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ABSTR ACT 

Systematic m ethods are used to find all possible conservation 

laws of a given type for certain systems of partial differ e ntial equations , 

including some from fluid mechanics . The n ecessary and sufficie nt 

conditions for a vec to r to b e divergence-free are found in the form of a 

system of first order, linear, homogeneous partial differentialequations, 

u sually overdetermined. Incompressible , inviscid fluid flow is treated 

in the unsteady two-dimensional and s t eady three - dimens i onal cases . A 

theorem about the degrees of freedom of partial differential equations, 

needed for finding conservation laws, is proven. Derivatives of the 

dependent variables are then included in the divergence-free vectors. 

Conse rvation laws for Laplace 's equation are found w i th the aid of 

complex variables, used also to treat the two-dimensional steady flow 

case whe n first derivatives are included in the vectors . Conservation 

laws, depending on an arbitrary number of derivatives , are found for 

a gene ral first order quasi-linear equation in two independent variables, 

using two differential operators, which are associated with the deriv­

atives with r espect to the two independent variables. Linear totally 

hyperbolic systems are then treated using an obvious generalization of 

the above operators. 



CHAPTER 

I 

II 

III 

IV 

v 

VI 

VII 

VIII 

-iv-

TABLE OF CONTENTS 

TITLE PAGE 

Introduction 1 

Incompressible, Inviscid, T ime - dependent , 
Two-dimensional Flow 6 

Incompressible , Inviscid, Steady- state , Three -
Dimensional Flow 1 6 

D egrees of Freedom in Partial Differential Equations 25 

Laplace• s Equation in Two Dimensions 27 

Incompressible, Inviscid, Steady-state, Two­
Dimensional Flow, Incorporating First 
De rivatives 46 

First Order Equations 61 

Totally Hyperbolic Equations 70 



-1-

Chapter I 

Introduction 

By a conservation law, we mean the expression stating that the 

divergence of a vector (or tensor) is ze ro . In the problems considered, 

we will b e given a set of independent variables, say x., i = 1, .. . , n, 
1 

and a set of dependent variables , say u., j = 1, . .. , m, such that the 
J 

dependence of u. on x . is given through a set of partial differential 
J 1 

equations. We the n look for all vectors V depending explicitly on x., 
1 

u., and deriva tives of u. with respect to x., such that as an implicit 
J J 1 

function of x., the divergence of V is zero for all u.(x1 , • • . , x ) 
1 J n 

that satisfy the set of partial differential equations. 

Given any two surfaces s 1 and Sz such that s 1 encloses Sz , 

we know, by Gauss• theorem, that if V is divergence - free in the region 

between s 1 a nd Sz, then 

J V · n_ ds = J V · n_ ds 

Sz 

where n is normal to the surface. This property of a divergence-free 

vector can be used in singular ~tperturbation theory to relate information 

from one region of space to another , e . g . I-Dee Chang [1], in a study 

of Navier-Stokes flow at a large distance from a finite body, re lated 

unknown constants in the perturbation expansion (far away fr om the body) 

to quantities defined at the body such as lift, drag, and torque . This 

same property could also be used as some sort of check on a numerical 

solution of a set of partial differential equations. Whitham [2] has also 

found it useful to obtain conservation·laws for the formalism of his 

averaging theory for nonlinear dispersive waves . 
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Osborn [3] has discussed the existence of conservation laws by 

use of pfaffian forms. However, only constant coefficient partial 

differential equations are considered. The more general case was to 

be treated in a later paper. The problem of transforming a set of first 

order equations , where the independent variables did not appear 

explicitly, to conservation form was considered by Loewner [ 4] . He 

considered mainly elliptical systems and by use of certain mappings 

obtained inequalities for the behavior of stationary , two - dimensional, 

compressible flow on the boundary of the flow region. A nonlinear 

wave equation, was treated by Kruskal and 

Zabusky [5] , and an infinite number of polynomial invariants and con-

servation laws were found. In a series of papers on the Kortewe g -

deVries equation [6], [7], [8], all the polynomial conservation laws 

were found. The conservation laws were obtained by use of a certain 

nonlinear transformation depending on an arbitrary parameter . By 

use of operators comparable to those in Chapter VII a uniqueness 

theorem is then proven and other recursion formuias derived for the 

divergence-free vectors. The techniques used in this paper are 

similar to those of Howard [9] who found all possible divergence 

formulas involving vorticity, i.e. all formulas of the type 

f(_!f, q, ~) = div v (.!f, ~. ru 

where Q = curlS: Lagerstrom [10] made more precise the formulation 

of the problem of finding divergence formulas (conservation laws in-

eluded) and the type of theorem one nee ds to get the equations for which 

the solutions give all possible divergence formulas . The results were 
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applied to two-dimensional incompressible, in viscid, steady flow. 

Methods were also developed for obtaining conservation laws for l ess 

restricted flows, but not all conservation laws were found. 

By forming the divergence expression and setting it equal to ze ro, 

we can deduce necessary conditions for a vector to be diver gence -free . 

The idea is to get enough of these necessary conditions so that they will 

also be sufficient conditions. These conditions will always b e in the form 

of linear, homogeneous, fi rst order partial differential equations for the 

components of the vector . This system of equations will almost always 

be overdetermined , restricting the number of solutions. The general 

solution of these equations will yield all possible divergence -free v ectors·. 

In Chapters II and III we extend the results of Lagerstrom to the 

time - dependent, two-dimensional case and the steady three-dimensional 

case, respectively. The vectors arrived at in Chapter II are just slight 

generalizations of the physically meaningful ones . In Chapter III we find 

the same vectors as Lagerstrom did, i.e . the physically meaningful ones . 

The only difference is in the dimension of the vectors. In Chapter IV a 

general theorem is proven conc e rning what we may specify about a solu-

tion to a system of partial differential equations and still have it exist. 

This type of theorem is needed in getting the n e cessary conditions for a 

vector to be divergence-free. This theorem i s used in the following 

chapters to incorporate derivative s of the dependent variables in the 

divergence - free vectors. Laplace's equation is considered in Chapter 

V with the use of complex variables and the introduction of an operator 

associated with the derivative of an analytic function. The results are 

used to conclude all possible one -parameter continuous transformations 

which leave the action integral invariant. In Chapter VI w e incorporate 



-4-

first derivatives in the divergence-free vectors for the steady two-

dimensional flow previously discussed by Lagerstrom, and because 

analytic functions appea r, we make use of the above operator to s olve 

the r esultant equations. A general first order quasi-linear equation in 

two independe nt variables is considered in Chapte r VII which motivates 

the introduc tion of two ope rator s associated with the derivative s with 

respect to each independent variable . It is found that functions of the 

dependent and independent variables and derivatives of the dependent 

variables which are constant along characteristics play an essential 

rol e. We generalize the above results in Chapter VIII in which a system 

of first order totally hyperbolic linear equations is studied. This 

motivates a simple generalization of the operators in the previous 

chapter . Again, functions which are constant along characte ristics 

enter, but because we are d ealing with a system and not just one 

equation, it is possible that no such functions exist that depen d on a 

certain order derivative of the dependent variables . In that case , 

quadratic functions of these variabl es appear. Always appearing in th e 

general divergence-free vector V is the trivial one 

where x 1 and Xz are the independent variables , 
d 

dxl 
and 

.. 

d 
dx z 

repr~sent total partial derivatives , and f is an arbitrary function of 

the independent va r iables , depende nt variables, and derivatives of the 

dependent variables . ' 

It appears that the method in Chapte r VIII can be us ed to handle 

other systems of equations . For the hyperbolic case for non- distinct 
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characteristic s the results might generalize nicely, but for the para -

bolic case where the matrix cannot be diagonalized, as exemplified by 

the Korteweg-deVries equation 

ut + uu + u = 0, 
X XXX 

a general result might be difficult to attain. It seems if the e lliptic case 

could be handled in a manne r similar to that as in Chapter VIII, but 

some generalization to complex variables would be necessary. 
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Chapter II 

Incompressible , Inviscid , Time-dep e nde nt , Two-dimensional Flow. 

The equations describing two - dimensi<;mal in viscid, incompres -

s i ble, time - dependent flow are given as 

q1 x + qz = 0 
1 Xz 

(1) 

(2 I) 

qz t + q 1 qz x + qz qz + P = 0 
1 Xz xz 

( 3') 

whe re g_ = (q1 , q 2 ) is the velocity and p the pressure . We first prove 

a lemma concerning the exi stence of soluti ons of the above equations. 

Lemma: There exists a solution of (1), (2 1 ) , (3 1
) such that at any fixed , 

but arbitrary point (t0 , x 10 , x 20) we. may prescribe arbitr arily the 

values of ~· p , ~x (where (q1 x
1 
)0 + (q2 x

2
)0 = 0), p~, and Pt • 

This can be done by considering 9.. as a linear function in ~ 

and t , i.e . 

q = ~0 + A(1£- 2£o) - (A9..o + a)(t-t0 ) 

IA I 2 
p = Po + b(t-to) + ~ · (~-.!So) + 2 (.!£- 2£ o) 
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A: matrix A .. , arbitrary except that A 11 + A2z = 0 
1J 

I A I = determinant of A 

q 0 , p 0 , ~. b arbitrary constants 

Note : For a 2 X 2 matrix whose trace is zero Az = -I A I I, I b e ing the 

identity matrix. The above functions q and p satisfy (1), (2'), and 

(3'). Since at x = 2£ 0 and t = t 0 , 

the lemma is proven. 

P =Po 

q. =A .. 
1 xj 1J 

p = a. x . 1 
1 

p = b t 

For our purposes it is more convenient to use the total head, 
qZ1 +qZz 

h=p + ---
2 

instead of the pressure . Equations (2') and (3')become 

(2) 

qz t + ( qz x - q 1 x ) q 1 + h = 0 
1 z Xz 

(3) 

From the previous lemma it can be seen that h, h , and ht can be 
x. 

1 

chosen arbitrarily at (t0 ,x 0 ). 

