬂx T rr ﬂx\ >
- dg 8(q, }ﬁno Xo \/ K - SRy 2-16)
ij ij

The traces, i.e. the I;?j)L and IS,‘. are evaluated in Appendix A,

In that appendix we alsc discuss the various symmetries that exist between

the If'k and I:;K. Tmne of the results of these symmetries is that certain

In these expressions the subscripts ij denote the diagram.

]
mé' makes the Iﬂ'ﬂ', Im‘. K*’i\

The factor
]
. : , and K..‘?)L dimenasionless,
ij ij ij ij
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terms in the total cross seciion cancel ocut. This cancellation is diz-
cuesed in Section IV.

In evaluating the traces we make certain approximations which

-

involve dropping terms of order mz/‘iﬂ:" compared to unity, where K

Ea, E,, ' . These approximations are diz-

is one of the energies El'
cussed in Section V.
we make certain other approximations with respect to the exchange

| I
. 7 . s s o~ :
terms, i.e., the 1 j‘}‘. These approximations are discussed in Section VL

i
- : " o S | ©
The next step in the calculation is to evaluate the b“ij and K i *

These integrals are evaluated analytically by a method which takes ad-
3
vantage of their covariant form. The integrals are transformed to a

special Lorentz gystem in wlhich they become relatively easy to evaluatls,

and then the resultant cxpressions are transformed back into the labora-
tory coordinate system. This method of evaluating the integrals is il-

lustrated in Appendix B and the resulis obtained for the various integrals
A

are presented in Appendix C. The {final resulis obtained for the K’;J

|}
and KSR are presented in Section VII.

Having evaluated the d3p+d3r;- integrals, i.e. the K%" and
.ﬂ”f;\

, C ope P ;
» wa make use of the snoaho 3 6(clo)dq0 and then carry out the re-

2
2

O e ; g
maining integrals nurserically. To do this, we write

7 . . .
It is for this reason that the Ii.';' and I i;k were kept in a covariant form,

ek ) : 2
Yo note that the dsp, djp integrals are the easiest to evaluate ana-

Iytically. Due to the structure of the denominators in the matrix elemente,
any other combination, such as dsp:._.dgp_, would be much more difficult

&

to evaluate analytically.



ry e dp c 2 e 4 g
L 3 ;} 2 2 . d“.)‘ d(COS 5] )‘ d(COS &7) r?

v
q.
0

o.f
)

=)
B

to

(2=17)

A A A A

Cor e

where P)* ¢ = cos Bq and By* ¥y = cos 92 and |g | = q, The limiis on
these integrals are determined from the kinernatics of the process. This

is discussed in Appendix D,

To facilitate the numerical worl, we write the cross section as

2 o~ 57
2.2.2 n ;
c=2Ze r; . _2-::-: i q ticli -—g—‘- J e(a) (2=12)
r E
1H

where

ﬂ

o(q) = ---—2 J "'27‘” aE, fd(cos e )f‘ d{cos &Z)E‘ :3.‘\52 *

g:'-\ o 1

. (/ Ko, > ic 99 (2-19)
P AT
ij ij

Ve leave the integral over o until last, ‘becauie thig is the only inteyral
that involves the screening form factor, and therefore the only one that
is a function of Z. By leaving the ¢ integral until last, we can obtain
the screened cross section for different values of Z without repeating
all of the previous integrations.

In Appendix E we discuss certain details of the numerical methods
used, and we give an cstimate of the numerical errors involved. The re-
sults obtained for c¢{g} are tabulated in Appendix ¥ for various values

of 221 and q. In that Appendix we alsc tabulate various cornbinations

* .

The tabulation of (g} may be useful at a later date for calculating the
screened cross section at values of Z not included here, or with a
different screening function.
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of terms, such as non=-exchanze and exchange, that enter into o(c}.
The final results obtained for o, as a function of El and Z, are tabu=-
lated in Appendix G.

In Section VIII we summarize the results of the calculation, and
compare these results with previous theories and with experiments., e

alsc discuss the overall accuracy of the present calculation.



III., TREATMEINT OF SCREENING

For an accurate calculation of the direct pair production cross
section, one must include the screening effect of the atomic electrons
on the nuclear Coulomb field, To gain a qualitative idea of the impor-

.

tance of sereening, we note that, as shown in Appendix D, the minimuam

&

1 ’ ) 2 — .
nuclear recoil momentum is g = 4m”“/ El' This corresponds to a

min
maximurn bmpact paramet ; ~ - e fa © ‘
maximum impact parameter r_ l/qr‘in = Z; /4", The radius of
- Co? 44

the atomic electron cloud ig, using the Thomas-Fermi mnodel, of the

3 2oalfd A ¢ :

order o = 1/me zi 1/ . We would now expect that screening will have

a significant effect for Y oaw “ d. This corresponds to energies suck
{23

oy

that ;":,1 2 1371@/21!3. This qualitative argument shows that screening
should have an iraportant efi'éct for the energies, 100 Mev to 10 Dev, that
we are primarily interested in,

To include the effect of screening in an accurate manner, oane

must replace the ordinary Coulomb field by a screened Coulomb field,

coi, eouation 2-4, where the atomic screening function is

4
Sy =132 4 pierrfar (3-1)

where p{r'} is the electron density distribution. /e are now faced with
the problem of chousing a model for the electron density distribution of
the atom.

The most accurate atomic models available are the Hartrec-~
Bock modql, which includes correlation and enchange efiects, and the
Hartree model, which includes correlation efiects, but no exchange

effects. For the purposes of this calculation, however, both of these
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models suffer from two disadvantages: results for the atomic screening
function are available only for a few valuss of Z, and these results are
available only in tabular form, which make them awitward to use in a
numerical calculation on a computor. Because of these disadvantages,

we will use instead in this calculation the Thomas-Fermi atomic model.
This model neglects both correlation and exchange efiects, but gives a
reasonably accurate representation of the atomic electron cloud, omitling,
however, the details of the shell structure. For our present purposes,
the Thomag-Fermi rmodel has the advantage that the atowmic screening
function is known for all values of Z, and that several highly accurate

1
analyvtical representationsg of Thomas-Fermii resulis are available.

In this calculation we will use the Moliere representation of the

e
Thomas-Fermi screening function. This is (6)

b.r

o - —L-

Glr) = } a2, 2 (3-2)
fa &
izl

whe re

121

a = 17T (3-3}

mZ

3 (3-4)

=}
il
(%)
e
o
8]
i
[
°
(8]
o
L¥3
i
o
L]
(V9]

*"A"e note that Royental (7} has developed a very similar representation
of the Thomas-Fermi screening function. The difference between the
Moliere and Royental representations would produce a difference in our
final result of the order of 0.1%.



Using this expression for CG{r}, we have for F(qz), cf. equation 26,

the result

2 3 :
Eg) < i (3-5)
7, b2
a = 2, {1 \.
=l avt kgt )

From the form of equation 3+-2 we sece that the most important contribu-
tions to the cross section will come from the region r/a ~1. By com-
paring the Moliere representation with the exact value of the Thomas-
Fermi screening function as tebulated by Kobayashi, et al. (8}, we find
tha: the error in the Moliere representation is less than 0,2% in the
region 0 =r/a < 6,

The most important error arising from our choice of a screening
function will be that due to the inherent inaccuracy of the Thomas-Fermi
model. To obtain an estimate of this error, we have used the graphical
data of Nelms and Cppenheim (9) to compare the Thomas-Fermi form
factor to the Hartree form factor. For the value of recoil momentum
Q= mZI/B/lS?. which is the region of maximum contribution to the total

cross section, we found the results shown in the following table:

Ratio of Form Factors

Z Thomds=Fermi/Hartree
6 (C) 0.95
26 (Fe} 0.97
80 (Hg) 1. 05

These results indicate that, relative to the Hartree form factor, the
Thomas=-Fermi form factor introduces an error of the order of 5%,

Since the cross section involves the square of the form factor, this will



introduce a 10% error in the final result for the totzl cross section.
It should also be noted that the Hartree and Hartree-Fock form

factors are expected to differ by a few percent (9).
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IV,  TERNMS THAT CANCEL IN TOTAL CRQSS SECTION

In Appendix A certain symmetry relations are obtained connecting

J
various of the I?;L and 1 ;})‘. Among these is the relation that under the

interchange p, =~ p_,

2 - =
and
2 — -1 -2

This symumnetry has a particular significance for the calculation of the

total cross section. To see this, we note that K;'ik is defined by
an _ O d3P+ 4 d3p- . AN 4-3
L5 % ) o) ' (Byra=py=p,=p_i Y (4-3)

From this definition and the symmetry relations 4-1 and 4-2 it follows

immediately that

R

]
]
bt
%
3
&

ac *be (4-4)

and
--;-’Qk - - ;\rnx 7. o=
Rag T " Ppa (4-5)

This result has the consequence that the non-exchange interference termms
between diagrams a or b am“l ¢ or d cancel each other out and do not
contribute te the final result for the total cross section.

