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ABSTRACT 

An apparatus for the observation of otrearning b irefringence 

with photoelectric detection. in which the output signal nea.r the null is 

linear with respect to the angular distance to the null, was built and 

tested. It was found t hat such an apparatus is able to establish the po• 

sition of the isocline with a.n accuracy of one degree for a relative 

retardation of 10·9. 

The apparatus was subsequently used to study th.e streaming 

birefringence of tobacco mosaic virus and of mixtures of tobacco mo-

saic virus and southern bean mosaic virus. Accurate measurements 

of the angle of isocline of both types of solutions showed that no sig­

nificant difference exists between the experimental and theoretical 

results, once all the sources of extraneous birefringences are ac-

counted for. 

The amount of retardation of the mixtures was found to be lower 

than that for pure tobacco mosaic virus at equal concentrations of the 

· latter and equal velocity gradients. nus experimental re~t is ex­

plained by considering that the random m otion of the spherical particles 

interacts with the orderly rotation of the rod-like particles, decreasing 

the amount of aligned material, and thus the amount of retardation. 
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I. INTRODUCTION 

The path oi a beam of light !n a transparent medium can be 

described through the use oi Huygen's principle, which states that each 

element oi a wave front may be regarded as the center of a secondary 

disturbance which gives rise to wavelets . These wavelets propagate 

with a velocity equal to the velocity of propagation of the wave. The 

position of the wave front at any later time is given by the envelope of 

all wavelets. 

In the general case of an anisotropic medium, two sets of H'uy­

gen's wavelets propagate from every wave .front. Substances having 

thi1 property are said to exhibit birefringence. When there is a direc­

tion along which the velocity of propagation of the two sets of wavelets is 

equal, the substance is said to be uniaxial, and this dlrectlou le called 

the optic axis. In an uniaxial cry•tal there are two indices of refraction 

which characterize the two sets of. Huygen ' s wavelets, with maximum 

and minimum values in directions perpendicular to each other and to the 

optic axis. One set of wavelets ls spherical and its velocity o£ propa­

gation ia characterized by an index of refraction n
0 

• The second sot 

is ellipsoidal and has a maximum index of refraction ne ln a direction 

perpendicular to the optic axis. The amount of birefringence ls defined 

as the dtfierence (n
0 

- ne) between the two indices. 

Birefringence can be produced in liquids by the influence of 

electric and magnetic fields, the presence of sound waves, and the ex­

istence of velocity gradients. This last effect constitutes streaming bi­

refringence (SBR), and occurs in certain pure liquids as well as in 

solutions containing asymmetrical molecules. 
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x2 

Figure 1. Location of the coordinate eyetem with reepect to 
eurfacee in experimental apparatue. The phenomena 
are observed along the x 1 direction. The solution ie 
contained between the two concentric cylinder•. 



SBR is usually studied in solutions contained in the gap between 

two concentric cylinders, such that the rotation of either will cause a 

very nearly linear velocity gradient in laminar flow, characterized by: 

which makes the solution become birefringent. with the amount of bl· 

refringence increasing stea.dUy with the velocity gradient G • In this 

flow ccmfiguration (Figure 1 ), a given v olume element will have the di­

rections of maximum and rninimun"l indices of refraction in the x 2x
3 

plane, where the smallest angle between the axis with the largest index 

of refraction and the streamline is the angle of isocline X. The amount 

of birefringence An for a given wavelength "- is obtained from the 

relation: 

An :a (n - n ) = ...lJr = f(G) o e c;.1T-L 

where o is the observed phase dliference between the two directions 

in radians, and t is the length of the path through the streaming fluid. 

At small gradients in laminar flow, x has been observed to approach 

45° and .6.n ls proportional to G • At higher gradients X decreases, 

while An increases deviating from proportionality with G • 

The behavior of solutions of small, rigid, asymmetric particle& 

le explained by analyzing the motion of a single particle. In the pres­

ence o£ a linear velocity gradient in laminar flow, the particle is com­

pelled to rotate with a non-uniform angular velocity, which makes it 

remain a longer time ln the direction with smaller angular velocity. 

Brownian motiOI'l tends to counteract this hydrodynamic orientation. so 

that the competition of both influences establlshe& the p robabUity that a 



particle might have a certain angular position. The coupling of the 

angular distribution with the optical anisotropy of a particle yields the 

two main optical directions in the fluid as the directions of larger and 

smaller angular density. 

The phenomenon was first observed by Maxwell ( 1) in 1866, and 

reported in 1873 in a paper which also described a. concentric cylinder 

apparatus in which SBR could easily be produced. 

Several theories have been proposed to explain the experimental 

evidence, the most successful at present being that of. Peterlin and 

Stu.a.rt(Z.). This theory assumes that a system of rigid, submicroscopic 

particles of ellipsoidal shape suspended in a medium becomes optically 

anisotropic when it is subjected to shear, due to the non-uniform motion 

of the particles. The theory has been extended to non-rigid particles, 

to the presence of heterogeneous populations, and to the superimposition 

of magnetic and electric fields. 

The techniques of SBR were found to be applicable to the study of 

fiow patterns in two-d imensional flow fields, and to the characterization 

of macromolecules. In the latter field, useful information from sub-

microscopic particles in solution can be obtained by relating the size, 

shape, mass, and dlsperslty of the particles to the optical properties 

of the system. Particularly eigniflcant le the data that can be obtained 

by extrapolation to zero shear, a method by which the rotary diffusion 

constant can be determined, as well a.s giving one indication as to the 

existence of a certain degret'l of structurization in the liquid. 

1n view of the above considerations, it has been the aim of ex-

perlmenters to refine the measuring techniques so that the extremely 
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small effects c:haracteriatic o£ small concentrations and shears could 

be analyzed and interpreted. In successive refinements of the meas­

uring techniques, some departures from the Peterlin and Stuart theory 

have been found. precisely in the range oi small shears and concentra­

tions, which is the most interesting in terms of characterization of 

macromolecules. Thus, lt became apparent that there was need for 

an instrument whose sensitivity was significantly greater than anything 

previously used, ln order to determine what these departures are. 

The amount of SDR, and tho location of the angle of isocline, is 

usually converted into an optical rotation for small blrefringences by 

means of a quarter-wave plate, so that the location d. .the angles of in­

terest is found by noting the position at which an analyzing prism ex­

tinguishes the light transmitted through the system. Orlglnally , the 

null was observed directly by eye. In follOVvi.ng refinements, the eye 

was replaced by a photomultiplier. This substitution was not always 

satisfactory, in that the increase in sensitivity was frequently offset by 

an increase in the noise that the photomultiplier picked up. Further­

more, simply substituting the photomultiplier for the eye dld not elim­

inate the inherent characteristic of the signal to be detected, which 

depends on the square of the angle e· between the position of the a.nalyaer 

and the null. 

Wayland(3 ) proposed to eliminate the•e dl.fficulties by modulating 

sinusoidally the beam of light, by periodically rotating ·the plane of po• 

lariza.tlon of the light beam through a small angle y
0 

, so that the sinu­

soidal algnal transmitted by the analyzing prism had an amplitude vary­

ing linearly with the angle £. This system was found to have an 
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l.nherently larger signal to noise ratio than other systems, and since 

the output signal could be synchronously rectified so that in traversing 

the null the eignal changed polarity, a very clear tndlcatton of the null 

waa obtained. 

In what follows, an apparatus built according to Wayland's prin­

ciple ts described; its performance le analyzed ln terms .of meaaure• 

ments of SBR made of solutions of tobacco mosaic virus (TMV), and 

mixtures of southern bean mosaic virus (SBMV) and TMV; and the 

basic theory of SBR is outlined. 
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U. THEORY OF MEASUREMENT OF STREAMING 

BIREF RINGENCE 

2. 1 o ;etlcal System. 

The net efiect of the optical anisotropy produced in the flowing 

solution is described in Peterlln and Stuart (loc. cit.) by the following 

equations (see Appendix for their derivatiOI'l): 

G tr 1 G 1 G 3 x<n·P> • ~-u-,+1"2"90<~> + ••• 

An = 15 Z~ D (g ' • g ' ) c G"' 
Pp P xl xz m 

where D is the rotational diffusion constant, D is the rotational 
p 

dlffuslcm constant with the vlocosity that the particle experiences rp 
divided out, p is a parameter characteristic of the axial ratio, n is 

the index of refraction of the medium, (fix, -~, ) an optical factor 
1 z 

characteristic of the particle and medium, and c i s the concentration. 

This optical anisotropy converts linearly polarized light passing through 

a solution into elliptically polarized light. From the orientation of the 

characteristic ellipses the location of the two main directions In the 

medium is obtained, and from the degree of ellipticity the relative re­

tardation is deduced. and thus the difference in indices of r~fra.ctlon. 

The state of polarization of a beam of light can be described by 

a column matrix [L} whose elements I. Q , U, V, constitute Stolte a' 

parameters. These are given by the following relationa: 

z z 
I = (E z + E 3 ) 

z 2 
Q :: (Ez • E3) 

(1) 
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where E 2 and E 3 are instantaneous positive definite values of the 

components of the electric field in the x 2x 3 plane of the system of co­

ordinates shown in Figure 1, and the bracr~ts. in this case, rep resent 

time averages. 1 is a measure of t he intensity of the beam of lights 

0 , U, V are measures of the state of polarization. The beam of light 

propagates along the x 1 direction. 6 is tl1e instantaneous phase dtf­

ierence between the two directions~ and a beam of unpolarized light, 

intensity- normalized, is described by: 

( L J = (1 , 0 , 0, 01 . 

F or an elllptlcally polarized beam of light , the ratio E 2 / E 3 and the 

angle 6 are constant. With reference to Figure l , the components 

1. O, U, V a:re shown by Born(4 ) to be: 

I = 1 U = cos z.a. sin lX (Z) 
Q = COG Za. cos zx V = sin Z.C. 

2 
where tan Za = E 2 / E 3 = (n 2 /n3 ) , and t he intensi ty is norm alized. 

The action of an optical device is to t ransform the polarization 

of a beam of light from one state to another, a.nd slnc.e both states can 

be represented by a 4-vector, a 4 X 4 m atrix wU1 adequately rep r e sent 

such a transformattan. These matrices are found empirically and are 

U eted by Wall~r(S ) and Shurcuu<6 >. A series of optical devices is tllen 

r epresented by the product of their individual matrices. 

The birefringent solution Is represented by the matrix 

(M(" , 6)] = 

1 0 0 0 

z. z 
0 cos Z.j3 + sin ~coso cos li3sln l~(l -coa6 ) sin 2.{3sin6 

(3) 
0 eln Z.~cos 2(3 (1 - cos6) sin2z.p + cos2l j3cos6- coa ZJ3eln6 

0 - sin Zf3 sln5 COG 2{3sin6 coso 
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Figure 2. Ellipse reaulting from the auperposition at right 
angle• of two • imple harmonic motion• of ampli­
tude• E

2 
and E

3 
having the aame frequency but 

difference phase. 

Source 

"' / 

,.... __________ _ -- -~ 
/ 

Observer 

Figure 3. Diagrammatic scheme of a simple optical system for the 
analyeia of a birefringent medium. The polarizer and 
analyzer are made to rotate together about the optic 
axis. for the determination of ~. 
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where f) is the orientation of the direction ln the medium that posses­

ses the largest Index of refraction. and 6 le the phase difference that 

the medium wUl lnduce between components polarized in the two main 

directions, when the beam of light traverses it along the optic axis. 

The simplest technique for analyzing a birefringent medium ls 

to observe the effect that it has on a beam of plane polarized light that 

traverses lt. A beam of polarized light is obtained by havlng a beam 

of light first go through a total pola.rlzer f P (90°) ], such as a Clan­

Thompson prism. This beam is flrst made to traverse the birefringent 

medium and is observed through another polarizer [A(0°) J locked ln. 

quadrature with the .first polarizer, as shown dtagramatically in Fig• 

ure 3. 