We now look for all vectors V(2£, t,51_,h) = (V0 , V 1 , V 2 ) such 

that div V = 0 for all q,h satisfying (1), (2), and (3). 
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Writing out the divergence formula we ge t 

=> 

using (1), (2), and (3) 

L et us now choose a solution of (1), (2), (3) where the values of 

t, ~. q, and h are fixed but arbitrary. For the se fixed values let 

ht, h~, and qx be zero, which the above lemma allows . 

must have 

av0 + av1 + avz = 0 
at axl axz 

Then we 

Sine~ V0 , V 1 , V2 do not depend on any gradients of q and h we 

must have 
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( 4) 

For the same values of t, ~, g_, and h choose the following six 

solutions of (l), (2) , (3) (whose existence are guaranteed by the above 

lemma): 

I) A solution with h = 1. 
t ' 

all other gradients zer o 

II) A solution with qlx = 1; all other gradients zero 
1 

III) A solution with qlxz = l; all other gradients zero · 

IV) A solution with qzxl = l; all other g radients zero 

V) A solution with h = 1; all other g radients zero 
XI 

VI) A solution with h = 1; all other gradients zero 
Xz 

From equation ( 4)' we then have 

av0 = 0 (a) 
ah 

av1 _ av, 
= 0 (b) 

aq l 8qz 

av0 qz + av0 ql + 
av2 = 0 (c) 

aql oqz aql 

av0 qz - a vo ql + 
av 1 = 0 (d) 

()ql 8qz oqz 

- a v 0 + av 1 = 0 (e) 
aql ah 

- av0 + av2 = 0 (f) 
Bqz ah 
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Along with 

(g) 

derived previously, (a)-(g) are equations which must be satisfied at the 

fixed values t, ~. ~· and h. However, since these values were arbitrary, 

(a) -(g) are partial differential equations in the 6 independent variables 

t, ~. q, and h which must be satisfied at all points t, ~.~·h. (a)- (g) are 

necessary conditions for divV(t,~,g_,h) = 0 for all g_ and h which are 

solutions to (1), (2), and (3); they are also seen to be sufficient conditions . 

Hence, the general solution of (a)-(g) will yield all possible divergence-

free vectors V (t,~.s..h) of the system (1), (2), and (3). 

Using (e) and(£) in (c) and (d), we obtain 

( C I) 

( d') 

(c'), (d') and (b) are equations one gets from the steady state flow case 

and are solved in [ 10], pp. 12-14. In the non-steady case, w~ treat t 

along with ~ as a parameter in the solution of (c'), (d'), and (b) with 

the result that 

2 2 
q 1 -q 2 

vl = F(t,~,h)ql+cdt,x)( 2 ) + c2(t , ~)qlq2 + cdt.~)h +ddt.~) 

Equations (e) and (f) imply 
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av, _ aF 
= ah - ah qz + c z 

Thus 

But from equation (a) 

az F 
0 > F = a(t,2£)h + b(t,.e.) 

ah2 = 
avo 

ah = 0 > 
ad0 

ah = 0 > cto = do(t,2£) 

Thus after satisfying (a)- (f) , we have 

z z 

V 0 = a(q
1

; qz) + c1q1 + czqz +do 

z z 

(
q z -q 1) 

V2 = (ah+b)q2 + c1q1qz + Cz 2 + c 2 h + d2 

where all unknown coefficients are functions of t and 2£ only. 

Using (g) and equating coefficients of independent functions 
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equal to zero, we get 

at+ cl - Cz = 0 (i} cl + cz = 0 (vi} 
xl Xz x l Xz 

a - cl + Cz = 0 (ii) c 1 t + b = 0 (vii) 
t xl xz xi 

Cz + cl = 0 (iii) Czt + b = 0 (viii} 
xl Xz Xz 

a = 0 (iv} ~ t + dl + dz (ix} 
xl xl Xz 

a = 0 (v) 
Xz 

(i), (ii), (i v), and ( v) yield a = constant. 

(i), (ii), (vi) imply c 1 = c.1 (t, x 2 ), c 2 = c 2 (t, x 1). Therefore by (iii} 

c 2 = -c = c(t) 
xl 1 Xz 

c 1 = -c(t)x2 + r(t) 

c 2 =c(t}x1 +s(t) 

(vii} then gives 

b = c ' (t)xz - r' (t) 
xl 

b = c' (t}x1 Xz - r' (t) X1 + w(x2 , t) 

From (viii} 
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I I I 

c (t)x1 + s (t) + c (t)x1 + w = 0 
Xz 

I 

;::. c (t) = 0 ;::. c = constant 

I 

w = -s (t)xz + v(t) 

I I 

b = -r (t)x1 - s (t)xz + v(t) 

Since (a)- (g) were the necessary and sufficient conditions for V 

to be divergence free, the most general divergence free vector for 

equations (1), (2), and (3) depending only on t, ~. 9..· and h is 

z z 

V 1 = [ah- r
1

(t)x1 - s
1

(t)x2 + v(t)Jq 1 +[- cx2 + r(t)J [q 
1 ~qz] 

z z 

+ [cx1 + s(t)J [qz~q 1 ]+ [cx 1 + s(t)Jh + d2 (t,~) 

whe re r(t), s(t), v(t), a, c are arbitrary and Q = (d0 , d 1 , dz) is an· 

arbitrary vector function of t, x 1 , Xz such that div g_ = 0 . 
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V can then be seen to be a linear combination of the following 

six vectors (returning to the variable p): 

y(l) - .!. (qZ + qZ) 
0 - z 1 z 

vi 1 ) = [p + i (qzl + qzz)] ql 

V~ 1 ) = [p + t (qzl + qZz)] qz 

Vo(z) -- -xzqi+xlq1 

V (z) - ( z ) 1 - -xz q 1 + P + x1 q1 qz 

V~Z) = -xz ql qz + Xl (qZz + p) 

V ~3 ) = r ( t) q 1 

V~3 ) : -r 1 (t)xl ql + r(t)(qZl + p) 

y~3) = -r'(t)xlqz + r(t)qlqz 

V~4 ) = s (t)qz 

V1(4) -- I ( ) ( ) - s t Xz q 1 + s t q 1 qz 

V ~ 4 
) = - s ' ( t) xz qz + s ( t )( q zz + p) 

V~5 ) = o 

V~5 ) = v(t)q1 

V~s) = v(t)qz 

V~6 ) = d0 (t, ~) 

vi6
) = ddt,~) 

V~6 ) = dz (t, ~) 

where d 0 t + d 1 + dz = 0 
1 xl Xz 
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V(l) and V(z) express conservation of energy and angular momentum, 

r espective ly. V(3) and V(
4

) are ge neralizations of the conser vation of 

mome ntum vector in the x 1 and x 2 directions, r es p e ctively. V( s) is 

e ssentially the conservation of mass vector, and V( b) is a trivial 

vector not dependent on system (1), (· 2) and {3). 
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Chap t e r Ill 

Inc ompr e ssible , I nviscid , Ste ady - s t a t e , Thr e e -dim ens ion al Flow 

The e quations de scribing three -dime nsional ste ady, i ncompre s-

sible, inviscid flow are 

q . . = 0 
J,J 

q . Q •• + p . 
J "1, J , 1 

= 0 

(.j = k) 
J 

(1) 

i = 1, 2, 3 ( 2) 

where, in this chapter, the summation convent ion is used ( j is sum m ed 

over 1, 2, 3 ), q = (q1 , qz, q 3 ) is the velocity, and p is t he pre ss u r e. 

Lemma: There e xists a solution of the above e quat ion s s u ch t h at a t any 

fixed but arbitrary point (x1 , 
0 

the values of q, p, and ~.k 

( qk . q . ·) . ,J J,1 0 

x 2 , x 3 ) we may prescribe arbitrarily 
0 0 

as long as (o . . ) = 0 and (o .. q . \ = 
"1,1 o ""l,J J,k)o 

Proof: The second equation is equivalent to (by using p .k = p k ' ) 
'1 , 1 

Assume 

A = matrix (A . . ) 
1J 

_g0 arbitrary vect or 

(All second deriv atives of q are equal to z e ro. ) 
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As long as the two above conditions are satisfied by A , the n 

q = q 0 + A(x-~0 ) is a solution. We can then solve for p which will be 

a quadratic function of ~- x 0, and since there will be an arbitrary 

constant in p we take that to be the prescribed value of p at ~ = ~0 • 

We also note that at ~=x 0 , q= .So· 

Instead of p we will use, for convenience, h, the total head 

From the above lemma we note that there exists a solution with h 

chosen arbitrarily at ~0 • 

We now look for vectors V(x, q, h) such that divV = 0 for all 

q, h satisfying (l), (2), and{3). Writing out divV we get 

av. av. av . 
l l l --:::. - + --:::.- q .. + '='h h. = 0 

uX. uq. J,l u ,1 
l J 

Since h. = p. + q .q .. = q. ( q .. - a .. } we have 
,l ,l J J,l J J,l "l,J 

For any arb. 

av. ( av. av. av. ) __ l + --1+ __ l q.- __ J q .. = 0 
ax. aq. oh J oh % J,l 

l J 

x, q, h we first pick q .. = 0 for all j ,i. Thus 
J,l 

{3) 
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av. 
l = 0 ( 4 ) ax.-

1 

at x,_s,h since v does not depend on q . .. Therefore 
J, l 

( avi av. .av. 

~) l -.ai q . . = 0 + 8h q . 
aq. J J, l 

J 

For the same values of x, .s, h and for each 1, m, 1 :1: m, choose 

q .. = 1 for j = 1, i = m and q . . = 0 otherwise. This can be done by 
J, l J, l 

the above lemma since 

q . k qk . = ~ k. qk . J, , l , , J = 0 

This yields the e quation 

and a . . = 0 
~,l 

= 0 1 :1: m · (5) 

Next we choose q 1 , 1 = 1, qz, 2 = -1, Cb, 3 = 0 which, again, is allowed 

by the lemma. This gives the e quations 

(6) 

Simi~arly 

~v 1 - av3 - o 
· ql a Cb - ( 7 ). ( 7 I) 
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Equations (7) and (7') are equivalent when ( 6) is used. Since t h e above 

e quat ions are to be satisfied at any arbitrary point .::5_. _s, h, they must 

be satisfied for all x, q, h. Thus (4), (5), (6), (7) or (7') are the 

necessary, and also see n to b e sufficient, conditions for div V = 0. 

For (.£, m) = (2,1) and (1,2), r e spec tive ly, we get 

av1 + a;: 1 _ av 2 q
1 

= 0 aqz h qz ah (8) 

(9) 

(6), (8), (9) are equations obtained for the two-dimensional case and are 

solved in [10], pp . l2-14, as was previously mentioned in Chapter II. The 

solution of (6), (8), (9) is then 
2 2 

V1 = F ( x, h, q., ) q 1 + C 1 {X, q 3 ) ( q \- q 2 ) + C {X q ) q n- + c {X n- ) h + d,.., ( X n- ) .. z_, 3 1 --u: 1_•-u 1_• -u 

( 10 ) 

l l 

Vz = F(x, h, %)qz + c 1(x,%)q1 qz + Cz(x,%)(q z; q 1 ) + cz{x,%)h+ dz(x, % ) 

{11) 

Substituting into 

U = 3, m = 2) 

y i elds 
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L et '12 = 0 which implies 

Therefore, we must have 

c 2 = 0 
'h 

2 

---> d2 = -c2 (x ) q 3 + d 2 (_x ) 
- 2 

Using 

(i = 3, m = l) 

we have 

2 2 

F 'h q 1 + c 1'h ( q 1;q 2) + c 1'h h+ d1'h + Fh ql q3 + c1 q3 = ~h ql 

Thus, we must have (similar to the preceding argum.ent) 

2 

d1 = -cdx) ~ + dd_x) 
- 2 

(12) 

(13) 

(14) 

(15) 

(16) 
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We now use 

(1 = 2, m = 3) 

giving from (11) and (16) 

so that 

2 

V 3 = -~ F + c 2 q 3 q2 + M(x, q 1 , q 3 , h ) 
2 q3 -

(17) 

However, (16) implies 

2 
q . 
_2F h+Mh 2 q3 . . 

