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ABSTRACT

An apparatus for the observation of streaming birefringence
with photoelectric detection, in which the output signal near the null is
linear with respect to the angular distance to the null, was built and
tested. It was found that such an apparatus is able to establish the poe
sition of the isocline with an accuracy of one degree for a relative
retardation of 10”7,

The apparatus was subsequently used to study the streaming
birefringence of tobacco mosaic virus and of mixtures of tobacco mo-
saic virus and southern bean mosaic virus. Accurate measurements
of the angle of isocline of both types of solutions showed that no sig-
nificant difference exists between the experimental and theoretical
results, once all the sources of extraneous birefringences are ace
counted for.

The amount of retardation of the mixtures was found to be lower
than that for pure tobacco mosaic virus at equal concentrations of the
‘latter and equal velocity gradients. This experimental result is ex~-
plained by considering that the random motion of the spherical particles
interacts with the orderly rotation of the rod-like particles, decreasing
the amount of aligned material, and thus the amount of retardation.
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I. INTRODUCTION

The path of a beam of light in a transparent medium can be
described through the use of Huygen's principle, which states that each
element of a2 wave front may be regarded as the center of a secondary
disturbance which gives rise to wavelets. These wavelets propagate
with a velocity equal to the velocity of propagation of the wave. The
position of the wave {ront at any later time ie given by the envelope of
all wavelets.

In the general case of an anisotropic medium, two sets of Huy-
gen's wavelets propagate from every wave front. Substances having
this property are said to exhibit birefringence. When there is a direc~
tion along which the velocity of propagation of the two sets of wavelets is
equal, the substance is said to be uniaxial, and this directiog is called
the optic axis. In an uniaxial crystal there are two indices of refraction
which characterize the two sets of Huygen's wavelets, with maximum
and minimum values in directions perpendicular to each other and to the
optic axis. Omne set of wavelets is spherical and its velocity of propa-
gation is characterized by an index of refraction n_. The second set
is ellipsoidal and has a maximum index of refraction n . in a2 direction
perpendicular to the optic axdis. The amount of birefringence is defined
as the difference (no - ne) between the two indices.

Birefringence can be produced in liquide by the influence of
electric and magnetic fields, the presence of sound waves, and the ex-
iostence of velocity gradients. This last effect constitutes streaming bi-
refringence (SER), and occurs in certain pure liquids as well as in
solutions containing asymmetrical molecules.
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Figure 1. Location of the coordinate system with respect to
surfaces in experimental apparatus. The phenomena
are observed along the x, direction. The solution is
contained between the tw& concentric cylinders.
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SBR is usually studied in solutions contained in the gap between
two concentric cylinders, such that the rotation of either will cause a
very nearly linear velocity gradient in laminar flow, characterized by:

u; = G Xq
which makes the solution become birefringent, with the amount of bi-
refringence increasing steadily with the velocity gradient G . In this
flow configuration (Figure 1), a given volume element will have the di-
rections of maximum and minimum indices of refraction in the * %y
plane, where the smallest angle between the axis with the largest index
of refraction and the streamline i the angle of isocline % . The amount
of birefringence An for a given wavelength )\ is obtained from the
relation:

An = (o -n ) = z?;% = {{G)

where § is the observed phase difference between the two directions
in radians, and { is the length of the path through the streaming fluid.
At small gradients in laminar flow, Y has been observed to approach
45° and An is proportional to G . At higher gradients Y decreases,
while An increases deviating from proportionality with G.

The behavior of solutions of small, rigid, asymmetric particles
is explained by analyzing the motion of a single particle. In the pres=-
ence of a linear velocity g;adlent in laminar flow, the particle is com-
pelled to rotate with a non-uniform angular velocity, which makes it
remain a longer time in the direction with smaller angular velocity.
Brownian motion tends to counteract this hydrodynamic orientation, so

that the competition of both influences establishes the probabllity that a
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particle might have a certain angular position. The coupling of the
angular distribution with the optical anisotropy of a particle yields the
two main optical directions in the fluid as the directions of larger and
smaller angular density.

The phenomenon was first observed by Maxweu(” in 1866, and
reported in 1873 in a paper which also described a concentric cylinder
apparatus in which SBR could easily be produced.

Several theories have been proposed to explain the experimental
evidence, the most successful at present being that of Peterlin and
‘ Stu‘rt(z). This theory assumes that a system of rigid, submicroscopic
particles of ellipsoidal shape suspended in a medium becomes optically
anisotropic when it is subjected to shear, due to the non-uniform motion
of the particles. The theory has been extended to non-rigid particles,
to the presence of heterogeneous populations, and to the superimposition
of magnetic and electric fields.

The techniques of SBR were found to be applicable to the study of
flow patterans in two-dimensional flow fields, and to the characterization
of macromolecules. In the latter field, useful information from sub-
microscopic particles in solution can be obtained by relating the size,
shape, mass, and dispersity of the particles to the optical properties
of the system. FParticularly significant is the data that can be obtained
by extrapolation to zero shear, a method by which the rotary diffusion
constant can be determined, as well as giving one indication as to the
existence of a certain degree of structurization in the liquid,

In view of the above considerations, it has been the aim of ex-

perimenters to refine the measuring techniques so that the extremely
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small effects characteristic of small concentrations and shears could
be analyzed and interpreted. In successive refinements of the meas-
uring techniques, some departures from the Peterlin and Stuart theory
have been found, precisely in the range of small shears and concentra-
tiona, which is the most interesting in terms of characterization of
macromolecules. Thus, it became apparent that there was need for
an instrument whose sensitivity was significantly greater than anything
previously used, in order to determine what these departures are.

The amount of SBR, and the location of the angle of isocline, is
usually converted into an optical rotation for small birefringences by
means of a quarter-wave plate, so that the location of the angles of in-
terest is found by noting the position at which an analyzing prism ex-
tinguishes the light transmitted through the system. Originally, the
null was observed directly by eye. In following refinements, the eye
was replaced by a photomultiplier. This substitution was not always
satisfactory, in that the increase in sensitivity was frequently offset by
an increase in the noise that the photomultiplier picked up. IFurther-
more, simply substituting the photomultiplier for the eye did not elime-
inate the inherent characteristic of the signal to be detected, which
depends on the square of the angle e between the position of the analyser
and the null.

Wayland‘” proposed to eliminate these difficulties by modulating
sinusoidally the beam of light, by periodically rotating the plane of po-
larization of the light beam through a small angle vy o' B8° that the sinu-
soidal signal transmitted by the analyzing prism had an amplitude vary-

ing linearly with the angle e¢. This system was found to have an
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inherently larger signal to nolse ratio than other systems, and since
the output signal could be synchronously rectified so that in traversing
the null the signal changed polarity, a very clear indication of the null
was obtained.

In what follows, an apparatus built according to Wayland's prin-
ciple is described; its performance is analyzed in terms of measure-
ments of SBR made of solutions of tobacco mosaic virus (TMV), and
mixtures of southern bean mosaic virus (SBMV) and TMV; and the
basic theory of SBR is outlined.
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II. THEORY OF MEASUREMENT OF STREAMING
BIREFRINGENCE

2.1 Optical System.

The net effect of the optical anisotropy produced in the flowing
solution is described in FPeterlin and Stuart (loc. cit. ) by the following

equations (sce Appendix for their derivation):
X(g-?) a % ‘le'g L 2 Tzlqs(%)s + oo

= Tg:—’%-gr (8yr = Byn) G
PP 1 2

where D is the rotational diffusion constant, Dp is the rotational
diffusion constant with the viscosity that the particle experiences np
divided out, p is a parameter characteristic of the axial ratio, n is
the index of refraction of the medium, (gx, -gx, ) an optical factor
characteristic of the particle and medium, a.nd ¢ is the concentra.tion.
This optical anisotropy converts linecarly polarized light passing through
a solution into elliptically polarized light. From the orientation of the
characteristic ellipses the location of the two main directions in the
medium is obtained, and from the degree of ellipticity the relative re-
tardation is deduced, and thus the difference in indices of refraction.

The state of polarization of a beam of light can be described by
a column matrix (I} whose elements 1, Q, U, V, constitute Stokes'

parameters. These are given by the following relations:

I = (2542 U = (2E,E cos6)
(1)
Q = (B - ED V = (2E,E,sinb)
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where Ez and E3 are instantaneous positive defilnite values of the
components of the electric field in the Hy%q plane of the system of co=-
ordinates shown in Figure 1, and the brackets, in this case, represent
time averages. 1 is a measure of the intensity of the beam of light;
0, U, V are measures of the state of polarization. The beam of light
propagates along the %, direction. § is the instantaneous phase dif-
ference between the two directions; and a beam of unpolarized light,
intensity-normalized, is described by:

fL} = {1,0,0,0}

For an elliptically polarized beam of light, the ratio E 2/ E, and the

3
angle & are comstant. With reference to Figure 2, the components
I, Q U, V are shown by Bom(4) to be:
Il =1 U =2 cos 2o sin 2Y )
Q = cos 2o cos 2% V = sin 2¢
where tan 20 = EZ/IED3 = (112/1:13)2 , and the intensity is normalized.
The action of an optical device is to transform the polarization
of a beam of light from one state to another, and since both states can
be represented by a 4=vector, a 4 X 4 matrix will adequately represent
such a transformation. These matrices are found empirically and are
listed by Wnlker(s) and Shurclltf(b). A series of optical devices is then
represented by the product of their individual matrices.
The birefringent solution is represented by the matrix
M3, 8))
(10 0 0 i

0 cos’2f + sin’23cost cos 2psin 25(l-coss)sin 2psins o
M &)1
[MiB, 6)] = 0 sin 2p8cos 23(1-cosb) sinzz.p + coszmcooﬁ-cos 20einé

0 =sin 258ind cos 20eind cosd
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Figure 2, Ellipse resulting from the superposition at right
angles of two simple harmonic motions of ampli-
tudes E, and E, having the same frequency but
difference phase,
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Figure 3. Diagrammatic scheme of a simple optical system for the
analysis of a birefringent medium.The polarizer and
analyzer are made to rotate together about the optic
axis, for the determination of B.
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where 3 is the orientation of the direction in the medium that posses-
ses the largest index of refraction, and § is the phase difference that
the medium will induce between components polarized in the two main
directions, when the beam of light traverses it along the optic axs.

The simplest technique for analyzing a birefringent medium is
to observe the effect that it has on a beam of plane polarized light that
traverses it. A beam of polarized light is obtained by having a beam
of light first go through a total polarizer re(90%)7, such as a Glan-
Thompson prism. This beam is first made to traverse the birefringent
medium and is observed through another polarizer [A(0°)] locked in.
quadrature with the first polarizer, as shown diagramatically in Fige
ure 3.