With the optic axis along the xl coordtnate, and the two total 

polarizere oriented as shown in F igure 3, the matrices that character-

lze them are: 

1 ·1 0 0 1 1 0 0 

[ P (90°)) = { -1 1 0 0 
[A(0°)] = { 

1 1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

The normalized transmission of this system is given by the intensity 

component I o:C the [ L } vector which results from the equation: 
0 

(L
0

) = [A(0°)] [ M(J3,6) ](P(90°)](Li), (4) 

where the ma.tric:ee transform the incident beam of light (L1) in the 

same order as the beam encoWlters the optical elements. SUbstituting 

the corresponding m atrices into equation (4) and evaluating the term 

corresponding to the intensity of the transmitted beam, one obtains: 
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1 2 2 
I = '4 r 1 - (cos 2(3 + sin 2(3cos6)] 

which. for small f and 5 , reduces to: 

(5) 

Clearly then, rotating the polarizer-analyzer assembly with respect 

to the birefringent medium [ M((3, 6)] through an angle f3 will result 

in the complete extinction of the transmitted light, and the position of 

the optical axis of the polarizing prism will then coincide with the op­

tical axis of the birefringent medium. From this analysis it becomes 

apparent that due to the quadratic dependence of the intensity of the 

transmitted Ught to the angular difference between analyzer axis and 

medium axis p • the definition of the null is qulte poor. 

To determine the ellipticity of the polarization in the beam of 

light, a quarter-wave retarder is inserted after the birefringent medi-

urn. The fast axis of this element is located parallel to the a.xia of the 

analyzer, such that the matrix [Q(Oo, .Z>J o£ this element is given by: 

1 0 0 0 

0 1 0 0 
0 1T ] [ 0 (0 , '!) = 

0 0 0 -1 

0 0 1 0 

and the optical oystem can be represented diagr ammatically as ln Fig• 

ure 4, where the polarizer and quarter- wave plate are now locked to-

gether. The birefringent medium ls then rotated so that its optical 

axis makes an angle of 45° wi th the axis of the polarizer. The i ntensity 

o1 the beam of light emerging from this system is obtained from the fol -

lowing equation: 
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Figure 4. Diagrammatic scheme of the determination of the 
amount of retardation 6. 

Figure 5. Diagrammatic scheme of the Faraday effect. Applying 
a sinusoidal voltage to the winding, a magnetic field 
along the x

1 
axis is produced that changes i n direction 

with frequency w. A beam polarized along the x 2 axis 
will be rotated through an angle Y = y 0 ain wt, the sign 
of the rotation being determined by the instantaneous 
direction of the field. 
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where: 

1 cos Za. sin 2a. 0 

cos Z.a. 
2 

sin Zo. cos 2a. 0 1 cos 2.a 
r A( a.) J = "! sln2 

2a. 
• (7) 

sin 2a. sin 20'. cos 2.r:r. 0 

0 0 0 0 

[A(a)] being the matrix of a polarizer oriented with its axis along the 

a dlrectioo. 

The transmitted light is: 

1 I= 4 r1-cos(Za.-6)]; 

thus locating the analyzer at an angle a = !o extinction is obtained 

a.Dd the retardation is determined. For a small angular distance E: 

from the location of this null, assuming that there is no error in the 

location of the angle of isocline, and for small retardations 6 , the 

transmissi on of this system is given by the following expression: 

I:' F/'/2 . 

It is thus apparent that the intensity of the transmitted light in the 

viclntty of the null, and for small retardations, is not linear with the 

error angle, which results in a poor definition of this null. 

A system for which the approach to the null is linear in the er­

ror angle can be conceptually realized becauoe the matrix (3) contains 

elements that are linear in both ~ and 6 sim ultaneously. Thus, a 

device must be found so that those linear elements are the ones that 

characterize the angular dependence of the intensity in the proximity 

of the null. Wayland (loc. cit. ) proposed to use a Faraday effect 
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modulator (FEM) to bring about the necessary shift ln the elements of 

matrix (3). and Wayland and Badoz(?) proposed a system ln which the 

quarter- wave plate was permanently ln place. oriented with its axis 

parallel to the axie of the analyzer. 

The Faraday effect consists in a rotation that a beam ol polarized 

light experiences in traverolng a medium in which there ts e. magnetic 

field parallel to the direction of the beam of light. This effect i s ex­

hibited by a variety o! substances in the soU~ liquid, and gaseous 

state, and is characterized by Verdet' s constant, which for a given 

substance relates the amount of optical rotation at a given wave length 

to the magnetic field strength that causes it. and the thickness of ma­

terial traversed by the beam of light. Among the most convenient sub-

stances that exhibit this effect is water, whic h has a relatively large 

rotation. and being a liquid does not introduce extraneous birefringence 

ln the system other than for the windows that contain it in p lace. The 

Faraday cell is shown schematically in Figure 5. The efiect can be 

produced both by a steady magnetic fiel d , which produces a simple ro­

tation. or by a field that is alternating in direction. as the one produced 

by an AC solenoid which produces an alternating rotation at the driving 

frequency. The latter property is particularly significant ln this de-

vel opment since the net result o£ this alternating rotation is to produce 

a modulated signal suitabl e for electronic ampli!tcation. 

An optical device that rotates the plaDe o£ polarization of a beam 

of light by an angle 'V ls characterized by the matrix: 
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1 0 0 0 

0 cos 2y sln 2y 0 
[T(Zy) ] = 0 -sin 2y cos 2-v 0 

0 0 0 1 

which, when located as shown diagrammatically in F igure 6, operates 

on a beam of light by p rem ultiplyine the whole matric product up to 

[A(0°)] by the matrix LT(-Zy)j and postmultiplylng the same quantity 

by the matrix [T(2y)]. In this case, since the solenoid is driven by an 

AC source, y ::: 'V 
0 

sin u.t • The intensity of the tra..'lsmitted light of the 

system of F igure 6 is obtained by evaluating the intensity component of 

the emerging beam of llght (L
0

} in the following equation: 

The intensity of the transmitted light is given by: 

1 = { r 1 - cos 2y(cos
2

2f3 + sin
2

2pcoso) • sin 2ysln 2f3 sin5] . (9} 

F or small angles 'V the terms in cos 2y and sin Zv can be expanded 

into a series. Carrying out this e xpansion. it can be seen that t he only 

term that oscUlates at the driving frequency is the first term of the 

sine expansion, while the cosine expanslon yield s a DC term and terms 

that are a function of integral multiples of the doubled frequency. 

Therefore, an amplifier ttm.ed to the fundamental frequency with appro-

priate filtering for the higher harmonics will pick up a steady back-

ground noise resulting from the DC term, and a signal at the fundamental 

frequency given by the expressbn: 

1 I = 4 sin Zy sin 2f3 sin 6 :' 6 j3 y
0 

sln t t (10 

which ie linear in both 6 and f3 for small angle e. To locate the 
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angle of leocllne, the whole oystem shown in F igure 6 i s rotated untU 

extinction is achieved. The orientation of the polarizer corresponds 

then to the orientation of the isocline ln the medium. 

To determine the amount of birefringence, as in the previous 

case, the whole assembly of polarizer, quarter•wave plate, and analyz­

er is rotated through 45° from the position !3 of the axis of the medium. 

Since phenomenologically it is equivalent to rotate the birefringent me-

o dlum through 45 keeping the optical assembly fixed, in the following 

equations the medium is rotated in order to simplify the analysis. 

The intensity of the t·ransmitted llght is again obtained by cal• 

culatlng the intensity component of the emerging beam o£ light ( L } 
0 

from the equation: 

(L
0

) = (A(a.)JT(- 2y)j[0(0°, .z)][M(45°, o )][l-'(90°)]r T(2y)1(L1} (11) , 

which yields the result 

1 I = 4 [ 1 • cos2a (cos2ycoso- sinZysino) - sin2<:-! (sin2ycoso + cos2yein5 )] 

from where it can be seen that a rotation of the analyzer of a = !6 

produces a null that identifies the amount of birefringence 6 • 

At a small angular distance ~ from the null, the transmitted 

lnteulty is given by the relation 

1 : i ( 1 - cos 2y • <' sin 2y) : - { ~ y 

clearly linear in >- for small angles. 

It should be noted that in this system the quarter- wave pl ate l s 

kept permanently in place , both for the determination of the angle of 

leocllne and of the amount of birefringence. Thle feature is quite ad ­

vantageous from the mechanical point of view, and does not appear ln 



the simple system. 

2. 2 Separation of Extraneouo Effects. 

The optical system considered so far assumes that both the 

light source and the optical elements are ideal in the sense that the 

source i s a monochromatic point source, and that all windows are free 

of strain and thus of extraneous birefringence. 

A mcmochromatlc light source of satisfactory characteristics 

can be obtained from a. high- pressure mercury arc discharge, from 

which a convenient spectral line is sel ected by means o! an optical 

filter. Further details of this light source are given in the next section. 

Regarding extraneous birefringences, the matter l s more com­

plex and requires cu·eful analysis . In trying to detect the feeble sig­

nals characteristic of small concentrations and small shears, lt has 

been found that with the photoelectric system under consideration the 

llmitlng factor is the rel ative size of the signals from the solutioo and 

the signals from the res idual strains in the windows, whic h introduce 

birefringence. 

Two sets of windows occur in the system. One coctains the so­

lution in place, in the annular gap between the concentric cylinders 

(Couet te cell). The other contains the water in the FEM. Both sets 

introduce extraneoua b l refringences that are detectabl e wlth this sys­

tem. Cf the two, the one that is most ea sily accounted for is the one 

pertaining to the FEM Uuiows. 

To correct for the extraneous birefringence of the FEM windows, 

this device is mounted so that it constitutes one unit with the polarizer 

and quarter- wave plate. This mounting assures that the saxne angular 



relationship between the axis of the polarizer and the extraneous bi-

refringence of the FEM is maintained in the syetem. 

The l ocation of the angle of isocline presupposes that both 

polarizer and analyze1· can be locked in quadrature. together with the 

quarter- wave plate. Clearly, if a birefringent medium ls located be• 

tween the two when this quadrature is establishe d . a certain error will 

occur; therefore, it is important to establish how far from quadrature 

the polarizer and analyzer arc when the null le established "wvith the bl· 

refringence of the FEM windows in between. 

The polarizer is assumed to be at 90° azimuth; the f'EM 

windows are represented by the m atrix [ F({3 1, S 1 ) J whi ch is of the came 

form as matrix (3 ). where thei r combined retardation is assumed to be 

s 1 , wit h their ioocline at p 1 • The analyzer ls then located at a. • 

which ls assumed to be a small angle ab<ll t zero azimuth. The trans-

missi on of this system is given as usual by the intensity component of 

the emerging beam of light ( L
0

) computed from the matrix equation: 

(L
0

} = (A(a.)J [F(f3 1, s1)][P(90°)](Li} . (12) 

Aiter substituting the app1•opriate matrices into equation ( 12). the l n • 

tensity component of the transmitted light is found to be: 

2 2 
I= 1 - cosla.(cos 43 1 • sin li3 1coso 1 ) - sin2t":t.Sin~ 1cos2f3 1 (l • coso 1 ) (13) 

F or small 5 1 •s the following approximation is valld: 
6 2 

1 
cosll 1 :r 1 • ~ 

and equation ( 13) reduces to: 
2 2 

0 1 2 °1 
1 = 1- cosZc.(l ---z- s in 2p 1) • --z- s in2o.sin2f3 1cos2f3 1 • 
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which has a minlmum at an angle a. such that 

51
2 sin 2(3 1 cos2(3 1 tan Za. :t Z 2 I 

2 - o 1 sln 213 1 

which for small o 1 ' s shows that the error angle a. by which the an• 

alyzer differs from quadrature is of the order (61 
2)/2 at moat. 