Therefore, we must have 

(18) 

and 

(19) 

And now using 

( .R. = 1, m = 3) 
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with ( 1 0), ( 16 ) , ( 1 7 ) , ( 18 ) , ( 19 ) we get 

z 
N +g q 1 =c1CJJ >N=-.3..lg + c1q1q3+ P(~ q3) 

ql CJJ 2 CJJ 

Equation ( 7) gives, using the above results 

z z 

g = q1+qz. g thg fP 
2 q3 q3 q3 q3 q3 

Therefore, we must have 

(20) 

the arbitrary function of x being absorbed in · F 2 (x, q 3), and 

z 
P = g > P = c3 (~) ~ f d 3 (~) q3 2 

(21) 

Thus, we have 

z z z 
vl. = f(x,h)qz. f c2. <.~)h f cd~)ql G.2 + c2. ~)( qz.-~ 1- q 3) + c3 (~)qz. CJJ f dz. (~) (23) 

z z z 
~ = f(.x,h)q 3 f c3 (~)hf cdx)q1 CJJf c 2 (~)G.lCJJf c3 (~)( q 3 -~ 1 -q 2)f d3 (~) (24) 

The last equation to be solved is (4), which becomes, using (22)-(24), 
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Again, using the independence of the coefficients of the functions of ~· 

we have 

f = 0 > f = f( h) 
X. 

l 

Equations ( 27 ) - ( 30 ) give as solutions 

(25 ) 

( 26) 

(2 7) 

( 28),(29),( 30 ) 

( 31) 

where a 1 , az , a 3 , e 1 , ez, e3 are arbitrary constants. We can write ( 31} 
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as 

and V can now be written 

V = f {h) g_ + { 9. o 9.. + pi) { a X ~ + ~ ) + .£ {?f) 

or, letting 

{L .. = q.q . + p o .. ) 
lJ 1 J lJ 

where 

f{h) is an arbitrary function of h 

~. ~ are arbitrary constant vectors 

.£{?f) is an arbitrary divergence-free vector function of .2£ 

Note: x X L is defined as € . x L . 
- = 1mn m nJ 

so that . ?fX L is a second order 

tensor . We then see that L{~X?f) = where 11 T 11 

denotes the transpose. 

V thus consists of a sum of vectors which represent, respectively, 

constancy of total head along streamlines and conservation of mass, 

conservation of angular momentum, conservation of momentum, and a 

trivial divergence-free vector . We see that the only conservation laws 

obtained arc the physically familiar ones . 
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Chapter IV 

D egree s of Free dom in Partial Differential Equat ions 

In obtaining conservation laws, we make very strong us e of what 

is a.llowe d to be prescribed in a solution to a P. D. E . To this end the 

Cauchy-Kovalevskaya theorem is considered. The t h eorem for a system 

of m first order equati ons for the functions u
1

, •• • , urn of the indepe n-

dent variable s x
1

, .. . , x states that the system 
n 

( k = l , . . . , m ) 

( 
ou. 
ox~ does not appear i n with Cauchy initial data 

uk I = <I> k ( x z, ... , x m ) 

x 1 =0 

(k ·= l, ... , m .) , 

where <j>k i s assumed regular whe n its argume nts become zero and fk 

is assumed regular when its arguments become the initial values, 

possesses a unique regular solution. This the ore m can obviously b e 

ge neralize d to the case where the initial data are evaluated on x 1 = c 1 

(constant) and <j>k is assume d regular whe n its arguments take on 

constant ( not n e cessarily zero) values . In parti cular, ....,e could choose 

<j>k . to b e a t e rminating Tayl or series whe re the choice for 

p = 0, l, ... , N N arbitrary 

evaluated at x = c is c omplete l y arbitrary. We now state the above in 

a theorem. 
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T he ore m: For the sys te m of m equat ion s for the fu nctions U I • • • I U 
1 m 

of the independent variable s x
1

1 ••• 1 xn 

(k = 11 ... 1 m) 

au. ) 
(ax~ does not appear in fk , a s elution exists, which at an 

arbitrary point ~ = ~· the value s of uk and all its d e riv a t ives 

(excluding x 1 derivatives) up to a finite order may be arbitrarily 

prescribed as long as fk is regular-for these initial conditions. 
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Chapter V 

Laplace ' s Equation in Two Dimensions 

In finding conservation laws, it is some times convenient t o make 

use of complex variables to aid in the computations. Before proceeding 

w i th Laplace ' s equation we define an operator and conside r some of i ts 

p r operties . Let F (x , y ) = f (x , y ) t ig(x, y ), f and g real, be any 

sufficientl y smooth complex function of the real variables x and y. 

L e t z = x + iy a nd de f ine an operator L: 

L F = oF _ i aF = of + ag + i(~ _ af) 
z ax oy ax ay ax ay 

L F = aF + i aF = af _ a g + i(~ + af_\ - ax ay ax ay ax oy) z 

ztz z-z 
Since x = -

2
- , y = 2i , we could think of F as a function of z and 

z, and L F and L F 
z z 

In fact, we note that if 

- d . h aF d a F . l as assoc1ate w1t ~ an r espect1ve y . 
u z -

of a a a z af 
L F = Othen a=¥ and*= -"i'\':""g and thus z X y X 01! 

F is an analytic functi on of z and hence doe s not depend on z. Simi -

larly L F = 0 > F is an anal ytic function of z. z 

The following is a list of other properties of L which can be 

easily verified: 

l. LF z = L F 
z 

2. L z = L z = 0 z -z 

3. L L - 2 z = z = z 
z 

4. L L F LLF=o2F + 
o2F 

'V2F = ar = z z - axr z z 



5. 

6. 

7. 
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I 

If F is an analytic function of z, then L F = 2 F ( z ) 
z 

L (FG) = (L F)G + F(L G) 
z z z 

Re(LF) = O > ~=~ > f=~yh' - ox oy ov 
z 

()h 
g = - so that OX 

F oh · ah ·L h h 1 = ;-;--- + 1 ;-;--- = 1 , rea . Conversely, if 
oy ox z 

F = iL h, z 
where h is real, 

i 'Vz h so that Re{L_F) = 0. 
z 

then L F = i L L h = 
- z z z 

Also Re(L F) = 0 
z . 

< > F = iL k where k is real. -z 

8. L _F = 0 < > F is an analytic function of z 
z 

-L F = 0 < > F is an analytic function of z 
z 

9. There exists an f(x, y ) (may be complex) such that 

F = L L f 
z -z 

= L L f = vz f 
- z z 

for any complex F(x, y). (This is just a statement 

that Poisson's equation always has a solution). 

10. There exists a g(x, y ) such that 

F=Lg z 

or an h(x, y) such that 

F = L h 
z 

(Follows directly from 9 . ) 
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11. If F is a sufficiently smooth function of four variable s 

x 1 , y 1 , x 2 , y 2 , l e tting z 1 = x 1 + iy1 , 

z 2 = x 2 + i y 2 , we have 

We now look for conservation laws for Laplace's equation: 

4> + 4> = 0. We will look for vectors which depend on x, y ,4> , and 
XX yy 

up to second order derivatives of 4>, i.e. 4> , 4> , 4> , 4> . Since 
X y XX xy 

4> can be solved for in terms of 4> (4> = -4> ). the vectors need 
YY XX yy XX 

not depend on 4> . We also note that we may prescribe the values of · yy 

4>, 4> , 4> , 4> , 4> , 4> , 4> arbitrarily at some arbitrary point 
X y XX xy XXX xxy 

(x, y) and a solution to Laplace's equation will exist. This can be s hown 

from the Cauchy-Kovalevskaya the orem. 

Let V(x, y,q, ,4> ,4> ,4> ,4> ) = (V1 , V 2 ) be a vector which is 
- X y XX xy 

divergence -free, i.e . 

Since V 1 and V2 do n ot depend on 4> 
XXX 

and 4> and xxy 

4> =· -4> we obtain, by the independence of xyy XXX x,y, 4> , 4>x' q,y,q,xx'<Pxy' 

q, _____ J and 4> 
XAA xxy av1 av2 

a 4> xy = - a 4> XX 
(1) 1 (2) 



-30-

and 

(3) 

(1), (2) and (3) are also seen to be sufficient conditions for di v V = 0. · 

Let V = V 1 + iV2 

Z 1 = X + iy 

z 2 = <j> + i<j> 
X y 

z3 = <j> + icj> xx xy 

Then (1) and (2) imply V is an analytic function of z3 • Now, 

av1 8V2 
--+ -- = ReL V ox oy zl 

so that (3) becomes 

z 2 + ( L_ V) -;3 J = 0 
Zz 

z 

( 4) 

If we take the Laplacian of (4) with respect to A. A. (\7 ) 
'~' xx' '~' xy <j> '<1> 

xx xy 
we get 
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by u sing the fact that the first two t e rms in the brack e t e d express ion of 

(4) are analytic functions of z3 (since V is an analy tic functi o n of z3 ) 

and hence they disappear l e aving 

= Re l L L ~( L V) z3 J- ~ = Re[2L ( L V)J 
ZJ - L - ~ ZJ -z 3 Zz . Zz 

= 4 Re~ (L V) 
OZ3 -

Zz 

using properties 4, 6, 8, 5, and L_ V is an analytic function of z 3 • 

o Zz 
Since -..;-::-( L V) is an analytic function of z 3 whose real part is 

O~J -
Zz 

zero, we must have 

':la , L V = iA(x, y, cp, cp , cp ) whe re A is real and 
vz3 · Zz . x y 

independe nt of cp and cp 
xx xy 

V = iAz3 + B(x, y,<j>,<j>x,<j>y) 
Zz 

B comple x 

z 
There exists a r e al a(x, y, <j>, <j> , <j> ) such that 

X y . \7¢ <j> a 
x, y 

L 
Zz 

L a= A. 
Zz 

Similarly the r e e xists a b(x, y, <j>, <j> <j> ) 
x, y 

=A or 

such that 

L b = B . These two statements follow from properties 9 and 10 
Zz 

respectively. 

We now have, using property 8 and that everything in the 

bracket is analytic in z 3 , 
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(5) 

where c is analytic in Zz. for fixed z 3 and analytic m z3 for fixed Zz.. 