With the optic axis along the x, coordinate, and the two total
polarizers oriented as shown in Tigure 3, the matrices that character-

ize them are:

1 -1 o o] 1 1 o o
-1 1 0 o 1 1 0 o
[P(90°)) =~lz ;3 [A(0°)] n-é
0 0 0 o0 o 0 0 0
o o o0 0] o o o o

The normalized tranemission of this system is given by the intensity
compoment I of the {Lo} vector which results from the equation:

(Lo} = [A(%)ITM(B, 8)ITF(90%)1(L,] (4)

where the matrices transform the incident beam of light {Ll} in the
same order as the beam encounters the optical elements. Substituting
the corresponding matrices into equation (4) and evaluating the term
corresponding to the intensity of the transmitted beam, one obtains:
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1= 771-(cos’2p + sin"2pco8s)]

which, for small 2 and 8 , reduces to:

~ 2
1 ¥ 3 p%sc. (5)

Clearly then, rotating the polarizer-analyzer assembly with respect
to the birefringent medium [M(B, 6)] through an angle 7 will result
in the complete extinction of the transmitted light, and the position of
the optical axis of the polarizing prism will then coincide with the op-
tical axis of the birefringent medium. From this analysis it becomes
apparent that due to the quadratic dependence of the intensity of the
transmitted light to the angular difference between analyzer axis and
medium axis p , the definition 70! the null is quite poor.

To determine the ellipticity of the polarization in the beam of
light, a quarter-wave retarder is inserted after the birefiringent medi-
um. The fast axis of this element is located parallel to the axis of the
analyzer, such that the matrix [0Q(0°%, 3)] of this element is given by:

1 0 0 o
0 1 0o o

roe®, 3)1= .
2 4] 0 0 =1

|0 O 1 0}
" and the optical system can be represented diagrammatically as in Fig-
ure 4, where the polarizer and quarter-wave plate are now locked to-
gether. The birefringent medium is then rotated so that its optical

axis makee an angle of 45° with the axis of the polarizer. The intensity
of the beam of light emerging from this system is obtained from the fol-
lowing equation:
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Figure 4. Diagrammatic scheme of the determination of the
amount of retardation 8.
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Figure 5. Diagrammatic scheme of the Faraday effect. Applying
a sinusoidal voltage to the winding, a magnetic field
along the x, axis is produced that changes in direction
with frequency w. A beam polarized along the x5 axis
will be rotated through an angle Y = Y, 8in wt, the sign
of the rotation being determined by the instantaneous
direction of the field.
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(L.} = [A{)I[0(0°% 5)1TM(45% 6)1T2(90°)1{ L] (6)
where:
1 cos 20 sin 20 0
1 cos 20 cosz 20 sin 20 cos 200 O
rAf)] = 5 2 ‘ (7)
sin 2a sin 20 cos 2 sin~ 2a 0
0 0 0 4]

[A(x)] being the matrix of a polarizer oriented with its axis along the
o direction.
The transmitted light is:
1 = %Fl-cos(&m-&)];

thus locating the analyzer at an angle « = 1§ extinction is obtained
and the retardatiom is determined. I'or a small angular distance ¢
from the location of this null, assuming that there i8 no error in the
location of the angle of isocline, and for small retardations &, the
transmission of this system is given by the following expression:
1% %2,
It is thus apparent that the intensity of the transmitted light in the
vicinity of the null, and for small retardations, is not linear with the
error angle, which results in a poor definition of thies null.

A system for which the approach to the null is linear in the er-
ror angle can be conceptually realized because the matrix (3) contains
elements that are linear in both § and § simultaneously. Thus, a
device must be found so that those linear elements are the ones that
characterize the angular dependence of the intensity in the proximity
of the null. Wayland (loc. cit. ) proposed to use a Faraday effect
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modulator (FEM) to bring about the necessary shift in the elements of
matrix (3), and Wayland and Badoz(?) proposed a system in which the
quarter-wave plate was permanently in place, oriemted with its axis
parallel to the axis of the analyzer.

The Faraday effect consists in a rotation that a beam of polarized
light experiences in traversing a medium in which there {s a magnetic
field parallel to the direction of the beam of Mght. This effect is ex~
hibited by a variety of substances in the solid, liquid, and gaseous

state, and {s characterized by Verdet's constant, which for a given
substance relates the amount of optical rotatlon at a given wave length
to the magnetic field sirength that causes it, and the thickness of ma-
terial traversed by the beam of light. Among the most convenient sub-
stances that exhibit this effect is water, which has a relatively large
rotation, and being a liquid does not introduce extraneous birefringence
in the system other than for the windows that contain it in place. The
Faraday cell is shown schematically in Figure 5. The effect can be
produced both by a steady magnetic field, which produces a simple ro-
tation, or by a field that is alternating in direction, as the one produced
by an AC solenoid which produces an alternating rotation at the driving
frequency. The latter property is particularly significant in this de-
velopment since the net result of this alternating rotation is to produce
a modulated signal suitable for electronic amplification.

An optical device that rotates the plane of polarization of a beam

of light by an angle y is characterized by the matrix:
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’

0 0

cos 2y sin 2y

(T(2y)] = -gin 2y cos 2y

0 0

o QO O

L= © © O

which, when located as shown diagrammatically in Figure 6, operates
on a beam of light by premultiplying the whole matric product up to
[A(0%)] by the matrix [T(2y)] and postmultiplying the same quantity
by the matrix [T(2y)]l In this case, since the solenoid is driven by an
AC source, y =y sinct. The intensity of the transmitted light of the
system of FFigure 6 is obtained by evaluating the intensity component of

the emerging beam of light [Lo} in the following equation:
(Lo} = [A(02)I T(-2)1[2(0% 7)1 M(B, §)ITF(90°) I T(2y))(L,]) . (8)

The intensity of the transmitted light is given by:

I= .; r1 - cos 2y(cos’2p + sin®25cost) - sin 2ysin 2¢sing] .  (9)

For small angles y the terms in cos 2y and sin 2y can be expanded
into a series. Carrying out this expansion, it can be seen that the only
term that oscillates at the driving frequency is the first term of the
sine expansion, while the cosine expansion yields a DC term and terms
that are a function of integral multiples of the doubled frequency.
Therefore, an amplifier tuned to the fundamental frequency with appro-
priate filtering for the higher harmonics will pick up a steady back=
ground noise resulting from the DC term, and a signal at the fundamental
frequency given by the expression:

1= geln2ysin2psing T 6py sinct (10

which is linear in both § and 3 for small angles. To locate the
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angle of isocline, the whole system shown in Figure 6 is rotated until
extinction is achieved. The orientation of the polarizer corresponds
then to the orientation of the isocline in the medium.

To determine the amount of birefringence, as in the previous
case, the whole assembly of polarizer, quarter-wave plate, and analyze-
er is rotated through 45° from the position 5 of the axis of the medium.
Since phenomenologically it is equivalent to rotate the birefringent me-
dium through 45° keeping the optical assembly fixed, in the following
equations the medium is rotated in order to simplify the analysis.

The intensity of the transmitted light is again obtained by cal=-
culating the intensity component of the emerging beam of light [Lo}
from the equation:

(L} = (AT T(-2y)I[0(0% 3] [M(45°% 6)I[F(90°) 1T T(2y) (L} (11),
which yields the result
= ':T“ - co82q{cos2ycosb - sin2ysind) » sin2x(sin2ycosd +cos2ysind)]

from where it can be seen that a rotation of the analyzer of « = 1§
produces a null that identifies the amount of birefringence & .
At a small angular distance ¢ from the null, the transmitted

intensity is given by the relation
1 'Es"%(l-cos 2y = = sin 2y) ¥ --é-r-ry ’

clearly linear in ¢ for small angles.

It should be noted that in this system the quartere-wave plate is
kept permanently in place, both for the determination of the angle of
isocline and of the amount of birefringence. This feature is quite ad-

vantageous from the mechanical point of view, and does not appear in
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the simple system.

2, 2 Separation of Extrancous Effects.

The optical system considered so far assumes that both the
light source and the optical eléements are ideal in the sense that the
source is a monochromatic point source, and that all windows are free
of strain and thus of extraneous birefringence.

A momnochromatic light source of satisfactory characteristics
can be obtained from a high-pressure mercury arc discharge, from
which a convenient spectral line is selected by means of an optical
filter. Further details of this light source are given in the next section.

Regarding extraneous birefringences, the matter is more come=
plex and requires careful analysis. In trying to detect the feeble sig-
nals characteristic of small concentrations and small shears, it has
been found that with the photoelectric system under consideration the
limiting factor is the relative size of the signals from the solution and
the signals from the residual strains in the windows, which introduce
birefringence.

Two sets of windows occur in the system. One contains the so-
lution in place, in the annular gap between the concentric cylinders
{(Couette cell). The other contains the water in the FEM. Both sets
introduce extraneous birefringences that are detectable with this sys-
tem. Cf the two, the one that is most easily accounted for is the one
pertaining to the TEM windows.

To correct for the extraneous birefringence of the FEM windows,
this device is mounted so that it canstitutes one unit with the polarizer

and quarter-wave plate. This mounting assures that the same angular
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relationship between the axis of the polarizer and the extraneous bi-
refringence of the I"EM is maintained in the system.

The location of the angle of isocline presupposes that both
polarizer and analyzer can be locked in quadrature, together with the
quarter-wave plate., Clearly, if a birefringent medium is located be=
tween the two when this quadrature is established, a certain error will
occur; therefore, it is important to establish how far from quadrature
the polarizer and analyzer are when the null is established with the bi-
refringence of the FEM windows in between.

The polarizer is assumed to be at 90° azimuth; the FEM
windows are represented by the matrix [F(Bl. 8 l)] which is of the same
form as matrix (3), where their combined retardation is assumed to be
61 » with their isocline at 3 1 The analyzer is then located at o,
which is assumed to be a small angle about zero azimuth, The trans-
miseion of this system is given as usual by the intendty component of
the emerging beam of light {Lo} computed from the matrix equation:

(Lo} = [A@)ILEE,.5))1(P(907)](L,] . (12)

After substituting the appropriate matrices into equation (12), the in-

tensity component of the transmitted light ie found to be:

1= 1 - cos2afcos’23, = sin”25 coss ) - sin2usin2p cos 2y (1 = coss,) (13)

For small 61'3 the following approximation is valid:

52
- 1
c0551 = 1 -.15_

and equation (13) reduces to:

5.2 8,2

1= 1-cos2a(l-—gp sinzzpl) - — sin2asin2p co8 23 ,
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which has a minimum at an angle a such that

612 sin 2‘31 cosZﬁl

which for small 61'3 shows that the error angle a by which the ane
alyzer differs from quadrature is of the order (612)/ 2 at most.

To see how this error in quadrature affects the location of the
quarter-wave plate, this element is now installed {n the system with
its axis nearly in quadrature with the polarizer, i.e., at an angle Gy
where o is a small angle. The transmission of the system is now
obtained as usual. Keeping in mind that the analyzer is located at an
angle which is at most (612)1 2, it can be a.ppro:dr_nated by the matrix:
B 2 2 & 0

2

74 2 &
a3

0
& 5 36" 0
0

The matrix of the quarter-wave plate at an angle o, ,where oy is age
sumed small, is obtained directly from matrix (3) as
: 1 0 0 0 i
0 1 20

1
[Qfc,eg)] &
1*2 0 2a f

0 “2a; 1 0

— —

Carrying out the usual computation for the intensity component of the

transmitted light, it is found that

62

Ig—z-”'-ll

which has a minimum at oy = 0, which means that the quarter-wave
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plate aligns in quadrature with the polarizer, and that extraneous bire-

fringence of the FEM windows can be neglected for the usual amounts
of residual birefringence found in these windows, which translates as
a rotation of the order of 10! of arc, as a maximum,

The most troublesome extraneocus birefringence is the one bee
longing to the windows of the Couette cell. An important feature of the
error that it produces is that the angular relationship between the axds
of the polarizer and the one of the windows is not constant, since the
nature of the measurements (location of the isocling, 45° shift) locates
the axis of the palarizer at different places in a run. This then requires
that the effect of the windows be known throughout the angular range of
the instrument.