To see how this error ln quadrature affects the location of the · 

quarter- wave plate, this element is now installed ln the system with 

its axis nearly ln quadrature with the polarizer, 1. e. , at an angle a.
1 

, 

where a. 1 is a small angle. The transmission of the system is now 

ob tained as usual. Keeping i n m ind that the analyzer is located at an 

2 angle which ls at most (6 1 )/2, tt can be approximated by the matrix: 

2 
[A(;. )] 'at 

1 
4 

2 2 6 2 0 

0 

0 

0 0 0 

The m atrix of the quarter-wave pl ate at an angle a. 1 ,where a 1 is as-

sumed small, ts obtained d i rectly from matrix (3 ) as 

1 0 0 0 

0 1 2a.l 2o: l 
" -[ O(a. l ' -z>J :;, 

4a.2 0 Za.l -1 1 

0 - 2a.l 1 0 

Carrying out the usual computation for the intensity component of the 

transmitted light, it ls found that 
62 

I ":!' 7 rt1 ' 

which has a minlmum at a.1 = 0 , which means that the quarter-wave 



plate ali gns ln quadrature with the polarizer, and that extraneous blre• 

frlngence of the FEM windows can be neglected lor the usual amounts 

of residual birefringence found in these windows, which translates as 

a rotation of the o rder of 10' of arc, as a maximu..-n. 

The moat troublesome extraneous birefringence is the one be• 

l onging to the windows of the Couette cell. An important feature of the 

error that it produces is that the angular relationship between the axis 

of the polarizer and the one of the windows is not constant, since the 

nature of the measurements (location of the isocl ine, 45° shift) locates 

the axis of the polarizer at different places in a run. This then requires 

that the effect of the windows be known throughout the angular range of 

the instnunent. 

To ostabllsh tl1.e effect o£ the windows, a method was devised 

that determines s i multaneously the retardation due to the windows, the 

axis of. these, and the reference null for the quadrature of analyzer and 

polarizer. Furthermore, this method does not require tho withdrawal 

of the Couette cell from the optical path every time that the reference 

null must be determined. 

From equation ( 1 Z) lt can be seen that for every angular loca-

tlon of the polarizer , there ls a different extinction angle a 2 of the 

analyzer. Assuming that the effect of the windows is small, 1. e . , 

small retardation 6 , the combine d windows can be represented by w 

the simpllfied form of matrix (3 ): 
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1 0 0 0 

0 1 0 o sin2j3 
( Mw(!3w' 0w)] 

w w 
(14) = 

0 0 1 -o coszp w w 

0 - 6 aln2S w • w o cos2j3 1 w 'W 

Substituting the above matrix into equation ( 17) and calculating the in­

tensity of the transmitted light, it ls found that for ea.ch polarizer set• 

ting , there is a. minimum transmission for each analyzer setting 

a. 2 • such that: 

tan 2a2 ::' 
- 6 sln2r~ w . 
1+2y6 stnz, 

w 

which reduces to 

a. .,'::' ~o sin 2T1 
c. "' w (15) 

for sm.all angles 6w and y • Therefore, the m inimum transmission 

angle of the analyzer describes a sine wave, whose amplitude le pro• 

portional to half the amount of retardation. and whose nodes represent 

the l ocation of the axis of the windows, and can be used to establish 

the quadrature between t he polarizer and analyzer. 

The experimental data then consists of the measure of the 

isocline and amount of retardation of the composite system of windows 

and b i refringent solution by the method outlined in the previous sec-

tion. and the m easure of the birefringence of the optical cha.racteristlca 

of the wtndows by the method of plotting the extinction angle as a. function 

of the azimuth of the polarizer already outlined. It is now of conolder­

abl e importance to establish whether the effect of the window s can be 

separated from the composite measurement to obtain the true bire­

fringenee of the .Qowing solution, particularly in those ci rcumstances 
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where both effects are of the same order of m agnitude. 

For the small angles under consideration (less than one degree 

in either case), both the birefringent m e dium [M(j3, o )] and the win­

dows (M (p , 6 )] are approximated by t he matrix (14). The net 
w w w 

effect of the two media is equivalent to the product of the two matrices: 

1 0 0 0 

0 1 0 p l 
f M({3. o )] [Mw(;3w• ow ) J ~ (16) 

0 0 1 f> - 2 

0 - P l ";"') 

... 2 1 

where p l = 5 s 1n2f3 + osin2f3 w ·w and F 2 :: o cos 2{3 + ocos Zf3 , and w w 

products of the form owo have been neglected. Matrix (16) is of the 

same form a.e m atrix (14). Setting the matrix ( Me(f3e' ~e)] to repre­

sent the experimental results, this last matrix can be equated term by 

term with matrix (14), and solving for f3 and o it is found that: 

~2 ::: 2 2 
u oe + ow - 2o8 6w cos 2(f3e - f3w) (17) 

tan 2(:3 
o sin 2f3 - 6 sin 2.p e e w w 

= 5 cos 2f3 - ll cos Zf e e w w 
(13) 
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m. EX:?ERlMENTAL TECHNIQUE 

3. 1 Equipment. 

To take full advantage of the increase in sensitivity resulting 

.from the combination of optical elements described in the previous sec­

tion. a polarimeter head was designed and buUt. With reference to 

Figures 7, 8, and 9 , the basic movement of the polarimeter (H) is 

the one of the transit head, where the concentricity of the a.xie of rota• 

tlon ls assured by the conical geometry of the bearing aurfacea. 

In accordance with the required movements, two concentric 

graduate circles (G) are mounted on the two independent sections of the 

system. The upper one, with a least count of 0. 01°, records the post• 

tion of the analyzing prism with respect to the lower one. The lower 

graduate circle, with a least count of 1 '• is integral with the polarizer 

(P), the quarter-wave plate (Q ), and the FEM (F). 

Both polarizing and analyzing prisms are calcite Glan- .. .rhompaon 

polarizer&. The quarter-wave plate is a quartz crystal cut to such a 

thickness as to :retard the 5460 R. wavelength by one-quarter of this 

wavelength along its slow axio with respect to the last one. 

The Couette cell (C ) ls the same one used by Sutera(S) for the 

calibration of TMV solutions, with a modified mounting with mlcro­

metdc adjustments for leveling its main axis. 

The FEM (F) was built in such a way that an approximately uni· 

form spherical sheet of current circulates about its axis. Such age­

ometry produces a uniform magnetic fleld parallel to the axis of revo­

lution of the winding. A unlform magnetic field is required to produce 

a unl.form effect throughout the complete cell, so that all the beam is 
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Figure 7. Diagram of apparatus. The dotted line represents the path of 
the beam of light. 
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Figure 8. Overall view of apparatus. 
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,, 

Figure 9. View of polarimeter. 



uniformly retarded, and no errors result from placing the beam at 

different locations with respect to the axis oi rotation. The water re­

quired ia held in place by a lucite tube with strain-free optical windows. 

Special provision is made for trapping small air bubbles that develop 

in time. 

T he system can be rotated as a unit, or each part ind ependently, 

including the quarter-wave plate. Micrometrlc adjustments exist for 

the three parte. A special indexing plate is also provided eo that the 

syotem a.a a unit can be m oved 45° from any attitude, which is required 

for the determination of t he amount o! birefringence. All optical ele­

mento are mounted eo that they can further be micrometrlcally adjusted 

to perpendicularity to the op tical axic of the system. 

The complete polarim eter pivots about the poet {P ) and can be 
0 

swung out of the way of the Couette cell to facilitate its fUline, which 

ls usually complicated by s m all trapped bubbles. The d rive (D ) of the 

inner rotor consists of a synchronous motor, t.wo pairs o! interchange­

able gears, and one interchangeable worm and gear reduction unit. 

Motion ia transmitted to the cell through a timing belt that straddleo 

t he post. 

The optical bench m ounts a concentrated mercury arc lamp and 

a system of lenses that produce a narrow beam of light focused at the 

exit window oi the filled C ouette cell. The Couette cell uses a rotor 

which clears a 2 millimeter gap, while the cross section of t he beam 

through the test section is 0. 5 mllllrneters. to eliminate the possibility 

of reflections from the walla. A Wratten No. 77 optical fUter selects 
0 

the 5460 A line o! the mercury diecharge. 
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The FEM is driven by a variable tl'ans!ormer from the 120 

volt, 60 cycl~ building supply at such a l evel as to produce about 5° 

modulation-

The photoelectric aystem, bullt by Applled Physics Corporation 

of Monrovia, consists of a photomultiplle~:, an amplifier whose gain is 

regulated by the amount of light that the photomultiplier receives and 

which is tuned to the 60-eycle frequency of the signal transmitted by 

the analyzing prism, and a synchronous switching rectifier driven by 

the same supply tha.t drives the FEM. 

The output of the amplifier gives a direct measure of the amount 

of unbalance between the location of the optical assembly and the optical 

axes of the system. Sync hronous rectiftcatlon is so arranged that the 

output s i gnal changes phase in traversblg the null, giving a very clear 

indication of the position of the null. 

The mercury arc is an Osra.m lOOW, and ls driven by a DC 

power supply specially built for the purpose. 

The whole laborat ory is air conditioned and kept at Z0°C .:t 1°, 

and the Couette cellls thermostatted by c i rculating water kept at 

Z0°C.!. 0 . 01 by a Sargent temperature regulator that operates in thermal 

push- pull. 

3. 2.. Alignment. 

The system is first aligned along the direction of gravity by 

means of a precision level. The axes of the polarimeter and the Cou­

ette cell are aligned in sUch a manner. The axis of rotation of the po­

larimeter is made parallel to the direction of gravity by locating a level 

on either graduate circle and adjusting Us orientation untU no change in 
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the position oi. the bubble is detectable in any attitude of the system. 

The main axis of the Couette cell is aligned by withdrawing the cover 

and adjusting the cell Wltil a level placed on it shows the same bubble 

position for all positions of the level. 

The optical elements are first adjusted ln the horizontal plane 

and their cylindrical moWltlnge are made concentric with the axis of 

rotation of the system by means of a precision dial gauge. 

Finally, the surfaces of the polarizing prisms and the quarter­

wave pl ate are made perpendicular to the axis o1 rotation. by adjusting 

thelr tilt Wltil the reflected image o£ the cross hairs of an a.utocolimator 

shows no relative movements as the whole assembly is rotated. 

Once the optical system is aligned. a beam o£ light from the 

mercury discharge arc is so arranged that ita circular cross sections 

at the e ntrance of the polarizer and the exit o£ the analyzer prisms 

are well clear of their edges. The beam I s made to focus at the exit 

window of the fUled Couette ceU. A 0. 5 millimeter diaphragm at the 

entrance window of the Couette cell is located in such a manner that 

the light going through it is centered in the 2 millimeter gap. Because 

o£ the r elative size of the source to the entrance diaphragm. the cross 

section of the beam is uniform throughout the test section. F or this 

adjustment the Couette cell ls moved in i t s horizontal plane until the 

beam ls centered ln the gap. 

In addition to the mechanical ali gnment, the system is aligned 

phot oelectrically , in the sense that quadra ture between the two prisms 

and ali gnment of the quarter- wave pl ate is made using the photoelectric 

system as a detector . 
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Once the faces of t11e two prisms are aligned to perpendicularity 

to the axis of rotation and the beam oi light is made concentric with 

this axis, a.nd before putting the Couette cell and the quarter-wave plate 

in place, the position oi quadrature of tbe two prisms ts noted at dU­

ferent attitudes of the system. I£ no c orrection must be made at any 

attitude, the two prisms are considered parallel. The sa:me procedure 

is used with the qua.rtcr·wave plate, where this is located tn the appro­

priate direction by rotating it untU e,atnctton is obtained when the two 

prisms are in quadrature. Finally, the Couette cell is put in place 

without windows,and the procedure is again repeated to make certain 

that reflections from the walla do not Introduce spurious effects. 