Substituting into ( 4), we obtain 

[ 
. a - ob -

Re i(L L a}z3 + L b + L c + la-+-<Lz.a)Zz.ZJ+ a-+- Zz. 
z 1 Zz. z 1 z 1 't' .. 't' 

(6) 

using the analyticity of c m z 2 , the realne ss of a, and the fact that 

The term inside the bracket of (6) is an analytic function of z3 and by 

(6) its real part is zero. Hence it is · equal to an imaginary constant 

relative to z3 (does not depend on <j> or <j> ) i. e. 
. xx xy 

+ L b + ~ z • = i I( X y ,+, ,+, ,+, ) z 1 a <I> .. • • 't' • 't' x' 't' y • I real ( 7) 

Differentiating twice With respect to z 3 yields 

(8) 
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Since c is analytic in z 2 , we must have 

Therefore , there must exist a D(x, y, z 2 , z3 ) such that 

so that 

c = D(x, y, z 2 , z3 ) + E(x, y, <j>, z 2 ) z3 

the constant term in z 3 

(8) we also have 

L 
zl 

being absorbed into b(x, y,<j>,<j> ,<j> ). 
~ . Y 

o2 c 0 > L 
o2 D 

= 0 
dZf = azr zl 

From 

> o2 D 
azr =analytic function of z 1' z 2 , and z3 

3 

From. a theorem. in complex variables we can find a d(z1 , z 2 , z 3 ) such that 

the linear and constant term in z3 being absorbed into E(x, y, <j>, z 2 )z3 
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We now have for c: 

We can always find an e(x, y, cp, z 2 ) such that 

( ) . oe = i. L i L ( Ex,y,cp,z2 =1-;--
2 

e=- e+e) 
vZz Zz 2 Zz 

by properties 5 and 8 and the fact that e is an analytic function of z 2 • 

Thus E(x, y, cp, z 2 ) = iL Re e so that the term E(x, y, cp, z 2 ) z3 in (9 ) 
z2 

can be absorbed in the first term of V in (5) so that finally we have for 

c: 

c = d ( z 1 , z 2 , z3 ) 

Substituting (10) in (7) we have 

Thus the bracketed term in front of z3 must vanish, yielding 

This, then, implies 

or 

b "L . aa f( "' - ) = -1 z 1 a - 1 a q, z z + x, y, 'I' , z 2 

b = i L a + i ~: z 2 + g ( x , y, cp, z 2 ) 

zl 

(10) 

(12) 



-35-

where g = T is an analytic function of z 2 • {11) also gives 

which when {12) is substituted in becomes 

{ 13) 

l 
since iL L a = i \7 a , 

z 1 - x,y 
z l 

iL 
a a + iL 

a a 
2i Re(L 

a a 
.zz) • a<j) Zz 3<j> Zz = 3<1> zl 

zl 
zl 

and . 3 2 a lw Z2. z 2 

are all imaginary. 

With an argument similar to the one us ed in {4) for V an 

analytic function of z3 , we obtain for g, an analytic function of z 2 , 

Re -- ~ =0 [ a aa J 
az2. 3<j> 

> there exists a real m(x, y , <1>) and 

a complex n(x, y, <1>) such that 

ag - . 3 2 m(x, y,cj>) an{x, y,<j>) 
Fci> - 1 3<j> 2 z 2 + 3<j> 

> _iam(x,y,cj>) { ) ( ) g - a<j> z 2 + n x , y, <1> + p x , y , z 2 , 

p analytic in z 2 ( 14) 
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Since w e c an e xtract fr om n( x , y , <1> ) a te r m i L m and this t e r m 
z l 

t ogether with the f irst t e rm in (14) can b e absorbe d into t he fi r st two 

t e rms of (12), w e now have for g : 

g = n(x, y,<j>) + p(x, y, z 4 ) 

Substituting (15) into (13) yields 

so t hat the bracke ted term must be equal to an im.aginary constant 

relative to z" which, t he n implie s 

a nalytic function of z 1 

T hus there e xists an analytic function o f z 1 a nd z 4 such that i t s 

a zp 
second d e rivative e quals --

2 
, so that w e have for p: 

8z z 

p = fe n( Z1, Zz) f Q(x, y)z z t fc n(x, y) 

(15) 

( 16) 

(17) 

The fi-rst t e rm in (17) can be absorbe d i n d( zl, Zz, z3) and the las t t e rm 

can be absorbe d in n(x, y, <j>) thus g iv ing for p: 

p = Q(x , y) z 2 (18 ) 
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S ubstituting back into (16) we find 

so that we must have 

L at afi = o 
z 1 F(j) (19 ) 

Re [ Lz
1 

n J = 0 (20) 

Integrating (19 ), we have 

n = -( L _ "0 ) <j> t R ( x, y) ( 21) 

zl 

and now substituting into (20) 

Since Q and R do not depend on <j> 

Re [ L L a]= 0 
zl -

zl . 

(22) 

{23) 

From property 7, {22) states 
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L U = iL q(x, y) wher e q is real 
zl z l 

> Q = iq + analytic function of z 1 

Q = -iq + analytic function of z 1 

The last term in Q will drop out in the expression for n, (21), and in 

the expreSSion for p, ( 18 ),as it can be abSOrbed intO d( Zl 1 Zz 1 Z3 ), S 0 

that we hav e for Q : 

Q = -iq 

Again usi ng property 7, (23) yields 

R = iL r {x, y) , 
zl 

r real 

Hence the expression fo r g becomes (from { 15) ) , 

g = -i{L_ q)<j> + iL r -iqz 2 

We can absorb g completely in the first two te r ms of b, {12), by 

absorbing -q<l> + r into a, so that b finally becomes 

b = iL 

And now we can finally write down for V: 

(24) 

{25) 

{26) 
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(2 7) 

where a(x, y, cp, 4> , 4> ) is any real function of' x, y, cp, cj> , 4> 
X y X y 

and d(z1 , z 2 , z 3 ) is any jointly analytic function of z 11 z 2 , z 3 • 

Transforming back to real variables we have for V 1 and V 2 

J;-~ +c/:~xx-~_oa~ +Red ( -z z z) 
0 <P 't' xy 't' 't' 0 y a <P 't' y 1' 2 , 3 

X y 

= oa ~ + a a ~ + a a + a a ~ + n d (- ) ~'t' ~'t' :r- ~'t' .~:m z 1 .z2 , z 3 Olj} _ XX ocj> xy vX ocj> X 
X y 

or 

d 
-d a (x, y,cj>,cj> ,cj> ) + Red(z1 , z 2 • z3 ) y X y (28) 

(29) 

d d 
where dx , dy denote partial derivatives when cj>, cpx, cpy are functions 

of x and y. The first terms in (28) and (29) make up a trivial diver-

gence-free vector because it ' s divergence-free for any function cp (x, y) 

whether or not it satisfies Laplace's equation. The interesting terms 

relative to Laplace's equation are the last terms in (28) and (29). We 

can see how they came about as follows: The statement that Y 

be divergence-free is equivalent to 

where total derivatives 

with respect to x and y 

are now taken 

( 30) 
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We. n ote that if V is any analytic function of z 1 , (30) will be satisfied 

since 

where f is any analytic function of z 1 • Now Laplace's equation states 

z 
\7 cj> = 0 cj> = 0 L 

But L cj> = cj> + icj> = Zz so that Zz is an analytic function of z 1 • Also 
- X y 
zl 

any derivative of an analytic function of zl will be an analytic function 

of zl• so that ~ = dxd (cj> + icj> ) = cj> + icj> = z3 is als 0 an analytic 
d

- X y XX xy 
zl 

function of zl. Therefore any analytic function of zl' Zz and z3 

will be an analytic function of z 1 and hence will give a divergence - free 

vector. 

We could generalize our results to include highe r derivatives of 

cj>, but from the above discussion it is not hard to s ee what the r e sults 

w~mld be. 

It is interesting to compare these results with those of N oether's 

theorem concerning equations which come from. a variational principle. 

Let ua' a = 1, ... , n, be functions of the m independent variable s 

... ' 

where 

X • m 

u . 
a, J 

Let 

au 

be a functional of 

L (x ., 
1 

u . ) dx 
a, J -

u: 

= ~ and the integral is a volume integ ral over s orne ox. 
J 



-41-

arbitrary domain /) in ~-space. If we cons i de r the fir s t variation in 

and r e quire it to vanish, 

m 

u must satisfy 
a 

"' d ( aL ) ...Qb = 0 
L.J dx.. au a ,k - au a 

k= l -1< 

a = 1, .. . , n 

whichare the Euler-Lagrange equations. Assuming that there exists an 

L such that the equations for u take the above form, these equations a 

are said to come from a variational principle and any solution ua ( ~} 

is said to be an extremal. 

Consider now a one-parameter group of transformations: 

X~ :X. + :x:.( X, U, 

au 
e) 1. 1. 1.-- a~ 

u~ = u +II' ( x, u, 
0:!:!_ 

e) a a -- a~, 

such that at E = 0, X. = n = 0. If :!:!. is a function of X , then the 1. a 
I I 

above transformations induce a function u of x and E; the domain 

f) 
I I 

1.n ~-space goes int6 a domain /)(E) in x -space. Noether's 

theorem tells us that if J[ :!:!. ) is invariant under this group o f trans-

formations, i. e. 

I 

J 
f)' 

( 

I I 

L ~ ,:!:!_, 
0:!:!_) 1 
- dx 

I -ox 

for any :!:!. ( ~} which is an extremal, we obtain a conservation law for 

the system of e quations (*}. What's more, every conservation law o f 
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( ':' ), involving no higher than first derivatives, can b e obtained from 

some one-parameter group of transformations which leaves J[ u ] 

invariant. To exhibit the conservation law ass.ociated with the above 

transformation, let 

X. = 
1 

ax. 
1 

oe 
€ = 0 

u 
a = 

arr 
a 

oe 
E = 0 

(x. + X.e and u + U E are called the infinitesimal transformations) and 
1 1 a a 

Then 

n m 

~ L: 
a=I j=I [ aaL (u -u .x.)]+LX. u k a a,J J --k a, 

m 

~ = 0 
k=l 

For Laplace's equation, <!> + <!> = 0, we have for J [ <!> ] 
XX 'fY 

with the corresponding infinitesimal transformations 

I 

X = 
I 

y = y+ Y(x,y,<j>,<j>x,<j>y)E 

I 

<!> = <!> + ~(x,y,<j>,<j>x,<j>y)E 
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J [ <j>] is invariant under the above transformations for all <j> satisfying 

Laplace• s equation if and only if the following vector T = (T 1 , T 2 ) is 

divergence-free: 

T = A- ( ~ - A- X - <\> Y ) + .!.(A- 2 + A- 2 ) X 1 '~'x '~'x y z '~"x '~'y 

= <\> ~ _ .!.( <\> z _ <j> z ) X _ <\> <\> y 
X z X y X y 

T =A- (~-A- X-A- Y)+ .!. (A- 2 +A- 2 )Y z '~'y '~'x '~'y z '~"x '~'y 

Letting T = T 1 + iT2 , we have 

z 
T = (<\> + i<j> ) ~- i(<!> + i<j> ) (X-iY) 

X y X y 

From our previous work T will be a divergence - free vector depending 

x, y, <!>, <j>x, and <j> if and only if T has the form 
y 

where F i s analytic in x-iy and <j> + i<j> and a(x, y , <j>) is a r eal 
X y 

function . We can the n solve for X, Y, ~ to obtain groups of transfor -

mations leaving J [ <j> ] invariant. Notice that since the r e ar e two 

e9.uations for the three unknowns X, Y, and ~ . we will have infinitely 

many transformations corresponding to the sam e cons e rvat ion law. 