To establish the effect of the windows, a method was devised
that determines simultaneously the retardation due to the windows, the
axis of these, and the reference null for the quadrature of analyzer and
polarizer. Furthermore, this method does not require the withdrawal
of the Couette cell from the optical path every time that the reference
null must be determined.

From equation (12) it can be seen that for every angular loca-

tion of the polarizer, there is a different extinction angle ., of the

2
analyzer. Assuming that the effect of the windows is small, i.e.,
small retardation §_ , the combined windows can be represented by

the simplified form of matrix (3):



1 0 0 0
‘ ] 0 1 ¢ Gwsinz,ﬂw
M (B .56 )] = (14)
weww 0 0 1 -5 _cos2f
w W
0 =6_8in23 &6 cos2f 1
wW w W w
= —

Substituting the above matrix into equation (12) and calculating the ine
tensity of the transmitted light, it is found that for each polarizer set-
ting n there is a minimum transmission for each analyzer setting

Oy such that:

-6wsln2ﬂ
tan 2&,2 = l+ZY5w8TnZﬂ
which reduces to
a, ¥ {,-sw sin 2n (15)

for small angles 6, and y. Therefore, the minimum transmission
angle of the analyzer describes a sine wave, whose amplitude is pro-
portional to half the amount of retardation, and whoese nodes represent
the location of the axis of the windows, and can be used to establish
the quadrature between the polarizer and analyzer.

The experimental data then consgists of the measure of the
isocline and amount of retardation of the composite system of windows
and birefringent solution by the method outlined in the previous sec-
tion, and the measure of the birefringence of the optical characteristice
of the windows by the method of plotting the extinction angle as a function
of the asimuth of the polarizer already outlined. It is now of consider-
able Importance to establish whether the effect of the windows can be
separated from the composite measurement to obtain the true bire-

fringence of the flowing solution, particularly in those circumstances
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where both effects are of the same order of magnitude.

For the small angles under consideration (less than one degree
in either case), both the birefringent medium [M(B, §)] and the wine
dows [M_(p .56 )] are approximated by the matrix (14). The net
effect of the two media is equivalent to the product of the two matrices:

1 0 0 0

V] 1 0 r
TM(Bs 8)IIM (B s 8 )] & (16)

0 0 1 -5

4 -F 2 1

where Pl = Bwsinzgsw + 68in28 and Pz = 6wcosZﬁw + Scosif , and
products of the form & & have been neglected. Matrix (16) is of the
same form as matrix (14). Setting the matrix {Me(ﬁe. 66)] to repre-
sent the experimental results, this last matrix can be equated term by
term with matrix (14), and solving for  and & it is found that:

2 2 2
8% = 5, " +8 "~ 258 cos2(B_-B.) . (17)

6_ ein Zﬂe - 6w sin 243W
756 cos Zﬁe = Ew cos Zﬁw

tan 20 = . (18)
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IIl. EXPERIMENTAL TECHNIQUE

3.1 Equipment.
To take full advantage of the increase in sensitivity resulting

from the combination of optical elements described in the previous sec-
tion, a polarimeter head was designed and built. With reference to
Figures 7, 8, and 9, the basic movement of the polarimeter (H) is

the one of the transit head, where the concentricity of the axie of rota-
tion is assured by the conical geometry of the bearing surfaces.

In accordance with the required movements, two concentric
graduate circles (G) are mounted on the two independent sections of the
system. The upper one, with a least count of 0. 01°, records the posi-
tion of the analyzing prism with respect to the lower one. The lower
graduate circle, with a least count of 1', is integral with the polarizer
(P), the quarter-wave plate (Q), and the FEM (F).

Both polarizing and analyzing prisms are calcite Glan-Thompson
polarizers. The quarter-wave plate is a quartz crystal cut to such a
thickness as to retard the 5460 Py wavelength by one-quarter of this
wavelength along its slow axds with respect to the fast one.

The Couette cell (C) is the same one used by Sutera(s) for the
calibration of TMV solutions, with a modified mounting with micro-
metric adjustments for leveling its main axds.

The FEM {(F) was bullt in such a way that an approximately uni-
form spherical sheet of current circulates about its axds. Such a ge=-
ometry produces a uniform magnetic field parallel to the axds of revo-
lution of the winding. A uniform magnetic field is required to produce
a uniform effect throughout the complete cell, so that all the beam is
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Figure 7. Diagram of apparatus. The dotted line represents the path of

the beam of light.
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Figure 8. Overall view of apparatus.
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Figure 9. View of polarimeter.
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uniformly retarded, and no errors result from placing the beam at
different locations with respect to the axis of rotation. The water re-
quired is held in place by a lucite tube with strain-free optical windows.
Special provision is made for trapping small ajr bubbles that develop
in time. |

The system can be rotated as a ﬁﬂh or each part independently,
including the quarter-wave plate. Micrometric adjustments exist for
the three parts. A special indexing plate is also provided so that the
systern as a unit can be moved 45° from any attitude, which is required
for the determination of the amount of birefringence. All optical cle-
ments are mounted so that they can further be micrometrically adjusted
to perpendicularity to the optical axis of the system.

The complete polarimeter pivots about the post (P('))and can be
swung out of the way of the Couette cell to facilitate its fllling, which
is usually complicated by small trapped bubbles. The drive (D) of the
inner rotor consists of a synchronous motor, two pairs of interchange=~
able gears, and one interchangeable worm and gear reduction unit.
Motion is transmitted to the cell through a timing belt that straddles
the post.

The optical bench mounts a concentrated mercury arc lamp and
a system of lenses that produce a narrow beam of light focused at the
exit window of the filled Couette cell. The Couette cell uses a rotor
which clears a 2 millimeter gap, while the cross section of the beam
through the test section is 0. 5 millimeters, to eliminate the possibility
of reflections from the walls, A Wratten No. 77 optical filter selects

the 5460 £ line of the mercury discharge.
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The FEM is driven by a variable transformer from the 120
volt, 60 cycle building supply at such a level as to produce about o
modulation. |

The photoelectric system, built by Applied Physice Corporation
of Monrovia, consists of a photomultiplier, an amplifier whose gain is
regulated by the amount of light that the photomultiplier receives and
which is tuned to the (0-cycle frequency of the signal transmitted by
the analyzing prism, and a synchronous switching rectifier driven by
the same supply that drives the FEM.

The output of the amplifier gives a direct measure of the amount
of unbalance between the location of the optical assembly and the optical
axes of the system. Synchronous rectification ie so arranged that the
output signal changes phase in traversing the null, giving a very clear
indication of the position of the null.

The mercury arc is an Osram 100W, and is driven by a DC
power supply specially built for the purpose.

The whole laboratory is air conditioned and kept at 20°C + 1°,
and the Couette cell is thermostatted by circulating water kept at

20°c 4 0.01 by a Sargent temperature regulator that operates in thermal
push=-pull,
3.2 Alignment.

The system is first aligned along the direction of gravity by
means of a precision level. The axes of the polarimeter and the Cou-
ette cell are aligned in such 2 mamner. The axis of rotation of the po=-
larimeter is made parallel to the direction of gravity by locating a level

on either graduate circle and adjusting its orientation until no change in
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the position of the bubble is detectable in any attitude of the system.
The main axis of the Couette cell is aligned by withdrawing the cover
and adjusting the cell until a level placed on it shows the same bubble
poeaition for all positions of the level.

The aptical elements are first adjusted in the horizontal plane
and their cylindrical mountings are made concentric with the axis of
rotation of the system by means of a precision dial gauge.

Finally, the surfaces of the polarizing prisms and the quarter-
wave plate are made perpendicular to the axis of rotation, by adjusting
their tilt until the reflected image of the cross hairs of an autocolimator
shows no relative movements as the whole assembly is rotated.

Cnce the optical system is aligned, a beam of light from the
mercury discharge arc is so arranged that its circular cross sections
at the entrance of the polarizer and the exit of the analyzer prisms
are well clear of their edges. The beam is made to focus at the exit
window of the filled Couette cell. A 0.5 millimeter diaphragm at the
entrance window of the Couette cell is located in such a manner that
the light going through it is centered in the 2 millimeter gap. Because
of the relative size of the source to the entrance diaphragm, the cross
section of the beam is uniform throughout the test section. For this
adjustment the Couette cell is moved in ite horizontal plane until the
beam is centered in the gap.

In addition to the mechanical alignment, the system is aligned
photoelectrically, in the sense that quadrature between the two prisms
and alignment of the quarter-wave plate is made using the photoelectric

system as a detector,
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Once the faces of the two prisms are aligned to perpendicularity
to the axis of rotation and the beam of light ise made concentric with
this axig and before putting the Couette cell and the quarter-wave plate
in place, the position of quadrature of the two prisms is noted at dif-
ferent attitudes of the system. If no correction must be made at any
attitude, the two prisms are considered parallel. The same procedure
is used with the quarter-wave plate, where this is located in the appro-
priate direction by rotating it until extinction is obtained when the two
prisms are in quadrature. Finally, the Couette cell is put in place
without windows,and the procedure is again repeated to make certain
that reflections from the walls do not introduce spurious effects.

The final alignment is electronic, where the phase of the
switching relay of the amplifier is so adjusted that it exactly rectifies
the sine wave that constitutes the output of the amplifier.

3.3 Data Ei’nndling_.

Preliminary experiments with solutions of Bentonite and TMV

indicated that the system constructed was capable of a considerably
greater accuracy than any instrument previously built, provided that
the effects of extraneous birefringences introduced by the windows
could be properly accounted for or eliminated.

Comsiderable attention was given to the matter of obtaining
- strain-free windows. The materials tried were: annecaled glass, an-
nealed fused quartz, and microscope cover slides. To the present,
no material or method of processing has yet been found such that the
instrument under comsideration cannot detect the presence of extrane=-

ous birefringences. To obtain satisfactory windows, large quantities
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of these were tested, and the best pairs were selected.

At low concentrations and velocity gradients, the effect of the
windows is significantly large when compared to the birefringence of
the solutions, which prompted the development of the corrections,
formulas (17) and (18), and the refinement of the measurement tech-
niques. The latter were found to be limited by the resolution of the
graduate circles and verniers.

To determine the amount of birefringence of the windows and
the location of their optic axis, use is made of equations (15). With
the Couette cell filled and all windows in place, the position at which
the analyzer makes the photoelectric system traverse the null is noted
at successive attitudes. The points so obtained describe a sinusocidal
curve when plotted versus the attitude of the polarizer. To establich
the position of the nodes.. i. e., the isoclines of the windows, the an-
alyzer positions z; are assumed to be related to a function y; of the
attitude 7y

- A+Bsin2xi+Ccoa in

such that the squared error between the assumed function and the data
points is a minimum; that is to say, choosing A, B, and C such that
the function

¥ 7= %) = FUAB,C)

is 2 minimum. Differentiating F with respectto A, B, and C,
setting the resulte equal to zero, and solving for A, B, and C, yields
the function that best fits the data by the method of least squares. The
amount of birefringence and angle of isocline of the windows are then
obtained as:
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1
5. = (B%4+c?)?

