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I trow I hung on that windy Tree

nine whole days and nights,

stabbed with a spear, offered to Odin,

myself to mine own self given,

high on that Tree of which none hath heard

from what roots it rises to heaven.

None refreshed me ever with food or drink,

I peered right down in the deep;

crying aloud I lifted the Runes

then back I fell from thence.1

1Hávamál, The Words of Odin the High One, from Bray, O. (1982). The elder or poetic edda: Commonly known
as Saemund’s edda. New York: AMS Press (Original work published in 1908). Edited by D. L. Ashliman.
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Abstract

Artificial neural networks are computationally powerful and exhibit brain-like dynamics. Unfortu-

nately, the conventional gradient-dependent learning algorithms used to train them are biologically

implausible. The calculation of the gradient in a traditional artificial neural network requires a

complementary network of fast training signals that are dependent upon, but must not affect, the

primary output-generating network activity. In contrast, the network of neurons in the cortex is

highly recurrent; a network of gradient-calculating neurons in the brain would certainly project

back to and influence the primary network. We address this biological implausibility by introducing

a novel class of recurrent neural networks, intrinsic gradient networks, for which the gradient of

an error function with respect to the parameters is a simple function of the network state. These

networks can be trained using only their intrinsic signals, much like the network of neurons in the

brain.

We derive a simple equation that characterizes intrinsic gradient networks, and construct a broad

set of networks that satisfy this characteristic equation. The resulting set of intrinsic gradient net-

works includes many highly recurrent instances for which the gradient can be calculated by a simple,

local, pseudo-Hebbian function of the network state, thus resolving a long-standing contradiction

between artificial and biological neural networks. We demonstrate that these networks can learn to

perform nontrivial tasks like handwritten digit recognition using only their intrinsic signals. Finally,

we show that a cortical implementation of an intrinsic gradient network would have a number of char-

acteristic computational, anatomical, and electrophysiological properties, and review experimental

evidence suggesting the manifestation of these properties in the cortex.
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Chapter 1

Introduction

Artificial neural networks are both a popular model of neural dynamics (Zipser & Andersen, 1988;

Koch, 1999; Poirazi et al., 2003) and a powerful computational architecture (Bishop, 1995; Simard

et al., 2003; LeCun et al., 2004; Ciresan et al., 2010). However, before an artificial neural network

can be used to perform a computational task, its parameters must be trained to minimize an error

function which measures the desirability of the network’s outputs for each set of inputs. The most

popular and effective algorithms for minimizing the error function of an artificial neural network

depend upon the gradient of the error function (Bishop, 2006). The standard algorithm for calcu-

lating the gradient of an error function in an artificial neural network, including recurrent neural

networks (Almeida, 1987; Pineda, 1987; Pearlmutter, 1989, 1995), is the backpropagation algorithm

(Werbos, 1974; Rumelhart et al., 1986). When the backpropagation algorithm is used to train the

network via gradient descent, artificial neural networks can achieve state-of-the-art performance on

difficult computational tasks similar to those performed by the brain (Simard et al., 2003; Ciresan

et al., 2010).

Despite these many strengths, it is generally believed that the backpropagation algorithm is not

biologically plausible (Parker, 1985; Grossberg, 1987; Crick, 1989; Stork, 1989; Thorpe & Imbert,

1989; Zipser & Rumelhart, 1993). As suggested by its name, the backpropagation algorithm requires

feedback messages to be propagated backwards through the network. These feedback messages, used

to calculate the gradient, are directly dependent on the feedforward messages, and so must evolve on

the same time scale as the network’s inputs. Nevertheless, the feedback messages must not directly

affect the original feedforward messages of the network; any influence of the feedback messages on

the feedforward messages will disrupt the calculation of the gradient. Direct biological implementa-

tions of the backpropagation algorithm are thus not consistent with experimental evidence from the

cortex, regardless of whether the feedback messages are carried by a secondary retrograde signaling

mechanism or a separate neuronal feedback network, since the cortex neither shows signs of a suf-

ficiently fast reverse signaling mechanism (Harris, 2008), nor segregates feedforward and feedback

signals (Douglas & Martin, 2004).
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Regardless of the details of the implementation, the biological implausibility of traditional ar-

tificial neural networks trained using backpropagation can be traced to two basic properties of the

cortex. First, the network of cortical neurons is highly recurrent (Felleman & Van Essen, 1991; Dou-

glas & Martin, 2004). In particular, experimental evidence implies that a directed path consisting

of some number of successive synaptic connections links each cortical neuron to every other cortical

neuron. As a result, each cortical neuron has the capacity to indirectly influence the activity of

every other neuron. If we think of each neuron as a node and each synaptic connection as a directed

edge in a graph, then the cortex has a strongly connected topology.1

Second, the cortex trains its parameters to perform nontrivial tasks efficiently and reliably using

a simple, local function of the intrinsic signals within the network of neurons in the brain (Malenka

& Bear, 2004). Synaptic strengths and other modifiable neuronal parameters are altered based

upon the action potentials and other physical signals that are present at the sites where these

parameters are manifested. Distant signals cannot directly affect a parameter in the absence of a

direct projection to the site of the parameter.

Together, these two properties imply that the cortex is able to learn efficiently using only local

signals within a recurrently interconnected network. That is, the cortical neural network appears

to use a single interdependent set of messages for both computation and learning. Neural networks

trained with traditional backpropagation algorithms, in contrast, require training signals that depend

upon but do not directly affect the other half of the signals in the network. More generally, we are

not aware of any existing deterministic neural network model that satisfies these two criteria.2 In the

absence of some other biologically plausible training algorithm, traditional artificial neural networks

cannot be an accurate model of cortical computation.

We would thus like to derive a biologically plausible neural network architecture based upon the

robust recurrence and efficient local learning observed in the cortex. However, these two properties
1The notion of a strongly connected cortical topology should not be confused with the no-strong-loops hypothesis

(Crick & Koch, 1998). The no-strong-loops hypothesis is based upon the assumption that a loop of driving connections,
each of which can independently induce its target neurons to fire strongly, will necessarily cause activity to oscillate
uncontrollably. It thus posits a distinction between driving and modulatory connections, such that modulatory
connections cannot independently induce strong firing, and asserts that the cortex and thalamus contain no directed
loops of driving connections. In contrast, in claiming that the cortex has a strongly connected topology, we hold
that every pair of neurons lies in a directed loop of some sort, potentially consisting of both driving and modulatory
connections. A strongly connected network can easily avoid strong loops if, for instance, all feedback connections are
modulatory rather than driving.

The networks we construct in section 3.4 have symmetric feedforward and feedback projections, and qualitatively
appear to contain strong loops in the sense of Crick & Koch (1998). However, these networks do not exhibit uncon-
trolled oscillations, in apparent contradiction to the assumption that loops of driving connections necessarily induce
uncontrolled oscillations. Strictly speaking, all connections in these example networks are modulatory, since the feed-
forward and feedback inputs to a unit are combined multiplicatively, and the output is zero if either of these inputs
is zero. Nevertheless, the feedforward and feedback connections induce receptive fields much like traditional driving
connections. As we discuss in section 4.2.1, these solely “modulatory” dynamics are consistent with the gross elec-
trophysiological properties of the cortex. Intrinsic gradient networks can also be constructed with classically driving
connections that obey a strict interpretation of the no-strong-loops hypothesis, but we do not explore such networks
in detail in this thesis.

2As we shall discuss in section 1.3, while algorithms based on reinforcement learning can be used to train recurrent
networks using only locally available signals, they are much less efficient than direct gradient descent, and so cannot
plausibly accommodate the massive size of and complicated error function learned by the cortex.
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alone do not uniquely specify a neural network architecture, nor do they provide any obvious hints to

guide the search for a satisfying architecture. We thus make an additional assumption to narrow our

search; based upon biological evidence and computational considerations, we assume that learning

requires the approximate calculation of the gradient of an error function. We restrict our attention

to networks in which the gradient can be calculated completely at a single network state, rather than

stochastic networks in which learning is a function of some statistic of the network activity over time,

since it can take a long time to accurately estimate the statistics of large networks. Using these

assumptions to focus our search, we ask whether there exist highly recurrent neural networks for

which the gradient of an error function defined in terms of the network’s activity can be calculated

via a simple, local function of the intrinsic network activity.

In approaching this difficult question, we first investigate a slight generalization that is more

mathematically tractable. Specifically, we characterize the class of (not necessarily highly recurrent)

neural networks for which the gradient of an error function defined in terms of the network’s activity

is a simple (but not necessarily local) function of the intrinsic network activity. We call this novel

class of networks intrinsic gradient networks. In contrast to traditional artificial neural networks,

intrinsic gradient networks do not require a separate, implicit set of backpropagation dynamics to

train their parameters. Some intrinsic gradient networks may not be highly recurrent or may have

a non-local gradient-calculating function. Nevertheless, by first identifying a large set of intrinsic

gradient networks, we will easily be able to construct a wide variety of highly recurrent, locally

trainable instances, which do not suffer from the biological implausibility of traditional artificial

neural networks.

1.1 An algorithmic-level model

Intrinsic gradient networks inhabit a space somewhere between biophysically accurate compartment

models of spiking neuron dynamics and traditional machine learning techniques. Unlike biophysi-

cally accurate models, which model the brain at Marr’s implementational level (Marr, 1982), intrinsic

gradient networks are intended to capture the algorithm used by the brain without reference to its

implementation in terms of ion channels or membrane potentials. Thus, intrinsic gradient networks

sacrifice biophysical specificity for computational power. Like other algorithmic-level models, intrin-

sic gradient networks are compatible with a range of different physical implementations, and make

only broad predictions about brain structure and function. In return, intrinsic gradient networks

can perform computations similar to those carried out by the brain, such as pattern recognition,

whereas even state-of-the-art biophysically accurate models are generally not able to perform non-

trivial input-output transformations (Markram, 2006; Izhikevich & Edelman, 2008).3

3Some models, such as those of Deco & Rolls (2004) and Lundqvist et al. (2006), can perform nontrivial compu-
tations while retaining biophysical specificity at the level of individual neurons, but their computational capabilities
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On the other hand, the performance of intrinsic gradient networks on machine learning tasks like

pattern recognition does not yet match the performance of computational-level models like support

vector machines (Cortes & Vapnik, 1995) or feedforward sigmoidal neural networks trained with

backpropagation (Rumelhart et al., 1986; Simard et al., 2003; Ciresan et al., 2010). This lack of state-

of-the-art performance is unsurprising for an algorithmic-level model. Unlike the computational-level

models favored by machine learning, which address a given problem by any means necessary, intrinsic

gradient networks strive to capture the particular algorithm used by the brain, and so are limited

by the architectural features of the brain. In particular, intrinsic gradient networks can be highly

recurrent and locally trainable like the cortex, whereas traditional machine learning techniques

almost uniformly use feedforward architectures and learning algorithms dependent upon complex,

non-local computations.

Algorithmic-level neural models like intrinsic gradient networks are thus not directly comparable

to either implementation-level models or computation-level models. The appropriate comparison

is rather to other algorithmic-level models, such as Hopfield networks (Hopfield, 1982), Boltzmann

machines (Ackley et al., 1985), adaptive resonance theory (Carpenter & Grossberg, 1987), SOAR

(Newell, 1990), recurrent neural networks with contrastive Hebbian learning (O’Reilly, 1996), ACT-R

(Anderson & Lebiere, 1998), HMAX (Riesenhuber & Poggio, 1999; Serre et al., 2005), liquid state

machines (Maass et al., 2002), and belief propagation on factor graphs (Lee & Mumford, 2003). In

following this middle path, we hope that the combination of computational and biological constraints

will allow us to come closer to the brain’s algorithm than an approach that only makes use of one

of these sets of constraints.

An obvious hallmark of the cortical algorithm is that it performs tasks like pattern recognition

astonishingly well, significantly outperforming conventional machine learning techniques. As the

examples of intrinsic gradient networks presented in this thesis do not achieve state-of-the-art per-

formance on pattern recognition tasks, let alone approach human-level capabilities, we have clearly

not identified the cortical algorithm with any precision. However, as we shall show in this thesis,

the space of intrinsic gradient networks is enormous, and we have empirically investigated only a

handful of tiny examples. We hope that by conforming to the structural features of the cortex, we

will be able to derive the space of algorithms within which the cortical algorithm lies. Even if we

have been successful, further work will be required to single out the cortical algorithm within this

space.

fall short of more abstract models (reviewed in Lansner, 2009). The dynamics of these networks are qualitatively
similar to a large class of intrinsic gradient networks. It thus seems likely that the particular dynamics of intrinsic
gradient networks will be realizable with similar biophysical models, while retaining the desirable learning properties
of intrinsic gradient networks.
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1.2 Organization of the thesis

In this thesis, we develop a simple mathematical characterization of intrinsic gradient networks. We

then use this characterization to construct a large set of intrinsic gradient networks, including locally

trainable, highly recurrent networks, and show that these intrinsic gradient networks can be used

to perform nontrivial computations. Finally, we explore the connections between intrinsic gradient

networks and the cortex.

We begin by developing the theory of intrinsic gradient networks in chapters 1 and 2. We

conclude this introductory chapter in section 1.3 by briefly reviewing the literature on biologically

plausible learning in neural networks. In section 2.1, we derive and analyze a simple equation that

constitutes necessary and sufficient conditions for intrinsic gradient networks. In particular, we find

in section 2.1.3 that intrinsic gradient networks must be of a restricted form, dependent upon both

the simple functions that compute the gradient from the network activity at identifiable output

states, and the functions that define such output states. In section 2.2, we consider the properties of

the slack function, which effectively parameterizes the network’s behavior prior to reaching an output

state, and select a particularly parsimonious and powerful slack function for further examination.

We examine the particular case where the gradient is an invertible linear function of an output

state in section 2.3. Given this assumption, we find surprisingly simple solutions to the equations

characterizing intrinsic gradient networks, including a large set of highly recurrent, locally trainable

networks. In section 2.4, we construct the input dynamics of intrinsic gradient networks with

common error functions, given the assumptions discussed in the previous sections.

We explore our theoretical characterization of intrinsic gradient networks through a number of

examples in chapter 3. The relationship between intrinsic gradient networks and other well-known

algorithms is discussed in section 3.1. In particular, we show that both belief propagation on acyclic

factor graphs and recurrent backpropagation are degenerate instances of intrinsic gradient networks.

In sections 3.2 and 3.3, we construct examples of highly recurrent, locally trainable intrinsic gradient

networks with dynamics that are qualitatively similar to loopy belief propagation and sigmoidal

artificial neural networks, respectively. We show that these intrinsic gradient networks can be used

to solve a generalization of XOR, and apply them to handwritten digit recognition, in section 3.4.

The definition of intrinsic gradient networks was motivated by our desire to understand cortical

computation, and in chapter 4 we return to biological considerations. In section 4.1, we examine

the biological evidence and computational principles that motivate our interest in intrinsic gradient

networks. In section 4.2, we identify some electrophysiological properties that the cortex would

manifest if it were implementing an intrinsic gradient network, and evaluate their consistency with

existing experimental evidence. We sketch a possible mapping of an intrinsic gradient network

onto cortical anatomy in section 4.3. We find that the synaptic learning required in this biologically-
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motivated implementation is nearly Hebbian, and that the requisite connection topology is consistent

with that observed in the cortex.

We conclude in chapter 5. The appendix A contains full derivations of the results presented in

the main text, as well as additional results of a more technical nature.

1.3 Prior work

Due to the success of artificial neural networks as both a computational architecture and a neural

model, many prior efforts have been made to reconcile the calculation of the gradient, which is

generally used to train neural networks, with the recurrent connectivity and intrinsic local trainability

of the cortex. Williams & Zipser (1989) demonstrated that the gradient of an error function can be

calculated via forward propagation through a network, but only at the cost of using a separate set of

training signals for each parameter. The resulting training signals still must not feed back into the

main network. Körding & König (2001) suggested that feedforward signals might be transmitted

through low-frequency spiking in parallel with a separate backpropagation signal carried by action

potential bursts. Their proposal requires that the basal and apical dendrites perform independent

computations on the low-frequency spikes and the bursts, respectively. Hinton & McClelland (1988)

and O’Reilly (1996) constructed recurrent networks that heuristically approximate the gradient

using the difference between network activity at different stages of convergence, but no bounds on

the accuracy of this approximation are known. Xie & Seung (2003) showed that the gradient can be

calculated exactly in recurrent neural networks using a two-phase technique similar to that of Hinton

& McClelland (1988) and O’Reilly (1996), so long as all forward projections have complementary,

reciprocal back-projections with infinitesimal strength. However, the difference between the two

resulting converged states is also infinitesimal, and so extremely sensitive to noise.

Roelfsema & van Ooyen (2005) demonstrated that careful choice of the output format and use

of a global reinforcement signal can reduce the number of backpropagation signals required, but did

not eliminate the need for feedback signals that do not affect the feedforward signals. Barto (1985);

Williams (1992); Chialvo & Bak (1999); Seung (2003); and others proposed gradient approximation

algorithms based upon a global reinforcement signal, which require no additional backpropagating

messages. Such algorithms can even yield internal computations similar to those observed in the

brain (Mazzoni et al., 1991), just as in neural networks trained via backpropagation (Zipser & An-

dersen, 1988), but tend to learn much slower than algorithms that calculate the gradient directly.

Calculating the gradient in large, deterministic neural networks quickly, accurately, and using bio-

logically accessible neural signals and biologically plausible connection topologies thus remains an

open problem.

Rather than use deterministic dynamics, some authors have constructed stochastic networks for
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which the gradient of an error function has a simple, closed-form expression in terms of the expected

activities of the units of the network. Notable examples include Boltzmann machines, Helmholtz

machines, and deep belief networks, all of which are traditionally trained with gradient descent on

the negative log likelihood of the observed inputs (Ackley et al., 1985; Hinton et al., 1995, 2006).

However, the calculation of expected activities is NP-hard in the loopy graphical models on which

these networks are based (Cooper, 1990). Since the expected activities are required to compute the

gradient, in practice, the gradient must be approximated rather than calculated exactly. Known

efficient approximations depend upon adopting a restricted architecture in which recurrent interac-

tions are limited (Smolensky, 1986), in contradiction to the highly recurrent structure of the brain

(Felleman & Van Essen, 1991; Douglas & Martin, 2004). Even with such restricted architectures,

only coarse approximations of the marginal probabilities are possible in polynomial time (Long &

Servedio, 2010), and such approximations can mislead learning algorithms which are not appropri-

ately matched to the inference technique, sometimes leading to surprisingly poor results (Kulesza

& Pereira, 2008; Fischer & Igel, 2010). Indeed, deep belief networks generally use non-recurrent

and thus biologically implausible mechanisms to fine-tune their parameters after initializing with

partially recurrent dynamics (Hinton et al., 2006).

With carefully chosen architectural restrictions, these approximate, probabilistic algorithms can

be rendered exact and deterministic. For instance, when using an acyclic (i.e., tree-structured)

graphical model, a message passing technique called belief propagation can calculate the expected

activities (and thus the gradient of the negative log likelihood) exactly and in linear time (Pearl,

1988; Kschischang et al., 2001). The corresponding network dynamics have the same form as a

neural network with product units (Durbin & Rumelhart, 1989). As a result, in an acyclic network

implementing belief propagation, with the negative log likelihood as an error function, the gradient of

the error can be computed directly from the network activity, without the need for a complementary

backpropagation network. Unfortunately, the requisite tree structure is a poor model of the brain’s

highly recurrent architecture (Felleman & Van Essen, 1991; Douglas & Martin, 2004). Moreover,

tree-structured graphical models do not efficiently capture the statistical structure of many real-world

phenomena, for which correlations generally depend on spatial locality in two or three dimensions,

naturally inducing many loops.
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Chapter 2

Theory

Intrinsic gradient networks are the novel class of neural networks for which the gradient of an

error function defined in terms of the network’s activity can be calculated simply from the intrinsic

network activity. In section 2.1, we derive a system of nonlinear partial differential equations which

characterizes intrinsic gradient networks in terms of four sets of functions: the output functions,

which identify when the network has finished computing and has produced an output; the error

function, which defines the desirability of the outputs; the slack function, which controls the behavior

of the network before an output has been produced; and the training function, which helps calculate

the gradient of the error function from the intrinsic network activity after an output has been

produced. We find in section 2.2 that a particular slack function and a linear training function is

required to construct modular intrinsic gradient networks, and discuss the implications of this slack

function. We construct a large class of modular intrinsic gradient networks, satisfying these and

a few additional restrictions, in section 2.3. Finally, in section 2.4 we construct intrinsic gradient

networks with a variety of error functions.

2.1 A mathematical characterization of intrinsic gradient net-

works

We begin by describing the structure of intrinsic gradient networks. We then sketch a derivation

of a simple equation that characterizes intrinsic gradient networks. In the remainder of this thesis,

we will find solutions to this characteristic equation, explore their computational properties through

some simple examples, and discuss their biological implications.

2.1.1 The structure of computation in a highly recurrent network

The structure of intrinsic gradient networks reflects the nature of computation in highly recurrent

networks such as the cortex. Computation cannot occur instantaneously in a highly recurrent
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network, since the inputs propagate through the network gradually, and generally must circulate

through the network repeatedly before the computation is completed and the outputs are generated.

If computation is based solely upon the intrinsic signals, the network itself must identify when the

computation is finished and the outputs have been produced. We thus develop intrinsic gradient

networks with reference to discrete, identifiable output states, although we do address the use of

intrinsic gradient networks to model systems with continuous outputs in section 4.1.1.

We model the cortex as a time-varying vector of real-valued units ~x(t) ∈ Rn. We write ~x to

denote ~x(t) at some arbitrary point in time t. The brain’s ability to identify when a computation

has been completed implies that there exists some vector of functions ~Z(~x) such that ~Z(~x) = ~0 when

a computation is finished and ~x contains the output, where ~0 is a vector in which each element has

the value 0. We will find it convenient to consider the vector of functions ~F (~x) = ~Z(~x) + ~x, so

that ~F (~x) = ~x when ~Z(~x) = ~0 and a computation is complete. In particular, it will prove much

more intuitive to characterize the subset of Rn within which ~F (~x) = ~x than the equivalent subset

within which ~Z(~x) = ~0. Nevertheless, any derivation in terms of ~F (~x) can be used to construct a

corresponding derivation in terms of ~Z(~x). We refer to the functions Fi as output functions, since

they determine when the output has been computed. Since the output states are the fixed points

of ~F (~x), we will often use the term fixed points (of the network) to refer to the output states where

~F (~x) = ~x. The biological plausibility of this formalism is explored in section 4.1.2.

Somewhat counterintuitively, although the output functions ~F (~x) identify when the computation

is complete, they define the computation performed by the network without regard to the network

dynamics. In particular, the fixed points of ~F (~x), which constitute the output states, need not

be the same as the fixed points of the network dynamics. As an extreme case, consider network

dynamics where ~x(t) evolves randomly in time. In this case, the cortical network effectively guesses

random solutions to the problem of generating an acceptable output, and each of these random

guesses is checked for consistency according to ~F (~x) = ~x (or equivalently ~Z(~x) = ~0). The outputs

of this random network will be the same as if the dynamics smoothly converged to a fixed point

of ~F (~x). Different network dynamics will vary in the speed with which they reach a fixed point

of ~F (~x), and some may never produce an output. Nevertheless, the functions Fi alone define the

network’s output, and so are properly the subject of learning if the error function is defined in terms

of the network’s output. As such, we will define intrinsic gradient networks in terms of the output

functions Fi, and only consider the network dynamics secondarily.

The output functions are also necessary to characterize learning in intrinsic gradient networks

because they define unique states in a potentially labile network. In an unstable network without

an identified point at which to calculate the gradient of the error function from the network activity,

either the training function ~T (~x), which helps calculate the gradient from the network state, or the

calculated gradient itself must change over time, even given constant input to the network. In a
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neural context, this problem is not easily resolved by making the training function dependent on

the time since stimulus onset, since such a reference point is difficult to define when various features

of the stimulus change continuously and asynchronously. We address the potential variability of a

training function that is dependent upon a dynamic network state by assuming that the calculated

gradient is exact at the fixed points of the output functions ~F (~x), but not excluding the possibility

that suboptimal parameter updates might be performed based upon other network states. Indeed,

optimal learning at the fixed points of the output functions can be seen as a necessary but not

sufficient constraint for optimal learning at all points in the network’s trajectory.

Defining the network outputs in terms of the fixed points of the output functions ~F (~x) can help

render the network robust to noise. At most, noise can knock the network from one fixed point into

a different fixed point; it cannot change the identity of the fixed points. So long as all fixed points

are valid outputs at which the computation is complete, noise can delay the output, but cannot

corrupt it.

In principle, the gradient could be calculated based upon the network activity at different points

in time than those at which the output is produced. That is, the functions used to identify the points

at which the output is produced (what we might call output-output-functions ~Foutput(~x)) might be

different from the functions used to identify the points at which the parameters can be trained using

the training function (which we might then call training-output-functions ~Ftraining(~x)). However, if

multiple network configurations can be identified as output states for a given input, then the gradient

of the error function with respect to the parameters will generally be different at each of these output

configurations. The gradient at each such output state would be most parsimoniously calculated

based upon a distinct, corresponding training state. It would likely be difficult to reliably select the

right fixed point of the training-output-function, corresponding to the last selected fixed point of

the output-output-function. To avoid this problem, we assume that the gradient is calculated based

upon the network activity at the same point that constitutes the output, identified using a single

set of output functions ~F (~x).

2.1.2 The framework of intrinsic gradient networks

Consider a vector of differentiable functions ~F , with Fi : Rn → R, which characterize the output

configurations of a network of real-valued units ~x(t) ∈ Rn, such that a state ~x is an output if and

only if ~F (~x) = ~x. All of our results depend only on the network recognizing that a computation has

been completed and that ~x constitutes an output when ~F (~x) = ~x. Any set of dynamics may be used

for ~x(t), so long as ~F (~x) = ~x is used to define the output states of the network.

Nevertheless, since poorly chosen dynamics are likely to find an acceptable output state very

slowly, the dynamics of units ~x in the cortex would certainly be related to the output functions ~F .

A particularly simple and biologically plausible situation arises if the fixed points of the temporal



11

dynamics of the units ~x are the same as those of the vector of functions ~F (~x). In this case, the

network indicates the completion of a computation by settling into a stable activity pattern. A

simple set of dynamics with the desired fixed points is

~x(t+ 1) = ~F (~x(t)) , (2.1)

for which the output functions determine the output of each associated unit at the next time step,

as well as identifying the final outputs of the network as a whole. Almost all of our results can be

understood using the dynamics of equation 2.1. However, there are many sets of dynamics with

fixed points that match the fixed points of ~F . For instance, the dynamics of equation 2.1 can be

rendered continuous according to

d~x(t)
dt

=
1
τ
·
(
~F (~x(t))− ~x(t)

)
, (2.2)

with τ ∈ R+. In appendix A.5, we will show that the dynamics of equation 2.2 are provably

convergent for a large subset of intrinsic gradient networks. Equation 2.2 can be further discretized

to yield

~x(t+ 1) =
1
τ
· ~F (~x(t)) + (1− 1

τ
) · ~x(t) , (2.3)

which is equivalent to equation 2.1 when τ = 1. We use the dynamics of equation 2.3 in the examples

described in section 3.4.

We assume that the output functions ~F are collectively parameterized by a vector of real numbers

~w. Strictly, we should write ~F (~x, ~w), but will often omit explicit mention of the dependence on ~w

to avoid cluttering our notation. Just as each neuron in the cortex receives direct input from only a

small fraction of the other cortical neurons, we generally assume that each output function Fi only

depends on a subset of the units xj .

The desirability of an output state, where ~F (~x) = ~x, is defined by an error function E(~x, ~w). We

restrict our attention to error functions E(~x, ~w) defined in terms of the output states; that is, the

fixed points of ~F (~x). We wish to minimize E(~x, ~w) at the fixed points of ~F (~x, ~w) by training the

parameters ~w. In practice, we will want to minimize the average value of the error function E(~x, ~w)

over an ensemble of different output states corresponding to various inputs to the system. Since

the gradient operator is linear, the gradient of such a weighted sum of component error functions

is equal to the weighted sum of the gradients of the components, and the ability to calculate the

gradient of E(~x, ~w) for each output state ~x separately implies that the gradient of such an average

error function is also easily calculable. We thus further restrict our attention to error functions and

gradients defined in terms of a single output state at a time.

Intuitively, this formalism is intended to model spike rates (or some other function of the spiking
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activity, as discussed in section 4.1) in a network of neurons, with neuron outputs ~x and transfer

functions ~F . In this case, the output states are the fixed points of the network dynamics. We

imagine that the elements of ~x on which Fi(~x) directly depends are physically connected to xi, and

the parameters of Fi(~x) are part of a single physical system that generates the dynamics of xi. It is

thus biologically plausible that these local signals could contribute to the training of the parameters

of Fi in a biological neural network.

Our analysis treats inputs rather differently from how they are treated in a conventional formu-

lation of supervised learning. As can be seen in equations 2.1 and 2.2, we do not model the inputs

explicitly in our equations. Rather, our analysis will lead us (in section 2.1.4) to essentially discover

that the parameters ~w of the system naturally fall into two categories. All parameters ~w affect the

value of the error function E(~x, ~w) at the fixed points of ~F (~x, ~w) by altering the location of those

fixed points. However, the parameters wi of one category also directly affect the value of the error

function (the gradient of which is calculated by the training function ~T (~x)) at each potential fixed

point ~x. It is normal for an error function to depend directly on the inputs to a system, as well

as on the outputs, since the desired output values change as a function of the input values. For

this reason, we will refer to these parameters wi which directly affect the error function E(~x, ~w) as

input parameters. We will not concern ourselves with whether their components of the gradient of

the error function are computationally tractable, since inputs are not trainable parameters anyway.

To avoid overly cluttered notation, we often write E(~x) instead of E(~x, ~w), even though the error

function is also dependent upon the input parameters.

The parameters wi of the other category only affect the value of the error function insofar as they

have an effect on the output states ~x of the network. We will refer to these as internal parameters, and

will require that the gradient with respect to these parameters be easily computable. Even though

the error function is not directly dependent on the internal parameters, the internal parameters

affect the error function through their impact on the fixed points of the output functions ~F (~x), and

thus on the output states of the network. The distinction between input parameters and internal

parameters will be discussed again in section 2.1.4, and we will provide examples in section 2.3.1.

In general, we will not directly address the dynamics ~x(t) of intrinsic gradient network units

in this thesis. Rather, we focus on the output functions ~F (~x), which specify the location of the

output states, but do not directly determine the behavior of the network. The rate and reliability

with which the dynamics reach a fixed point of ~F (~x) is primarily a function of the global network

dynamics themselves, rather than the location of the fixed points of ~F (~x). While we often refer

to the dynamics of equations 2.1, 2.2, and 2.3 to provide concrete examples of intrinsic gradient

networks, we have little reason to believe that these particular dynamics will be optimal in practical

applications. In an important exception to this focus on the output functions ~F (~x) rather than the

dynamics ~x(t), however, we do find provably convergent dynamics for a large set of intrinsic gradient
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networks in appendix A.5.

2.1.3 Sketch of the derivation of the intrinsic gradient equation

We wish to derive restrictions on the set output functions ~F (~x, ~w) for which the gradient of an

error function E(~x∗, ~w) with respect to the internal parameters can be calculated simply at the fixed

points ~x∗ of ~F , where ~F (~x∗) = ~x∗. Networks with output functions of this form are intrinsic gradient

networks. Appendix A.1 contains two distinct, full derivations of necessary and sufficient criteria

such that the gradient of an error function can be simply calculated from the network state at the

fixed points of ~F (~x). A sketch of the first of these derivations, including the definition of concepts

and terms that will be used throughout the rest of this thesis, follows below.

The value of the error function E(~x∗, ~w), which is defined in terms of the fixed points ~x∗ of

~F (~x, ~w), depends on the location of the fixed point ~x∗ at which it is evaluated. The output func-

tions ~F (~x, ~w) determine the location of the fixed points ~x∗, and are themselves dependent on the

parameters ~w. Therefore, the fixed points ~x∗ are also a function of the parameters, although their

dependence on the parameters is generally nontrivial. The gradient of the error function with re-

spect to the internal parameters dE(~x∗)
d~w must take this relationship between the fixed points and the

internal parameters into account. As a simple example, consider the one-dimensional system with

the output function F (x) = w2+x
2 and the error function E(x∗) = (x∗ − c)2. In this case, x∗ = w2,

so although ∂E(x∗)
∂x∗ = 2 · (x∗ − c), to find the derivative with respect to the internal parameter w we

must compute

dE(x∗(w))
dw

=
∂E(x∗(w))

∂x∗
· dx

∗(w)
dw

= (2 · [x∗(w)− c]) · (2 · w) .

In general, the gradient of the error function with respect to the internal parameters is the inner

product of the partial derivative of the error function with respect to the fixed point, and the total

derivative of the fixed point with respect to the parameters.1 Unfortunately, the total derivative of

the fixed point with respect to the parameters is generally difficult to compute, since any alteration

to the parameters induces changes in the units that resonate throughout a recurrently connected

network.

Fortunately, we can derive conditions in which the gradient of the error function with respect

to the internal parameters is easy to compute from the fixed points of the network. To find these

1By definition, the error function E(~x, ~w) is not directly dependent on the internal parameters, so
∂E(~x,~w)
∂wi

= 0

if wi is an internal parameter. Although
∂E(~x,~w)
∂wj

need not be equal to zero for input parameters wj , we are not

interested in calculating the full derivative
dE(~x,~w)
dwj

with respect to the input parameters, since inputs are not subject

to training in traditional learning problems.
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conditions, we take the derivative of the fixed point with respect to an internal parameter w′, apply

the chain rule, and solve for the derivative of the fixed point:

~x∗(~w) = ~F (~x∗(~w), ~w)

d~x∗(~w)
dw′ =

d~F (~x∗(~w), ~w)
dw′

=

(
∂ ~F (~x, ~w)
∂w′

∣∣∣∣∣
x∗

)
+
(
∇> ~F (~x, ~w)

∣∣∣
x∗

)
· d~x

∗(~w)
dw′

=
(
I− ∇> ~F (~x, ~w)

∣∣∣
x∗

)−1

·

(
∂ ~F (~x, ~w)
∂w′

∣∣∣∣∣
x∗

)
, (2.4)

where ∇ is the gradient with respect to ~x and ∇> ~F (~x, ~w) is the Jacobian. In the equations below,

all gradients and partial derivatives are evaluated at the fixed point x∗, although we do not indicate

this explicitly to avoid cluttered notation. Since ∂E(~x,~w)
∂w′ = 0 for the internal parameters,2 we can

apply equation 2.4 to the derivative of the error function with respect to internal parameter w′ to

find

dE(~x∗(~w))
dw′ =

∂E(~x)
∂w′ +

(
∇>E(~x)

)
· dx

∗(~w)
dw′

=
(
∇>E(~x)

)
·
(
I−∇> ~F (~x, ~w)

)−1

· ∂
~F (~x, ~w)
∂w′ . (2.5)

Equation 2.5 can be divided into two parts: ∂ ~F (~x,~w)
∂w′ , which is dependent upon the parameter w′ for

which we wish to calculate dE(x∗)
dw′ , and is easy to compute; and

(
∇>E(~x)

)
·
(
I−∇> ~F (~x, ~w)

)−1

,

which is the same for all parameters, but hard to compute in that it requires the inversion of a

matrix of size n× n, where n is the number of units |~x|.

We require that the hard part of the gradient be computable from the fixed point ~x∗ by some

simple, easily calculated training function ~T (~x∗, ~w), and thus define

~T>(~x∗, ~w) =
(
∇>E(~x)

)
·
(
I−∇> ~F (~x, ~w)

)−1

, (2.6)

so
dE(~x∗(~w))

dw′ = ~T>(~x∗, ~w) · ∂
~F (~x, ~w)
∂w′ . (2.7)

The training function ~T (~x∗, ~w) is the non-obvious component of the simple (and preferably local)

function that computes the gradient of the error function from the intrinsic network activity at the

fixed points of ~F , referred to in the definition of intrinsic gradient networks. The training function
2Once again, the partial derivative of the error function E with respect to parameter w′ is not necessarily zero

if w′ is an input parameter. However, the input parameters are not trainable, so we have no need to calculate the

derivative of the error function with respect to the input parameters. It is thus safe to assume that
∂E(~x,~w)
∂w′ = 0.
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extracts the information required to compute the gradient from the fixed point. The real work of

the gradient computation is performed by the network itself as it moves towards a fixed point x∗ of

~F ; the function ~T (~x∗, ~w) merely decodes the output of the network after it reaches a fixed point.

In the simple one-dimensional example described above, T (x∗, w) = 4 · (x∗ − c) and ∂F (x,w)
∂w = w.

We find in appendix A.1 that if any function can calculate the gradient of the error function from

the intrinsic signals of the network at a fixed point, then a training function ~T (~x∗, ~w) satisfying

equation 2.7 must necessarily exist. To reduce the complexity of our exposition, we generally consider

training functions ~T (~x∗, ~w) that are independent of ~w, although most of our results can easily be

extended to training functions that are dependent on ~w. As with ~F (~x), we often write ~T (~x) and

omit explicit mention of the dependence on the parameters or the fixed point to avoid excessively

cluttered notation.

We want to construct output functions ~F that are compatible with simple, local training functions

~T , so that after an intrinsic gradient network reaches a fixed point, it is easy to compute the gradient

of the error function dE(x∗)
d~w and train the parameters using equation 2.7. We thus need to find a

relationship between the training function ~T and the output functions ~F that is consistent with

equation 2.7, but does not explicitly depend upon the difficult-to-calculate total derivative of the

error function. Right-multiplying both sides of equation 2.6 by I−∇> ~F (~x, ~w) and rearranging, we

find that our definition of ~T (~x∗, ~w) is satisfied if and only if

~T (~x∗, ~w) = ∇E(~x) +
(
∇~F>(~x, ~w)

)
· ~T (~x∗, ~w) (2.8)

at fixed points ~x∗ of ~F (~x, ~w), so we wish to find ~T and ~F such that this equation is satisfied for

a given E. In particular, we choose simple, local ~T and then construct ~F to satisfy this equation.

Note that ∇~F>(~x) is the transposed Jacobian. The vector ∇E(~x) only contains partial derivatives,

and so is easy to evaluate analytically.

Whereas up until now we have only considered relationships at the fixed point, these equations

can be generalized to all ~x. If equation 2.8 holds at the fixed points, then there must exist some

function ~S(~a,~b) : {Rn,Rn} → Rn that is zero when ~a = ~b, such that the following equation holds

for all ~x:

~T (~x) = ~S(~x, ~F (~x)) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x) . (2.9)

We call equation 2.9 the intrinsic gradient equation, since it constitutes a necessary and sufficient

condition for the gradient of an error function E (defined in terms of the fixed points of ~F ) to be

calculable from the intrinsic network activity at the fixed points x∗ of the output functions ~F (~x).

Specifically, for any ~S, E, ~F , and ~T satisfying the intrinsic gradient equation, with ~S(~a,~b) = 0 when

~a = ~b, the gradient of the error function E can be calculated from a fixed point x∗ using the function

~T , according to equation 2.7. The intrinsic gradient equation defines ~F (~x) for all ~x rather than
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just the fixed points, thus allowing networks satisfying the intrinsic gradient equation to be more

easily constructed. Nevertheless, the gradient is still only calculated by the training function ~T at

the fixed points. We refer to the function ~S(~a,~b) as a slack function, in analogy to slack variables

in linear programming; it ensures that equation 2.8 holds at the fixed points, but allows deviation

from equality when the system is not at a fixed point. In the simple example above, the intrinsic

gradient equation is satisfied with ~S(~a,~b) = 0 for all ~a and ~b and T (x) = 4 · (x− c), since

T (x) = 0 +
∂E

∂x
+

∂F

∂x
· T (x)

4 · (x− c) = 0 + 2 · (x− c) +
1
2

· [4 · (x− c)] .

The intrinsic gradient equation (2.9) constitutes a nontrivial relationship between ~S, E, ~F , and

~T , rather than simply a definition of ~S in terms of the other functions. Were we to use the intrinsic

gradient equation to define the slack function ~S according to

~S(~x, ~F (~x)) = ~T (~x)−∇E(~x)−
(
∇~F>(~x)

)
· ~T (~x) ,

we would find that the resulting slack function does not always satisfy ~S(~a,~b) = 0 when ~a = ~b for

most choices of E, ~F , and ~T . The intrinsic gradient equation (2.9) has a form similar to physical

laws such as Maxwell’s equations, the Schrödinger equation, or the Navier-Stokes equations. These

well-known physical laws also define a class of acceptable solutions with certain desirable properties,

even though actually constructing the full set of such solutions is extremely difficult. The intrinsic

gradient equation is more abstract than these familiar examples from physics, however, in that it

implicitly defines a set of nonlinear dynamics (through the output functions ~F ) which themselves

govern the time evolution of the system, whereas the examples from physics directly characterize the

allowed trajectories of the various systems. Moreover, the intrinsic gradient equation is nonlinear,

like the Navier-Stokes equations but unlike most physical laws, and thus difficult to solve analytically.

2.1.4 The surprising relationship between inputs, parameters, and the

error function

The full class of intrinsic gradient networks is broad, and we will be forced to make some assumptions

about the slack function ~S and the training function ~T in order to draw strong conclusions about

the form of the output functions ~F . However, we can derive some important structural properties of

intrinsic gradient networks solely from the form of the intrinsic gradient equation (2.9). Specifically,

we can show that the inputs to the network take the form of a subset of the parameters ~w of the

output functions ~F . The particular values of these inputs are determined by the error function E.

The gradient of the error function E can be calculated from the internal signals of the converged
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network if and only if the intrinsic gradient equation (2.9) is satisfied. Stated slightly differently,

any function E that satisfies the intrinsic gradient equation for some functions ~S, ~F , and ~T (with

~S(~a,~b) = 0 when ~a = ~b) can be thought of as an error function, the gradient of which is calculable via

equation 2.7 after the network reaches a fixed point of ~F . The intrinsic gradient equation defines a

relationship between these functions, but does not specify the direction in which constraints should

be propagated to ensure that the relationship is satisfied. As a result, given a choice of slack function

~S and the training function ~T , we can view the error function E for which the gradient is calculated

as a function of ~F defined by the intrinsic gradient equation (2.9), rather than the other way around.

We use the term calculated error function to refer to this error function, the gradient of which is

actually calculated by the intrinsic gradient network.

In principle, though, the error function should define which outputs (a subset of the network

state ~x∗ at a fixed point of ~F ) are good and which are bad, and so must be imposed on the system a

priori by the user. We use the term desired error function to refer to the error function that correctly

judges the quality of the outputs. Since the desired error function is defined by the mind of the

user, while the calculated error function is determined by the intrinsic gradient equation (2.9), these

two error functions could be different in an incorrectly designed network. However, if the gradient

calculated by the network according to equation 2.7 is to be used for learning, this calculated gradient

must correspond to the desired error function, so the calculated error function must be equal to the

desired error function (up to a constant).

Any parameters on which the calculated error function depends directly should not be changed

by a learning algorithm intended to minimize the desired error function, since any alteration of these

parameters would change the calculated error function minimized by the learning procedure. On the

other hand, the desired error function is traditionally a function of both the inputs and the outputs

of the network, so it is desirable for the calculated error function (which should be equal to the

desired error function for all inputs) to be a function of the inputs. We thus identify parameters on

which the calculated error function is directly dependent with the inputs to the network, and refer

to them as input parameters. Parameters that do not directly affect the calculated error function are

called internal parameters, and can be altered freely by the learning algorithm without disrupting

the error function being minimized. The calculated error function, defined by the intrinsic gradient

equation (2.9) as a function of both the input parameters and the network state ~x, thus has the

same form as an error function defined in the traditional manner on the inputs and the outputs of

a system.

While the meaning of the parameters is clarified by considering the error function E as a function

of the output functions ~F , when constructing an intrinsic gradient network in practice, we generally

proceed by inferring the output functions ~F from ~S, ~T , and a desired error function E. Specifically,

given ~S and ~T , we generally select a simple parameterized form for the desired error function E.
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We then use these functions to derive a parameterized form for the output functions ~F , such that

the calculated error function maps simply onto the desired error function and the intrinsic gradient

equation (2.9) is satisfied. The resulting relationship between the calculated error function and the

desired error function both identifies the input parameters, and determines how they should be set

to achieve any particular desired error function of the chosen parameterized form.

When an intrinsic gradient network constructed in this manner is used in a practical setting,

the input parameters are presumably set directly by the outside environment, and determine the

error function whose gradient is calculated by the network. It is thus important to select an input

parameterization and corresponding desired error function such that direct manipulation of the

input parameters yields a sensible error function. As we shall discuss in section 2.4, autoencoding

error functions, which are minimized when the network output matches the input parameters, are

particularly compatible with intrinsic gradient networks.

The partitioning of the parameters into input parameters and internal parameters is basically a

structural constraint on all solutions to the intrinsic gradient equation (2.9). Stronger, functional

conclusions about intrinsic gradient networks can be derived by making specific assumptions about

the slack function ~S and the training function ~T . However, this will require focusing our attention

on a subset of all possible intrinsic gradient networks. We will pursue this less general but more

powerful approach in sections 2.2 and 2.3.

2.2 Choosing a slack function

Our primary goal is to construct biologically plausible examples of intrinsic gradient networks. We

thus want to find output functions ~F which satisfy the intrinsic gradient equation (2.9), with a

given error function E and simple training functions ~T . The error function E is part of the problem

specification, since it determines the input-output mapping implemented by the trained network, so

we must find instances of the other functions such that the intrinsic gradient equation is satisfied

given the chosen error function. We approach this difficult objective by selecting a particular slack

function ~S and training function ~T , and then solving the intrinsic gradient equation for the output

functions ~F given the chosen ~S, ~T , and E.

In section 2.1, we developed necessary and sufficient conditions for the intrinsic calculation of

the gradient at a fixed point. The selection of a particular slack function ~S would appear to render

our results in sections 2.2 and 2.3 less general. Once we choose a particular slack function, we can

only find sufficient conditions for intrinsic gradient networks, given that choice of the slack function.