Conside r now the surface inte gral of T: 
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jT1 dy- T 2 dx= f (ReF)dy- (1mF)dx 
c c 

c: closed curve in 
(x, y) plane 

= 1m J F (x-i y, cj> + i cj> ) d.z 
C X y 

. where z = x+iy 

= 1m J G ( x + i y, cj> - i cj> ) dz 
C X y 

where F(x-iy, cj> +icj> ) = G(x + iy, cj> - icj> ). Note that if there are no 
X y X y 

singularities in the solution on and within c, then cj> - icj> is analytic 
X y 

in x + iy and hence the surface integral is zero. I£ we let 

sl = 1m J -i G dz = Re J Gdz since - iG is analytic 
c c in x+iy and cl> - i cl> 

X y 

Sz = 1m J G dz , 
c 

we then associate two constants s = s 1 + is2 = jGdz with a given 
c 

function G(x+ iy, cj> - icj> ) and a given curve c. 
X y 

As an example consider irrotational flow past a body with a 

uniform velocity at infinity. Then the velocity components u, v are 

cj> and cj> respectively. The flow near infinity is assumed 
X y 

asymptotically expanded as 

AI Az 
W = u - iv = A 0 + - + - + • · • z z 2 as z- oo 

If we take a curve c 0 around the body and another curve c 1 enclos ing 

the body far away from it, then since there are no singularities 

b etween c 0 and c 1 
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J G dz = J G dz 

Letting G = {u-iv) zn, we get 

J {u-iv)zndz =(Antl) 27Ti 

co 

so that if we know the flow at the body or simply the values of 

J (u-iv) zndz, we can find the flow far away from the body. 

Co 
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Chapte r VI 

Incompr e ssible, Inviscid, Ste ady-state Two-dime nsional Flow , 

_Incorporating First D e rivative s 

The equations given for the two-dimensional flow are 

ql, 1 + qz, 2 = 0 (1) 

(2) 

(3) 

l 2 2 
For convenience we change from p to h = p + z-(q 1 + q 2 ) so that (2) 

and (3) become 

( 2 I) 

( 3 I) 

If we solve for the x 2 derivatives of q 1 , qz, and h we get 

h - _,_} 
qz ( 4) 

(5) 

(6) 
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We also note that by diffe r entiating (2) with respect to xl and ( 3) with 

respect to x 1 we obtain 

(7) 

(7) states that the gradient of the vorticity, (q2, 1 - q 1, 2 ), is perpendicular 

to the velocity field. 

We may, according to our previous theorem, choose q 1 , q 2 :F 0, 

h, q 1, 1 , q 2, 1 , h, 11 q 1, 11 , ~. 11 • and h, 11 arbitrarily at some arbitrary 

point Xp x 2 andasolutionto(4), (5), and(6)willexist. The choice 

of h, 1 is e qui valent to a choice of q 1, 2 • Also, a choice of h, 11 is 

equivalent to a choice of q 2, 11 - q 1, 21 so that a choice of q 2 ,1 1 is 

equivalent to a choic e of q 1, 21 • We could have also solved (1), (2'), and 

(3') for the x 1 derivatives of the dependent variables. Vllth a similar 

argument as ab ove we c ould choose arbitrarily at some arbitrary point 

~. 12 - q1, 22 . Summing up we state: 

Theorem: There exists a solution of (1), (2), ( 3) where a t some 
2 2 

arbitrary point x 1 , x 2 the values of q1 , ~ ( q 1 + q 2 =F 0 ) h, q 1, 1 , ~. 1 , 

and the magnitude of the gradient of q 2 1 - q1 2 may . , 

be chosen arbitrarily. The last conclusion makes use of equation (7) . 

. We now look for a vector V = fcn(x1 , x 2 , q 1 , ~ , h, q 1, 1 , ~. 1 , q 1, 2 ) 

(all other gradients can b e solved for i n terms of the above) such that 

div V = 0 for all q1 (x1 , x 2 ), q 2 (x1 , x 2 ), and h(x1 , x 2 ) which are 

solutions of (1), (2), and (3). Since V will be considered not only a 
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continuous function of its variables but a s smooth a function as necessary, 

we may exclude the case q 1 = q2 = 0, becaus e this can be obta ined by 

taking the limit as q 1 - 0 and q2 0. Forming the divergence and 

setting it e qual to zero we have 

av. av. av. av. 
__ l + __ l q + ()hl h,l· +--1 q . k ' = 0 
ax. aq. j,i aq. k J, l 

1 J J, 

j and k not equal to 2 

simultaneously 

av. (av. av. av . ) av. = l + l + l q - J Q. q + 1 = 0 ax:- aq. 811 j 811 ~ j,i aq. k qj,ki 
1 J J , 

We keep all t he variable s that V depends on fixed but arbitrary. By 

choosing o. to be a linear function so that q. k ' = 0 we obtain 
"1. J , 1 

av. (av . av . av. ) 
1 l 1 ___ J =0 

ax:- + aq.-+ 811 qj ()h ~ qj,i 
1 J 

(8) 

and 

av. 
1 0 

aq.-:-k qj' ki = 
J, 

j and k not equal to 2 ( 9) 

simultaneously 

By the above the orem, we may choose q 1 11 = -1, q~ 21 = 0 and the 
' ' 

gradient of q 2, 1 - q1, 2 equal to zero so that 

1 = - q1, 11 = qz, Z1. = q2, 1z = q 1, zz 

0 = q1, 21 = qz, 11 

= q1, 1Z = - qz, Z2 
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Substi tuting into (9) gives 

(10) 

Similarly, we now choose q 1, 11 = 0, q 1, 21 = l and the gradient of 

n_ - q equal t o zero and obtain 
"14:, 1 1, 2 

( 11) 

Subs titu ting (1 0) and ( ll ) back into (9 ) we are left with 

( 12) 

The fact that we may choose the magnitude of the gradient of q~ 1 - q1 ~ .. , , .. 
to b e n on - zero combined with equations (7) and (12 ) allows us to conclude 

(13 ) 

Equations ( 8), (10), {ll ), and ( 13) are the necessary conditions for 

div V = 0. T hey are als o seen to be sufficient conditions. 

Equations {10) and {11) can best be understood by a change of 

varia ble s . Let 

a a 
~ = ~ 

a l a l a 
a q1, 2 

= z or) --z~ 7') q2, 1 + q1, 2 = 
2 

a 1 a 1 a 
oqz, 1 = z or) + z 8I r. = 'lz, 1 - q1, 2 

2 



- 50-

The n (10) and (ll) become, r e spe ctively, 

(14) 

(15) 

(14) and ( 15) state that V = VI + i V 2 is an analytic function of z = s +in, 

V = V( x , q, h, !;, z) . Let x =xi + ix2 , q = qi + iqz; x is the vector 

(xi, x 2 ), x is the complex variable xi + ix2 , and x is its conjugate; 

the same applies to q, q, and q. Equation (13) becomes 

R [ av . av q·J 0 e azq+l~ = (16) 

Since V is analytic in z, (16) implie s the re exists a r e al H( x, q, h, (,) 

such that 

av . av - . aH -
az q + 1 ~ q = 1 a s ( x, q, h, s > q q ( 11 > 

(17) can b e solved like a first orde r P . D. E. in real variable s. L e t 

F( x, q, h, (,, z ) = V - Hq. Note: Hq is a particular solution of (17). The --
equation for F is 

(18) 

Chang e variables from s,z- z;, W whe r e 



W=z+iqf, 
q 

oF I az 
{, fixed 
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Note : F is analytic in W for fixed Z:, 

= oF I aw {, fixed 

aF I . q oF I + oF I 
~ z fixed = 

1 

q oW {, fixed a{, w fixed 

Equation {18) becomes 

8F 
~ = 0 where we are in {, , W coordinates 

~ F = F( x, q , h, W), F analytic in W 

We now have for V: 

V = H(x, q, h, {,}q + F(x, q, h, W}, H real · 

Equation (8) becomes after transforming to ~. Y), and {, variables 

.· 

We now use the L operator notation and (20) t ransforms to 

(19) 

(20) 
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{ 21) 

which after substitution of {19) becomes 

Re l qL_H + LxF + [ qL_ H + L_F- 2i q ~ ~~J_, W 
X q q q 

We eliminate all terms involving F by taking the ~ derivative of (22) 

twice yielding 

Re~ w != 0 
(23) 

Since H does not involve W, we must have 

(24) 

(25) 

Since H is real ( 24) implies 

This statement coupled with ( 25) gives 

azH azH 
L_ F{;'""t = 0 ==;> a~~ = fcn(h, ~) ;> H = a(h, ~) + b{~ , q , h){, (26) 

X 
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where a and b are both r e al; the constant term in s can b e inc or-

porated in F. 

When (26} is substituted back into (22), we get a linear expression 

in {, equated to zero, so that the coefficient of the {, term along with 

terms not involving {. must each be . zero, i.e. 

l- - q - oF q .- oF l 
Re qL_ b + qWL_b- 2i _ z W aw + i q L_F + iLqF + 21qah} = 0 

X q q q 

Except for the term involving W, · each term. in (27) is an analytic 

function of W. As in ·preceding arguments, we must have 

[ 
_q ozF J Re -21 - -- = 0 _ z oWZ 

q 

Thus there exists a real A{~· q , h) such that 

- 2iAqq 

or 

z 
> F = i A(~· q , h) W + B( x, q , h) W + C{ ~· q, h) 

where B and C are complex. Similarly {28} implies 

(27} 

(28) 

{29} 
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which becomes using ( 29) 

so that 

Re[ WL_(Ac,P) + L_ BJ = 0 . 
q q 

L_( A<p) = 0 
q 

Re L B = 0 
q 

(31} implies that 

B = iL a( x, q, h) , a real 
q - -

When (29) is substituted back into (27) we get 

Re{qL b + qWL b + 2il WB+ i q(L B}W+i qL C 
- q q" q - q 

.· X q q 

. - (l aA - 3 ~ aB a c) } + 21 q z Fh q w + 8h w + 8h = 0 

( 30} 

( 31) 

( 32} 

(33} 

~ 

This is a quadratic expression in W so that the coefficient o f the W 

term must be zero, i. e. 

(34 ) 



Now, (30} states 

so that by {34} 

qL A+ 6A = 0 
q 

... 
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oA_ 3 A 
ah- qq ~ A=A(~,q}e 

But by (35} 

_l_h 
qq 

qL A - 6
1_:_ .A + 6A = o 

q qq 

... 