- L _C
X, = 7z arctan =

In actual practice, the position of the null 2, is determined at succes-

i
sive intervals of 10°, throughout the 200° that constitute the range of
the instrument. The data is then reduced by computer (Burroughs 220)
by a fixed program developed for the purpose. For weakly birefringent
solutions, particularly at small velocity gradients, the data is gathered
by the same method and then corrected for the effect of the windows by
means of equations (17) and (18).

It has been found that the measurement of the windows must be
made for every experiment, even when a number of runs occur in
rapid succession. This is due to the fact that the birefringence of the
window changes through time, and that since the windows must be re-
moved at each experiment for cleaning, the positions of their isoclines
also change.

In runs where the concentrations and gradients are sufficiently
large so that they produce effects much greater than the one of the
windows, the simpler and more rapid technique of looking for the null
with polarizer and analyzer in quadrature is used.

Since it is not practical to determine the position of the isoclines
in the windows at every run, and then establish the quadrature between
polarizer and analyzer, setting the polarizer parallel to the axis of the
windows so that their effect vanishes, a correction must be made to
allow for the small error in quadrature which constitutes the amount of

birefringence in the window at the reference location where quadrature

is established.



Angular location of analyzer at null.
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True birefringence of solution and windows

Measured retardation
Birefringencq

x

Figure 10.

Attitude of polarizer

Effect of the error in quadrature ¢ on the position of
the isocline and the measured amount of retardation,
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In this correction, both the birefringences of the combined sys~
tem of windows plus solution and windows alone are assumed to be
represented by sinusoidal functions of the attitude of the polarizer.
With reference to MgurelO, the reference attitude R is chosen so
that it is fairly close to the isocline of the window, whose position is
~not yet available. Setting polarizer and analyzer in quadrature at this
position, there will be a2 small error - between the position at which
polarizer and analyzer are locked and the true location of quadrature.
With reference to FigurelO, when the rotor is set in motion, the solu-
tion exhibits its birefringence so that when the null is again sought by
rotating the assembly of polarizer and analyzer, this will appear at a
location x' where the error due to the window exactly balances the
birefringence of the combined system. Once the data for the window is
reduced, the error in quadrature becomes available, and the actual

position of the isocline of the system is given by the relation:
¥ = %'~ !arc sin(N-R)

The amount of SBR must also be corrected for the amount of
retardation represented by the error in quadrature between both
prisms. Since the error ie equivalent to shifting the base line of a
sinusoidal curve, the correction is simply additive.

A sample data sheet and the corresponding data reduction and

correction are included in the Appendix.
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1V. EXPERIMENTAL RESULTS
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Figure 11. Electron microscope photograph of a mixture of TMV
and SBMV. Magnification: 200. 000 .
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Sample 1. TMYV lot 0504, 0510-61 (lot 1), at 0. 20 per cent in 0. 01 M
Versene, pH 7.5, 24,630 RPM, 60° bar. Exposures at speed and at

4 minute intervals thereafter. Some evidence of presence of very
small amount of aggregate.

Sample 2. TMYV lot 0609-61 (lot 2), at 0. 20 per cent in 0. 01 M
Versene, pH 7.5, 24,630 RMP, 30 mm cell, 60° bar. No evidence
of presence of aggregate.

Figure 12, Ultracentrifuge runs on TMV samples.
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Figure 13. Electron microscope photograph of SBMV. Magnifica-
tion: 300. 000 .
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Experimental Results

% TMV by | o sBMVby| Ratio Retardation | Viscosity
weight weight TMV/SBMYV | per unit Centipoise
velocity
iradient
sec/cm

0. 375 Z. 30 1. 142
0. 275 1. 094
0. 264 1. 61
0. 194 1. 16
0. 190 1. 066
0. 181 1. 08
0.101 1. 037
0. 096 0. 57

1. 020 1. 037

0. 465 none 1. 018

0. 244 1. 008

_ 0. 121 0. 988

0. 359 0. 123 2.92 2. 05 1. 142
0. 230 0. 079 2. 91 1. 28 1. 074
0. 101 0.035 i 0. 58 1. 037
0. 382 0. 382 1. 00 2, 05 1,132
0. 275 3. 275 1. 00 1. 45 1, 104
0. 333 1. 080 0. 31 1. 85 1. 152
0. 166 0. 540 0. 31 0. 92 1. 0%0C

Note: all experiments were conducted at 20. 00 + 0. 01 %c. All sclu-

tions in 0. 01 M Versene, at pH 7. 4 . Viscosity of Versene solution:

0. 988 centipoise.

All mixtures were made with TMV (lot 2).
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Figure 14, Amount of retardation of solutions of pure

tobacco mosaic virus, as a function of velocity
gradient, at different concentrations by weight.
Concentrations were determined with a Zeiss

PMQ II spectrophotometer.
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Figure 15, Experimental results. Angle of isocline of
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Figure 16. Experimental results. Angle of isocline of
solutions of TMV lot 2 as a function os velocity
gradient. The stream line is at X = 0.
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Figure 17. Amount of retardation per unit
velocity gradient as a function of
concentration of TMV, in % by weight,
or grams per 100 cm™.
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Figure 18, Typical data on the amount of retardation of
mixtures of TMV and SBMV as a function of
velocity gradient.
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Figure 21. Specific retardation of TMV-SBMV mixtures,
at a TMV concentration of 0. 3%, as a function
of the amount of SBMV in the mixture.
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TMV and SBMV, as a function of concentration.
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the mixtures is plotted as a function of the
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V. DISCUSSION OF EXPERIMENTAL RESULTS
AND CONCLUSIONS

Some of the most recent and accurate measurements of the SER
of TMV solutions made by Leray‘g) indicate that at low shear rates and
concentrations, some departures from the results predicted by the
Feterlin and Stuart theory appear. Observatione show that the angle
of isocline, even though it tends towards 45° when the velocity gradi-
ent approaches zero, does 80 up to 2 certain point and then starts
leveling off at the lower velocity gradients.

Assuming that the phenomenon is not due to extranecus bire=
fringences, the abnormal behavior of the angle of isocline can be ex-
plained by assuming that at the low velocity gradients there exists in
the solution a partial structurization of the TMV particles which is bro-
ken up at the higher shear rates. This structurization can be produced
by weak chemical bonds among the particles, which would tend to form
some sort of organization of the material. Evidence of such a phe-
nomenon was found by Hearst and thogradum in experiments made
with TMYV in the ultracentrifuge, in which the sedimentation behavior
was found to be strongly concentration dependent. To explain their re-
sults, they tentatively proposed that an alignment is brought about
among the macromolecules as a result of chemical interactions among
them. In SBR, the result is such that, even though the forces tending
to align the particles are small, a number of particles align themselves
simultanecusly as a unit, the net result being that there is a larger
quantity of aligned material, which produces an optical effect equiva~

lent to the ome found at the higher shear rates. It must be noted,
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though, that if such an effect exists, it must be of such a nature that it
does not affect the amount of birefringence, since no evidence of this
effect is found in analyzing the data on the amount of birefringence.

To test these ideas, a number of samples of concentrated TMV
solutions were obtained from the Department and Laboratories of Nue
clear Medicine and Radiation Biology, of the School of Medicine, of the
University of California at Los Angeles. These samples were highly
monodisperse and very uniform in length, as attested by the ultracen=-
trifuge runs made on them, shown in Figure 12 and the electron micro-
scope photograph shown in Figure 11. These samples were diluted to
concentrations ranging from 0. 4 per cent to 0. 1 per cent by weight, in
0. 01 molar Versene at a pH of 7. 4. The concentration of each dilution
was determined with a Zeiss FMQII spectrophotometer. A number of
determinations of the SBR of these solutions was made at velocity grae-
dients ranging from 0.3 to 31. 1 sec.'l .

The experimental results showed that the amount of SER of these
TMYV solutions is linear with velocity gradient, as shown in Figure 14
and as predicted by theory. A small departure from linearity was ob-
served at the higher velocity gradients. These results also confirm that
the amount of specific SBR, defined as the amount of retardation per
unit velocity gradieant, is linear with respect to concentration, as shown
in Figure 17.

Concerning the angle of isocline, no satisfactory proof was ob=-
tained to substantiate the claim that a departure from the Feterlin and
Stuart theory exists at low velocity gradients. It was indeed observed

that a departure exists if the data is plotted directly, as shown in Fig-



w53e

ure 23 where a representative cage is shown, but this departure dise
appears when the corrections for the error in quadrature and the bire=-
fringence of the window are applied.

The position of the streamline with respect to which the 45°
location is established was always determined by averaging the posi-
tion of the isoclines of the fast axis of the solution in the clockwise
direction of rotation, and the slow axis in the counterclockwise direction
of rotation. This method yields the position of the streamline to a de=
gree of accuracy comparable to the one of the determination of the iso-
cline, which is estimated to be of the order of + 0. 10° at the lower
velocity gradients. It has always been observed that in linearly extrae.
polating the isocline to zero shear, the value for zero shear always
falls short of the 45 value predicted by the theory, the discrepancy
being most severe in those cases where the {socline departs more
radically from the predicted monotonic approach to the 45° value,

This behavior is considered to be due to effects of extraneous bire~
fringences not accounted for in the simplifications made to arrive at a
directly applicable correction.

In view of these results, it is apparent that further refinements
of the measuring techniques will be possible if a method is found for
eliminating the extraneous birefringences of the windows. Due to this,
consideration is being given to an apparatus to be built in which the
liquid samples are contained in place by the surfaces of the optical ele-
ments such as the polarizer and the quarter-wave plate, in order to
eliminate as many sources of stray birefringence as possible.

Taking into account the difficulties introduced by extranecous

birefringences, the data of the SBR of the TMV solutione was found to
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permit determinations of the angle of isocline accurate to one degree
for a retardation per unit length of 1x 133'9 . As a comparison, a typ-
ical instrument for SBR studies, such as the one built by the Rao In-
strument Company, yields accuracies of the order of one degree per

7.5%x 10'8

relative retardation as descibed by Edsall, Rich, and Gold-
stein“”. and the same Rao instrument modified for photoelectiric cb-
servation by Zimmuz) only increases the accuracy to one degree per
7x10°7 relative retardation.

In view of the above results, it was decided to apply the informa-
tion obtained on the SBR of TMV, and the measuring technique developed,
to the question whether for dilute solutione for which existing theories
are supposed to be valld, there are significant hydrodynamic interac-
tions among particles which might explain the discrepancies observed
between different methods for characterizing macromolecules, such as
viscometry, SBR, sedimentation, and transient Kerr effect.

That hydrodynamic interactions might contribute significantly to
the macroscopic characteristics of dilute solutions of submicroscopic

particles was proposed by Collins and Wayland(l?’)

to explain the vis-
cosity behavior of mixtures of TMV and polystyrene latex spheres,
{(PSL), as a function of the concentration of both particles. In the first
phase of the experimental program of which this study is 2 part, they
found that the specific viscosity of mixtures of TMV and PSL was
higher than that predicted by the simple addition of the specific vis-
cosities of the components by a term proportional to the product of the
concentrations of the two particles. In explaining this result, they

proposed that the presence of the spheres interferes with the tendency
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of the rods to assume an orderly rotational motion in shear flow which
leads to an increase in viscosity.