Besides simplifying the calculation, this cancellation is of interest
in conjunction with cstirnates made by Murota, et al. {5}, of the error in-

volved in completely neglecting diagramse ¢ and d. They showed that
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the leading term in the contribution to the total cross section from the
square of diagrams a and b wasg, apart irom constant factors, of order
1n3(}3’;1/m). They also showed that the ieading term coming from the
square of diagrams ¢ and d was of order ln(E‘l/m). They then inferred
irom these results that the leading contribution coming from the non-ex-
change interference terms between diagrams a or b and ¢ or d
should be of the order an(EI/m).

The results we obtained in equations <-4 and <4-5 show that,
while these interference terms may make a contribution to the differential
cross section of this relative order of magnitude, they in fact do not con-
tribute to the total cross section. This means that, as long as one does
not congider the exchange effect, the error involved in completely neg-
lecting diagrams c¢ and d is of order ln(El/m';, and not of order

£
lnz(}?il/m} as suggested by Murota, et al.

*The present calculation will still contain correction terms to the pre-
vious calculations of order an(El/m}. These will come from the in-
creased accuracy of integration and elimination of arbitrary parameters
in the final result.
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V. APPROYXIMATICN MADE IN EVALUATING TRACES

The calculation of the traces can be appreciably simplified be-
cause of the limitation to extremely relativistic energies. This simpli-
fication is possible because of the fact that at very high energies the
dorninant contribution to the total cross section comes from small

{
angles about the forward direction. This "smail-angle effect" is a
familiar feature of 2ll electromagnetic processes in the ultra-relativis-
tic energy region, and for direct pair production it was pointed out in
the original theoretical work (3,10). Before discussing the approxima-
tion that we make based on the small-angle effect, we will digress
briefly to give a qualitative explanation of its occurrence.

The concentration of the total cross section at very small for-
ward angles is due to the form of the various denominators in the matrix
elerments, i.e. the Feynman propagators. These propagators have poles
at angles slightly beyond the forward direction (cos § > 1), and in the
limit of infinite energy these poles approach the physical region.

To see explicitly what we are talking about, consider one of the

denominator factors, for example (p * -“;a_)z. v/e have

&

<

2

(p,*p Y = 2p o p_ - m%)

1}

-2{m®+EE_(1 - 8,8_cos 0, )] (5-1)

+ -
For m/E, <<1, m/E <<1, this becomes

—

(p+1‘- p_}z — - - ,:+;;_(1 - cos 6§, ) (5=2)
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We see from this expression that the pole occurs for
2
cos 8, =1+ - (5-3)
; 2E2E2

mZ(EJ++ E)

Ve also see from equation 5-~2 that 2 term containing this denominator
factor will be large only in the region 6+_$ (mZ/E_r‘E_)I/Z. or what is
the same thing, in the region p,. p_ s me,

Similar considerations hold for the various other denominator
factors., We see from this gualitative discussion that the cross section
will be large only for small angles in the forward direction, as has been
pointed out previously (3, 5,10}, we also see that this has the conse=~
cuence that the dominant contribution occurs in the region where all of
the four-vector dot products are of the order of mz, i. e, Pt Py~ mz.
pl' ;:'+“ z‘nz, etc.

Flaving discussed this small-angle effect, let us now consider the
form of the various terms arising in the evaluation of the spin summation,
i.e. the traces. As can be scen from the expressions in Appendix A, a

typical term is of the form
- 1 v T 1N
TrlyPypy vopp) « Trly v B Y ¥ PgY ¥+ BY, V' g

where Par Py etc. are various four-momenta, the v,V indices are to
be summed over, and the yﬂ. yh arise from the interaction with the
external field, ‘/hen this expression is evaluated, and the 7, A indices
are set equal to zero, corresponding to a static external field, cf. ecua-

LA

tion 2-18, the result will contain terms of the two types:
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Tyes Pa” PpPc° Py I:e. 1;Qf
Type 2 p_° PLP." PgP." Pg

The terms of type 1 arise from yn and y)‘ contracting on two of the
four-momentum vectors in the trace, and the terras of type 2 arise from

k1]
4

¥' and yk contracting on each other.

Ye now see that, because of the concentration of the ¢cross
section at small angles, terms of type 2 will be of order ma/ﬁz com=
sared to terms of type 1. In the evaluation of the traces in Appendix £,
we will neglect the terms of type 2. This will appreciably simplify the

caiculation of the traces.



Pl

&

VI MAGNITUDE OF BEXCHANCE TERWMDS

Aiurota, gigl_. (5}, discussed the magnitude of the exchange terms,

and concluded that they were of order (m/f_‘l)2

lnz(El/m) relative to the
leading non-exchange terms and therefore negligible for m/};’.'l << l.
However, they only considered the exchange terms arising from diagrams
& and b in Figure l. In actual fact, the exchange terms arising from
diagrams ¢ and d, or from the interferende terms between diagrams a
or b and ¢ or d, are mauch larger than the above estimate, and cone-
tribute an appreciable amount to the final resuli.

In order to understand qualitatively the difference in magnitude
of the various exchauge terms, it is useful to view the exchange effect
as a repulsion in the phase space of the two final state electrons. OUne
can say that, if in the absence of exchange the two electrong tend to come
off together in phasc space, then the exchange effect will be large. FHow-
ever, if in the absence of exchange the two electrons tend to come off far
apart in phase space, then the exchange effect will be small.

In our present problem the bulk of the totzl crosgs section comes
from small forward angles, cf., section V. Therefore we can suppose
that the electrona come off at the same angle, and the magnitude of the
exchange effect will then depend only on their energies, ‘e can then say:

(1) If in the absence of exchange the two electron energies tend

to be equal, then the exchange effect will be large;

(2} If in the absence of exchange the two electron energies tend to

be very different, then the exchange effect will be small,

e can now use this approach to understand the difference in magnitude
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of the various exchange terms in the present problems.

Consgider first diagrary b. The two denominator factors of this

diagram are

2
(#y- o

and {(p,~-

In the forwara direction we find, using Z'E;l >> rm, etc.,

-5 -
N Ez;é ’
(7_)1‘ pz} = —— (5=1}
'.il_'._z
and
(-
2,2 5 ptea o R 2 .
-n_ =3 Y irat= e (B -2 VE. D -E G=2]
(py-py-2 3P ema’s — 22 [E (55,05 m,- 28] (6-2)
172 -

& see that the product of these two factors will be a winimum, and the
contribution to the crogs section a maximum, when Ez“' El and
& << E,0 Thus, with respect to diagram b, the energies of the two final
state electroas tend to be very different, and the exclhange effect will be
emall, A similar result can be obtained for diagrarm a.

Now let us consider diagram c. The two denominator factors

ayre

(p+ﬁ-§-32 and (b, b, 2. 2

In the forwazd direction we find, using E, >> m, ectc,

1

Pyt Bl = =i (6-3)
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' 2 ; s 2 - 12
oyt pytp? = - —B— [EyE+E )P 4E (4 Ey
E,E E_
+ E+(EZ+ }:‘}z- 4EZE+E_] (6=4)

/e see that the product of these two factors will be minimum, and the
contribution to the cross section maximum, when ¥ ~E_~ T, ~ E‘l/ 1
Thus, with respect to diagram ¢, the two final state electrons tend to
have the same energy, and the exchange effect will therefore be large.
Consideration of diagram d leads to a similar result.

The above arguments enable us to understand gualitatively the
difference in magnitude of the various exchange terms. /e can under-
stand why, as poiated out by »urota, _:_3_1_:_5_1_. , the exchange terms arising
from diagrams a and b are very small. OCn the other hand, the above
results indicate that ths exchange terms arising from diagrams c or d
should be much larger.

The arguments used above do not give a quantitative estimate of the
magnitude of the various exchange terms, However they suggest that for
those cases where the final state electrons tend to have the same energy,
the exchange terms should have roughly the same magnitude as the non-
exchange terms. Vith respect to the terms arising from diagrams ¢
and d, this implies that the exchange terms should be of order ln(El/m).
as are the non-exchange terms (5). With respect to the interference
terms between diagrams a or b and ¢ or d, the situation is much
less clear, both because these terms contain denominator factors which

are a mixture of the two types discussed above, and because the non-
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exchange terms, due to certain symmetries, cancel each other out.
However a plausible estimate of the magnitude of the exchange inter-
ference termas is that they will be roughly of the order of magnitude that
the non-exchange interference terrms would have been if they had not
cancelled, namely lnz(EI/m).