The final alignment is electronic, where the phase of the 

switching relay of the amplifier is so adjusted that it exactly rectUles 

the sine wave that constitutes the output of the amplifier. 

3. 3 Data :Handling. 

:Preliminary experiments with solutions of Bentonite and TMV 

indicated that the system constructed wa.s capable of a ccm.sldera.bly 

greater accuracy than any instrument previously built, provided that 

the effects of extraneous birefringences introduced by the wtndov.rs 

eould be properly accounted for or eliminated. 

Considerable attention was given to the matter of obtaining 

strain-free windows. The materials tried werel annealed glaaa, an• 

nealed fused quartz, and microscope cover slides. To the present, 

no material or method of processing has yet been found sucll that the 

instrument under consideration cannot detect the presence of extrane­

ous blrefringences. To obtain satisfactory windows, large quantities 



of these were tested, and the best palra were selected. 

At low concentrationfl and velocity gradients, the efiect of the 

windows is significantly large when compared to the bi refringence of 

the solutions, which prompted the development of the corrections, 

formulas (17) and (18), and the refinement o£ the measurement tech­

niques. The latter were found to be limited by the· resolution of the 

graduate circles and verniers. 

To determine the amount of bi refringence of the windows and 

the location of their optic axis, use l s made of equations ( 15 ). W lth 

the Couette ceU filled and all windows in place, the p osition at which 

the analyzer makes the photoelectric system traverse the null is noted 

at successive attitudes. The points so obtained describe a sinusoidal 

cu rve when plotted versus the attitude of the polarizer. To establish 

the position of the nodes, i . e . , the isoclines of the windows, the an-

alyzer posi tions z1 are assumed to be related to a function yl of the 

attitude x1 : 

such that the squared error between the assumed function and the data 

points is a minimum; that ls to say. c hoosing A. B, and C such that 

the function 

i s a minimum. Differentiating F wlth respect to A, B , and C , 

setting the results equal to zero, and solving for A, B, and C, yields 

the fun<:tion that best £ita the data by the method of least squar es. The 

amount of birefringence and angle of i socline of the windows are then 

obtained as: 



1 c = a arc tan- B 

In actual practice, the position of the null z
1 

is determined at euccea-

o 0 sive intervals of 10 • throughout the ZOO that constitute the range of 

the instrument. The data is then reduced by computer (Burroughs 220) 

by a fixed program developed for the purpose. For weakly birefringent 

solutions, particularly at small velocity gradients, the data ls gathered 

by the same method and then corrected for the effect of the windows by 

means of equations ( 17) and ( 18 ). 

It has been found that the measurement of the windows must be 

made for every experiment, even when a number of runs occur in 

rapid succession. This is due to the fact that the birefringence of the 

window changes through time, and that -since the windows must b e re­

moved at each experim ent for cleaning, the positions of their isoclines 

also change. 

In runs where the concentrations and gradients are sufficiently 

large so that they p roduce effects much greater than the one of the 

windows, the simpler and more rapid technique of looking for the null 

with polarizer and analyzer in quadrature ls used. 

Since it is not practical to determine the position of the isoclines 

in the windows at every run. and then establish the quadrature between 

polarizer and analyzer, setting the polarizer parallel to the axis of the 

windows so that their effect vanishes. a correction must be made to 

allow for the small error in quadrature which constitutes the amount o! 

birefringence in the window at the reference location where quadrature 

is estabUshed. 
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birefringence of solution and windows 

retardation 

N R 
Attitude of polari zer 

Figure 10. Effect of the error in quadrature e on the posit ion of 
the i socline and the measured amount of retardation . 
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In this correction. both the bire.fringences of the combined sys-

tem o.f windows plus solution and windows alone are assumed to be 

represented by sinusoidal functions of the attitude of the polarizer. 

With reference to FigurelO, the reference attitude R ls chosen so 

that it is fairly close to the isocline of the window, whose position is 

not yet avaUa.ble. Setting polarizer and analyzer in quadrature at this 

position. there will be a small error ~ between the position at which 

polarizer and analyzer are locked and the true location of quadrature. 

With reference to FigurelO, when the rotor is set in motion. the solu-

tion exhibits lts birefringence so that when the null is again sought by 

rotating the assembly of polarizer and analyzer, this will appear at a 

' location X where the error due to the window exactly balances the 

birefringence of the combined system. Once the data for the window ls 

reduced, the error tn quadrature becomes ava.Uable, and the actual 

position of the isocline of the system ls given by the relation: 

X = x' • t arc sln(N-R) 

The amO\Ult of SBR muot also be corrected for the amount of 

retardation represented by the error ln quadrature between both 

prisms. Since the error l s equivalent to shifting the base line of a 

sinusoidal curve, the correction is simply additive. 

A sample data. sheet and the corresponding data reduction and 

correction are included in the Appendix. 



I V. EXPERlr..fENTAL RESULTS 
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Figure ll. Electron microscope photograph of a mixture of TMV 
and SBMV. Magnification: 200. 000 • 
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Sample I. TMV lot 0504, 0510-61 (lot 1 ), at 0. 20 per cent in 0. 01 M 
Versene, pH 7. 5, 24,630 RPM, 60° bar. Exposures at speed and at 
4 minute intervals thereafter. Some evidence of presence of very 
small amount of aggregate. 

Sample 2. TMV lot 0609-61 (lot 2), at 0. 20 per cent in 0. 01 M 
Versene, pH 7. 5, 24, 630 RMP, 30 mm cell, 60° bar. No evidence 
of presence of aggregate. 

Figure 12. Ultracentrifuge runs on TMV samples. 
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Figure 13. Electron microscope photograph of SBMV. Magnifica­
tion: 3 00. 000 . 
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Experimental Results 

0 /o TMVby 
0 /o SB MV by Ratio Retardati on Viscosity 

weight weight TMV/SBMV per unit Centipoise 
velocity 
radlent 

sec / em 

o. 37 5 2. 30 1. 142 

o. 275 1. 094 

0 . 264 1. 61 

0. 194 1. 16 

o. 190 1. 066 

o. 181 1. 08 

o. 101 1. 037 

0 . 096 o. 57 

1. 020 1. 037 

o. 465 none 1. 018 

0 . 244 1. 008 

o. 121 0 . 988 

0 . 359 o. 123 2. 92 2. 05 1. 142 

0. 230 o. 079 2. 91 1. 28 1. 074 

o. 101 0 . 035 2. 97 o. 58 1. 037 

0 . 382 0 . 382 1. 00 2. OS 1. 133 

0. 275 o. 275 1. 00 1. 45 1. 104 

o. 333 1. oao o. 31 1. 85 1. 152 

0. 166 o. 540 0. 31 0. 92 1. 070 

0 
Note: all experiments were conducted at 20. 00 ~ 0. 01 c. All solu -

tions ln 0. 01 M Versene, at pH 7. 4 • Viscosi ty of Versene solution: 

0. 988 centipoise. All mixtur es were made with TMV (l ot 2.). 
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• TMV lot 1. 

0 TMV lot 2. 

0 5 10 15 20 25 30 

Velocity gradient, aec -l. 

Figure 14. Amount of retardation of aolutiona of pure 
tobacco mosaic virus, a a a !unction of velocity 
gradient, at different concentrations by weight. 
Concentrations were determined with a Zeiae 
PMQ II spectrophotometer. 
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Fast axis 

Slow axis 

0. 181% 

Slow axis 

0, 2.66a;o 

Fast axis 

Slow axis 

0 5 10 15 2.0 25 30 

Velocity gradient, sec -l 

Figure 15. Experimental results. Angle of isocline of 
solutions of TMV lot 1 aa a function of velocity 
gradient . The stream line is at X = 0°. 
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eolutione of TMV lot 2 ae a function ot velocity 
gradient. The stream line ie at X = 0 . 

-() 

-
-

-
-""-.) 

-
-
-
-



0 

I 

\ 
' 
\ 

\ 

-44-

0 o. 1 o.z 0.3 0.4 

Concentration, o/o by weight. 

Figure 17. Amount of retardation per unit 
velocity gl'adient as a function of;, 
concentration of ™'3 in o/o by weight, 
or grams per 100 em . 
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Figure 18. Typical data on the amount of retardation of 
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velocity gradient. 
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Angles of isocline corresponding to the experiments 
shown in Figure 18. The st.ream line as at X = 0°. 
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0 TMV /SBMV = 2. 9 

0 TMV /SBMV :c 1. 0 

• TMV /SBMV :s 0. 3 

Pure TMV 

0 0. 1 

TMV concentration, % by weight. 

Figure 20. Amount of retardation per unit velocity 
gradient aa a function of concentration of 
TMV in o/o by weight, of mixtures of TMV 
a.nd SBMV. The ratios by weight of TMV 
to SBMV are indicated. The pure TMV 
line ie obtained from Figure 1 7. 
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0 1 2 3 4 o. 5 6 7 8 9 

Concentration of SBMV, o/o by weight. 

Figure 21. Specific retardation of TMV -SBMV mixtures, 
at a TMV concentration of 0. 3%, as a function 
of the amount of SBMV in the mixture. 
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0. 150 

Pure TMV 

o. 100 

0 TMV / S BMV = 2. 9 

0 TMV/SBMV = 1.0 
0.05 

• TMV/SBMV = 0.3 

+ 

Pure SBMV 

0 
0 0. 1 0.2 0 . 3 0.4 0 . 5 

Concentration, o/o by weight . 

Figure 22. Specific vi s c os i t y of TMV, S BMV, and m ixtures of 
TMV and S BMV, as a function of concentration. 
The v i scos ity of the solv ent (water+ versesne ) Tl 
is 0. 9 98 centipoise. The spetific v i•coaity of 

8 

the mixture• is plotted as a funct i on of the 
concentration of the TMV. 
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+ 
55 0. 359o/o TMV, 0. 123% SBMV 

53 
Fast axis 

51 + 

49 • + 
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>< • • 47 -., 
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u 45 0 
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~ 
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< 47 • + 
Slow axis 

39 + 
+ Data 

37 • Data corrected for error in quadrature 

35 0 Data corrected for birefringence of windows 

+ 
0 5 10 15 20 25 30 

Velocity gradient, em/sec -1 . 

Figure 23. Effect of corrections on the position of the angle 
of isocline. 
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V. DISCUSSION OF EXPERlM:ENTAL RESULTS 

AND CONCLUSIONS 

Some of. the most recent and accurate meaaurem.ente of the SBR 

of TMV solutions made by Leray<9 > indicate that at low shear rates and 

concentrations, some departures from the results p redicted by the 

P eterlln and Stuart theory appear. Observations show that the angle 

0 of isocline, even though it tends towards 45 when the velocity gradi-

ent approaches zero, does so up to a certain point and then starts 

leveling off at the lower velocity gradients. 

Assuming that the phenomenon ie not due to extraneous bire­

fringences, the abnormal behavior of the angle of isocline can be ex­

plained by assuming that at the low velocity gradients there exists in 

the solution a partial structurization of the TMV particles Vllhich le bro­

ken up at the higher shear rates. This structurizatton can be p roduced 

by weak chemical bonds among the particles, which would tend to form 

some sort of organization of the material. Evidence of such a. phe­

nomenon was found by H-earst a.nd Vinogra.d(lO) in experiments made 

with TMV in t he ultracentrifuge, in which t-he sedimentation behavior 

was found to be strongly concentration depend ent. To explain their re• 

sults, they tentatively proposed that an alignment is brought about 

among the macromoleculea as a result of chemical interactions among 

them. In SBR, the result is such that, even though the forceo tending 

to align the particles are small, a number of particles align themselves 

simultaneously as a Wlit, the net result being that there is a larger 

quantity of aligned material, which produces an optical efiect equiva­

lent to the cme found at t he higher shear rates. lt must be noted, 
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though. that if such an effect exists, it must be of such a ftature that it 

does not affect the amount of birefringence, since no evidence of this 

effect ts found in analyzing the data on the amount of birefringence. 