Moreover, it would seem difficult to select an appropriate slack function a priori, since the impact

of the slack function ~S on the network dynamics is not especially intuitive. The slack function

explicitly represents a degree of freedom of the system, rather than capturing a straightforward
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restriction on the system’s behavior. Specifically, the slack function formalizes what an intrinsic

gradient network does when we are not really looking. Whereas the definition of intrinsic gradient

networks only concerns the network activity at a fixed point, the slack function governs the behavior

of the network away from the fixed point.

Nevertheless, the slack function has a variety of practical consequences which can be used to

differentiate between the possibilities. In the rest of this thesis, we primarily focus our attention on

the slack function ~S(~a,~b) = ~T (~a) − ~T (~b). This is the only slack function consistent with modular

intrinsic gradient networks given reasonable assumptions on ~T , as we sketch below and prove in

appendix A.2. In section 3.1, we show that the set of intrinsic gradient networks based on our

chosen slack function includes belief propagation on acyclic factor graphs (with an unconventional

error function) and recurrent backpropagation; in sections 3.2 and 3.3 we construct highly recur-

rent intrinsic gradient networks consistent with our chosen slack function that are similar to belief

propagation on loopy factor graphs and hierarchical sigmoidal neural networks.

Given the choice ~S(~a,~b) = ~T (~a)− ~T (~b), the intrinsic gradient equation (2.9) becomes

~T (~x) = ~T (~x)− ~T (~F (~x)) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x)

~T (~F (~x)) = ∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x) . (2.10)

As described in detail in appendix A.2, a restricted version of equation 2.10 can be derived by

substituting the fixed point identity ~x = ~F (~x) into the left-hand side of equation 2.8, which itself

only holds at the fixed points. As a result of this substitution, the constraints imposed by equation 2.8

on small groups of output functions Fi are defined solely in terms of their inputs, given some simple

assumptions about the training function. The inputs to such a group of output functions at the

fixed point will vary as the input parameters and internal parameters are changed. Equation 2.10,

which applies to all points, results from requiring that each such group of output functions must be

a viable component of an intrinsic gradient network for all possible inputs. Such a group of output

functions constitutes a module, which can be plugged into any modular intrinsic gradient network. If

the slack function is chosen to be something other than ~S(~a,~b) = ~T (~a)− ~T (~b), then such universally

applicable modules cannot exist given reasonable restrictions on the training function ~T .

Intrinsic gradient networks with the slack function ~S(~a,~b) = ~T (~a)− ~T (~b) calculate the gradient

in an intuitive manner. Since ∇~F>(~x) is the transposed Jacobian, equation 2.10, in conjunction

with the dynamics of equation 2.1, implies that running the network in the forwards direction is

equivalent to performing backpropagation on a transformed version of the messages.

The slack function ~S also affects the behavior of an intrinsic gradient network in the regions of

state space where the fixed point restriction is almost, but not exactly, satisfied. This is of practical

concern, since the network’s dynamics may only be able to identify points where ~F (~x) ≈ ~x. If ~T (~x)
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has relatively small first derivatives, then the training function yields a good approximation to the

gradient at points near the fixed points. That is, if ~F (~x∗) = ~x∗, then ~T (~x) ≈ ~T (~x∗) when ~x ≈ ~x∗.

However, the network’s dynamics may find ~x for which ~F (~x) ≈ ~x, but where ~x is far from any

true fixed point. In a neural implementation, such “approximate” fixed points may be impossible

to distinguish from approximations to true fixed points. Fortunately, appendix A.1.3 shows that so

long as ~S(~a,~b) ≈ 0 when ~a ≈ ~b, intrinsic gradient networks calculate an approximate gradient for

such approximate fixed points where ~F (~x) ≈ ~x, regardless of the proximity to a true fixed point.

We further examine and consider generalizations of the slack function ~S(~a,~b) = ~T (~a)− ~T (~b) in

appendix A.3. We also find in appendix A.8 that belief propagation on acyclic factor graphs with

the negative log likelihood error function corresponds to an intrinsic gradient network with a slack

function different than ~S(~a,~b) = ~T (~a)− ~T (~b). In the remainder of this thesis, however, we will focus

on the slack function ~S(~a,~b) = ~T (~a)− ~T (~b) because it is consistent with modular intrinsic gradient

networks, leads to sensible interpretations of the dynamics of ~x(t), and yields interesting solutions

to the intrinsic gradient equation.

2.3 Linear training functions

If the training function ~T (~x, ~w) is linear in ~x, then equation 2.10 consists of a system of linear partial

differential equations in ~F . Linear differential equations are much more tractable than nonlinear

differential equations. Moreover, we prove in appendix A.2 that modular intrinsic gradient networks

with linear parameterizations must have linear training functions ~T . We thus focus our attention

on linear training functions. While nonlinear ~T (~x, ~w) are possible, we do not consider them further

in this thesis except in the case of belief propagation on acyclic factor graphs, which we discuss in

section 3.1.1 and appendix A.8.

Perhaps surprisingly, the restriction to linear training functions ~T does not in principle limit the

range of possible output functions. Given an intrinsic gradient network with a nonlinear training

function ~T (~x), we can construct a homologous intrinsic gradient network with twice as many units

and a linear training function, for which the output functions of half the units are the same as

those of the original network. The second half of the units in the homologous network explicitly

implement the training function of the original network. The details of this construction are provided

in appendix A.4.

We begin our analysis of intrinsic gradient networks with linear training functions by describing

the way they give rise to input and internal parameters. We then make a few additional assump-

tions about the training function, and use them to find analytic solutions to the intrinsic gradient

equation (2.9).
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2.3.1 The manifestation of input and internal parameters

If the training function ~T (~x, ~w) is linear in ~x, with ~T (~x, ~w) = T~w ·~x, and T~w is a matrix parameterized

by ~w, the solutions of equation 2.10 are the sum of a solution to the inhomogeneous equation

T~w · ~F (~x, ~w)−
(
∇~F>(~x, ~w)

)
·T~w · ~x = ∇E(~x) , (2.11)

and a linear combination of the solutions to the homogeneous equation

T~w · ~F (~x, ~w)−
(
∇~F>(~x, ~w)

)
·T~w · ~x = 0 . (2.12)

The parameters of the output functions ~F (~x, ~w) thus consist of both the parameters of the solution

to the inhomogeneous equation (2.11), and the parameters of the solutions to the homogeneous

equation (2.12). While these two sets of parameters may overlap, we will generally consider solutions

to the intrinsic gradient equation (2.9) for which the parameters of the inhomogeneous solution are

disjoint from the parameters of the homogeneous solution.

Changes to the parameters of the homogeneous solution leave the left-hand side of equation 2.12

equal to zero. When a homogeneous solution is combined with an inhomogeneous solution, the right-

hand side of equation 2.11 remains unchanged by a variation of the parameters of the homogeneous

solution. Thus,

∇ (E(~x, ~w1)− E(~x, ~w2)) = 0

if ~w1 and ~w2 differ only in the parameters of the homogeneous solution, and the impact of the

outputs on the the error function cannot depend upon the parameters of the homogeneous solution

(although a function of the parameters of the homogeneous solution can serve as a regularizer,

independent of the network outputs). As a result, the parameters of the solution to the homogeneous

equation (2.12) must be internal parameters rather than input parameters. Any solution to the

homogeneous equation (2.12) can be used regardless of the value of ∇E(~x), and the solutions to

the homogeneous equation (2.12) constitute a consistent core of the network in the face of varying

inputs. In contrast, the parameters of the solution to the inhomogeneous equation (2.11) may be

input parameters.

More generally, on the basis of this analysis and appendix A.3, we see that the choice of the slack

function ~S induces a particular relationship between the output functions ~F , the training functions

~T , and the error function E. When the slack function ~S(~a,~b) is linear in its second argument,

the input parameters of ~F correspond to the solution to an inhomogeneous equation, whereas the

internal parameters correspond to the solution to a homogeneous equation.
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2.3.2 Additional assumptions on the training function

To make the intrinsic gradient equation (2.9) even more analytically tractable, we further restrict

our attention to training functions ~T (~x, ~w) that are linear, invertible functions of ~x, independent of

~w, such that ~T (~x, ~w) = T · ~x. The assumption that ~T (~x, ~w) is independent of ~w is made to simplify

notation and exposition. The solutions we find work equally well if ~T (~x, ~w) = T~w ·~x. We additionally

require that
(
T−1

)> · T = D, where D is a diagonal matrix with no elements equal to −1. This

restriction will simplify equation 2.13 below and the subsequent analysis. If T is symmetric and

invertible, for example, then this assumption is satisfied and D = I, where I is the identity matrix.

We will often need to refer to the elements on the diagonal of D. Since all other elements of

D are 0, we denote the diagonal elements by Di, rather than the more cumbersome Di,i. Each

non-zero element on the diagonal of D must be the multiplicative inverse of some other element

on the diagonal of D. The assumption that
(
T−1

)> · T = D implies that T = T> · D, since(
T−1

)> =
(
T>)−1 for all T. Thus, T is equal to the transpose of T with its columns scaled

according to D. Element Ti,j = Di · Tj,i, and complementarily Tj,i = Dj · Ti,j , so Di = 1
Dj

except

when Ti,j = Tj,i = 0. Similarly, Di 6= 0 for any i. If Di = 0, then D is not invertible, but the inverse

of D is T−1 ·T>, which exists since T is invertible by assumption. These constraints on the Di will

induce corresponding constraints on the set of intrinsic gradient networks we are able to construct.

To find analytic solutions to the intrinsic gradient equation (2.9), we begin by combining the

intrinsic gradient equation and the slack function ~S(~a,~b) = ~T (~a)− ~T (~b) (resulting in equation 2.10)

with the assumption that the training function ~T (~x) is linear, invertible, and independent of the

parameters ~w, with
(
T−1

)> · T diagonal. In section 2.3.4, we observe that T · ~F (x) must be

proportional to a conservative vector field. A conservative vector field is the gradient of a scalar

function, and in physics corresponds to a force like gravity that obeys a conservation law. The

observation that T · ~F (x) is proportional to a conservative vector field can be understood intuitively

by consideration of polynomial ~F (~x), explored in detail in appendix A.7, and finally allows us to

solve the intrinsic gradient equation directly. Since the output functions ~F (~x) we construct based

upon these assumptions satisfy the intrinsic gradient equation, their associated ~T (~x) can be used

to compute the gradient of the error function at their fixed points using equation 2.7. Finally, in

appendix A.5 we construct a Lyapunov function for a subset of the intrinsic gradient networks,

proving that they have convergent dynamics.

For easy reference, the assumptions made throughout the rest of this section are as follows:

(i) ~S(~a,~b) = ~T (~a)− ~T (~b)

(ii) ~T (~x, ~w) = T · ~x where T is invertible

(iii)
(
T−1

)> ·T = D where D is a diagonal matrix and ∀i Di 6= −1 .
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2.3.3 Transformed output functions: ~G(~x) = T · ~F (~x)

Given the assumption that the training function ~T is linear, invertible, and independent of ~w, the

intrinsic gradient equation (2.9) in conjunction with the slack function ~S(~a,~b) = ~T (~a) − ~T (~b) (i.e.,

equation 2.10) becomes

T · ~F (~x) = ∇E(~x) +
(
∇~F>(~x)

)
·T · ~x ,

where T is a constant matrix. Defining

~G(~x) = T · ~F (~x) ,

we obtain

~G(~x) = ∇E(~x) +
(
∇
(
~G>(~x) ·

(
T−1

)>)) ·T · ~x

= ∇E(~x) +
(
∇~G>(~x)

)
·
(
T−1

)> ·T · ~x

= ∇E(~x) +
(
∇~G>(~x)

)
·D · ~x . (2.13)

We can recover ~F (~x) using ~F (~x) = T−1 · ~G(~x). We sometimes refer to the vector of functions ~G(~x) as

the transformed output functions. We find it convenient to formulate the intrinsic gradient equation

in terms of ~G(~x) rather than ~F (~x), since it allows us to largely abstract away the influence of the

training function ~T (~x).

Analogous to equations 2.11 and 2.12, equation 2.13 is linear in ~G (and thus ~F , since we assume

that ~T (~x) is linear in ~x), so the full solution for ~G is the sum of solutions to the homogeneous

equation with ∇E(~x) = 0, and a solution to the full inhomogeneous equation. As discussed above,

we assume that the homogeneous and inhomogeneous solutions are independently parameterized.

We interpret the inhomogeneous solution as the inputs to the network, since the error function can

depend upon the parameters of the inhomogeneous solution. Complementarily, we interpret the

homogeneous solution as the internal core of the network, since all solutions to the homogeneous

equation are consistent with any error function. A solution to the homogeneous equation can remain

constant in the face of changing inputs and their associated effects on the error function, and may

be changed without altering the inputs or error function. In much of the rest of this thesis, we focus

on solving the homogeneous intrinsic gradient equation with ∇E = 0. However, we will address the

full inhomogeneous intrinsic gradient equation and the input dynamics in section 2.4.

We have thus far made three important assumptions about the slack function ~S and the training

function ~T . The result of these assumptions, equation 2.13, is almost simple enough to attack

directly. In the next section, we will make an observation about the structure of the output functions

~F , at which point we will finally be able to find a large set of solutions to the intrinsic gradient
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equation (2.9).

2.3.4 Conservative vector field formulation

Equation 2.13 is still too complicated to solve directly. Fortunately, we can show that

~G(~x) = (D + I)−1 · ∇g(~x) (2.14)

for some scalar function g(~x).3 A vector function that is the gradient of a scalar function like g(~x)

is traditionally called a conservative vector field. Although ~G(~x) is not technically a conservative

vector field due to the presence of the factor (D + I)−1, we refer to equation 2.14 as the conservative

vector field formulation.

Plugging ~G(~x) = (D + I)−1 · ~H(~x) into equation 2.13 and noting that (D + I) is diagonal, so

both it and its inverse are symmetric and easy to calculate, we find

~G(~x) = ∇E(~x) +
(
∇~G>(~x)

)
·D · ~x

(D + I)−1 · ~H(~x) = ∇E(~x) +
[
∇
(
~H>(~x) · [D + I]−1

)]
·D · ~x

= ∇
(
E(~x) + ~H>(~x) · [D + I]−1 ·D · ~x

)
−D · (D + I)−1 · ~H(~x)

(D + I) · (D + I)−1 · ~H(~x) = ∇
(
E(~x) + ~H>(~x) · [D + I]−1 ·D · ~x

)
~H(~x) = ∇

(
E(~x) + ~H>(~x) · [D + I]−1 ·D · ~x

)
.

We thus see that ~H(~x) = ∇g(x) for some scalar function g(x) = ~H>(~x) · [D + I]−1 ·D · ~x, and

∇g(~x) = ∇
(
E(~x) +

[
∇>g(~x)

]
· [D + I]−1 ·D · ~x

)
.

Moreover, using the fundamental theorem of calculus, we can conclude that

g(~x) = c+ E(~x) +
[
∇>g(~x)

]
· [D + I]−1 ·D · ~x

for some constant scalar c. For the homogeneous part of equation 2.13, E(~x) = 0 and

g(~x) = c+
[
∇>g(~x)

]
· [D + I]−1 ·D · ~x . (2.15)

By analyzing the conservative vector field formulation, we find in appendix A.5 that a large class

of intrinsic gradient networks have Lyapunov functions and are thus provably convergent. We also

develop an interpretation of intrinsic gradient network dynamics in terms of probabilistic models.

3The matrix (D + I)−1 always exists since Di 6= −1 for all i.
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We show in appendix A.6 that

g(~x) = c+
∑
k

xDψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)


 (2.16)

satisfies equation 2.15, so the corresponding ~G(~x) defined by the conservative vector field formula-

tion (2.14) satisfies the intrinsic gradient equation (2.9) with ∇E = 0 for any set of indices ψ(k) and

any set of differentiable scalar functions hkj (x) indexed by both j and k. The corresponding set of

solutions for ~F (~x) is

~F (~x) = T−1 · (D + I)−1 · ∇g(~x)

= T−1 · (D + I)−1 · ∇

c+
∑
k

xDψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)



 . (2.17)

If the functions hkj (x) are differentiable over a subset of their domain, then the intrinsic gradient

equation (2.9) holds over the differentiable portion of the domain. In practice, so long as the non-

differentiable subset of the domain is of measure zero, hkj (x) will be differentiable at all encountered

fixed points, and the gradient of the error function can be calculated based upon the intrinsic signals.

Since the intrinsic gradient equation (2.9) has no explicit dependence on the parameters, the

functions hkj (~x) can be arbitrarily parameterized, and so should strictly be written as hkj (~x, ~w).

Similarly, g(x) is also a function of the parameters, but we generally continue to write g(~x) to keep

our expressions readable. As a particularly simple example compatible with the modular intrinsic

gradient networks discussed in appendix A.2, each summand k of g(x) can have a single multiplicative

parameter wk, yielding

~F (~x) = T−1 · (D + I)−1 · ∇

c+
∑
k

wk · xDψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)



 , (2.18)

where the resulting functions hkj (x) are otherwise unparameterized.

Equations 2.16 and 2.17 are intended to capture solutions to the intrinsic gradient equation,

rather than the direct specification of an algorithm. As a result, the order of operations is not

strictly specified. For instance, it can be seen that if hkj (x) = xr, then
x
r·
Dj+1
Dj

j

x
r·
Dψ(k)+1
Dψ(k)

ψ(k)

can be used in

place of

 x

Dj+1
Dj

j

x

Dψ(k)+1
Dψ(k)

ψ(k)


r

. This is true even if Di+1
Di

mod 2 = 0 for some i, in which case traditional
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function composition would eliminate the sign of xi.

It is also interesting to note that if all the functions hkj (x) are polynomial and T is a pairwise

permutation matrix so Di = 1 for all i, then the total degree4 of each summand of g(x) is equal to

two, and the total degree of each summand of every output function Fi is equal to one. That is,

the output functions are in some sense linear. This is likely related to the fact that the gradient,

which constitutes a linearization of the network, can be calculated from the intrinsic signals of the

network.

Equations 2.14 and 2.16 are motivated by the result of the more complicated derivation in

appendix A.7. There, we make the more conventional assumption that the functions Gi(~x) are poly-

nomial series. Given this polynomial assumption, we develop relationships between the coefficients

and exponents of the polynomials, and observe that all of the resulting solutions to equation 2.13

obey equations 2.14 and 2.16. In this section, we consider the conservative vector field formulation

directly because it yields a larger set of solutions than are obtained with polynomial series, yet

results in a simpler derivation. We further restrict our attention to the homogeneous part of the

equation where ∇E = 0, corresponding to the core of the network independent of the inputs, as

described in section 2.3.1. Particular solutions to the full inhomogeneous equation with a chosen

error function E can easily be found and added in to the network later.

We can extend these results to a wider range of slack functions S, as we discuss in detail in ap-

pendix A.3. Likewise, we have previously assumed that the training function ~T (~x, ~w) is independent

of ~w, but equation 2.17 applies equally well if ~T (~x, ~w) is dependent on ~w; that is, ~T (~x, ~w) = T~w · ~x,

and
(
T−1
~w

)> ·T~w = D~w.

A truly staggering variety of solutions can be generated by choosing the arbitrary differentiable

functions hkj (~x). For instance, these functions can be sigmoidal, corresponding to the sigmoidal

firing rate of neurons in response to increasing sensory stimulation (Albrecht & Hamilton, 1982),

or Gaussian, like radial basis functions. Moreover, the generalization of these solutions to larger

networks and different connection topologies is straightforward. Given assumptions (i) and (ii), the

intrinsic gradient equation (2.9) is linear in the output functions ~F , so groups of output functions

governing disjoint units in a collection of distinct intrinsic gradient networks can be composed freely

to build larger networks with arbitrary connection topologies, including highly recurrent topologies.

We will demonstrate in section 3.2 how pairwise permutation training functions ~T can be used to

build such composite intrinsic gradient networks. Pairwise permutation training functions are simple

and local, since they consist of a single signal. These intrinsic gradient networks thus satisfy both

criteria for biologically plausible neural networks identified in section 1: they are highly recurrent,

and can be trained using a simple, local function of the intrinsic signals within the network.
4The total degree, defined more carefully in appendix A.3, is the sum of the exponents of each factor in a single

summand.
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2.3.5 Simple examples

As an extremely simple example, consider the case where hkj (~x) = 0 for all j, k, and ~x. In this case,

~F (~x) = 0, which clearly satisfies the homogeneous part of equation 2.10.

Alternatively, assume that hkj (~x) = 1 for all j and k. In this case,

~F (~x) = T−1 · (D + I)−1 ·
(
(D + I) ·D−1 · ~x1/D

)
= T−1 ·D−1 · ~x1/D,

where ~x1/D is the vector for which element i is x1/Di
i . If T is a pairwise permutation matrix, then

T−1 = T and D = I, so ~F (~x) = T · ~x.

If hkj′(~x) = wψ(k) for some j′ for each ψ(k), and hkj (~x) = 1 for all other indices j, then we obtain

the slightly more complicated solution

~F (~x) = T−1 ·D−1 ·W · ~x1/D,

where W is a diagonal matrix for which Wk,k = wk. This incredibly simple set of output functions

consists of pairs of reciprocally connected linear functions if T is a pairwise permutation matrix. It

is intuitive that the gradient can be calculated in such a network using only the intrinsic activity,

since both linearization and reversal of message direction leave the output functions unchanged. As

a result, the backpropagation signals are identical to the original messages at the fixed points.

2.3.6 Analysis of the conservative vector field solution

By analyzing the conservative vector field formulation (2.14), it can be seen that the assumptions of

section 2.3.2 imply that the training function matrix T determines the connectivity of the units ~x.

The term ∇g(~x) gives rise to a vector of expressions, where entry i is produced by those terms of g(~x)

that are a function of xi. The output functions are then defined by ~F (~x) = T−1 · (D + I)−1 · ∇g(~x).

The matrix (D + I)−1 is diagonal, and so only scales the entries of ∇g(~x). In contrast, the matrix

T−1 exchanges and recombines the expressions generated by ∇g(~x). If the entries of ∇g(x) are

thought of as the atomic signals of the intrinsic gradient network, then T−1 specifies where each of

these signals projects, and thus the connectivity of the network. In particular, if T is a pairwise

permutation matrix, then all connections must be reciprocal; if Fa(~x) ∝ ∂g(~x)
∂xb

, then Fb(~x) ∝ ∂g(~x)
∂xa

.

Aside from the routing of signals, equation 2.13 almost entirely isolates the output functions ~F

from the training function ~T . For instance, all symmetric invertible matrices T yield the same matrix

D =
(
T−1

)> ·T = I, and thus have an identical effect in equation 2.13. Since the training function

~T effectively specifies the routing of the atomic signals generated by ∇g(~x), this independence is

consistent with a set of independently parameterized modules, like those defined in appendix A.2,
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which can be interconnected in a variable or programmable manner. This dissociation between ~T

and ~F is unlikely to be a general feature of all solutions to the intrinsic gradient equation (2.9).

Although equation 2.17, coupled with assumptions (i) through (iii), describes a large set of

intrinsic gradient networks, the form of equation 2.17 does not specify the overall computation

performed by the network in an easily interpretable manner.5 In contrast, the error function E(~x, ~w)

directly encodes the computation we want the network to perform. This error function specifies the

desirability of every possible combination of the inputs, which consist of a subset of the parameters ~w,

and the outputs, which consist of a subset of the units ~x at a fixed point. Before an intrinsic gradient

network can be used to perform this desired computation, it must be trained by minimizing the error

function E, presumably using the gradient calculable via equation 2.7 from the intrinsic state of the

network at a fixed point. This overall situation is directly analogous to a traditional artificial neural

network. Feedforward artificial neural networks with at least one hidden layer are universal function

approximators, so an artificial neural network with random weights does not intrinsically calculate

anything in particular (Bishop, 1995). Rather, a neural network must be trained to minimize an

error function, after which it performs an approximation of the computation specified by the error

function.

One of the key ideas behind intrinsic gradient networks is that focusing on the fixed points

simplifies the analysis. Given our chosen slack function ~S and a linear training function ~T , the

intrinsic gradient equation (2.9) becomes a system of linear partial differential equations in terms

of the output functions ~F . This system of linear partial differential equations specifies a system of

nonlinear partial differential equations: the dynamics of the units ~x(t) as determined by the output

functions ~F . Thus, viewed as an analysis of existing network dynamics rather than a derivation

of novel network dynamics, the intrinsic gradient equation renders a system of nonlinear partial

differential equations into a linear system by restricting analysis to the fixed point. By considering

this system of linear differential equations, rather than the original nonlinear system, we can see that

the fixed points of the units ~x have a certain desired property: the gradient of the error function is

computed by the training function via equation 2.7. Attempting to directly analyze the system of

nonlinear partial differential equations that define the dynamics of the units would likely be much

more difficult.

2.4 Error functions and input parameters

Since the intrinsic gradient equation (2.9) is linear in the output functions ~F given assumptions (i),

(ii), and (iii) of section 2.3.2, it is possible to consider solutions to the full inhomogeneous intrinsic

gradient equation separately from solutions to the homogeneous intrinsic gradient equation with
5However, if T is a symmetric positive-definite matrix and g(~x) is bounded above, we can characterize the output

states in terms of the local maxima of a Lyapunov function, as in appendix A.5.
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∇E(~x) = 0, as in section 2.3.1. In sections 3.1, 3.2, and 3.3, we will once again focus primarily on

the solutions to the homogeneous equation. In this section, however, we construct output functions

~F consistent with some common error functions E, given assumptions (i), (ii), and (iii). These

output functions correspond to the input dynamics of the network. Full intrinsic gradient networks

are then formed by additively composing the output functions ~F generated by the error function E

(corresponding to the input dynamics) with output functions ~F satisfying the homogeneous intrinsic

gradient equation with ∇E(~x) = 0 (corresponding to the internal dynamics), as we demonstrate in

section 3.2.3.

While we will consistently use the term error function to refer to E(~x), the intrinsic gradient

equation (2.9) merely ensures that the gradient of E(~x) with respect to the parameters can be

calculated, without implying that E(~x) must be minimized. Indeed, in a number of the examples

we will explore, it will be natural to use the gradient to maximize E(~x). In these cases, E(~x) will

function more like an objective function, but we continue to refer to E(~x) as the error function to

the avoid the confusion attendant upon using two words for one concept.

2.4.1 Linear error

The error function associated with the simplest possible set of non-zero output functions is Elin(~x) =

~c> · ~x, where ~c> is a constant row vector. Using this linear error function, ∇Elin(~x) = ~c, and

T · ~F (~x) = ~G(~x) = ~c is a solution to the full inhomogeneous intrinsic gradient equation, as can

be seen from examination of equation 2.13. This solution yields constant output functions ~F (~x) =

T−1 · ~c. Correspondingly, a homogeneous intrinsic gradient network, such as a network satisfying

equation 2.17, augmented with constant inputs ~cinput so that ~F (~x) = ~cinput, calculates the gradient

of the error function E(~x) = ~c>input ·T> · ~x.

The inputs at any fixed point can be thought of as constant, rather than dependent on the

other units, since this transformation does not affect the existence of the fixed point. The resulting

fixed inputs can be used to construct a linear error function with the same fixed point and gradient

as a more complicated error function, potentially leading to a simpler analysis. Specifically, an

intrinsic gradient network with an arbitrary error function E(~x) and fixed point x∗ has the same

gradient at ~x∗ as a homologous intrinsic gradient network with error function Elinearized(~x) = ~c> ·~x,

where ~c = ∇E(~x)|x∗ . We will use this technique to relate intrinsic gradient networks to stacked

auto-associators and deep belief networks in section 3.1.5, and in the implementation of an example

intrinsic gradient network in section 3.4.
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2.4.2 Sum of squares error

The sum of squares error, defined by ESS(~x) = 1
2 ·
∑
i(xi − ci)2 is a common error function often

used with conventional artificial neural networks (Bishop, 1995).6 Using the sum of squares error,

∇ESS(~x) = ~x− ~c, so if D = I as in the case of a pairwise permutation training function, a solution

to the full inhomogeneous intrinsic gradient equation is

Gi(~x) = −ci − xi · log (|xi|) ,

with ~F (~x) = T−1 · ~G(~x), as can be seen from examination of equation 2.13.

An intuitive set of input parameters arise in intrinsic gradient networks designed to calculate the

gradient of the negative sum of squares error, the maxima of which are the same as the minima of the

sum of squares error. Using ENSS(~x) = − 1
2 ·
∑
i(xi− ci)2 and a linear training function with D = I,

a solution to the full inhomogeneous intrinsic gradient equation is Gi(~x) = ci + xi · log (|xi|), with

~F (~x) = T−1 · ~G(~x). The parameters ci are input parameters, with values determined by the error

function (now really an objective function). In particular, when using the negative sum of squares

error and a pairwise permutation training function, the input consists of a set of constants equal

to the desired output values, added to the units complementary (as defined by ~T ) to the outputs.

The negative sum of squares error also requires that the term xi · log (|~xi|) be added to the units

complementary to the outputs, but this term is not affected by the optimal output value and so

functions less like an input than like a regularizer.

In section 3.4, we will observe that the term xi · log (|xi|) induced in Gi(~x) by the negative sum

of squares error constitutes positive feedback for large xi. When used in conjunction with otherwise

desirable output functions and dynamics, this component of the inhomogeneous solution can cause

the network to explode. Ideally, the input parameters would directly reflect the desired outputs, as

with ENSS(~x) = − 1
2 ·
∑
i(xi − ci)2, and the regularizing component of the inhomogeneous solution

would provide stabilizing negative feedback, as with ESS(~x) = 1
2 ·
∑
i(xi − ci)2. We can achieve

this goal by progressively calculating the gradient in two passes, using two complementary intrinsic

gradient networks.

Since the gradient is linear, we can split the error function into two parts, calculate the gradient of

each part separately, and then add the component gradients back together. Moreover, the linearity

of the gradient implies that ∇E(~x) = 1
c · ∇ (c · E(~x)), so we can calculate ∇E(~x) by inverse-scaling

the gradient of a scaled error function. Combining these two tricks, we can compute the gradient of

ENSS(~x) by separately calculating the gradient of Ewake(~x) =
∑
i ci·xi and Esleep(~x) = 1

2 ·
∑
i x

2
i , and

then computing ∇ENSS(~x) = ∇Ewake(~x) −∇Esleep(~x). Of course, since the gradient is calculated

with respect to the fixed point, this technique is only applicable if the fixed points associated with
6The sum over i usually runs over only a subset of the units xi.
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the two components of the error function are approximately the same (taking into account the results

of appendix A.1.3 regarding the gradient of approximate fixed points). We will further develop this

approach in section 3.4.2.

2.4.3 Negative log likelihood error

The expected negative log likelihood ENLL(~x) = −
∑
i ci · log(xi) is another common error function

when 0 ≤ ci, xi ≤ 1 and
∑
i ci =

∑
i xi = 1, so both ~c and ~x can be interpreted as probability

distributions.7 The expected negative log likelihood differs from the Kullback-Leibler divergence,

DKL(~c||~x) =
∑
i ci · log

(
ci
xi

)
, by an additive constant. As a result, the gradient of the expected

negative log likelihood is identical to that of the Kullback-Leibler divergence. With the expected

negative log likelihood error, ∂ENLL(~x)
∂xi

= − ci
xi

, so if D = I, the solution to the full inhomogeneous

intrinsic gradient equation is

Gi(~x) = −1
2
· ci
xi
,

with ~F (~x) = T−1 · ~G(~x), as can be seen from examination of equation 2.13.

As in the case of the sum of squares error, intrinsic gradient networks that calculate the gradient

of the expected log likelihood, ELL(~x) =
∑
i ci · log(xi), have more intuitive input parameters

than those that calculate the gradient of the negative log likelihood. The maxima of the expected

log likelihood are the same as the minima of the expected negative log likelihood. When using

the expected log likelihood and a pairwise permutation training function, the solution to the full

inhomogeneous intrinsic gradient equation is Gi(~x) = 1
2 ·

ci
xi

, so the input parameters are equal to

the desired output values. The input itself is proportional to the desired output, and normalized by

the actual output. This input is added to the units complementary (as defined by ~T ) to the outputs.

2.4.4 Generalized error

The linear error, sum of squares error, and expected negative log likelihood error are all instances

of the class of functions that consist of a sum of terms, each of which is only a function of a single

unit xi. For such error functions, ∂E(~x)
∂xi

is only a function of xi. If D = I, the solution to the full

inhomogeneous intrinsic gradient equation for such error functions is

Gi(~x) = −xi ·
∫ (

x−2
i · ∂E(~x)

∂xi
· dxi

)
. (2.19)

Substituting equation 2.19 into equation 2.13, we find

−xi ·
∫ (

x−2
i · ∂E(~x)

∂xi
· dxi

)
=
∂E(~x)
∂xi

+
(
−
∫ (

x−2
i · ∂E(~x)

∂xi
· dxi

)
− xi ·

(
x−2
i · ∂E(~x)

∂xi

))
· xi ,

7As in the sum of squares error, the sum over i usually runs over only a subset of the units xi.
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which is easily seen to be true.

The expected negative log likelihood error function can be difficult to interpret, since in most

intrinsic gradient networks the units xi are not necessarily bounded either above or below, let alone

subject to the restriction
∑
i xi = 1. Following standard practice in feedforward artificial neural

networks, we might try to enforce the restriction
∑
i xi = 1 directly in the error function. For

instance, we could use the soft-max function softmaxi(~x) = exiP
j e
xj to define the error function

ENLL−SOFTMAX = −
∑
i ci · log(softmaxi(~x)) (Bishop, 1995). However, each term of this modified

negative log likelihood error function is a function of multiple units xi, so the solution of equation 2.19

is not applicable.

This difficulty can be resolved by instead assuming that each output unit xi parameterizes an

independent Bernoulli random variable yi, with p(yi = 1) = logistic(xi) and p(yi = 0) = 1 −

logistic(xi), where logistic(x) = 1
1+e−x . We can then define the error function

ENLL−LOGISTIC(~x) = −
∑
i

ci · log(logistic(xi)) + (1− ci) · log(1− logistic(xi)) ,

corresponding to the negative log likelihood of a set of such independent variables. This error function

does consist of a sum of terms, each of which is only a function of a single unit xi, so equation 2.19

can be applied. A simple calculation shows that ∂ENLL−LOGISTIC(~x)
∂xi

= logistic(xi)− ci, so

Gi(~x) = −xi ·
∫

logistic(xi)− ci
x2
i

· dxi .

Unfortunately, the required integral has no simple analytic solution.

A full vector of output functions consists of the sum of one of these inhomogeneous solutions,

reflecting the input dynamics, and a homogeneous solution representing the internal dynamics. We

have already seen examples of simple homogeneous solutions in section 2.3.5. We will explore more

complex homogeneous solutions, and show how they are combined with an inhomogeneous solution

induced by the error function, in sections 3.2 and 3.3.
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Chapter 3

Examples

The intrinsic gradient equation (2.9) can be difficult to understand directly. Moreover, the set of so-

lutions we have found for the intrinsic gradient equation, encapsulated in equation 2.17, is extremely

diverse. This heterogeneity follows from the parameterization of equation 2.17 by a set of arbitrary

differentiable functions hkj (x). In this chapter, we explore some particular choices for the functions

hkj (x). In section 3.1, we find hkj (x) that induce network dynamics identical to belief propagation on

acyclic factor graphs and recurrent backpropagation, and discuss the relationship between intrinsic

gradient networks and other familiar algorithms. In section 3.2, we consider polynomial hkj (x) that

result in novel, highly recurrent, locally trainable intrinsic gradient networks with dynamics similar

to belief propagation on loopy factor graphs. We investigate sigmoidal hkj (x), and the associated

(novel, highly recurrent, locally trainable) dynamics reminiscent of a hierarchical sigmoidal neural

network in section 3.3. Finally, we apply these two novel intrinsic gradient networks to the XOR

problem and handwritten digit recognition in section 3.4.

3.1 Relationship to existing algorithms

We shall show that both belief propagation on acyclic (singly connected; tree-structured) factor

graphs and recurrent backpropagation satisfy the intrinsic gradient equation (2.9), given appropri-

ately chosen training functions ~T (~x) and the conventional error functions E(~x). Belief propagation

on acyclic factor graphs and recurrent backpropagation are thus intrinsic gradient networks. The

existence of these familiar instances of intrinsic gradient networks confirms that intrinsic gradient

networks can be effective in practice.

The training function we find for belief propagation on acyclic factor graphs with the negative

log likelihood error function is nonlinear, unlike the other examples of intrinsic gradient networks

we consider. Correspondingly, its slack function is not the conventional ~S(~a,~b) = ~T (~a) − ~T (~b) of

section 2.2. Moreover, the associated intrinsic gradient network is not compatible with an arbitrary

connection topology. The intrinsic gradient equation (2.9) is only satisfied if there are no loops in
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the belief propagation network.

The training function we construct for recurrent backpropagation, in contrast, is trivial, with

half of the component functions set equal to zero. This artificial aspect of the training function

reflects the contrived structure and biologically implausible nature of recurrent backpropagation.

We also identify qualitative similarities between intrinsic gradient networks and Hopfield networks

(Hopfield, 1982), Boltzmann machines (Ackley et al., 1985), and deep belief networks (Hinton et al.,

2006). Like Hopfield networks, the outputs of intrinsic gradient networks are defined in terms of

their fixed points, and the initial activities of the units can serve as inputs. Similar to Boltzmann

machines, intrinsic gradient networks can be understood as inducing a probability distribution over

their output configurations. The error functions minimized by intrinsic gradient networks are similar

to those minimized by deep belief networks. These homologies help build our intuitive understanding

of the operation of intrinsic gradient networks.

3.1.1 Belief propagation on an acyclic factor graph

Factor graphs are a parsimonious form of probabilistic model, in which the full probability distri-

bution is factored into many local components (Kschischang et al., 2001). These local components

are multiplied together and normalized to construct the full distribution. Factor graphs generally

have a set of observed variables, the distribution over which is intended to model some external data

set, and a set of hidden variables, which facilitate the construction of the desired distribution over

the observed variables. Belief propagation is a simple message-passing algorithm for calculating the

marginal probabilities of random variables in such a probabilistic model, so long as the dependencies

between the random variables and the local factored components of the distribution do not form

any cycles. Factor graphs and belief propagation are defined in full in appendix A.8.

We show in appendix A.8 that when the negative log likelihood of the observed variables is used

as the error function, belief propagation on an acyclic factor graph constitutes an intrinsic gradient

network satisfying equation 2.8. That is, belief propagation on an acyclic factor graph satisfies the

intrinsic gradient equation (2.9), but with a slack function different from ~S(~a,~b) = ~T (~a) − ~T (~b).

However, belief propagation is a degenerate instance of intrinsic gradient networks, in that the

intrinsic gradient equation is only satisfied if the network is not recurrent.

The training function ~T required to realize this result is somewhat complicated. Although the

internal belief propagation messages are of the form of equation 2.17 (and thus consistent with the

assumptions of section 2.3.2), the ratio between the belief propagation messages and the output of

the required training function changes throughout the network, so T is not a pairwise permutation

and
(
T−1

)> ·T 6= I. Additionally, the negative log likelihood error function traditionally associated

with belief propagation is not consistent with the combination of the belief propagation inputs

and a linear training function. The training function must precisely scale the intrinsic activity,
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corresponding to the normalization required to produce a probability distribution in a factor graph,

and resulting in a nonlinearity. Interestingly, given an unconventional error function related to the

likelihood, belief propagation on an acyclic factor graph satisfies the intrinsic gradient equation (2.9)

with linear T and ~S(~a,~b) = ~T (~a) − ~T (~b). The full construction of the requisite training functions

and a demonstration that they satisfy the intrinsic gradient equation can be found in appendix A.8.

3.1.2 Recurrent backpropagation

Recurrent backpropagation, including the special case of traditional backpropagation on feedforward

networks, satisfies the intrinsic gradient equation (2.9) with the slack function ~S(~a,~b) = ~T (~a)− ~T (~b)

discussed in section 2.2. In recurrent neural networks trained with recurrent backpropagation,

the units are divided into two disjoint but complementary groups: forward-propagation units and

backpropagation units. The forward-propagation units form a traditional recurrent neural network,

potentially projecting to any other unit, and can serve as outputs that directly affect the value of the

error function. The backpropagation units only project to other backpropagation units, and cannot

affect the value of the error function directly. The forward-propagation units are recurrently con-

nected, the backpropagation units are recurrently connected, and the forward-propagation units can

project to the backpropagation units, but the backpropagation units cannot project to the forward-

propagation units; in this sense, recurrent backpropagation is a degenerate instance of intrinsic

gradient networks.

Each forward-propagation unit xiff , is associated with a distinct backpropagation unit xifb , with

Tiff (~x) = xifb . That is, xifb computes that hard part of the gradient for xiff . The symbols ff

and fb serve as subscripts on the index i; iff and ifb are the distinct indices of a corresponding

forward-propagation unit and backpropagation unit.

In the traditional formulation of recurrent backpropagation, the output function (often called the

activation function in this context) of a forward-propagation unit is a sigmoidal function of a weighted

sum of some subset of the forward-propagation units, as in equation 3.1 (Almeida, 1987; Pineda,

1987). The output function of the matching backpropagation unit (xifb for forward-propagation unit

xiff ) is a complementarily weighted sum of the backpropagation units associated with the forward-

propagation units to which the original forward-propagation unit projects, scaled by the derivative

of the sigmoid of those forward-propagation units, as in equation 3.2. The complementarity of the

backpropagation weights is such that wiff jff = wifbjff = wjfbifb for all i and j, where wab is the

weight of the connection to unit a from unit b. To simplify notation, we write wij for all of these

weights. Since there are no projections from backpropagation units to forward-propagation units,

wiff jfb = 0 for all i and j. That is, for each forward-propagation unit xiff and corresponding
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backpropagation unit xifb ,

Fiff (~x) = f

∑
j

wij · xjff + ci

 and (3.1)

Fifb(~x) =
∂E(~x)
∂xiff

+
∑
j

f ′

(∑
k

wjk · xkff + cj

)
· wji · xjfb , (3.2)

where f(x) is a sigmoid function such as hyperbolic tangent, ci is constant external input, and the

dynamics of ~x(t) converge to a fixed point ~x∗ such that ~x∗ = ~F (~x∗). The dynamics of equations

2.1 and 2.2 are commonly used. When wij = 0 for all i ≥ j, the dynamics of equation 2.1 perform

traditional backpropagation on a feedforward network.

We shall now show that equations 3.1 and 3.2 directly satisfy equation 2.10, which is equivalent

to the intrinsic gradient equation (2.9) with the slack function ~S(~a,~b) = ~T (~a)− ~T (~b). Consider the

training function defined by

Tiff (~x) = xifb

Tifb(~x) = 0 (3.3)

for all i. Using this training function, equation 3.2 can be rewritten as

Tiff (~F (~x)) =
∂E(~x)
∂xiff

+
∑
j

f ′

(∑
k

wjkxkff + cj

)
· wji · Tjff (~x)

=
∂E(~x)
∂xiff

+
∑
j

∂Fjff (~x)
∂xiff

· Tjff (~x)

=
∂E(~x)
∂xiff

+
∑
j

(
∂Fjff (~x)
∂xiff

· Tjff (~x) +
∂Fjfb(~x)
∂xiff

· Tjfb(~x)
)
, (3.4)

where the first line results from applying equation 3.3 to equation 3.2, the second line follows from

equation 3.1, and the third line holds because Tjfb(~x) = 0 for all j, as in equation 3.3.

We can also show that

Tifb(~F (~x)) =
∂E(~x)
∂xifb

+
∑
j

(
∂Fjff (~x)
∂xifb

· Tjff (~x) +
∂Fjfb(~x)
∂xifb

· Tjfb(~x)
)
. (3.5)

All terms in equation 3.5 are equal to zero. For the first term and the last term, Tifb(~x) = 0 for all

ifb by definition in equation 3.3; for the second term, ∂E(~x)
∂xifb

= 0 for all ifb because the error function

is not directly dependent upon the backpropagation units; and for the third term,
∂Fjff (~x)

∂xifb
= 0 for

all ifb by equation 3.1. Equations 3.4 and 3.5 together are equivalent to equation 2.10, with the

output functions defined by equations 3.1 and 3.2, and the training function defined by equation 3.3.
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As a result, recurrent backpropagation satisfies the intrinsic gradient equation (2.9), with the slack

function ~S(~a,~b) = ~T (~a)− ~T (~b).

3.1.3 Hopfield networks

Hopfield networks consist of a network of discrete units with the dynamics

xi(t+ 1) =

 1 if ci +
∑
j wij · xj(t) > 0

0 otherwise
(3.6)

(Hopfield, 1982), or continuous units with the dynamics

dxi
dt

= −xi
τ

+ ci +
∑
j

wij · g(xj) , (3.7)

where g(x) is a sigmoidal function (Cohen & Grossberg, 1983; Hopfield, 1984). The input to a

Hopfield network is often encoded in the initial state of the units ~x; the network converges from

each initial state to a potentially distinct fixed point, which constitutes the output of the network

for that input. A particular configuration of the units can be made a fixed point of the dynamics by

training the parameters ~w in a Hebbian manner after fixing the activities of the units to the desired

configuration.

While output functions consistent with the dynamics of equations 3.6 or 3.7 do not satisfy the

intrinsic gradient equation (2.9), intrinsic gradient networks are similar to Hopfield networks in that

the outputs of both are defined in terms of the fixed points. Furthermore, as we will see in section 4.3,

gradient descent in a large class of intrinsic gradient networks consists of a pseudo-Hebbian update.

Whereas Hebbian training in Hopfield networks is heuristic and liable to introduce spurious fixed

points, these pseudo-Hebbian updates at the fixed points of appropriate intrinsic gradient networks

directly minimize the error function. Furthermore, whereas Hebbian training of Hopfield networks

requires that all units be observed, intrinsic gradient networks can accommodate hidden units.