(35) 

which implies that A= 0, so that A = 0. Thus 'F is a linear function 

of W , 

F = B(x, q, h}W + C{~, q, h) 

The coefficient of the W term of (33} must also vanish giving 

L b + 2i B + i L B + i L B + 2i oB = 0 
q qz q - - q ah q q 

Since Re L_ B = 0, 
q 

L B = 
q 

- L B 
q 

and L (~} = .l_L B - ~B - - ~ q q q q q 

so that by taking the complex conjugate of (37} we have 

L [b + iB - iB J -2i ~ = 0 
- - q oh q q 

( 36} 

( 37) 

(38) 
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No':", using (32), ( 38) becomes 

L La L [b - qa - q -2 aa J = o 
- - q ah q q 

so that 

La La 
b = _s._ + _ q_ + 2 a a 

- q ah q 

L La a -
Note: __.s.. + _.9.._ is real 

q q 

where the function of x and h coming from the integration can be 
2 

{39) 

absorbed into a(~· q, h). After the elimination of the W and W terms 

in ( 33 ), we have 

Re { qL_ b + i_g_L C t iL C + .- oC q - q Zlq ah 
X q 

} = 0 ( 40 ) 

which we shall come back to l ater. 

We are still left with solving (28), which becomes a linear 

expression in W when (36) is substituted in. Again,the coefficient of 

W .·must be set equal to zero along with the real part of the term not 

involving W, i.e. 

LB+LC=O 
X 

q 

Re L C = 0 
X 

Using (32) in (41), we get 

~ LB+LC=O 
X q 

( 41) 

(42) 

C = iL a t M(~, h, q), where M is analytic in q (43) 
X 
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We now substitute the expression for b, { 39 ), and the expression for 

C, { 43 ), into { 40) g iving 

Re { } = 0 (44) 

Since M is analytic in q, there must exist a real N (~,h) such that 

Thus 

z. 
aM 

aqah = oN 
1rh (~,h) 

(45) 

where P (~~h) is complex and R ( ~~ q) is analytic in q. Substituting 

{ 45) back into ( 44) gives 

which implies 

R [
. oR . aP J~ 0 e l aq - 1 oh q = (46) 

( 47) 

where · 6( ~ ), ~{ ~) are complex. The term involving x a lone was 

absorbe d into . P (~~h) . Using (4 7) in (46) we are l eft with a linear 

function of q so that 
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aP 
~)( ~) - 8h = 0 

13 ( ~) may be taken to be zero as the 13 ( ~) q term in ( 4 7} can be 

absorbed in N{~. h)q in {45) so that 

1 2 
R = z-cS(~}q 

From {48} 

P = 6{~}ht E(x). where E{~) is complex 

{48) 

(49) 

{50) 

The final equation to be solved is { 42). which becomes after substitution 

of { 43 }. ( 45 }. ( 49 }. and {50) 

so that 

Re { qL N + hL 6 + L E + .!. q
2 

L 6 } = 0 
X X X 2 X 

L 6 = 0 
X 

L N = 0 
X 

Re L 6 = 0 > Re L 6 = 0 
X -

Re L E = 0 
X 

X 

(51) 

{52) 

(53) 

(54) 

{55) 
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(52) implies that 0 = o( X) is analytic in X a n d henc e (54) state s 

so that 

86 
Re- = 0 

ax 

a o . 
- =1m, where m is a real constant 
ax 

o = imx + in, where n is a complex constant (56) 

(53} implies that N is a function of h alone (since N is real} and 

hence can be absorbed in a(h, 1;), (26), so that 

N = 0 {57} 

(55) gives E = iL_e(~} where e is real. e may be t ake n to be z e ro as 
X 

it can be absorbed in a( ::5.! q, h), so that 

{58) 

Thus the expression for F . is, from (36), (32}, {43}, {45), {49}, {50}, 

{56}, {57), and {58), 

1 - - ' F = iL a( x , q, h}W + iL_ a(x, q, h} + {-imx+ n)h+ 1-{imx+ n)q 
q --

X 

and thus for V from {19}, {26}, (39}, (59) and W = z t i q s 
q 

V (h ') ( . . )h 1 (. - + .- ) z . L '~'L 2aa r . L = a • ';:> q + - 1 mx -1 n + z l mx l n q + l z at '=> - C/. + a h '=> q t l - Ci. 
q q X 

{59) 



-60 -

Letting n = n 1 +in2 , we then h a ve for V 1 and V 2 : 

Except for the addi t ion of a trivial dive rgence -free vector, (- ~2 ~ d~1 0• 
allowing V to contain gradients of q changes only the term a{h)q to 

a{ h,!; ) q. The fact that the vorticity, {,, is constant along str eamlines 

accounts for this term. 
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Chapte r VII 

First Order E quat ions 

In this chapte r, we will be considering functions of the two 

indepe ndent variables x 1 and x 2 , the dependent variable u(x1 , x 2 ) , 

and x 1 -de rivatives of u. 
n (o) (1) (n) 

Let F (x1 , x 2 , u , u , ... , u ) be such 

( .) oj 
a function, where u J = ~ 

ox J 
and the super script n of Fn r efers t o 

n I 
the fact that F depe nds on x 1 -derivatives of u up to order n. 

is assumed to be a sufficiently smooth function of its arguments , which 

are to be taken as independent variables 

f(x1 , Xz, u, u ( t)) , we define two operators 
p 

of Fn. For a given function 

nP and oP · 
x l Xz. 

nP F n = oFn + \ 
xl ax;- L 

n 
(m+ 1) oF 

u oJm) 
m .=O 

where 

I df 
dx1 

=D f Note : If p > n 
xl 

2. 
d f 2. 

dxzl =D 
XI 

df 
dxl 

dm-1 f 

dx m 
1 

n 
If we think of u as being a function of x 1 , x 2 , then D Fn is the 

xl 

total partial derivative of 
2. 

. df d f 
notat1on dx

1 
, dxi , •. • , 

n · dFn 
F with respect t o x 1 , d--;- , and the 

n xl 
d f 

has the obvious interpretation of, 
dx~ 

(1) 

(2) 
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respectively, the first, second , . .• , and nth total partial derivative of 

f with respect to x 1 • If we now know that u(x 1 , Xz) is a solution to the 

fir st order partial differential equation 

n 
then Dn F 0 = dF . 

Xz dxz 

(3} 

The operators D and D obey the same addition and multi-
xi Xz . 

plication rules as the normal differential operator . One other important 

property is the following: 

(4) 

To prove (4) we let 

n+z ( (n+z)) = P x 1 , xz , u, ... , u 

If u(x1 , xz) is any solution of (3) then 

n+z (n+Z) n+Z (n+Z) 
P (x~oxz,u(x11xz), ... ,u (x 1 ,xz~ =Q (x1,xz,u(x1,xz), ... , u (x1oxz~ (5) 

since (4) then states 
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which is just the commutativity property of the differe nt ial operators 

d d ) "J:":"""" and -d • By a previous theorem, the re exists a solution of ( 3 
axl Xz 

such that at any arbitrary but fixed point x 1 , Xz , the value s of 
0 0 

(n+Z) (n+z) 
u , . . . , u are equal to u 0 , •• • , u 0 , respectively, (n+Z) 

Uo, ... 'uo 

being completely arbitrary numbers. Thus at xi , xz (5) states 
0 0 

Xz , 
0 

(ntz) 
uo, ••• , uo ) 

The arbitrariness of the arguments of Pn+z and Qntz in (6} then 

proves (4}. 

n( {n}) n ( n n ) We now look for all vectors V x 1 , x 2 , u, •.. , u , V= V 1 , V, , , 

n 
such that divV = 0 for all u which are solutions of (3). We need not 

n 
include Xz -derivatives in V since they can be solved for in terms of 

x 1 - derivatives. Since u is now thought of as a function of x 1 and Xz , 

we have for the divergence 

n n n n 
D V 1 + D V = 0 

x 1 xz z 
(7} 

Since x 1 , x 2 , u, ••• , u(n+l} can be chosen independently, {7) is an 

equation for the n + 4 above independent variables. At this point we 

will now assume that ( 3} is a quasi- linear equation, i.e. ~=fcn(x1 ,xz, u}. 

u(n+l} will appear linearly in {7}. (v n does not depend o~u u{n+I)) . 

( n+ 1) 
Hence its coefficient must vanish identically. The coefficient of u 

n n avn . 0 (ntl) 0 n n 
in D V is __ 1_ ; the coefhc1ent of u 1n D V is 

XI 1 au(n) Xz z 
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n 

_§f_ oV2 • Thus we must have 
au (l ) au(n ) 

n n 

a(1 + of ~ = 0 
au n) aJ1T au{n) 

In solving (8) we only consider n ~ 1, so that (8) implies 

{8) 

n of n n-1( ( >) 
V 1 = -~ V 2 + F x 1 , x 2 , u, .. . , u n -l , n ~ 1 {9) 

au 

n 
Substituting {9} back into (7), we have a first order P. D. E. for V 2 in 

n -1 
terms of F : 

of n n n n ( d of ) n n -1 n-1 
- --rp D V 2 + D V 2 - dx --r;-r V 2 + D F = 0. 

OU\•J Xl Xz 1 OU\1/ X l 

w here 

and 

d of 

dxl aJiJ 

n n -1 
D F 

x1 

n -1 n -1 
= D F 

X I 

{10) 

{The individual terms in (10} involving u(n+
1

} will cancel when combined). 

n-1 n 
For each F let Q be a solution of (10), 1. e. 

of n n n n ( d of ) n n -1 n - 1 
- --r.\D Q + D Q - ---r1'T Q + D F = 0 

OU\1/ X1 X2 dx1 ()u\1/ X l 
( 11) 
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n n n n n 
Q will be exhibited later. Let V 2 = W + Q • Therefore W must 

satisfy 

Before solving (12), we observe that the solution of 

i. e . 

ar o o o o 
--r.TD y tD y 

au\ lJ xl x2 
= 0 

0 0 0 

of ~ + ay + (r - ()f u(l)) ~ = 0 - aJi1 ~ ax; au<l ) au 

independent 

of u (1) 

0 0 

(12) 

(13) 

will have two independent s elutions y 1 , y 2 depending only on x 1 , x 2, u. 