The above disv.:ussion indicates that the total exchange contribu-
tion to the cross section will be rmuch larger than the estimate of Murota,
et al,, which was (m/EI)ZInZ(El/m}. and which was obtained on the basis
of congidering only diagrams a and b. The discussion indicates that
the exchange contribution will in fact be dominated by the exchange terms
involving diagrams ¢ and & and by the exchange interference terms
between diagrams a or b and ¢ or d. These dominant exchange
terms are estimated to be of order ln(El/m) or lnz(f_{"l/m).

The qualitative arguments of this section are confirmed by the
detailed numerical results of the present calculation, From the results
presented in Appendices F and G and summarized in Section VIII, we
can see that the leading exchange terms are much larger than the Murota
estimate, and are in fact of order ln(El/m}.

Ve close this section by noting that in the gemainder of the calcu-
lation we will neglect the exchange terms arising solely from diagrams

"ﬂk K"ﬂh "ﬂk
bb* “ab '’ ""ha’

Murota, et al. and by the arguments in this section, they are certainly

!
a and b, i.e. the terms K::, K K since, asg shown by

negligible, being only of order (m/El)zlnz(El/m)-
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VII. RESULTS OF INTEGRATION OVER d”p.._d'gp_
In this section we present the results obtained for the x”;}h and
"o 3
K ;}x after integrating over d”p_.ﬁd'ap_. This calculation was carried

out storting with the expressions obtained for the I?.K and I'ir.'k in
ALppendix A, and using the results for the various integrals given in
Appendix C,

In the results presentad in this section we have, after the inte-
gration, set 1= A =0 and 4, = J, since these are the only terms con-
tributing to the final result. (See equation 2-16.} e use the notation
k = -pl-i- q4-py and ';31( = El- i’;‘z. The coefiicients 'Ai' Bi' Di' D;.

Fi. Gi. Vi' “s-';"i which appear in the results arise as a result of the co-
variant integration process, and are presented in Appaendiz C,

We present the results for the non-exchange terms first, and

hen the regults for the exchange termas.

A, Non- Exchanﬂe Terms

2

i gl f m
“"‘““‘T‘z \ 4By 1B = 2B+ 5 (By~ By 2B, )
(pl Pz t

199 _

L ° o ¢t 2 ° £ 2 e
= B—‘, [pl' 9Py k +P1 kPZ ¢ tm (pl Patm t g ki]}
*k(By- By +2B) ) +pyea(ByT4B,) - 85,,]

tE 20 KBy~ Byt 2By} + ppea(B,+ 435} - 8B,,1]

+ 4E|E (B, - 2B,,) )
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cussed in Section IV,



2. Exchange Terms

?

- Gy

T4 ) we SR
1

-f1'.'- ’ 29 »‘?" 3 e ¢ =Py e}
3 —— 5 {=m \Fo(q 1"2;)1 G+2p,e k)
O R

r i P 2 . Y 2
+ 2V 1@p, kHim ) (pyr ki k) tm pz-k]
+ 2V, (2 Moy by twye @) -]}
o1 (2D, B3 ) (o b,y o0 g i
- 2V EHV,E Ha7 42 ppr ) p,” k Hm)
17Kk 22N TEPT APy RTm
s % 2.1
2V p,e k-V,m i z, g +291 =.,=-2.,,_.1(p1 ktq- k)]

!
s !
FAVypork - Z?ng‘"-% 2\;"6)[ Ea(qz“ 2p;y )= Z,‘El(pl- Pyt Py



o

I'TIOO _ 2um N
“de T L 2
k(g +2ps glq” =2p,e 4}

i 2 2 8 ; T £ "
. K Vo{m [El (gok-p,r g} +F5(p,* qiq- k)-d:yl.g*_k(pl- qtp,e Q) hzﬁbkqdﬂ
+E Lzl n-z(q- 1:-k2-2p1- pZ-Zmz-Zpl- k;sz- k}+ % quZ] 1
+V, {E,E [ 2p,+ alp,- k+ s k+mZ)+2mPp, - q- 2p - k]
PLEg gl SR S L RS, AR R g
(B 2 2
Bl a%eyr pytm®)-2py - G p,ye €l
+2E,E_[ (p,* k+qg- k)( -k—c-k+2r-121+p ckp,k] -2m2q' k(F2+E?‘I
172t Py RTAT Ripyt Rmd il 172
2 2
+E,E, [ 2pyr qla k-p,+ k) =q"p+ k-2m“q- K} }
YV, RE E,(py Py 'Ry P, k-at K ¥py e b, Py k
2 2. 1
tm(2p;e py Pyt qtpy g-2m Tt war k)]
s ol 2 2
E,E,[ a%(pye pytm ) p,e alm™-2p; )]
E,[ Ci5. D B, it iy e
1 I P: q 11 Pz Pz g 1
$E2 2p.+ alg® k=p.+ K)=q2p,+ k=m 2 (2p. s g+2q°+q* K] =2E2m’p,s q)
-2 Pl glq pz 9 pl pl q 1 1 PZ q;
+Vv,{2E, 2, (kP qs ke2p,* kp, K+, %, [ 4°p," ke2p,* alp)- ktas k)]
B e 5
tEL,E [ 2%p e kt2pc qlp, k-gr ki)
+‘§‘2[ ?p . e (= 2(p ° -’mz}] }
£l 2pcap,ca-a”(pyop,
+V (E, [ a kipy p, P 4p,e q)+p2 k(ﬂz— -D,* 9=2p," p,) +2py» km®]
tELE pl-q(pz'q-m )-%—Kpl-pz*-zm i
n«zl 32— Py ktp e qlp,e k-q- k)] - I E kiﬂ-z— tp,yealpy Py tp,0 )}
*Vs 2 [4—1‘ Pl Pz+zp2 -9 )" Z(?pl Shax} )]

+ 2V, [ B F,(20%4pys gopye q-2pye P,)+ES by» G=EF p e al )



._.00

and

; 2
EE (A -4B,-q"B)- 3AE]
T (q -Zp?q) \Fal &2 6 1

B 3Py Qt2E,E l[mlﬁpz g+ 12 4-2— -2gs ke2m )-L.B 3P5° k-b4p2-m]
¥ . 2 e L2
k’o {EK[EZ(ZquH: -4pznk-q2-m2)-2m 1:,1-5_a,k(¢p2uq-s~m 13

e 3
.Eg(ka+qw-€-2rﬂ“’) }

s - U 2 2 sl
+V1{-1L~k{ dp,* qE, t2mE < E,(2p,t gtk -4p,* kt2q° k-q )] +2q- k' }

k

% = 2"—_’ e - -
v'zmz[ 2m " Ey +2p e 9X -mz(x 4p2 k=g ;1 H2V B ¥V, TN RE 5 -p g, )

+F }Ig[ Zmz(pl- q+g° k)-qz(kz-i-qz-i-ZmZ-Zq‘ k)]
+2m® B E (q® 2
» m [Elkz(q +qe k'PZ' G +E “ku -E EL( %“ +pl q+p2 -H

2
o R, 2 2
+2(F,E, +F E ) {E,[ (k% +q%+2m?-2¢° STEN q-%— + 2m“=2p o k)

+ mZ(Zpl- P, Py q-kz-meMpz- k+dqge k- Zqz)]
2 - - =
+m [ -’i'l(Pz' gigekeg™) = 'ﬁ'k(pl‘ Q*PZ' gt %‘ )] }

e 2 .
+UF ELAFgESF 2 B mP(2p atar Kl 4p e al2ay k-k?-q?) )



100 _

x 99 -
“Tdb

Sl

am? 2,25

(E, [5A tE (A -4))] - ¢°F
k2<q2_2p2.q) 2170 "k''o 1_ 170

. 2
+ 2B, [ E,(p,+q-q* k=2p* k+2p,+ k+k"-2m ;+%-I:l+pz qi, ]
- 2E,E, (2B,p,*k+B py° q)=2B,E2p," q-4B, & E

“27K'\ P3Py 4F] 37KP2 TP 2

2 2 '
- - . .k 2 2 . =
+ w‘o{ Z‘LZEK(ZPI. q-p;* k- —%‘—3 ) -ZEI.‘S Z(T +mT)em Ek(:_-k+2.*:1)]

2 2
2.
+2(W By = WoE [ Eplpy k=2p)+ q+2m )+ B By 4Ty (pye atm®= )