Hopfield networks are often constructed such that their input consists solely of the initial con-

figuration of their units. In contrast, we have shown in sections 2.1.4 and 2.4 that the input to an

intrinsic gradient network must include a set of input parameters, which control the output func-

tions ~F and thus the fixed points (and usually the dynamics) of the network. Interestingly, these

input parameters can take a form analogous to the term ci in equations 3.6 and 3.7, as discussed in

section 2.4. Moreover, the output of an intrinsic gradient network can also be affected by the initial

state. Just as in a Hopfield network, the initial network state can determine which of the possible

fixed points is selected, within the set determined by the input parameters. The initial state of the

network thus constitutes an input to an intrinsic gradient network.
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Input consisting of the initial state of the units is naturally and unavoidably present when an

intrinsic gradient network is presented with a time-varying input. At time t, the intrinsic gradient

network converges to an attractor based upon its state at time t − ∆t. As a result, an attractor

easily reached from that at time t −∆t is adjusted to minimize the error function at time t. This

mechanism is especially compatible with slowly varying input parameters; if the attractors also

change slowly, the network is trained to produce not just single fixed points based upon constant

inputs, but trajectories from dynamic inputs. While this phenomenon seems unlikely to train an

intrinsic gradient network to reproduce observed trajectories in the absence of appropriate input, it

should make the observed trajectories easier to recognize and follow when they are presented.

3.1.4 Boltzmann machines

Boltzmann machines are a stochastic generalization of Hopfield networks (Ackley et al., 1985). They

consist of a network of discrete, stochastic units ~x with the dynamics

P [xi(t+ 1) = 1] =
1

1 + e−(ci+
P
j wij ·xj(t))

P [xi(t+ 1) = 0] = 1− P [xi(t) = 1] ,

which constitutes Gibbs sampling on the probability distribution

P (~x) =
e−E(~x)∑
~x′ e

−E(~x′)

where

E(~x) = −
∑
i

ci · xi −
∑
i<j

wij · xi · xj .

Boltzmann machines are similar to intrinsic gradient networks in that the gradient of the negative

log likelihood, a common error function for probabilistic models, can be calculated based solely on

the intrinsic activity (Geman & Geman, 1984; Ackley et al., 1985). However, whereas intrinsic gradi-

ent networks have discrete output states defined by a deterministic fixed-point equation, Boltzmann

machines use the stochastic dynamics of Gibbs sampling and converge to a distribution over their

possible network states. Minimization of the negative log likelihood in a Boltzmann machine max-

imizes the amount of time that the stochastic Gibbs sampling dynamics spend at a set of desired

states after convergence to the equilibrium probability distribution, and calculating the gradient

requires the average activity over this equilibrium distribution. Unfortunately, the probability dis-

tributions underlying Boltzmann machines are in general analytically intractable, and difficult to

sample from efficiently and accurately (Long & Servedio, 2010).

Intrinsic gradient networks can be thought of as a variation on Boltzmann machines for which
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the equilibrium distributions are weighted sums of Dirac delta functions.1 Since the output func-

tions ~F of an intrinsic gradient network only specify the output states (~x∗ such that ~F (~x∗) = ~x∗),

the dynamics are only loosely constrained. In particular, the dynamics may be stochastic, as in a

Boltzmann machine, thereby inducing a probability distribution over the fixed points. The fixed

points of an intrinsic gradient network each contribute one term to the weighted sum of Dirac delta

functions that constitutes the probability distribution over the output states. Unlike Boltzmann

machines, however, even intrinsic gradient networks with stochastic dynamics have a simple, unam-

biguous method for determining when the system has converged: the output can be read out and

training performed when the system has reached a fixed point of the output functions. In contrast,

it is impossible to determine whether a sample from a Boltzmann machine is drawn independently

from the underlying distribution simply by looking at the sample.

Even using deterministic dynamics, an intrinsic gradient network may have many fixed points

associated with a given error function (corresponding to a particular set of input parameters). The

fixed point to which the network converges using deterministic dynamics is determined by the initial

configuration of the units (~x(t) at t = 0). As a result, there is still an implicit probability distribution

over the fixed points, induced by the probability distribution over the starting configuration of the

units.

So long as the error function E can be interpreted as a function of the likelihood of the input

given the network state ~x, an intrinsic gradient network calculates the gradient of that function of

the likelihood for the current fixed point. For instance, the sum of squares error corresponds to

the log likelihood if the probability distribution of the inputs given a network configuration ~x is

a Gaussian centered around the outputs. However, the gradients naturally calculated by intrinsic

gradient networks only take into account the position the current fixed point; they ignore any change

in the probability of reaching the current fixed point, or any effect on the other fixed points.

Although simpler in some ways than the probability distributions of Boltzmann machines, the

weighted sum of Dirac delta functions has the advantage that, provided that there are relatively few

delta spikes (i.e., fixed points), they can all be trained directly. In contrast, in a Boltzmann machine,

all configurations generally have non-zero probability and can constitute outputs of the network, so

the probability of all configurations must be actively managed. Indeed, a local minimum of the

negative log likelihood in a Boltzmann machine may assign substantial probability to undesired

configurations, so long as the probabilities of the desired configurations are large. For example, a

Boltzmann machine trained to maximize the likelihood of handwritten digits may learn to assign

significant probability to a figure that looks like a “3” on the top but an “8” on the bottom. A
1As we discuss in appendix A.5, in many intrinsic gradient networks, the fixed points are stationary points of a

probability distribution induced by the output functions. In particular, the fixed points correspond to the locally
maximal a posteriori configurations of this probability distribution. The probability distribution maximized at the
fixed points constrains, but is different from, the probability distribution over the fixed points (i.e., the output states)
discussed here.
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Boltzmann machine would experience pressure to eliminate such an undesired configuration only to

the extent that it consumes probability that could otherwise be assigned to the exemplars. If such

a spurious figure were a fixed point of an intrinsic gradient network, it would be corrected directly.

3.1.5 Deep belief networks and stacked auto-associators

A variety of effective techniques have recently been developed for training deep networks, such

as deep belief networks and stacked autoencoders (Hinton et al., 2006; Bengio et al., 2007; Vincent

et al., 2008). The increased efficacy of these techniques compared to conventional stochastic gradient

descent is due to a stage of unsupervised pre-training on the inputs alone, prior to supervised training

on the inputs and outputs (Larochelle et al., 2009; Erhan et al., 2010). Like these techniques for

conventional deep networks, the gradient calculated by intrinsic gradient networks can be used to

perform unsupervised training on the inputs. In particular, when using an error function that

constitutes a distance or divergence measure between the network’s outputs and some vector of

ideal values, such as the sum of squares and negative log likelihood error functions described in

section 2.4, minimization of the error function induces the network to reconstruct these ideal values

on its outputs. As discussed in sections 2.1.4 and 2.4, the error function E(~x), and thus these ideal

values, are also reflected in the input parameters. For example, when using the sum of squares

error function (and given the assumptions described in section 2.3), the ideal values manifest as

constant additive offsets in the output function of the complementary input units. As a result, the

minimization of such distance-measure error functions constitutes unsupervised training.

Additionally, hierarchical intrinsic gradient networks with a pairwise permutation training func-

tion naturally train their internal layers to reconstruct their inputs, similar to stacked autoencoders

(Bengio et al., 2007; Vincent et al., 2008). Consider each layer of a hierarchical intrinsic gradient

network (with a pairwise permutation training function) separately. At a fixed point, the inputs

to each layer are effectively constant. As discussed in section 2.4.1, an intrinsic gradient network

with a pairwise permutation training function and constant inputs computes the gradient of the

inner product between the vector of constant inputs and the complementary outputs. Therefore,

each layer of such a hierarchical intrinsic gradient network effectively computes the gradient of the

inner product between its output to the adjacent layers and its input from the adjacent layers at the

fixed point. Ascent of this gradient differs from the training algorithm used by stacked autoencoders

primarily in the use of the additive inverse of the inner product, instead of the sum of squares error

or negative log likelihood, as the error function.
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3.2 Belief-propagating intrinsic gradient networks

Factor graphs are a popular type of probabilistic model (Kschischang et al., 2001), defined in detail

in appendix A.8. Belief propagation is a set of network dynamics which can be used to perform exact

inference on acyclic (singly connected) factor graphs, and approximate inference on factor graphs

with loops (Murphy et al., 1999). Since the marginal probabilities of groups of random variables

are sufficient to calculate the gradient of the negative log likelihood in a factor graph, acyclic factor

graphs can be trained easily and efficiently using belief propagation. Correspondingly, we have

shown in section 3.1.1 and appendix A.8 that belief propagation on an acyclic factor graph is an

intrinsic gradient network.

However, belief propagation on an acyclic factor graph is not recurrent, whereas the network of

cortical neurons is highly recurrent (Felleman & Van Essen, 1991; Douglas & Martin, 2004). As a

result, belief propagation on acyclic factor graphs is not a biologically plausible model of cortical

computation. While belief propagation on loopy factor graphs is recurrent, it can produce grossly

inaccurate approximations to the marginal probabilities, especially when there are small, strong

loops (Yedidia et al., 2005). Belief propagation on a loopy factor graph is therefore not an intrinsic

gradient network, and is not biologically plausible because it cannot be used to reliably train the

network.

In this section, we construct intrinsic gradient networks with output functions reminiscent of

belief propagation on loopy factor graphs, which we therefore call belief-propagating intrinsic gradi-

ent networks. Like belief propagation on loopy factor graphs, belief-propagating intrinsic gradient

networks do not compute exact beliefs according to the probability calculus; rather, they generalize

belief propagation on acyclic factor graphs by extending to a diverse set of connection topologies the

ability to calculate the exact gradient using the intrinsic signals. In particular, belief-propagating

intrinsic gradient networks can support highly recurrent (strongly connected) topologies, and so are

more biologically plausible in this regard than belief propagation on acyclic factor graphs.

While these belief-propagating intrinsic gradient networks are a direct application of equa-

tion 2.17, the process of building a concrete network from our abstract formulas is unintuitive.

To clarify this procedure, we demonstrate the step-by-step construction of a small but nontrivial

belief-propagating intrinsic gradient network. This example network is itself recurrent, even though

it corresponds to an acyclic factor graph. The same methodology can be used to build intrinsic

gradient networks of arbitrary size and topology, including cyclic topologies.

We first construct two extremely small belief-propagating intrinsic gradient networks, depicted

in figures 3.1 and 3.2, corresponding to part of a degree-two factor node and part of a degree-three

variable node in a factor graph, respectively. Given assumptions (i) and (ii) in section 2.3.2, the

intrinsic gradient equation (2.9) is linear in the output functions ~F , so groups of output functions that
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independently satisfy the homogeneous part of the intrinsic gradient equation (2.12) can be added

together to build larger networks. This addition corresponds to the sum over k in equation 2.17. Our

two initial belief-propagating intrinsic gradient networks are atomic in the sense that they cannot be

broken down into the sum of smaller intrinsic gradient networks. Taking advantage of the linearity

of the intrinsic gradient equation, we proceed to additively combine many instances of these atomic

belief-propagating intrinsic gradient networks into a network corresponding to a small factor graph

consisting of two variable nodes connected to each other by a factor node, as depicted in figure 3.3.

Finally, we show how inputs can be introduced into the network, corresponding to a solution to the

inhomogeneous part of the intrinsic gradient equation and the associated error function.

In order to build our atomic nodes, we first construct simple polynomial solutions to the intrinsic

gradient equation (2.9) by carefully selecting a linear training function T, the indices ψ(k), and

the differentiable functions hkj (~x) which parameterize equation 2.17. We choose T to be a pairwise

permutation matrix, so T = T−1 = T> and D = I. Given this restriction, equation 2.18 becomes

~F (~x) = T · 1
2
· ∇

c+
∑
k

wk · x2
ψ(k) ·

∏
j 6=ψ(k)

hkj

(
x2
j

x2
ψ(k)

) . (3.8)

We then choose the set of functions hkj (x) such that for each k, hkj (x) = x
1
nk for nk−1 of the indices

j with j 6= ψ(k), and hkj (x) = 1 otherwise. We will use nk = 2 in section 3.2.1 and nk = 3 in

section 3.2.2, resulting in nodes of degree two and three, respectively. Plugging these choices into

equation 3.8, we obtain

~F (~x) = T · 1
2
· ∇

c+
∑
k

wk · ∏
j∈Jk

x
2
nk
j

 , (3.9)

where Jk is a set of nk distinct indices of ~x, and we take advantage of the ability to compose hkj (x)

and its argument, even when this implies the inversion of a squaring operation.

3.2.1 Atomic degree-two factor node

We construct a parameterized degree-two node using the units xa, xb, xα, and xβ , depicted in

figure 3.1, by restricting k to the set {1}, and choosing J1 = {a, b} and w1 = 2 · w in equation 3.9.

This corresponds to a scalar function g(~x) in equations 2.16 and 2.17 defined by

g(~x) = 2 · w · xa · xb . (3.10)

Consider a training function ~T (~x) = T · ~x, where T is a pairwise permutation matrix that

exchanges the pairs of units xa ↔ xα and xb ↔ xβ . For instance, if ~x =
[
xa xb xα xβ

]>
,
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Figure 3.1: An atomic factor node for a belief-propagating intrinsic gradient network. The output
functions of the units are specified by equation 3.12. Units xα and xβ compute outputs analogous
to the belief propagation messages out of a degree-two factor node connected to two unary variable
nodes. The arrows from units xa and xb terminate on the square containing xα and xβ to indicate
that xa and xb project to both units in the square.

then

~T (~x) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ·

xa

xb

xα

xβ

 =


xα

xβ

xa

xb

 . (3.11)

Plugging J1 = {a, b} (with k ∈ {1}) and equation 3.11 into equation 3.9 (or equivalently plugging

equations 3.10 and 3.11 into equation 2.17), we obtain

~F (~x) =


Fa(~x)

Fb(~x)

Fα(~x)

Fβ(~x)

 =


0

0

w · xb
w · xa

 . (3.12)

Given these choices, the sum over k disappears because k only assumes a single value. While it may

initially seem odd that Fa(~x) and Fb(~x) are set equal to zero, we will see that these zeros constitute

placeholders where this atomic belief-propagating intrinsic gradient network can be connected to

other belief-propagating intrinsic gradient network nodes, or to inputs. Zero is the identity element

for addition, so when the Fa(~x) or Fb(~x) of this atomic network is added to the overlapping output

function of another network, the final value of Fa(~x) or Fb(~x) will be equal to that of the second

network.

It is easy to confirm that these output functions satisfy the intrinsic gradient equation (2.9) with

~S(~a,~b) = ~T (~a)− ~T (~b), ~T (~x) defined by equation 3.11, and E(~x) = 0. Substituting these choices into
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the intrinsic gradient equation, we find

~T (~x) = ~S(~x, ~F (~x)) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x)

~T (~F (~x)) =
(
∇~F>(~x)

)
· ~T (~x)

Fα(~x)

Fβ(~x)

Fa(~x)

Fb(~x)

 =


0 0 0 w

0 0 w 0

0 0 0 0

0 0 0 0

 ·

xα

xβ

xa

xb

 , (3.13)

where the second line results from applying the definitions of ~S(~a,~b) and E(~x), and the third line

follows from substituting in the definitions of ~T (~x) and ~F (~x). It is easy to see that equation 3.13

is satisfied by the ~F (~x) of equation 3.12, although it is important to note that the order of the

components of ~F (~x) is different. A similar derivation shows that these output functions still satisfy

the intrinsic gradient equation when there are many additional units xi, so long as Fi(~x) = 0 and

Ti(~x) is independent of xa, xb, xα, and xβ for all such units.

3.2.2 Atomic degree-three variable node

Following an analogous procedure, we can construct an unparameterized degree-three node, depicted

in figure 3.2, by choosing J1 = {a, b, c} and w1 = 3 in equation 3.9, with k ∈ {1}. This corresponds

to a scalar function g(~x) in equations 2.16 and 2.17 defined by

g(~x) = 3 · x2/3
a · x2/3

b · x2/3
c . (3.14)

Consider a training function ~T (~x) = T · ~x, where T is a pairwise permutation matrix that ex-

changes the pairs of units xa ↔ xα, xb ↔ xβ , and xc ↔ xγ . If ~x =
[
xa xb xc xα xβ xγ

]>
,

then

~T (~x) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


·



xa

xb

xc

xα

xβ

xγ


=



xα

xβ

xγ

xa

xb

xc


. (3.15)

Plugging J1 = {a, b, c} and equation 3.15 into equation 3.9 (or equivalently plugging equations 3.14
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Figure 3.2: An atomic variable node for a belief-propagating intrinsic gradient network. The output
functions of the units are specified by equation 3.16. Units xα, xβ , and xγ compute outputs analogous
to the belief propagation messages associated with a unary degree-three variable node. The arrows
from units xa, xb, and xc terminate on the circle containing xα, xβ , and xγ to indicate that xa, xb,
and xc project to all units in the circle.

and 3.15 into equation 2.17), we obtain

~F (~x) =



Fa(~x)

Fb(~x)

Fc(~x)

Fα(x)

Fβ(~x)

Fγ(~x)


=



0

0

0
x
2/3
b ·x2/3

c

x
1/3
a

x2/3
a ·x2/3

c

x
1/3
b

x2/3
a ·x2/3

b

x
1/3
c


. (3.16)

Once again, it is easy to confirm that these output functions satisfy the intrinsic gradient equa-

tion (2.9) with ~S(~a,~b) = ~T (~a) − ~T (~b), ~T (~x) defined by equation 3.15, and E(~x) = 0. Substituting



46

these choices into the intrinsic gradient equation, we find

~T (~x) = ~S(~x, ~F (~x)) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x)

~T (~F (~x)) =
(
∇~F>(~x)

)
· ~T (~x)

Fα(~x)

Fβ(~x)

Fγ(~x)

Fa(~x)

Fb(~x)

Fc(~x)


=



0 0 0 − 1
3 ·

x
2/3
b ·x2/3

c

x
4/3
a

2
3 ·

x2/3
c

x
1/3
a ·x1/3

b

2
3 ·

x
2/3
b

x
1/3
a ·x1/3

c

0 0 0 2
3 ·

x2/3
c

x
1/3
a ·x1/3

b

− 1
3 ·

x2/3
a ·x2/3

c

x
4/3
b

2
3 ·

x2/3
a

x
1/3
b ·x1/3

c

0 0 0 2
3 ·

x
2/3
b

x
1/3
a ·x1/3

c

2
3 ·

x2/3
a

x
1/3
b ·x1/3

c

− 1
3 ·

x2/3
a ·x2/3

b

x
4/3
c

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


·



xα

xβ

xγ

xa

xb

xc


, (3.17)

where the second line results from applying the definitions of ~S(~a,~b) and E(~x), and the third line

follows from substituting in the definitions of ~T (~x) and ~F (~x). It is easy to see that equation 3.17

is satisfied by the ~F (~x) of equation 3.16, although it is important to note that the order of the

components of ~F (~x) is different. As in the case of the degree-two node of section 3.2.1, these output

functions still satisfy the intrinsic gradient equation when there are many additional units xi, so

long as Fi(~x) = 0 and Ti(~x) is independent of xa, xb, xc, xα, xβ , and xγ for all such units xi.

3.2.3 Assembling a larger network

Since the intrinsic gradient equation (2.9) is linear in ~F (~x) when assumptions (i) and (ii) in sec-

tion 2.3.2 are satisfied, the output functions corresponding to many such atomic belief-propagating

intrinsic gradient networks can be added together to form larger belief-propagating intrinsic gra-

dient networks. Such a summation of distinct networks is equivalent to the summation over k in

equation 3.9 (and in equation 2.17, from which equation 3.9 was derived). To form the larger net-

work depicted in figure 3.3, we add together four instances of the atomic degree-two factor node

constructed in section 3.2.1, and four instances of the atomic degree-three variable node constructed

in section 3.2.2. The four instances of the atomic degree-two factor node are defined on overlapping

units, and together compose the equivalent of a single factor node in the corresponding factor graph.

Each atomic factor node contributes a single parameter to the collective factor node. Complementar-

ily, each group of two instances of the atomic degree-three variable node gives rise to the equivalent

of a single binary variable node.



47

x
γ
1

x
γ
2

x
c

2

x
c

1

x
α

1

x
α

2

x
a

2

x
a

1

x
β

1

x
β

2

x
b

2

x
b

1

x
δ

1

x
δ

2

x
d

2

x
d

1

x
ε

1

x
ε

2

x
e

2

x
e

1

x
φ

1

x
φ

2

x
f
2

x
f
1

Figure 3.3: A belief-propagating intrinsic gradient network. The output functions of the units are
specified by equation 3.19. Units xαi , xβi , and xγi (i ∈ {1, 2}) compute outputs analogous to
the belief propagation messages out of a degree-three binary variable node; units xδi , xεi , and xφi
(i ∈ {1, 2}) compute outputs analogous to the belief propagation messages out of a second degree-
three binary variable node; units xci and xdi (i ∈ {1, 2}) compute outputs analogous to the belief
propagation messages out of a degree-two factor node connecting two binary variable nodes. Dashed
half-boxes enclose units that have output functions implicitly set equal to zero in equation 3.19,
but which could be inputs or part of additional factor nodes if the intrinsic gradient network were
suitably extended. An arrow from a unit terminating on a solid square or circle enclosing a group
of units indicates that the unit at the source of the arrow potentially projects to all units in the
enclosed group.
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Phrased directly in terms of equation 3.9, we choose

J1 = {a1, b1, c1}

J2 = {a2, b2, c2}

J3 = {γ1, δ1}

J4 = {γ1, δ2}

J5 = {γ2, δ1}

J6 = {γ2, δ2}

J7 = {d1, e1, f1}

J8 = {d2, e2, f2} .

This corresponds to a scalar function g(~x) in equations 2.16 and 2.17 defined by the sum over the

following terms:

(i)

 3 · x2/3
a1 · x2/3

b1
· x2/3

c1

3 · x2/3
a2 · x2/3

b2
· x2/3

c2

(ii)



2 · w1 · xγ1 · xδ1
2 · w2 · xγ1 · xδ2
2 · w3 · xγ2 · xδ1
2 · w4 · xγ2 · xδ2

(iii)

 3 · x2/3
d1

· x2/3
e1 · x2/3

f1

3 · x2/3
d2

· x2/3
e2 · x2/3

f2
.

(3.18)

The terms in groups (i) and (iii) of equation 3.18 correspond to four atomic degree-three variable

nodes. They do not have any trainable parameters, corresponding to unparameterized functions

hkj (x) in equation 2.16. The terms in group (ii) of equation 3.18 correspond to four atomic degree-

two factor nodes. These eight atomic nodes, each of which has one output in each direction, will

combine to yield binary factor and variable nodes with two outputs in each direction (i.e., messages

of length two).

Each group of terms (and corresponding group of atomic nodes) marked by the curly braces in

equation 3.18 is defined over a disjoint set of units. As a result, when the gradient operator is applied

to the sum of the terms in equation 3.18, each curly-brace-delimited group of terms gives rise to

non-zero contributions in a disjoint subset of the entries of the gradient vector. Given a training

function that maps between subsets of the groups in a pairwise manner, this segregation of the units

into disjoint sets can be maintained in the mapping to the output functions on the left-hand side

of equation 2.17. In the case of equation 3.18, the arguments of each curly-brace-delimited group
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of terms will constitute the input to a single composite variable or factor node in the network of

figure 3.3, and the disjoint set of output functions to which they are mapped by the training function

will correspond to the outputs from that composite node.

More specifically, consider a training function ~T (~x) = T · ~x, where T is a pairwise permutation

matrix that exchanges the pairs of units xai ↔ xαi , xbi ↔ xβi , xci ↔ xγi , xdi ↔ xδi , xei ↔ xεi ,

and xfi ↔ xφi for i ∈ {1, 2}. This T never exchanges units that are arguments of the same curly-

brace-delimited group of terms in equation 3.18. When the arguments of the curly-brace-delimited

groups of terms are disjoint and T is a pairwise permutation with this property, the set of units that

T exchanges with the arguments of such a group of terms of g(~x) can be thought of as a node. For

example, T maps xci ↔ xγi and xdi ↔ xδi , so group (ii) induces a node consisting of the units xc1 ,

xc2 , xd1 , and xd2 . The inputs to this node are the original arguments of group (ii): xγi and xδi . A

node takes inputs from adjacent nodes and generates outputs which are then passed back to these

adjacent nodes, as in figure 3.3.

With g(~x) defined by equation 3.18 and using the dynamics of equation 2.1, we will see that

the outputs from each node are analogous to the messages from a factor node or variable node in

a factor graph, hence the choice of nomenclature. However, we will use the term node to refer

to such disjoint subsets of units whenever T is a pairwise permutation matrix that exchanges the

between but not within the subsets, even if the dynamics are unlike those of belief propagation. In

appendix A.2, we develop a closely related definition of modularity, and show that intrinsic gradient

networks with this modular structure must have linear training functions and use the slack function

~S(~a,~b) = ~T (~a)− ~T (~b), given a few reasonable assumptions. Most of the examples of nodes we present

in this thesis are also modules, as defined in appendix A.2.

This training function T, in conjunction with equations 2.17 and 3.18, induces the output func-

tions

(i)


Fαi(~x) = (xai)

−1/3 · (xbi)
2/3 · (xci)

2/3

Fβi(~x) = (xai)
2/3 · (xbi)

−1/3 · (xci)
2/3

Fγi(~x) = (xai)
2/3 · (xbi)

2/3 · (xci)
−1/3

(ii)



Fc1(~x) = w1 · xδ1 + w2 · xδ2

Fc2(~x) = w3 · xδ1 + w4 · xδ2

Fd1(~x) = w1 · xγ1 + w3 · xγ2

Fd2(~x) = w2 · xγ1 + w4 · xγ2

(iii)


Fδi(~x) = (xdi)

−1/3 · (xei)
2/3 · (xfi)

2/3

Fεi(~x) = (xdi)
2/3 · (xei)

−1/3 · (xfi)
2/3

Fφi(~x) = (xdi)
2/3 · (xei)

2/3 · (xfi)
−1/3

(3.19)

for i ∈ {1, 2}, as depicted in figure 3.3. Using the full discrete update ~x(t + 1) = ~F (~x(t)) of
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equation 2.1, the equations of group (ii) of equation 3.19 exactly compute the belief propagation

messages through a pairwise factor between two binary variables. We shall thus refer to a set of

units with output functions like those of group (ii) as a factor node. The large square in figure 3.3

represents the factor node generated by group (ii). In contrast, the equations of groups (i) and (iii)

of equation 3.19 compute something analogous to the belief propagation messages out of two binary

variable nodes, but raised to the power 2/3 and normalized by the reciprocal incoming messages.

We thus refer to a set of units with output functions like those of group (i) or (iii) as a variable node.

The two large circles in figure 3.3 represent the variable nodes generated by groups (i) and (iii).

Each belief propagation message component is associated with a distinct element of ~x, so a binary

variable connected to three factors in a factor graph corresponds to six units xi and their associated

output functions Fi(~x).

In later sections, we will extend our usage of the term variable node to refer to any node consisting

of a group of units with unparameterized output functions that project in more than two directions,

even if the output functions are unlike those of groups (i) and (iii). Variable nodes are analogous to

the visible and hidden layers in a traditional feedforward neural network, and we will sometimes use

visible layer and hidden layer to refer to variable nodes that do and do not have input parameters,

respectively. Units that project from a visible layer carry input messages; units that project to a

visible layer carry output messages.

As can be seen from equations 2.17 and 3.9, the training function T determines the connectivity

of the resulting network, specifying to which output function Fi(~x) the message formed by ∂
∂xi

g(~x)

projects. Complementarily, viewed in terms of the inputs rather than outputs, T specifies which

units influence output function Fi(~x). Using the dynamics ~x(t + 1) = ~F (~x(t)) of equation 2.1, the

output function Fi(~x) specifies the output from unit xi, so T directly controls how the gradient

messages are routed through the units. For example, in equations 3.18 and 3.19 and figure 3.3, T

exchanges xci ↔ xγi and xdi ↔ xδi . Block (ii) of g(~x) is defined in terms of xγi and xδi , so units

xγi and xδi are the inputs to the factor node corresponding to block (ii). However, the action of

T implies that block (ii) actually determines the dynamics of units xci and xdi , which take input

from units xγi and xδi in the adjacent variable nodes, and project back to their associated variable

nodes.

Additional nodes can be added to the network by including additional terms in g(~x). In par-

ticular, additional terms of the form of groups (i) and (iii) add an additional degree-three variable

node to the network; additional terms of the form of group (ii) add an additional pairwise factor

node. As described in section 2.4, input signals can also be added to these dynamics by choosing a



51

non-zero error function E(~x, ~w). For instance the error function2

E(~x) =
∑

i∈{1,2}

cai · xαi + cbi · xβi + cei · xεi + cfi · xφi

induces the inputs

Fai(~x) = cai

Fbi(~x) = cbi

Fei(~x) = cei

Ffi(~x) = cfi

for i ∈ {1, 2}.

Higher-degree (or lower-degree) variable and factor nodes (i.e., with more or fewer connection

directions) can be constructed by increasing (or decreasing) the size of nk in equation 3.9. Both

variable and factor nodes of degree two have output functions identical to those in belief propagation,

but differ from belief propagation for higher-degree nodes. Variable and factor nodes with more

values per variable (rather than the binary variables of equations 3.18 and 3.19 and figure 3.3) can

be constructed by increasing the number of terms in the corresponding blocks of g(~x). In all cases,

the number of units xi must be increased accordingly. Unlike traditional belief propagation, the

topology of the connections in these intrinsic gradient networks is unrestricted, so networks with the

form of equations 3.18 and 3.19 can be expanded to arbitrary sizes and topologies, including highly

recurrent configurations with many loops.

3.3 Hierarchical logistic intrinsic gradient networks

Equation 2.17 is also consistent with output functions more reminiscent of a hierarchical sigmoidal

artificial neural network. In a traditional one-hidden-layer neural network, information flows in a

single feedforward direction, from the input units, to the hidden units, and then to the output units.

While intrinsic gradient networks are generally recurrent rather than feedforward, they can still have

a hierarchical connection topology similar to that in a feedforward neural network, with each layer

of units connecting only to one superordinate and one subordinate layer. Intrinsic gradient networks

can also support output functions based upon sigmoids as in traditional neural networks, rather

than the belief-propagation-like output functions discussed in section 3.2.

In particular, we can construct hierarchical intrinsic gradient networks using degree-three variable
2We use the term error function in accordance with our previous nomenclature, but the intrinsic gradient equa-

tion (2.9) merely ensures that the gradient of the error function can be calculated, without implying that the error
function should be either minimized or maximized.
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Figure 3.4: Part of a hierarchical logistic intrinsic gradient network. The hierarchy runs from left
to right. The output functions of the units are specified by equation 3.21. Units xαi , xγi , xδi ,
and xφi (i ∈ {1, 2, · · · , n}) have output functions analogous to the sigmoidal transfer function in
a traditional neural network. Units xci and xdi (i ∈ {1, 2, · · · , n}) compute the weighted sums on
which the sigmoidal transfer function operates in a traditional neural network. Units xβi , xbi , and
xεi (i ∈ {1, 2, · · · , n}) implement recurrent connections within a single layer. Dashed half-boxes
enclose units that have output functions implicitly set equal to zero in equation 3.21, but which
could be inputs or part of additional factor nodes if the intrinsic gradient network were suitably
extended. An arrow from a unit terminating on a solid square or circle enclosing a group of units
indicates that the unit at the source of the arrow potentially projects to all units in the enclosed
group.

nodes, with one variable node giving rise to each layer. As described in section 3.2, degree-three

variable nodes have projections in three directions, whereas each layer in a hierarchical network

must project in only two directions. To construct a hierarchical network with one degree-three

variable node per layer, a factor node (similar to group (ii) in equations 3.18 and 3.19), can be

used to connect a variable node (such as groups (i) and (iii) in equations 3.18 and 3.19) to itself,

as shown in the top-left of figure 3.4. In this manner, factor nodes can be used to cap all but two

connections from each variable node.3 Additional pairwise factor nodes can then be used to form

a linear chain of variable nodes and factor nodes, as shown along the bottom of figure 3.4. Rather

than use many small parallel pathways between small variable nodes, the number of units in each

factor and variable node can be expanded to correspond to a full layer in a traditional hierarchical

neural network, as in figure 3.5. Moreover, the functions hkj (x) in equation 2.16 can be logistic, like

in a traditional artificial neural network, rather than polynomial. We call the resulting network a

hierarchical logistic intrinsic gradient network.
3More than one connection must be capped to construct a hierarchical network with one variable node per layer

if we use variable nodes with degree greater than three. However, it is not necessary to cap all but two connections
to construct a hierarchical network in general. For instance, a hierarchical network with a slightly different topology
could be constructed by allowing each layer of the hierarchy to have multiple, interconnected variable nodes.
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Figure 3.5: A denser hierarchical intrinsic gradient network. The hierarchy runs from left to right.
The output functions of the units are specified by equation 3.21, using a labelling following the same
pattern as that in figure 3.4. While this figure shows five units projecting in each direction to and
from the first layer, and four units projecting in each direction to and from the second layer, each
layer may be of any size. Dashed half-boxes enclose units that have output functions implicitly
set equal to zero in equation 3.21, but which could be inputs or part of additional factor nodes
if the intrinsic gradient network were suitably extended. An arrow from a unit terminating on a
solid square or circle enclosing a group of units indicates that the unit at the source of the arrow
potentially projects to all units in the enclosed group.

Consider the case where g(~x) is the sum of the terms

2 ·
∑
i

σ

(
xai
xbi

)
· x2

bi · σ
(
xci
xbi

)
2 ·

∑
i,j | i 6=j

wβij · xβi · xβj

2 ·
∑

i,j | i 6=j

wγij · xγi · xδj

2 ·
∑
i

σ

(
xdi
xei

)
· x2

ei · σ
(
xfi
xei

)
, (3.20)

where i, j ∈ {1, 2, · · · , n}, n is the size of a layer in the analogous hierarchical neural network, and

σ(x) is the logistic function σ(x) = (1 + e−x)−1. Equation 3.20 is consistent with equation 2.17,

with a pairwise permutation training function ~T (so Di = 1 for all i), ψ(1) = b1, h1
a1

(x) = σ(x1/2),

h1
c1(x) = σ(x1/2), · · · , ψ(n + 1) = β1, hn+1

β2
(x) = wβ12 · x1/2, and so on. The subscripted indices

in equation 3.20 allow us to easily generalize to hierarchical networks with an arbitrary number of

units in each layer, as suggested by figure 3.5. Moreover, the set of terms in equation 3.20 can be

extended to yield deeper networks by adding an additional set of terms corresponding to the second

through the last lines of equation 3.20 for each additional layer. Inputs can be added to the network



54

by choosing an appropriate error function E(~x), as described in section 2.4.

If T exchanges the pairs of units xai ↔ xαi , xbi ↔ xβi , xci ↔ xγi , xdi ↔ xδi , xei ↔ xεi , and

xfi ↔ xφi for all i, then

(i)



Fαi(~x) = σ

(
xai
xbi

)
·
[
1− σ

(
xai
xbi

)]
· xbi · σ

(
xci
xbi

)
Fβi(~x) = σ

(
xai
xbi

)
· σ
(
xci
xbi

)
·

·
(

2 · xbi − xai ·
[
1− σ

(
xai
xbi

)]
− xci ·

[
1− σ

(
xci
xbi

)])
Fγi(~x) = σ

(
xai
xbi

)
· xbi · σ

(
xci
xbi

)
·
[
1− σ

(
xci
xbi

)]
(ii)

{
Fbi(~x) =

∑
j

wβij · xβj

(iii)


Fci(~x) =

∑
j

wγij · xδj

Fdi(~x) =
∑
j

wγji · xγj

(iv)



Fδi(~x) = σ

(
xdi
xei

)
·
[
1− σ

(
xdi
xei

)]
· xei · σ

(
xfi
xei

)
Fεi(~x) = σ

(
xdi
xei

)
· σ
(
xfi
xei

)
·

·
(

2 · xei − xdi ·
[
1− σ

(
xdi
xei

)]
− xfi ·

[
1− σ

(
xfi
xei

)])
Fφi(~x) = σ

(
xdi
xei

)
· xei · σ

(
xfi
xei

)
·
[
1− σ

(
xfi
xei

)]

(3.21)

for i ∈ {1, 2, · · · , n}, as depicted in figure 3.4. The units xβi and xbi carry the recurrent projection

from the first layer to itself, the units xγi and xdi carry the projection from the first layer up to

the second layer, and the units xδi and xci carry the projection from the second layer back to

the first layer. In a traditional hierarchical artificial neural network, only the intrinsic gradient

network units with Greek-letter subscripts, like xβi , xγi , and xδi , would be directly represented by

neural network units; the weighted sums performed by the intrinsic gradient network units with

Latin-letter subscripts, like xbi , xci , and xdi , would be performed within Greek-subscripted neural

network units. Nevertheless, these weighted sums between and within layers are identical to those

found in traditional artificial neural networks.

Instead of applying a direct sigmoidal transfer function to these weighted sums, output functions

Fγi(~x) and Fδi(~x) first normalize the bottom-up and top-down weighted sums by the recurrent

weighted sum, and scale their output by the recurrent signal and a simple function of the reciprocal

signal. Similarly, Fβi(~x) is a simple function of sigmoids of the normalized inputs. The Greek-

subscripted units have no constant offset, in contrast to traditional neural networks, but the divisive

normalization by the recurrent signal can serve a similar function of centering the input within
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the appropriate portion of the dynamic range of the sigmoid. An actual constant offset to the

dynamics of an intrinsic gradient network would correspond to a linear error function, as discussed

in section 2.4.

We thus see that simple intrinsic gradient networks can be constructed with dynamics similar to

those of traditional systems like belief propagation on loopy factor graphs or hierarchical artificial

neural networks. However, due to their carefully designed dynamics, intrinsic gradient networks

can be trained directly and exactly once they reach a fixed point, without the need for a separate

backpropagation stage or approximations of uncertain fidelity. More complicated intrinsic gradient

networks may yield even more interesting dynamics.

3.3.1 An intuitive description of the derived computational paradigm

It has been repeatedly observed that feature extraction followed by pooling of similar features is

an effective strategy for object recognition (Fukushima, 1980; Lecun et al., 1998; Serre et al., 2005;

Jarrett, et al., 2009; Coates et al., 2010). In the traditional framework, feature extraction generally

consists of a linear filter followed by a static sigmoidal transfer function, while pooling can consist of

a sum, max, or other monotonically increasing function over a fixed set of extracted features. The

linear filters are generally trained to minimize some error function, although they may be partially

fixed a priori, as in the case of the first layer of HMAX (Serre et al., 2005), and can yield surprisingly

good results even when set randomly (Jarrett, et al., 2009). The pooling stage is generally assumed

to be fixed.

Intrinsic gradient networks of the form described in this section can perform operations qualita-

tively similar to both feature extraction and pooling using distinct, hard-wired mechanisms within

each layer. Consider the output from unit xφi at the fixed point:

xφi = Fφi(~x) = σ

(
xdi
xei

)
· xei · σ

(
xfi
xei

)
·
[
1− σ

(
xfi
xei

)]
= σ

(∑
j wγji · xγj
xei

)
· xei · σ

(
xfi
xei

)
·
[
1− σ

(
xfi
xei

)]
= σ

(∑
j wγji · xγj
xei

)
· xei · νi , (3.22)

as follows from equation 3.21, defining νi = σ
(
xfi
xei

)
·
[
1− σ

(
xfi
xei

)]
. Ignoring the effect of xei and νi,

unit xφi performs feature extraction consisting of a sigmoid of a linear transformation of the input,

~xγ . This operation arises from the combined effect of the factor node corresponding to group (iii)

and the variable node corresponding to group (iv) in equation 3.21.

Of course, xei and νi also affect xφi at the fixed point. Indeed, the xei can induce behavior similar

to max pooling. After extending the intrinsic gradient network of equation 3.21 in the obvious way
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to include Fej (~x) =
∑
i wεji · xεi , the unit xej is a function of xεi . Equation 3.21 implies that

Fεi(~x) = Fδi(~x) ·

 1

1− σ
(
xdi
xei

) − xdi
xei

+ Fφi(~x) ·

 1

1− σ
(
xfi
xei

) − xfi
xei

 ,

so at a fixed point xεi is a weighted sum of xδi and xφi , the feedback and feedforward message

associated with unit xεi . At a fixed point, xei is the weighted sum of the xεj , so xei converges to

something like a scaled, weighted average of the feedforward and feedback messages out of the node.

Plugging this result into equation 3.22, xφi is normalized and scaled relative to a group of similar

units.

An appropriate set of non-negative recurrent parameters wεji can cause groups of units within

each layer to mutually suppress each other. So long as the normalizing effect of xei dominates over

the scaling effect of xei in equation 3.22, the largest feedforward and feedback messages out of the

node will more effectively suppress the other units than vice versa, thereby reducing the suppression

of the largest units in a feedback loop. At the fixed point of this feedback process, the feedfor-

ward unit with the largest output should be considerably more active than the others, constituting

an approximate max operation consistent with the pooling stage in traditional hierarchical object

recognition systems.

Since something like feature extraction and pooling are performed by distinct portions of equa-

tion 3.21, they will inevitably be interleaved, giving rise to something like a convolutional network

(Lecun et al., 1998). Both the extracted features and the groups over which pooling is performed

are trainable with the gradient computed at the fixed points in an intrinsic gradient network. Unlike

traditional convolutional networks, the intrinsic gradient network described in this section is highly

recurrent, potentially facilitating powerful computations, as described in section 4.3.2. This compu-

tational power follows not from a wholly ad hoc choice of network dynamics, but rather from the

biologically-inspired requirement that the gradient be easily calculable from the fixed points.

3.4 Practical implementations of highly recurrent intrinsic

gradient networks

Up until this point, we have taken an analytic approach to intrinsic gradient networks. To this

end, we have successfully constructed a large class of novel, highly recurrent networks for which the

gradient of the error function can be calculated from the intrinsic signals at the fixed points. This

gradient can be used to train the parameters of the network to minimize the error function. Indeed,

a variety of powerful minimization algorithms, including stochastic gradient descent, quasi-Newton

methods, and conjugate gradients, require only the signals directly available within an intrinsic
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gradient network (Bishop, 1995). We have also shown that both belief propagation on acyclic factor

graphs and recurrent backpropagation are instances of intrinsic gradient networks, so it is clear that

intrinsic gradient networks can be at least as computationally powerful and easily trainable as these

familiar algorithms. Unfortunately, neither belief propagation on acyclic factor graphs nor recurrent

backpropagation are highly recurrent, so it is difficult to reconcile these networks with the recurrence

of the cortex (Felleman & Van Essen, 1991; Douglas & Martin, 2004).

Our novel, highly recurrent intrinsic gradient networks, such as those constructed in sections 3.2

and 3.3, do not suffer from this inconsistency, and in this sense constitute more plausible models

of cortical computation. As we will discuss further in section 4.3, such highly recurrent intrinsic

gradient networks can have a connection topology consistent with that observed in the cortex.

Moreover, we will find that gradient descent along the error function of such networks consists of a

pseudo-Hebbian update, consistent with the adjustment of synaptic strength in the cortex (Malenka

& Bear, 2004).

However, we have not yet established that our novel, highly recurrent intrinsic gradient networks

can be successfully trained to perform interesting computations. Such a failure of training could

take three forms: our novel, highly recurrent intrinsic gradient networks could prove unable to find

a fixed point of the output functions, and thus fail to calculate the gradient; the gradient could be

insufficient to efficiently descend the convoluted error function landscape; or the local minima to

which the training algorithm converges could have insufficiently low error.

We partially address the concern that a fixed point will not be found in appendix A.5, where

we construct a class of highly recurrent intrinsic gradient networks with dynamics that provably

converge to a fixed point of the output functions. Moreover, we demonstrate in appendix A.1 that

approximate fixed points are sufficient for training. Specifically, an approximate gradient can be

calculated using ~x such that ~F (~x) ≈ ~x; it does not matter if this ~x is far from any ~x∗ where

~F (~x∗) = ~x∗. Nevertheless, we might still be worried that typical intrinsic gradient networks with

simple, intuitive dynamics, like those of equation 2.1, enter a limit cycle or chaotic attractor and never

approach anything like a fixed point of the output functions. In such cases, the training function

~T (~x) would not necessarily compute the gradient of the intrinsic gradient network accurately, and a

gradient-based learning algorithm using ~T (~x) might fail to minimize the error function.

Even if a fixed point can be found and the gradient can be calculated, the error function landscape

could be too convoluted to succumb to gradient-based minimization techniques. Recurrent networks

can be highly nonlinear, and small changes to the parameters can have large, contextually-dependent

effects. The error function landscape could thus contain deep, winding canyons, such that any

local, low-order approximation is inaccurate beyond a small region surrounding the current point in

parameter space. Since gradient-based training algorithms are dependent upon such local, low-order

approximations, they are extremely inefficient in such circumstances.
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Finally, we might worry that the local minima found by our intrinsic gradient networks do not

actually solve our intended problem. For instance, if the network outputs oscillate rapidly but

shallowly as a function of the parameters, it is easy to imagine that the error function landscape

might contain many small, shallow local minima corresponding to each cycle of the oscillations.

Since the outputs of the network and thus the value of the error function vary little within each

cycle, such local minima would be little better than a random point in parameter space, and the vast

majority of the local minima would not reduce the error function below an acceptable threshold.

Even the global minimum of the error function may not be low enough, as often occurs with

perceptrons. Whereas feedforward artificial neural networks with a single hidden layer are universal

function approximators (Bishop, 1995), feedforward neural networks without hidden units (i.e.,

perceptrons) can only perform linear discriminations (Minsky & Papert, 1969). A simple perceptron

can be trained simply, effectively, and in a biologically plausible manner, but it cannot compute XOR

of two inputs, regardless of the choice of parameters. In the absence of a proof that all intrinsic

gradient networks are universal function approximators, we might thus be concerned that our novel,

highly recurrent intrinsic gradient networks suffer from a similar limitation and cannot capture the

required input-output mappings.