We also n ote that if ~. j ~ 0, is a solution of 

ar j j j j 
--r.TD y+ D y=O 

au\lJ xl x2 
(14) 

j+ l 
then by applying the operator D to (14), w e ge t 

xl 

ar j+l( j j) 
- D D y 

au(l} xl xl 
( 

d a f ) j j j+ 1 j j 
- D y +D D y = 0 
dx1 aJi1 x 1 x 2 x 1 

using. (4). 
j+l j j 

Thus y = D y is a solution of 
xl 

jtl jtl j+l j+l 
of D D - ---r.\ y + y 

au\ lJ xl x2 ( 
d ()f ) j+l 

- dxl 8J1T y = 0 (15) 
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I 0 0 

He nce a particular solution of (12} will be w = D YI· If we n ow let 
n 

w 
1 n 

= w y' 

xl 
n 

then Y will satisfy the homogeneous equation 

n n ar 0 Y 
- ~ xl 

n n 
+ D y 

x2 
= 0 

Since (16) is a homogeneous linear first order P. D. E. in the nt3 

· bl (n) var1a es x 1 , x2., u, . . . , u , the general solution of (16} will b e an 

(16) 

arbitrary function of nt2 independent solutions of (16}. We already 
0 0 0 0 

know two solutions, y 1 , y 2 • From our previous discussion D y 2 xl 

will be a solution of (15) and hence y' = ...!,.n° / 2 will be a solut ion 
W XI j 

of (16) since w 1 is also a solution of (15 ). In general, if y is a 

solution of (16), then 

j+1 
y j = 0, ••• , n-1 (17} 

o o 1 n 
isalsoaso1ution. Thuswe have nt2 solutions, y 1 , y 2 , y, . .. , y 

which can be seen to be independent so that we have for Wn: 

Wn = w'G( / 1 , / 2 , y~ ... , yn) , G: arbitrary function of (18) 

its n + 2 variables 

n 
To solve for Q , the form of equation (ll) and the preceding discussion 

su'ggests that we consider the following equation for pil-l 

= 0 (19) 
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We note that for eve ry Fn- 1 there exists a s elut ion Pn-
1 

of ( 19 } by 

the linearity of the equa t ion. Also, since 
n -1 

F was an a rbi t rary 

function, Pn-l is an arbitrary function. Proceeding as above, we 

apply the operator on to {19) giving 
x1 

n n -1 
so that Qn = D 

XI 

n-I 
p is a solution of (11). Thus the vector V is, 

fr om (9) and the above 

Note : 

n 0 0 I n-1 n - 1 
a£ 'G( yn) vl - - :-Ji)w Y1•Yz•Y• ... ' -D p 

au Xz 

n 0 0 1 
v2 = w'G(yl, Yz• y , ••• J 

n-I n -I 
The vector ( - D P 

x2 

n n-I n-I 
y) t D p 

XI 

D
n-lpn - 1) 

is the trivial 
xl 

( 
dPn-1 dPn-I ) 

divergence -free v e ctor - --,--
dxz ' dx1 

It is interesting to note that w' is ~ linear function of 'lx . 
1 

{20) 

( 21) 

To give an interpretat ion to the non- trivial terms of Vn, we 

first note that since (3) is quasi-linear it can be written 

a£ 8£ 
- -- u tu =£- -- u 

8U X1 Xz au X ' 
Xl XI 1 

is independent of 

The characteristics for this equation are the solution of 



dxl = 
ds 

dxz = 1, 
ds 
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(22) 

If the variable s is used to denote the characteristic we are on, then 

(22) has the solution 

determined by particular i nitial data. We could solve s and s in 

terms of x 1 and x 2 and then substitute into U(s , s I to get u as a 

function of x 1 and x 2 • 

any function which is constant along characteristics, then 

i. e . 

dF 
ds = 0 

which is the same equation as ( 13 ). Thus 

0 
Y1 =Fds) 
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Now 

so that 

y 
1 0 0 

= w• D Yz xl 

Similarly all yj , j = 1, ••. , n are functions of ~. Since 

then 

~= 0 
ds 

..9£..= 
dxz 

It can then be seen that the first terms of (20) and (21) can be written 

respectively as 

af 0 0 1 n _gE.._ d - ~wl f(yl ,y z ,y, .. .• y ) = - H(s->= - - h(~) 
xl 

dxz dxz 

0 0 1 n A H (~) = _§__ h(~ ) wl f(y 1 • y z • y. . .. • y ) = dxl dxl 

1 

where h (s) = H{g) 

which are obviously divergence - free . These results can be generalized 

to the full non-linear case, i.e. f i s non- linear in 

for n ~ 2 and proceeding in a similar fashion. 

u , by solving {8) 
xl 
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Chapter Vlll 

Totally Hyperbolic Equations 

Consider the system of m first order linear equations: 

(1) 

whe re v: vector v .(i=l, . .. , m), A: matrix A .. (i ,J. = 1, ... , -m) , 
- l lJ 

B =mat rix B .. (i,J. = 1, ... , m), c: vector c.(i=l, ... , m). Ifin a 
~ - l 

given domai n of the xi, x 2 plane, the matrix A has distinct real 

eigenvalues X. I (xi, x 2 ), ••• , X. (xi , x 2), then the above system is called 
m 

totally hyperbolic in that domain. Assuming that this is the case in the 

entire xi , x 2 plane, then th ere exists a matrix D(xi, x 2 ) such that 

D-IAD = A, where A i s a d iagonal matrix whose diagonal elements are 

the eigenvalues X. I , • •• , X. • By making a change of dependent variables , m 

v = 0£, w e get as an equation fo r ~: 

-I 
.§.= D .£ 

The equations we will then consider are 

u. 
l 

Xz 
= f. (u. 

l l 
XI 

~ , x) = X.. u. + y. 
- l 1 l 

xl 

i = 1, •.. , m ( 2) 

where X.. and y. are functions of x 1 and x 2 , y. being linear in ~· 
l l l 
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As an obvious exten s ion of the operators introduced in the 

preceding chapter we define 

where u~k) 
J 

k a u· 
J 

= --k- , and 
axl 

dkf· 
J 

with the obvious interpretation of k . Again , for any function !!_(x1 ,x 2 ) 

dxl 
which satisfy (2), the above operators, for p = n, are simply the total 

derivatives of Fn with respect to x 1 and x 2 respectively. The 

commutation relation between the two operators still holds 1 i.e. 

n n 
D F 

Xz 

n+I 
= D Xz 

(The proof in the preceding chapt~r generalizes in an obvious way.) 

W ' d Vn( (l) u(n)) h e now cons1 er vectors _ ~.£,£ , ... 1 w ose 

divergence is zero for all u satisfying ( 2), i.e. 

= 0 ~ 

(n+l) 
Equating the coefficients of u. to zero, we have 

J 

n 
h.~= 0 

j au~n) 
J 

(j = 1, ••. , m) (4) 

(3) 
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We will assume that m ~ 2. Solving the j = 1 equation , we obtain 

n n (n) = -~~ Vz + G (u z , ••• t 

(n) 
u ) 

m 

where the dependence of G on ~ and lower derivatives of ~ is not 

exhib ited. Substituting this expr essi on into the j = 2. equation and 

solving, we get 

. Absorbing 

n 1 [ n (n) (n) (n) n (n) (n) J 
V2 - ~~-~2 F (u 1 , u 3 , • •• ,urn)+ G (u 2 , • • • , urn) 

1 n 
into F and G yields for V 1 ~ ~ - ~z 

n n (n) n (n) 
VI = -~IF (u1 } -~2 G (u2 } 

n n (n} n (n) 
V 2 = F (u1 ) +. G (u2 ) 

(n) (n) 
where the dependence on ... , u m is omitted since they acted 

only as paramete rs in solving the j = 1, 2. equations . 

By induction, we show that the general solution of (4} is 

n n (n} n (n} 
VI = -~IFdul } - ~zF'l.(u'l. } 

n n (n} n (n} 
V 2 = F 1 (u 1 } + F z (u2 ) + 

n (n) (n) 

n (n} 
-~ F (u ) m m m 

n (n) 
+ F (u ) 

m m 

( 5} 

where F. depen ds on u . and not on u n , i. * j . We assume that the 
J J ~ 

first j equations of (4) have as a solution 



- 73 -

- X..F. 
J J 

-n 
+F. 

J 

where ;: depends on {n) and not on uin), £ ~ j, £ :1= k and that 
-n 

u ~:! , ... , u~) appear simply as parameters in F k. Substituting into 

the equation for j + 1 yields 

;::::. 

;::::. 

and 

. -n 
J aF 
~( ) 

k X. - X. -- - 0 
k=I jtl k au~n) -

Jtl 

a (n) a (n) 
'\: uj+I 

= 0 

--n n (n) n (n) 

Fk = Fk(~ ) + Gk(uj+I) 

n 
the integ r ation constant bein g absorbed into the Gk. Letting 

F;+l = ±. G:, we get 
k=l 

n n - . . . - A..F. - X.. F.+ 

n n 
Vz = F 1 + ••. 

J J J+l J 1 

n n 
+F.+ F. 

J J+l 
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thus establishing (5). Substituting (5) into (3) gives 

m n n n n 

L: (-D~ 
1 

>.. j Fj + D Xz Fj ) = 0 

j=l 

n n n n (n) 
We note that - D >..kFk + D Fk is linear in u. 

xl Xz J 
(n) 

differentiating (6) twice with respect to uk yields , letting 

or 

n 

(6) 

(7) 

Since the coefficient of Gk is a function of xl and x 2 alone, we can 

find a particular solution of (7) depending only on x 1 and x 2 , i.e. 

there exists a gk(x1 , Xz; n) such that 

n n agk . agk 
- A... Dxl gk + Dx·., gk = - L -~- + -~-.1< .. · -k ax1 vx2 

(7a) 

n 
A gk satisfying the above equation can always be found. Letting 

G~ = gk ~ we find that H~ satisfies the following equation·. 

n n n n 

- >..k D xl ~ + D Xz ~ = 0 (8a) 

(8a) is a first order linear homogeneous partial differential equation for 

However, since H~ must not depend on 
(n) 

u. J 

J 
j * k, the 



coefficients of 
(n) 

U. 1 j * k, 
J 
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must be set equal to zero. H ence 

()yk 
+-­au. 

J 
j = 1, 

j * k 

... ' m (8b) 

The m -1 equations (8b) along with equation (Sa) constitute a highly 

overdetermined system. There always exists a solution of (8) which 

depends only on x 1 and Xz , because there exists an ~ (x1 , xz) which 

satisfies 

ah, ah_ 
- ~ __j& + -l< = 0 

k oxl OXz 
(9) 

Since (8) is a homogeneous system , then an arbitrary function of any set 

of solutions is also a solution. Thus given a maximal set of independent 

solutions of (8), the gene ral solution is an arbitrary function of these 

independent solutions . (Independence, here, means functional independ-

enceJ We also note that any solution of (8) for the case £ < n · is also a 

solution for the case n. 