2
+2C 'lq El l[pz" c'pl k+2 (k -G i]
5 2
M E, [ E,(p)s atq k) *E (- -p » a=p,+ @) +E (q- k-p,e al] }
o 2., 2 g°
+2(G B, =G E{E, [ pye p,a 40, al(2p) k=2p;* a*#m ) +m (&~ -p;+ q)]
2 .2
—
tE [ mT (g k-p,e q)+q2(p1- kt S - 5 - poedl
2 3 I, 2 2 2
+2E2{m (3p,* k=-5p;. k+‘p1-p2+-'£p1=q+§(k -q“)-q* k=-5m")
2 5 12
Py klp,r kepye k= ) +ppeqla”+ 5 - 20° 1))

2 2
+2(G,E2+ GE 2- GyE,E k)[mz(zpl-q'h:;' k-q%)

2
- Q4P Py T 2pyralpca - Pyt k)])



«35a

] 1
oo oo
K

]
The terms K o and ch are obtained from the above

00
da °*
expressions by the substitutions

pl = Pz

V, — W

i

Fi— G

Under this substitution we have

‘oo . 400

K e Eaa
' '

K 00 . p'oo
dc ca
'oo __ .. 'oo

Kdd ch

]
The remaining exchange terms (K;;o. etc. ) are neglected, since, as

indicated in Section VI, they are expected to be negligible.
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VIII. DISCUSSICN OF RESULTS

The analytical expressions obtained in' the previous sections
were integrated numerically over the remaining part of the final state
phase space to obtain the final result for the direct pair production
cross section. The numerical calculation was carried out for various
values of Z and for nine values of primary energy between 10 Mev
and 100 Bev. The results of this calculation, both for the total cross
section and for various terms that contribute to it, are tabulated in
Appendix G. In this section we will summarize these results and
discuss their significance.

In Table 1 we present numerical results for both the un-
screened and screened total cross sections. The table shows the
behavior of the cross section as a function of primary energy, and
also shows the effect of screening. As has been shown by previous
calculations (1, 3, 5), we see that the screening effect begins to be
noticeable at about 100 Mev, and becomes of increasing importance
as the primary energy is increased above that value.

In Table 2 we present results for the exchange contribution
to the total cross section, cExchang e’ and for the non-exchange con-

tribution from diagrams c and d, ¢ We see that °CD becomes

CD’
negligible, i.e., less than one per cent of the total contribution, for
cnergies greater than or of the order of 100 Mev, and that aExchange
becomes negligible for energies greater than or of the order of 1

Dev.
The results in Table 2 are of interest because of the dis-

agreement with the estimates of Murota, et al. (5}, These authors
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Table 1

Total Cross Section for Direct Fair Production

L?:"‘}'imary
Znergy
{Bev) Total Cross Section
(in units of ZZ-'.;Z r,oz)
Unscreened - Sereened
Z = 26 Z =82
0.01 1.070 1. 068 1.066
.03 5.798 5.753 5.713
g.1 19. 89 19.51 19. 24
0.3 43.73 41,95 41.02
L0 79.87 72.14 69. 37
3.0 121.5 100.9 94.90
10.0 194.6 116.5 106.7
30.0 273.2 133.6 116.2
100.0 364.2 156.6 131.2
(ery? = 4,228 x 10730 co®)
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Table 2

Effect of Exchange and of Diagrams ¢ and d

Primary Unscreened Screened
Energy
Z =382
(Bev) )
UCD/ “Total gExchange/ “Total O-CD/ “Total l"1*'.“.:»«:hemge/ “Total
0.01 0.0506 0.1620 0.0505 0.1600
0.1 0.0074 0.0173 0.0072 0.0148
1.0 0.0023 0.0069 0.0020 0. 0047
16.0 0.40009 0.0053 0.30006 0.0031
100.90 0.90003 -- 6. 0001 --

Cep = MNon-exchange contribution from diagrams ¢ and d

c
Exchange

= Total exchange contribution (absolute magnitude)
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estimated that ors would be much larger than we have found it to be,

and that o would be much smaller. As we have discussed in

Exchaﬁge
Sections IV and VI, this disagreement arises because of the cancella-
tion of the non-exchange interference terrns between diagrams a, b
and ¢, d, which Murota, et al. were not aware of, and because these
previcus authors considered only those exchange diagrams arising
solely from diagrams a and b.

Table 2 also shows that the dominant contribution arises from
the non-exchange terms involving diagrams a and b, and that for
energies of the order of or greater than 100 Mev the contribution
from all other terms is less than ten per cent of the total.

In Figures 2 and 3 we compare our results with those of pre-
vious calculations‘. This comparison is of particular interest be-
causge of the disagreement among these earlier calculations. As we
indicated in Section I, this disagreement is primarily due to the var-
iocus approximations made by each author during the integration of
the differential cross section, and also due to the various arbitrary
parameters that these approximations introduced. The present work
may be thought of as an attempt, by means of an accurate numerical
calculation, to discriminate between the results of the previous cal-
culations.

The unscreened crose section is preseated in Figure 2. For

energies up to 1 Bev the results of thg present calculation agree

* The small circles in Figures 2 and 3 are approximately of the size
of the numerical errors in the present calculation.
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fairly well with those of MNishina, et al. (1). For energies above 1 Bev
the present calculation gives results which lie between the Nishina cross
section and the Racah cross section, and which approach the Racah
cross section at the highest energy considered (100 Bev).

The comparison of results for the screened cross section pre-
gented in Figure 3 are much less informative, primarily due to the fact
that not all of the previous theories included screening. The only defi-
ni-te conclusion that can be reached is that the Bhabha-Murota, et al.,
screened cross section is definitely too large, a conclusion that had
been reached previously (4).

The accuracy of the present calculation is limited by a number
of factors, the most important of which are: (1) numerical errors in
the integration, which are of the order of 3-4%, c.f. Appendix E, {2}
the error inherent in the Thomas-Fermi screening function, (3) the
neglect of Coulomb corrections, and (4) the neglect of direct pair pro-
duction by the atomic electrons. Cf thess errors, the last three are
common to all existing calculations of the direct pair production cross
section.

The error in the Thomas-Fermi screening function can be
estimated by comparison with the Hartree screening function. This
is done in Section V, where it is concluded that the Thomas-Fermi
ascreening function introduces an error in the total cross section of the
order of 10%.

The error due to neglect of Coulomb corvections is much
harder to estimate. Coulomb corrections have been extensively in-

vestigated for bremsstrahlung and for ordinary pair production
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(11, 12) where it has been found that the correction is quadratic in Z
and for lead decreases the cross section by about 10%, for energies
greater than 50 Mev. However, the direct pair production process
differs in an important way from the bremsstrahlung or ordinary pair
production processes. Namely, the direct pair production matrix
element involves four charged-particle wave functions which muat be
Coulomb-corrected, whereas the other processes involve only two.
Decause of this difference it is not clear what the relation will be
between the Coulomb corréction to direct pair production and to the
other processes. All we do here is conjecture that the Coulomb
correction to direct pair production will also be quadratic in Z, and
will be roughly the same order of magnitude, i.e., 10% for lead.

The situation with respect to direct pair production by the
atomic electrons is similarly uncertain. I[lowever, it is plausible
to conjecture that, as in the case of bremsstrahlung and ordinary
pair production (13), the contribution due to the atomic electrons
can be included approximately by replacing the multiplicative factor

' .".'12 in the total cross section by Z(Z+1).

From the above discussion we conclude that the total error
in the present calculation is, for heavy clements such as lead, of
the order of 25%, and for lighter elements for whiéh the Coulomb
correction is not as important, of the order of 10-15%.

We conclude this section by preseating, in Figure 4, a com-
warison of the results of the present calculation with various ex-

perimental results for the direct pair production cross section
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(4, 15-25)*. The theoretical curve shown is calculated for an effec-
tive Z of 22.1, which is appropriate to the nuclear emulsions used in
these experiments (4).

From the results shown in Figure 4, we see that for energies
up to about 1 Bev, there is reasonably good agreement between theory
and experiment. For higher energies, however, the situation is un-
clear, due partially to the fact that the experiments disagree amongst
themselves. The experiments in this higher energy region were all
carried out using nuclear emulsions exposed to cosmic rays, and were
all beset by two gerious difficulties: the deterrination of the primary
electron energy, and the correction for sc-called pseudo-tridents.

Various methods have been usec for the energy determination,
including multiple scattering measurements, and, for those cases
where the primary electron arises from a previous pair in a shower,
measurements of the opening angle of the previous pair. For ener-
gies in the muilti-Bev region these methods are all subject to large
erroxs, and it has been suggested several times in the literature that
the primary electron enérgiee may have been seriously underesti-
mated (4, 15).