To test these ideas, a number of sampl es of concentrated TMV 

solutions were obtained from the Department and Laboratories of Nu• 

c l ear Medic ine and R adiation Biology, of the School of Medicine, o£ the 

University of California at Los Angeles. · These samples were highly 

monodleper se and very uniform in length, as attested by the ultracen­

trifuge runs made on them, shown tn F igure 12 and the electron micro­

scope photograph shown in F igure 11. These samples were dUuted to 

concentrations ranging from 0. 4 per cent to 0. 1 per cent by wei ght, in 

0 . 01 molar Versene at a pH of 7 . 4 • The coocentration of each dilution 

was determined with a Zeiss PMO U spectrophotometer. A number of 

determina.tione of the SBR of these solutions was made a.t velocity gra­

- 1 
dients ranging from 0. 3 to 31. 1 sec. • 

The experimental results showed that the amount of SBR of these 

TMV solutions is linear w lth vel ocity gradient, as shown in Figure 14 

and as predicted by theory. A small departure from linearity was ob· 

served a t the higher velocity gradients. These results also confirm that 

the amount of specific SBR , defined as the amount of retardation per 

unit veloclty gradient, is l inear wtth respec t to concentration. as shown 

tn Figure 17. 

Concerning the angle o£ isocline. n o satisfactory proof was ob· 

tai ned to substantiate the claim that a depar ture from the P e terlin and 

Stuart the ory exists at low velocity gradients . It was indeed observed 

that a departure exists if the data i s plotted directly. ao shown in Fig-



ure 23 where a representative case is shown. but this departure dis• 

appears when the corrections for the error ln quadrature and the bire­

fringence ol. the window are applied. 

The position of the streamline with respect to which the 45° 

location is established was always determined by averaging the posi­

tion of the isoclines of the fast axis of the solution in the clockwise 

direction of rotation. and the slow axis in the counterclockwise direction 

of rotation. This method yields the position oi the streamline to a. de­

gree of accuracy comparable to the one of the determination of the iso­

cline, which is estimated to be of the order of.:!:. 0. 10° at the lower 

velocity gradients. It has always been observed that in linearly extra­

polating the isocline to zero shear, the value for zero shear always 

falls short of the 45° value predicted by the theory, the discrepancy 

being most severe in those cases where the laocline departs more 

radically from the predicted monotonic approach to the 45° value. 

This behavior is considered to be due to effects of extraneous bire­

fringences not accounted for in the simplifications made to arrive at a 

directly applicable correction. 

In view of these results, it is apparent that further refinements 

of the mea.surtng techniques will be possible if a method is found for · 

eU.mlna&g the e>..•tl•aneous birefringences ol. the windows. Due to this, 

consideration is being given to an apparatus to be buUt in which the 

llquid samples are contained in place by the surfaces of the optical ele• 

mente such as the polarizer and the quarteJ"-wave plate, in order to 

eliminate as many sources of stray birefringence as possible. 

Taking into account the difficulties Introduced by extraneous 

biref:ringences, the data of the SBR of the TMV solutions was fotind to 
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permit detenntnations of the angle of isocline accurate to one degree 

for a retardation per unit length of 1 x 10•9 • As a comparison, a typ­

ical instrument f.or SBR studies, such as the one built by the Rao In­

strument Company, yields accuracies of the order of one degree per 

-8 7. 5 x 10 relative retardation as descll>ed by Edsall, Rich. and Gold-

stein ( 11), and the same Rao instrument modified for photoelectrlc ob­

(1 Z) servatlon by Zimm only increases t..lle accuracy to one degree per 

7 x 10•9 relative retardation. 

In view of the above results, 1t was decided to apply tho informa­

tion obtained on the SBR of TMV; and the measuring technique developed, 

to the question whether for dUute solutions !or which existing theories 

are supposed to be valid, there are signlflc:ant hydrodynamic interac­

tions among particles which might explain the discrepancies observed 

between different methods for characterizing macromolecules, such a.a 

viscometry, SBR. sedimentation, and transient Kerr e!fect. 

That hydrodynamic interactions might contribute significantly to 

the tnacroscopic characteristica of dilute solutions of submicroscopic 

particles was proposed by Collins and Wayland(l3 ) to explain the vts· 

coelty behavior of mixtures of TMV and polystyrene latex spheres, 

(PSL), ae a function of the concentratl~ of both particles. In the first 

phase of the experimental program of whlch this study is a part, they 

found that the specific viscosity of mixtures of TMV and PSL was 

higher than that predicted by the elmple addition of the specific vis• 

cosities of the components by a term proportional to the product of the 

concentrations of the two particles. In expla!nSn.g this result, they 

proposed that the presence of the spheres interferes with the tendency 
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of the rods to assume an orderly rotational motion in shear flow which 

leads to an increase in viscosity. 

If the orderly rotational motion of the rod·like particles is 

tampered with by a random hydrodynamic lnteraction,such as the one 

that would be produced by the presence of spheres, a decrease of the 

SBR of the mixture with respect to the SBR of pure TMV solutions at 

the same concentration should be observed, since no direct contribution 

to the SBR of the mixture can be expected from the spherical particles, 

which show no optical asymmetry regardless of orientation in shear 

flow. 

To see what infot-mation could be obtained from mixtures of 

TMV and spherical particles, lt was decided to use a spherical virus 

compatible with TMV, since the PSL had proven to have a surface chem-

istry that ha.d produced considerable difficulties in previous expert-

ments, and furthermore was so large that tt would have scattered too 

much light for good optical experiments. The choice !ell upon southern 

bean mosaic virus (SBMV), which is a spherical virus of 2. 52 x 10• 6 em 

diameter. 

A program was started in the laboratory to secure this virus 

by planting a number of southern bean plants and infecting their leaves 

with an avallable sample of the virus. After an appropriate tirne, the 

leaves were collected and the virus extracted according to the technique 

described by Konrad
04>. E lectron microscope photographs o£ the ob· 

tained vlrus show that it ls quite pure, as can be seen in Figure 13. 

The presence of some particles that have a dark center is attdbuted to 

an artifact of the electron microscope. 
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The two viruses were mixed in such proportions as to obtaln 

th1•ee maln sets of solutions where the proportion by weight of TMV to 

SBMV was zoespectively 3:1 , 1:1, and 1:3 , at a nominal TMV concen­

tration of 0. 3 per cent by weight. Experiments were made at the 

original cOJK:entrations and at dUutions of the original mixtures. 

To interpret the information obtained from these experiments, 

attention must first be given to the theoretical results given by equation 

(A60 ), which predicts that the amount o£ reta.J."dation is a linear functioo 

of the viscosity felt by the particle . This viscosity, according to the 

best present theories, seems to lie somewher e between the viscosity 

of the matrix fluid and that of the solution. That the amount of SBR is 

a linear function of the viscosity was checked experimentally by Sutera 

(loc. cit. ), who purposely altered the viscosity of the solvent by using 

an 85 per cent glycerine solution for the matrix fluid, which. at Z0°C, 

is approximately 100 times as viscous as water. He observed a ten­

fold increase in the amount of SBR for equivalent concentrations and 

velocity gradients. That the observed increase is not of the same 

order of magnitude of the increase in viscosity is explained by the fact 

that the amount of SBR also depends on the df.fference in index of re­

fraction between the particle and the matrix fluid. The lesser the dif­

ference the less marked the effect, as ln this case, where the index 

of refraction of the mixture of glycerine and water is considerably 

higher than the one of water, which results ln a smaller difference with 

the index of refracti on of the particle , and thus a smaller effect. 

It s hould further be noted that the addition of a small number of 

rigid spheres to a Newtonian fluid increases the relative viscosity of 
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Scale diagram of the relative proportions and sizes be­
tween particles in the mixtures of T M V and SBM V used, 
for a constant T M V concentration of 0. 3°/o by weight. 
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the mixture i n a manner proportional to the volume fracti on occupied 

by the spheres, as predicted by Einstein(lS) ln a linear theory where 

second order effects are negl ected . This consideration strongly eug-

gests that lf no other mechanisms are present. the SBR of mixtures of 

rods and spheres would be greater the l arger the concentration of 

spheres - for equal concentrations of rods - because of the increased 

viscosity of the euspendinc matrix fluid. As shown in F igures 20 and 21, 

the experimental evidence shows that the opposite effect takes place. 

To analyze the reault obtained, attention m ust be given to the 

relative sizes and quantities of particles present. The moat recent 

studies on T MV made by Boedtker and Simmons ( 16 ) indicate that its 

6 - s molecular weight is 39. 0 x 10 and that its dimensions are 3 . 00 x 10 

em length by 1. 80 x 10· 6 em diameter. Thua. at a concentration of 0. 3 

per cent by weight. and at room temperature, there will be approxi-

13 3 
mately 4. 63 x 10 particles per em . 

The molecular weight of SBMV is 6 . 63 x 10
6

, according to Mil­

ler and P rice(l?}. Therefore, in a 3:1 mixture of T MV and SB MV, 

when the concentration of T MV is 0. 3 per cent by weight, there are ap-

13 3 proximately 8 . 98 X 10 particles per em , or twice as m any particles 

of SBMV as of TMV. 

Referring to F igure 24, where relative sizes and proportions of 

these particles are shown to scale for the three ratios used, lt ls pro­

posed that at the 3:1 ratio of T MV to SBM V the T M V particle essen­

tially ignores the effect of the addition of spheres to the bulk viscosity 

of the matrix tluid and moves according to hydrodynamic forces gov­

erned by the viscosity of the pure solvent in i ta immediate surroundings. 



The decrease in SBR is then due to the random interaction between the 

hydrodynamic fields surrounding both species of particles. Since the 

translational movement of the SBMV can be considered to be completely 

random, the interaction appears as a tendency towards d isturbing the 

orderly rotation of the rods, and thus as a decrease in SBR. This ef-

feet seems to be linear with concentration when the relative proportions 

of the p articles are maintained. This interpretation of the results cor­

roborates qualitatively the findings of Collins and Wayland (loc. cit.). 

To further test these conclusions, the experiments with the 1:1 

and the 1:3 ratios by weight were carried out. For the 1:1 mixture it 

was found that the SBR decreased further, whUe for the 3:1 ratio the 

trend reversed itself. This last result is particularly significant, since 

at this proportion of the mixture there are approximately 16 SBMV par­

ticles per particle of TMV, and very likely the TMV particle can no 

longer ignore the increase in bulk viscosity of the matrix fluid produced 

by the presence of the spheres. These results are shown in F igure Zl 

where the specific SBR is plotted as a function of the concentration of 

SBMV for a constant TMV concentration of 0. 3 per cent by weight. 

Since these results depend somewhat on the nature of the vis-

cosity of these mixtures, their viscosities were measured at the labo-

ratory of P rofessor E . W. MerrU1 at the Department of Chemical 

Engineering of the Massachusetts Institute of Technology, where an 

' instrument has been developed and built that is able to measure the vts­

cosity of small samples of the order of Z cm3 at the velocity gradients 

-1 characteristic of these experi m ents, l. e, from 0. 3 to 30. 0 sec. . 

The results ob tained from these measurements are shown in 



F igure 22. It c an be seen that within the accuracy of the technique, no 

anomalies appear ln the viscosity o£ either the pure T MV and SBMV 

or the mixtures of both, which seems to have a viscosity roughly equal 

to the sum of both viscosities. 