These issues are certain to arise in some cases. For instance, if the functions hkj (x) of equation 2.17

are chosen to have large, high-frequency oscillations, then the dynamics ~x(t + 1) = ~F (~x(t)) of

equation 2.1 are unlikely to converge. On the other hand, the simple homogeneous solutions discussed

in section 2.3.5, such as ~F (~x) = 0, converge quickly using the dynamics of equation 2.1. However,

they are clearly not powerful enough to compute nontrivial input-output mappings.

These potential failures of effective training are difficult to characterize analytically. Finding

Lyapunov functions to prove that a set of dynamics converges to a fixed point is something of a

black art, and determining whether an arbitrary recurrent network converges is a manifestation of the

non-computable halting problem, since Turing machines can be formulated as recurrent networks.

The speed of learning is often sensitive to hyperparameters like the initialization of the parameters,

and so is not well defined by the network architecture alone (LeCun et al., 1998). In general, the

computational power of intrinsic gradient networks can only be evaluated analytically given a more

explicit characterization of the fixed points than we currently possess.

3.4.1 A proof-of-concept implementation

It is thus sensible to address the possible failure of effective training by investigating some practical

examples. In this section, we describe two hierarchical intrinsic gradient networks similar to those

of section 3.3, and show that they can accurately calculate the gradient and learn nontrivial input-

output mappings via stochastic gradient descent. We assess their performance on a generalization

of the XOR problem and on handwritten digit recognition. These examples establish that, while
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we cannot rule out any of the three failure mechanisms described above on a theoretical basis,

highly recurrent intrinsic gradient networks need not fall prey to any of them. Moreover, we use

two different sets of output functions (one polynomial like in section 3.2, and one sigmoidal as in

section 3.3) to demonstrate that the efficacy of intrinsic gradient networks is not dependent on any

particular choice of hkj (x) in equation 2.16.

The examples constructed in this section are intended solely as a proof-of-concept. The per-

formance of our example intrinsic gradient networks on handwritten digit recognition is not state-

of-the-art, but this should not be interpreted as a reflection on the overall capabilities of intrinsic

gradient networks. Intrinsic gradient networks must converge to a fixed point, and so require many

more computations to produce an output than a feedforward neural network of comparable size. To

minimize the computational burden of our simulations, we consider only extremely small intrinsic

gradient networks. However, a large feature space, consisting of many hidden units, is essential for

good performance on visual recognition tasks using traditional feedforward networks (Coates et al.,

2010). Typical feedforward artificial neural networks used to perform handwritten digit recognition

use hundreds if not thousands of units in the hidden layer (Simard et al., 2003; Ciresan et al., 2010),

whereas we restrict ourselves to only thirty-six units in each direction per hidden layer. It is plausible

to hypothesize that performance would improve significantly were we to use larger intrinsic gradient

networks.

The relative inefficiency of intrinsic gradient networks is exacerbated by the serial nature of

modern CPU architectures, which can only update (on the order of) one unit at a time. In the

cortex, in contrast, each unit could be implemented by a disjoint set of neurons operating in parallel,

so all units could be updated simultaneously, rendering the time required to find a fixed point much

less dependent on the size of the network. Future work will need to investigate the scaling properties

of intrinsic gradient networks, perhaps using GPUs to mimic the parallel dynamics of the cortex.

Classical machine learning problems, like classification and regression, do not perfectly align

with the structure of intrinsic gradient networks. As discussed in section 2.4, intrinsic gradient

networks induce a particular relationship between the inputs and the error function. Every output

on which the error function depends makes a complementary contribution to the input. In contrast,

supervised learning paradigms like classification and regression define the error function in terms of

a set of outputs for which there are no complementary inputs. We wish to demonstrate that intrinsic

gradient networks can be used to solve such problems, while recognizing that supervised learning

paradigms are not the only way to formalize cortical learning. To solve classification problems with

intrinsic gradient networks, we choose a particular mapping of inputs and outputs onto the network,

along with an attendant set of approximations to the gradient of the supervised error function.

While this approach is sensible, there are many other ways to perform classification with intrinsic

gradient networks, some of which are likely to yield superior performance.
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The examples discussed in this section also constitute a mere proof-of-concept, in that we focus

our attention on a single connection topology and only two sets of functions hkj (x). These hyper-

parameters bear a superficial resemblance to those that have proven effective in feedforward neural

networks, but there is no real reason to believe that the resulting intrinsic gradient networks are

optimal, or even typical of the performance of the class of intrinsic gradient networks constructed

in section 2.3. The space of highly recurrent intrinsic gradient networks captured by equation 2.17

is even broader than the space of feedforward artificial neural networks. Just as the hyperparame-

ters of feedforward neural networks must be carefully selected to obtain good performance (LeCun

et al., 1998), it is likely that the performance of intrinsic gradient networks is similarly dependent

on the hyperparameters. Our experiments in this section constitute a first stab in the darkness of

this enormous parameter space. Additional theory and practical experience will be necessary to

distinguish the most powerful intrinsic gradient networks from poor and average intrinsic gradient

networks. Such explorations are beyond the scope of this thesis.

Since we are interested in evaluating the computational power of highly recurrent intrinsic gra-

dient networks in general rather than solving a particular machine learning task, we do not perform

any preprocessing on the inputs. In contrast, standard systems for performing handwritten digit

recognition often make use of explicit brightness and contrast normalization, if not more sophisti-

cated whitening of the data (Coates et al., 2010). Systems like HMAX even preprocess the inputs

using an untrained linear-nonlinear filter bank (Serre et al., 2005). Our performance would likely

improve were we to make use of these standard but powerful augmentations.

Despite these caveats, the examples developed in this section demonstrate that our novel, highly

recurrent intrinsic gradient networks can behave sensibly. Moreover, they serve as a basis for future

explorations.

3.4.2 Splitting the error function into a wake component and a sleep

component

In section 2.4.2, we constructed solutions to the full inhomogeneous intrinsic gradient equation (2.9)

with the error function chosen to be the familiar sum of squares error, ESS(~x) = 1
2 ·
∑
i (xi − ci)

2.

In additional to being computationally parsimonious, the sum of squares error corresponds to the

negative log likelihood of the input if the network is understood to induce independent Gaussian

probability distributions centered on each output (Bishop, 1995). The sum of squares error (and

the complementary negative sum of squares objective function) is thus a well-motivated choice for

the error function. As discussed in section 2.4, we prefer to maximize the negative sum of squares

error rather than minimize the sum of squares error, since the negative sum of squares error induces

input signals that are of the same sign as the optimal output signals.
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However, a direct implementation of the sum of squares error has some undesirable properties

in the highly recurrent intrinsic gradient network investigated in this section. Unlike a linear error

function or a Kullback-Leibler divergence with unnormalized outputs, the minimum of the sum

of squares error (and the maximum of the negative sum of squares error) is achievable with finite

signals; specifically, when xi = ci for all outputs xi. At these points, the gradient is necessarily equal

to zero if it is defined. In an intrinsic gradient network, the gradient is a simple function of the fixed

point, so a zero gradient has strong implications for the optimal fixed points. Specifically, as per

equation 2.7, dE(~x)
dw′ =

∑
i Ti(~x) ·

(
∂Fi(~x,~w)
∂w′

)
at the fixed point. If the training function ~T (~x) = T · ~x

is a pairwise permutation (as in the networks of sections 3.2 and 3.3) and each output function Fi(~x)

is independently parameterized, then xi = 0 for all xi that the pairwise permutation ~T (~x) maps to

xj such that Fj(~x) is parameterized and ∂Fj
∂ ~w 6= 0 at the fixed point. In the examples of sections 3.2

and 3.3, this would imply that all inputs in one direction to each factor node are set to zero, and

consequently the outputs of the factor nodes in these directions are also zero. Such fixed points

are not desirable minima for the error function, suggesting that we should choose a different error

function.

An appropriate modification to the error function is suggested by an additional undesirable

property of the sum of squares error. When used in conjunction with simple, intuitive dynamics like

~x(t+1) = ~F (~x(t)) of equation 2.1 and a pairwise permutation training function ~T (~x) = T ·~x, the log

component of the input induced by the negative sum of squares error can constitute strong positive

feedback. As output xi increases, the complementary input xj increases according to xi · log (|xi|).

Not only can this positive feedback destabilize the fixed point given a fixed set of parameters, but

since the gradient is a simple function of the fixed point, positive feedback can also manifest in

stochastic gradient ascent on the negative sum of squares error function.

We can avoid positive feedback due to the log component, retain the intuitive input parameteriza-

tion induced by the negative sum of squares error, and simultaneously keep activity from going to zero

at the minima of the error function by taking advantage of the linearity of the gradient and splitting

the negative sum of squares error into two parts. Specifically, instead of ENSS(~x) = − 1
2 ·
∑
i(xi−ci)2,

consider the two component error functions

Ewake =
∑
i

ci · xi and

Esleep =
1
2
·
∑
i

x2
i . (3.23)

The sum in the definition of Esleep only runs over a subset of the units xi. Since ENSS(~x) =

Ewake(~x) − Esleep(~x) − 1
2 ·
∑
i c

2
i , we see that dENSS(~x)

d~w = dEwake(~x)
d~w − dEsleep(~x)

d~w , where dE
d~w is the

vector of total derivatives of the error function with respect to the parameters.
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3.4.3 Approximating the test network with a wake network and sleep

network

Reflecting this decomposition, we construct two intrinsic gradient networks, the wake network and

the sleep network, with identical internal parameters but with input parameters selected so that the

networks calculate the gradients of Ewake(~x) and Esleep(~x), respectively. Given the assumptions of

section 2.3.2, the input to the wake network is ~F (~x) = T−1 · ~G(~x), where Gi(~x) = ci; the input to

the sleep network is ~F (~x) = T−1 · ~G(~x), where Gi(~x) = −xi · log (|xi|), as discussed in section 2.4.

The minima of the difference between these two error functions, evaluated at the fixed points of

the respective networks, occur when dEwake(~x)
d~w = dEsleep(~x)

d~w . This equality constraint does not imply

that either component gradient dEwake(~x)
d~w or dEsleep(~x)

d~w must be small, so the activity in the wake and

sleep networks need not go to zero at these minima. Moreover, −xi · log (|xi|) now provides negative

feedback for large xi in the sleep network, and is thus less subject to instability.

However, the wake and sleep networks that calculate the gradients of Ewake and Esleep have

different inputs, and so calculate their gradients at different fixed points. As a result, the difference

between the gradients of Ewake and Esleep calculated by the corresponding intrinsic gradient networks

is at best an approximation of the gradient of the negative sum of squares error, which is defined on

a single network at a single fixed point. Nevertheless, if we focus on the wake network, then from

an intuitive perspective we simply want to maximize Ewake while minimizing the magnitude of the

wake network outputs. The sleep network will serve as a reasonable heuristic stand-in for the wake

network so long as it calculates the gradient of the squared output magnitude at similar fixed points

to those found by the wake network, even if the fixed points are not identical.

More rigorously, we want to maximize the negative sum of squares error on a test network, which

has inputs that reflect the information available from the environment. These inputs are potentially

similar but not precisely identical to the inputs of the wake and the sleep network. To train the

test network, we thus want the gradient of the negative sum of squares error, or equivalently the

difference between the gradients of Ewake and Esleep, on this test network. Reassuringly, we can

show that the gradients of Ewake and Esleep on the test network are approximately equal to the

gradients of these error functions on their respective networks if the wake and sleep networks find

fixed points similar to those of the test network, and the higher derivatives of the output functions

~F are small.

To actually compute the gradient of the wake or sleep error function on the test network, we

could linearize the test network at its fixed point and perform recurrent backpropagation, using the

chosen error function to provide the input solely to the backpropagation calculation (Almeida, 1987;

Pineda, 1987). As we see from appendix A.1, such a linearization and backpropagation is exactly

the operation performed by the forward direction of any intrinsic gradient network at a fixed point.
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However, intrinsic gradient networks tie the fixed point at which the linearization is performed to

the error function that determines the input to the recurrent backpropagation. The wake and sleep

networks use the desired error functions, but linearize at a different point. The gradient calculated

by the wake or sleep network for their respective error functions should thus be a good approximation

of recurrent backpropagation in the test network if the linearization is at a sufficiently similar point,

despite the difference in input, and if the gradient changes slowly with respect to this linearization

point.

Specifically, from appendix A.1, we see that

(
dE

d~w

)>
=
(
∇>E

)
· (I− Jx)

−1 · Jw ,

where I is the identity matrix, Jx is the Jacobian of ~F (~x, ~w) with respect to ~x, and Jw is the Jacobian

of ~F (~x, ~w) with respect to ~w. Our two-stage approximation of the negative sum of squares error

gradient using the wake and sleep networks thus differs from the true gradient on the test network

only in the use of Jx and Jw evaluated at the wake or sleep network’s fixed point, rather than the

test network fixed point. As a result, the wake and sleep networks can be used to compute a good

approximation of the gradient of the test network with the wake and sleep error functions if the

fixed points are similar and ~F (~x) has small higher derivatives, since then both Jacobians are similar

for the wake, sleep, and test networks. Moreover, Jw is generally very easy to calculate directly, so

it can be evaluated in the training network itself, rather than the wake and sleep networks, to yield

an even more accurate approximation.

3.4.4 Matching fixed points between the wake and sleep networks

The approximation described above suffices when the wake and sleep networks have nearby fixed

points, but the sleep network will often have fixed points that are unlike any single wake network

fixed point. The wake network naturally provides the desired outputs as input to both the bottom-

most and top-most variable node, whereas the sleep network does not provide the desired output

to either. As a result, fixed points in the sleep network corresponding to a spurious combination of

bottom-up and top-down inputs are common in intrinsic gradient networks like those of section 3.3;

if the factor node between two hidden variable nodes has approximately uniform parameters, the

two hidden variable nodes are functionally disconnected. For example, if the network is trained

with images of handwritten digits as the desired output at the bottom of the network and a 1-of-

n representation of the digit classification as the desired output at the top of the network, then

the sleep network can easily develop fixed points consisting of a well-formed digit image and a

non-corresponding but also well-formed 1-of-n digit classification. These spurious combinations are

prevented in the wake network by the data-driven bottom-up and top-down input.
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The computational inconvenience of unmatched wake and sleep networks reflects a more funda-

mental conceptual problem. If we are to use a hierarchical intrinsic gradient network like that in

section 3.3 to perform classification, regression, or other typical machine learning tasks using the

standard feedforward arrangement of inputs and outputs, then we must provide data-driven input

only to the bottom-most variable node. The desired output should then correspond to the units

complementary to the top-most variable node, which constitutes the top-level output. The lack of

complementarity between the connections of the inputs and the outputs gives rise to a corresponding

inconsistency in the network structure. The wake component of the sum of squares error function

(Ewake) naturally provides the desired outputs as input to both the bottom-most and top-most vari-

able node, whereas the sleep component (Esleep) does not provide the desired output to either. We

want to shape the fixed point of a test network given only the bottom-up input, which is a hybrid

of the wake and sleep networks induced by Ewake and Esleep.

This discrepancy between the inputs to the wake, sleep, and test networks, and the associated

break from the conditions required for the accurate approximation of the gradient of the test net-

work, would not have a deleterious effect if minimizing Esleep naturally reduced the probability of

converging to a fixed point, while maximizing Ewake naturally increased the probability of converging

to a fixed point. Such training dynamics would ensure that wake, sleep, and test networks all have

similar fixed points, since sleep network fixed points unmatched to a wake network fixed point would

be eliminated, while wake network fixed points unmatched to a sleep network fixed point would gen-

erate a corresponding fixed point. Assuming that the network state is initialized randomly, this

property is present if minimizing Esleep for a fixed point shrinks the basin of attraction of that fixed

point, while maximizing Ewake increases the basin of attraction for the associated fixed point. While

we cannot rigorously prove the existence of this phenomenon, we can make a reasonable plausibility

argument. We will focus on the change in the basin of attraction due to gradient descent on Esleep.

The complementary result for Ewake follows from a similar argument.

Consider a network with the dynamics of equation 2.1, satisfying the intrinsic gradient equa-

tion (2.9) with the slack function ~S(~a,~b) = ~T (~a) − ~T (~b) (i.e., equation 2.10).4 If we consider the

dynamics of the network state transformed by the training function, ~xT (t) = ~T (~x(t)), we obtain

~xT (t+ 1) = ~c+ J>x · ~xT (t) , (3.24)

where ~c = ∇E, and J>x = ∇~F> is the transpose of the Jacobian of ~F with respect to ~x, both

evaluated at ~x(t). If J>x has a full set of linear independent eigenvectors, then the fixed points of

4It is necessary to select a particular set of dynamics, since the basins of attraction are only defined relative to the
dynamics.
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these dynamics satisfy

~xT = (I− J>x )−1 · ~c

=
(
Q · I ·Q−1 −Q ·Λ ·Q−1

)−1 · ~c

=
[
Q · (I−Λ) ·Q−1

]−1 · ~c

= Q · (I−Λ)−1 ·Q−1 · ~c

=
∑
i

pi ·
1

1− Λii
· ~qi ,

where Q is a matrix with the unit-length eigenvectors of J>x along its columns, Λ is the diagonal

matrix of the corresponding eigenvalues, ~qi is the ith column of Q, and pi is the ith element of

Q−1 ·~c. The eigenvalues satisfy |Λii| < 1 at the stable fixed points of the dynamics of equation 3.24.

Given these bounds, larger eigenvalues generally yield larger fixed points, so reducing the squared

magnitude of ~xT = ~T (~x) at the fixed points should tend to reduce the eigenvalues. The squared

magnitude of ~T (~x) is equal to that of ~x when ~T (~x) is a pairwise permutation, and Esleep is propor-

tional to the squared magnitude of a subset of the elements of ~x, so minimizing Esleep should also

tend to reduce the eigenvalues of J>x at the associated fixed point.

At the same time, the eigenvectors of J>x with the largest eigenvalues dominate the dynamics

of equation 3.24; ~xT moves towards the various eigenvectors with speed exponentially related to

their eigenvalues. Of course, J>x and ~c change as a function of ~xT . Nevertheless, to the extent that

the eigenvectors and eigenvalues of J>x change smoothly as a function of ~xT , if there are multiple

fixed points near ~xT , the dynamics will be attracted by each fixed point to the degree that its

principal eigenvectors dominate J>x at the current point. If the eigenvalues change smoothly, fixed

points with larger magnitudes, and thus larger eigenvalues, will dominate the dynamics over a larger

range, and so have a larger basin of attraction. Minimizing Esleep at a fixed point should reduce

the eigenvalues of J>x , so minimizing Esleep at a fixed point should tend to shrink the fixed point’s

basin of attraction. A similar argument shows that Ewake tends to grow with the eigenvalues of J>x ,

so maximizing Ewake at a fixed point should tend to increase the fixed point’s basin of attraction.

The nomenclature “wake” and “sleep” is not accidental. This two stage learning procedure is

analogous to that used in Boltzmann machines and their kin (Ackley et al., 1985; Hinton et al.,

1995), which also break the parameter update into a wake stage and a sleep stage. Furthermore,

the wake error function and network dynamics depend upon active sensory stimuli, as experienced

by an animal while awake, whereas the sleep error function and dynamics depend only upon the

intrinsic properties of the network, much like dreaming. If we choose output functions that are

always or almost always positive and increasing function of their parameters, then we can see from

equation 2.7 that ascent of the wake network’s gradient increases parameter values, and descent of
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Figure 3.6: Network topology used in the examples. The bottom of the hierarchy is on the left; the
top of the hierarchy is on the right. Only two units are shown projecting in each direction due to
size constraints in the figure, but the examples use larger layers. An arrow from a unit terminating
on a solid square or circle enclosing a group of units indicates that the unit at the source of the
arrow potentially projects to all units in the enclosed group.

the sleep network’s gradient decreases parameter values. This is consistent with the observation that

cortical synaptic strengths tend to increase over the course of a waking interval, and decrease over

the course of an interval spent asleep (Vyazovskiy et al., 2008).

3.4.5 Implementation structure

In the examples discussed below, we use a connection topology of the form depicted in figure 3.6,

which extends that of section 3.3. We refer to the units Ai in figure 3.6 as the bottom-up inputs,

which have complementary bottom-level outputs Bi; we refer to the units Pi as the top-down in-

puts, which have complementary top-level outputs Oi. The first and the last variable nodes thus

correspond to the visible layers of the network, whereas the central two variable nodes constitute

hidden layers. Figure 3.6 depicts only two units in each direction of each layer for the sake of size

and simplicity, but in the examples we use thirty-six units in each direction of each hidden layer,

and visible layers of sizes determined by the data set.

We train these intrinsic gradient networks to classify images. For each image, the constituent

pixels of the image are associated with the bottom-up inputs and their complementary outputs in the

network, and the one-of-n encoding of the image classification is associated with the top-down inputs

and their complementary outputs. We wish to maximize the sum, over all images, of the negative

sum of squares error between these inputs and their complementary outputs in a test network, in

which the image is presented at the bottom-up inputs, and the classification is read out from the

top-level outputs.

We use stochastic gradient descent to train the networks; on each iteration, we subtract a vector

to the parameters proportional to the gradient of the sum of squares error induced by the current

input. As a result, we need to calculate (an approximation of) the gradient of the negative sum

of squares error for each image separately. The details of the implementation are discussed in
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Figure 3.7: Colormap used in the following figures. Black always corresponds to the value 0. Positive
values are represented by grays to the right; negative values are represented by reds and yellows to
the left. The colormap is scaled independently for each plot to maximize the dynamic range.

appendix A.9, but are summarized here. As in section 3.4.2, we break the gradient calculation

into distinct wake and sleep stages, and wish to maximize the wake error function and minimize

the sleep error function. To this end, we accumulate a pair of matched wake and sleep gradients

associated with a single element of the training data set before executing each parameter update.

An approximation to the fixed point of both the wake network and the sleep network is found using

500 iterations of dynamics like those of equation 2.3. We calculate an approximation to ∇Ewake and

∇Esleep from these approximate fixed points using equation 2.7. Rather than allow the magnitude

of the parameter updates to vary arbitrarily, we normalize the difference between the matched wake

and sleep gradients by the low-pass filtered Euclidean norm of the difference between paired wake

and sleep stage gradients. We then multiply this normalized gradient by a fixed constant and add it

to the parameter vector. This ensures that the average magnitude of the overall parameter update

is roughly constant over time. Future work should consider choosing the step size based upon an

approximation of the Hessian (LeCun et al., 1998).

After training, we evaluate the classification performance using a test network consisting of a

hybrid of the wake and sleep networks. The bottom-up inputs of the test network are constant, as in

the wake network, but the top-down inputs are linear functions of the complementary output, as in

the sleep network. The unit activities of the test network are initialized by a heuristic propagation

of information from the bottom-up inputs up the hierarchy, and then allowed to converge to a fixed

point using 500 iterations of dynamics like those of equation 2.3.

3.4.6 The stripes data set: A generalization of XOR

To demonstrate the ability of intrinsic gradient networks to learn simple but nonlinear transforma-

tions, we train belief-propagating and sigmoidal intrinsic gradient networks with twelve 4x4 bottom-

up input images consisting of parallel stripes with four different orientations and three offsets. Each

bottom-up input image is associated with a top-down one-of-n encoding of the stripe orientation.

To balance the relative contributions of the bottom-up and top-down patterns to the error function,

we effectively use four copies of each one-of-n variable, although the parameters of the atomic factor

nodes connecting to each of these copies are restricted to be identical. The twelve bottom-up input

images are depicted in the columns labeled “opt out bot” in figures 3.12 and 3.17. White squares
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Figure 3.8: Evolution of unit activities ~x(t) using a belief-propagating intrinsic gradient network
(h(x) = x1/3) and parameters trained with 200,000 iterations of stochastic gradient descent on the
stripes data set, alternating between the wake and sleep error functions. Activities are shown for a
single representative run of the wake network and the sleep network. The x axis denotes the number
of iterations of the dynamics; the y axis indicates the value of each unit. Units projecting in the same
direction from a common variable node are plotted together. Factor node units are not shown, since
they are just a linear transformation of the variable node units. The first twenty iterations of the
activity evolution are not shown since the initial transients, resulting from the random initialization
of the units, can dwarf the final activities. The abbreviations used to identify the various groups of
units depicted in each subplot are described in the main text; the letters in parentheses correspond
to those in figure 3.6.
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Figure 3.9: Final unit activities ~x after 500 iterations of the network dynamics using a belief-
propagating intrinsic gradient network (h(x) = x1/3) and parameters trained with 200,000 iterations
of stochastic gradient descent on the stripes data set, alternating between the wake and sleep error
functions. Each pixel corresponds to one unit in the indicated layer. Activities are shown for a
single representative run of the wake network and the sleep network. The abbreviations used to
identify the various groups of units depicted in each subplot are described in the main text; the
letters in parentheses correspond to those in figure 3.6. The colormap, depicted in figure 3.7, is
scaled independently for each plot to maximize the dynamic range.
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correspond to inputs with value 1; black squares correspond to inputs with value 0. We refer to this

as the stripes data set.

It can be seen that no linear classifier can produce the correct output for any of the one-of-n

output units in the stripes data set, as in the classic XOR problem (Minsky & Papert, 1969). The

bottom-up input images are designed so that the sum of all images with the same orientation is the

identical across orientations. If ~a, ~b, and ~c are the three input images with one orientation (e.g.,

vertical), a linear classifier can only correctly identify these three images if there exists some weight

vector ~w and scalar threshold t such that

~w> · ~a > t

~w> ·~b > t

~w> · ~c > t .

However, if ~d, ~e, and ~f are the three input images with some other orientation (e.g., horizontal),

then ~a+~b+ ~c = ~d+ ~e+ ~f, and without loss of generality ~w> · ~d > t, so the linear classifier for the

first orientation incorrectly recognizes a pattern with the second orientation.

We train networks with the structure of figure 3.6 and thirty-six units in each direction (down,

recurrent, and up) per hidden layer to perform this nonlinear classification task. We use both belief-

propagating and sigmoidal intrinsic gradient networks, with hkj (x) described in appendix A.9, to

show that equation 2.17 is indeed compatible with diverse functions hkj (x). All results are produced

using the parameters learned after 200,000 iterations of stochastic gradient descent, alternating

between the wake and the sleep error functions, with the learning rate 2 · 10−2. Belief-propagating

intrinsic gradient networks have no self-connections in the recurrent factor nodes; sigmoidal intrinsic

gradient networks allow self-connections in the recurrent factor nodes.

Figures 3.8 and 3.9 show the evolution of unit activities and the final state after 500 iterations

of the network dynamics of a belief-propagating intrinsic gradient network trained on the stripes

data set. In these and all other figures, opt out bot and opt out top refer to the optimal outputs

at the bottom and top of the hierarchy, respectively, which determine the error function and thus

the input messages. Vb and Vt refer, respectively, to the “visible” inputs at the bottom of the

hierarchy, corresponding to the stripe image, and the top of the hierarchy, corresponding to the

stripe orientation. H1 and H2 refer respectively to the first and second layers of hidden variable

nodes. F indicates that the messages have been transformed by the adjacent factor node. Up, dwn,

and rec refer to signals propagating up the hierarchy, down the hierarchy, and recurrently from a

layer to itself, respectively. It can be seen that both wake and sleep networks evolve smoothly on the

whole and find a state where ~F (~x) ≈ ~x, but a true fixed point is not found. After 500 iterations of

unit evolution using parameters trained by 200,000 stochastic gradient descent updates, the states
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of the wake and sleep networks are generally indistinguishable, implying that stochastic gradient

descent has converged and that a local maximum of the negative sum of squares error has been

found.

The evolution of the wake, sleep, and negative sum of squares error functions over the course

of training are shown in figure 3.10, confirming that stochastic gradient ascent on the difference

between the gradients calculated by the wake and sleep networks effectively maximizes the negative

sum of squares error. For computational efficiency, we show the evolution of the negative sum of

squares error at the fixed points of the wake network, but direct evaluation of the test network

(figure 3.12) shows that it is also successfully trained. The sleep error function initially increases

rather than decreases as a result of training, since it is in conflict with the wake error function;

parameter changes that increase
∑
i ci · xi also tend to increase 1

2 ·
∑
i x

2
i when ci, xi ≥ 0 for all i.

The effect of the sleep error function is apparent in the fact that the wake error function plateaus

rather than increasing without bound.

Figure 3.11 shows the trained parameters of the factor node connecting the bottom-up inputs

to the first hidden layer, corresponding to units Bi and Ci in figure 3.6. These matrices roughly

correspond to the receptive field of the units of the first hidden layer. Many appear to consist

of linear combinations of the bottom-up input images. Figure 3.12 shows performance of the test

network, which only receives bottom-up input from the environment, after training. All input images

are correctly classified.

Figures 3.13, 3.14, 3.15, 3.16, and 3.17 depict the same analyses for a sigmoidal intrinsic gradient

network. On the whole, the behavior of the sigmoidal intrinsic gradient network after training is

similar to that of the belief-propagating intrinsic gradient network, but the unit activities evolve

more smoothly, and the negative sum of squares error increases faster and more consistently over

the course of training.

3.4.7 Empirical evaluation of the gradient

We can also use the stripes data set to directly test the theoretical properties of intrinsic gradient

networks. By construction, it is possible to calculate the gradient in an intrinsic gradient network,

such as the network used in section 3.4.6, using the unit activities at the fixed point (as specified by

equation 2.7). Moreover, in a small network, we can empirically estimate the gradient by perturbing

each parameter in turn and dividing the resulting change in the error function by the size of the

parameter perturbation. If our derivation is sound, then these two computations of the gradient

should yield the same value. In figure 3.18, we plot the empirically estimated components of the

gradient versus the components calculated by equation 2.7 for a sigmoidal intrinsic gradient network

(h(x) = x/(1 + x)) with the connection topology depicted in figure 3.6 and thirty-six units in each

direction of each hidden layer, just as in section 3.4.6. The network has been trained by 200,000
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stochastic gradient descent updates, and exhibits perfect classification performance, as demonstrated

in figure 3.17. The top-level variable is effectively duplicated four times to balance the contributions

of the bottom-up and top-down inputs to the error function.

The match between equation 2.7 and the empirically estimated gradient is nearly perfect, re-

gardless of whether the error function used is Ewake or Esleep, so long as the error function used

to empirically estimate the gradient also induces the inputs to the network in accordance with the

intrinsic gradient equation (2.9). We can also see that linear inputs are consistent with an error

function equal to the Euclidean norm of the complementary outputs, so long as the inputs are held

constant when perturbing the parameters, as implied by the discussion in appendix A.9. Finally, we

can see that the fixed points of the wake and sleep networks together produce a reasonable approx-

imation of the empirical gradient on the test network. In all cases, the functions Ewake and Esleep

of equation 3.23 are mixed, as described in appendix A.9.

3.4.8 The MNIST data set: Handwritten digit recognition

Figures 3.19, 3.20, 3.21, 3.22, and 3.23 repeat the analyses of section 3.4.6 for a belief-propagating

intrinsic gradient network trained on the threes, fours, and fives from the MNIST data set of 60,000

centered, scaled, 28 x 28 grayscale handwritten digits. Although there are 784 bottom-layer in-

put variables corresponding to the pixel representation of each handwritten, we only duplicate the

top-layer input variable carrying the one-of-n representation of the digit’s ID sixty-four times. Fig-

ures 3.24, 3.25, 3.26, 3.27, and 3.28 repeat these analyses for a sigmoidal intrinsic gradient network.

As in the belief-propagating intrinsic gradient network, the top-layer input variable carrying the

one-of-n representation of the digit’s ID is duplicated sixty-four times. Many of the receptive fields

in figure 3.27 have a structure similar to the Gabors commonly observed in V1. As can be seen from

figure 3.28, when a digit is misclassified, the test network often improperly interprets the pixel in-

put, reconstructing the bottom-up input using features representative of the predicted classification,

rather than the true classification.
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Figure 3.10: Evolution of the error functions due to stochastic gradient descent on the stripes
data set starting from randomly initialized parameters using a belief-propagating intrinsic gradient
network (h(x) = x1/3). The error function associated with each element of the data set is plotted
on a separate line. The x axis indexes the number of times the parameters have been updated in
response to each element of the data set. The sleep network plots are smoothed with a boxcar filter
of size 20 so instances when the network fails to converge to the optimal fixed point do not obscure
the overall trend. Large fluctuations of the sum of squares error on the wake network arise because
the network occasionally converges to a non-dominant fixed point. The two rows of figures display
the evolution of the error function at two different scales, so both the initial and the asymptotic
dynamics can be clearly seen.
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Figure 3.11: Factor matrices connecting the visible units to each hidden unit using a belief-
propagating intrinsic gradient network (h(x) = x1/3) and parameters trained with 200,000 iterations
of stochastic gradient descent on the stripes data set, alternating between the wake and sleep error
functions. The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize
the dynamic range.



75

U
ni

t
ac

ti
vi

ty
~x
(t

)

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

Iterations t

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

1.5

200 400

0

0.5

1

opt out bot H1F dwn (B) H2F up (O) opt out bot H1F dwn (B) H2F up (O)

Figure 3.12: Optimal bottom-layer output, actual final bottom-layer output, and evolution of actual
top-layer output over 500 iterations of the network dynamics for each element of the stripes data
set using a belief-propagating intrinsic gradient network (h(x) = x1/3) and parameters trained with
200,000 iterations of stochastic gradient descent on the stripes data set, alternating between the wake
and sleep error functions. The abbreviations used to identify the various groups of units depicted
in each subplot are described in the main text; the letters in parentheses correspond to those in
figure 3.6. The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize
the dynamic range. In the plots of the evolution of the top-layer output, green corresponds to lines
with angle 0◦, red to lines with angle 45◦, blue to lines with angle 90◦, and cyan to lines with angle
135◦.
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Figure 3.13: Evolution of unit activities ~x(t) using a sigmoid intrinsic gradient network (h(x) =
x/(1 + x)) and parameters trained with 200,000 iterations of stochastic gradient descent on the
stripes data set, alternating between the wake and sleep error functions. Activities are shown for a
single representative run of the wake network and the sleep network. The x axis denotes the number
of iterations of the dynamics; the y axis indicates the value of each unit. Units projecting in the same
direction from a common variable node are plotted together. Factor node units are not shown, since
they are just a linear transformation of the variable node units. The first twenty iterations of the
activity evolution are not shown since the initial transients, resulting from the random initialization
of the units, can dwarf the final activities. The abbreviations used to identify the various groups of
units depicted in each subplot are described in the main text; the letters in parentheses correspond
to those in figure 3.6.
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Figure 3.14: Final unit activities ~x after 500 iterations of the network dynamics using a sigmoid
intrinsic gradient network (h(x) = x/(1 + x)) and parameters trained with 200,000 iterations of
stochastic gradient descent on the stripes data set, alternating between the wake and sleep error
functions. Each pixel corresponds to one unit in the indicated layer. Activities are shown for a
single representative run of the wake network and the sleep network. The abbreviations used to
identify the various groups of units depicted in each subplot are described in the main text; the
letters in parentheses correspond to those in figure 3.6. The colormap, depicted in figure 3.7, is
scaled independently for each plot to maximize the dynamic range.
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Figure 3.15: Evolution of the error functions due to stochastic gradient descent on the stripes
data set starting from randomly initialized parameters using a sigmoid intrinsic gradient network
(h(x) = x/(1 + x)). The error function associated with each element of the data set is plotted on a
separate line. The x axis indexes the number of times the parameters have been updated in response
to each element of the data set. The sleep network plots are smoothed with a boxcar filter of size 20
so instances when the network fails to converge to the optimal fixed point do not obscure the overall
trend. Large fluctuations of the sum of squares error on the wake network arise because the network
occasionally converges to a non-dominant fixed point. The two rows of figures display the evolution
of the error function at two different scales, so both the initial and the asymptotic dynamics can be
clearly seen.
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Figure 3.16: Factor matrices connecting the visible units to each hidden unit using a sigmoid intrinsic
gradient network (h(x) = x/(1 + x)) and parameters trained with 200,000 iterations of stochastic
gradient descent on the stripes data set, alternating between the wake and sleep error functions.
The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize the dynamic
range.
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Figure 3.17: Optimal bottom-layer output, actual final bottom-layer output, and evolution of actual
top-layer output over 500 iterations of the network dynamics for each element of the stripes data set
using a sigmoid intrinsic gradient network (h(x) = x/(1 + x)) and parameters trained with 200,000
iterations of stochastic gradient descent on the stripes data set, alternating between the wake and
sleep error functions. The abbreviations used to identify the various groups of units depicted in each
subplot are described in the main text; the letters in parentheses correspond to those in figure 3.6.
The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize the dynamic
range. In the plots of the evolution of the top-layer output, green corresponds to lines with angle
0◦, red to lines with angle 45◦, blue to lines with angle 90◦, and cyan to lines with angle 135◦. Some
of the trials have converged to suboptimal, non-dominant fixed points, corresponding to the large
downward fluctuations in the sum of squares error plot of figure 3.15.
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Figure 3.18: The empirical derivatives of the error function with respect to the parameters (on the x
axis), estimated as the change in the error function induced by a small perturbation of a parameter
divided by the size of the perturbation, versus the corresponding derivatives calculated according to
equation 2.7 (on the y axis), using a belief-propagating intrinsic gradient network (h(x) = x/(1+x))
with the structure of figure 3.6 and thirty-six units in each direction (down, recurrent, and up)
per hidden layer. (a) Empirical derivatives of Ewake on the wake network versus the derivatives
calculated by the wake network. (b) Empirical derivatives of Ewake on the test network versus the
derivatives calculated by the wake network. (c) Empirical derivatives of Esleep on the sleep network
with fixed inputs versus the derivatives calculated by the sleep network. (d) Empirical derivatives of
Esleep on the sleep network with freely varying inputs versus the derivatives calculated by the sleep
network. (e) Empirical derivatives of Esleep on the test network versus the derivatives calculated by
the sleep network. (f) Empirical derivatives of ENSS on the test network versus the difference of
the derivatives calculated by the wake and sleep networks.
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Figure 3.19: Evolution of unit activities ~x(t) using a belief-propagating intrinsic gradient network
(h(x) = x1/3) and parameters trained with 500,000 iterations of stochastic gradient descent on the
MNIST data set, alternating between the wake and sleep error functions. Activities are shown for a
single representative run of the wake network and the sleep network. The x axis denotes the number
of iterations of the dynamics; the y axis indicates the value of each unit. Units projecting in the same
direction from a common variable node are plotted together. Factor node units are not shown, since
they are just a linear transformation of the variable node units. The first twenty iterations of the
activity evolution are not shown since the initial transients, resulting from the random initialization
of the units, can dwarf the final activities. The abbreviations used to identify the various groups of
units depicted in each subplot are described in the main text; the letters in parentheses correspond
to those in figure 3.6.
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Figure 3.20: Final unit activities ~x after 500 iterations of the network dynamics using a belief-
propagating intrinsic gradient network (h(x) = x1/3) and parameters trained with 500,000 iterations
of stochastic gradient descent on the MNIST data set, alternating between the wake and sleep error
functions. Each pixel corresponds to one unit in the indicated layer. Activities are shown for a
single representative run of the wake network and the sleep network. The abbreviations used to
identify the various groups of units depicted in each subplot are described in the main text; the
letters in parentheses correspond to those in figure 3.6. The colormap, depicted in figure 3.7, is
scaled independently for each plot to maximize the dynamic range.
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Figure 3.21: Evolution of the error functions due to stochastic gradient descent on the MNIST
data set starting from randomly initialized parameters using a belief-propagating intrinsic gradient
network (h(x) = x1/3). Each separate line plots error functions associated with the elements of
a single digit class (i.e., 3, 4, and 5). The x axis indexes the number of times the parameters
have been updated in response to each digit class, using both wake and sleep error functions. The
y axis indicates the value of the designated error function for the element of the data set (of the
appropriate digit class) currently being used for training. Since each index corresponds to a different
instance of the appropriate digit class, the value of the error function will jitter even in the absence of
training, and the plots are smoothed with a boxcar filter of size 100. The two rows of figures display
the evolution of the error function at two different scales, so both the initial and the asymptotic
dynamics can be clearly seen.
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Figure 3.22: Factor matrices connecting the visible units to each hidden unit using a belief-
propagating intrinsic gradient network (h(x) = x1/3) and parameters trained with 500,000 iterations
of stochastic gradient descent on the MNIST data set, alternating between the wake and sleep error
functions. The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize
the dynamic range.
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Figure 3.23: Optimal bottom-layer output, actual final bottom-layer output, and evolution of actual
top-layer output over 500 iterations of the network dynamics for each element of the MNIST data
set using a belief-propagating intrinsic gradient network (h(x) = x1/3) and parameters trained with
500,000 iterations of stochastic gradient descent on the MNIST data set, alternating between the
wake and sleep error functions. The abbreviations used to identify the various groups of units
depicted in each subplot are described in the main text; the letters in parentheses correspond to
those in figure 3.6. The colormap, depicted in figure 3.7, is scaled independently for each plot to
maximize the dynamic range. In the plots of the evolution of the top-layer output, blue corresponds
to the digit 3, green to the digit 4, and red to the digit 5.
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Figure 3.24: Evolution of unit activities ~x(t) using a sigmoid intrinsic gradient network
(h(x) = x/(1 + x)) and parameters trained with 500,000 iterations of stochastic gradient descent
on the MNIST data set, alternating between the wake and sleep error functions. Activities are
shown for a single representative run of the wake network and the sleep network. The x axis de-
notes the number of iterations of the dynamics; the y axis indicates the value of each unit. Units
projecting in the same direction from a common variable node are plotted together. Factor node
units are not shown, since they are just a linear transformation of the variable node units. The
first twenty iterations of the activity evolution are not shown since the initial transients, resulting
from the random initialization of the units, can dwarf the final activities. The abbreviations used
to identify the various groups of units depicted in each subplot are described in the main text; the
letters in parentheses correspond to those in figure 3.6.
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Figure 3.25: Final unit activities ~x after 500 iterations of the network dynamics using a sigmoid
intrinsic gradient network (h(x) = x/(1 + x)) and parameters trained with 500,000 iterations of
stochastic gradient descent on the MNIST data set, alternating between the wake and sleep error
functions. Each pixel corresponds to one unit in the indicated layer. Activities are shown for a
single representative run of the wake network and the sleep network. The abbreviations used to
identify the various groups of units depicted in each subplot are described in the main text; the
letters in parentheses correspond to those in figure 3.6. The colormap, depicted in figure 3.7, is
scaled independently for each plot to maximize the dynamic range.



89

E
rr

or
fu

nc
ti

on
va

lu
e

400 800 1200

10

20

30

40

50

60

70

400 800 1200

10

20

30

40

50

60

400 800 1200

5

10

15

20

Number of gradient
descent updates

2.5 5 7.5

x 10
4

20

40

60

80

100

2.5 5 7.5

x 10
4

20

40

60

80

2.5 5 7.5

x 10
4

10

20

30

Wake error on
wake network

Sleep error on
sleep network

Sum of squares error on
wake network

Figure 3.26: Evolution of the error functions due to stochastic gradient descent on the MNIST
data set starting from randomly initialized parameters using a sigmoid intrinsic gradient network
(h(x) = x/(1 + x)). Each separate line plots error functions associated with the elements of a
single digit class (i.e., 3, 4, and 5). The x axis indexes the number of times the parameters have
been updated in response to each digit class, using both wake and sleep error functions. The y axis
indicates the value of the designated error function for the element of the data set (of the appropriate
digit class) currently being used for training. Since each index corresponds to a different instance
of the appropriate digit class, the value of the error function will jitter even in the absence of
training, and the plots are smoothed with a boxcar filter of size 100. The two rows of figures display
the evolution of the error function at two different scales, so both the initial and the asymptotic
dynamics can be clearly seen.
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Figure 3.27: Factor matrices connecting the visible units to each hidden unit using a sigmoid intrinsic
gradient network (h(x) = x/(1 + x)) and parameters trained with 500,000 iterations of stochastic
gradient descent on the MNIST data set, alternating between the wake and sleep error functions.
The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize the dynamic
range.
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Figure 3.28: Optimal bottom-layer output, actual final bottom-layer output, and evolution of actual
top-layer output over 500 iterations of the network dynamics for each element of the MNIST data set
using a sigmoid intrinsic gradient network (h(x) = x/(1 + x)) and parameters trained with 500,000
iterations of stochastic gradient descent on the MNIST data set, alternating between the wake and
sleep error functions. The abbreviations used to identify the various groups of units depicted in each
subplot are described in the main text; the letters in parentheses correspond to those in figure 3.6.
The colormap, depicted in figure 3.7, is scaled independently for each plot to maximize the dynamic
range. In the plots of the evolution of the top-layer output, blue corresponds to the digit 3, green
to the digit 4, and red to the digit 5.
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Chapter 4

Biological interpretation

Intrinsic gradient networks are an attempt to construct a theory of cortical computation by consid-

ering biological constraints on learning and the topology of the cortical network, in addition to the

more conventional experimental observations of stimulus-response properties and network dynamics.

The hallmark of a successful theory is its ability to make correct predictions beyond the observations

on which it was based. We have already shown in chapter 3 that intrinsic gradient networks make

plausible computational predictions. In particular, we have demonstrated that intrinsic gradient

networks can learn nontrivial input-output mappings, with receptive fields broadly consistent with

experimental observations, whereas we only assumed that intrinsic gradient networks are able to

compute the gradient of an error function from their intrinsic network activity. In this chapter, we

will consider the implications of intrinsic gradient networks for more biological properties.

We begin in section 4.1 by examining the assumptions underlying intrinsic gradient networks,

and show that they provide a unifying account of a diverse set of seemingly unrelated biological

phenomena. In section 4.2, we describe some additional biological predictions which follow from our

solution to the intrinsic gradient equation (2.9) in section 2.3.4. Finally, in section 4.3 we propose a

preliminary mapping from a class of intrinsic gradient networks onto the network of cortical neurons,

and show that this mapping satisfies four additional biologically motivated constraints.