In addition to direct pair production, a high energy electron
may initiate a two-step process in which it emits a bremsstrahlung
photon which then produces an electron-positron pair. If the brems-

strahlung and the pair production occur close enough together in the

*The experimental points shown were obtained from Fig. 1 of the
paper of Roe and Czaki (14), with the addition of the more recent
work by Tumanyan, et al. (15, 16).
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emulsion, the resulting two-step process is indistinguishable from
direct pair production. These spurious direct pair events, which must
be subtracted out to obtain the true direct pair production cross sec-
tion, are referred to as pseudo-tridents. IMNumerous calculations of
the pseudo-trident correction have been carried out, with varying
results (25, 26, 27) . The results of the most recent calculation
(15), which uses a Monte Carlo technique, indicate that the previous
calculations contain large errors. These errors would introduce
large systematic errors in the experimental values of the cross sec-
tion, particularly in the very high energy range, where the pseudo-~
trident correction is very large.

In view of the experimental uncertainties discussed above,
and in view of the inconsistency of the experimental points above 1
Bev, the disagreement between theory and experiment for these
energies is probably not significant. It would appear that there is a
need for experiments of increased accuracy in the energy region

above 1 Sev.

*The number of pseudo-tridents relative to the total number of observed
tridents (pseudo plus real) is of the order of 10% for primary electron
energies of about 1 Bev, and is of the order of 90% for primary ener-
gies of about 100 Bev (27).
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APPENDIX A

Traces and Symmetries

o

' In this appendix we evaluate the traces, i.e. the I'i';)‘ and I;?K.
and we discuss the symmetries that exist between the various terms.
The calculation is simplified if we note that the final result
will be real, and that /i ;"?"! h will contribute the samne amount to the
total cross section as //i :’*ﬁ#; » 8ince they differ only in the inter-
change P p_; and Py and p_ are both durnmy variables of integra-

tion insofar as the total cross section is concerned. From these facts |

it follows that

TN _ LAF
and

7ty - I' A

ij ji

where the lcst equation is true in the seansc that the two terms con-
tribute equally to the final result. This means that we only have to
calculate half of the cross terms.

We now proceed to evaluate the traces, first the non-exchange
terims, and then the exchange terms.

1. Non-Exchange Traces

Using standard methods, we sum over the spins and obtain
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where the J:SA are given by
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By using the above expressions for the J:?, and certain rules
for manipulating traces of y-matrices, in particular
Trlyg¥o¥g: - - V¥ ¥, ) = Trlv, vy ¥pe - - YeYpv,)

cne can obtain the following symmetry rules:

(1) Under the interchange P, -p_» 9 -q

J;a Jbb

NA . A7)
Ja.b Ja.b

(2) Under the interchange P} P @ T g

Jco:: Jdd

AR L A7
ch ch

(3) Under the interchange Pp ™" P_: Pp TP, QT "0

A e 3TIA
Taa Jee
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1) J—_ ) |
Jab ch
A oo AT
Tad Tbe

A o 7A7
Jac Tac

Yoa bd
(4) Under the interchange Pp =" Py Py TP, Q7T -q

/) ) §
Jaa ‘Ibb

Tee Jad
MA e TR
'Ia.c de

[/ ) §
Jad ch

A . I
Jab J'ab

8 <
The use of these symmetry rules greatly simplifies the evaluation of
tihe traces and is an aid in checking the results.
We now proceed to evaluate the traces using standard methods.
Ve drop terms involving gm‘, since they correspond to the terms of
type 2 discussed in Section V. We also drop terms involving qﬂ or qa'.

since they will not contribute to the final result, and we drop terms

which are antisymmetric in 7, A for the sarne reason.
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The remaining J';?' can be obtained from these using the symmetry
relations discussed above.
From the expressions obtained above for the I?jk and J %l ad- »
ditional symmetry relations can be obtained. In particular, one can
show that under the interchange p, = p_,

A e IR
la,a 1bb

A e _ A
1a,c I!:vc

A e _ N
Iad Ibd

The significance of the last two of these symmetries is discussed in
Section IV.

2. Exchange Traces

Proceeding as before we have
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where the J i?'\ are given by

Y 1 - R.,- .
Ja’; =15 Tr{ \f’(-xy'pz+m)\( Ly’ (Pz'cﬂ'm} Yy (iY'P++m) ‘
; YPL iy (p_-q)-m] y(~iy- p_+m)'vv (~iy- Pl+m)}
! A 1 P 2 . ' h .
Iob =15 Trl Wi-iv-pyrmly, iy (g-p, )-m] ¥ iy - p,+m) -
- Y:?i.iY' (Q'P_'_)'m] YP.(-iY'P_*.mPYV(-iY. P1+m)}
'GA 1

I = Tl y'*(-iy-pzavm)y"{iv'(pz-q)-mhv(iv-pﬁm) ;

© 7 iy (ampy)-m] v, iy sty iy pprml)



wB e

J;?:l =-il3' Tr{ VW(-iy'p Jrm)y, Liy* (py q)-m]y (=iy: pjtm)’

vl iv- (opra)-ml v, iy pyrmiy iy p,+em)}

'9h 1 Sy o. 1 :
dfx -rgTr{v*“(-W'p_*rm)v Liy-(p_-q}-m]y, (-iy-pytm)

' Yp‘f. iy (p?_-q)-m] Y’r"(-iy' pz-hn)yv (iy- p++m)}

A 1 . . A,
ait = e Tely (-iy p_tm)y, Liy- (pyra)-m] ¥ (-iy- pprom) -

© ¥, L1y (pp-a)-m] Y-ty pyrmly” liy- py )

"HA

Jea ="I% Tr{y*(-iy'p_+m)y “(-iy- pprmly [ iy (ot q)-ma]

", (-y p;jm)vh"i iy (py-ql~miy iy ptm)}

' .\\. 1 P 15 " T, 3 &
Jc?; b 7 3 11'{yg (-iy-p_+m)yv(-1y-pl+m)y 1 iy* (pl-i-q)-mj
& WVie .
¥, (-iy- patm)y Liv (g-p,)-m]y iy p )}
17;)‘.

1, . . i 7 ;
da :.IE-Tr{y"u(—iy p_+m)yv (-1y-pl+mwui_iy-(pz—q)-mj .
Yy (~w'" m)y ' by (py-a)-mjy’ (iy'p,+m)}
J'T;‘;‘L

abt = Trl¥ iy p_tm)y (-iy pyrmly, [y (p,-q)-m] *

vH-iy pyrm)y iy la-p, ) -mal Yy b, )

The symmetry rules for the exchange terms are:
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(1) Under the interchange P} T -P,
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T —
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We now evaluate the traces and obtain
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The remaining Ji'.i)‘ can be obtained from: these using the symmetry

relations discussed above.

From the final expressions obtained for the I;".?}‘ additional
symmetry relations can be obtained. In particular, one can show
that under the interchange Py T "Pps Py TP

A .
ca dc

1
I' r‘?A’ > I' "-’?h’
da cc

A,
ch l<:'(d

L
These symmetry relations are useful in evaluating the Ki;ih

.
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APPENDIX B

Covariant Method of Integration

e will illustrate the method of integration by evaluating the

integral
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Taking q as the polar axis, the only two non-zerc components are 110

and 111. Evaluating the integrals, we have
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To rewrite these in covariant form, we note that
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APPENDIX C
Integ:rals

In this appendix we present the results obtained for all of the
analytical integrals encountered in the present calculation.

The required integrals are, where we use k = pra-p;
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These integrals are evaluated using the method illustrated in
Appendix B. In order to conveniently express the results, we intro-

duce the following notation:
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+ 172 (€. + 1°2
4 Ca
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4 InL
Fﬁ = ) k T3 . {62‘2[8.1(211’!2'92'1{}*’62“12'(1'k)] 2'
4a,. (a,a,-8,") ;o
4 #2279 (N))?