If the orderly rotational motion of the rod«like particles is
tampered with by & random hydrodynamic interaction,such as the one
that would be produced by the presence of spheres, a decrease of the
SBR of the mixture with respect to the SBR of pure TMV sclutions at
the same concentration should be observed, since no direct contribution
to the SBR of the mixture can be expected from the spherical particles,
which show no optical asymmetry regardless of orientation in shear
flow.

To see what information could be obtained from mixtures of
TMYV and spherical particles, it was decided to use a spherical virus
compatible with TMV, since the PS1,had proven to have a surface cheme=
istry that had produced considerable difficulties in previous experi-
ments, and furthermore was so large that it would have scattered too
much light for good optical experiments. The choice fell upon southemn
bean mosaic virus (SBMV), which is a spherical virus of 2. 52 % 10'6 cm
diametexr.

A program was started in the laboratory to secure this virus
by planting a number of southern bean plants and infecting their leaves
 with an available sample of the virus. After an appropriate time, the
leaves were collected and the virus extracted according to the technique
described by Konrad“ﬂ. Electron microscope photographs of the cb=
tained virus show that it ie quite pure, as can be seen in Figure 13.

The presence of some particles that have a dark center is attributed to

an artifact of the electron microscope.
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The two viruses were mixed in such proportions as to obtain
three main sets of solutions where the proportion by weight of TMV to
SBMYV was respectively 3:1, 1:1, and 1:3, at a nominal TMV concen-
tration of 0.3 per cent by weight. Experiments were made at the
original concentrations and at dilutions of the original mixtures.

To interpret the information obtained from these experiments,
attention must first be given to the theoretical results given by equation
(A60 ), which predicts that the amount of retapdation is a linear function
of the viecoeity felt by the particle. This viscosity, according to the
best present theories, seems to lie somewhere between the viscosity
of the matrix fluid and that of the solution. That the amount of SBR is
a linear function of the viscosity was checked experimentally by Sutera
(loc. cit. ), who purposely altered the viscosity of the solvent by using
an 85 per cent glycerine solution for the matrix fluid, which, at ZOOC.
is approximately 100 times as viscous as water. He observed a ten-
fold increase in the amount of SBR for equivalent concentrations and
velocity gradients. That the observed increase is not of the same
order of magnitude of the increase in viscosity is explained by the fact
that the amount of SBR also depends on the difference in index of re-
fraction between the particle and the matrix fluid. The lesser the dif-
ference the less marked the effect, as in this case, where the index
of refraction of the mixture of glycerine and water is considerably
higher than the one of water, which results in a smaller difference with
the index of refraction of the particle, and thus a smaller effect.

It should further be noted that the addition of a small number of

rigid spheres to a Newtonian fluid increases the relative viscosity of
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Figure 24. Scale diagram of the relative proportions and sizes be-
tween particles in the mixtures of TMV and SBMYV used,
for a constant TMV concentration of 0. 3%0 by weight.
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the mixture in a manner proportional to the volume fraction occupied
by the spheres, as predicted by Einsteinus) in a linear theory where
second order effects are neglected. This consideration strongly sug-
gests that if no other mechanisms are present, the SBER of mixtures of
rods and spheres would be greater the larger the concentration of
spheres - for equal concentrations of rods - because of the increased
viscosity of the suspending matrix fluid. As shown in Figures 20 and 21,
the experimental evidence shows that the opposite effect takes place.

To analyze the result obtained, attention must be given to the
relative sizes and quantities of particles present. The most recent
studies on TMV made by Boedtker and Simmms(lé) indicate that its

molecular weight is 39. 0 X 106 and that its dimensions are 3. 00X% 10"

5
cm length by 1. 80X 10'6 cm diameter. Thus, at a concentration of 0.3
per cent by weight, and at room temperature, there will be approxi-
mately 4. 63 X 1013 particles per cm3.

The maolecular weight of SBMV is 6, 63 X 106. according to Mil=-

(17). Therefore, in a 3:1 mixture of TMV and SBMYV,

ler and Frice
when the comncentration of TMV is 0. 3 per cent by weight, there are ap-
proximately 8. 98 X 1013 particles per cm3. or twice as many particles
of SEMV as of TMV.

Referring to Figure 24, where relatlve sizes and proportions of
these particles are shown to scale for the three ratios used, itis pro=-
poeed that at the 3:1 ratio of TMV to SBMV the TMV particle essen~
tially ignores the effect of the addition of spheres to the bulk viscosity
of the matrix fluid and moves according to hydrodynamic forces gove-

erned by the viscosity of the pure solvent in its immediate surroundings.
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The decrease in SBR is then due to the random interaction between the
hydrodynamic fields surrounding both speclies of particles. Since the
translational movement of the SBEMV can be considered to be completely
random, the interaction appears as a tendency towards disturbing the
orderly rotation of the rods, and thus as a decrease in SBR. This ef-
fect seems to be linear with concentration when the relative proportions
of the particles are maintained. This interpretation of the results cor-
roborates qualitatively the findings of Collins and Wayland (loc. cit. ).

To further test these conclusions, the experiments with the 1:1
and the 1:3 ratios by weight were carried out. For the 1:1 mixture it
was found that the SBR decreased further, while for the 3:1 ratio the
trend reversed itself. This last result is particularly significant, since
at this proportion of the mixture there are approxima.teiy 16 SBMV par-
ticles per particle of TMV, and very likely the TMV particle can no
longer ignore the increase in bulk viscosity of the matrix fluid produced
by the presence of the spheres. These results are shown in Figure 21
where the specific SBR is plotted as a function of the concentration of
SBMYV for a constant TMV concentration of 0. 3 per cent by weight.

Since these results depend somewhat on the nature of the vis=
cosity of these mixtures, their viscosities were measured at the labo-
ratory of Professor E. W. Merrill at the Department of Chemical
Engineering of the Massachusetts Institute of Technology, where an
instrument has been developed and built that is able to measure the vis-
cosity of small samples of the order of 2cm3 at the velocity gradients
characteriestic of these experiments, i.e, from 0.3 to 30.0 st:&c.'l r

The results obtained from these measurements are shown in
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Figure 22. It can be seen that within the accuracy of the technique, no
anomalies appear in the viscosity of either the pure TMV and SEMV

or the mixtures of both, which seems to have a viscosity roughly equal
to the sum of both viscosities.

The above interpretation of the results is qualitative and pre-
sents some difficulties. It can be argued that since t:he' hydrodynamic
effect of the SBMV is random, the net effect that it weuld have on the
orderly rotation of the TMV would average out to zero. To see whether
this is the case, it should be pointed out that simultaneous interactions
that cancel each other are a very unlikely event in the present system.
Secondly, for the net effect of the interaction of the spheres to cancel
out, the number of particles that are knocked out of the orderly rota-
tion should be exactly balanced by an equal number of particles which,
being in a random state of motion due to the Brownian motion of the
surrounding fluid, are knocked precisely into orderly rotation. Quali-
tatively, it appears that all random interactions with oriented particles
are unfavorable events, and that only a small number of random inter-
actions with randomly oriented particles are favorable events; as a
whole, the unfavorable disorienting effect is predominant.

A second consideration is thermodynamic in nature. If the net
effect of the preaence of the SBMV is to increase the randomness of the
rotational motion of the rods, the average rotational kinetic energy of
these would have to increase at the expense of the kinetic energy of the
spheres. This is equivalent to saying that the net effect is to '"heat"”
the TMYV particle while "cooling" the SBMV particle, which is in con-
tradiction to the Second Law of Thermodynamics. In analyzing this
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concept, it must first be pointed out that such an argument applies
thermodynamic laws to single particles of a system constituted by a
very large number of interacting particles. If thermodynarhic consid-
erations are applied to the analysis of the results, it is the total en-
tropy of the system that should be considered. Considering the entropy
of the pure TMYV solution t0 be a measure of the order in the system,
it is found that the addition of the spheres increases the disorder of the
system, and the system passes from a state of comparatively low ene
tropy, in which a significant number of particles have ordered rota-
tional motion, to a state of higher entropy where a lesser number of
particles possess this order. Since this is the direction in which
natural phenomena occur, it should be concluded that the system passes
from a low probability state to a higher probability one, and thus no
violation of the Second Law occurs.

In trying to reconcile the apparent increase in the temperature
of the TMV particle at the expense of the energy of the spherical parti-
cle with the above consideration, the complete system must be analyzed.
First it must be noted that the total kinetic energy of the rod need not
change because of the random interaction, but as an alternative, a
redistribution within ite various degrees of freedom could take place.

It must also be considered that a certain amount of mechanical energy
is expended in keeping the rods aligned. If the spheres act as obsta-
cles to this alignment, the mechanical energy expended will appear
directly as thermal energy, which would be another source for the en-
ergy that the TMV rod has to acquire if its average rotational kinetic

energy must increase. In a sense, it would seem that the oriented
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TMYV particle is in a ''colder’ state which is brought to temperature
through the action of the spheres.

An altogether different mechanism could also account for the
observed results. If it iB accepted that there is a certain amount of
structurization in the pure TMV solution, it is possible that the
Brownian motion of the spheres will break it up. Without going into
the question of what would be the optical properties of the structurized
material, it is clear that the larger the aggregation, the heavier the
unit that moves as a whole, and thus the less the effect of the Brownian
motion of the surrounding fluid. This results in greater ease of align-
ment. If a structurization exdsts, it should also be broken up at the
higher velocity gradients and a departure from linearity of the amount
of SBR should be observed. This is indeed the case, as can be seen
in Figure 14; however, the same effect is observed in the solutions of
mixtures of TMV and SBMV, and thus the argument does not seem to be
conclusive.

In concluding, it should be remarked that both viscosity and SER
experiments indicate that the explanation of the effects can be found by
considering the hydrodynamic interactions between the particles. On
the other hand, ultracentrifuge studies on these systems put in evidence
anomalies that could be due to structurization. It is most likely that
both phenomena are present, together with other effects, such as elec-
trostatic forcee between the particles, which are not put in evidence by
these experiments. In view of this, it is very likely that additional in-
formation could be obtained from studies such as the transient Xerr

effect and the combination of SBER and the Kerr effect.
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AFPENDIX A
Theoretical Derivation of the SER of a Solution
of Long Slender Rods
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APFENDIX A

THEORETICAL DERIVATICN OF THE SBR OF A SOLUTICN
OF LONG SLENDER RODS

A.1 Motion of a Farticle According to Hydrodynamic Theory.

The theoretical description of the hydrodynamic behavior of
small particles waes derived by Jeffrey(la) for the general case of an
ellipsoid, and solved in detail for a linear velecity gradient flow con-
figuration,

In applying the Navier-Stokes' equation to the motion of small
particles with small velocities, attention must first be given to the
relative size of the particles. Accordingly, the minimum dimension
of the particle must be sufficiently larger than the one of the molecules
of the fluid in which it is immersed, so that the fluid can be treated as
a continuum hydrodynamic medium.