4.1 The biological plausibility of the assumptions underlying

intrinsic gradient networks

In the preceding chapters, we have described a specific structure for intrinsic gradient networks,

and implied that this structure has some relation to the cortex. While we have rigorously derived

many of the details of intrinsic gradient networks, the entire structure rests on the underlying

definition of computation and learning. The biological plausibility of intrinsic gradient networks is

therefore dependent on the consistency of these definitions with biological evidence. In the absence
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of a constructive specification of cortical computation and learning, which is our ultimate goal,

computation and learning are most easily defined implicitly via a characterization of the structure

and properties of a system performing the computation. The characterization of computation and

learning underlying intrinsic gradient networks specifies the nature of the inputs and outputs, the

architecture of the signals within the system, and the distinguishing features of effective learning

in terms of these inputs, outputs, and internal signals. In this section, we examine the biological

plausibility of this characterization of computation and learning.

Intrinsic gradient networks are based on the assumption that the cortex can be effectively mod-

eled as a discrete network of real-valued units, as opposed to a continuous field of activity. This

assumption is motivated by the cellular organization of the brain, and subsumes traditional artificial

neural networks. Our intuition is generally guided by the further assumption that each unit in an

intrinsic gradient network corresponds to a single neuron, which communicates via its firing rate.

In this case, the output of each neuron (and thus the value of each unit) can be characterized by a

non-negative real number. However, units in an intrinsic gradient network could also correspond to

small populations of neurons such as cortical columns (Mountcastle, 1997; Lansner, 2009), or parts of

neurons like single dendritic branches (Poirazi et al., 2003). Similarly, while the value of a unit might

parsimoniously correspond to the firing rate of a neuron (or cortical column, or dendritic branch), it

could just as easily correspond to the correlation structure within a population of neurons, or even

the phase of spiking of a single neuron relative to a global synchronizing signal like the theta LFP

rhythm. The requirement that units be real-valued scalars can also be relaxed without altering our

results; complex or vector-valued units are equivalent to a population of real scalar-valued units.

The set of units, and the underlying neurons, that are active at an output state can be understood

as a Hebbian cell assembly (Hebb, 1949; Harris, 2005), a recurrently connected group of neurons

that represent a computational state through their stable coactivation. Such a cell assembly does

not consist of a collection of nodes, but rather a subset of units within each node that are activated

by a given input. A unit and its associated neuron(s) may be strongly active in many different

configurations, driven by different inputs, just like in Hebb’s original conception. However, whereas

traditional Hebbian learning merely reinforces whatever attractors currently exist, gradient descent

in an intrinsic gradient network is guaranteed to modify the attractors to minimize the error function.

In general, we do not assume any particular information encoding scheme or corresponding

biophysical mechanisms; rather, we derive constraints on more abstract computational dynamics.

These abstract dynamics can then be implemented by a variety of different physical mechanisms.

Nevertheless, our assumptions about cortical computation and learning do have implications for

experimentally observable features of the brain, and we endeavor to show how the assumptions

underlying intrinsic gradient networks can be reconciled with the properties of the brain.
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4.1.1 Continuous learning and production of outputs

Models of neural computation should reflect the fact that the brain is able to learn using only its

intrinsic signals, and is too densely recurrent to contain training signals that do not affect the outputs

(Felleman & Van Essen, 1991; Douglas & Martin, 2004; Malenka & Bear, 2004). This requirement

that learning be based upon the intrinsic signals implies that learning can only be performed at a

subset of the possible network states. Any model of the cortical neural network defines a mapping

from the inputs and parameters to a resulting network state (or set of states), with the output

defined as a subset of this resulting network state. Effective learning is then characterized by an

error function, which defines the desirability of the output for each input. As the error function

varies, so does the optimal output for each input, and thus the optimal parameters which produce

these changing outputs via the mapping. Consequently, any effective learning update, such as a

gradient-descent step, must vary depending upon the choice of the error function, even if the inputs

and thus the network state as a function of the parameters remain constant. If the learning update

is correctly calculated for one choice of the error function by a fixed function at a particular network

state, it is necessarily calculated incorrectly at that state for other choices of the error function.

The states at which a fixed function of the network state correctly calculates the learning update

thus vary with the error function. If a learning update must be selected by a fixed function of the

network state, then only a subset of the possible network states can be trained for any given error

function.1 At states where an acceptable learning update is not calculated by the fixed function,

the output cannot be efficiently manipulated to minimize the error function, and as a result may

be extremely bad. Such unregulated network states should not be used to generate output, lest

maladaptive actions result. The subset of network states at which the learning update can be

calculated thus constitute the set of acceptable output states, where training helps to ensure that

the output is desirable.

Such a potentially sparse mapping from inputs and parameters to acceptable network states and

outputs suggests that a network may not associate each input with an acceptable output state.

In apparent contrast, the brain seems to produce learned motor outputs continuously for all input

trajectories. Traditional models of neural computation usually characterize the dynamics of the

network state rather than a subset of output states, implicitly suggesting, if not directly implying,

that all network states are actively controlled by learning. Nevertheless, since a learning update

is only calculable by a fixed function at the acceptable output states, we instead define intrinsic

gradient networks in terms of this subset of acceptable output states. The network may still pass

through complicated trajectories to reach an acceptable output state, but learning only directly

optimizes the acceptable output states themselves.

1The set of fixed points of the output functions
n
~x∗|~F (~x∗) = ~x∗

o
is an example of such a subset of the possible

network states.
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We formalize the assumption that the cortex can be modeled as a discrete network of real-valued

units, for which outputs and learning are only produced at a restricted set of acceptable output

states, by defining the acceptable output states to be the fixed points of a set of functions ~F .

That is, the acceptable network output states consist of ~x∗ such that ~F (~x∗) = ~x∗. As discussed in

section 2.1, this fixed point condition can be reformulated as ~Z(~x) = ~0, where ~0 is the vector for

which each element is 0, by choosing ~Z(~x) = ~F (~x)− ~x. There are no a priori restrictions on the set

of acceptable output states
{
~x∗|~F (~x∗) = ~x∗

}
⊂ Rn.

While the fixed points of ~F may be relatively easy to recognize, they are generally hard to find. If

~F can be evaluated in polynomial time, the problem of finding acceptable output states is equivalent

to the complexity class NP (nondeterministic polynomial time), many of the elements of which are

believed to require exponential time to solve. The set of output functions ~F thus does not imply an

obvious set of fast network dynamics. In the previous sections, we side-stepped this complication

by assuming that the acceptable output states are recognized within a potentially independent set

of network dynamics, and used to generate outputs when they are produced. For this reason, we

referred to acceptable states simply as output states.

It will often be possible for the network dynamics to continuously remain within the subset of

acceptable output states, in which case the entire trajectory consists of trained output states and

output is produced continuously. Indeed, trajectories arise naturally, but implicitly, from a set of

acceptable output states if there is exactly one acceptable output state for each configuration of the

inputs, and the network outputs at time t affect the network inputs at time t + ∆t. Alternatively,

the network dynamics may be used to produce outputs continuously, even if they are not always at

a fixed point of the output functions and thus subject to training. The resulting untrained outputs

are likely to be reasonable if the error function is smooth and the dynamics always remain close to

a trained output state. For instance, the fixed points may correspond to saddle points rather than

stable attractors of the dynamics, in which case the network falls into a stable heteroclinic channel,

passing smoothly from the region around one trained saddle node to the region around another

trained saddle node along the unstable separatrices (Rabinovich et al., 2008a,b).

Like motor outputs, perceptual learning occurs continuously in the brain, even without attention,

awareness, or explicit reward (Herzog & Fahle, 1997; Watanebe et al., 2001). Consistent with this

observation but unlike traditional reinforcement learning or variations thereof specifically adapted

for neural networks (Williams, 1992; Sutton & Barto, 1998; Seung, 2003), intrinsic gradient networks

do not require a reward signal, which is generally defined only sparsely over time. While a reward

signal could modulate the learning step performed using the gradient, for instance scaling the step

size of gradient descent, a reward signal is not necessary for most gradient-based training algorithms

(Bishop, 2006). As a result, intrinsic gradient networks can learn continuously, so long as they are

at an output state.
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4.1.2 Biological plausibility of the fixed point

Although the requirement that output states be recognizable when generated by an independent set

of network dynamics does not place any direct constraints on the network dynamics themselves, it is

difficult to imagine a biologically plausible neural implementation in which the neural dynamics are

unconnected to the mechanism that identifies the acceptable output states. If the dynamics were

independent of the output functions, then the network could only stumble upon an output state by

chance, and would produce outputs very slowly. Moreover, to detect that ~F (~x) = ~x given dynamics

independent of ~F , the brain would presumably need an auxiliary network of neurons evaluating the

activity of the main network and signaling the occurrence of output states. While loops through

the thalamus, basal ganglia, and other subcortical structures have the requisite connection topology,

such a signal triggering motor output and learning would be experimentally conspicuous by virtue

of its consistent timing, and is not observed in the brain.

These concerns are addressed if the network dynamics themselves converge to a fixed point of the

output functions ~F . In this case, output production need only be contingent on the stabilization of

cortical activity. Neural dynamics could be specifically chosen to converge quickly, and the cessation

of neural fluctuations could plausibly be detected locally, without an auxiliary observer network.

We thus explore biological evidence supporting the assumption that cortical activity converges to

a fixed point, which specifies the motor output and from which the gradient of an error function is

calculated.

A variety of experimental evidence supports the more general assumption that the cortex pro-

duces output at only a subset of its possible states. In monkeys that have been trained to execute an

instructed reach movement after a “go” signal, microstimulation of dorsal premotor cortex shortly

after the go signal delays the motion (Churchland & Shenoy, 2007). Likewise, microstimulation

shortly before the go signal, but after the reach target is indicated, eliminates the reduction in re-

sponse time resulting from motor preparation during the post-instruction delay period. Importantly,

in both cases, microstimulation does not significantly alter the trajectory of the motion. Similar

results have been obtained with transcranial magnetic stimulation in humans (Day et al., 1989).

Thus, the cortex appears to be able to detect and correct an artificially-induced perturbation of its

state, implying that it has some mechanism for identifying valid output states, and can withhold

motor output until such a valid state is reached. The assumption that outputs are produced only at

the fixed points of a set of output functions merely formalizes the set of valid output states, without

imposing any additional restrictions.

The assumption that output functions are defined in terms of firing rates, so that outputs are

only produced when the neuronal firing rates are at a fixed point of the output functions, is equiva-

lent to Churchland’s optimal-subspace hypothesis (Churchland et al., 2006). The optimal-subspace

hypothesis holds that motor outputs can only be produced after firing rates converge to some sub-
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space of the space of possible firing rates across the population of neurons. This instantiation of

the fixed point hypothesis has experimentally observable consequences for the evolution of the Fano

factor over time. The Fano factor, a measure of variability of the firing rate over repeated trials, is

equal to one for the Poisson processes often assumed to underlie single neuron spiking dynamics, so

long as the firing rate is consistent between trials (Koch, 1999). To the extent that a Poisson process

is a good model of neuronal firing statistics, a Fano factor greater than one is due to between-trial

variability in the underlying firing rate, and a decrease in the Fano factor implies an increase in the

between-trial consistency of the underlying firing rate.

In monkeys trained to make an instructed reach after a delay, the Fano factor of the firing rate

measured in dorsal premotor cortex decreases in response to both the target and the go signal, and is

positively correlated with the response time after the go signal (Churchland et al., 2006). Moreover,

the Fano factor decreases in response to sensory stimulus in a wide variety of cortical areas in

monkeys and cats (Churchland et al., 2010). The implied increase in between-trial consistency of

the underlying firing rate in response to sensory stimuli and before motor output suggests that the

firing rate is being restricted to a consistent, small subspace, such as the subspace defined by the

fixed points of the output functions. Indeed, population firing rate vectors in rat auditory cortex are

restricted to a small subspace of the possible configurations, consistent with output states belonging

to a small subspace (Luczak et al., 2009).

The fixed points of the output functions ~F are especially easy to identify if, in addition to the

output functions being defined in terms of the neuronal firing rates, the fixed points of the network

dynamics match those of the output functions. In this case, the network finishes its computation and

produces an output when the firing rates converge to a stable configuration. In rat auditory cortex,

population firing rates in response to pure tones converge to a fixed point in about 300 milliseconds

(Bartho et al., 2009). Similarly, in the visual cortical pathway, transient onset responses give way to

a relatively stable sustained response by about 300 milliseconds after stimulus onset (Hegde, 2008).

This 300 millisecond interval also matches the interval between saccades (Henderson & Hollingworth,

1998), the duration of the attentional blink (Raymond et al., 1992; Duncan et al., 1994), the interval

at which priming has the greatest effect (Zago et al., 2005), and the period over which briefly

flashed visual stimuli induce increases in firing rates (Rolls & Tovee, 1994), suggesting that the

interval required for cortical sensory activity to converge to a fixed point matches that within which

processing of a visual stimulus is largely completed.

The biological plausibility of computations based upon fixed points of neural firing rates is

further supported by experiments in both rat sensory cortex and monkey motor cortex which have

revealed that, when not driven by a continuously changing salient sensory input, cortical firing rates

move through a sequence of quasi-stable states (Radons et al., 1994; Abeles et al., 1995; Seidemann

et al., 1996; Jones et al., 2007; Kemere et al., 2008). Specifically, analysis of neural activity using
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hidden Markov models has shown that ensembles of six to one hundred neurons remain in states

characterized by relatively constant firing rates for hundreds of milliseconds, interspersed with state

transitions lasting no more than tens of milliseconds. These quasi-stable states appear to be fixed

points of rate-coded neural dynamics, which are subject to perturbations causing transitions between

nearby fixed points. The observed transitions between the quasi-stable states would arise naturally

if the fixed points were saddle points rather than stable attractors, in which case the network falls

into a stable heteroclinic channel (Rabinovich et al., 2008a,b). If the cortex spends most of its time

in a fixed point of the output functions corresponding to a quasi-stable state, then the gradient of an

intrinsic gradient network can be calculated from the intrinsic activity throughout these quasi-stable

intervals.

Such fixed points are unlikely to be merely the result of a feedforward network responding

to stable stimuli. Physiological and anatomical evidence indicate that the feedback connections

within the cortical network are fast (Girard et al., 2001), functionally relevant (Ringach et al., 1997;

Lamme & Roefsema, 2000; Angelucci et al., 2002), and are activated quickly enough to contribute to

convergence to a fixed point. The entire visual processing hierarchy responds almost simultaneously,

with dendritic activation in IT lagging V1 by only 23 ms (Schroeder et al., 1998; Foxe & Simpson,

2002) and stimulus-driven spiking in V4 following that in V1 by only 38 ms (Schmolesky et al.,

1998). The dorsal visual stream responds even more rapidly. Feedback connections thus influence

feedforward projections even relatively early in the response to a stimulus.

All of these experimental manifestations of the fixed point are necessarily indirect, since the

fixed points only appear to be stable for at most a few hundred milliseconds. In 300 ms, a neuron

firing at 20 Hz only spikes six times. It is not possible to detect convergence to a fixed point given

so few spikes of a single neuron over a single trial if the neuron is governed by a Poisson process,

since the interspike intervals will not be consistent. Even in a recording from a large population of

neurons, firing-rate fixed points lasting only a few times the average interspike interval will not be

obvious without careful statistical analysis operating over multiple trials, unless groups of neurons

with matched firing rates can be identified a priori. It is thus unsurprising that fixed points are not

a standard electrophysiological observation, even if cortical firing rates are actually converging to

fixed points lasting hundreds of milliseconds.

So long as the network state evolves quickly compared to the external inputs, the network of

units may always be near a fixed point (and thus an output state), even when the inputs are not

constant. The time scale of neural activity is about 10 ms at the scale of a single neuron and 100 ms

at the scale of a small network of neurons (Newell, 1990). Transitions between quasi-stable states

are executed in tens of milliseconds or less (Seidemann et al., 1996). In contrast, the time scale of

interactions with the environment is on the order of 1–10 seconds (Newell, 1990). If neural activity is

generally convergent for each input, as is suggested by the decrease of the Fano factor (Churchland
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et al., 2006, 2010) and the observed quasi-stable states (Radons et al., 1994; Abeles et al., 1995;

Seidemann et al., 1996; Jones et al., 2007; Kemere et al., 2008), and the fixed point changes smoothly

or infrequently with respect to the input, such fast neural dynamics might be able to track the fixed

point associated with the input. In this case, most learning and output would occur at or near a

fixed point.

Nevertheless, the cortical neural network will probably take some time to converge to a fixed

point in response to a surprising or novel stimulus, and the fastest behavioral responses may be

produced before convergence is achieved. An initial selective cortical response to a stimulus can

develop in about 150 ms (Thorpe, et al, 1996; Hung et al., 2005), even when the stimulus is subject

to fast masking that impinges upon recurrent computation (VanRullen & Koch, 2002). However,

recognition accuracy does not improve with repeated exposure to visual stimuli that are presented

only briefly relative to their perceptual difficulty, and then followed by a masking stimulus (Ahissar

& Hochstein, 1997; Rubin et al., 1997). When the same stimuli are also presented for more extended

durations, or easy stimuli are also presented, accuracy does improve even for briefly presented stimuli.

These experimental results are parsimoniously explained if the fast cortical response present

150 ms after a stimulus constitutes the initial part of a trajectory towards a fixed-point attractor, and

nonconvergent cortical responses to brief or difficult stimuli cannot support learning in an underlying

intrinsic gradient network. Neural dynamics should converge more reliably in response to the longer-

duration and easier stimuli, facilitating initial learning and eventually driving dynamics to converge

even for the brief and difficult stimuli. This interpretation is consistent with the observation that

neural activity later in the response to a stimulus provides more detailed information than the early

activity, which only discriminates between broad stimulus categories (Sugase et al., 1999).

Furthermore, to avoid the failure of training when the neural state is not allowed to develop over

time, we might expect that, once convergence begins, the cortex will generally wait for it to complete

before responding to other stimuli. This prediction is borne out in the attentional blink phenomenon:

full processing of one stimulus blocks processing of subsequent stimuli for about 300 ms (Raymond

et al., 1992; Duncan et al., 1994). While perceptual learning occurs in response to unattended stimuli

presented along with an attended target (Seitz & Watanabe, 2003), such perceptual learning does

not occur if the unattended stimulus and target are presented during the attentional blink (Seitz

et al., 2005). Presentation of rewarding stimuli, which would be expected to initiate convergence

to a fixed point, can also trigger learning of simultaneously presented but unattended stimuli (Seitz

et al., 2009).

There are also a number of strong computational motivations for basing outputs and training

upon the fixed points. Experience with recurrent artificial neural networks suggests that it is not

difficult to construct recurrent networks that reliably converge to a fixed point (Cohen & Grossberg,

1983; Atiya, 1988; Hirsch, 1989; Matsuoka, 1992). In particular, learning can induce a non-convergent
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network to become convergent (Ottaway et al., 1988). Training based upon the converged network

state is standard practice in feedforward networks, such as artificial neural networks and acyclic

factor graphs with belief propagation, for which the fixed point of network activity corresponds to a

single full pass through the network (Bishop, 1995; Kschischang et al., 2001). In Turing machines,

if the halting states are understood to leave the tape and the read-write head unchanged, then the

halting states are in fact the fixed points of the Turing machine dynamics. A fixed point of a Turing

machine thus corresponds to its output after completing a computation, and Turing machines are

traditionally programmed so that their converged network states have particular desired properties

as a function of their input. The fixed point of more conventional recurrent neural networks can

analogously be understood as the output of the network after computation halts. Training the fixed

points thus corresponds to training the final output of the network, as opposed to the network’s

working state in the middle of the computation.

4.1.3 Biological plausibility of gradient descent

Intrinsic gradient networks are based on the assumption that the gradient of an error function,

rather than some other training signal, can be calculated at the output states. Since the gradient

could be represented and used within the brain in a variety of different ways, it is difficult to derive

experimental predictions directly from the assumption that the gradient in particular is calcula-

ble. However, experimental evidence and theoretical considerations are largely consistent with the

stronger assumption that the cortex calculates the gradient of the error function associated with the

current input, and then uses it to perform stochastic gradient descent; that is, in response to each

input, the cortex increments each parameter in proportion to the gradient of the associated error

function (Bishop, 1995, 2006).

In section 2.1.2, we assumed that the full error function, which defines the desirability of the

network in terms of its inputs and outputs, is in fact the average of many component error functions

E(~x, ~w). Each component error function corresponds to one set of inputs to the network and the asso-

ciated desired outputs. This decomposition of the full error function into a sum of components, each

dependent on only a single input-output pair, underlies most modern machine learning techniques

(Bishop, 2006). In section 3.4, each component error function corresponded to a distinct image

and its classification. In a biological context, a single component error function is induced by the

sensory stimuli that the brain experiences over a brief interval of time, along with the concomitant

motor responses. Each iteration of stochastic gradient descent consists of shifting the parameters

by a small amount along the gradient of one such component error function, corresponding to the

current input.

Stochastic gradient descent satisfies the desideratum that parameter updates should cumulatively

minimize the full error function, but each individual parameter update should only depend on the
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current component error function. The gradient is a linear operator, so the average of the gradients

of the component error functions is equal to the gradient of the full error function. As a result, the

additive conjunction of many small steps along the component gradients is approximately equal to

one step along the full gradient. So long as the scaling of the component steps decreases appropri-

ately, stochastic gradient descent is guaranteed to locally minimize a reasonably well-behaved full

error function (Bishop, 1995). While stochastic gradient descent is not the only training algorithm

that exhibits this concurrence with the segmentation of experience into independent episodes, it is

a member of the relatively small class of acceptable algorithms that minimize the full error function

via independent operations on the component error functions.

Computational complexity and memory considerations support the use of stochastic gradient

descent in the cortex. Even when the full error function is simply a sum of its component error func-

tions, most algorithms for minimizing the full error function require access to all component error

functions simultaneously (Bishop, 2006). If the component error functions are only experienced one

at time, as in the brain, the components must then be saved or integrated over time to approximate

the full error function. A neural implementation of a learning algorithm like stochastic gradient

descent can be considerably simpler and require much less memory than most other learning algo-

rithms, since the parameter updates can be performed online in response to individual component

error functions, yet nonetheless minimize the full error function (Bottou & Bosquet, 2008).

Online learning like that performed by stochastic gradient descent is also consistent with the

experimental observation that learning in the brain only improves performance on a single task

(corresponding to a single component error function) at a time, although the cumulative effect of

learning is to improve performance on all tasks (reviewed in Tsodyks & Gilbert, 2004). Consecu-

tive training on related tasks generally produces interference rather than reinforcing prior learning

(Brashers-Krug et al., 1996; Shadmehr & Brashers-Krug, 1997), and performance generally does

not improve over the waking period following a training epoch (reviewed in Stickgold, 2005). It

thus appears that learning in the brain only depends on the currently experienced component error

function, rather than a buffer or average of recent component error functions.

The learning algorithm used by the brain is also constrained by its behavior on larger temporal

scales. While the sensory environment experienced by the brain is often stable in many respects,

forces like the slow succession of the seasons and long-distance travel can substantially change the

environment. These influences can also return the sensory environment to its original state after an

extended perturbation. In order for animals to behave efficiently despite environmental variations,

new learning must not disrupt the stability of established responses over time (Karni & Sagi, 1993).

This problem is known as the stability-plasticity dilemma (Carpenter & Grossberg, 1988). The

knowledge of flowers and swimming accrued during the summer must not destroy the knowledge

of snow and ice skating gained during the winter. Similarly, sensory map plasticity is considerably
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smaller in adults (who have already accumulated considerable experience) than in juveniles (who are

less experienced and have less to lose), suggesting that parameter change is reduced in magnitude

(Karmarkar & Dan, 2006). These considerations suggest that parameter changes in response to any

single sensory stimulus should be relatively small. The optimal small parameter update corresponds

to a step along the gradient. When performed repeatedly in response to different inputs, such a

succession of small steps along the gradient is equivalent to stochastic gradient descent.

Finally, in a variety of models, activity learned using gradient descent is consistent with observed

neural activity. For instance, when gradient descent is used to train a one-hidden-layer sigmoidal

neural network to produce a body-centered representation of visual stimuli from the eye position

and eye-centered visual signals experimentally observed in the posterior parietal cortex, it induces

activity in the hidden layer similar to that observed in area 7a (Zipser & Andersen, 1988). Likewise,

gradient descent induces a sparse network to exhibit activity similar to that in primary visual cortex

(V1) when used to train the network to reconstruct its inputs (Olshausen & Field, 1996).

We can thus see that the assumptions underlying intrinsic gradient networks are consistent with

experimental observations of the brain. In particular, cortical computation appears to be mediated

by the convergence of neuronal firing rates to a fixed point, and the brain must learn via an algorithm

like stochastic gradient descent if it is to improve its overall performance through operations based

on its current sensory stimulus, while simultaneously preserving prior learning. To the extent that

our simple assumptions2 coherently explain a wide variety of disparate experimental evidence, they

constitute a nontrivial theory of neural function in their own right. In section 4.2, we will see that

the mathematical implications of these assumptions are consistent with additional experimental

evidence, further reinforcing the biological plausibility of intrinsic gradient networks.

4.2 Biological predictions of intrinsic gradient networks

Intrinsic gradient networks satisfying the assumptions of section 2.3.2 encompass a large class of

dynamics, as is evident from the fact that each function hkj (x) in equation 2.17, indexed by j and

k, can be any differentiable scalar function. By carefully choosing the functions hkj (x), intrinsic

gradient networks can be constructed that exhibit a variety of biological properties. In particular,

intrinsic gradient networks that are highly recurrent, trainable in a pseudo-Hebbian manner based

upon locally available signals, and composed of independently parameterized units with a minimal

a priori connection topology will be explored in section 4.3.

Nevertheless, intrinsic gradient networks also have a variety of essential properties that follow

from the assumption that the gradient is computable at the fixed points of the output functions,
2I.e., that the brain computes and learns by converging to a quasi-stable fixed point of its firing rates, from which it

is able to compute the gradient of the component error function defined by the current stimulus and perform stochastic
gradient descent
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sometimes augmented with the assumptions of section 2.3.2. These basic properties can be used

to generate predictions regarding the electrophysiological and anatomical properties that the cortex

would exhibit, were it to implement an intrinsic gradient network. In this section, we enumerate

some of these predictions, noting in particular where the properties of intrinsic gradient networks

have already been experimentally confirmed in the cortex.

4.2.1 Multiplicative combination of bottom-up and top-down signals

As implied by equation 2.17 in section 2.3, in the modular intrinsic gradient networks we’ve found,

each output function consists of a sum of products. We reproduce equation 2.17 here for convenience:

~F (~x) = T−1 · (D + I)−1 · ∇
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product terms is a function of at most two other units in the intrinsic gradient network, one of which

is unique to the current factor (xj in equation 2.17), and the other of which normalizes all factors

(except the first) of the product term (xψ(k) in equation 2.17). Excluding the effect of the common

normalization, each output function is thus a sum of products of independent functions of its inputs.

In particular, consider an element of the gradient for which the partial derivative operation leaves

only a single non-zero term in the sum over k in equation 2.17, as occurs when there is only a single

index k = k′ for which hkj (x) is non-constant for a chosen index j = j′. In this case,
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matrix, then setting aside the common normalizing input, the corresponding output function is the
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product of independent functions of the inputs to the associated unit. For instance, in the hierarchical

intrinsic gradient network described in section 3.3, each feedforward and feedback output function

is the product of a function of its bottom-up inputs, and a function of its top-down inputs, as is

evident in equation 3.21.

If the cortex implements such an intrinsic gradient network with unit activities represented by

neuronal firing rates, then equation 2.17 predicts that neural activity after computation is completed

should be the product of functions, each dependent on a single cortical area that projects to the

current area. These functions can each be characterized by a receptive field. To the extent that

the various cortical areas that project to the current cortical area represent disjoint features of the

sensory stimulus, such as different stimulus modalities, these receptive fields will be similarly disjoint.

The firing rate of neurons within the current cortical area will then result from the product of these

receptive fields on distinct sets of stimulus features.

To understand the implications of this prediction of multiplicative interactions, we must first

characterize the relationship between receptive fields in the successive areas of a sensory processing

hierarchy. In the brain, information can be profitably conceptualized as flowing unidirectionally,

despite the presence of recurrent connections which ensure that every signal propagates in all di-

rections. For instance, visual information can be understood as propagating progressively from

the retina to the LGN (lateral geniculate nucleus), V1, V2, V4, and IT (inferior temporal cortex)

(Lamme & Roefsema, 2000; Serre et al., 2005), even though all of the connections in the ventral

visual system are bidirectional (Felleman & Van Essen, 1991). Similarly, attentional and motor

information is generally assumed to flow in the opposite direction through each area in a sensory

processing hierarchy, from the more abstract and motor-related frontal areas to the more sensory

areas in the occipital, temporal, and parietal cortices (Treue, 2001). This view of information

transformation and processing is supported by electrophysiological evidence, which shows that as

one moves up a sensory processing hierarchy, the representation of the sensory stimulus (as char-

acterized by the receptive field) becomes progressively more abstract, and attentional modulation

increases in magnitude (Maunsell & Newsome, 1987; Treue, 2001). As a result, relative to any single

area, the downstream areas contain sensory information, and the upstream areas contain attentional

and motor information.

Given this progressive transition from sensory to attentional and motor representations through-

out a sensory hierarchy, intrinsic gradient networks predict that receptive fields defined in terms of

the feedforward sensory signals should be multiplicatively modulated by the feedback attentional and

motor signals. This prediction is confirmed by experimental evidence, which suggests that receptive

fields throughout both the dorsal and the ventral visual processing hierarchy, defined primarily in

terms of visual stimuli, are multiplicatively modulated by both spatial and feature-based attention

(McAdams & Maunsell, 1999; Treue & Martinez-Trujillo, 1999; Williford & Maunsell, 2006). The
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attention-based gain factor is independent of the stimulus (Martinez-Trujillo & Treue, 2004), as

suggested by intrinsic gradient networks.3

The multiplicative combination of receptive fields is also observed in the cortex between different

stimulus and output modalities. Stimulus or motor-driven firing rates are multiplicatively modulated

by gaze direction in the posterior parietal cortex (Andersen et al., 1985; Brotchie et al., 1995), dorsal

premotor cortex (Boussaoud et al., 1998), and primary visual cortex (Trotter & Celebrini, 1999).

Parietal reach region neurons responsive to the destination of a reach in eye-centered coordinates

are multiplicatively modulated by initial hand position (Buneo et al., 2002). Such multiplicatively

combined receptive fields are traditionally called gain fields, and can be used to perform coordinate

transformations using only a linear combination of the gain field outputs (Salinas & Thier, 2000;

Salinas & Abbott, 2001). While it is possible to construct intrinsic gradient networks that do not

combine different input sources in a simple, multiplicative manner, it is encouraging that these

prominent electrophysiological phenomena are so naturally captured by intrinsic gradient networks.

The consistency of intrinsic gradient networks with gain fields also casts light on the computa-

tional capabilities of intrinsic gradient networks. Gain fields facilitate efficient coordinate transfor-

mations (Salinas & Abbott, 2001). While intrinsic gradient networks are derived based upon the

computational requirement that the gradient be computable from the fixed point of the output func-

tions, they are not subject to any direct restrictions on the computational power of the network. For

instance, if we choose hkj (x) = 0 for all j, k, and x in equation 2.17, as in section 2.3.5, the resulting

system is an intrinsic gradient network, but is clearly not capable of nontrivial computation. In

contrast, if we choose a hierarchical topology with sigmoidal h(x) like that described in section 3.3,

then the variable nodes are approximately a gain field. As a result, the linear operations performed

by the factor nodes can carry out a coordinate transformation on the variable nodes.

At the same time, intrinsic gradient networks constitute a biologically plausible manifestation of

gain fields, explaining how learning might be implemented in gain fields with many layers. Although

the coordinate transformations performed by gain fields can be learned by Hebbian mechanisms when

all units can be directly driven by sensory inputs while training, it has thus far been unclear how

to train hierarchical networks of gain fields with hidden layers interposed between the input layers

(Salinas & Abbott, 2001). Such a hierarchical network corresponds to the hierarchical arrangement

of cortical areas (Felleman & Van Essen, 1991), and must be addressed if gain fields are to model the

many successive areas of each cortical hierarchy in which gain field activity has been experimentally

observed. Intrinsic gradient networks of the sort described in section 4.3 constitute just such a

hierarchical network of gain fields, in which the hidden layers can still be trained via Hebbian
3Intrinsic gradient networks predict that the attention-based gain factor should be independent of the stimulus to

the extent that top-down and bottom-up signals do not influence each other in the network. If, for instance, top-down
attentional signals significantly alter the bottom-up sensory signals, the response at any given layer of a hierarchical
intrinsic gradient network need not be a simple product of attentional and sensory receptive fields.
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learning.

4.2.2 Reconstruction of sensory inputs in primary sensory cortices

As we have seen in sections 2.1.4 and 2.4, the inputs to an intrinsic gradient network are a manifesta-

tion of its error function and vice versa. Error functions traditionally used in machine learning, such

as the sum of squares error, are minimized when a subset of the output signals match an a priori

ideal output. When the error function is defined in terms of an ideal output, the inputs of a cor-

responding intrinsic gradient network are generally a function of these ideal outputs. For instance,

using a linear error function, ~c> · ~x, consisting of the inner product of the actual output ~x with an

ideal output ~c, the inputs to a compatible intrinsic gradient network with a pairwise permutation

training function are equal to the ideal values ~c of the output units; with the negative sum of squares

error function − 1
2 ·
∑
i (xi − ci)

2, the inputs are equal to the ideal values plus a regularizing term:

ci + xi · log(xi).

Consequently, when the inputs to an intrinsic gradient network (using this sort of error function

and a pairwise permutation training function) are determined by an external environment, the

particular error function whose gradient is calculated by an intrinsic gradient network has an ideal

output value determined by the input. The minimization of the error function thus induces the

network to act like an autoencoder, which reconstructs its inputs on its outputs. If the cortex

implements such an intrinsic gradient network, the resulting autoencoder should have experimentally

identifiable consequences.

The cortex receives most of its sensory input from the thalamus, and projects back to the

thalamus from pyramidal cells in layer 6 (Binzegger et al., 2004; Douglas & Martin, 2004). If the

cortex implements an intrinsic gradient network with an error function like the linear or negative sum

of squares error and a pairwise permutation training function, activity in primary sensory cortices,

especially in layer 6 neurons that project back to the thalamus, should subserve the reconstruction

of the thalamic inputs. Such reconstructive responses would be indistinguishable from the receptive

field-based activity commonly observed in primary sensory cortices, so long as the transformation

from thalamic (or sensory) input to cortical activity is invertible by the projection from cortex to

thalamus. For instance, if simple cells in layer 6 of the primary visual cortex are an approximately

linear, invertible function of the sensory stimulus, as is often assumed in the experimental literature

(Hubel & Wiesel, 1962), then the sensory stimulus can be reconstructed from layer 6 activity via

a complementary (inverse) linear function implemented by the axons and synapses projecting from

layer 6 of the primary visual cortex to the LGN.

On the other hand, if the instantaneous signal from the environment is momentarily either

noisy or incomplete, then the reconstruction of the underlying sensory input will be most accurate

when based upon the learned structure of the environment, as in the case of filling-in at the blind
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spot (Komatsu, 2006). The primary visual cortex generally receives stimuli over the entire visual

field. However, when only one eye is open, no visual information is received within the blind spot

of the open eye, corresponding to the region of the retina where the optic nerve leaves the eye.

Nevertheless, we are generally not conscious of the blind spot’s existence unless a small stimulus

is carefully positioned so that it disappears in the blind spot. Even with only one eye open, the

blind spot is perceptually “filled in” with the texture of the area surrounding it. Extensive binocular

experience has trained the cortex to infer the content of the blind spot from the activity in rest of

the visual field.

While the perceptual experience of filling-in could potentially be mediated solely by activity in

higher areas of the visual hierarchy, intrinsic gradient networks predict that the reconstruction of

the stimulus in the blind spot should also project from the primary visual cortex to the thalamus.

So long as an underlying intrinsic gradient network does not learn to treat monocular input as a

distinct stimulus paradigm, the autoencoding error function is only minimized when the blind spot

is reconstructed by layer 6 of the primary visual cortex when no actual information is available

regarding the contents of the blind spot. In this case, the stimulus in the blind spot must be inferred

from the surrounding visual field.

Single-cell electrophysiology in the region of the primary visual cortex corresponding to the

blind spot is consistent with this prediction. For many neurons with receptive fields falling at least

partially within the blind spot, the response to a bar across the blind spot is stronger than the sum

of the separate responses to the components of the bar on either side of the blind spot (Fiorani,

et al., 1992; Matsumoto & Komatsu, 2005). That is, these neurons respond as if the portion of

the receptive field within the blind spot were stimulated by the occluded part of the bar, thereby

inferring the contents of the blind spot from the surrounding stimuli. Similar responses are observed

in the primary visual cortex when a mask is used to block stimulus in a region of the primary visual

cortex which normally receives input from both eyes (Fiorani, et al., 1992), or when a surface is used

to completely cover the blind spot (Komatsu et al., 2000), suggesting that stimulus reconstruction in

the primary visual cortex is a very general phenomenon. Moreover, this reconstruction phenomenon

is observed primarily in granular and infragranular layers, the latter of which projects back to the

thalamus; stimulus reconstruction is rarely observed in the supragranular layers of the primary visual

cortex, which project to higher regions of the visual processing hierarchy. Further neural evidence

for filling-in in primary sensory cortices has been reviewed by Komatsu (2006).

Thalamic afferent activity also differs from the underlying visual scene in certain optical illusions.

In particular, when one object occludes another, they meet along a line across which the texture

changes. Although the luminance may momentarily be the same on either side of the line in some

small regions, this consistency is generally incidental and temporary, and an efficient reconstruction

of the visual scene should infer the existence of a line along the most likely occlusion border. Indeed,



108

an illusory contour is perceptible in stimuli like the Kanizsa figure, which is efficiently interpreted

in terms of occlusion and in which the inferred border of the occluding object is visible as a line

even when there is no luminance difference across the line (Kanizsa, 1979). As predicted by intrinsic

gradient networks, these reconstructed illusory contours are also represented in the activity of the

primary visual cortex (Grosof et al., 1993; Sheth et al., 1996; Lee & Nguyen, 2001). Occlusion can

also occur in auditory stimulus, and a corresponding reconstruction is apparent in auditory cortex

activity, as predicted by intrinsic gradient networks (Petkov et al., 2007).

4.2.3 Complementary, reciprocal connections from V1 to LGN

Given the assumptions of section 2.3.2 and a pairwise permutation matrix T, intrinsic gradient

network units generally come in reciprocally connected pairs. As can be seen from equation 2.17,

any summand of g(~x) that contains a function of unit xj will induce a term in the jth component

of the gradient, ∂
∂xj

. This term is itself a function of xj if the corresponding summand is not linear

in xj .4 Equation 2.17 then implies that this component of the gradient (which is a function of xj)

defines the output function Fi(~x), and thus unit xi, where the pairwise permutation matrix T maps

xi to xj and xj to xi. Complementarily, Fj(~x) itself is defined by the partial derivative with respect

to xi, and thus generally depends on xi. As a result, amongst the units for which xj is an input,

there is generally a unit xi which projects back to xj .

The manifestation of this fine-scale reciprocity at a larger scale is discussed in sections 3.2 and 3.3.

As an example of this reciprocity, if two variable nodes a and b, as defined in section 3.2, are directly

connected, the units of node a that project to node b are arguments of the units of node b that

project to node a, and vice versa. This reciprocal connectivity is even more general when viewed

in terms of atomic nodes, as in sections 3.2 and 3.3, which consist of all units derived from a single

summand of g(x). All connections between atomic nodes are reciprocal given the assumptions of

section 2.3.2 and a pairwise permutation matrix T, as can be seen in the examples of chapter 3,

regardless of the choices of hkj (x).

This reciprocal connectivity is consistent with the connection topology of the cortex, in which

connections between cortical areas are almost universally reciprocal (Felleman & Van Essen, 1991).

One of the most anatomically and functionally distinct, and best studied, example of such reciprocal

connections is that between the primary visual cortex (V1) and the LGN. The primary visual cortex

receives inputs from three distinct neural populations in the LGN: magnocellular cells, which are

responsive to low contrasts and high temporal frequencies and have significant surround suppres-

4As an example of the more general consequences of this property,
∂g(~x)
∂xj

will not be a function of xj if for all k,

ψ(k) 6= j and hkj

0BB@ x
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Dψ(k)
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1CCA is either not a function of xj or equal to xj · f(xψ(k)) for some function f . Perhaps

perversely, the factor nodes of sections 3.2 and 3.3 have this unusual form.
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sion; parvocellular cells, which are responsive to higher contrasts and lower temporal frequencies,

and have less surround suppression; and koniocellular cells, which are intermediate between magno-

cellular and parvocellular cells in terms of contrast, spatial and temporal frequencies, and which are

responsive to the full range of colors (Derrington & Lennie, 1984). As predicted by intrinsic gradient

networks satisfying the assumptions of section 2.3.2 and with pairwise permutation training func-

tions, there is also a prominent projection from the primary visual cortex back to the LGN, arising

from layer 6. This projection is mediated by three distinct populations of corticogeniculate cells,

with response properties matching these three inputs (Grieve & Sillito, 1995; Briggs & Usrey, 2009).

These three populations appear to be at least partially physically segregated into a band in upper

layer 6 projecting to the parvocellular layers of the LGN, and a band in lower layer 6 projecting to

the magnocellular layers of the LGN. Consistent with the input requirements of reciprocal output

functions in intrinsic gradient networks, there is a prominent thalamic projection to layer 6 aligned

with these bands of the corticogeniculate neurons, in addition to the LGN projection to layer 4.

In an intrinsic gradient network of the form of equation 2.17 with a pairwise permutation training

function, each output function is induced by a single element of the gradient, all the summands of

which depend upon a single reciprocal input. Since LGN neurons have center-surround receptive

fields, if the projection from LGN to V1 is only capable of performing a linear transformation, the

reciprocal input signals to the units mediating the corticogeniculate messages will have response

properties similar to simple receptive fields (Hubel & Wiesel, 1962). Correspondingly, simple cells

(with receptive fields that are linear in the visual input) compose both a majority of layer 6 neurons

in V1 in general, and a majority of the corticogeniculate neurons in particular (Swadlow & Weyand,

1987; Grieve & Sillito, 1995; Briggs & Usrey, 2009). All of the corticogeniculate cells projecting to

the parvocellular layers of the LGN have simple receptive fields (Briggs & Usrey, 2009), and Swadlow

& Weyand (1987) found that all corticogeniculate cells were simple, whereas simple cells are rarely

found outside of these two thalamorecipient layers (Martinez et al., 2005).

In contrast, if the training function ~T is linear but not a pairwise permutation, then the output

functions projecting from V1 to the LGN would be expected to correspond to complex cells, since

they sum over many nonlinear transformations of sums of LGN inputs. Even if ~T is a pairwise

permutation matrix, however, the feedforward messages out of V1 share a common feedback message

from higher in the visual processing hierarchy but have many different inputs from LGN. As a result,

pyramidal neurons in layer 2/3, which project up the cortical hierarchy, are predicted to have complex

receptive fields in general, as is observed in the cortex.

While it might seem that strong predictions can be made about neural dynamics based upon the

shape of h(x), so long as each output function is the sum of many terms, each of these terms will have

a distinct normalization xψ(k) even if they share a common input (as discussed above). The resulting

sum over differently normalized inputs will blur the shape of the function h(x), making strong
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predictions difficult. Nevertheless, it is notable that if h(x) is sigmoid, corresponding to the sigmoid

relationship generally observed between sensory input and firing rate (Albrecht & Hamilton, 1982),

then h′(x) is non-monotonic. Careful observations in the visual system have consistently revealed

that the response to increasing stimulus strength can also be non-monotonic, thus resembling both

sigmoidal h(x) and peaked h′(x) in turn (Ledgeway et al., 2005; Peng & Van Essen, 2005; Peirce,

2007). Non-monotonic intensity response functions are common in the auditory cortex (Barbour &

Wang, 2003).

4.3 A biologically plausible class of intrinsic gradient net-

works

In section 1, we observed that the cortex is highly recurrent. In particular, there seems to be a

directed path from each neuron, cortical column, and area to every other neuron, cortical column,

and area, respectively. Intrinsic gradient networks like belief propagation on acyclic factor graphs,

discussed in section 3.1, need not have any recurrent loops, although the intrinsic gradient networks

constructed in sections 3.2 and 3.3 clearly demonstrate that intrinsic gradient networks can be highly

recurrent.

More generally, the cortex has a number of essential characteristics that are not directly implied

by the definition of intrinsic gradient networks, but which are consistent with a large subset of in-

trinsic gradient networks. In this section, we describe four constraints on intrinsic gradient networks

inspired by the properties of the cortex. We then identify a class of intrinsic gradient networks, of

which the two examples of sections 3.2 and 3.3 are instances, which satisfy these constraints. Finally,

we describe a simple, plausible mapping between these intrinsic gradient networks and the network

of neurons in the cortex.

4.3.1 Constraint 1: Intrinsic gradient network units are independently

parameterized

Neurons are necessarily controlled by independent parameters, since the synapses and other parameter-

implementing structures of each neuron are physically distinct. Moreover, aside from gap junctions

and retrograde transmission of unconventional neurotransmitters like nitric oxide, each cortical neu-

ron can only produce output mediated by a sequence of action potentials propagated down its axon.

The parameters of one neuron influence other neurons primarily through the single signal transmit-

ted through its axonal tree. Neurons partition the parameters and associate them with a unique

output, and thus seem to constitute the basic computational units of the brain. It is therefore
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natural to identify each neuron with a single unit in an intrinsic gradient network.5

We restrict our attention to intrinsic gradient networks in which the dynamics of the units

~x, characterized by ~F (~x, ~w), are independently parameterized. In the intrinsic gradient networks

defined by equation 2.18, however, single parameters appear repeatedly in multiple output functions.

For an intrinsic gradient network of this form to model the brain, either multiple instantiations of

each parameter would need to be trained to be equal, or a single representation of each parameter

would need to be trained to project to the various units which produce outputs based upon it.