The above interpretation of the results ia qualitative and pre­

sents some difficulties. It can be argued that since the hydrodynamic 

effect o£ the SBMV is random, the net effect that it weuld have on the 

orderl y rotation of the T MV would averase out to zero. To see whether 

this is the case, it should be pointed out that simultaneous interactions 

that cancel each other are a very unlikely event in the pres ent system. 

Secondly , for the net effect of the interac tion o.f the spheres to cancel 

out, the num ber of particles that are knocked out of the orderly rota­

tion should be exactly balanced by an equal number of particles which. 

being ln a rand om state of motion due to the B rownian motlan of the 

surrounding fluid, are knocked precisely into orderly rotat ion. Quali­

tativel y , it appears that all random interactions with oriented particl es 

are unfavorable events, and that only a small number of rando m lnter­

a.ctlOIUI with randomly oriented particles are favorable events: as a 

whole, the unfavorable disorienting effec t is predominant. 

A second con sideration is t herm odynami c ln nature. If the net 

effect o£ the p resence o£ t he SBMV is to increase the randomness of the 

rotational motion of the rods , the average rotational kinetic energy of 

these would h ave to increase at t he expen se of the kinetic energy of the 

spher es. This ls equivalent to saying that the net effect l s to "heat" 

the T MV particle while " cooling" the SBMV particle, whic h ie in con­

tradic tion to th e Second L aw of Thermodynami cs. In analy~lng this 
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concept, it must first be pointed out that such an argument applies 

thermodynamic laws to single particles of a system constituted by a 

very large number of interacting particl es. If thermodynamic consid ­

erations a r e applied to the analysis of the results, it ls the total en­

tropy of the system that should be considered. Considering the entropy 

of the pure TMV solution to be a measure of the order in the system, 

1t is fOWld that the addition of the spheres inc reases the disorder of the 

system, and the system passes from a state of comparatively low en­

tropy, ln which a significant number of particles have ordered rota­

tional m otion, to a state of higher entropy where a l esser number of 

particles possess this order. Since this ls the direction in which 

natural phenomena occur, i t should be concluded that the system passes 

from a low probabUity state to a higher probabUlty one, and thus no 

violation of the Second Law occurs. 

In trying to reconcUe the apparent increase in the temperature 

of the TMV particle at the expense of the energy of the spherical parti­

cle with the above consideration, the compl ete system must be analyzed. 

First lt must be noted that the total ldnetic energy of the rod need not 

change because of the random interaction. but as an alternative, a 

redistribution within its various degrees of freedom could t ake place. 

It must also be considered that a certain amount of mechanical energy 

is expended in keeping the rods aligned. If the spheres act as obsta­

cles to this alignment, the mechanical energy expended wW appear 

directly as thermal energy, which would be another source for the en• 

ergy that the TMV rod has to acquire if lta average rotational kinetic 

energy must increase. In a sense, it would seem that the oriented 
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TMV particle is in a " colder11 state which is brought to temperature 

through the action of the spheres. 

An altogether different mechanism could also account for the 

observed results. lf it ls accepted that there is a certain amOWlt of 

structurlzation in the pure TMV solution. it ls possible that the 

Brownian motion of the spheres wUl break lt up. Without going into 

the question of what would be the optical properties of the structurized 

material, it is clear that the larger the aggregation. the heavier the 

unit that moves as a whole, and thus the less the effect of the Brownian 

motion of the surrounding fluid. This results in greater ease of align­

ment. If a structurization exists, it should also be broken up at the 

higher velocity gradients and a. departure from linearity of the amount 

of SBR should be observed. This is indeed the case, as can be seen 

in Figure 14; however, the same effect is observed in the solutions of 

mixtures of TMV and SBMV, and thus the argument does not seem to be 

conclusive. 

In concluding, it should be remarked that both viocosi ty and SBP.. 

experiments indicate that the explanation of the effects can be found by 

considering the hydrodynamic interactions between the particles. On 

the other hand, ultracentrifuge studies on these systems put in evidence 

anomalies that could be due to structurize.ti~ It is most likely that 

both phenomena are present, together with other effects, such as elec• 

trostatic forces between the particles, which are not put in evidence by 

these experiments. In view of this, it is very likely that additional in­

formation could be obtained from studies such as the transient Kerr 

effect and the combination of SBR and the Kerr effect. 
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APPENDIX A 

Theoretical Derivation of the SBR of a Solution 

of Long Slcnde r Rode 
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APPENDIX A 

THEORETICAL DERIVATION OF THE SBR OF A SOLUTION 

OF LONG SLENDER RODS 

A. 1 Motion of a Particle According to l;lydrodynan"lic Theory. 

The theoretical description of the hydrodynamic behavior of 

small particles was derived by Jefirey(lS) for the general caoe of an 

ellipsoid, and solved in detaU for a linear velocity gradient flow con­

figuration. 

In applying the Navier-Stokes' equation to the motion of small 

particles with small velocities, attention must first be given to the 

relative size of the particles. Accordingly, the minimum dimension 

of the particle must be sufficiently larger than the one of the molecules 

of the fluid in which it is immersed , so that the fluid can be treated as 

a continuum hydrodynamic medium. 

To simplify the equations and boundary conditions, velocities 

are assumed to be small, so that inertia terms can be neglected,and 

concentrations are assumed to be small, so that the disturbances ln the 

flow field due to the presence of a particle do not extend to neighboring 

particles. The particles are also assumed not to have any tendency 

towards aggregation, · i. e. , it is assumed that no forces act among them. 

The motion of the fluid is assumed to be steady and varying in a 

scale that is large compared vvith the dimensions of the particles. Un­

der this condition, a particle immersed in this flow field wW assume 

the velocity of translation of the fluid that lt displaces, and lts linear 

motion wUl be uniform. 



Expressing the undisturbed velocity of the fluid in the region 

surrounding a particle in terms of a Maclaurin's series expanded about 

the origin of coordinates, each velocity component u1 is given by the 

following expression: 

2 
\ aul \ a ul 

ul = uio + L lrX:""J xJ + L axiBx. xixj + · • • 
j j J 

Since the pat'ticle is assumed to be small eompat'ed with the scale of 

variation of the motion in the fluid, the second and higher degree 

terms are assumed negli gible in the vicinity of the particle. The un­

disturbed motion of the fluid is then given by the following system of 

equations: 

L 
au1 

u1 = u1 + ~ x. 
o . oxj J 

J 

(l = 1, Z, 3 ; j = 1, 2, 3) • 

By the following algebraic manipulation: 

the strain and rotation components o£ this motion are identified. Since 

the scale o£ the phenomenon ls small, all differential coefficients are 

assumed constant and abbreviated as 

J- ( au1 + auj ) 
eiJ" = . ~ ~ = shear strain = .. oKJ ux1 

(
au1 :uj ) 

rij = ~ Dxj - xi = rotation = - rji 

and the motion of the fluid le given by 
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ui = uto + 1 eijxj + ~ rijxj 

or 

(Al) 

where 

Let xi, xz• x3 be a system of cartesian coordinates fixed to the a.--de 

a 1, a.2, a 3 oi. a particle and moving with it. The surface of the particle 

(assumed to be an ellipsoid) will be described by: 

x' 2 x' 2 x• Z 
1 2 3 

= ---z- + --z + ---z - 1 
al az a3 

= 0 • (AZ) 

The axes x}• x2, x; rotate with speeds wi, '''2• rt·; with respect to the 

x 1, x 2, x 3 system of coordinates fixed in direction in the fluid but m ov­

ing with it. The equations of motion in the rotating system are then of 

the .form 

u vr 2u• • ~ = p(Sul- e• ' u' + tt• 'u! ) 
i 1fX[ 1Jr kj j.K (A3) 

where u , p , and p are respectivel y the viscosity, density, and 

mean pressure i n the fluid. The spins wl are the components o£ the 

vorticity in the fluid, produced by the motion of the fluid which causes 

the particles to rotate. They are of the form 

aujt au! 
ul z (trxj · rxt); 

therefore, the products (u..juk) are of the order of the squares of the 

velocities, and are again neglected. Aiter this simpllflcation, the equa-

ttons of motion reduce to: 



2 
ll\1 u' l =~ 

1 

and 
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au• 

~axi = 0 • 

1 

{A4) 

A solution of this system of equations must now be found such that it 

agrees with equation (Al) at a large distance from the origin. and that 

reduces to 

u' = w'x! • 111 1 x' i j R k j 
(AS) 

on the suriace of the ellipsoid. 

Since the boundary conditions a.re epeclfled on the surface of 

the ellipsoid, the solution for the potential "vlll be sought in an ellip· 

soida.l system of coordinates. F ollowing Bateman( 19>, a system of 

coordinates related to the equation 

3 2 

I: 
8 

X 
0 = 1 

ls used. where the x
6 

's are rectangular cartesian coordlnatee; T is 

a variabl e parameter; and (a
8 

2 + -r) are the squares o! the semi-axes 

of a general ellipsoid. 

In order to solve Laplace ' s equation, the following function ls 

constructed; 

where 

F(T) = 1 • 

3 2 
X L s 
2 

a +,. s 8 

3 

P(T) = 11 (T • ~i) 
i 

3 

0 (.,.) = TI (,. + a 1
2

) 

i 

(A6) 



and where the 61's are the roots of equation (A6) and constitute the 

elliptical coordinates. Noting that 

z 
P (·a

8 
) 

xs = - a z 
1JT O (·a

8 
) 

the element of length glven by 

3 

dez = L 
s 

dxz 
s 

can be found as a function of the ~ 's 

yields: 

3 
P (· as z) 

[~ z 1 
2..:: de = 4 a z 
s "9'T Q(· as ) 

• (A7) 

by using equation (A 7 ). This 

dtp r s +a z 
p s 

(A8) 

The cross product terms of the form (~pdl;q) vanish, and equation 

(AS) reduces to 

dl! 2. 
sp ' 

from vthlch it follows that the metric coefficients are: 

In the Gp system of coordinates, Laplace ' s equation can now be writ­

ten aa: 

(A9) 

which has a solution for 

Q ! (g } 80 = constant, 
p~ 

and a general solution of the form: 



-69~ 

0 = -c 

where lc = 1 corresponde to the potential for an ellipsoid. This can 

now be written explicitly in terme of xi , J'i• xj and T as 
co 

where functions of the form 

co 

dT) 

"' - t ' f"' d11 
' ' - X ·"k j l 2 2 2 Z i 1 

J T (aj +'f1H~;. +11)l(a1 '+T))(a2 +T))(a3 +T'l)]3 

abo satisfy equation (A9). 

(AlO) 

(All) 

Jeffrey '(loc. clt. ) assumes that the velocity throughout the flow 

field can now be obtained as a function of the ilret and second deriva-

blll ) - vxr 
J 

(Al2) 

where A, B , c , F , F ', G, G' , H, H' , R , 5 0 T, U, v, W are constant, and u1 

ls obtained from equation (Al). changed to primed coordinate s. 

Since the xi, •s are now the independent coordinates, all deriva­

tives of tlw type Sx{/Sxj are zero, and the system of equations (All) 
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is found to satisfy the equation o£ continuity. 

Substituting the assumed values of ui into equation (A4), it ie 

found that the pressure must be given by 

a2o ~2,..., a2,..., ozr 
( 

1 v Hl ul ) -·1 
p = Po+ 2 A :-:-za ' + B :-:-za ' + C :-7Z + (F + F ' ) ax~tJx~ 

x
1 

x 2 ux 3 

a2o a2o 
+ (G + G ') a ti t + (H + H ') a t 0;' 

x3 xl Y-1 2 

where p 
0 

l s the constant mean pressure at a distance from the ellip­

soid. It should be noted that the expression foWld for the pressure 

does satlofy Laplace 's equation. eu~ required for flows o! this type. 