2
Inl,(q ~q-k) InL
* (ay2,8,7 [ :1} I . 2] {(ay2,-8, )0 ' k)
11 &

+26,[a,(2m%-p,- kI 6,(q%-q- k)] }

InkL
2 re i 2 2 2_ .
+a,(a,8,-8, ) (g% g kI 6,(2m-p,. k)] }
""121“3"1 2 2 a6, 2
- ) (2@ -, k)8, +aa,) - N [(,1(52 +alaz)+ ZblalaZ]
8,8 c 2a.8 {,1
2°2 2 2 4.-2 172 2
- ayc, [al a, *6, (E'{ -]+ c; ‘62 ""‘1“‘2,’

2
F

C 5y 2
= . {5z(g1+2b1) + "zl' ‘Nl)a In L4+a.11nL1(2m -pz.k)

7 -

cllan

Es

{ay(a®-q-k) + §,(2m®-p,- k)] }

2 .
al azml }
g e
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4 c,InL N
k - 2 2 -
Fg = - {[al(Zm -pz-kHGZ(q -q- k)] “ - — h

=
4c)la)a,-5,") oy )2

cllnL
€2

N 2

[(522+a1a2)(q2"¢ kH 3a152(2m2-pz- k)]

2 6,°;
-Zal[allnLI(.?.m -pz-kH62(§1+b1)] """;5"'

2 InkL
Fg " k -y ;4 [al(ZmZ-pa-kﬁﬁa(qz’wk)] .
2a,(a,2,-8,°) (Nl)"f

. {(qu- k-a;p " k) [al(Zmz-pz- kH & z(qz-q- k)] +(aa,-6 22)[(q' k)(qz-q- k}-a,] }

InL
€2

2

4

{(s 20 K=a,pye k)[(522+a1a2)(q2-q- k)t 3a162(2m2-p2- k]

+{q- k)tala?_-ﬁzz) [a1(2m2-p2' kh éz(qz‘q- k)] ~ albztalaz-ﬁzz)}

0 1 Zal 2
- (Nl)a In Lé(ﬁzq- k-alpz- k)~ ——--cl (Gaq' k-alpz- k)[allnLl(Zm Py k)
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2
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1
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ﬁzlnL a,N
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2
The '.1 and Gi can be obtained from the corresponding V’i and Fi’
respectively, by the substitutions
o R =

Ry ™™ 8y
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] 1 Tt 3 3 7 ~ -, .
The D,‘,. DS, «ee» D}, can be obtained from DT’ Bgoeres 312’ respec

tively, by the substitutions

P 7P

&, =6
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APPENDIX D

Kinematics and Limits of Integration

The region of integration for the d3q d"’pZ integration is deter-

mined by the kineinatics of the process. To discuss this, we write

3 d qj --:-; = Zw.} q dq | BaEZdEaﬂ} d(coseq)gj d(coaez):? de, (D-1)

where the angles are defined by

P :{ = cos 8q

R Pp= 089, (D-2)
?:2- Z: = cos Qg cos 92 + 8in BZ gin Qg cos $a

Ve must now determine the limits on the integrals in equation D-1. The
integrals are to be carried out in the order indicated, namely the ¢
integral first and the q integral last.

‘We will first discuss the limits on the g and & 2 integrals. If
we for convenience consider EZ first, we see that since we are as-
suming the target nucleus to be infizitely heavy, the laboratory system
and the center-of-momentum system are identical. Also, the recoil
snergy qg/ZM is completely negligible. For these reasons we have

tmmediately as the limits on EZ;’

H
A
b

. ® L. - 2m (D-3)
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Now let us consider the limits on q® | q |. We have

- emp D

a=|p;-Py-pP,-P_ (D-4)

The maximum value of q will occur when all of the final-state particles

come off in the backward direction. This gives

Gax = 1Py IRal* lo |+ Ip_]
(D-5)
2 2 L 5 L 2.4 2 2.4
- B82mAE 1 (2, 2mH5 (2, 2wt (5 emd)
Dropping terms of order (m/E)“, we have
Ypax = & F By r B+ E_ =25 (D-6)

The minimum value of ¢ will cccur when all the final-state par-

ticles come off in the forward direction. Then we have

Unin = 1811 - 1321 - 15,1~ 5.1
(D-7)
= (5, 2-md)? - (B,5-mP)2-(2, 2emP)i-(2_Rem?)?

)

Since we have already integrated over p, and p_, we must minimize
the above expression with respect to E+ , B subject to the constraint
B, +E_=E -E,. From the symmetry involved, we see that the min~-

imum will occur for 33%_ =5

(=, - E,}/2. This gives for Qi 28

a function of Ez,

o & B z%_,rz
(E,) = {5, -m")%-(E,

2 - o A4
. -m®)2- [ (E)-E,)°-4m"] 2 (D-8)

YUnin
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From this expression we find for the end points ua =m, Z,= .{.1.;1~-.’:‘..::-:3c

the values
%nin (EZ =m) = m, . T— (;*_.2=El-2m) = 2m , (D-9)

where we have dropped terms of order (m/El‘}a compared to one.

For the minimum of (Ea) with respect to ‘EZ' we find from

nin

the symmetry involved that the minimum occurs for Ez=’5.“-+ =.e.;_=31/3,

and is

where we have again dropped terms of order (m/."';il)z.

From the above results, we find that the region of integration
in the q, &, plane has the form shown in Figure 5a.

If we now wanted to integrate over q first, and then EE.‘,’ the region
of integration would be given by equations D-3, D-6, and D-8. ..owever,
for convenience in treating screening, we wisch to do the integration over
s before the integra.ti'on over . To find the limmits for this order of
integration, we must solve the equation g = qmin(EZ) for &/ ac a func-

tion of ¢. The final result we obtain for the limits is

P
T < g% 2E, (D-11)
g
and
Gl(q) < ':“'Z, < ea(q) (D-12})

where



q ﬁ -90-
| 7/ ---2E,
---2m
" ) ‘\E¥ 9= il Ee)

! === 4am%E, |
: ! :
} i : -
m E/3 E,-2m E,

FIG.5a REGION OF INTEGRATION IN g, E; PLANE

FIG. 5b VECTOR RELATIONSHIP FOR
DETERMINING (cos 8q)max -
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rm _ for g > m
B
El(q)"-% —2-1-{1+ > . {-sz (D-12)
(2qZ;tm " -q") ;
or g<m
2. am® _3g%.% ;
~[49Z"(q - = -:El-)l }
—
and
El-.?.m for q> 2m
= :
€.lq) =< {1+ 1 {-3m® (D-14)
- 2q F
{ qitm”-q )

for q <zm

2 2 3
+ [2E,%(q :”f{- -%;-n }

—

In the expressions for € 1(ql) and € Z(q) we have again drdpped terms
of order (m/EI}Z.

We must now consider the limits on the cos 8¢ integration.
We wish to determine these limits for fixed values of q and E,, and
for arbitrary values of cos 8,, ¢, andp,, p_. Ve first note that,
because of the definition };1 + ?{ = ;2. ¥ ;+ + ';_, the nuclear recoil
is -‘c.f. Since the nuclear recoil can certainly be in the forward di-

rection, this means that the lower limit on cos 8q is



WP
(ces eq)min = -1 (D-15)

To determine the upper limit on cos 8q, we note that from mo-

mentum conservation we have the vector relationship shown in Figure

g i -
P

5b, where L, = p:;: + p,t+ p_. Since [£1= |'5'lj, we sce that

(cos eq)max < 0. From the cosine law we now have

;e ;izi.- ;Z‘ -2 [;i”?l cos (7 -9q)
{D-~16)
...;.2 -02’ - —_—
=p; "+ a * 2|p|la]| cos 8q
From thia we obtain
-2, =2 =2
pp t g -(L7)
(cos @q) . =~ 1 S - .. (D-17)
2|P1”q|

where L © is to be maximized for fixed |q | ana E,. It can easily be
demonstrated that the maximum value of L = will occur when :';E-'." j_ and

}3’_ all come off in the same direction, and when £ _=Z_= ( 1-@..-2)/2.

Using this fact, we obtain finally, again denoting q = ];!.

q k4™ ZEZ(EI-EE)-E(EBE-mZﬁ[ (EI-EZ)Z-‘!:mZ] 3
(cos 0q) = - - ;
max 3q(E1a _ m’")'%

(D-138)

Now we must determine the limits on cos 92. These limito must

be determined for fixed values of q, £, and cos 8q. e first note that

—Cn

P, can certainly come off in the forward direction, which means that

(cos @) . =1 ' {D-19)
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The lower limit on cos 92 is most easily determined if one
notesg that the following kinematical inequality must always be sat-

sified:

k® € -4m* (D-20)

where k = p, + q - p,. To prove this inequality, we note that, be-

cause of energy-momentum conservation, k = Rt R_- I the co-

a a

ordinate systemn in which k = 0, we then have k™ = -(*7‘? Z;_)as-t}m ;
Since k% is a scalar invariant, this inequality raust hold in all co-
ordinate systems, which completes the proof of equation D-20.

The accessible region of final-state phase space is then charac-
terized by k°<-4m>, and the boundary of this region is determined
by kz = -4m2. This means that (cos °z)min is determined by solving
the equation kz = -4m® for cos 6, as a function of E;, &,, q, cos 8q,

and Pos and then minimizing this with respect to P Proceeding to

do this, we have

kB

Zpl q—agl Py = apz a+ qz-Zmd

2p,'q + q°-2m® + 2E,E,(1-£ 8, cos 8,) (D-21)

]

-2E,5,q[cos 8q cos 8, + oin Bq sin @, cos ¢o1

Setting kz = -4m2 then gives

cos 82 = 1 - .