4.3.2 Constraint 2: The network of units is highly recurrent

Anatomical, electrophysiological, and computational evidence suggests that the cortex is highly

recurrent. For every long-range axonal projection in the cortex, there appears to be a complementary

projection in the opposite direction, both between cortical areas (Felleman & Van Essen, 1991) and

between cortical columns in a single area (Angelucci et al., 2002). These reciprocal projections form

a network of interconnected tight loops, since the anatomy of the cortical microcircuit does not

keep feedback signals segregated from feedforward signals at the scale of a single cortical column

(Douglas & Martin, 2004). It is well known that feedforward projections tend to terminate in layer 4,

whereas feedback projections tend to terminate in layers 2/3, 5, and 6. However, local projections

interconnect these layers; there is a strong loop from layer 4 to 2/3 to 5 to 6 and back to 4 (Binzegger

et al., 2004). It is difficult to imagine how feedforward and feedback signals could avoid influencing

each other in this architecture.

Moreover, electrophysiological evidence indicates that feedback signals in the brain directly affect

feedforward signals and vice versa. Top-down attention and expectations can alter activity through-

out the cortical hierarchy (reviewed in Gilbert & Sigman, 2007). Neurons near the bottom of the

processing hierarchy in supposedly unimodal sensory areas can exhibit responses to stimuli from

other modalities (reviewed in Ghazanfar & Schroeder, 2006). Anatomical and functional evidence

even suggest that the non-classical components of receptive fields in the primary visual cortex are

driven primarily by feedback from higher areas (Angelucci et al., 2002). These manifestations of

feedback signals in the brain are incompatible with the backpropagation signals required to calcu-

late gradients in traditional artificial neural networks (Parker, 1985; Grossberg, 1987; Crick, 1989;

Stork, 1989; Zipser & Rumelhart, 1993). The recurrence observed in the brain is also incompatible

with belief propagation on acyclic factor graphs, which assumes that the network has no cycles

(Kschischang et al., 2001).

Although deterministic recurrent neural networks are not commonly applied to static problems

in the machine learning literature (the few examples using recurrent backpropagation include Qian

5As we discussed in section 4.1, an intrinsic gradient network unit may be composed of many neurons or correspond
to only part of a neuron, to the extent that either groups of neurons or parts of neurons have independent parameters
associated with a single output.



112

& Sejnowski, 1989; Kamimura, 1991; Behrens et al., 1991; Jones, 1992; Pineda, 1995; O’Reilly, 2001),

recurrent neural networks are potentially very computationally powerful, and thus an appropriate

architecture for the cortex. Consider the problem of determining whether a visual image contains a

closed loop, such as a circle. In human vision, closed loops exhibit pop-out in a field of line segments,

and even a small break or discontinuity in the loop considerably reduces this effect (Kovács & Julesz,

1993; Pettet et al., 1998). However, a closed loop cannot be identified on the basis of its parts in

any simple way. Any part of a closed circle, short of the entire thing, could just as easily be part

of an unclosed line segment. A figure which contains a closed loop may have many other unclosed

line segments, so merely finding the ends of lines does not indicate the absence of a closed loop. It

is thus difficult to construct efficient feedforward networks for detecting closed loops, particularly if

the number of hierarchical layers is limited (Bengio & LeCun, 2007). Indeed, the abstraction of this

task to the longest circuit problem, in which the task is to determine if an undirected graph has a

simple cycle containing some minimum number of nodes, is NP-complete. Nevertheless, even small

recurrent networks are able to find closed loops quickly and naturally (e.g., Pettet et al., 1998).

In light of the anatomical, functional, and computational evidence for recurrence in the cortex,

we restrict our attention to intrinsic gradient networks in which the units ~x are strongly connected.

That is, we require that every pair of units be connected by a directed path (of some length) in both

directions.

4.3.3 Constraint 3: The connection topology is not specified in detail a

priori

The human genome is not large enough to specify exact connections between individual neurons,

and there is little detailed order apparent in axonal and dendritic arbors (Binzegger et al., 2005,

2007). While the active synapses of the brain develop a highly structured connection topology, as

discussed in section 4.3.4, the neural substrate on which this network forms is much less ordered.

Potential synapses, consisting of an axon and dendrite that pass within the distance bridgeable by

a dendritic spine, exist with high probability between all cortical excitatory neurons in a column

with radius of 100 to 300 µm (Kalisman et al., 2005; Stepanyants et al., 2008). Only about 25% of

these potential synapses are realized at any given time (Stepanyants et al., 2002), and most of the

physically present synapses are weak (Song et al., 2005). Potential synapses mediated by longer-

distance projections are similarly promiscuous, although not as dense. Even in the adult brain,

new dendritic spines and axonal boutons regularly extend and form new synapses, and later break

synaptic contact and retract (reviewed in Holtmaat & Svoboda, 2009). A synapse between any two

neurons with overlapping axonal and dendritic projection regions could plausibly have existed at

some point in the past, and could very well exist again at some point in the future, although the
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creation or elimination of a synapse occurs over a time scale longer than that required to alter the

strength of an existing synapse.

It is thus biologically plausible to assume that all adjacent axons and dendrites, and by extension

all nearby cortical excitatory neurons, have a parameterized connection, even if no synapse is cur-

rently present or active. Similarly, a parameterized connection exists between a substantial fraction

of the pairs of excitatory neurons in more distantly connected columns. The current absence of

a synapse effectively constitutes a synapse with no strength and slow dynamics. In order for an

intrinsic gradient network to capture this characteristic, the set of parameterized connections to a

unit/neuron should include connections from almost all units/neurons that project to its region (as

defined by a detailed mapping between the intrinsic gradient network units and the neurons, such as

the one we construct below). We therefore restrict our attention to intrinsic gradient networks for

which a detailed a priori connection topology is not necessary for efficient learning. In particular, we

focus on intrinsic gradient networks in which, if two nodes (as defined in section 3.2.3) are connected,

their units are effectively connected all-to-all.

4.3.4 Constraint 4: Learning is based upon local signals within small

processing assemblies

Since the brain is a physical system, parameters such as the strength of a synapse can only be learned

based upon the physical signals that actually reach the physical manifestation of the parameter. In

the cortex, neither molecular nor electrical postsynaptic signals seem to be targeted to individual

synapses, so the individual synapses of a neuron can only be differentially trained based upon their

presynaptic inputs (Waters et al., 2005). Other signals propagate to, and thus likely pertain to,

large groups of synapses, such as all the synapses on a dendritic branch. We therefore restrict our

attention to intrinsic gradient networks in which the training of the parameters of each unit xi only

depends upon signals directly available to unit xi. We assume that arguments of Fi(~x) are directly

available to xi, since biologically plausible dynamics for xi are based upon Fi(~x), as in equations 2.1

and 2.2.

The connections between cortical neurons seem to form clusters, which may correspond to local

processing assemblies. There are intraconnected but not interconnected sub-groups of pyramidal

neurons and fast-spiking inhibitory neurons spanning layer 2/3 and layer 4 (Yoshimura et al., 2005;

Yoshimura & Callaway, 2005), and clustering rules also seem to govern the connections between

layer 2/3 and layer 5 (Kampa et al., 2006). Local projections from layer 5 corticothalamic pyramidal

neurons are stereotyped based upon anatomy, physiology, and position (Kozloski et al., 2001). Con-

nections between pairs and triads of layer 5 pyramidal neurons tend to be reciprocal, and synapses

within such clusters are correlated in strength (Song et al., 2005). A few strong connections seem
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to dominate dynamics in a sea of weak connections (Song et al., 2005). Clusters bound by strong

connections are also apparent in larger groups of layer 5 pyramidal neurons (Perin et al., 2011).

Finally, neurons that form from a single radial glial cell during development are strongly preferen-

tially interconnected (Yu et al., 2009). These experiments suggest that cortical neurons form local,

interconnected clusters, which effectively share information. We thus consider intrinsic gradient

networks in which the units are further organized into disjoint processing assemblies, inspired by

cortical columns (Mountcastle, 1997), within which units are interconnected and all outputs are

available for training purposes.

Synaptic weight changes in cortical neurons often depend on local dendritic activity as much

or more than backpropagating action potentials (reviewed in Kampa et al., 2007), suggesting that

local signals within an interconnected cluster of neurons could influence training without necessarily

disrupting information transmission between the clusters. Correspondingly, we allow each compo-

nent of the training function Ti(~x) to depend on units that project to or are members of, and whose

signals are thus available to, the processing assembly of which unit xi is a member. However, we do

not require that the arguments of Ti(~x) necessarily be arguments of Fi(~x).

4.3.5 Satisfying constraint 1: Intrinsic gradient networks with indepen-

dently parameterized units

We can construct a large class of intrinsic gradient networks that satisfy the first constraint by

combining a generalization of the factor nodes of section 3.2.1 with a generalization of the variable

nodes of section 3.2.2. This set of intrinsic gradient networks will include the examples of sections 3.2

and 3.3, so both figure 3.3 and figure 3.4 can be used as a visual reference for the following discussion.

As in sections 3.2 and 3.3, we assume that ~S(~a,~b) = ~T (~a) − ~T (~b), ~T (~x, ~w) = T · ~x, T is a pairwise

permutation matrix, and use the conservative vector field formulation of section 2.3.4, with g(~x)

defined as in equation 2.16. The terms of g(~x) are defined to be of two types, which we call factor-

defining terms and variable-defining terms, due to the similarity they bear to the factor nodes and

variable nodes constructed in sections 3.2.1 and 3.2.2. We assume dynamics defined by equations

2.1 and 2.18.

We require that the factor-defining terms gk(~x) have a multiplicative parameter and satisfy

xi ·
∂gk(~x)
∂xi

= xj ·
∂gk(~x)
∂xj

(4.1)

for all i and j such that ∂gk(~x)
∂xi

6= 0 and ∂gk(~x)
∂xj

6= 0, while simultaneously satisfying equation 2.16.

For instance, they may be of the form wab · xa · xb, corresponding to atomic degree-two factor nodes

as defined in section 3.2.1; of the form wabc ·x2/3
a ·x2/3

b ·x2/3
c , like parameterized versions of the atomic

degree-three variable variable nodes of section 3.2.2; or of the form wabcd · x1/2
a · x1/2

b · x1/2
c · x1/2

d ,
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which corresponds to the choice ψ(k) = a and hkb (x) = hkc (x) = hkd(x) = x1/4 (and hkj (x) = 1 for

other indices j) in equation 2.18. A finite set of factor-defining terms may share the same parameter.

We only require that the variable-defining terms be unparameterized. Given our previous as-

sumptions about the slack function and training function, the kth variable-defining term has the

form

gk(~x) = x2
ψ(k) ·

∏
j 6=ψ(k)

hkj

(
x2
j

x2
ψ(k)

)
,

where hkj (x) is a differentiable function for each index j. This generalizes the atomic degree-three

variable nodes in sections 3.2.2 and 3.3 by allowing different functions hkj (x) and nodes with more

(or fewer) than three connections.

In section 4.3.1, we asserted that each unit should be independently parameterized. The variable-

defining terms have no parameters, so their contributions to the units trivially satisfy this constraint.

The factor-defining terms are more troublesome. Each factor-defining term contributes a single

parameter to many distinct units. The equality between these parameters implied by equation 2.18

is in apparent contradiction to the independence assumed in section 4.3.1.

Fortunately, equality within these parameter groups is established and maintained naturally so

long as learning is performed via gradient descent on the error function with weight decay, and the

groups of associated parameters follow the same derivative. Gradient descent with weight decay

induces exponential decay of the initial conditions. Specifically, if dw
dt = −α · w + β · dEdw , then

w(t) = w(0) · e−α·t + β · e−α·t ·
∫ t

0

eα·τ · dE(τ)
dw

· dτ ,

ensuring that two parameters quickly converge to a common value if they follow the same gradient.

The shared parameters required by equation 2.18 can thus be implemented by independent, physi-

cally distinct parameters so long as the derivatives of the error function with respect to these groups

of parameters are equal.

We must therefore evaluate whether the derivatives of the error function with respect to each

parameter induced by a single factor-defining term are equal. Substituting equation 2.17 and the

chosen values of the training function, ψk, and hkj into equation 2.7, the derivative of the error
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function with respect to some parameter w′ of a factor term is

dE(~x∗)
dw′ = (T · ~x∗)> ·�

i

[
∂Fi(~x)
∂w′

∣∣∣∣
~x∗

]
= (T · ~x)> · ∂

∂w′

[
T−1 · (I + D)−1 · ∇

(∑
k

gk(~x)

)]

=
∑
k

(T · ~x)> ·T−1 · (I + D)−1 · ∇
(
∂gk(~x)
∂w′

)
=
∑
k

~x> ·D> · 1
2
·�
i

[
∂2gk(~x)
∂xi∂w′

]
=
∑
k

1
2
· ~x> ·�

i

[
∂2gk(~x)
∂xi∂w′

]
(4.2)

where �i denotes a column vector over the indicated variable, the entries of which are given by the

expression in square brackets, and D = I since we assume that T is a pairwise permutation. In all

lines after the first, the units are assumed to be evaluated at a fixed point x∗. The assumption that

units are independently parameterized is equivalent to setting all but one element of the vector over i

in the last two lines equal to zero. The derivatives with respect to the now-independent parameters

induced by each single factor-defining term gm are equal by virtue of equation 4.1, and because
∂gk(~x)
∂w′ = 0 for the other factor-defining terms and the unparameterized variable-defining terms. To

follow the gradient of the error function given linked parameters, these derivatives should be scaled

as if the parameters were not independent, which will not affect this equality since all corresponding

derivatives will be scaled by the same amount.

4.3.6 Satisfying constraints 2 and 3: Highly recurrent intrinsic gradient

networks with a minimal a priori connection topology

There are many ways to construct strongly connected intrinsic gradient networks with minimal a pri-

ori connection topologies. We propose a particular framework, consistent with both our solution to

the first constraint in section 4.3.5 and our eventual solution to the fourth constraint in section 4.3.7.

We assume that the network consists of factor nodes and variable nodes, as in section 4.3.5, that gen-

eralize those discussed in sections 3.2 and 3.3. This dichotomy will eventually allow us to minimize

the specificity of the associated connection topology. To ensure that these two classes of nodes are

well-defined, we assume that the units ~x can thus be partitioned into two groups, variable units and

factor units, such that each summand of g(~x) only contains units from one of the two groups, and

T maps between the two groups. Factor-defining terms are defined exclusively over variable units;

variable-defining terms are defined exclusively over factor units. Given these assumptions, equations

2.1 and 2.18 imply that the dynamics of each factor unit are determined entirely by factor-defining

terms, which contain variable units. Similarly, the dynamics of each variable unit are determined
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entirely by variable-defining terms, which contain factor units.

In addition, we assume that variable-defining terms induce a partition on the set of all factor

units. Each factor unit xj is associated with a single variable-defining term k, such that either

ψ(k) = j or hkj (x) 6= 1; otherwise, hkj (x) = 1. Each variable-defining term gives rise to many

variable units: one for ψ(k) and one for each j such that hkj (x) 6= 1. However, since the variable-

defining terms are defined over disjoint sets of factor units, each variable unit receives a contribution

from only one variable-defining term. We continue to refer to the set of variable units whose output

functions are determined by a single variable-defining term as an atomic variable node.

Finally, we assume that the variable-defining terms (and their associated atomic variable nodes)

can be collected into composite variable nodes, such that factor nodes connect pairs of these com-

posite variable nodes in an all-to-all manner. That is, if a factor-defining term connects an atomic

variable node of one composite variable node to an atomic variable node in some other composite

variable node, then every pair of atomic variable nodes in these two composite variable nodes is

connected by some factor-defining term. The a priori connection topology need only specify the

pairs of composite variable nodes to be connected, rather than the detailed connectivity between

atomic variable nodes or individual units. This is particularly intuitive if the composite variable

nodes are spatially delimited, potentially corresponding to something like a cortical column.

The nature of factor nodes ensures that the all-to-all connections between the composite variable

nodes are reciprocal. Moreover, inputs to an atomic variable node generally affect all of its outputs.

As a result, these networks are strongly connected, and the constraint of section 4.3.2 is satisfied

so long as the network does not consist of multiple discrete components. The chosen slack function

~S and training function ~T imply that the intrinsic gradient equation (2.9) is linear in the output

functions ~F , so sets of output functions can be composed additively to build networks of variable

and factor nodes with arbitrary size and topology, as described in section 3.2.3.

4.3.7 Satisfying constraint 4: A mapping onto the network of cortical

neurons facilitating pseudo-Hebbian synaptic learning

The locality of learning can only be evaluated in the context of a physical implementation that

defines which signals are physically available to each unit. We therefore propose a mapping be-

tween the class of intrinsic gradient networks described above and the network of cortical neurons.

Specifically, we assume that each atomic variable node (i.e., all of the variable units induced by a

single variable-defining term) and all of the factor units that feed into it are implemented by a small

group of interconnected neurons, constituting (part of) a processing assembly. The outputs of all

the constituent units of a processing assembly are available for training purposes throughout the

processing assembly. Such groups of neurons might correspond to cortical columns, and could be
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formed by genetically-specified developmental processes independent of the intrinsic gradient net-

work dynamics. These groups of neurons do not explicitly share parameters, although as shown in

section 4.3.5, equality between specific pairs of parameters can be established and maintained by

biologically plausible training procedures.

The dynamics of such a processing assembly are biologically plausible. We assume that the factor-

defining terms are of the form wij · xi · xj , so with the dynamics of equation 2.1, each factor unit

simply computes the weighted sums of a set of variable units. Specifically, xk =
∑
j wij ·xj , where T

maps xi to xk and vice versa, xk is a factor unit, and the xj are all variable units. If the values of the

variable units are represented by neuronal firing rates, the factor units could naturally be manifested

in the overall membrane potential of dendritic branches. When synapses of varying strength receive

presynaptic spikes at fixed rates, low-pass filtering of the synaptic input and passive addition of

the membrane potential within the dendritic tree intrinsically perform a weighted sum of the input

rates (Koch, 1999). The variable units could then be implemented by a nonlinear transformation

of the dendritic membrane potentials into axonal firing rate outputs via active, voltage-dependent

mechanisms. Other biophysical implementations of these dynamics are also possible.

Given this mapping, the signals required to compute the derivative of the error function with

respect to a parameter are physically available at the synapses that implement the parameter. That

is, a group of neurons implementing both the variable units induced by a single variable-defining

term and the factor units that drive them, constituting a processing assembly, can indeed compute
dE(x∗)
dwij

= xi · xj for each parameter wij of the processing assembly. Moreover, the corresponding

gradient ascent update is pseudo-Hebbian.

The parameter wij corresponds to many synapses, but it only parameterizes the input to two

atomic variable nodes. These two projections are symmetric, so we consider only one, without loss

of generality. A synapse with parameter wij (induced by factor-defining term wij · xi · xj) performs

part of the computation of some factor unit xk, with Fk(~x) = wij · xi +
∑
i′ wi′j · xi′ , such that T

maps j to k and vice versa. Since the variable-defining terms contain disjoint sets of factor units,

the factor unit xk projects to the single atomic variable node induced by the variable-defining term

containing xk. However, this single variable-defining term induces many variable units, which are

implemented by the somata of a group of interconnected neurons. The single factor unit xk with

parameter wij thus corresponds to not just one synapse, but a set of synapses (with weights trained

to be equal, as in section 4.3.5, since they follow the same gradient) in the dendritic trees of each of

these neurons.

The value of xi is clearly available to all of these synapses, since it is an input to Fk(~x). Moreover,

we previously defined T to map between xj and xk, so the dynamics of xj are determined by the

partial derivative of g(x) with respect to xk. The single variable-defining term containing xk thus

corresponds to a group of nodes including xj which are part of a single processing assembly. We have
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assumed that the output of each element of a processing assembly is available to all other members

for training purposes, so xj is available postsynaptically at all synapses with weight wij . The unit

xi is the presynaptic signal to the synapses with parameter wij . The unit xj is postsynaptic, in

that it is an output of the processing assembly. Equation 4.2 thus implies that dE
dwij

is the product

of the presynaptic signal xi and the postsynaptically available signal xj , so gradient descent is

pseudo-Hebbian.

These somewhat convoluted relationships are easily visualized in figure 3.3. The left and right

halves of this figure, split through the central composite factor node, constitute two separate pro-

cessing assemblies. Factor units xc1 and xc2 of the left-most processing unit receive presynaptic

input from units xδ1 and xδ2 of the right-most processing unit, and project to units xαi , xβi , and

xγi . The synaptic projection from each of xδ1 and xδ2 to each of xαi , xβi , and xγi is mediated by a

distinct synapse. The derivative of the error function with respect to each of these synaptic weights

is equal to the product of the presynaptic input, either xδ1 or xδ2 , and a postsynaptic signal, either

xγ1 or xγ2 , local to the encompassing processing assembly. Figure 3.2 also constitutes a processing

assembly, albeit an “atomic” one.

The number of different local outputs from variable units required to train the synapses of any

one neuron is equal to the number of components in the associated variable-defining term. For in-

stance, each variable-defining term might have three components, corresponding to bottom-up input,

reciprocal connections within a cortical area, and top-down input. Each of these different outputs

might terminate on a different part of the dendritic tree in an anatomically defined manner, so that

the only synapse-specific input required for training is the natural presynaptic input. Alternatively,

the segregation of different input sources may be effected by the layered structure of the cortex.
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Chapter 5

Discussion

Cortical computation is a difficult phenomenon to investigate experimentally. Experimental tech-

niques can only probe a miniscule fraction of the cortex at one time, and the requisite preparations,

such as slicing and anesthesia, can substantially distort the operation of the cortex. It is thus

unsurprising that many experimental studies reach seemingly contradictory conclusions about the

detailed properties of the brain. While much remains to be learned about the cortex, a number of

characteristic properties have been corroborated by substantial experimental evidence, and should

be taken into account in any biologically plausible model of cortical computation. Considerable

evidence supports the conclusion that the cortex has a highly recurrent connection topology (Felle-

man & Van Essen, 1991; Douglas & Martin, 2004). A directed path consisting of some number of

successive projections connects each cortical neuron to every other cortical neuron, so each neuron

can potentially influence the activity of every other neuron in the cortex. Moreover, while the brain

is a singularly effective in learning from its environment, many experiments show that it must carry

out this learning using only a simple, local function of the intrinsic signals within its network of

neurons (Malenka & Bear, 2004).

In this thesis, we use these reliable cortical properties to derive a model of cortical computation.

Intrinsic gradient networks are the novel class of deterministic networks for which the gradient of an

error function, defined in terms of the network’s activity after convergence, can be calculated simply

from the intrinsic network activity. Once such a gradient has been computed, the parameters of the

network can easily be trained via gradient descent on the error function. Since a large subset of

intrinsic gradient networks are highly recurrent and locally trainable, they constitute a substantial

step towards reconciling the power of gradient-based training in neural networks with the observed

properties of the cortex.

We derive a characteristic equation for intrinsic gradient networks, the intrinsic gradient equa-

tion (2.9), and find a large set of solutions. The intrinsic gradient equation (2.9) serves a role similar

to that of the Navier-Stokes equation in fluid dynamics, in that it is a system of nonlinear partial

differential equations that characterizes a class of relevant phenomena. Extending this metaphor,
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trying to find intrinsic gradient networks that can use the gradient to learn effectively in practice, or

that have other biological properties, is like trying to design an efficient airplane wing based upon

the Navier-Stokes equation. Both problems are of considerable interest, but of exceptional difficulty

because of the analytic intractability of nonlinear partial differential equations. To address this ob-

stacle, we focus primarily on intrinsic gradient networks with an intuitively modular structure. These

modular intrinsic gradient networks are characterized by the slack function, ~S(~a,~b) = ~T (~a)− ~T (~b),

and the class of training functions, ~T (~x) = T · ~x, with
(
T−1

)> ·T diagonal. Within this subset of

modular intrinsic gradient networks, the intrinsic gradient equation is linear in the output functions

~F . This linearity both allows us to find a large class of analytic solutions to the intrinsic gradient

equation, and ensures that the output functions ~F of these solutions can be combined to yield new,

larger solutions, including highly recurrent networks.

Since the solution we find for the intrinsic gradient equation (2.9) is a closed-form expression, it is

easy to plug values into its parameters and construct particular intrinsic gradient networks, whereas

it is difficult to find any solutions for the intrinsic gradient equation directly. In addition to showing

that recurrent backpropagation and belief propagation on acyclic factor graphs constitute intrinsic

gradient networks, we construct two novel examples of intrinsic gradient networks with dynamics

similar to hierarchical neural networks and loopy belief propagation. In contrast to recurrent back-

propagation or belief propagation on acyclic factor graphs, both of which exhibit extremely limited

recurrence, these novel instances of intrinsic gradient networks are highly recurrent, while retaining

the ability to calculate the gradient using a simple, local function of the converged network activity.

We further demonstrate that these novel intrinsic gradient networks perform sensibly on real-world

problems like handwritten digit recognition.

Finally, we address the detailed relationship between intrinsic gradient networks and the network

of cortical neurons. Intrinsic gradient networks use the necessity of simple, effective learning within

the highly recurrent cortical network to derive constraints on the computational architecture itself.

These constraints are at the algorithmic level, and so do not offer immediately testable predictions

about biophysical dynamics, but they do constitute novel and specific targets for new biophysical

models. We also derive some predictions about the network-level properties of the cortex, and show

that these are consistent with electrophysiological and psychophysical evidence in the brain. To fur-

ther establish the biological plausibility of intrinsic gradient networks, we suggest a simple mapping

from a class of intrinsic gradient networks onto the cortex, within which neurons are independently

parameterized, connections are highly recurrent and require minimal a priori specification, and

synaptic learning is pseudo-Hebbian.

Many authors have suggested frameworks within which the biophysical dynamics of the cortex

could be used to perform useful computation (reviewed in Koch, 1999). On the other hand, diverse

architectures have been developed to solve tasks like those faced by the brain (Bishop, 2006). How-
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ever, the construction of a biologically plausible computational architecture that efficiently learns to

perform difficult perceptual and motor planning tasks has remained an open problem, in large part

because the gradient-based learning methods that have proven so effective in a machine learning

context have been difficult to reconcile with the rampant recurrence of the cortex. Intrinsic gradient

networks bridge this gap, identifying a large class of highly recurrent networks in which the gradient

is a simple, local function of the converged network activity.
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Appendix A

Detailed derivations

A.1 Full derivation of the intrinsic gradient equation

The gradient of an error function defined in terms of a fixed point of a network can be calculated

using recurrent backpropagation, even when the fixed point itself is difficult or impossible to evaluate

analytically. Pineda (1987) and Almeida (1987) derived recurrent backpropagation specifically for

sigmoidal neural networks, for which the output of each unit is a function of the weighted sum of its

inputs (reviewed in Pearlmutter, 1995). Their method can be generalized to arbitrary units (Pineda,

1995). Given the definitions of section 2.1, the dynamics have a fixed point at those configurations

~x∗ at which

~x∗(~w) = ~F (~x∗(~w), ~w). (A.1)

Since ~F (~x, ~w) is dependent on the parameters ~w, the fixed points ~x∗ are also a function of the

parameters, although their dependence on the parameters is generally nontrivial.

From equation A.1, we can derive the gradient of a fixed point with respect to the network

parameters. For any parameter w′, equation A.1 together with the chain rule implies that

dx∗i (~w)
dw′ =

dFi(~x∗(~w), ~w)
dw′ =

∑
j

∂Fi(~x, ~w)
∂xj

∣∣∣∣
~x∗
·
dx∗j (~w)
dw′

+
(
∂Fi(~x, ~w)
∂w′

∣∣∣∣
~x∗

)
. (A.2)

Equation A.2 effectively defines dx∗i (~w)
dw′ as the fixed point of a recurrent update, with the right-hand

side of equation A.2 determining the new value of the left-hand side; this recurrence corresponds

to the real-time recurrent learning algorithm (Williams & Zipser, 1989; Atiya & Parlos, 2000). To

collect the coefficients of the dx∗i (~w)
dw′ terms, we define the matrix

L = �
ij

[
δij −

∂Fi(~x, ~w)
∂xj

∣∣∣∣
~x∗

]
,

where �ij indicates the matrix for which the element in row i and column j is given by the expression
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in square brackets, and δij is the Kronecker delta. Moving the first addend of the right-hand side of

equation A.2 to the left and switching to matrix notation, equation A.2 becomes

L ·�
j

[
dx∗j (~w)
dw′

]
= �

i

[
∂Fi(~x, ~w)
∂w′

∣∣∣∣
~x∗

]
, (A.3)

where �i indicates a column vector over the indicated variable, the entries of which are given by the

expression in square brackets.

The matrix L is invertible if and only if none of its eigenvalues are equal to zero. L is proportional

to the linearization of the right-hand side of equation 2.2, so if a fixed point of those dynamics is

stable, then L has real parts of all eigenvalues less than or equal to zero. However, using the dynamics

of equation 2.2, a fixed point may be neutrally stable or attracting even if the eigenvalue with the

largest real part is equal to zero, in which case L is not invertible. The stability of the dynamics of

equation 2.2 thus does not necessarily imply that L is invertible, although it is strongly suggestive.

Moreover, entirely different dynamics might be used so long as the fixed points match those of ~F (~x).

Regardless, we will assume for the moment that L is invertible at the fixed points to motivate the

following derivation. At the end of this section, we will demonstrate that the conclusion of the

derivation remains correct even when L is singular.

Left-multiplying both sides of equation A.3 by the inverse of L, we can solve for the derivatives

of the fixed point:

�
j

[
dx∗j (~w)
dw′

]
= L−1 ·�

i

[
∂Fi(~x, ~w)
∂w′

∣∣∣∣
~x∗

]
.

Thus, L−1 can be understood as the matrix which tells us how the fixed point will react to a small

change in w′, in terms of how just a single iteration of ~F would react. For any error function E(~x, ~w)

and internal parameter w′ such that E(~x, ~w) does not depend directly on w′, when evaluated at the

fixed point, the chain rule in conjunction with the equations above yields

dE(~x∗(~w))
dw′ =

∑
j

∂E(~x)
∂xj

∣∣∣∣
~x∗
·
d~x∗j (~w)
dw′ = �

j

[
∂E(~x)
∂xj

]>
· L−1 ·�

i

[
∂Fi(~x, ~w)
∂w′

]
. (A.4)

On the right-hand side, and in the following through the end of this section, all partial derivatives

are evaluated at the fixed point.

The difficult computation required in equation A.4 is the inversion of L. The asymptotically

fastest known matrix inversion algorithms have time complexity O(n2.376) for an n × n matrix

(Coppersmith & Winograd, 1990). The number of rows and columns in L is equal to number of

units xi, and may be as large as 1010 in the human cortex if each unit is implemented by a single

neuron (Koch, 1999), so the explicit inversion of L is likely to be extremely time-consuming. In

addition to the computational difficulty of inverting L, we wish to calculate the gradient of the error

function dE
d~w using only the intrinsic signals ~x in the network. However, there may be many more
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parameters wi than units in the network, so the gradient dE
d~w may have many more components than

there are signals to calculate it.

We thus split equation A.4 into two parts: one which effectively inverts L using only a small

number of signals, and a second which uses this computation to calculate dE
d~w locally. Specifically,

we define a vector ~T (~x∗, ~w) to encapsulate part of the right-hand side:

~T>(~x∗, ~w) = �
j

[
∂E(~x)
∂xj

]>
· L−1 , (A.5)

where ~T>(~x∗, ~w) and �j

[
∂E(x)
∂xj

]>
are row vectors, and equation A.5 only defines ~T at the fixed

points ~x∗ of ~F . As we shall see below, this ~T can be calculated at the fixed points of ~F via a method

roughly equivalent to backpropagation-through-time (Rumelhart et al., 1986). Using the definition

of ~T from equation A.5, equation A.4 becomes

dE(~x∗(w))
dw′ = ~T>(~x∗, ~w) ·�

i

[
∂Fi(~x, ~w)
∂w′

∣∣∣∣
~x∗

]
. (A.6)

Since ~T (~x∗, ~w) performs the difficult part of the calculation of the gradient which is used to train

the parameters, we refer to it as the training function. As with ~F (~x), we sometimes write ~T (~x) and

omit explicit mention of the dependence on the parameters to avoid excessively cluttered notation.

The calculation of the training function ~T specified by equation A.5 requires the inversion of L,

which is an extremely complicated and non-local computation for most matrices L. In contrast, we

want ~T to be computable in a simple way with a small set of local signals. L is defined in terms of

~F , so we might hope that by choosing ~F carefully, we would be able to make the calculation of ~T

simple and local. More specifically, we would like to be able to solve for ~F given ~T , so that we can

specify a simple form for ~T and then infer what ~F are compatible with that ~T . As the first step

towards this goal, we write equation A.5 in terms of ~F ; we right-multiply by L, apply the definition

of L, consider just the jth element on each side, and rearrange to find:

~T>(~x∗, ~w) · L = �
j

[
∂E(~x)
∂xj

]>
~T>(~x∗, ~w) ·�

i,j

[
δij −

∂Fi(~x, ~w)
∂xj

]
= �

j

[
∂E(~x)
∂xj

]>
Tj(~x∗, ~w)−

∑
i

∂Fi(~x, ~w)
∂xj

· Ti(~x∗, ~w) =
∂E(~x)
∂xj

Tj(~x∗, ~w) =
∂E(~x)
∂xj

+
∑
i

∂Fi(~x)
∂xj

· Ti(~x∗, ~w) . (A.7)

Equation A.7 is superficially very similar to equation A.2, with Ti playing the role of dx
∗
j (~w)

dw′ , but the

index of ~T on the right-hand side of equation A.7 matches the numerator of the partial derivative,
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whereas the index of dx∗j (~w)

dw′ on the right-hand side of equation A.2 matches the denominator of the

partial derivative. We obtain equation 2.8 by writing equation A.7 in matrix notation.

As a result of our prescient decomposition of equation A.4 into two parts, the elements of ~T

can be put into bijection with those of ~x, whereas there are potentially many more parameters

than output functions. Other decompositions are also possible. For instance, we might attempt to

compute �j

[
d~x∗j (~w)

dw′

]
= L−1 ·�i

[
∂Fi(~x)
∂w′

]
directly. However, �j

[
d~x∗j (~w)

dw′

]
is different for each w′, so

it is difficult to use ~x to calculate these terms for all w′. Real-time recurrent learning, which uses

this decomposition, must generally be run for each parameter separately (Williams & Zipser, 1989;

Atiya & Parlos, 2000).

Even if L is not invertible, equation A.7 is equivalent to backpropagation-through-time on the

error function E(~x), subject to the condition ~F (~x∗) = ~x∗ (Rumelhart et al., 1986). That is, if

equation A.7 is viewed as a dynamic update, with the right-hand side at time t determining the

value of the left-hand side at time t + 1, it manifests an unrolling of the chain rule applied to the

gradient of the error function. Since x∗ is a fixed point, equations A.6 and A.7 compute the gradient

of the error function, regardless of the invertibility of L.

A.1.1 Necessity condition

We generally assume a particular form for the training function ~T , and derive compatible output

functions ~F . This approach will only be successful if simple functions ~T (~x, ~w) exist which can be

used to calculate the gradient of an error function at the fixed point of the dynamics. Fortunately,

simple and efficiently computable ~T satisfying equation A.5 must exist so long as the gradient of

the error function is simply and efficiently computable, and ~F can be divided into independently

parameterized groups. We can rewrite equation A.4 as a single matrix equation over all parameters:

(
�
k

[
dE(~x∗(~w))

dwk

])>
=

�
k

∑
j

∂E(~x)
∂xj

·
d~x∗j (~w)
dwk

>

= �
j

[
∂E(~x)
∂xj

]>
· L−1 ·�

ik

[
∂Fi(~x, ~w)
∂wk

]
.

Applying the definition of ~T from equation A.5, we then find

(
�
k

[
dE(~x∗(w))

dwk

])>
= ~T>(~x∗, ~w) ·�

ik

[
∂Fi(~x, ~w)
∂wk

]
(
�
k

[
dE(~x∗(w))

dwk

])>
·
(
�
ik

[
∂Fi(~x, ~w)
∂wk

])+

= ~T>(~x∗, ~w) ·�
ik

[
∂Fi(~x, ~w)
∂wk

]
·
(
�
ik

[
∂Fi(~x, ~w)
∂wk

])+

= ~T>(~x∗, ~w)
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where N+ is the Moore-Penrose pseudoinverse of matrix N, and the last equation follows so long

as the rows of �ik

[
∂Fi(~x,~w)
∂wk

]
are linearly independent (or, equivalently, the columns span the full

n-dimensional Euclidean space, where n is the number of units), which should generally be the

case assuming that there are more parameters wk than output functions Fi. Moreover, if ~F can

be partitioned into groups defined in terms of disjoint groups of parameters, then the units and

parameters can be ordered such that �ik

[
∂Fi(~x,~w)
∂wk

]
is block diagonal, as is its pseudoinverse. Each

element of the pseudoinverse only depends upon members of the same block, so if the gradient of

the error function is simply and efficiently computable at the fixed points of the dynamics, then ~T is

the weighted sum of a small number of these simple, efficient computations. That is, a ~T satisfying

equations A.6 and A.7 can necessarily be calculated by a simple, efficient function if dE
d~w can be.

A.1.2 Alternative derivation based on Lagrange multipliers

We can also derive the intrinsic gradient equation (2.9) using an approach analogous to that of

LeCun (1988). Consider the Hamiltonian

H(~x, ~w, ~B) = E(~x) + ~B · (~F (~x, ~w)− ~x) .

At the fixed point, ~F (~x, ~w) − ~x = 0, so H(~x, ~w, ~B) = E(~x) regardless of the particular values of ~w

and ~B. We restrict our attention to such fixed points, which we previously identified as the outputs

of the network. That is, we assume that ~x is a function of ~w, such that ~F (~x, ~w) = ~x. We refrain

from explicitly writing ~x(~w) to avoid overly cluttered notation. At such ~x, dE
d~w = dH

d~w , and we can

calculate the gradient using the Hamiltonian.

We’ve gone through the trouble of introducing the Hamiltonian since, by properly choosing the

Lagrange multipliers ~B, we can ensure that dH
d~w and thus dE

d~w are analytically simple. By the chain

rule,

dH(~x, ~w, ~B)
d~w

=
∂H

∂~x
· d~x
d~w

+
∂H

∂ ~w
· d~w
d~w

+
∂H

∂ ~B
· d
~B

d~w

=
∂H

∂~x
· d~x
d~w

+
∂H

∂ ~w
,

where the second line follows because d~w
d~w = I and because ∂H

∂ ~B
= ~F (~x, ~w)− ~x = 0 (since ~x is always

chosen to be a fixed point of ~F (~x, ~w) given ~w). We will choose the Lagrange multipliers ~B so that
∂H
∂~x = 0 when ~F (~x) = ~x, in which case

dE

d~w
=
dH(~x, ~w, ~B)

d~w
=
∂H

∂ ~w
= ~B · ∂

~F

∂ ~w

so long as we restrict the gradient to the internal parameters w′ for which ∂E
∂w′ = 0. The compu-
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tationally nontrivial component of the gradient of the error function is thus encapsulated in the

Lagrange multipliers ~B. The requirement that ∂H
∂~x = 0 when ~F (~x) = ~x implies that

0 =
∂E(~x)
∂xi

+

∑
j

Bj ·
∂Fj
∂xi

−Bi (A.8)

for each i, at ~x such that ~F (~x) = ~x. Rearranging and coalescing the instances of equation A.8 using

matrix notation, we find

~B =
∂E(~x)
∂~x

+
(
∇~F>

)
· ~B (A.9)

at the fixed points of ~F . If we further require that ~T (~x∗, ~w) = ~B, then equation A.9 is equivalent to

equations A.7 and 2.8.

A.1.3 Intrinsic gradient networks calculate approximate gradients at ap-

proximate fixed points

In practical circumstances, such as in a neural implementation, it may not be possible to identify

the exact fixed points of ~F . For instance, using fixed point iteration or an algorithm that locally

minimizes that magnitude of ~F (~x) − ~x, it may only be possible to find ~x such that ~F (~x, ~w) ≈ ~x.

Such ~x may in fact be far from a true fixed point x∗, for which ~F (x∗, ~w) = ~x∗. Fortunately, we can

extend the derivation of appendix A.1.2 to show that, when the intrinsic gradient equation (2.9) is

satisfied with an appropriate slack function, the training function ~T approximately calculates the

gradient when the network state ~x approximates a fixed point, even if it is not near a true fixed

point.

Consider the Hamiltonian

H(~x, ~w, ~B) = E(~x) + ~B ·
(
~F (~x, ~w)− ~x+ ~N(~w)

)
where ~x is a function of ~w such that ~F (~x(~w), ~w) ≈ ~x(~w). Defining ~x as a function of ~w simply

formalizes the fact that the network consistently finds an approximate fixed point as the parameters

are changed. That is, it identifies the trajectory of the approximate fixed points as the parameters

evolve. The particular function ~x(~w) may vary depending upon the details of the network dynamics,

and may even be a function of other external parameters. We generally refrain from writing ~x(~w) to

avoid overly cluttered notation. The function ~N(~w) offsets the error in the calculation of the fixed

point; it is defined so that ~F (~x, ~w)− ~x+ ~N(~w) = 0 when ~x is chosen according to its function of ~w.

Since ~F (~x, ~w) ≈ ~x, ~N(~w) ≈ 0. ~N is naturally a function of ~w since ~x is a function of ~w.

We wish to calculate dE
d~w under these circumstances where the network consistently comes close

to satisfying the fixed point condition. Since ~N(~w) is constructed so that ~F (~x, ~w)−~x+ ~N(~w) = 0 at
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the ~x of interest, H(~x, ~w, ~B) = E(~x) and dE
d~w = dH

d~w at the ~x of interest, regardless of the particular

values of ~w and ~B. By the chain rule

dH(~x, ~w, ~B)
d~w

=
∂H

∂~x
· d~x
d~w

+
∂H

∂ ~w
· d~w
d~w

+
∂H

∂ ~B
· d
~B

d~w

=
∂H

∂~x
· d~x
d~w

+
∂H

∂ ~w
,

where the second line follows because d~w
d~w = I and because ∂H

∂ ~B
= ~F (~x, ~w) − ~x + ~N(~w) = 0 (since

~N(~w) is always chosen to offset the error of the fixed point). Proceeding as in appendix A.1.2, we

find

∂H

∂xi
=
∂E(~x)
∂xi

+

∑
j

Bj ·
∂Fj(~x, ~w)

∂xi

−Bi +

∑
j

Bj ·
∂Nj(~w)
∂xi


=
∂E(~x)
∂xi

+

∑
j

Bj ·
∂Fj
∂xi

−Bi ,

where the second line follows because ~N(~w) is only a function of ~w, rather than ~x.

The intrinsic gradient equation requires that

~T (~x) = ~S(~x, ~F (~x)) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x) .

Thus, if we choose ~B = ~T (~x) (as we are free to do, since ~B is an arbitrary parameter which we

introduced for our convenience) we find

∂H

∂xi
= −~S(~x, ~F (~x)) .

By definition, ~S(~a,~b) = 0 if ~a = ~b, and using a slack function like ~S(~a,~b) = ~T (~a)− ~T (~b), ~S(~a,~b) ≈ 0

when ~a ≈ ~b, so long as ~T has small derivatives. Thus, assuming that ~F (~x) ≈ ~x, we find that ∂H
∂xi

≈ 0.

As a result,

dE

d~w
=
dH(~x, ~w, ~B)

d~w
=
∂H

∂~x
· d~x
d~w

+
∂H

∂ ~w

=
∂H

∂~x
· d~x
d~w

+ ~B · ∂
~F (~x, ~w)
∂ ~w

+ ~B · ∂
~N

∂ ~w

= −~S(~x, ~F (~x)) · d~x
d~w

+ ~T (~x) · ∂
~F

∂ ~w
+ ~T (~x) · ∂

~N

∂ ~w

≈ ~T (~x) · ∂
~F

∂ ~w
(A.10)

when ~F (~x) ≈ ~x, d~x
d~w and ~T (~x) are bounded, and ∂ ~N

∂ ~w ≈ 0. Since ~N(~w) = ~x(~w) − ~F (~x(~w)), the
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restriction that ∂ ~N
∂ ~w ≈ 0 basically implies that the error of the approximate fixed point must change

gradually as the parameters are varied. It constitutes a restriction on the type of approximate fixed

points at which the training function ~T (~x) is a good approximation of the gradient in an intrinsic

gradient network. Intuitively, if ~x − ~F (~x) varies quickly as ~w is changed, then the restriction that

~F (~x, ~w) ≈ ~x does not capture most of the local variation of ~x as a function of ~w. It is then not

surprising that an algorithm based upon the gradient of the points where ~F (~x, ~w) = ~x does not yield

a good approximation to the gradient of ~x(~w).

A.1.4 Approximate output functions and training functions

We can also evaluate the effect of incorrect ~T or ~F using the Hamiltonian formulation. Rather

than or in addition to assuming that ~F (~x) ≈ x along the trajectory ~x(~w), assume that the intrinsic

gradient equation (2.9) is only approximately satisfied. That is,

~T (~F (~x)) = ~S′(~x, ~F (~x)) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x)

where ~S′(~x, ~F (~x)) ≈ 0 when ~x = ~F (~x). The derivation of equation A.10 still applies, with ~N(~w) = 0

if the exact fixed points can be found. The error in the calculation of dEd~w using the training function,

−~S(~x, ~F (~x)) · d~xd~w , is a function of quantities that can be measured based upon the actual operation

of the network: specifically, the degree to which equation A.7 is not satisfied at the fixed point and

the rate of change of the fixed point in response to a small change in the parameters.

A.2 Modular intrinsic gradient networks

The fixed point equation ~F (~x∗) = ~x∗ defines a subspace of Rn over which the intrinsic trainability

constraint

~T (~x∗) = ∇E(~x)|x∗ +
(
∇~F>(~x)

∣∣∣
x∗

)
· ~T (~x∗) (A.11)

must hold (copied for convenience from equation 2.8). However, the subspace where ~F (~x∗) = ~x∗

is difficult to identify in general. In sections 2.1 and 2.2, we avoid the necessity of identifying the

subspace where ~F (~x∗) = ~x∗ by instead explicitly specifying the deviation of equation A.11 from

equality as a function of ~x and ~F (~x), using the slack function ~S(~x, ~F (~x)). Since we require that

~S(~x, ~F (~x)) = 0 when ~F (~x) = ~x, the constraint of equation A.11 holds for x∗ such that ~F (~x∗) = ~x∗,

but need not hold for other ~x ∈ Rn. Unfortunately, we have little direct intuition for how the slack

function should be chosen for ~x such that ~F (~x) 6= ~x.