Substituting 0 1 and 1*r 
1 

and their derivative a into equation 

(Al2), setting T = 0 , comparing term by term with equation (AS) and 

equating coefficients, 15 linear equations are obtained whi ch Wl.iquely 

determine the 15 coefficients. 

Finally, substituting the values found for these cocfficientc into 

equati on (Al2), the velocity in the fluid in the vicinity of the parti cle is 

determined at all points. 

To determine how these velocities act on the p articl e , the 

stresses in the fluid must be found. These stresses, for a.n incompres -

sible iluld, are given by relations of the form: 

' 
(Al3) 

To evaluate now the forces acting on the particle, the appropriate val• 

ues from equation (Al2) are sub stituted into equation (Al3)., T is set 
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equal to zero in order to obtain the forces at the surface of the parti-

cle, and equation (A13) is multiplied by the element of area. on the 

surface of the ellipsoid, which has direction ~· given by the relation: 

n' = V'F 
IV'FI 

x' x' x' 
:: 1 i I + 2 1' + 3 k' --z_ --z ~-

al a 2 a3 
(Al4) 

The force df acting on an element o! area oriented perpendicularly 

to the xt coordinate s is of the for m : 

The forces acting on the element of area n'dS' on the surface 

of the ellipsoid are then given by 

Carrying out the appropriate substitutions, the following expressions 

are obtained : 

x• x' x' x' x 1 

Y 2 ::: ... p
0

P --4 + __ B_P~ ( H ' ~ + B ~ + F -4) - K
0 
2z 

a2 ala2a3 al a2 a3 a2 

Y.., 
.:J 

x' x 1 x 1 x' 

( 
1 2 3 ) 3 

G -z + F ' ---z + C -z • K 0 --z 
al a2 a3 a.3 

(Al6) 

where K
0 

is a constant of no consequence for this development, and 

P is given by 

1 
pz 
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Carrying out the integration of equations (Al5) over the surface of the 

ellipsoid, it is found t.~at the result is zero; thus , no forces act on the 

particle, and this aasumee the translational velocity of the fluid sur-

rounding it. 

Denoting by L 1 the couple with axes "i acting on the particle, 

these can be obtained from e~-preesions of the form 

L - I (x'Y - x! Y }ds ' i- 1 jk Kj 1 

where, upon substituting the terms from equations (Al6) and integrating, 

it follows that: 

L 2 = ~ (G' - G} L 3 :: ~ (H'-H) , (Al7) 

and substituting the values of F , F ', G, G' , H, H ' : 

(Al8} 

where again, ::<1, ¥
2

, K 3 represent constants composed of coeffici ents 

that have been factored, and whoee value is not needed for this devel-

opment. 

Since the particle is only subjected to the forces exerted by the 

fluid on its surface, all the resultant couples must vanish, and fror.a 

equations (Al8) it follows that 
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x" 
3 

x"' 
2 

x' 1 

x' 3 

x' 2 

Figure 25. Tranaformation of the primed system 
of coordinate• into the unprimed 
ayatem by aucceaaive rotation•. 
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2. 2 
(a2 + a 3 )to 1 = 2 2 23 

a2 (1•23 + e23) + a3 (r23 • e23) 

2. 2 
(a3 + al )wz = 

2 2 
a3 (rl3 + el3) + al (r13 • el3) (Al9) 

Equations (Al9) represent the motion of the particle in the undisturbed 

fiuid given by equation (AI). They can be solved exactly for the case of 

one-dimensional laminar motion. such as given by: 

(AZO) 

To obtain the angular velocities of the particles, lt ls convenient to re­

late the coordinates xi , xi• x; fixed to the ru:es of the particle, to the 

coordinates x 1, x 2, ~ m oving wtth the fluid but f lxed in direction. 

The relation between both systems ls given by the Eulerian a.nStea 6 , 

~ , !/1 , which represent a set of rotations of the unprimed system, that 

yields the prime d system. 

These rotations are [see ~re 25]: 1) counterclockwise ro-

tation o£ the x 1, x 2, x 3 sye~tem about the x 1 axis by an angle q, to 

yield the x 1, >t2• x3 system; 2) counterclockwise rotation o£ the x 1, 

"z• x3 system about the x3 axis by an angle a to yleld the xi, "z 1, x3 
system; 3) counterclockwise rotation of the xi, "z 1, x3 system about 

the xJ. axis by an angle * to yield the xi, "i• x; system. These ro .. 

tations can be represented by the following matrix relations: 

1 0 cose sln9 

0 cos¢ = s ine cose 

x" 3 
0 - sin¢ 0 0 
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I . 1 0 0 x' xl 1 

x• 
0 cos •'• sin·! (AZl) z 

x' 3 
0 -aini!· COSl~ x" 3 

so that the transformation matrix between the primes and unprlmed 

system ls given by: 

[

cos f) slnecosq, s~sine 

= -sint3cos tt cos$Coe ~• cos l1-ain·'· slfl4> slnq,cos Pcos i +sin·~ cosq, 

stnesin~· -sinek:os 8cosq,-slncj>aln,~ -slncj>ein•'·cos e+cos •' cosq, 

where each o£ the elements represents the dlJ.oectton cosines of the 

(AZZ) 

transformation matrix 1ij = [L] , such that the direction cosines be­

tween any two axes of the two systems are given by the intersection of 

the respective row and column ln the following configuration: 

X 1 X z. 
x' 1 111 11z 113 

(A23) 
x' 2 1z1 lz.z 12.3 

x• 
3 131 132 133 

and the transformation is given by 

~· = [L].! • 

The flow, as lt appears to the observer, is described by (A20) in the un• 

primed coordinate system. whUe the solution given by equations (Al9) 

results from finding the potential of the ellipsoid wtth respect to the 

primed coordinates; therefore, to continue with the solution, equations 

(AZO) must be expressed ln the primed coordinate eystem ln terms of 

the c oefiicients of the matrix rAJ • 
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To do this, both ~ and ~ are transformed to the Wlprimed 

system of coordinates by the equation 

~ = I L] .. 1[ A](L] :! , (AZ4) 

and equating term by term with t he coefficients of the flow characterized 

by equations (AZO), the following matrix equation results: 

0 

0 

0 

0 

0 

G 

0 

0 

0 

(AZS) 

To solve the above system of equations, use is made of the fact that In 

the matrix [L], the following relation exists between elements: 

(AZ6) 

Computing the left-hand side term ln equation (A25) corresponding to 

the non-zero term ln the right hand side, the expression 

followo. Making use of the relationship given by equation (AZ6 ), it ts 

found that the a1j 's must be in the second order of the direction co­

sines, so that each bracket above can be set equal to G : 

where this expressi on uniquely determines the a.1j •s to be 

a.ij = G 113 1 jZ. • 

which also satisfies the rest of the equations in the system. 

(A2'7) 

Finally, the spins wi of the xl axes must be expressed in 

terms of the E ulerian angles, where the appropriate expression can be 



-77 ... 

found directly from Figure 2! to be 

w} = ~cos + ~· 

Wz :: 0 sin • ~ sin 9 COS ~ 

w; = 0 cos + ~ sin e sin ~~ 

(AZ8) 

The magnitude of the direction cosines is now found by comparing table 

(A23) and matrix (A22) and then evaluating the aij 's • F inally. sub­

stituting the values of the a 1J•e and the wi 's into equations (Al9). the 

m otion of a rotationally symmetric ellipsoid (a2 = a 3 ) is found to be 

given by: 

~ = tGp sinG cos 9 slnl4> . 
q, = !G(l + p cos2q, ) 

where 

(A29) 

(A30) 

. . 
The motions of interest are given by e and q, • The ~ ro• 

tation represeute the spin o! the particle about its own axis of revolu-

tlon and is o! no interest for the present development. 

The result is that each particle is subjected to hydrodyuamic 

effects which result in the motion described by equations (A29) and 

(A30). De!lnlng F(e, cp) as the fraction of particles with orientation 

8, q, , a transport flux density l t can tie defined as the motion of the -sr 

end of the eemlaxis of the particle on the unit sphere centered at the 

center of the particle. In spherical coordinates, this flux is given by 

l -str 

. . = F( 9, q, )( 9e e + q, sln9.!q,) (A32) 

where ! e and .!q, are the usual unit vectors of the spherical system 

of coordinates. 
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A. Z Motion of the P articles Due to B rownian Motion and R otary 

Diffusion. 

In a state of equUlbrium, in the absence of external forces, the 

concentration of a molecular species is Wliiorm throughout a single 

phase. If the concentration is not Wliform, the molecules wUl tend to 

move from regious of higher to lower concentration, as a consequence 

of the Second L aw of Thermodynamics, which indicates that the entropy 

of the system will be a maximum when the m olecules are distributed 

wi th statistical uniformity throughout the aystem. 

Given a d ifference of concentration. a flow will ensue as a re• 

sult of the thermal energy of the molecules, i.e., due to their B rown• 

ian motion. The speed at which a given molecule diffuses ls charac­

terized by its diffusion constant, which is a function of the ehape, size, 

and mass of the molecule, as well as the temperature and viscosity oi 

the medium . 

Brownian motion also influences the orientation of m olecules 

when these exhibit a preferential orientation. In particular, in a sys• 

tem of particles of ellipsoidal shape suspended in a medium where, as 

ln the case under consideration, an external (hydrodynamic) influence 

tends to produce preferential orientations and thie influence is suddenly 

removed, the orientation wUl gradually disappear until the distribution 

of orientation is again completely random. The speed at which com­

plete randomness ls achieved from a given distribution of orientation 

is characterized by the rotational diffusion constant. 

Letting Jcu.u be the flux densl~ of orientation o£ a population of 

molecules ln which a distribution of orientation F (e, cj)) exists, then the 

flux density is related to F by the following equation: 
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.!cltff = - D 'V F ( e. <M (A33) 

where \1 ls the gradient operator in spherical coordinates w ithout r 

dependence. This equation defines T) , the rotational diffusion con-

stant. 

P errin(ZO) has found the following explicit expression for the 

rotary diffusion constant for ellipsoids of revolution 

?.l T 2al D 
D = :J t 3 (- 1 + 2 t n a-) = _.e. 

16w'1m a 1 Z '1m 
(A34) 

where k is Boltzmann's constant, T is the absolute temperature, 

and 'I" is the viscosity of the medium. The last equality is s hown m 

for future reference to illustrate the form o£ dependence of the d if!u-

ston constant on the viscosity. 

A. 3 Distribution Function. 

The distribution fWlction which yields the angular concentration 

of the main axis of the particle is calculated by considering the compe-

titlon of the hydr~ynamic forces on the particle, which produces a flux 

transport i t given by equation (A3Z), and the flux due to B ro·wnian -s r 

motion given by equation (A33) which tries to diminish any unevenness 

ln the distribution of orientations. F or the steady state, the foll~..ring 

relation must hold: 

(A35) 

Substituting for 6 and ¢ the values of the equations of m otion given 

by equations (AZ9) and (A30) and evaluating equation (A35), the follow-

lng expression results: 
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z G aF aF Z 
'V F (e. ~)-IT ( 1 + q,cosZ~> ) lr¢ + ~alnecosesinZq, ""Dl'- 3cpoin ealnZ.c~F] 

= 0 (A36) 

F or p 6 1 , the solution of (A36) is obtained as a series of 

spherical harmonics of the form 

00 

\ h 
F (e, <!l ) = L p r h< e, <1> > (A37) 

h=O 

where 

h h n 

F h = ~ L ano, h p 2n + L L 2m 
(a hcoo2m4> + b hsinZ.m<f> )P 2 m n, nm, n 

n=O n::l m=l 
(A38) 

in which 

P Zn • spherical harmonics of the second order of cos a • 
Z.rn 

.2m Zm d F 2n 
F Z.n = associated Legendre functions = sin 9 lm . 