(El,i;%l-%- qcosaq)a-{- qasinzeqcos“qbz

. {(ces 92":’3(31‘91":" qcosaq)a {D-22)

-qsinaqcosqza{(:1,{31+qcosaq) [1- (COJBZ)G]; q 3in“Bqeos ¢2}2}
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where we have denoted

Sm W LD 2,., &
.c..lk'.zvc_pl-q+q +2m”
ZEBEE(EIBI+ qcos 6q)

{cos 92)0 =

(34
~—

(D-23

Minimizing the expression in equation D-2Z with respect to ., we

obtain finally

_ 1
(cos Gz)min— S — .

(Elgii'i- qcos Bq) 4y q“sin“ 6q

% {(cos GZ)Q(E)Iﬁf gcos Bq)d (D-24)

-q Binaq{(:’.l,ul qcos Qq) [L-(cos BZ}GHG sin’ eq,%}

All that remains now is to determine the limits on cb“ In prin-
ciple these could also be determined from ti:e condition ka < - 4:::52.
riowever, in practice we have found it more convenient to extend the
q')z integral over the entire range 0 < (;5;2 < &y, and then apply the re-

guirement kz E3 -4rn2 a3 a subsidiary condition, i.e. we set the inte-

grand equal to zero for k2> -4m2.
This completes our discussion of the limits of integration.
The final results are given in equations D-1l, D-iZ, D-15, D-18,

D-19, and D-2a4.



-95.
APPENDIX &

Details of MNumerical Calculation

Asp indicated in Section II, the five dimensional numerical inte-
gration over q’:z, cos 02, ces 9q, EZ' and g was done in two parts:
first a four dimensional multiple integration over P, cos 0,, cos Bq,
and EZ‘.’ the result of which, o(q), was tabulated as a function of E‘l
and q, and finally the single integration over q.

The four-fold multiple integration was treated numerically as
a succession of single variable integrations, each of which was done
using Gaussian quadrature. For the Ea. cos 9q, and cos 62 integrals,
the integration interval was divided into four unit cells with four~
point Gaussian quadrature used m each cell. For the ¢, interval
one unit cell was used, with two-point Gaussian quadrature. This
arrangement resulted in a distribution of 8192 points throughout the
four dimensional region of integration.

The numerical accuracy of the four-fold multiple integration
was tested fog elected values of El and q by doubling the aumber
of points. The error in o(q) was found to be of the order of 1%.

For the {inal integration over g, it was necessary to integpolate
in the o(q) tabulation. For this purpose it was found adequate to tab-
ulate o(q) at four values per power of ten, i.¢., g =1.0, 2.5, 5.0,
7.5, 10.0, etc. Using four-point Aitken-Lagrangian iaterpolation
then reasulted i.n an interpolation accuracy of the order of 2%.

The final integration over q was carried out using a special

Gaussian quadrature program which continuously subdivided the
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integration interval until the desired accuracy was obtained. The
truncation error in this integration was of the order of 0.1%. Ia ad-
dition to this error, the final integration was cut off at . 10

4

mev/c instead of being carried all the way to q = ZEI' This

iax
introduced a further error of the order of 0.1%.

The total numerical error in the calculation was of the ozrder

Of 3“46700
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APPENDIX ¥

Numerical Results for o{q)

’-.Ve introduce the notation

. 1 P r .
CAB(q) = *;-n-z', paEzdx:az ‘3 d(cos ﬂq)h\:J d{cos 92) ‘g d\,bZ'
.00, . 00
(naa * B ab)
(" {
o-CD(q} = PZ. d(coq Gq) d(cos 9,) dg,
.,_00 i 00 B
(';& P dd + 2K d)

i T ik £
3

. N ¢ 0a) & a g‘ o
% oohungel D = 24 FoERAE, | dicos 8q) | dlcos 0,)) dyy

30 00 ‘00, ..'0C '00

1
.2(,.6{ + K + K

{)0
.’
[ ca ”co da © db H

]
¥ K

These three terma represent, respectively, the non-exchange contri-
bution from diagrams a and 1, the non-exchange contribution from
diagrams3 ¢ and d, and the total exchange contribution (neglecting the
terms discussed in Section VI).

e tabulate the numerical results for these terms on the fol-
lowing pa,ges*. Ve use Mev for energy units, and Mev/c for momen-

tum unita. The o{q) are dimensionless and their values do aot depend

* Since ocplq) and eExchange(q) become negligible in comparison

to 75 plq) at high ?nergy. weé havz not calculated cgplq) for pnmar;
energies of 3 x 10 Mev or 2 x 10® Mev, and we have‘fot calcul
“Exchange‘q) for primary energies of 2 x 103, 3x10%, or 1 x 10 ‘f‘ ev.
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E, =1.0x 10! Mev

alMev/c) GAB(q) GCD(q) O-FIJ:l:c:ha.nge(q)
2.5 % 107} 9.342 x 10° 5.275 x 107! 4.566 x 10°
5.0 8.710 x 101 2.619 x 10 1.743 x 10}
7.5 | 1.848 x 10° 5.216 2. 387
1.0 x 10° 2.534 7.856 2.307
2.5 2.372 1.735 x 10! 2.079
5.0 8.537 x 10! 1.850 1.163
7.5 2.977 1.592 7.034 x 10°
1.0 x 10° 8.399 x 10° 1.317 3,169
E, =3.0x 10" Mev
qiiew,e) *a5'd) “cplal Exchange!!
5.0 x 1072 3.862 x 107} 4,727 x 1072 3,141 x 10
7.5 6.547 x 10° 3.900 x 107} 2.858 x 16°
1.0 x 107} 2.352 x 1o} 9.089 6.892
2.5 3,589 x 10° 5.119 x 10° 2,302 x 107
5.0 1.360 x 18° 1.430 = 10! 4.858
7.5 2.293 2.452 4.891
1.0 x 10° 2.905 3.449 5.037
2.5 2,737 6.767 2,890
5.0 1.579 7.385 1.281
7.5 8.718 x 10% 6.868 1. 075
1.0 x 10! 5.666 6.057 9.990 % 10°



q(héev/c)

2.5 % 10'2

5.0
7.5
1.0 x 10°}
2.5
5.0
7.5
1.0 x 10°
2.5
5.0
7.5

1.0 x 10

qliev/c)

5.0x 1073
7.5
1,0 % 10°%
2.5
5.0
7.5
1.0x 10!

2.5
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E,=1.0% loaMev

1

TAB (q)

=1

P
AD

6.690
2.418
3.919
1.840
4.083
6.984
3.361

X

X

x

10

10

10

10

10

1

2

-
o J

3

GCD(CI)

5.532
2.576
5.005
7.657
2.616
6.413
1.065
1.492
2.966
3.165

2.832
2.318

=3,.0x 102 iev

(q)

X

10
10
10

10

10

3,944 x 107

4]
1

N

(93]

1

X

10'1

109

10

10

“cpld)

4.769 x 10™°

3.924 x 10°!
9.127

0
4.995 x 10
1.328 x 1ol
2. 244
3.216

9.611

0 ks v o = -
Exchange

{a)

2.972
1.861

7. 154
5.472

Wi
Exchange

x IGQ

% 10!

x 10

(q)

2.999
2.770
6.698
3.207
5.125
5.457
5.953

1.393

% 10'1

% 10



q{Mev/c)

5.0
7.5
1.0 x 10°
2.5
5.0
7.5

1.0x 10
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£,=3.0x 10% Mev (Cont'd)

‘7qu(§)

8.504
5
1.226 x 10
1.426
1. 440
9.062 x 10%
6.387

4,305

%
2.098 % 10
3.198
4,296
3.225

w3
1.013 x 19
1.018

9.211 x 102

()

U‘.‘"'ﬁ ~ 3 g
Exchange

3.561
5. 740
7.331
1.138 x 10°
1.049
7.186 x= 10°

6.699
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E; =1.0x 16 Mev

qlsiev/e) &AB(Q) t"C;D(m c"Z'E.::\mha.zsxge(q)
2.5x 107> 1.176 x 10 5.52¢4 x 107} 4.200 x 10°
5.0 1.391 x 102 2.586 x 10° 1.942 x 1ot
7.5 4.071 5.012 4.071
1.4 5 1872 §.011 7.660 4.355
2.5 5.181 x 10° 2.569 x 101 5.779
5.0 1.828 x 10° 5.883 8.631
7.5 3.610 9.286 1.304 x 102
1.0 x 10”} 5.683 1.270 x 102 1.841
2.5 2.005 x 10° 3,121 5.916
5.0 4.135 5. 468 1.406 x 10°
7.5 5. 498 7.137 2.168
1.0 x 10° 6.390 8.592 2.957
2.5 6.803 1.448 x 10° 4.666
5.0 4.529 2.069 4. 1361
7.5 3. 318 2.798 4.192,
1.0 x 10} 2. 641 2. 346 3, 321



gq(Mev/c}

5.0x 10°¢

7.5
1.0 x 10-3
2.5
5.0
.5

BN

1.o0x 107
2.5
5.0
7.5
1.0x 107
2.5
5.0
7.5
1.0% 10
2.5

5.0

=]
(8}

1.0x 10

J.‘.ol—
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2
3.0 x 107 Mev

“ap(d)