To simplify the equations and boundary conditions, wvelocities
are assumed to be small, so that inertia terms can be neglected,and
concentrations are assumed to be small, so that the disturbances in the
flow field due to the presence of a particle do not extend to neighboring
particles. The particles are also assumed not to have any tendency
towards aggregation, i.e., it is assumed that no forces act among them.

The motion of the fluid is assumed to be steady and varying in a
scale that is large compared with the dimensions of the particles. Un-
der this condition, a particle immersed in this flow field will assume
the velocity of translation of the fluid that it displaces, and its linear

motion will be uniform.



Expressing the undisturbed velocity of the fluid in the region
surrounding a particle in terms of a Maclaurin's series expanded about

the origin of coordinates, each velocity component u, is given by the

following expression:

2
8u, o
i !
u’. = ui°+ Z-BEC? xj+zl'3-,?;5i;-}(lxj+---
j J

Since the particle is assumed to be small compared with the scale of
variation of the motion in the fluid, the second and higher degree
terms are assumed negligible in the vicinity of the particle. The un-
disturbed motion of the fluid is then given by the following system of

equations:

uiauio-rzg-:-i-x. =1,23;j=1,23)
By the following algebraic manipulation:;

u = uio+%¥(-;;§ + ;}-‘-’:-:-)xj-!-% ;(;;;- - -;-;i-)x .

the strain and rotation components of this motion are identified. Since
the scale of the phenomenon is small, all differential coefficients are

assumed constant and abbreviated as

. aui auj
eij s 3 (E—’Ej—+m‘—i-> = ghear strain = ‘eji
But gu
}- = Rl

and the motion of the fluid is given by



or

u=U=-u = [eu+ rij]f = [Alx ) (Al)
where
eijdr rij = aij .

Let x'l. x‘z. x! be a system of cartesian coordinates fixed to the axis

3
2108, 28, of a particle and moving with it. The surface of the particle

(assumed to be an ellipsoid) will be described by:

2 2 2
Fx} x)nx.l X'Z xi-luO A2
i b ey sy oy - : (A2)
) 2 a3

The axes xl’ %! Lo xg rotate with speedes ”“'l' 18 g ¢ 4' with respect to the
Ko Ko %y aystem of coordinates fixed in direction in the fluid but move
ing with it. The equations of motion in the rotating system are then of

the form

'
o vzu; . E%‘% =p(-‘.;i AT wju]'{) (A3)
where u, p, and p are respectively the viscosity, density, and
mean pressure in the fluid. The spins w; are the components of the
vorticity in the fluid, produced by the motion of the fluid which causes

the particles to rotate. They are of the form

ou! du!
L B;cu'!"' - 52t)
§ *k
therefore, the products (mju]'t) are of the order of the squares of the

velocities, and are again neglected, After this simplification, the equa-

tions of motion reduce to:
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uvu .52, and Z?ﬁ}' = 0. (A4)
i

A solution of this system of equations must now be found such that it
agrees with equation {(Al) at a large distance from the origin, and that
reduces to
ul = mr':-ck - w x (A5)
on the surface of the ellipsoid.
Since the boundary conditions are specified on the surface of
the ellipsoid, the solution for the potential will be aought‘ in an ellip-

(19)

soidal system of coordinates. Iollowing Sateman » & system of

coordinates related to the equation
3 2
x
8
Z o e
- (a.s + )
is used, where the xa's are rectangular cartesian coordinates; T is
a variable parameter; and (asz + --) are the squaree of the semi~-axes
of a general ellipsoid,

In order to solve Laplace's equation, the following function is

constructed:

3 2
F(f)=1-§;;{-;—;-=-d§}, (A6)
pry = T [t -ty

i

3
oty =TT +2)

{

where
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and where the gi's are the roots of equation (A6) and constitute the
elliptical coordinates. Noting that
Xy ® = . (A7)
o7 -3, ")

the element of length given by
3

R 2 z dxsz
8

can be found as a function of the £'s by using equation (A7). This

yields:
-~ 3 z

1’(-3
3 ) — Z . (AB)
Q( a, g +ag
8
The cross product terms of the form (d&pdgq) vanish, and equation

{A8) reduces to
3

2 (¢.)
as” = %Z E;'(E;f—dgpz'
P

from which it follows that the metric coefficients are:

32 e )]2
? -
hp’{'DTE'TB‘} 8

P
In the gp system of coordinates, Laplace's equation can now be writ-

ten as:

3
2 ofe) }
VQ:‘}ZﬂEﬁ-BE;{Q(e)W (A9)
P

which has a soluﬁon for

ol )qgéi- = constant,

and a general solution of the form:



where k = 1 corresponds to the potential for an ellipsoid. This can

now be written explicitly in terms of x'l. ::'2. x._'a and v as
@

P xl xl xl
= G (- 21 " T 23 ) - an - (A10)
e T R I T T O TR L
where functions of the form
@
= x! dn (A11)

ka (ay +n)(a1 “+n)l (2, +n)(a +1")(a 417

also satisfy equation (A9).
Jeffrey (loc. cit. ) assumes that the velocity throughout the flow
field can now be obtained as a function of the first and second deriva«

tives of 01 and ‘Ll of the form:

I
T Ut+ Ré, +S*, + T, )+ W -V-a—-”-
uf asa;“ itk O] A

8“ n ' a%n 80
1 1 1
* A( § el 5::") +H (x{ Exi'ng' = Ex; )
) q o0 azn aznl a?'nl
+ G 4 x! I-" + B I b + F
(x’ 6 E”k 4 ) ( 8x' e L L
azg 2%n 9 "1
(G-——-z-‘l'f‘-a—ya—}"!'comﬁ- (A12)
xi

where A,B,C,F, PG, GV H,HLWR,S: T, U, V, W are constant, and U.{
is obtained from equation (Al) changed to primed coordinates.

Since the x{ 's are now the independent coordinates, all derivae
tives of the type Bx;/ ij are zero, and the system of equations (Al2)
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is found to satisfy the equation of continuity.

Substituting the assumed values of u!

i into equation (A4), it is

found that the pressure must be given by

aznl aznl aznl azle
+2(A + B + C + {(F+F!
P = P ( L a3t @ x! 2> , ! gx5 0y
1 2 3
a%n 820

1 - - |
+ {G + C')W + (H + IA')E’:E-EE

where Po is the constant mean pressure at a distance from the ellip-
soid. It should be noted that the expression found for the pressure
does satisfy Laplace's equation, as required for flows of this type.

Substituting Ql and * i and their derivatives into equation
(Al2), setting T = 0, comparing term by term with equation (A5) and
equating coefficients, 15 linear equations are obtained which uniquely
determine the 15 coefficients.

Finally, substituting the values found for these coefficients into
equa.ti@ (Al12), the velocity in the fluid in the vicinity of the particle is
determined at all points.

To determine how these velocities act on the particle, the
stresses in the fluid must be found. These stresses, for an incompres-~
sible fluid, are given by relations of the form:

ﬂui

xp T TR T

(A13)

Uu‘; du!
oxixj = -Ej-!--o—xt) .

To evaluate now the forces acting on the particle, the appropriate val-

ues from equation (Al2) are substituted into equation (Al3), r is set



equal to zero in order to obtain the forces at the surface of the parti-
cle, and equation (Al3) is multiplied by the element of area on the

surface of the ellipsoid, which has direction n' given by the relation:

v F X x5 %3
| a "3

The force di acting on an element of area oriented perpendicularly

to the xi' coordinates is of the form:

af, = (o_, ,4'+0_, ,j'+0_, k')ds'.
—i ( xi'cl-— Jﬁxl ijl_

The forces acting on the element of area n'dS' on the surface

of the ellipsoid are then given by

x'l x'2 xé
1

Yidsl = dfl'.’l' = (Ox;x'l__'z+cx'x' — O __z)ds . (Al5)
.':L1 i Zaz i3 a3

Carrying out the appropriate substitutions, the following expressions

are obtained:
x! x x! x! x!
i 8¥ 1 2 3 1
Y, = -p Pyt (A 3 + He5 4 G' =) = K_—
a 17273 a a
1 1 2 3 1
x x! x! x! x!
. 2 8r 1 2 3 2
‘12 = -pOP Z+aaa I‘}'—-—z'l'B'—‘z"F—z -‘Ko—-z (Alé)
a 17273 a a a a
2 1 2 3 2
x! . X x! x! x!
3 8¥ 1 2 3 3
2, 1°2°3 a, a, ag ag

where K is a constant of no consequence for this development, and

P is given by

R
?z i (a.i +T) :
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Carrying out the integration of equations (Al5) over the surface of the

ellipsoid, it {e found that the result is zero; thus,no forces act on the
particle, and this assumes the translational velocity of the fluid sur-
rounding it.

Denoting by 1..i the couple with axes :-r.i acting on the particle,

these can be obtained from expressions of the form

L, = r 'Y, - x! Y )ds'
i do (xj K~ *% j)d ’
where, upon substituting the terms from equations (Al6) and integrating,

it follows that:
L, =22 (FF) i L2320 i L= @em a1

and substituting the values of #, ¥',G, G', H, H' :

2 2
+a.3 )(rzs-w' )

2 2
Ly = Ki(a;, -a; Je,3 + (3, 1

= 2 2 2 2
L, = K,a, -a;,7)e,q + (3 2, )(r13-u>:2) (A18)

Ly = K3(a12-a22)e12 + (alz+azz)(rlz-w§)
where again, K ¥ K, represent constants composed of coefficlients
that have been factored, and whose value is not needed for this devel-
opment.

Since the particle is only subjected to the forces exerted by the
fluid on its surface, all the resultant couples must vanish, and from

equations (A18) it follows that
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Figure 25, Transformation of the primed system
of coordinates into the unprimed
system by successive rotations.
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2.2 2 2 23
(3, tagjuy = a, (ry3 teyy)+tay(ry, -e,,)

2 2 2 2
(a3 + a, Ju, = S (r13 + e13) +ay (rm - 313) {(A19)
2 3. 2 2
By hmy g & By iy P okt 8, ey~ 955)
Equations (Al9) represent the motion of the particle in the undisturbed
fluid given by equation (Al). They can be solved exactly for the case of

one-cdimensional laminar motion, such as given by:

ulauzzﬁ H uaszz. ‘ (A20)

To obtain the angular velocities of the particles, it is convenient to re=-
late the coordinates x‘l. x'z. xé fixed to the axes of the particle, to the
coordinates Hp0 Ko Hg moving with the fluid but fixed in direction.
The relation between both systems is given by the Eulerian angles o,
& ¥, which represent a set of rotations of the unprimed system, that
yields the primed system.