Naively, we might think that we can avoid choosing a slack function by extending the intrinsic

trainability constraint of equation A.11 to all values of ~x ∈ Rn. If the intrinsic trainability constraint

holds for all ~x ∈ Rn, it certainly holds on the subspace where ~F (~x∗) = ~x∗. However, such an extension
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is equivalent to choosing the slack function ~S(~a,~b) = 0 in the intrinsic gradient equation (2.9), which

we consider in appendix A.3.2.

On the other hand, we must also be careful to avoid enforcing equation A.11 over too small a

subspace of ~x. The output functions ~F are parameterized by ~w, which includes the inputs to the

network in the form of the input parameters, as well as the internal parameters which must be

trained by the learning algorithm. We want to be able to calculate the gradient of the error function

for all possible values of the inputs and the internal parameters. We thus need equation A.11 to hold

on the subspace of ~x for which ~F (~x, ~w) = ~x for any possible value of ~w. Otherwise, either training

the internal parameters or changing the inputs could disrupt our ability to continue training.

The prospect of considering a large set of parameters ~w might initially appear to complicate the

problem. However, further consideration of equation A.11 will show that the resulting restrictions

on ~F (~x) can have a modular structure, with independent subsets of equation A.11 defined on disjoint

sets of units. Given a few simple restrictions on ~T and the parameterization of ~F (~x, ~w), the extension

to a large set of ~w will in fact simplify the structure of the space of ~x where ~F (~x, ~w) = ~x for some

~w, and thus where equation A.11 must hold. The resulting modular structure of equation A.11 will

allow us to break this large, unmanageable equation into a set of smaller, simpler equations, which

can be solved separately.

A.2.1 Definition of modules

We define a module to be a group of units for which the restriction imposed on the constituent pa-

rameters by equation A.11 is independent of parameters or units outside of the module. Parameters

of units within a module may be linked, but changing the parameters of a unit in one module does

not affect the allowable parameters of the units in any other module. We further require that the

inputs to a module be disjoint from both the outputs of the module (i.e., the units in the module),

and the inputs to all other modules. If unit xi is in a module, then for all j such that unit xj is also

in that module, Fj(~x) does not depend on xi. Each unit projects to at most one module. Finally,

we assume that the connections of ~T (~x) are a subset of the bidirectional connections of ~F (~x). That

is, we assume that Ti(~x) can only depend on xj such that Fi(~x) is a function of xj and Fj(~x) is a

function of xi. Intuitively, this implies that a unit can only calculate the gradient for some other

unit if the two units communicate with each other.

In a traditional feedforward neural network (ignoring any backpropagation signals), a single unit

is basically a module, since the inputs of each such unit are disjoint from its outputs, and the

parameters of each unit can be chosen independently of every other unit (although the inputs to

each unit are not disjoint). Modules in intrinsic gradient networks, such as the composite nodes

of section 3.2, are necessarily larger, since they must facilitate the computation of the gradient

in addition to the feedforward computation. For instance, when the backpropagation signals are
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included with a traditional neural network to form an intrinsic gradient network, as in section 3.1.2,

all the linear transformations between a pair of adjacent layers (including both feedforward and

backpropagation signals) together constitute a module.

Signal fan-out between modules is performed explicitly by multiple units in a module, rather than

implicitly by allowing a single unit to influence output functions of multiple modules. In section 3.2,

composite factor nodes, and both atomic and composite variable nodes, can be understood as mod-

ules. In contrast, the atomic factor nodes of section 3.2 are not modules, since a single variable node

unit projects to multiple atomic factor node units.

Since the units in a module are disjoint from their inputs, the outputs of a module at a fixed

point can be calculated quickly and analytically given the inputs to the module. Moreover, since

the parameters within a module are only constrained relative to each other, it is possible to choose

the parameters of a module independently of the parameters of all other modules. We can generally

generate all possible inputs to any given module by varying the independent parameters of other

modules (in particular, the input parameters), so each module must satisfy equation A.11 for all

possible inputs. In section A.2.3, we will show that this implies that modular intrinsic gradient

network have the slack function ~S(~a,~b) = ~T (~a)− ~T (~b). First, though, we must characterize modular

intrinsic gradient networks.

In general, equation A.11 defines all units in terms of each other, so that changing the parameters

of one unit can force a complementary change in the parameters of all other units. Our definition

of modules as being independently parameterized with disjoint inputs implies a corresponding in-

dependence in equation A.11. Specifically, equation A.11 must break into disjoint components

corresponding to the modules. This is difficult to see directly from equation A.11; however, since

we are only interested in equation A.11 at ~x∗ for which ~F (~x∗) = ~x∗, we are free to transform the

point at which equation A.11 is applied according to ~x∗ → ~F (~x∗). This leaves all elements of the

desired subspace unchanged. Moreover, this transformation can be applied to only a subset of the

instances of the term ~x∗ in equation A.11 without altering the constraint in the subspace within

which ~F (~x∗) = ~x∗. Applying one such substitution on the left-hand side of equation A.11, we obtain

~T (~F (~x∗)) = ∇E(~x)|x∗ +
(
∇~F>(~x)

∣∣∣
x∗

)
· ~T (~x∗) , (A.12)

which would be equivalent to the intrinsic gradient equation (2.9) with our favored slack function

~S(~a,~b) = ~T (~a)− ~T (~b), were we to enforce equation A.12 for all ~x ∈ Rn, rather than just those

~x∗ for which ~F (~x∗) = ~x∗. Equation A.12 will prove to be a natural characterization of modular

intrinsic gradient networks. The independence of the modules will be manifested in the independence

of groups of rows of equation A.12. In section A.2.3, we will use this independence to extend

equation A.12 to all ~x within each such group, proving that the slack function must be ~S(~a,~b) =
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~T (~a)− ~T (~b).

A.2.2 The restrictions of connection topology on modularity

The ability to break equation A.12 into disjoint components can be analyzed by considering the

arguments on which each row is defined. The rows can be partitioned into groups with disjoint

domains only if they implement independent constraints over units with disjoint arguments; that

is, if the partitions correspond to distinct modules. We abstract the identity of the arguments from

the rest of the computation by considering vectors of functions ~F and ~T that capture the mapping

of inputs to outputs performed by ~F and ~T . The function Fi maps from a vector of sets to a set,

with output equal to the union of the input elements with indices matching the arguments of Fi(~x);

Fi(~X) = ∪j∈arg(Fi)Xj . For instance, if Fi(~x) = x2/3
a ·x2/3

b

x
1/3
c

, then the indices of the arguments of Fi(~x)

are a, b, and c, so Fi(~X) = Xa ∪Xb ∪Xc. The function F−1
i is not a true inverse, but rather captures

the mapping of inputs to outputs performed by ~F−1. It maps from a vector of sets to a set, with

output equal to the union of the input elements with indices matching functions Fj(~x) with xi as

an argument; F−1
i (~X) = ∪j|xi∈arg(Fj)Xj , and it is defined in this manner even if ~F (~x) is not actually

invertible. Similarly, Ti is a function from a vector of sets to a sets, with output equal to the union

of the input elements matching the arguments of Ti(~x). We further define ~Xx to be a vector of sets,

with Xxi = {xi}.

We can use these set-theoretic tools to construct an abstraction of equation A.12 where each

entry of the resulting vector equation contains the arguments of the corresponding entry in equa-

tion A.12. A module will then corresponds to a group of rows in this vector equation, such that the

union of the contents of the rows is disjoint from the union of the contents of the rows of all other

modules. Modules identified in this manner have independent parameterizations and disjoint do-

mains, consistent with our definition. We will further show that the indices of the rows constituting

a module correspond to its elements (outputs), so the union of the contents of the rows of a module

is also disjoint from the indices of the rows in the group, since the outputs of a module are disjoint

from the inputs. For simplicity, we assume that the internal structure of the network is independent

of the inputs; that is, we assume that the solutions to the intrinsic gradient equation (2.9) can be

split into a homogeneous part with ∇E(~x) = 0 that is independent of inhomogeneous part which

accounts for the chosen error function. Consequently, we only address the homogeneous part of the

equation below, and set ∇E(~x) = 0.

The arguments of each row of the right-hand side of equation A.11 are a subset (not necessarily

proper) of

~F−1(~F(~Xx)) ∪ ~F−1(~T(~Xx)) . (A.13)

As mentioned above, the function ~F−1(X) is not a true inverse; it maps from the outputs to the
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inputs of ~F , rather than from the inputs to the outputs. The first component of expression A.13,

~F−1(~F(~Xx)), reflects the fact that the non-zero terms of the ith row of ∇~F>(~x) (and thus the ar-

guments of row i of equation A.11) include all units that are inputs to an Fj(~x) that has xi as an

input. The second term of expression A.13, ~F−1(~T(~Xx)), reflects the fact that the arguments of row i

of equation A.11 also include all arguments of Tj(~x) for j such that xi is an input to Fj(~x), corre-

sponding to filtering ~T (~x) through the non-zero elements of the ith row of ∇~F>(~x). Our assumption

about ~T implies that ~T(~Xx) ⊂ ~F(~Xx) ∩ ~F−1(~Xx), so the second term of expression A.13 is a subset

of the first, and expression A.13 is equal to ~F−1(~F(~Xx)). Modules have disjoint inputs, so all of the

units that have xi as an input, F−1
i (~Xx), must be in a single module. Since row i of expression A.13

is equal to ~F−1(~F(~Xx)), the arguments of row i on the right-hand side of equation A.11 only contain

inputs to the module for which xi is an input.

The arguments of each row of the left-hand side of equation A.11 are clearly ~T(~Xx). Since we

assume that ~T(~Xx) ⊂ ~F(~Xx) ∩ ~F−1(~Xx) and that modules have disjoint inputs, the left-hand side of

equation A.11 is only dependent upon the outputs of (i.e., units that are elements of) the module

for which xi is an input. We’ve assumed that modules function at any fixed point, regardless of their

input. Consequently, if we transform the left-hand side of equation A.11 using ~F (~x) so the module

outputs match their inputs, each row of equation A.11 must be satisfied for all (module inputs) ~x.

That is, modular intrinsic gradient networks must satisfy equation A.12 for all ~x.

Considering equation A.12 directly, our assumption that the training function ~T is a subset of

the bidirectional connections of the output functions ~F implies that a module only contributes to

the rows of equation A.12 corresponding to its inputs (arguments), that these rows of equation A.12

are determined only by that single module, and that the only units present in the final equations

of these rows are the inputs (arguments) of the module defining the rows. On the left-hand side, ~T

maps the output functions Fi of a module to the rows corresponding to its input units xj . Because

each unit only projects to a single module, no other modules map to these rows. On the right-hand

side, Fi only contributes to rows of the transposed Jacobian corresponding to its input units xj , and

rows of the transposed Jacobian corresponding to the inputs of a module only have non-zero entries

in columns corresponding to the elements of the module. The training function ~T maps from the

inputs (arguments) of a module to its elements, so when we take the inner product of the transposed

Jacobian and ~T (~x∗), only the inputs (arguments) of a module in the right-most ~x∗ align with the

non-zero columns within a row of the transposed Jacobian induced by that module.
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A.2.3 Modular intrinsic gradient networks have the slack function ~S(~a,~b) =

~T (~a)− ~T (~b)

Given the existence of the modules with independent inputs and disjoint outputs identified above,

the space ~F (~x) = ~x takes a very simple form. Restricting our attention to a single module (as is

sufficient for equation A.12 because the modules correspond to independent sets of rows), ~F (~x) = ~x

holds exactly when the outputs of the module are set by ~F (~x) for every valid set of inputs. If we

make the rather modest assumption that all inputs are possible for a module (at some fixed point

of the network) given each configuration of the parameters directly governing the module, then

equation A.12 over ~F (~x) must hold for all configurations ~x of the inputs to the module (and for

each configuration of the parameters directly governing the input-output mapping of the module).

The assumption that all inputs to a module are possible with some parameterization of the other

modules follows directly if we require that a module satisfy the intrinsic trainability constraint

(equation A.11) for multiple network topologies (i.e., multiple arrangements of modules) as well as

multiple parameter settings for those network topologies. If all inputs to a module are controlled

directly by input parameters (e.g., with a linear error function, as in section 2.4), then any possible

input configuration to the module can be made to satisfy ~F (~x) = ~x simply by choosing the input

parameters appropriately.

Since all dependencies between the output functions of a single module are contained within the

module, and the fixed point condition can reasonably be extended to all inputs to the module, we

can solve for the output functions of each module independently without choosing a slack function.

The slack function was only necessary to deal with the cases where ~F (~x) 6= ~x. All of the elements

xi of ~x that influence the rows of equation A.12 corresponding to the inputs to a module, are

themselves inputs to the module, which can generally be set arbitrarily, independent of the outputs.

The fixed point is thus satisfied for each input configuration by appropriately choosing the values

of an independent set of output units xj so that they match the values of the associated output

functions Fj . As a result, equation A.12 can be extended to

~T (~F (~x)) = ∇E(~x)|x +
(
∇~F>(~x)

∣∣∣
x

)
· ~T (~x) (A.14)

for all ~x, which is identical to equation 2.13 and thus corresponds to our favored slack function,

~S(~a,~b) = ~T (~a)− ~T (~b).

Interestingly, other slack functions seem to be able to yield different sets of output functions

for which the homogeneous solutions have a similar structure, such as the example described in

appendix A.3.3. In that case, the full value of each unit is split between the homogeneous and the

inhomogeneous solution. Nevertheless, the inhomogeneous solutions seem unlikely to cancel out the

homogeneous solutions to recover the result of equation A.14. It seems plausible that most inputs to
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each module do not correspond to a fixed point, in which case the arguments of this section do not

apply. That is, the assumption that all inputs to a module are possible fixed points seems to force

the choice of the slack function. If a different slack function is imposed, this implicitly determines a

sparser set of possible inputs at the fixed points.

Viewed in another way, the output functions consistent with different slack functions may not

break into independent modules, as we have assumed in this section. For instance, as discussed in

appendix A.8, belief propagation does not correspond to the slack function ~S(~a,~b) = ~T (~a) − ~T (~b).

While the factor and variable nodes of belief propagation might initially seem to constitute inde-

pendent modules, the connections between the nodes are severely restricted: no loops are permitted

within the topology. The factor and variable nodes of belief propagation are thus not independent

modules, since the modules cannot be combined arbitrarily.

A.2.4 Modular intrinsic gradient networks with linear parameterizations

have linear training functions

Consider the case where each module is fully linearly parameterized, so that all outputs are possible

by adjusting the inputs and parameters, and the effects of the parameters combine linearly. In

particular, if ~F (~x, ~w) and ~F (~x, ~w′) are both acceptable output functions for the module (i.e., solutions

to equation A.11), then α · ~F (~x, ~w) and ~F (~x, ~w)+ ~F (~x, ~w′) must also be acceptable output functions

for the module (for all real α), although they need not be produced by the parameters α · ~w or

~w + ~w′, respectively. For instance, we could use ~F (~x, ~w) = ~N>(~w) · ~F ′(~x), where ~N(~w) is an

invertible function of ~w. No basis output ~F (~x) is rendered inadmissible by the linearity requirement,

and in this sense the linear parameterization does not directly constrain ~F (~x, ~w) as a function of the

units ~x, but given some ~F (~x, ~w), other ~F (~x, ~w′) can be inferred.

We will show that if an intrinsic gradient network is modular and fully linearly parameterized,

then the training function ~T must be linear. Consider two solutions to the homogeneous part of

equation A.12 with different parameters, F (~x, ~w) and F (~x′, ~w′), restricted to the rows of the resulting

vector equation corresponding to the inputs to the selected module, such that ~x and ~x′ are both

fixed points of their respective output functions but identical on the inputs to a given module. By

assumption, we can focus on just the homogeneous part of the equation now and deal with the

inhomogeneous solution later.1 When we add the two corresponding instances of equation A.12

(restricted to the rows of the vector equation corresponding to the inputs to the selected module),

we obtain

~T (F (~x, ~w)) + ~T (F (~x, ~w′)) =
[
∇ (F (~x, ~w) + F (~x, ~w′))>

]
· ~T (~x) , (A.15)

1Since we will find that ~T is linear, an inhomogeneous solution can be additively composed with any linear
combination of homogeneous solutions.
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since the inputs ~x are the same for both instances. If F (~x, ~w) +F (~x, ~w′) is also a solution (for some

choice of the parameters) when restricted to these rows, then

~T (F (~x, ~w) + F (~x, ~w′)) =
[
∇ (F (~x, ~w) + F (~x, ~w′))>

]
· ~T (~x) (A.16)

results from equation A.12, and

~T (F (~x, ~w) + F (~x, ~w′)) = ~T (F (~x, ~w)) + ~T (F (~x, ~w′))

because the right-hand sides of equations A.15 and A.16 are identical. By virtue of the assumption

that the outputs of a module can take on any value, ~T must be linear for the selected rows. We

can repeat the process for all modules, to prove that ~T is linear for all rows. Interestingly, the

linearity of ~T seems to be induced by the presence of the transposed Jacobian on the right-hand

side of the intrinsic gradient equation (2.9), and thus the requirement that the network calculate its

own gradient. Without the transposed Jacobian, there would be no reason for the parameterization

of the output functions to have any implications for the training function.

From a biological perspective, simple training functions ~T (~x) of this form are of particular in-

terest, since they imply that almost all of the work of computing the gradient is performed by the

network itself as it finds a fixed point of the output functions ~F (~x). The machinery required to

train the parameters based upon the network state, in contrast, is extremely simple, consistent with

the synaptic update mechanisms observed in the cortex (Malenka & Bear, 2004), as discussed in

section 4.3.

A.2.5 Alternative definitions of the output state

The same constraints as equation A.11 and A.12 result if the output is calculated when ~F (~x) = c ·~x

for any c ∈ R, c 6= 0. A different font is used to indicate that while ~F is also a vector of output

functions, it differs from the functions ~F discussed in the rest of this thesis in that the subspace

within which the output and thus the gradient is calculated is defined by a different equation. An

equivalent derivation to that in appendix A.1 yields the constraint

c · ~T (~x∗) = ∇E(~x)|x∗ +
(
∇ ~F>(~x)

∣∣∣
x∗

)
· ~T (~x∗) (A.17)

for x∗ such that ~F (~x∗) = c · ~x∗. Transforming the instance of ~x∗ on the left-hand side of equa-

tion A.17, just as in equation A.12, we obtain

c · ~T
(

1
c
· ~F (~x∗)

)
= ∇E(~x)|x∗ +

(
∇ ~F>(~x)

∣∣∣
x∗

)
· ~T (~x∗) ,
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which is identical to equation A.12 so long as ~T (~x) is linear in ~x. Alternatively, we can introduce a

slack function ~S(c · ~x,F (~x)). By choosing the standard slack function ~S(c · ~x,F (~x)) = ~T (c · ~x) −
~T (F (~x)), we also obtain the original intrinsic gradient equation, so long as ~T (~x) is linear.

Given a vector of output functions ~F which satisfy equation A.17 when ~F (~x) = c · ~x, we can

construct a homologous vector of output functions ~F which satisfy equation A.11 when ~F (x) = ~x by

defining ~F (~x) = ~F (~x)+(1−c) ·~x. The fixed points at which ~F (~x) = x and an output is produced are

not those where ~F (~x) = ~x, but rather where ~F (~x) = c ·~x. Examination of the homogeneous part of

equation A.12 reveals that, so long as ~T is linear, c · ~x is a solution for ~F (~x) (since ∇(c · ~x)> = c · I).

This accounts for the difference between the solutions derived using ~F (~x) = c·~x with different values

of c. If ~T is linear, any solution for F (~x) is also a solution for ~F (~x) and vice versa, since they only

differ by a multiple of ~x, which can freely be added to any solution. Interestingly, if D = I, then it

can further be seen by examination of equation 2.13 that c · ~x is a solution for ~G(~x) for all c ∈ R.

A.3 A menagerie of slack functions

In this appendix, we consider three possible slack functions ~S in more detail. These three slack

functions yield different sets of output functions ~F . Unfortunately, it does not seem as if output

functions corresponding to different slack functions can be combined into a single intrinsic gradient

network. If the output functions are divisible into disjoint modules, each module could in principle

have a different slack function. However, as we saw in appendix A.2, such modular intrinsic gradient

networks necessarily have the slack function ~S(~a,~b) = ~T (~a)− ~T (~b).

A.3.1 Slack function example 1: ~S(~a,~b) = ~T (~a)− ~T (~b)

In section 2.2, we examined the slack function ~S(~a,~b) = ~T (~a) − ~T (~b), and combined it with the

intrinsic gradient equation (2.9) to derive equation 2.10. We can show that if equation 2.10 holds,

then the dynamics ~x(t+ 1) = ~F (~x(t)) of equation 2.1 are qualitatively similar to backpropagation-

through-time (Rumelhart et al., 1986). Backpropagation-through-time computes the gradient of an

error function defined over all time on a discrete-time non-equilibrium recurrent neural network by

spatially unrolling the network activity over time into a hierarchical feedforward network, and then

performing backpropagation on the unrolled feedforward network. Specifically, for a discrete-time

recurrent network with the dynamics ~x(t+ 1) = ~F (~x(t)), backpropagation-through-time computes

dE(~x)
dxi(t)

=
∂E(~x)
∂xi(t)

+
∑
j

∂Fj(~x(t)))
∂xi(t)

· dE(~x)
dxj(t+ 1)

for all xi and t. Equation 2.10 corresponds to backpropagation-through-time through the mapping

~T (~F (~x)) ∼ dE
d~x(t) and ~T (~x) ∼ dE

d~x(t+1) , with ∇E and ∇~F> evaluated at ~x(t). Equations 2.1 and 2.10
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thus implement an approximate backpropagation-through-time in which the backpropagation step

is actually performed forwards in time, with the partial derivative taken at the current value of

~x, rather than the ~x corresponding to the appropriate point of the forward propagation. This

approximation is exact when the network is at a fixed point, since in that case the evolution of the

network forwards in time is equivalent to the evolution of the network backwards in time.

Alternatively, equation 2.10 with the dynamics of equation 2.1 can be understood as an iterative

procedure for satisfying equation 2.8. Each iteration of ~x(t + 1) = ~F (~x(t)) sets each element of

~x(t + 1) such that equation 2.8 is satisfied, assuming that no element of ~x on the right-hand side

actually changes as a result of the update. Of course, if the dynamics have not yet reached a fixed

point, then ~x does change on the right-hand side, so equation 2.8 is not actually satisfied as a result

of the update, and the process must be repeated until a fixed point is reached.

As an example of the restrictions implicit in equation 2.10, consider the case where every sum-

mand of each function Ti(~x) has total degree q in ~x, and every summand of each function Fi(~x) has

total degree r in ~x, where the total degree is the sum of the exponents of each factor in a summand.

For example, in the expression a3 ·b 3
2 ·c−2 +c

5
2 +a4 ·b− 3

2 , all summands have total degree 5
2 , whereas

in the expression a3 · b 3
2 · c−4 + c

7
3 + a3 · b− 3

2 , all summands have different total degree. With these

restrictions on the total degree of ~T (~x) and ~F (~x), both ~T (~F (~x)) and
(
∇~F>(~x)

)
· ~T (~x) yield vectors

for which all terms have the same total degree. Specifically, all terms of ~T (~F (~x)) have total degree

r · q, while all terms of
(
∇~F>(~x)

)
· ~T (~x) have total degree r− 1 + q. If all the terms of ∇E(~x) also

have homogeneous total degree, then the total degree of ~T (~F (~x)), ∇E(~x), and
(
∇~F>(~x)

)
· ~T (~x)

must be equal, from which we can conclude

r · q = r − 1 + q

(q − 1) · (r − 1) = 0 ,

so q = 1 or r = 1. That is, if ~T , ~F , and E have homogeneous total degree, then either ~T has a total

degree of one or ~F has a total degree of one. Since linear functions have a total degree of one, this

argument serves as further motivation to consider linear ~T , as we do in section 2.3.

A.3.2 Slack function example 2: ~S(~a,~b) = ~0

It is also possible to construct nontrivial intrinsic gradient networks using the simplest possible slack

function, ~S(~a,~b) = ~0, where ~0 is a vector in which each element has the value 0. This slack function

has the desirable property of ensuring that equation 2.8 holds everywhere, rather than just at the

fixed points. Given this slack function, the intrinsic gradient equation (2.9) becomes

~T (~x) = ∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x) , (A.18)
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where we explicitly note the normally implicit dependence of the error function E and training

function ~T on the parameters. Equation A.18 is a system of linear partial differential equations in

~F , so a full solution for ~F is the sum of a particular solution to the inhomogeneous equation

(
∇~F>(~x)

)
· ~T (~x) = ~T (~x)−∇E(~x) , (A.19)

which is merely a rewriting of equation A.18, and a linear combination of solutions to the homoge-

neous equation (
∇~F>(~x)

)
· ~T (~x) = ~0 , (A.20)

which only contains the terms of equation A.18 that are dependent on ~F . As in the case of equa-

tion 2.11 and 2.12, if the solutions to these two equations are independently parameterized, the

solution to the inhomogeneous equation generates the input parameters, whereas the solutions to

the homogenous equation generate only internal parameters. The input parameters are combined

with the internal parameters to construct a full solution.

If ~T (~x) = T · ~x is linear and invertible, with
(
T−1

)> · T = D where D is a diagonal matrix,

we can construct solutions to equation A.20 in a manner similar to that used in section 2.3.4. A

derivation analogous to that in section 2.3.4 and appendix A.6 shows that

~F (~x) = T−1 ·D−1 · ∇

c+
∑
k

xψ(k) ·
∏

j 6=ψ(k)

hkj

(
xj
xψ(k)

) (A.21)

yields solutions to the homogeneous equation A.20, where c is a constant, ψ : Z+ → Z+ is a function

from the positive integers to the indices of the units in the network, and each hkj (x) indexed by j

and k is a differentiable scalar function. The inhomogeneous equation A.19 is then solved by the

sum of ~FT−part(~x) = ~x and an output function ~FE−part(~x) that accounts for the error function.

For instance, if E(~x) = ~c · ~x, then ~FE−part(~x) =
(
T−1

)> · ~G(~x) where Gi(~x) = −ci · log(xi) works;

if E(~x) = 1
2 ·
∑
i x

2
i , then we can use ~FE−part(~x) =

(
T−1

)> · ~G(~x) where Gi(~x) = −xi. These

intrinsic gradient networks are not modular, as defined in appendix A.2, since the solution to the

inhomogeneous equation A.19 implies that xi is an argument of Fi(~x), so the inputs and outputs of

each module are not disjoint.

A.3.3 Slack function example 3: ~S(~a,~b) = τ · (~T (~a)− ~T (~b))

In section A.3.1, we observed that equation 2.10 with the dynamics of equation 2.1 can be under-

stood as an iterative procedure for satisfying equation 2.8. Generalizing this full update, it is also

reasonable to consider a partial update that moves each entry of ~T (~F (~x)) a fraction of the distance

between the current value of ~T (~x) and the value required according to equation 2.8. If each partial
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update is allowed to be of a different size τi, this corresponds to ~S(~a,~b) = τ · (~T (~a)− ~T (~b)), where

τ is a diagonal matrix for which we denote the ith diagonal entry by τi. The intrinsic gradient

equation (2.9) then becomes

τ · ~T (~F (~x)) = (τ − I) · ~T (~x) +∇E(~x) +
(
∇~F>(~x)

)
· ~T (~x) . (A.22)

Equation A.22 reduces to equation 2.10 if τ = I. If ~T (~x) is linear, with ~T (~x) = T · ~x, then the

homogeneous equation corresponding to equation A.22 is

τ ·T · ~F (~x) =
(
∇~F>(~x)

)
·T · ~x . (A.23)

Assuming a linear, invertible ~T (~x) = T · ~x with
(
T−1

)> ·T = D where D is a diagonal matrix, an

equivalent derivation to that in section 2.3.4 and appendix A.6 yields the solution

~F (~x) = T−1 · (D + τ )−1 · ∇

c+
∑
k

xDψ(k)+τψ(k)
Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+τi
Dj

j

x

Dψ(k)+τψ(k)
Dψ(k)

ψ(k)



 (A.24)

to equation A.23. This reduces to equation A.21 when τ = 0, and to equation 2.17 when τ = I.

As in section A.3.2, the inhomogeneous equation A.22 is solved by the sum of ~FT−part(~x) = ~x and

an output function ~FE−part(~x) that accounts for the error function. For instance, if T is symmetric

and E(~x) = ~c · ~x, then ~FE−part(~x) =
(
T−1

)> · ~G(~x) where Gi(~x) = ci
τi

works; if T is symmetric

and E(~x) = 1
2 ·
∑
i x

2
i , then we can use ~FE−part(~x) =

(
T−1

)> · ~G(~x) where Gi(~x) = xi
τi−1 . As when

τ = 0 in section A.3.2, these intrinsic gradient networks do not satisfy the definition of modularity

presented in appendix A.2, since the solution to the inhomogeneous equation A.22 implies that xi

is an argument of Fi(~x), so the inputs and outputs of each module are not disjoint.

A.4 Construction of a homologous intrinsic gradient network

with linear training function

Given an intrinsic gradient network with an arbitrary training function, we can construct a larger,

homologous intrinsic gradient network with a linear training function for which the output functions

of the original intrinsic gradient network are a subset of those of the new network. Specifically, we

replace each unit of the original network xi with a new unit xiff , and each element of the original
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training function Ti(~x) with a new, unparameterized unit xifb of ~x. We then choose

xiff = xi

Fiff (~x) = Fi(~x)

Fifb(~x) = Ti(~x)

Tiff (~x) = xifb

Tifb(~x) = 0 . (A.25)

We use unitalicized symbols to denote the units and functions of the homologous network, but the

distinction between the original and the homologous network is generally clear from the context and

the subscripts. In the homologous network, ~T(~x) is linear in ~x, although it is not invertible.

We shall now show that if the original network satisfied the intrinsic gradient equation (2.9), then

this homologous construction also satisfies the intrinsic gradient equation, although with a different

slack function. Since xi is equivalent to xiff we sometimes use functions of the original units xi in

the context of the homologous network, with the understanding that they refer to the corresponding

homologous units xiff . Starting from the intrinsic gradient equation, we find:

Ti(~x) = Si(~x, ~F (~x)) +
dE(~x)
dxi

+
∑
j

∂Fj(~x)
∂xi

· Tj(~x)

Fifb(~x) = Si(~x, ~F (~x)) +
dE(~x)
dxi

+
∑
j

∂Fjff (~x)
∂xiff

· Fjfb(~x)

xifb =
(
xifb − Fifb(~x)

)
−

∑
j

∂Fjff (~x)
∂xjff

·
(
xjfb − Fjfb(~x)

)+ Si(~x, ~F (~x))

+
dE(~x)
dxiff

+
∑
j

∂Fjff (~x)
∂xiff

· xjfb

Tiff (~x) =
(
xifb − Fifb(~x)

)
−

∑
j

∂Fjff (~x)
∂xjff

·
(
xjfb − Fjfb(~x)

)+ Si(~x, ~F (~x))

+
dE(~x)
dxiff

+
∑
j

∂Fjff (~x)
∂xiff

· Tjff (~x)

= Siff (~x, ~F(~x)) +
dE(~x)
dxiff

+
∑
j

(
∂Fjff (~x)
∂xiff

· Tjff (~x) +
∂Fjfb(~x)
∂xiff

· Tjfb(~x)
)
, (A.26)

where

Siff (~x, ~F(~x)) =
(
xifb − Fifb(~x)

)
−

∑
j

∂Fjff (~x)
∂xjff

·
(
xjfb − Fjfb(~x)

)+ Si(~x, ~F (~x)).

The first line restates the intrinsic gradient equation for the original network; the second line results
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from applying equation A.25, the third line follows by adding and subtracting quantities that equal

zero at a fixed point of the output functions, the fourth line is constructed by again applying

equation A.25, and the fifth line collects appropriate terms into a new slack function. Moreover, it

is easy to see that

Tifb(~x) =
dE(~x)
dxifb

+
∑
j

(
∂Fjff (~x)
∂xifb

· Tjff (~x) +
∂Fjfb(~x)
∂xifb

· Tjfb(~x)
)

(A.27)

since all terms are equal to zero, either directly by equation A.25, or since E(~x) and Fjff (~x) are

independent of xifb by construction. Equation A.27 matches the form of the intrinsic gradient

equation with Sifb(~x, ~F(~x)) = 0. Equations A.26 and A.27 together thus demonstrate that our

constructed network, with dynamics on the feedforward units equivalent to that of the original

network but with a linear training function, satisfies the intrinsic gradient equation with the given

slack function.

A.5 Provably convergent dynamics

We can construct provably convergent dynamics for any homogeneous intrinsic gradient network

satisfying assumptions (i) through (iii) of section 2.3.2 as well as

(iv) T = T>

(v) g(~x)− ~x> ·T · ~x is bounded above or below.

In particular, these convergent dynamics apply to any solution to equation 2.17 satisfying assump-

tions (iv) and (v). Assumption (iv) implies assumption (iii), since
(
T−1

)> ·T = I if T is symmetric.

If in addition T is positive-definite and g(~x) is bounded above, we will find that the dynamics of

equation 2.2 are an instance of this class of provably convergent dynamics.

Our construction depends upon a scalar function V (x), which serves as a Lyapunov function.

Consider the scalar function

V (~x) = g(~x)− 1
2
· ~x> · (D + I) ·T · ~x , (A.28)

for which

∇V (~x) = ∇g(~x)− (D + I) ·T · ~x

since T is symmetric by assumption (iv), so D =
(
T−1

)> ·T = I and D+ I = 2 · I, which commutes

with other matrices. V (~x) is also a function of the parameters ~w since g(~x) is a function of ~w, but we
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omit mention of ~w to avoid cluttered notation. At the stationary points of V (~x), where ∇V (~x) = 0,

T−1 · (D + I)−1 · ∇V (~x) = 0

as well, since T is invertible by assumption and D+ I = 2 · I is clearly invertible. We can substitute

equation A.28, the definition of V (~x), into this expression to obtain

0 = T−1 · (D + I)−1 · ∇g(~x)−T−1 · (D + I)−1 · (D + I) ·T · ~x

= T−1 · (D + I)−1 · ∇g(~x)− ~x

~x = T−1 · (D + I)−1 · ∇g(~x) = ~F (~x) , (A.29)

where the last equality follows from the the definitions of ~G(~x) and g(x) in sections 2.3.3 and 2.3.4.

As a result, any dynamics that converge to a stationary point of V (~x) also converge to a fixed

point of ~F (~x). Since every intrinsic gradient network that satisfies assumptions (i) through (iii)

in section 2.3.2 conforms to the conservative vector field formulation, if such an intrinsic gradient

network has a Lyapunov function V (x), its output functions can be constructed from V (x) via

equations A.28 and A.29. Correspondingly, given the output functions ~F of an intrinsic gradient

equation satisfying assumptions (i) through (iii) of section 2.3.2, its Lyapunov function (if it has

one) must be defined by equation A.28.

Gradient ascent or descent on V (~x) is an instance of dynamics that converge to a stationary

point of V (~x), so long as V (~x) is bounded above or below, respectively (i.e., assumption (v), since

D = I by assumption (iv)). It is easy to show that V (~x) is bounded above if g(x) is the sum of the

term ~x> · (D+ I) ·T · ~x and a set of non-positive terms, such as − (~x−W · ~x)2 for some matrix W.

Such a sum of terms satisfies equation 2.16, and so induces output functions of an intrinsic gradient

network through equation 2.17. If W is a block matrix with all diagonals equal to zero except the

diagonal directly above the main diagonal, the resulting intrinsic gradient network consists of layers

of units which are trained to reconstruct each other using dictionaries defined by W.

Alternatively, V (~x) is bounded above if T is positive-semidefinite and g(~x) is bounded above.

These additional criteria are easy to satisfy within the class of intrinsic gradient networks discussed in

this thesis. The pairwise permutation matrices often used for T can be made positive-semidefinite

by adding a diagonal component proportional to I. Functions g(~x) of the form of equation 2.16

are bounded above (by 0) if all functions hkj (x) are bounded, either non-negative or non-positive,

and for each k, the set
{
hkj (x) | j 6= ψ(k)

}
has an odd number of non-positive elements. Bounded

non-negative functions include sigmoids like the logistic function used in section 3.3. When these

conditions hold, each summand of g(~x) in equation 2.16 is non-positive, since x
Dψ(k)+1

Dψ(k)

ψ(k) = x2
ψ(k) ≥ 0

given the assumption that T is symmetric, and this term is multiplied by a finite set of bounded
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terms, an odd number of which are non-positive.

Moreover, if T is positive-definite, then the update direction of the dynamics of equation 2.2

always have a positive dot product with ∇V (~x):

[∇V (~x)]> ·
[
~F (~x)− ~x

]
= [∇g(~x)− (D + I) ·T · ~x]> ·

[
T−1 · (D + I)−1 · ∇g(~x)− ~x

]
=
[
T−1 · (D + I)−1 · ∇g(~x)− ~x

]> · [T · (D + I)] ·

·
[
T−1 · (D + I)−1 · ∇g(~x)− ~x

]
= 2 · ~y ·T · ~y

> 0 ,

where ~y = T−1 ·(D+I)−1 ·∇g(~x)−~x = ~F (~x)−~x, the second line follows because T is symmetric, the

third line follows because D + I = 2 · I, and the fourth line follows because T is positive-definite by

assumption. We can thus see that V (~x) is a Lyapunov function for equation 2.2, and these dynamics

are guaranteed to converge.

Thus far in this section, we have constructed Lyapunov functions for homogeneous intrinsic

gradient networks for which ∇E = 0. Since the intrinsic gradient equation (2.9) is linear in ~F (~x)

given assumptions (i) and (ii) of section 2.3.2, full intrinsic gradient networks are the sum of a

homogeneous and an inhomogeneous part, as discussed in section 2.3.1. Fortunately, when the error

function consists of a sum of terms, each of which is only a function of a single unit xi (as in

section 2.4.4), the Lyapunov function can easily be modified to accommodate the entire network,

rather than just the homogeneous part, by adding in an inhomogeneous component. Specifically,

the term

VE(~x) = 2 ·
∑
i

∫
Gi(~x) · dxi

should be added to V (~x) as defined by equation A.28, where Gi(~x) = −xi ·
∫ (

x−2
i · ∂E(~x)

∂xi
· dxi

)
as

in equation 2.19. The term VE(~x) is defined so that

T−1 · (D + I)−1 · ∇VE(~x) = T−1 · ~G(~x)

= ~FE(~x) ,

where FE(~x) is a solution to the inhomogeneous part of the intrinsic gradient equation. The first line

follows from the fundamental theorem of calculus, since our assumptions imply that D + I = 2 · I,

and because each Gi(~x) is only a function of the single variable xi. The second line follows from

the definition of ~G(~x) in section 2.3.3 and the derivation in section 2.4.4. An analogous derivation

to that in equation A.29 shows that the stationary points of V (~x) + VE(~x) are identical to the fixed

points of ~F (~x)+ ~FE(~x), so V (~x)+VE(~x) is a Lyapunov function for the full inhomogeneous intrinsic
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gradient network if it is bounded above or below.

For instance, if E(~x) = ~c> · ~x for some constant vector ~c, then the term
∑
i 2 · xi · ci should be

added to V (~x) if we choose all constants of integration to be zero. If we use the same linear error

function, but choose the constant of integration in the definition of ~G(~x) to be 1, and the constant

of integration in the definition of VE(~x) to be − c2i
2 , then the term −

∑
i(ci − xi)2 should be added

to V (~x). In this case, the fixed points of the intrinsic gradient network minimize the sum of squares

error between ~c and ~x, whereas following the gradient of the error function minimizes ~c> ·~x at those

fixed points. On the other hand, if we use the negative sum of squares error E(~x) = 1
2 ·
∑
i(xi− ci)2

directly, then the term
∑
i 2 · xi · ci + 1

2 · x
2
i · (2 · log(|xi|)− 1) should be added to V (~x).

Even if V (~x) is not bounded, it can be used to induce a probabilistic interpretation for the

associated intrinsic gradient network. Specifically, we can define

P (~x) =
1
Z
·m(V (~x)) , (A.30)

where m(x) is a non-negative monotonically increasing function such as (1 + e−x)−1, and Z =∫
m(V (~x))d~x.2 The output states that correspond to (local) maxima of V (~x) are then (local)

maximum a posteriori configurations of this probability distribution. In particular, when we use the

linear error function E(~x) = ~c> ·~x and choose the constants of integration appropriately, maximizing

the a posteriori probability of a configuration also minimizes the Euclidean distance between ~c and

~x.

If we use the negative sum of squares error E(~x) = − 1
2 ·
∑
i(xi − ci)2, then while the dynamics

of such an intrinsic gradient network find locally maximal a posteriori network states ~x (given fixed

parameters ~w) according to the distribution of equation A.30, gradient descent on the error function

E maximizes the log likelihood of these locally maximal a posteriori points according to a Gaussian

distribution centered at ~c: P (~x) = 1√
2·π · e

−
P
i(xi−ci)

2
. Training via gradient descent on the error

function E assumes that the dynamics remain at a fixed point, and thus at a locally maximal a

posteriori configuration of equation A.30. Unlike algorithms based on expectation maximization,

training does not ignore the effect that modifying the parameters has on the units themselves. At

the same time, though, it does not maximize the probability assigned to the locally maximal a

posteriori configuration using equation A.30; it minimizes E(~x) at a maximum of V (~x), rather than

maximizing V (~x) itself.

2P (x) only constitutes a probability distribution if the integral defining Z converges.
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A.6 Conservative vector field solution

Plugging equation 2.16 into equation 2.15,

g(~x) = c+

∇>

c+
∑
k

xDψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)




 · (D + I)−1 ·D · ~x

= c+
∑
k


∇>

xDψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)



 · (D + I)−1 ·D · ~x



= c+
∑
k

∑
i

 ∂

∂xi

xDψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)


 · Di

Di + 1
· xi




= c+
∑
k


Dψ(k) + 1

Dψ(k)
· x

Dψ(k)+1

Dψ(k)
−1

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)



−
∑

i 6=ψ(k)

xDψ(k)+1

Dψ(k)

ψ(k) · hki
′

 x
Di+1
Di

i

x

Dψ(k)+1

Dψ(k)

ψ(k)

 ·
Dψ(k) + 1
Dψ(k)

· x
Di+1
Di

i

x

Dψ(k)+1

Dψ(k)
+1

ψ(k)

·

·
∏

j 6=i,ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)



 ·

Dψ(k)

Dψ(k) + 1
· xψ(k)

+
∑

i 6=ψ(k)


xDψ(k)+1

Dψ(k)

ψ(k) · hki
′

 x
Di+1
Di

i

x

Dψ(k)+1

Dψ(k)

ψ(k)

 · Di + 1
Di

· x
Di+1
Di

−1

i

x

Dψ(k)+1

Dψ(k)

ψ(k)

·

·
∏

j 6=i,ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)


 · Di

Di + 1
· xi




= c+
∑
k

x

Dψ(k)+1

Dψ(k)

ψ(k) ·
∏

j 6=ψ(k)

hkj

 x

Dj+1
Dj

j

x

Dψ(k)+1

Dψ(k)

ψ(k)


which matches equation 2.16, as desired. The first line of the fourth equation follows from taking the

partial derivative of x
Dψ(k)+1

Dψ(k)

ψ(k) with respect to xψ(k). The second line of the fourth equation follows

from taking the partial derivative of
∏
j 6=ψ(k) h

k
j

 x

Dj+1
Dj

j

x

Dψ(k)+1
Dψ(k)

ψ(k)

 with respect to xψ(k). The third line
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of the fourth equation follows from taking the partial derivative of
∏
j 6=ψ(k) h

k
j

 x

Dj+1
Dj

j

x

Dψ(k)+1
Dψ(k)

ψ(k)

 with

respect to all xi other than xψ(k). The second and the third line cancel out exactly, leaving only the

desired terms from the first line.

A.7 Generalized polynomial assumption

Instead of the conservative vector field formulation of section 2.3.4, assume that Fi(~x) =
∑
j w

F
ij ·∏

k x
vjk
k , where wFij , vjk ∈ R for all i, j, and k. In the term wFij , F is part of the name of the

parameter, rather than an exponent. There can be an infinite number of terms in the sum, so long

as wFij is bounded for all i and j, and for each k, vjk is enumerable over j in a monotonic manner.

Intuitively, we wish to consider output functions Fi that can be written as a polynomial series on the

elements of ~x, generalized to allow non-integral exponents. This class of functions, which we refer to

as generalized polynomials, includes all functions expressible by a Maclaurin series. We continue to

assume that ~S(~a,~b) = ~T (~a) − ~T (~b), and that ~T (~x) is a linear, invertible function of ~x, independent

of ~w, with
(
T−1

)> ·T = D, so equation 2.13 still applies. Using the definition ~G(~x) = T · ~F (~x), the

generalized polynomial assumption implies

Gi(~x) =
∑
j

wGij ·
∏
k

x
vjk
k , (A.31)

where wGij =
∑
k Tik · wFkj is bounded if wFij is bounded. As before, G is part of the name of the

parameter wGij , rather than an exponent.