31

0 W

. 753

L
(%]
=
o

®

b4

10

10

10

r'd
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E,=1.0x 10% Mev

giMevyc) “anld) 7cpla) “Zxchange ()
2.5x 1074 3.289 x 10} 4.302 x 10"} 1.770 x 10!
5.0 4.657 = 10° 2.904 x 10° 9.293
7.5 1.436 x 10° 5.193 1.364 x 10°
1.0 x 10°2 2.464 8.165 1.731
2.5 1.654 x 10% 2,638 x 10! 2.643
5.0 4.455 5.719 3, 372
7.5 9.664 8. 587 5.610
1.0x 1072 1.284 = 10° 1.190 x 102 7. 494
2.5 3. 244 2.946 9.978
5.0 5.022 4.831 1.347 x 10°
7.5 8.740 6. 554 2. 441
1.0 x 107} 1.179 x 10% 7.302 3.578
2.5 2.536 1.197 x 10° 5.971
5.0 4.263 1. 660 1.204 x 10%
7.5 5.153 1.9a3 1. 448
1.0 x 10° 5.947 1.931 2. 104
2.5 6.798 2.706 2.830
5.0 5.278 3.451 2.768
7.5 2.913 2.821 1.976
1.0 x 107 2.854 2.670 1.778
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£, = 2.0 % 10% Mev
a{Mev/c) o, plal
5.0 fa™> 1.324 x
7.5 1.988 =x
1.0x 1072 4.648
2.5 1,075 x
5.0 2,252 x
7.5 1.189 x
1.0x 1073 3,216
2.5 8.873
5.0 2.698 =
7.5 3.563
1.0 x 1072 5.554
2.5 1.403 x
5.0 2. 451

=]
[+
w
—
<
(323

1.0 x 10~} 4.735
2.5 5.652
5.0 1.051 x
7.5 1.175
1.0 x 10° 1.300
2.5 1.545
5.0 1.402
7.5 7.739 x
1

1.G% 10 6.778

LA

o
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E;=1.0x 10° Mev

q(Mev/c) 7,5l
2.5 % 10°2 2.658 x 1o}
5.0 6.028

7.5 9.033

1.0x 1074 1.204 x 10°
2.5 3.015

5.0 7.200 x 10°
7.5 3.799 x 10%
1.0x 10”3 2,259 x 10°
2.5 4.643

5.0 1.186 x 10°
7.5 1.900

1.0 x 10”2 3.360

2.5 6.714

5.0 1.198 x 10°
7.5 1.364

1.0 x 1071 1.786

2.5 2.153

5.0 2.305

7.5 2,622

1.0 x 10° 2.068

2.5 1.749

5.0 1.472

7.5 1.196

1.0 x 10! 9.201 x 10°

GCD‘q)

1.595 x 107

8.

@O N

L¥Y]
.

3

=] U N

969

. 660
.569
. 460
. 566

. 035
. 953
«902

. 124
. 242

<

x 10

x 10

x 10%

x 10

1
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APPENDIX G

Numerical Results for ¢

Ve introduce the notation

2
22 2 2
Tap =T & ¥, "rj Bl q dt%[-'!%—j oanla)
“1

o = ulafr 2. o L %a [+F( ) '2'[ (ak o))
Non-exchange ~ ~ s 2 } a4 99 4 ! “ap'aF?cpla

D
T Elﬁl
' % 2 -~ 2; 2
-, Yt & _In i 2 F(g) -
“Total =% *Fo ' —Z—- ) a4 dd (=3=]
“1h1 L
* logstad ¥ ogpla) - G’Exchmmge(qn

These three expreasions represent, respectively, the non-exchange
contribution from: diagramos a and b, the total non-exchange contri-
bution, and the total contribution including exchange.

n the following pages we tabulate the numerical results for
these terms for various values of E]_ and z*. i@ tabulate the com-
bination o/ zze‘.k:argz. which is dimensionless and does not depend on
the choice of unitas. The z = 0 case on the following pages is the

unscreened case.

* As noted in Appendix I', g4p(q) i3 the dominating term at high
energies. For that reason we have not calculated Tlion-exchance
for primary energies of 3 x 107 or 3 x 10% Mov, and we have no

calculated o, ., “for energies of 3 x 102, 3 x 104, or 1 x 102 Mev.
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33
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F“l =1.0x% 101 kMev
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GAB/z a’rg

.190 x 109
.188
.187

E, = 3,

1
2 2 2

GAB/Z o’r,
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Ul

L THN. $ 1}

(S8

(8%

gi W

.954 x 10°

«933

o
L4%]
O

o2
v
e

Oxl()l

“Non-Ex. z2"“2“'0‘2 Total’/ “2“2"02
1.244 x 10° 1.070 x 10°
1.242 1.070
1.242 1.069
1.240 1.068
1.240 1.068
1.239 1. 067
1.238 1.067
1.237 1. 066
1.237 1. 066
1,236 1. 066
1.236 1.066

Mev
33 2 22 2
non-Ex./? © To Frotat/? © To

6.049 = 10° 5.798 x 10°
6.027 5.779
6.014 5. 768
5.997 5.753
5.989 5. 747
5.976 5. 735
5.969 5. 729
5.960 5.722
5.953 5. 715
5.952 5.714
5.950 5,713
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B, = 1.0x 10° stev

i opn/z alry “Non-Ex. 2fo’z g’ °Total o’y
0 2.009 x 10! 2.023 x 10 1.969 = 10!
6 1.989 2.004 1.971
13 1.980 1.994 1.962

26 1.968 1.982 1.951

33 1.962 1.977 1.947

a7 1.954 1.968 1.939

56 1.950 1.964 1.935

67 1.945 1.959 1.920

78 1.940 1.954 1.926

80 1.940 1.954 1.925

g2 1.939 1.953 1.924

£, =3.0x 10 Mev

hd °AB "‘2“-2'02 “Non-Ex./ R 22“2’5
0 4.398 x 10! 4.416 = 10! 4.373 x 107
6 4.297 4.314 4.278
13 4.256 4.2760 4.237

26 4.211 4.225 4,195

33 4.194 4.210 4.173

47 4,165 4.182 4.153

56 4.152 4. 168 4.138

67 4.136 4.152 4.121

73 4.121 4.137 4.107

80 4.118 4.134 4.104

82 4.116 4.132 4.102
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E,=1.0x 10° Mev

= opp/z 0’y Non-Ex.’ 2ta’r “Total z’a’rg
0 8.024 x 107 8.042 x 10} 7.987 x 107
6 7.487 7.502 7.464
13 7.364 7.379 7. 346
26 7.234 7.248 7.214
33 7.181 7.195 7. 164
47 7.094 7.108 7.075
56 7.052 7.066 7.033
67 7.008 7.021 6.989
78 6.968 6.982 6.950
80 6.962 6.975 6.943
32 6.955 6.969 6.937
£, =3.0x 10° Mev
A oy 20 2
0 1.215 x 102
6 1.071
13 1.039
26 1.009
33 0.997
47 0.979
56 0.970
67 6.960
78 0.952
80 0.950

g2 0.949
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E, =1.0x 10" Mev

1

2 2 2

urO

1.954 x 10%

1.
1.

1.

336
258

188

1.163

1,
1
: .
I.
.

I

2 2
GAB/I: a rG

127
109
021
075
072

070

)

i

i, Zqu 2
Non-Ex.’ 2 0

- 222
Total! Z “ %o

1.956 x 10°
1. 397
1.259
1.189
1. 164
1.128
1.110
1.091
1.076
1.073

1.070

= 3.0 % 104 Nev

2

2.732

1.558

1

1

. 441
« 336

. 3060

x 10

2

1.946 x 10°
1.333
1.255
1.185
1.161
1.124
1.106
1.088
1.’072
1.070
1.067
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e 2. 2

GAB/Z a’ry

3.840 x 10°

£
1.

915
728
565

.514
. 434
« 395
. 356
. S22
& D hik
.311

(57 .
Non-iix.

22r2
z a Ty,

3.842 x 10
1.
1.
'
1.

916
728
566
515

2
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