These rotations are [see Figure 25]: 1) counterclockwise ro=-
tation of the %y X0 3, Bystem about the xy axis by an angle ¢ to
yield the Hye nlly x!! system; 2) counterclockwise rotation of the Xy

3
x5, %3 system about the x5 axis by an angle 0 to yleld the =x!, xg'. xy
system; 3) counterclockwise rotation of the x‘l. x'z". x) syatem about
the x] axis by an angle ¥ to yleld the x'l. x5 xé system. These ro-

tations can be represented by the following matrix relations:

Xy 1 0 0 Xy x'l coef sin® O %y
x5y = 0 cosd sind %y 3 x4' = |[sin® cosb O :n:'2 H
x3 0 =-sind cosd| |xg xl 0 0 1 x':,:



) . ]
x) 1 0 0 xl
7y 3
“‘2 = 0 cos sin! x'é' {A21)
xé 0 =gin’ cos’ yel!

so that the transformation matrix between the primes and unprimed

system is given by:

xl' cosb sinBcosd sindsind ) %,

x'z = |=sin9coe? cosdcos’cosf=sin'siné singcoscos’ +einicosd x5

:»c'3 sinfsin’ esintcosfcosd=sindsin’ -singsin'cost+cos’ cosd Xg
(A22)

where each of the elements represents the direction cosines of the
transformation matrix lu = [L], such that the direction cosines be-
tween any two axes of the two systems are given by the intersection of

the respective row and column in the following configuration:

SRR
x Ly | Yz ]| L3
' (A23)
x5 oy | Y22 | las
1
x3 137 | 135 | 133

and the transformation is given by

x' = [LIx
The flow, as it appears to the observer, is described by (A20) in the une
primed coordinate system, while the solution given by equations (Al19)
results from finding the potential of the ellipsoid with respect to the
primed coordinates; therefore, to continue with the solution, equations
(A20) must be expressed in the primed coordinate system in terms of
the coefficients of the matrix (A] .
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To do this, both u and x are transformed to the unprimed
system of coordinates by the equation
u = rL17tralyx , (A24)

and equating term by term with the coefficients of the flow characterized

by equations (A20), the following matrix equation results:

o o o
rLy” A . o o o0 (A25)
o G 0

To solve the above system of equations, use is made of the fact that in

the matrix [L], the following relation exists between elements;

Zi}xik Ly = by - (A26)

Computing the left=hand side term in equation (A25) corresponding to

the non-zero term in the right hand side, the expression

1 1

1iglag 1 ote 5l 548 51,5) + 1ya(a,, 1 542,51, 548,5155)

¥ hgalagylategslaatesgly,) = G
follows. Making use of the relationship given by equation (A26), it is
found that the a‘j's must be in the second order of the direction co-
sines, so that each bracket above can be set equal to G :
134(173G) + 1,55(1,3G) + 1,5(1535G) = G
where this expression uniquely determines the a.ij's to be
& = Glizle (A27)

which aleo satisfies the rest of the equations in the system.
Finally, the spins wi of the xi axes must be expressed in
terms of the Eulerian angles, where the appropriate expression can be
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found directly from Figure 23 to be
wh = §cos + ¥
wh = Bein=-beindcos ¥ (A28)

wy = 8 cos + & sin © sin ¢

The magnitude of the direction cosines is now found by comparing table
(A23) and matrix (A22) and then evaluating the aﬁ's . Finally, sube
stituting the values of the a.u's and the m{ 's into equations (Al9), the
motion of a rotationally symmetric ellipsoid (a2 = ‘3) is found to be

given by:
B = 1Gp sin® cos 8 sin2¢ (A29)
& = L1G() +p cos2d) (A30)
where
2 2 2
P =3 -a, /alz+a2 . (A31)

The motlons of interest are given by 8 and ¢ . The § roe
tation represents the spin of the particle about its own axis of revolu-
tion and is of no interest for the present development.

The result is that each particle is subjected to hydrodynamic
effects which result in the motion described by equations (A29) and
(A30). Defining F(0,¢) as the fraction of particles with orientation
8, & » a transport flux density i gty Can be defined as the motion of the
end of the semiaxis of the particle on the unit sphere centered at the

center of the particle. In spherical coordinates, this flux is given by

dger = FlBs4)0ey + ¢ singe,) (A32)
where e, and 2'4) are the usual unit vectors of the spherical system

of coordinates.
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A.2 Motion of the Farticles Due to Brownian Motion and Rotary

Diffusion.

In a state of equilibrium, in the absence of external forces, the
concentration of a molecular species is uniform throughout a single
phase. If the concentration is not uniform, the molecules will tend to
move from regions of higher to lower concentration, as a consequence
of the Second Law of Thermodynamics, which indicates that the entropy
of the system will be a2 maximum when the molecules are distributed
with statistical uniformity throughout the sysatem.

Given a difference of concentration, a flow will ensue as a re-
sult of the thermal energy of the molecules, i.e., due to their Browne
ian motion. The speed at which a given molecule diffuses is charac-
terized by its diffusion constant, which is a function of the shape, size,
and mass of the molecule, as well as the temperature and viscosity of
the medium.

Brownian motion also influences the orientation of molecules
when these exhibit a preferential orientation. In particular, in a syse
tem of particles of ellipsoidal shape suspended in a medium where, as
in the case under coneideration, an external (hydrodynamic) influence
tends to produce preferential orientations and this influence is suddenly
removed, the orientation will gradually disappear until the distribution
of orientation is again completely random. The speed at which com=
plete randomness {8 achieved from a given distribution of orientation
is characterized by the rotational diffusion comstant.

Letting jdui be the flux density of orientation of a population of
molecules in which a distribution of orientation F(6, ¢) exists, then the

flux density is related to F by the following equation:
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-sdiff = = DVIE(8, &) {A33)
where V is the gradient operator in spherical coordinates without »
dependence. This equation defines D, the rotational diffusion cone
stant.

s (20)

Ferrin has found the following explicit expression for the

rotary diffusion constant for ellipsoids of revolution

3kT _2_
D =m( l+21,n——) - (A34)
N m

where k is Boltzmann's constant, T is the absolute temperature,
and P is the viscosity of the medium. The last equality is shown
for future reference to illustrate the form of dependence of the diffu-

sion constant on the viscosity.

A.3 Distribution Function.

The distribution function which yields the angular concentration
of the main axis of the particle is calculated by considering the compe-
tition of the hydrodynamic forces on the particle, which produces a flux
transport -lstr given by equation (A32), and the flux due to Brownian
motion given by equation (A33) which tries to diminish any unevenness
in the distribution of orientations. I'or the steady state, the following
relation must hold:

v . (i

Sgee *haser) = ©- (a35)

Substituting for § and d~ the values of the equations of motion given
by equations (A29) and (A30) and evaluating equation (A35), the follow=-

ing expression results:
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VF(6. )= !-5-[1 + dcosld) g:r3 + dainfcosfsin2d 1 3¢sin"98in2s ]
= 0 . (A36)
For p £ 1, the solution of (A36) ia obtained as a serics of

spherical harmonics of the form

oo
I
F(8,6) = ) P Tp(6:0) (a37)
h=0
where
h h n
b 1 i) 2 )Zm
Fy =3 Z ano. B 20 + Z z (a'mn. hcoschb *bnm. hanmcb)} 2n
n=0 nzl m=l
‘ {(A38)
in which

P.?.n = ppherical harmonics of the second order of cosg ,

dZm}_
Pgm = associated Legendre functions = sinzme én g
n Zm
{dcosg)

The constants a

am. b 2%€ determined by substituting the series (A37)
L

into equation {A36) and equating terms with the same argument. It is
found that all constants of this group can be expressed in terms of

- and that constants of the type %0, h 2Fe all zero except for

. Finally, to evaluate a s F(8,¢) is normalized by setting

200, 0 00, ©
the integral of (6, &) over the surface of the unit sphere equal to
unity. Thus

Zr;rr W
J J F(B,¢)eind dp dd = 1.
0 0

Because of the orthogonality, all terms of (8, ¢) vanish except for
Fo » which, upon integration, ylelds
a s i .

00, ©
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The final result is

3 ainze
N . 36

1+
o?

1

F s =14 p(=icoszs+ 3 sin2é) F wue ] (A39)

where 0 = G/D; for small values of 0, l.e., large influence of

Brownian motion, and small gradients, this reduces to

F o= 20{1+%stn2sstn®0+...7 . (A40)

A.4 QOptical Behavior.

The optical characteristics of the system are determined by the
orientation of ellipsoidal particles of permittivity ¢ suspended in a
medium of permittivity L

The particles under consideration are assumed to be considere
ably smaller than the wavelength of light, so that at any given instant
the electromagnetic field felt by the particle can be regarded as essene
tially uniform throughout the particle. This assumption permits us to
study the characteristics of the composite medium in the steady state,
and the analysis is based on finding how a distribution of ellipsolds of
permittivity ¢ in a suspending medium of permittivity . affects a
uniform electric field applied to this system.,

The effect of the medium on the electric field is then set to be
identical to the effect of the medium on the E vector of a beam of
light. Furthermore, both the particle and the suspending medium are
assumed to be nonemagnetic, and their permeabllities are taken as the
one of free space, 80 that the analysis of the electric component of the

beam of light suffices to describe the phenomenon in its entirety.
A uniform electric field E applied to a particle suspended in
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a medium will induce a polarization P, which is a result of the po=

larization }_?_n of the medium, and _ijp of the particle, where

nE = (cm-l)§ {A41)
and

= i, (A42)

The particle is characterized by its polarizabilities cz{ and permit-
tivities ¢!, along with the xi coordinates fixed to the particle and al-
ready used to describe its hydrodynamic behavior.

_P_‘P is found by determining first the electric field _E_'-_g)i within
the particles. This electric field _F::I') is a result of the electric field

- i
external to the particle E! plus the polarization _I:i) due to this field,

i
modified by a shape factor Li which accounts for th; asymmetry of
the internal field.

Thes? shape factors reduce to simple expressions for the casecs
of a sphere, flat disc perpendicular to the field, and elongated cylinder
parallel to the field. They represelnt the relative amount by which the
shape of an object of dielectric Sy in a medium of dielectric €5
decreases the overall field strength due to the appearange of charges
at the interface between the two media. They have been deduced an-
alytically by F.aylelgh(zn. and are included graphically in Figure 26,

The field aleng each of the axes of the particle {s then given by:

R onl ] 1 . ]
i“:pl - _E.i"’l-‘ifpi .

In view of the polarizability of the particle, the particle will then ex-

hibit an electric moment mi H

m{ = ai(:ﬁli-i'-c!rl.ii—l')i) = ol + LK)E] = A E] . (a43)

i
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Figure 26. Shape factors L, and L, as a function of
axial ratio.
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In the coordinate axes xy fixed in direction as in the hydrodynamic

case, the electric moment becomes
m, ,.,}; AE L, (A44)

where the lu's are the cosines of the angles between the primed and
unprimed systems of coordinates, given by the matrix (A22).
Furthermore, each _E;i has components along the ¥ system
of coordinates such that
Ei = Ej llj H (A45)
thus, the moments in the unprimed (fixed) system of coordinates, due

to each electric component E [ in this system, are given by
my = (Zt’_ Ayl L) By (A46)

For an ellipsoid of revolution, whose axis of revolution is the xi

axis, 0'23 ré;thuﬂ. L23L3

making use of equation (A26), reduces to:

and Ay = A3 + and the system (A46),

= [A, +(A~A, N3 E, = B |E

gl | 1™

m,, = (A;=A,)1,1,,E, = B, E, (A47)

Mgy ® Wyehoily By = By Ey
Noting that B,, = B, B,3 =B,y and Bgy = By5 s the correspond-
ing components of the moment in the x, and x, direcfions can be ob-
tained from equations (A47) by cyclic permutation of the indices and
subscripts.