(dcose) 

The constants a are determined by substituting the aeries (A37) run, h 

into equation (A36) and equating terms with the same argum ent. I t io 

found that all constants of thb group can be expressed in terms of 

a oo, 
0 

, and that constants of the type a no, h are all zero except for 

a F inally, to evaluate a , F (9, $ ) is normalized by setting oo, o oo, o 

the Integral of F (9, ~) over the surface of the unit sphere equal to 

unity. Thus 
211' 1T 
r r -

j J F ( e. cp ) a ina d e d<!> = 1 • 

0 0 

Because of the orthogonality, all terms of F (9, ¢ ) vanish except for 

F , which, upon integration, yields 
0 

a oo,o 
1 

= itV · 
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The final result is 

1 3 3 ein2a 
F = 4i' [ 1 + p(- i cos Z<f> + 0 sinZ~ ) 36 + •• • ] 

1 + -z 
() 

where a = G/D ; for small values of o , l. e. , large influence of 

Brownian motion. and small gradients, this reduces to 

F = ~ ( 1 + ~ elnZ¢ sin z e + .•• ) • 

A. 4 Qpttcral Behavior. 

(A39) 

(A40) 

The optical char acteristics of the system are determined by the 

orientation of ellipsoidal particl es of permittivity € suspended in a 

medium of permittivity € • m 

The particles UDder consideration are assumed to be consider-

ably smaller than the wavelength of light. eo that at any given instant 

the electromagnetic field felt by the particle can be regarded as essen• 

tially .uniform throughout the particle. This assumption permits us to 

study the aha.ractertsttcs of the compoal te medium in the steady state, 

and the analysis is based on finding how a distribution of ellipsoids of 

permittivity e in a suspending medium of permittivity 

uniform electric field applied to this system. 

afiecta .a 

The effect of the medium on the electric field lo then set to bo 

identical to the effect of the medium on the E vector of a beam of 

light. F urthermore, both the particle and the suspending medium are 

assumed to be non- magnetic , and thei r permeabUlties are taken as the 

one of free space, so that the analysts of the electric component of the 

beam of. light su£ficee to deacrlbe the phenomenon ln its entirety. 

A Wliform e lectric field E applied to a. particle suspended t.n 
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a medium wUl inquce a p olarization .!:, , which is a result of tht:l po-

l a rization ..,.., .,.- of the medium. and P of the particle, where 
-p - m 

and 

4rrF m = (E:m•l} E 

P = !J + I-' 
- m -p 

(A41) 

(A42) 

The particle is characterized by ita p olarizabUities a.l and per mit­

tlvitles c i • along witl1 the x{ coordinates- fixed to the particle and al· 

ready used to describe ite hydrodynamic behavior. 

F is found by determining first the electric field E ' within 
-p -~ 

the partlclea. This electric fie l d E ' is a result of tlle electric field -p, 
external to the p a1•ticle El plu~ the polarization P~. due to this field, 

1 

modified by a shape factor L . whic h accounts for the a symmetry of 
1 

the internal field . 

These shape factors reduce to simple expressions for the cases 

of a sphere, flat disc perpendicular to the field. and elongated cylinder 

parallel to the field . They represent the relative amount by which the 

shape of an object of d ielectric ,:; 1 , In a. medium of dielectric t 2 , 

decreases the overall field strength d ue to the appearange of charges 

at the interface between the two m edia. They have been deduced an· 

alytically by Rayleigh(Zl), and are included graphically in Figure 26. 

The field along each of the axes of the particle i s then given by: 

E t = E i' + L i p I • 
- p , - -pi 

In view of the p olarizabUity of the particle, the particle will then ex• 

hib\t an electric moment ml : 

m '::: 
-1 

(A43) 
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1 

Z/3 

1/3 

0 

1/100 1/10 1 10 100 1000 

Figure Z.6. Shape factors L 1 and L 2 as a function of 

axial ratio. 
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In the coordinate axes xi fixed in direction as tn the hydrodynamic 

case, the electric moment becomes 

(A44) 

where the lij'a are the cosines of the angles between the pdmed and 

unprimed systems oi coordinates, given by the matrix (A2Z). 

Furthermore, each ~~ has components along the x
1 

system 

of coordinates such that 

(A45) 

thus0 the moments in the unprlmed (fixed) system of coordinates, due 

to each electric component !j in this system. are given by 

(A46) 

For an ellipsoid of revolution. whose axis of revolution is the "i. 
axle , c- i = :-3 ; thus, L 2 = L 3 and A 2 :z A 3 , and the system (A46 ), 

making use of equation (A26 ), reduces to: 

z 
mll = [Az + (Al-A2)]111E l ::: BllEl 

m21::: (Al • A2.)111 112E 1 = B21El (A47) 

Noting that a 21 = a 12, B 23 = B 32 • and a 31 = B 13 , the correspond­

ing components of the moment ln the x 2 and ~ dlrec:*>ns can be ob­

tained from equations (A47) by cyclic permutation o£ the indices and 

subscripts. 

N particles per unit volume, oriented according to the distrl• 
p 

bution function given by equation (A39), where each particl e contributes 

a component to the moment given by equation (A47), will produce 
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moments ~ ln a system of particles and suspending medium 

given by 

~j :: (A48) 

where dO = sine dG c::l4> and ~ is now the moment per unit volume 

due to the field in the j direction, and the characterlotics of the par­

ticle along the k direction. both directions being along the unprimed 

system of coordinatee. 

To compute the moments per unit volume by equation (A48), the 

cosines between the two systems of coordlnates must be expressed in 

terms of the transformation given by the matrix (AZZ), where the $ 

angle is set to :aero, since the ellipsoid is rotationally symmetric 

about the x1 a.xis1 and along any position it would yield the same re­

sult. zero then being the most convenient one 1n terms of simplifica­

tion of the expressions. 

Carrying out the substitutions in equations (A47) and solving for 

pkj yields 

'lf 2'11' 

Pu = J J F[A2 + (A1-A2)eln
2

a ein
2
<J>]ein9 de d4> 

0 0 

11' z ... 
Pzz = J J F[A2 + (A1-A2)stn

2e cos
2 ~ 1sine d9 d4> 

0 0 

11' 211' 

Pz3 = (A1 +A2) J J F stn
3e sinZq, d9 d 4> 

0 0 

(A49) 
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1T 2'11' 

I r 2 
p 33 = J F(A 2 + (A1-A2)cos a ]sine dS d¢ 

0 0 

The elements pkj form a symm etric matrix where pkJ = pjk and 

p 12 = p 13 .= 0 , because of the geometry of the flow, according to which 

the parUcles are randomly oriented with respect to the plane of flow. 

Since there is an equal number of particles above and below it. the 

moments cancel each other. T he matrix thus reduces to 

[ pkj] 

0 

0 

P2z 

P23 

0 

(ASO) 

To find the principal directions ln the system, the matrix (ASO) 

must be diagonalized, so that the magnitude of the angle through which 

the system is rotated about the x 1 axis represents the location of the 

extinction angle x. o! the system. To rotate the matrix (A 50), the fol· 

lowing equation must be solved for X : 

J -1 * [ X] [pkj (X] = r~] 

* where rpkj] is the dlagooallzed form . and rxJ is the rotation matrix: 

1 0 0 

[x.) :: 0 cosx sin X 
• 

0 sinx. coo X. 

The result i s 

(ASl) 

where the elements along the diagonal are now given by 



- 87-

Substltutine equation (A49 ) into equation (A51) yields the following ex-

pression: 

tan2X = 

'H z,. 
n r 3 I F (p, a, e. $)sin e ain2~ de d <:> 

L ~J 

0 0 
Tl' lTT 

J J F(p, a, e, ~:;r, )ain3 e con2¢ d 9 d¢ 

0 0 

<. ..c:.. 
Using the series (A40) for F , for values of a = 1. 5 and p = 1 , 

P eterlin and Stuart (loc. cit. ) find that 

'11' (j 03 2~~2 
X (a, .) ) = 4 - TZ + Tm' ( 1 + } + ••• (A53) 

To find the ma~tude of the birefringence, l. e . , the relative difference 

in index of refraction between the two principal directions, t..'le differ­

ences in permittivttiee along the principal directions must be found. 

The polarization fp in the suspending medium, due to the 

p resence of Np e llipsoidal particles, can now be found as 

p = rr ]N M 
-p - m p-

and from equation (A48 ): 

' 

p = ~ r ]N[p]E . 
-p m p -

Substituting into equation (A·~ 2), one obtaine 

p ::: ~ (r •' ] - rl])E + r ,:: ]N [p]E 
- <:tTr m - m p -

where [Il is the unitary matrix. 

(A54) 

(ASS) 

(A56} 

Letting r"" ] be the permittivity of the whole system. the matrix 
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equation (A56) can be written as 

1 _!: = 41r ([€] - [I])E 

where 

0 0 

Equating expressions (A56) and (A57) yields 
" 

1 

0 

0 

0 

1 

0 

0 

0 

1 

(A51) 

(ASS) 

Using now the diagonalized form of [p J , a new diagonal matrix re• 

sults whose terms along the diagonal e 11, e 22, e 33 , are the principal 

permlttivitles in the system. Equating term by term on both sides of 

equation (A 58) yields 
$ 

el2 ... €m = 41T ~m NpPzz ' 

* e33 ... em = 4tr ~m NP P33 • 

The difference of permittlvities that is observable in the chosen geome· 

try is then obtained by subtracting one equation from the other• namely, 

(A59) 

Under the quasi- stationary conditions under which these equa-

tiona have been derived, the permittivitles can be substituted lor the 

squares of the indices of refraction such that 

where n is the refractive index of the system of particles and sus­

pending medium, which can be taken as baving the same values as the 

index of refraction of the latter. Substituting this last expression into 
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equation (A59) yields 

f) t;l 
Peterlin and Stuart (loe. cit.) find that the dlfferenee (Pz.z. .. p 33 ) can 

be separated into two parts; one, (s , - g , ), ls a !unction of the optical x 1 x2 
properties of the particle along lts x i and xz axes and result~ from 

equation (A43); and the other, f(a, p ), is related to the orientation of 

the particles, and thus their distributiqn function results from equa-

don (A49), namely: 

* • 
N(p22 • P33) = V(gxi • gx2)f(c:1, p) 

where . V is the volume of the particle, 

and 

so that 
z.,.N 

~n ::a ----.E. V(g , - g , )f(o, p) n x 1 x 2 
(A60) 

F or small valueo of a, f(c:1 , p) ~ Cp/15. 1'he term Np V which gives 

the total concentration ln terms of volume of particles per total volume 

of the solution can be converted to weight concentration, c , per unit 

volume by multiplying aDd dividing equation (A59) by pp , the particle 

denal ty, to yield 

An = z.,.p (g - g 
l5p 11.:0 x ' x' )cr~ p p 1 2 -·'tn (A61) 
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Note on Data Reduction 

The data oi the window i s ob~ed as outlined in Sec-

tion 3. 3. A calibrated dial permits int erpolation oi the readings of 

the verniers to 0. 001°, and by computer the best sinusoid that fits 

the experimental point s is obtained • This yields the amount of bire­

fringence and the corr esponding position of the isOcline of the windows. 

el' e2, and e3 are te_mperw;ure readings from a 

thermocouple located in the Couette cell, in mUlivolts. CW and CC 

refer to clockwise and counterclockwise rotation. 

The zero correction refers to the correction necessary 

to account for the error in quadrature. The window correction refers 

to the one given by equations (17} and ( 18). 

The Couette cell used has a 0. Z em gap between cylln-

ders, and a 5 em path length in the gap. 
0 

F or the 5460 A wavelength, 

the amount of 1•eta.rda tion per unit length. in R1 em , can then be ob­

tained by multiplying the amount of observed optical rotation by 6 . 06. 
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