It can be seen that, when ~G and ∇E are generalized polynomials, equation 2.13 implies that for

each entry of the vectors, the coefficient of each summand from the left-hand side of equation 2.13

is equal to the coefficient of the corresponding summand on the right-hand side. This is true even if

non-integral exponents are allowed. If vjk is monotonically enumerable over j, then the exponents

of the right-hand side of equation 2.13 are also monotonically enumerable. This follows since each

summand of Gi(~x) gives rise to no more than one summand for each entry of
(
∇~G>(~x)

)
· D ·

~x, and the exponents of these corresponding summands differ by a fixed constant. Consider an

enumeration of the summands comprising one entry of the left-hand side of equation 2.13, such

that the minima of the exponents of the summands are monotonically increasing, and a similar

enumeration of the corresponding entry of the right-hand side of equation 2.13. The first elements

of these two enumerations, as well as the coefficients of the corresponding terms, must be equal;

these terms have the smallest exponent and thus dominate the behavior of the two generalized

polynomials for small xi. These matching terms can then be subtracted from both sides, and the

process repeated. Since the exponents and thus the terms are enumerable, any given term will
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be subject to this matching procedure after only a finite number of iterations. A complementary

argument applies when the enumeration of vjk over j is monotonically decreasing, but in this case

the coefficients of the term with the largest exponent must match, since it dominates the behavior

for large xi.

Given this relationship between the transformed output functions Gi(~x), it is profitable to rewrite

equation A.31 in the form

Gi(~x) =
∑
n

wni ·
∏
j

x
vnj −δij
j , (A.32)

where n indexes both wni and vnj , rather than serving as an exponent. We refer to the set of

monomials with index n associated with different transformed output functions Gi as a monomial

family. We sometimes write ~vn for the vector of exponents associated with monomial family n. As

before, δ is the Kronecker delta.

The coefficients wni are trainable parameters as before, but indexed by both transformed output

function i and monomial family n. The exponents vnj are untrained constants, also indexed by both

transformed output function j and monomial family n. They further parameterize the transformed

output functions beyond the original ~w. As we shall explore in detail, equation 2.13 restricts the

coefficient wni of transformed output function Gi and monomial family n in terms of other coefficients

wnj in the same monomial family n, but wni is independent of other monomial families. The trained

parameters ~w and the untrained ~v are also linked, as shall be detailed below.

The exponents vnj in equation A.32 are the same regardless of which transformed output function

Gi is under consideration. That is, there is single set of interrelated monomial forms held in common

between all of the transformed output functions. Nevertheless, the class of functions described by

equation A.32 captures the full set of functions analytic around zero, since any polynomial can be

formed by setting wni = 0 for unwanted monomials. It also captures some functions, like fractional

exponents of x, that are not analytic around zero.

When the form of equation A.32 is substituted into equation 2.13, the following linear equation

on the parameters results for all output functions i and monomial families n:

wni =
(
∂E

∂xi

)
(n)

+
∑
j

(vni − δij) ·Dj · wnj (A.33)

where
(
∂E
∂xi

)
(n)

is the coefficient of the term of ∂E
∂xi

with the form of monomial family n for output

function i; that is, the term in which unit xj has exponent vnj − δij for all j. The set of linear

equations specified by equation A.33 for the coefficients of a single monomial family can be written
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in matrix form as

~wn = (∇E)(n) + M ·D · ~wn

(I−M ·D) · ~wn = (∇E)(n) (A.34)

where

M =


(vni − 1) vni · · · vni

vnj
(
vnj − 1

)
· · · vnj

...
...

. . .
...

vnz vnz · · · (vnz − 1)

 =


vni

vnj
...

vnz

 ·
[

1 1 · · · 1
]
− I,

and ~wn is the column vector with elements wni for all xi ∈ ~x. Clearly, if I−M ·D is invertible, the

vector ~wn is only consistent with equation A.33 if

~wn = (I−M ·D)−1 · (∇E)(n) . (A.35)

That is, the parameters are completely determined by the error function, so all parameters are input

parameters and no learning is possible.

The matrix I − M · D is singular if and only if there exists some vector ~u 6= 0 such that

(I−M ·D) · ~u = 0. However,

(I−M ·D) · ~u = (I + D) · ~u− ~vn ·

(∑
i

Di · ui

)
, (A.36)

so if I−M ·D is singular, then (I+D) · ~u must be parallel to ~vn. That is, ~u = α · (I+D)−1 ·~vn for

some scalar α, which when substituted back into equation A.36 implies that there exists a ~u such

that (I−M ·D) · ~u = 0 if and only if

∑
i|Di 6=−1

Di

1 +Di
· vni = 1, (A.37)

and vi = 0 for all i such that Di = −1. The matrix I + D is diagonal, so its inverse is easy to

construct when it exists. The choice of D thus restricts all vni . For instance, equation A.37 implies

that vni cannot be unbounded and strictly positive if D is strictly positive.

If equation A.37 is not satisfied, I−M ·D is invertible, and the coefficients for monomial family

n are fixed by the error function; the coefficients are all input parameters and cannot be trained, by

gradient descent or otherwise. In particular, if (∇E)(n) = 0, then ~wn = 0. In contrast, if I−M ·D

is not invertible but equation A.34 is satisfiable, ~wn may have a component of arbitrary magnitude
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in the nullspace of I−M ·D. Thus, ~wn = ~wninput + ~wninternal, where

~wninput = (I−M ·D)+ · (∇E)(n) (A.38)

and N+ is the Moore-Penrose pseudoinverse of matrix N, and

(wninternal)i = αn · (1 +Di)−1 · vni (A.39)

for some scalar αn when Di 6= −1, and (wninternal)i = 0 otherwise. The matrix I −M · D never

has more than one eigenvector with eigenvalue equal to zero, since only one vector ~u satisfies equa-

tion A.36, modulo a scaling factor.

Any set of output functions of the form of equation A.32, satisfying the restrictions of equations

A.37 and A.39, is also a valid solution to equation 2.17. Consider a monomial family of equation A.32

with exponents vni and coefficients wni . Equations 2.17 and A.32 are of approximately the same

form, and it can be seen that the exponents of all output functions in the conservative vector field

formulation will match those of the generalized polynomial formulation if there is a bijection between

the summands of g(x) and the monomial families. A summand of g(x) matching a chosen monomial

family can be constructed within the framework of equation 2.17 by choosing ψ(k) = i for one

element of the monomial family, hkj (x) = x
Dj
Dj+1 ·v

n
j for the other elements of the monomial family,

and hkj (x) = 1 otherwise. The exponent of the elements of the family other than i are clearly correct.

Equation 2.17 implies that the exponent of element i is

vni =
Di + 1
Di

·

1−
∑
j 6=i

Dj

Dj + 1
· vnj


which is exactly the value obtained by solving equation A.37 for vni . Once the exponents match,

it can immediately be seen that the coefficients generated by equation 2.17 are exactly those of

equation A.39, with wk playing the role of α.

A.8 Belief propagation on an acyclic factor graph is an in-

trinsic gradient network

We shall show that belief propagation on acyclic factor graphs satisfies the intrinsic gradient equa-

tion (2.9) with the negative log likelihood of a configuration of the observed variables as the error

function (where by configuration we mean an assignment of a value to each of the indicated random

variables). The requisite slack function will not be ~S(~a,~b) = ~T (~a) − ~T (~b), unlike section 2.2; the

corresponding training function ~T will not be linear, unlike section 2.3; and the resulting intrinsic



152

gradient network will only be compatible with acyclic connection topologies.

We first review the definition and relevant properties of factor graphs and belief propagation in

section A.8.1. We then demonstrate in section A.8.2 that the negative log likelihood can be defined

in terms of the belief propagation messages on an acyclic factor graph, and its gradient can be

calculated directly from these messages. The necessity condition of the intrinsic gradient equation,

discussed in appendix A.1, thus implies that belief propagation on an acyclic factor graph constitutes

an intrinsic gradient network, but the identity of the corresponding slack function ~S and training

function ~T are not obvious. In section A.8.3 we construct a linear training function ~T and show

that it satisfies the intrinsic gradient equation with output functions corresponding to the belief

propagation messages and an error function related to the likelihood, rather than the log likelihood.

However, the inputs in this network do not match those in belief propagation. Finally, in section

A.8.4 we augment the training function with a nonlinear component, and show that it satisfies the

intrinsic gradient equation with belief propagation dynamics and the negative log likelihood as the

error function.

A.8.1 Definition of factor graphs and belief propagation

A factor graph defines a probability distribution over a vector of discrete random variables ~V , with

values vi ∈ Vi, in terms of a vector of functions ~f indexed by a, with fa : ~V → R+ (reviewed in

Kschischang et al., 2001; Yedidia et al., 2005). The set of random variables ~V and the set of functions

~f are generally not in correspondence, and the sets of indices i and a are disjoint. Each function

fa(~v) only depends directly on a subset of the random variables Vi, which we call the neighborhood

of fa, or N(a). We also denote the set of indices i such that vi is an argument of fa(~v) by N(a);

the correct interpretation will be clear from the context. We indicate a configuration over N(a) by

~va ∈ ~Va; that is, ~va specifies the value vi of random variable Vi for all i ∈ N(a). Correspondingly,

we refer to the set of functions fa(~v) for which vi is an argument as the neighborhood of Vi, or N(i).

Once again, we also use N(i) to denote the set of indices a such that vi is an argument of fa(~v).

The probability of a configuration ~v ∈ ~V of the variables ~V is defined by

P (~v) =
∏
a fa(~v)∑

~ν∈~V
∏
a fa(~ν)

.

The functions ~f are factors of the numerator of the probability distribution, so the functions ~f

are called factors, and these models are called factor graphs. This probability distribution can be

represented by a graph with a circular variable node for each random variable Vi, a square factor

node for each factor fa(~v), and an undirected edge connecting each factor node to the variable

nodes in its neighborhood and vice versa (Kschischang et al., 2001). A factor graph is acyclic if the

associated graph has no loops, as in figure A.1.
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Figure A.1: An acyclic factor graph. Variables are denoted by circles; factors are denoted by squares.
Observed variables are marked by a double circle, whereas hidden variables are indicated by a single
circle. The observed variables behind the message nk→c have a dashed double circle, whereas the
observed variables behind the message mc→k have a solid double circle.

Belief propagation is a set of message-passing dynamics capable of calculating the marginal

probabilities of the random variables in an acyclic factor graph (Pearl, 1988; Aji & McEliece, 2000;

Kschischang et al., 2001). Belief propagation has been discovered independently in multiple disci-

plines, and is also known as the sum-product algorithm and the forward-backward algorithm. In

belief propagation, a distinct message ni→a(vi) ∈ R+ is passed from variable node i to factor node a

for each possible value vi ∈ Vi of random variable Vi, and a separate message ma→i(vi) ∈ R+ is

passed from factor node a to variable node i for each value vi ∈ Vi of random variable Vi, as depicted

in figure A.1. Intuitively, the message ni→a(vi) communicates the degree to which variable node

i believes that variable Vi has value vi (excluding the evidence from factor node a), and message

ma→i(vi) communicates the degree to which factor node a believes that variable Vi has value vi (ex-

cluding the evidence from variable node i). These messages are updated according to the dynamics

ni→a(vi) ⇐
∏
b∈N(i)\amb→i(vi) when a ∈ N(i)

ma→i(vi) ⇐
∑
~va|vi fa(~va) ·

∏
j∈N(a)\i nj→a(vj) when i ∈ N(a) ,

(A.40)

where N(i) \ a denotes the set of indices of all the factors that are neighbors of variable Vi except

for factor fa, N(a)\ i denotes the set of indices of all variables that are neighbors of factor fa except

for Vi,
∑
~va|vi denotes a sum over all the configurations ~va of the variables that are arguments of fa,

such that Vi takes the value vi, and the value of vj in the second equation matches that in ~va.
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The random variables ~V can be divided into two subgroups: the observed variables ~V obs, which

are intended to model an externally defined probability distribution, and the hidden variables ~V hid,

which are internal to the factor graph and help to construct the distribution over the observed

variables. We assume that all internal variable nodes correspond to hidden variables, and all

leaf variable nodes correspond to observed variables; any acyclic factor graph can be converted

into this form. Since each configuration ~v of all variables corresponds to a configuration ~vobs of

the observed variables and a configuration ~vhid of the hidden variables, P (~v) = P (~vobs, ~vhid) and

P (~vobs) =
∑
~vhid P (~vobs, ~vhid). Consider a probability distribution of interest (such as a finite data

set, consisting of observations of the outside world, in which all elements are assigned uniform prob-

ability, and all other configurations are assigned zero probability) and a factor graph that models

it, such that each element of the probability distribution of interest assigns a value to each observed

variable of the factor graph. The sum of the negative log likelihoods assigned by the factor graph

to each configuration of the observed variables, weighted by the desired probability of the config-

urations, is a commonly used error function for training such factor graphs (Yedidia et al., 2005).

It is equivalent up to a constant to the Kullback-Leibler divergence between the desired probability

distribution and that defined by the factor graph.

A.8.2 The negative log likelihood and its gradient can be calculated by

belief propagation

It is not initially obvious that belief propagation on acyclic factor graphs has any relationship

to intrinsic gradient networks. We shall show that the negative log likelihood constitutes an error

function, defined in terms of the belief propagation messages, for which the gradient can be calculated

from the converged belief propagation messages. The necessity condition for intrinsic gradient

networks, developed in appendix A.1, then implies that belief propagation on acyclic factor graphs

is an intrinsic gradient network.

The negative log likelihood of a configuration of the observed variables can be calculated for an

acyclic factor graph directly from two sets of converged belief propagation messages: one with the

messages from the observed variable nodes set based upon the observed values, and the other with the

messages from the observed variable nodes set to be uniform and independent of the observed values

(Ackley et al., 1985; Kschischang et al., 2001). A simple derivation, replicated below, demonstrates

that the gradient of this negative log likelihood, −d log(P (~vobs))
d~w , can be calculated from the marginal

probabilities of the groups of variables connected to each factor. In an acyclic factor graph, these

marginal probabilities can also be calculated by performing belief propagation to convergence twice;

once with the messages from the observed variable nodes set based upon the observed values, and

once with the messages from the observed variable nodes set to be uniform and independent of
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the observed values. We note that these two applications of belief propagation are analogous,

respectively, to the wake and sleep stage of Boltzmann machines.

Since an error function and its gradient can be calculated from the intrinsic signals at the fixed

point, the necessity condition discussed in appendix A.1 implies that belief propagation on an acyclic

factor graph must be an instance of an intrinsic gradient network. In this subsection, we confirm

that both the negative log likelihood and its gradient can be calculated from belief propagation

messages in acyclic factor graphs. We then map belief propagation on acyclic factor graphs onto the

intrinsic gradient formalism in the following two subsections.

The likelihood (and from it the negative log likelihood) of a configuration of the observed variables

in an acyclic factor graph can be computed by

P (~vobs) =

∏
a∈N(i)m

obs
a→i(v

obs
i )∑

νi∈Vi

∏
a∈N(i)m

all
a→i(νi)

(A.41)

for any i such that Vi is an observed variable, as can be seen from consideration of the distributive law

(Aji & McEliece, 2000; Kschischang et al., 2001). The messages ~nobs and ~mobs result from performing

belief propagation to convergence with the messages from each observed variable node i set such

that nobsi→a(νi) = 1 if the value of νi ∈ Vi matches the value in configuration ~vobs, and nobsi→a(νi) = 0

otherwise; the terms ~nall and ~mall result from performing belief propagation to convergence with all

messages from the observed variable nodes set equal to 1. Qualitatively, equation A.41 corresponds

to combining the beliefs in the observed variables from all sources, and normalizing by the potential

degree of belief in all possible combinations of observed variables. We can eliminate the need to

choose a particular observed variable by summing over all observed variables:

P (~vobs) =

∑
i|Viis observed

∏
a∈N(i)m

obs
a→i(v

obs
i )∑

i|Viis observed

∑
νi∈Vi

∏
a∈N(i)m

all
a→i(νi)

. (A.42)

The first sum in the numerator and denominator is over all observed variables, whereas the second

sum in the denominator is over all values of the chosen variable. The negative log likelihood can

easily be calculated by simply taking the additive inverse of the logarithm of this calculation, thus

demonstrating that the negative log likelihood of a configuration of the observed variables in an

acyclic factor graph can be calculated from the belief propagation messages at a fixed point.

The gradient of the negative log likelihood can also be calculated from the belief propagation

messages at a fixed point. Consider the most general parameterization of the factors, where each

possible output of each function fa(~va) is independently parameterized. Specifically, let fa′(~ua′) = w′

for some factor fa′ and configuration of its neighborhood ~ua′ ∈ ~Va′ . This configuration can be

divided up into ~ua′ =
(
~uobsa′ , ~u

hid
a′

)
, where ~uobsa′ is a configuration of the observed variables in N(a′),

and ~uhida′ is a configuration of the hidden variables in N(a′). The derivative of the log likelihood of
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a configuration ~vobs of the observed variables with respect to w′ is then

d log(P (~vobs))
dw′ =

d

dw′ log

 ∑
~νhid∈~Vhid

P (~vobs, ~νhid)


=

d

dw′ log

(∑
~νhid∈~Vhid

∏
a fa(~v

obs, ~νhid)∑
~ν∈~V

∏
a fa(~ν)

)

= δ~vobs
a′ ~u

obs
a′
·
∑
~νhid∈~Vhid δ~νhida′ ~u

hid
a′
·
∏
a6=a′ fa(~v

obs, ~νhid)∑
~νhid∈~Vhid

∏
a fa(~vobs, νhid)

−
∑
~ν∈~V δ~νa′~ua′ ·

∏
a6=a′ fa(~ν)∑

~ν∈~V
∏
a fa(~ν)

=
1

fa′(~ua′)
·
(
P (~ua′ |~vobs)− P (~ua′)

)
, (A.43)

where δ~νhid
a′ ~u

hid
a′

= 1 if νhidi = uhidi for all hidden variables Vi ∈ N(a′), and 0 otherwise; δ~νobs
a′ ~u

obs
a′

is

defined analogously; and δ~νa′~ua′ = 1 if νi = ui for all variables Vi ∈ N(a′), and 0 otherwise. We can

easily calculate the gradient of the negative log likelihood with respect to the parameters using the

converged belief propagation messages, since the required marginal probabilities can themselves be

calculated from the converged belief propagation messages (Kschischang et al., 2001):

P (~ua′ |~vobs) =
fa′(~ua′) ·

∏
i∈N(a′) n

obs
i→a′(ui)∑

~νa′∈~Va′
fa′(~νa′) ·

∏
i∈N(a′) n

obs
i→a′(νi)

. (A.44)

Qualitatively, equation A.44 corresponds to combining the beliefs in the selected variable values ~ua′

from all sources, assuming that the observed variables take on the specified values, and normalizing

by the belief in all possible combinations of these variables. The same function of the converged

belief propagation messages computes P (~ua′) when using nalli→a′ in place of nobsi→a′ .

An intrinsic gradient network is defined by the ability to calculate the gradient of an error

function from the intrinsic signals. Since both the negative log likelihood and its gradient are

calculable from the belief propagation messages after convergence, belief propagation on an acyclic

factor graph constitutes an intrinsic gradient network, with the negative log likelihood serving as

the error function.3 However, it is not obvious that these dynamics satisfy the intrinsic gradient

equation (2.9), even though the necessity condition of the intrinsic gradient equation, discussed in

appendix A.1, implies that a slack function ~S(~x) and a training function ~T (~x) satisfying equation 2.7

must exist. We attempt to construct an appropriate training function in section A.8.3, and finally

succeed in section A.8.4. We do not explicitly derive an analytical form for the slack function, but it

follows trivially from the intrinsic gradient equation (2.9) after we construct the training function.

3Technically, an acyclic factor graph must be duplicated into a parallel wake and sleep network, each with inde-
pendent belief propagation dynamics, in order to be an intrinsic gradient network.
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A.8.3 An intrinsic gradient network with a linear training function which

approximates belief propagation

Using equation A.42, the negative log likelihood can be split into two separate component error

functions:

− log(P (~vobs)) = − log

( ∑
i|Viis observed

∏
a∈N(i)m

obs
a→i(v

obs
i )∑

i|Viis observed

∑
νi∈Vi

∏
a∈N(i)m

all
a→i(νi)

)

= − log

 ∑
i|Viis observed

∏
a∈N(i)

mobs
a→i(v

obs
i )

+ log

 ∑
i|Viis observed

∑
νi∈Vi

∏
a∈N(i)

mall
a→i(νi)


= Ewake(~vobs) + Esleep(~vobs) ,

where

Ewake(~vobs) = − log

 ∑
i|Viis observed

∏
a∈N(i)

mobs
a→i(v

obs
i )

 and

Esleep(~vobs) = log

 ∑
i|Viis observed

∑
νi∈Vi

∏
a∈N(i)

mall
a→i(νi)

 . (A.45)

Since we have restricted our attention to acyclic factor graphs in which the visible variables always

correspond to leaf nodes, the products in equation A.45 always consist of a single term. We will show

in section A.8.4 that belief propagation on an acyclic factor graph constitutes an intrinsic gradient

network for these two error functions separately, if the messages from the observed variables are

chosen in accordance with the definitions of nobsi→a and nalli→a in section A.8.2. Specifically, we will

show that belief propagation satisfies the restriction

~T (~F (~x∗)) = ∇E(~x)|x∗ +
(
∇~F>(~x)

∣∣∣
x∗

)
· ~T (~x∗) , (A.46)

which is equivalent to equation 2.8 with the definition ~F (~x∗) = ~x∗ applied to the left-hand side.

The intrinsic gradient equation (2.9) can be recovered from equation 2.8 by extending it to all ~x and

defining

~S(~x, ~F (~x)) = ~T (~x)− ∇E(~x)|x +
(
∇~F>(~x)

∣∣∣
x

)
· ~T (~x) .

An intrinsic gradient network for the composite negative log likelihood can be constructed by placing

the two component networks in parallel with shared parameters, since the total gradient for such a

composite network is the sum of the gradients of the constituent networks.

To establish the consistency of intrinsic gradient networks with belief propagation on acyclic

factor graphs, consider an intrinsic gradient network in which the units ~x correspond to the belief
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propagation messages ni→a(vi) and ma→i(vi) for all vi ∈ Vi, and the output functions ~F (~x) are given

by the belief propagation dynamics (equation A.40). The resulting intrinsic gradient network has

dynamics equivalent to belief propagation if we use the dynamics ~x(t+1) = ~F (~x(t)) of equation 2.1.

The vectors ~m and ~n collect all messages of the form ma→i(vi) and ni→a(vi), respectively, so ~x =

(~m,~n). For the sake of clarity, we continue to use belief propagation notation to refer to the elements

of ~x. That is, instead of xj , we write ma→i(vi) or ni→a(vi). We refer to the elements of ~x = (~m,~n)

interchangeably as units and messages, depending upon which context is more appropriate.

We say that message ni→a(vi) is complementary to message ma→i(vi) and vice versa. As can be

seen from figure A.1, complementary messages pass in opposite directions between a pair of nodes.

Moreover, we say an observed variable is behind a message in an acyclic factor graph if there exists

a path through the factor graph from the observed variable to the source of the message that does

not include the destination of the message; that is, if the observed variable is behind the directed

edge corresponding to the message in the factor graph. In figure A.1, the observed variables with a

dashed double circle are behind message nk→c(vk); the observed variables with a solid double circle

are behind message mc→k(vk).

Our construction of intrinsic gradient networks for Ewake and Esleep will require a nonlinear

training function ~T . Rather than directly tackle this complicated problem, we first construct intrinsic

gradient networks for a related pair of error functions for which a linear ~T suffices. Specifically, we

will construct an intrinsic gradient network of the form of equation 2.18. Such a network satisfies

the intrinsic gradient equation (2.9) with the slack function ~S(~a,~b) = ~T (~a)− ~T (~b) by design. Based

upon these simpler intrinsic gradient networks, we can then construct (in section A.8.4) the requisite

nonlinear ~T for Ewake and Esleep, such that equation A.46 is still satisfied.

If the training function ~T (~x) is a simple pairwise permutation matrix, then D =
(
T−1

)> ·T = I,

and equation 2.17 (and thus equation 2.18) is only consistent with output functions for which the

sum of the degree of all variables (the total degree, as defined in section A.3.1) in each summand is

equal to one. In contrast, as can be seen from equation A.40, the sum of the degree of all variables

in each summand of a belief propagation message is one less than the degree of the associated node

(the number of factor nodes a variable node is connected to, and vice versa), and generally much

larger than one. To reconcile this property with equation 2.18, consider the case where the training

function Ti(~x) corresponding to each message xi is equal to the complementary message multiplied

by the number of observed variables behind the complementary message. That is, consider a ~T (~m,~n)

such that

Tni→a(vi)(~m,~n) = Ba→i ·ma→i(vi)

Tma→i(vi)(~m,~n) = Bi→a · ni→a(vi) , (A.47)
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where Ba→i is the number of observed variables behind the message from factor node a to variable

node i, and Bi→a is the number of observed variables behind the message from variable node i to

factor node a. Such a ~T (~x) is clearly linear, and corresponds to a scaled pairwise permutation matrix.

Given this definition, it follows that Dni→a(vi) = Bi→a
Ba→i

and Dma→i(vi) = Ba→i
Bi→a

. The definitions of

Ba→i and Bi→a imply that

Ba→i =
∑

j∈N(a)\i

Bj→a , (A.48)

so

Dni→a(vi) =
Bi→a∑

j∈N(a)\iBj→a
and (A.49)

Dni→a(vi) + 1
Dni→a(vi)

=

∑
j∈N(a)Bj→a

Bi→a
. (A.50)

Similar relations hold for Dma→i(vi).

Given this choice of ~T (~x), we can choose values of ψ(k) and hkj (x) in equation 2.18 so that

the resulting ~F , coupled with the dynamics of equation 2.1, is equivalent to belief propagation.

Specifically, we construct a single summand of g(~x) in equations 2.16 and 2.18 for each value of

each hidden variable Vi, and for each configuration ~va of the variables in the neighborhood of each

factor fa. For the summand corresponding to value vi ∈ Vi, the component units are ma→i(vi) for

all a ∈ N(i); for the summand corresponding to configuration ~va ∈ ~Va, the component units are

ni→a(vi) for all i ∈ N(a). For each such summand k of g(~x), we choose ψ(k) to correspond to one of

the component units. We set hkj (x) = x
Dj
Dj+1 for every other component unit j 6= ψ(k) of summand

k, and set hkj (x) = 1 for all non-components j. As a result, the exponent of a unit in summand k is

zero for non-components and one for components other than ψ(k). Moreover, using equations 2.16

and A.50, the exponent of component unit ψ(k) is

Dψ(k) + 1
Dψ(k)

−
∑

m∈M\ψ(k)

Dψ(k) + 1
Dψ(k)

· Dm

Dm + 1
=
∑
m∈M Bm

Bψ(k)
−

∑
m∈M\ψ(k)

∑
n∈M Bn

Bψ(k)
· Bm∑

n∈M Bn
= 1 ,

where M is the set of messages with the same destination as message ψk, and Bm is the number of

observed variables behind message m. As can be seen from equation A.40, the belief propagation

message out of a variable node or factor node is always the product of all inputs except that com-

plementary to the output message. The choices of ψ(k) and hkj (x) detailed above ensure that the

gradient in equation 2.18 yields terms of the same form.

Moreover, for m ∈ M , where M is a set of messages with the same destination, equation A.49
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implies that (1 +Dm)−1 =
P
n∈M\m BnP
n∈M Bn

, and equations A.47 and A.48 imply that

T−1
ma→i(vi)

(~m,~n) =
1

Ba→i
· ni→a(vi)

=
1∑

j∈N(a)\iBj→a
· ni→a(vi) ,

so equation 2.18 yields

Fma→i(vi) =
1

Ba→i
· (1 +Dni→a(vi))

−1·

· ∂

∂ni→a(vi)

∑
i

∑
vi

wvi ·
∏

a∈N(i)

ma→i(vi) +
∑
a

∑
~va

w~va ·
∏

j∈N(a)

nj→a(vj)


=

1∑
j∈N(a)\iBj→a

·
∑
j∈N(a)\iBj→a∑
j∈N(a)Bj→a

· ∂

∂ni→a(vi)

∑
~va|vi

w~va ·
∏

j∈N(a)

nj→a(vj)


=

1∑
j∈N(a)Bj→a

·
∑
~va|vi

w~va ·
∏

j∈N(a)\i

nj→a(vj) . (A.51)

A complementary set of results holds for Fni→a(vi). The sum
∑
j∈N(a)Bj→a is always equal to

the total number of observed variables, so if w~va = fa(~va) and wvi = 1, then equation A.51 with

the dynamics of equation 2.1 is equivalent to belief propagation as characterized by equation A.40,

scaled by the number of observed variables. Moreover, since the parameterization is arbitrary, we

can simply scale all the parameters by the number of observed variables to obtain the exact belief

propagation dynamics.

Belief propagation only yields the gradient of the negative log likelihood via equations A.43

and A.44 when the input messages from the observed variables are set appropriately. Specifically,

equation A.44 requires that the messages from the observed variables be nobsi→a(ui) = δuivobsi in the

wake stage, and nalli→a(ui) = 1 in the sleep stage. As described in section 2.4, input dynamics do not

arise as part of equation A.51’s solution to the homogeneous part of equation 2.13; they come from

the solution to the full inhomogeneous equation. However, the gradient of Ewake from equation A.45

yields terms of the form

∂Ewake
∂mobs

a→i(ui)
= −

δuivobsi ·
∏
b∈N(i)\am

obs
b→i(ui)∑

j|Vj is observed

∏
a∈N(j)m

obs
a→j(v

obs
j )

= −
δuivobsi∑

j|Vj is observed

∏
a∈N(j)m

obs
a→j(v

obs
j )

, (A.52)

where Vi is an observed variable with value vobsi in the wake stage, since we restrict our attention

to the case where the observed variables correspond to leaf nodes in an acyclic factor graph. When

plugged into equation 2.10, which generalizes equation 2.13, this error function is not consistent
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with the expected input dynamics of nobsi→a. The error function Esleep yields a similar gradient,

which is correspondingly incompatible with the expected input dynamics of nalli→a. The desired

input dynamics only arise if we use an error function proportional to

Ewake(~vobs) = −
∑

i|Viis observed

∏
a∈N(i)

mobs
a→i(v

obs
i ) and

Esleep(~vobs) =
∑

i|Viis observed

∑
νi∈Vi

∏
a∈N(i)

mall
a→i(νi) . (A.53)

It is thus clear that our initial choice of the training function ~T was not correct.

A.8.4 An intrinsic gradient network with a nonlinear training function

which is identical to belief propagation

The desired input components of ~F (~x) are constant, so when restricted to the inputs, ∇~F>(~x) =

0, and the inhomogeneous part of equation 2.10 becomes ~T (~F (~x)) = ∇E. As we have seen in

equation A.52, if ~T (~x) is linear, ~T (~F (~x)) lacks the desired scaling by

N =

 ∑
i|Viis observed

∏
a∈N(i)

mobs
a→i(v

obs
i )

−1

.

However, if we modify ~T (~x) by scaling the previously linear function by N, it can be seen that the

desired inputs are indeed a solution to the inhomogeneous part of equation 2.10. Moreover, since

every element of ~T (~x) is scaled by the same factor, the set of dynamics ~F (~x) which satisfy the

homogeneous part of the solution is unchanged at the fixed point ~x∗ = ~F (~x∗), as can be seen from

equation 2.10. The resulting nonlinear training function is thus

Tni→a(vi)(~m,~n) =
Ba→i∑

i|Viis observed

∏
a∈N(i)m

obs
a→i(v

obs
i )

·ma→i(vi)

Tma→i(vi)(~m,~n) =
Bi→a∑

i|Viis observed

∏
a∈N(i)m

obs
a→i(v

obs
i )

· ni→a(vi) .

A complementary approach yields the training function for Esleep.

Since mobs
a→i(v

obs
i ) generally changes with repeated applications of the belief propagation ~F (~x) if

~x is not a fixed point, the scaling factor N need only be the same on the two sides of equation 2.10

at the fixed point. Thus, our chosen ~F , E, ~T satisfy equation 2.8, but not equation 2.10, and the

associated slack function is not the conventional ~S(~a,~b) = ~T (~a) − ~T (~b) of section 2.2. The correct

slack function can be derived directly from the intrinsic gradient equation (2.9).

This construction provides an alternative interpretation for belief propagation on acyclic fac-

tor graphs. Rather than maximizing the likelihood in a probabilistic model, from which only the
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marginal probabilities can ever be extracted, gradient descent on this intrinsic gradient network

directly minimizes an explicit error function (equation A.45) defined on the outputs of the network.

The messages in this network are deterministic, and need not be interpreted as representing proba-

bilities. Such networks can be generalized by considering related error functions, training functions,

and slack functions, which together yield alternative dynamics which still calculate the gradient of

a chosen error function.

In contrast, belief propagation is traditionally extended to recurrent networks by holding both

the local dynamics and the error function constant, resulting in loopy belief propagation. Whereas

belief propagation on acyclic factor graphs exactly calculates the marginal probabilities, and thus

the gradient of the log likelihood, this extension to loopy graphs is approximate and heuristic in

nature (Murphy et al., 1999). As a result, loopy belief propagation does not exactly calculate either

marginal probabilities or the gradient of the negative log likelihood. When used for training, such

approximate inference techniques can yield very poor results (Kulesza & Pereira, 2008).

The compatibility of the belief propagation dynamics with equation 2.10 depends upon the

ability to specify the number of observed variables behind a message, such that equation A.48 is

satisfied. This is not possible if there are loops in the graph. Indeed, there does not appear to

exist a training function ~T (~x) that satisfies equation 2.8 with output functions ~F (~x) defined by

belief propagation on a loopy graph. It is thus sensible to consider generalizations of the belief

propagation dynamics for which equation 2.8 can be satisfied on a wider range of topologies with

simple choices of ~T (~x), such as that given in equation 2.17. As an example, the internal messages of

loopy belief propagation are consistent with equation A.24 if ~T (~x) is a pairwise permutation matrix

and all factor and variable nodes have degree 2 · τ , but the requisite input messages satisfying the

full inhomogeneous equation A.22 are very different than the constant input messages used in loopy

belief propagation. In section 3.2, we construct a modular intrinsic gradient network with simple

input dynamics and internal dynamics qualitatively similar to those of loopy belief propagation.

A.9 Implementation details

We draw the initial parameters for the factor nodes of the intrinsic gradient network depicted in

figure 3.6, with thirty-six units in each direction of each hidden layer and visible layers of sizes

determined by the data set, from normalized uniform distributions with offsets and ranges listed in

table A.1. These distributions are normalized with respect to the network size by scaling both the

offsets and ranges by the inverse of the size4 of the largest layer to which the associated factor node

is connected. This normalization ensures that the average value of the inputs to each variable node

remains consistent despite variations in the layer sizes, given fixed inputs to the preceding factor
4By the size of a layer, we mean the number of units in each direction of the layer, or equivalently the number of

atomic variable nodes composing the associated composite variable node.
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bottom-up (B, C) top-down (N, O) recurrent (F, L) hierarchical (H, I)
polynomial offset 0.5 0.5 0.5 0.5
polynomial range 5 5 0 0.1
sigmoid offset 0.2 7 16 12
sigmoid range 16 64 3 16

Table A.1: Parameters governing the initial uniform distribution of the simulation parameters. Given
offset o and range r, the probability mass function for parameter x is ρ(x) = 1

r if 0 ≤ x−o
r ≤ 1 and

0 otherwise. The letters in parentheses correspond to those in figure 3.6.

node.

These offset and range hyperparameters are chosen with some care to ensure that both the wake

and sleep networks initially converge to stable fixed points with non-zero unit activities, with the

average activity of the units in the sleep network less than that in the wake network. The motivation

for this initial balance between wake and sleep will be explained below. With some combinations

of h(x), error functions, and dynamics, we have had difficulty finding hyperparameters that induce

the dynamics to converge to non-zero unit activities. This is consistent with the observed properties

of the brain, which can enter epileptic oscillations or an unresponsive coma when the balance of

modulatory neurotransmitters is disrupted (McCormick, 1992). As in our intrinsic gradient networks,

stable neural dynamics thus appear to be dependent upon appropriate hyperparameters, rather than

being an intrinsic and inevitable property of the brain’s organization. We view the selection of

effective hyperparameters as an engineering challenge, likely solved by evolutionary adaptation in

the brain.

Unfortunately, as training progresses, the sleep network input ~F (~x) = T−1 · ~G(~x), where Gi(~x) =

−xi · log (|xi|), tends to induce oscillations using dynamics like those of equation 2.1. Instead of the

sleep network input directly induced by Esleep of equation 3.23, we thus use inputs that induce a more

stable approximation to the gradient of the sleep error function. In section 2.3.5, we observed that

~F (~x) = T · ~x constitutes a solution to the homogeneous part of the intrinsic gradient equation (2.9)

given the assumptions of section 2.3 and a pairwise permutation matrix T. If we restrict the set of

k for which hkj (x) = 1 to k such that xψ(k) is an output unit, and choose hkj (x) = 0 otherwise, we

similarly find that adding a scaled copy of the outputs to the complementary inputs (as defined by

pairwise permutation matrix T) of an intrinsic gradient network yields another intrinsic gradient

network with an identical error function.

As a variation on the method discussed in section 2.4, this linear function of ~x in the input can

also be understood as a constant input that is adjusted until the system reaches a fixed point. Before

a fixed point is reached, we can imagine ourselves continuously altering the constant input to be

~F (~x) = T · ~α, where αi = xi for output units xi and αi = 0 for non-output units. Once we reach

a fixed point, we know what the real constant input should be, and could re-run the network with

the final value of ~α held constant and find the same fixed point. At this fixed point, the carefully
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selected constant input T · ~α, where αi = xi for output units xi and αi = 0 otherwise, exactly

balances out the sleep error function Esleep(x) = 1
2 ·
∑
i x

2
i in the intrinsic gradient equation (2.9).

Thus, we can consider the error function for which we have calculated the gradient using this input

to be the sleep stage error, so long as ~α is held constant at its final value. Of course, any training

step that alters the internal parameters will generally change the constant input required to balance

Esleep(x) = 1
2 ·
∑
i x

2
i , so the network for which we are minimizing the sleep error function changes

as we train the network. However, this perturbation of the “constant” inputs will grow small as we

approach a local maximum of the negative sum of squares error and the parameters converge. In

the simulations of the sleep network in section 3.4, we thus use the input ~F (~x) = T · ~xoutput, where

~xoutputi = xi for output units xi and xoutputi = 0 otherwise, in place of ~F (~x) = T−1 · ~G(~x), where

Gi(~x) = −xi · log (|xi|).

To keep the wake and sleep network fixed points near each other in accordance with section 3.4.2,

we also mix the wake and sleep error functions. Specifically, we add a constant component, pro-

portional to the bottom-up input originally dictated by Ewake of equation 3.23, to the input of

both the wake network and the sleep network. The difference between the wake and sleep error

functions (assuming they converge to the same fixed point) is not altered by this modification. We

then scale down both the wake and the sleep error functions so that the final bottom-up wake input

is unchanged by the overall transformation. This scaling does not alter the location of the maxima

of the difference between the wake and sleep error functions, and simply scales the gradients by a

constant factor.

Because of the resulting wake error function component included in the sleep network, it seems to

be helpful to choose the initial parameters so the wake network is initially more active than the sleep

network, as mentioned above. Otherwise, the minimization of the sleep error function, including

the component from the original wake error function, dominates the learning process, whereas the

wake error function should be maximized rather than minimized. If the wake network is not initially

more active than the sleep network, the networks tend to learn fixed points with the sign of the

bottom-level outputs flipped relative to the desired outputs.

In the pattern classification tasks we explore in sections 3.4.6 and 3.4.8, there are many bottom-

up inputs, corresponding to the pixels of an image, but very few top-down inputs, corresponding to

the possible categories of the images. To balance the importance of the pixel representation of the

image and its classification in the error function, we scale up the components of the error function

corresponding to the classification. This effectively makes many copies of the top-level units (Pi in

figure 3.6). The intrinsic gradient equation (2.9) is linear in ~F given the assumptions of section 2.3,

so scaling the error function scales the inputs by the same factor. We choose the scaling factors

so that the effective number of top-level units is comparable to the number of bottom-level units

(Ai in figure 3.6). When training, however, we scale down the gradient components associated with
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units Ni and Oi to the same degree that the top-level inputs are scaled up. This ensures that the

associated factor node is trained like one of a collection of many factor nodes which happen to

have identical parameters. These implicitly replicated factor nodes are connected to the implicitly

replicated top-level variable nodes, each of which makes a contribution to the error function with the

same magnitude as the bottom-level variable node. If we didn’t scale down the gradient components

associated with units Ni and Oi, the associated factor node would be trained like a single factor

node connected to a single top-level variable node of outsized importance, breaking symmetry with

the bottom of the hierarchy. The final error functions are:

Ewake =
1

1 + maxi
(
swake−in−sleepi

) ·∑
i

svar−duplicationi · (1 + swake−in−sleepi ) · ci · xi and

Esleep =
1

1 + maxi
(
swake−in−sleepi

) ·∑
i

svar−duplicationi ·
(

1
2
· x2

i + swake−in−sleepi · ci · xi
)
,

(A.54)

where scaling factor swake−in−sleepi = 1 if xi is a bottom-level output and zero otherwise, and scaling

factor svar−duplicationi is comparable to the ratio of the number of top-down and bottom-up inputs

if xi is a top-level output,5 and one otherwise.

If the parameters of the factor node connecting the first and second hidden layers are relatively

uniform, the component of a fixed point restricted to the bottom-up input and first hidden layer is

largely independent of the component of the fixed point restricted to the top-down input and second

hidden layer. If we wish to train a test network to produce a classification or regression in the

top-level outputs corresponding to the bottom-up inputs, then spurious fixed points due to incorrect

pairings of bottom-up inputs and top-level outputs must be suppressed as described in section 3.4.4,

even as fixed points corresponding to correct pairings are adjusted to exactly produce the desired

outputs. The constant bottom-up input in the sleep stage (controlled by swake−in−sleepi ) tends to

induce the attractor found in the first hidden layer to be similar in paired wake and sleep stages.

We do not make a complementary modification to the top-down inputs, since that would induce

the sleep stage fixed point in the second hidden layer to always match that in the wake stage, even

when stable fixed points corresponding to incorrect combinations exist in the test network, where

no top-down constant input can be provided.

In our implementation of belief-propagating intrinsic gradient network variable nodes, we use

hkj (x) = x1/3 if all inputs to the unit are greater than zero, and hkj (x) = 0 otherwise. This corre-

5The exact value of svar−duplicationi for the top-level outputs depends upon the particular application, and is
specified in sections 3.4.6 and 3.4.8.
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sponds, for instance, to the output function

Fα(~x) =


x
2/3
b ·x2/3

c

x
2/3
a

xa, xb, xc ≥ 0

0 otherwise

for variable node unit xα in section 3.2, and ensures that the units always take on non-negative

real values, like the firing rates of neurons. We can view this implementation of belief-propagating

intrinsic gradient networks as mixing two solutions to the homogeneous intrinsic gradient equation

for each atomic variable node. We use the solution described in section 3.2 when all inputs are

greater than zero, and the solution ~F (~x) = 0 when any input is less than or equal to zero. Because

all combinations of such solutions satisfy the intrinsic gradient equation (2.9), the gradient of the

associated network is always calculated correctly at a fixed point. At the boundaries between sets of

output functions, the gradient of this hybrid network is not defined. However, the output functions

and thus the gradient diverge for the original set of output functions when xi = 0 anyway, so

difficulties of this sort seem unavoidable with such symmetric polynomial solutions to the intrinsic

gradient equation. Unsurprisingly, given that the output functions are not continuous when the

denominator equals zero, we observe that dynamics like those of equation 2.1 sometimes do not

converge to a fixed point using this intrinsic gradient network, even though the gradient is correctly

calculated when a fixed point is found (for instance, see figure 3.8). Nevertheless, training is generally

effective, as we demonstrate in sections 3.4.6 and 3.4.8.

In our implementation of hierarchical sigmoidal intrinsic gradient networks, we use hkj (x) = x
1+x

if all inputs to the unit are greater than zero and hkj (x) = 0 otherwise, instead of hkj (x) = σ(x1/2).

If T exchanges the pairs of units xai ↔ xαi , xbi ↔ xβi , and xci ↔ xγi for all i (as depicted in
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figures 3.2, 3.3, and 3.4) and ψ(k) = bi, then

Fαi(~x) = 2 ·
xai
xbi(

1 +
(
xai
xbi

)2
)2 · xbi ·

(
xci
xbi

)2

1 +
(
xci
xbi

)2

Fβi(~x) = 2 ·

(
xai
xbi

)2

1 +
(
xai
xbi

)2 · xbi ·

(
xci
xbi

)2

1 +
(
xci
xbi

)2

− 2 · xai ·
xai
xbi(

1 +
(
xai
xbi

)2
)2 ·

(
xci
xbi

)2

1 +
(
xci
xbi

)2 −

(
xai
xbi

)2

1 +
(
xai
xbi

)2 · 2 · xci ·
xci
xbi(

1 +
(
xci
xbi

)2
)2

Fγi(~x) =

(
xai
xbi

)2

1 +
(
xai
xbi

)2 · xbi · 2 ·
xci
xbi(

1 +
(
xci
xbi

)2
)2

for i ∈ {1, 2, · · · , n} if xai , xbi , xci > 0. If xai , xbi , or xci is less than or equal to zero, then

Fαi(~x) = Fβi(~x) = Fγi(~x) = 0. This function is sigmoidal like the logistic function, but is less apt

to produce negative values for the output functions when xψ(k) < 0; it is equivalent to a one-sided

softsign function (Bergstra et al., 2009). Sigmoidal functions hkj (x) are convenient, since they induce

output functions that are continuous at xψ(k) = 0, and thus more likely to converge to a fixed point

using dynamics like those of equation 2.1, as is evident in figure 3.13.

To find approximate fixed points, we initialize the units randomly from a uniform distribution

between zero and one. We then perform 500 parallel updates using the dynamics

xi(t+ 1) = 0.9 · xi(t) + 0.1 · Fi(~x(t)) (A.55)

for the recurrent projections from the variable nodes (units Ei and Ki in figure 3.6) and

xi(t+ 1) = 0.8 · xi(t) + 0.2 · Fi(~x(t)) (A.56)

for all other units, corresponding to equation 2.3. Although this procedure does not guarantee

convergence to a fixed point, its sufficiency is empirically demonstrated in sections 3.4.6 and 3.4.8.
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