Np particles per unit volume, oriented according to the distri-
bution function given by equation (A39), where each particle contributes

a component to the moment given by equation (A47), will produce
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moments Mkj in a system of particles and suspending medium

given by
PlnlmdN
J r
J

where d = ginfdf dd and Mki is now the moment per unit volume
due to the field in the j direction, and the characteristics of the par-
ticle along the k direction, both directions being along the unprimed
system of coordinates.

To compute the moments per unit volume by equation (A48), the
cosines between the two systems of coordinates must be expressed in
termea of the transformation given by the matrix (A22), where the ¢
angle is set to zero, eince the ellipsoid is rotationally symmetric
about the xi axis; and along any position it would yield the same re-
sult, zero then being the most convenient one in terms of simplifica-
tion of the expressions.

Carrying out the substitutions in equations (A47) and solving for

pkj yields

w 2w
Py = JP JP F[A + (A -A )ain 8 sin ep]sinede dé
' 0 0
w 2w
Pyy = Jr' JP I‘[A + (A -Az)aln 8 cos ¢19i.ne de d¢
0 0

(A49)
w 2w

P 5
Pyy = (A1+A2) IJ ¥ s8in” @ sin2¢ df dod
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o 2
P 2
P33 = JPJ F[AZ + (Al-Az)cos 8]aing d@ do
0 0

The elements pkj form a symmetric matrix where pkj = pjk and

Pyz ® Py3 = 0, because of the geometry of the flow, according to which
the particles are randomly oriented with respect to the plane of flow.
Since there is an equal number of particles above and below it, the

moments cancel each other. The matrix thus reduces to

p1 1 ) (4]
[ijj = 0 Poa P23 (A50)
¢ Pas P33

To find the principal directions in the system, the matrix (A50)
must be diagonalized, so that the magnitude of the angle through which
the system is rotated about the x, axls represents the location of the
extinction angle A of the system. To rotate the matrix (A50), the fole

lowing equation must be solved for X :
- #*
[X1TpgITXT™" = Ty

where l’pi,} is the diagonalized form,and [¥] is the rotation matrix:
1 0 0

[A] = 0 cosy  siny

0 gink cosk

The result is

(A51)

where the elements along the diagonal are now given by
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o~
P11 ® Py
. 2 1
Pz = Py +P33) + TRy, = Py3)” + 4p,3)°
@ 2 %
P33 = (Ppp +P33) = TPy, = Py3)” + ¥py50°

Substituting equation (A49) into equation {A51) yields the following ex-

pression:
w o
r?(}:- g, 8, dw)sin 8 ain2¢ 4 dé
~ 0
tan2X = > .

‘J‘F(p, 0, 8, ¢)sin" 8 cos2d 48 dé
D '

Using the series (A40) for ¥, for values of 05 1.5and p=1,

Feterlin and Stuart {loc. cit. ) find that
3

X(0y 2) = §-€Z+T%%(1+%%§f)+... . (A53)
To find the magnitude of the birefringence, i.e., the relative difference
in index of refraction between the two principal directions, the differ-
ences in permittivities along the principal directions must be found.

The polarization P p in the suspending medium, due to the

presence of NN b ellipsoidal particles, can now be found as

E, = e i M (A54)
and from equation (A48):
E, = [~ IN[PIE . W=

Substituting into equation (A42), one obtainse
b = o . .
= e (ré‘m] -1HE + -m] NP fplE (A56)

where [1] is the uaitary matrix.
Letting (+] be the permittivity of the whole system, the matrix
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equation (A56) can be written as

P o= g (le]- IDE (AS7)
where
_ _ " .
€11 0 0 1 0 0
[e] = | @ 835 €33 [v.'m] = em[ﬂ (1Y = 0 1 ol .
0 €33 €35 0o o0 1

Equating expressions (A56) and (A57) yields

lel= e, ) = 4m e TN Tp] . (A58)

Using now the diagonalized form of [p], a new diagonal matrix re-
sults whose terms along the diagonal €% €0 €35 are the principal
permittivities in the system. Equating term by term on both sides of
equation (A58) yields
2
€22 %m © hemNppZZ'
%
€33 =€ = 4 € I‘Jp Pyy -
The difference of permittivities that is observable in the chosen geome-

try is then obtained by subtracting one equation from the other; namely,
awe_ N_ (e, = Pa A59
€22 = %33 = e, N, (Py; = P3a) - Ba
Under the quasiestationary conditions under which these equa=-

tions have been derived, the permittivities can be substituted for the

squares of the indices of refraction such that

o B - S )
€22 " ®33 © Bz = P33 = 20in,; - By4).
where n is the refractive index of the system of particles and sus-
pending medium, which can be taken as having the same values as the

index of refraction of the latter. Substituting this last expression into
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equation (A59) yields
Ry =By * 2wn N, (P;z - p;3) '
Peterlin and Stuart (loc. cit. ) find that the difference (p;z - p;3) can
be separated into two parts; one, (gx.l -gxé )» is a function of the optical
properties of the particle along its x'l and x'z axes and results from
equation (A43); and the other, f£{(0,p), is related to the orientaﬁ'on of
the particles, and thus their distribution function results from equa-
tion (A49), namely:
N(p,, - Py3) * Vigyy = By )00 7)

where . V is the volume of the particle,

s . 3em cm(a'l -c'2)+(c'1-c:m)(e'2-em)-£7(141 - L,)

F= . ] ] 1}

*1 ¥ T e +£.'. Lyle}=c_)le_ +z= L(e}= e )]
and

o o3 épz
#(o,p) = 1k = oy (1 $mpr ) 4
so that
2w N
An = —,—,——ngxi-gx%)f(o.p) . (A60)

Tor emall values of 0, f{o,p)~0p/15. The term NPV which gives
the total concentration in terms of volume of particles per total volume
of the solution can be converted to weight concentration, ¢ , per unit
volume by multiplying and dividing equation (A59) by Pp* the particle
density, to yield

AR . TSZ??;IJTJ; (Ex'l - gx'z)conm ; (A61)

-
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APPENDIX B
Sample Data
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Data

Date: January 9, 1963
Experiment No.: 10

Concentrations. TMYV: 0. 3590/0, SBMV: + 0. 123%o , Other: in Versene
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Data Reduction

February 18, 1963

Date:

10

Experiment No. :

SBMV: . 123%.

Concentrations. TMV: . 3590/0.

62

Isocline: 55

: 0. 0858.

w
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Window Correction.
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Note on Data Reduction

The data of the window is obtained as outlined in Sec-
tion 3. 3. A calibrated dial permits interpolation of the readings of
the verniers to 0. 0010, and by computer the best sinusold that fits
the experimental points is obtained . This ylelde the amount of bire-
fringence and the corresponding position of the isocline of the windows.

8 1 ) 2 and 03 are ta_mpera.ture readings from a
thermocouple located in the Couette cell, in millivolts. CW and CC
refer to clockwise and counterclockwise rotation.

The zero correction refers to the correction necessary
to account for the error in quadrature. The window correction refers
to the one given by equations (17) and (18).

The Couette cell used has a 0. 2 cm gap between cylin-
duvn, and &'t ven path Sangih s e gag.  Fow e 5460 £ avatungth,
the amount of retardation per unit length, in Alem , can then be ob-
tained by multiplying the amount of observed optical rotation by 6. 06.



3.

5.

7'

8.

10.

11.

12,

13.

“94a

REFERENCES

Maswell, J. C., '""On Double Refraction in a Viscous Fluid in
Motion, " FProc. Roy. Soc. A22, 46 (1873).

Peterlin, A. and Stuart, H. A., Hand- und Jahrbuch der chem-
ischen Physik, Bd., VIII, Abt. 1B, "Doppelbrechung, insbe-
sondere kunstliche Doppelbrechung, '' Becker and Erler, Leipzig,
{(1943).

Wayland, J.IL, "Mesures photoelectriques en birefringence
d'ecoulment, ' Comptes Rendus, 249, 1228 (1959).

Born, M. and Wolf, E., Principles of Optics, Fergamon
Fress (1959).

Walker, M. J., "Matrix Calculus and the Stokes Parameters of
Polarized Radiation, '' Am. J. Phys., 22, 170 (1954).

Shu;cliif. W.A., Polarized Light, Harvard University Press
(1962).

Wayland, J. ¥. and Badoz, J., '"Determination photoelectrique
de la position des lignes neutres d'un milieu faiblement bire=-
fringent, "' Comptes Rendus, 250, 688 (1960).

Sutera, S.F., ''Streaming Bireiringence as a Hydrodynamic
Research Tool, " Doctoral Theeis, California Institute of Tech=
nology (1960).

Leray, J., '"Sur la verification de la theorie de l'orientation des
particules rigides par birefringence d'ecoulment, "' Journal de
Chimie Physique, 316 (1961),

Hearst, J. H. and Vinograd, J., "The effect of angular velocity
on the sedimentation behavior of deoxiribonucleic acid and toe
bacco mosaic virus, "' Archives of Biochemistry and Biophysics,
Vel. 92, Neo. 2, 206 (I96I).

Edsal, J.T., Rich, A., and Goldstein, M., "'An instrument for
the study of double refraction of flow at low and intermediate
velocity gradients, ' Rev. Sci. Instr., 23, 695 (1952).

Amm, B.H., "Photoelectric Flow Birefringence Instrument of
FHigh Sensitivity, "' Rev. Sci. Instz., 9, 360 (1958).

Collins, D.J. and Wayland, J.H., "Hydrodynamic Interactions

Submi ic Farticles, 1. Viscometric Studies, ' Journal
the Rheotogical Sodety (in press). T a———




14,

15.

16,

17.

18.

19.

20.

21,

«95a
Koarad, M., "A Freparation of Southern Bean Mosaic Virus, "
private communication.

Einstein, A., The Theory of the Brownian Movement, Dover
Publications {(1Y506).

Boedtker, H. and Simmons, N.S., ""The Preparation and Chare
acterization of Essentially Uniform Tobacco Mosalc Virus, !
J. Am, Chem. Soc., 10, 2550 (1958). .

Miller, G. L. and Price, W.C., "Physical and Chemical Studies
of Southern Bean Mosaic Virus. 1. Size, Shape, Hydratation,
and Elementary Composition, "' Archives of Biochemistry and
Biology, Vol. 10 (1946).

Jeffrey, G.B., '"The Motion of Ellipsoidal Particlee Immersed
in a Viscous Fluid, " Proc. Roy. Soc. (London), Al02, 161
(1922).

Bateman, H., Partial Differential uations of Mathematical
Fhysics, Chapter 5, P8 oor 8, ge Unie
ver,iR? Press, lLondon (1932).

Perrin, F., '""Mouvement Brownden d'un Ellipsoide, (I.) Dis-
persion Dielectrique pour des Molecules Ellipsoidales, " J.
Phys. Radium, 5, Series 7, 497 (1934).

Rayleigh, Lord, "On the Incidence of Aerial Waves upon Small
Obstacles in the Form of Ellipsoids or Elliptic Cylinders, and
on the Passage of Electric Waves through a Circular Aperture
in a Conducting Screen, " Phil. Mag., 44, 28 (1897).