The firs t property of system (8) to be shown is that to a set of 

maximal solutions of (8} for the case n -1 (solutions depending on u~-I) 
and lower derivatives), only one solution depending on {n) need be 

added to give a set of maximal solutions of (8) for the case n. Of course, 

it is possible that no solutions need be added as in the case where no 

solut~on depending on J;> exists , for if Hn-1 is a solution depending on 

no higher derivatives than then 

n-1 n-1 

- ~ D H k x 1 

n - 1 
+D 

xz 

n-1 
H = 0 
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has a solution only if the coefficients of u (n) vanish, so that 

aH(n -1) 
(>...->..k) ( ) = 0 J n-1 au. 

j = 1, •.. , m 

J 

n-1 n-I (n-1) 
and thus H = Hk , i.e. does not depend on uj , j -:/= k. If there 

exists a solution to (S) depending on {n), say P~, then make a change 

of variables from u~n) to P; leaving the other variables unchanged. 

(Sa) can be written as 

n - 1 

d fk)=o 
n-1 

dxl 
(10) 

We note that it is sufficient to consider equation (Sa) alone as long as it 

· b d h Rn d t d d ( n) · k U d th 1s remem ere t at _K oes no epen on uj , J -:/= • n er e 

above change of variables 

n (n- I) (n) 

~ ( ~. !!. . . . , !! , uk ) 

n 

_Q_ ~ 
aPk _a_ 

i = 1, 2 +--
ax. ax. ax. aPn 1 l l 

k 
n 

1 = 1, n-1 
_a_ a aPk _ a_ ... ' 

- -+ -- j = 1, m 
au ~i.) au <.1 ) aJ1 > aPn 

... , 
J J J k 

_ a_ 
aPn 
_ k_ _ a _ 

a (n) 
uk 

a (n) 
uk aPn 

k 

n 
so that (10) becomes, remembering that Pk is a solution of (10), 

n-1 n n -1 n 

- A.k D Hk + D R = 0 x 1 Xz -K 
(11) 
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n n 
In (ll) there are no derivatives with respect to Pk nor does Pk appear 

in any of the coefficients, so that P~ simply acts as if arbitrarily 

introduced into H~. Using the same reasoning as above, H~ cannot 

depend on u;n-1} , j -:1= k (except through P~), because such a depen­

dence would introduc·e u~n} into (11) and the equation could not be 
J 

satisfied. Thus to a set of maximal independent solutions for the case 

n -1 we need only add P~ to get a set of maximal independent solutions 

for the case n. 

If we have a solution of (8a) for the case n-1, n ~1 , i.e. a 

n - 1 
function Pk which satisfies 

n n-1 n n-1 n-1 n-1 n-1 n-I 
-X.kD pk + D pk 

x1 Xz = -X.kDx1 pk + Dxz pk = 0, 

(n -1} 
and which depends on uk then a solution for the case n can be 

n 

(12) 

gene rated by the following: Apply D to (12) and using the commutation 
xl 

relation, we get 

n n-1 n-1 n n-1 n - 1 
- D (x.kD Pk ) + D (n Pk ) = 0 x1 x1 Xz Xt 

or 

n n -1 n-1 n n-1 n-1 ax. n -1 n-1 

( ) ( ) k( ) -X. D D P + D D P - - D P = 0 
k X1 XI k Xz X1 k axl X1 k 

(13) 

There exists a func tion sk (xi , x2 } which satisfies 

n n 
-X.k D sk + D 

x1 Xz 
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a~ 

In fact , s = -­
k ax1 

, where ~ satisfies (9) , is such a function. Thus, 

(Dn-1 pn-1)/ a~ . f. h h t• the quotient P~ = Xl k OXl satls 1es t e omogeneOU S equa 10n 

n n n n 
- X.k D pk + D pk = 0 • 

x1 Xz 

Now, it is not necessarily true that if a solution , dependin g on u ~) • 

exists for the case n, that a solution depending on u~n-1) exists for 

the case n-1. An example of this is the system 

for which no solution of (8) exists for the case n = 1, k = 1 and depend­

ing on u (1
1
} , while for the case n = 2, the function 

satisfies (8}. We can sum up the above as follows: Let l'k be the first 

case for which a solution to (8) exists depending on ~~) Then for all 

n < ~ the maximal set of independent solutions consists only of ~(x1 ,x2). 

For n ~ lk the maximal set of independent solutions c onsists of 

1k n . + 1 j _j I ahk . 
~· pk , . •• ' pk ' where pJk = ( Dxl yk) axl ' ~ ~ J ~ n - 1. 

the case n < ~ 
z n 

a Fk 

(n)Z 
auk 

n 
Fk = 

For 

(14) 
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where Hk is an arbitrary function of ~· and gk satisfies (?a). For 
n 

the case n ~ £k ' 

function of u~n) , 

it can be shown that Pk can b e taken to be a linear 

and in fact, the coefficient of {n) can be taken to 

be a function of x 1 and xz alone. We may also note that gk can be 

taken as 

which can be seen to satisfy (?a) so that we get for F~ 

(15 ) 

where 
n l.k n 

Hk is an arbitrary function of ~· Pk, . . . , Pk 

n-1 n - 1 . (n-1) 
a k and bk are funchons of x , £, ... , £ , 

which at this stage in the analysis are arbitrary 

functions. 

We note that ~(x1 , xz) = constant is the equation for the characteristic 
£ n 

corresponding to A.k . Also, as in the preceding chapter, Pkk' . .. , Pk 

are all constants along the characteristic corresponding to A.k, so 

that that firs t term in (15) can be thought of as ~1 H(hk) , where H 

is an .arbitrary function of ~­ from 

d 
would then be - d.xz H(~) . We can divide the solutions into three 

cases: 

Case 1: n ~ l.. , j = 1, . .. , m. 
J 
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Then each F~ has the form (15). When we substitute (15 ) into (6 ) , we 
J 

arrive at 

m [ n n -1 (n) n-1 n n-1 (n) n-1 
L -D ).. . (a . u. + b. ) + D (a . u. + b . ) = 0 

XI J J J J Xz J J J 
j=1 

(16) 

n n n n n 
since the first term in F. satisfies - D ).. .F. + D F. = 0. In (16) we 

J x1 J J Xz J 

must set all coefficients of u~n) and products of u~n ) equal to zero. 
J J 

In particular , setting the coefficient of u <;> u~n) equal to zero gives 

so that · 

aa~-1 

J 
n -1 

aa k 

a (n-1) 
u . 

J 

By induction, we can show that the solution to (17) is given by 

n -1 
a. 

J = 
aan-1 

a. (n-1) 
u. 

J 

(17 ) 

(18) 

n-I 
where a 

(n - I) 
is an arbitrary function of 2:£, !!, , ••• , !! We see that 

(18) is a solution (17) and that (18) i s a generalization of the fact that if 

the curl of a vector is zero, then the vector can be written as the 

gradient of a scal ar. We can now write, using (18), 

m n - 1 {n) n -I 
l:(a. u. +b.) = 

J J J 
j= 1 

n - 1 n-1 
D a 

XI 

n -1 
+ Vz (19a) 
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a nd m n - I (n) n-I 
L: >...(a. u . +b. ) = 

J J J J 
j=I 

where 

n -1 

n-1 
D 

xz 
(19b) 

n-1 n-1 m 
d fj ) n-1 ()a 

L: ( Dxi 

m n - z n-1 n - 1 
D a - L: >...b. vl = 

J=l 

n -I n - z n - I 
Vz = - D a 

XI 

n-I au<.n-I) 
dxi 

J 
m n -I 

+L: b. 
j = I J 

+ 
Xz . J J 

J= I 

n-I 
Since b. is arbitrary at this stage of the analysis, 

J 

n-I 
and V z 

are also arbitrary at thi s stage . Substituting (19) into (16) and remem -

bering that Dn 
XI 

n -I 

we find that v~ -} 

Vz. sati sfy 

n-1 n-1 n-1 
V 1 + D 

Xz 
Yz = 0 

Thus for the case n ~ 1.. , j = 1, .. • , m, we have 
J 

n m ahj n i.. n n-1 n-1 n-1 
Vl= - L A.a H.(h. , P.J, .•. ,P.) -D a + V1 

n 
. Yz = 

J= 1 J XI J J J J Xz. 

ohj n 1. . n n - I 
-a H . (h ., P.J, . . . , P.) + D 

XI J J J J X1 

n-1 n-I 
a + Vz. 

and 

(20) 

where yn-l : ( V1n-l , Vt-I ) is an arbitrary divergence -free vector 

. (n - I) 
depend~ng on ~. £, .. . , £ . The problem is thus reduce d to the 
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next lower case. If n-1 ~ £. , j = 1, .. • , m , then the firs t two expres ions 
J 

in Vn-I can be incorporate d into the corres ponding two expressions in 

Vn so that the solution for Vn would now be the same except for the 

n-z 
last term which would be replaced by V . We continue this until we 

get to the point where Vk is such that k < £. for some j = 1, ••• , m, 
J 

which brings us to Case 2. 

Case 2: n <I. j for some j = 1, ... , m a:nd n ~ /.k for some 

k = 1, ... , m . As sume for definiteness that j = 1 and k= 2, ... , m. 

From this particular case it is easy to generalize the results. When we 

compute the coefficient of u~n) ~n), k > 1, in ( 6), and set it equal to 

zero , the result is , using (14), 

n -1 

aa1 ( ) ....;;;a-=...,(n---1-) + >- 1 - >..k 
uk 

( 21) 

Ul
(_nL(n) , From the cross product terms k i > 1, k > 1, we obtain as we 

did above 

n -I 

=~ 
a{n-1) 

k>l 

After substituting into (21), it can then be shown that 

We can then p r oceed as above and conclude that 



-83-

m ohj n 1 . n n -1 n -1 ( ) 
= - \' h..-<::>- H. f h., p_J, •.. , P.) -D a +quadratic function of u 1n 

#z J ux1 J \ J J J Xz 

n 

Vz = 
m 

L: 
j=z 

oh· n 1.. n n-1 n-1 
~ H.(h., P.J, .•• ,P.)+ D a +quadratic function of u(~) 
OX] J J J J Xl 

n-1 
+ Yz 

The quadratic functions of u~n) have no noteworthy general structure 

but can be obtained for each particular system (2). 

Case3:n <i.., j=l , .. . , m . 
J 

In this case, all we can say is that 

n 
and Vz are sums of quadratic functions of 

(n) 
u. • 

J 

The particular case 1.. = 0 occurs if and only if f. is independ-
J l 

ent of u., j=l= i, 
J 

i.e. when the equations are completely uncoupled. 

The divergence - free vector Vn then takes the form 

n m 8h· n n n-1 n -1 
- L: h. _J 0 

Pj) vi :: H. (h., P., ... ' - D a 
j=1 

j ax1 J J J Xz 

n m 8h· n 0 n n-1 n -J 
Yz = L: _J H 

( hj, P., ... ' P.) + D a 
j=l 

ax1 j J J Xt 

which is just the sum of divergence - free vectors, obtained in the previous 

chapter for single first order equations, with the addition of a trivial 

divergence-free vector . 
n 

In general, the vector V will consist of: 1) terms in which 

arbitrary functions of quantities constant along characteristics appear; 

2) quadratic terms; and 3) trivial divergence - free vectors . 
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