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ABSTRACT

Systematic methods are used to find all possible conservation
laws of a given type for certain systems of partial differential equations,
including some from fluid mechanics. The necessary and sufficient
conditions for a vector to be divergence-free are found in the form of a
system of first order, linear, homogeneous partial differential equations,
~usually overdetermined. Incompressible, inviscid fluid flow is treated
in the unsteady two-dimensional and steady three-dimensional cases, A
theorem about the degrees of freedom of partial differential equations,
needed for finding conservation laws, is proven, Derivatives of the
dependent variables are then included in the divergence-free vectors,
Conservation laws for Laplace's equation are found with the aid of
complex variables, used also to treat the two-dimensional steady flow
case when first derivatives are included in the vectors. Conservation
laws, depending on an arbitrary number of derivatives, are found for
a general first order quasi-linear equation in two independent variables,
using two differential operators, which are associated with the deriv-
atives with respect to the two independent variables, Linear totally
hyperbolic systems are then treated using an obvious generalization of

the above operators.
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Chapter I

Introduction

By a conservation law, we mean the expression stating that the
divergence of a vector (or tensor) is zero. In the problems considered,
we will be given a set of independent variables, say X, i=de ey My
and a set of dependent variables, say uj, j=1, ..., m, such that the
dependence of u. on X, is given tl‘irough a set of partial differential
equations, We then look for all vectors V depending explicitly on X:5
u., and derivatives of uj with respect to X such that as an implicit
function of X the divergence of V is zero for all uj(xl § ey xn)
that satisfy the set of partial differential equations.

Given any two surfaces s; and s, suchthat s; encloses s;,

we know, by Gauss' theorem, that if V is divergence-free in the region

between s; and s,, then

f V-nds = [ V-nds
84 82

where n is normal to the surface. This property of a divergence-free
vector can be used in singular perturbation theory to relate information
from one region of space to another, e.g. I-Dee Chang [1], in a study
of Navier-Stokes flow at a large distance from a finite body, related
unknown constants in the perturbation expansion (far away from the body)
to quantities defined at the body such as lift, drag, and torque. This
same property could also be used as some sort of check on a numerical
solution of a set of partial differential equations, Whitham [2] has also
found it useful to obtain conservation laws for the formalism of his

averaging theory for nonlinear dispersive waves,
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Osborn [3] has discussed the existence of conservation laws by
use of pfaffian forms. However, only constant coefficient partiaLl
differential equations are considered, The more general case was to
be treated in a later paper., The problem of transforming a set of first
order equations, where the independent variables did not appear
explicitly, to conservation form was considered by Loewner [4]. He
considered mainly elliptical systems and by use of certain mappings
obtained inequalities for the behavior of stationary, two-dimensional,
compressible flow on the boundary of the flow region., A nonlinear
wave equation, fii (1+€ yx)a : 0, was treated by Kruskal and
Zabusky [5], and an infinite number of polynomial invariants and con-
servation laws were found., In a series of papers on the Korteweg-
deVries equation [6], [7], [8], all the polynomial conservation laws
were found., The conservation laws were obtained by use of a certain
nonlinear transformation depending on an arbitrary parameter. By
use of operators comparable to those in Chapter VII a uniqueness
theorem is then proven and other recursion formulas derived for the
divergence-free vectors., The techniques used in this paper are
similar to those of Howard [9] who found all possible divergence

formulas involving vorticity, i.e. all formulas of the type

f(x,9,Q) = divVi(x, q, @

where ) = curl q. Lagerstrom [10] made more precise the formulation
of the problem of finding divergence formulas (conservation laws in-
cluded) and the type of theorem one needs to get the equations for which

the solutions give all possible divergence formulas, The results were
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applied to two-dimensional incompressible, inviscid, steady flow.
Methods were also developed for obtaining conservation laws for less
restricted flows, but not all conservation laws were found,

By forming the divergence expression and setting it equal to zero,
Wf.S can deduce necessary conditions for a vector to be divergence-free,
The idea is to get enough of these necessary conditions so that they will
also be sufficient conditions. These conditions will always be in the form
of linear, homogeneous, first order partial differential equai:ions for the
components of the vector, This system of equations will almost always
be overdetermined, restricting the number of solutions, The general
solution of these equations will yield all possible divergence-free vectors.

In Chapters II and III we extend the results of Lagerstrom to the
time-dependent, two-dimensional case and the steady three-dimensional
case, respectively., The vectors arrived at in Chapter II are just slight
generalizations of the physically meaningful ones, In Chapter III we find
the same vectors as Lagerstrom did, i.e. the physically meaningful ones,
The only difference is in the dimension of the vectors. In Chapter IV a
general theorem is proven concerning what we may specify about a solu-
tion to a system of partial differential equations and still have it exist,
This type of theorem is needed in getting the necessary conditions for a
vector tq be divergence-free, This theorem is used in the following
c.'ha.pters to incorporate derivatives of the dependent variables in the
diver_gence-free vectors, Laplace's equation is considered in Chapter
V with the use of complex variables and the introduction of an operator
associated with the derivative of an analytic function. The results are
used to conclude all possible one-parameter continuous transformations

which leave the action integral invariant, In Chapter VI we incorporate



_4..
first derivatives in the divergence-free vectors for the steady two-
dimensional flow previously discussed by Lagerstrom, and because
analytic functions appear, we make use of the above operator to solve
the resultant equations. A general first order quasi-linear equation in
two independent variables is considered in Chapter VII which motivates
the introduction of two operators associated with the derivatives with
respect to each independent variable, It is found that functions of the
dependent and independent variables and derivatives of the dependent
variables which are constant along characteristics play an essential
role, We generalize the above results in Chapter VIII in which a system
of first order totally hyperbolic linear equations is studied. This
motivates a simple generalization of the operators in the previous
chapter, Again, functions which are constant along characteristics
enter, but because we are dealing with a system and not just one
equation, it is possible that no such functions exist that depend on a
certain order derivative of the dependent variables. In that case,
quadratic functions of these variables appear, Always appearing in the

general divergence-free vector V is the trivial one

df df
¥ MV = L2 ¢ “&;1')

where x; and x, are the independent variables, T

dxl de
represent total partial derivatives, and f is an arbitrary function of
the independent variables, dependent variables, and derivatives of the
dependent variables,’

It appears that the method in Chapter VIII can be used to handle

other systems of equations, For the hyperbolic case for non-distinct
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characteristics the results might generalize nicely, but for the para-
bolic case where the matrix cannot be diagonalized, as exemplified by

the Korteweg-deVries equation

u, +uu_+ u = 0,
t X XXX

a general result might be difficult to attain, It seems if the elliptic case
could be handled in a manner similar to that as in Chapter VIII, but

some generalization to complex variables would be necessary,
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Chapter II

Incompressible, Inviscid, Time-dependent, Two-dimensional Flow,

The equations describing two-dimensional inviscid, incompres-

sible, time-dependent flow are given as

+p. =0 (2')
2
+p. =0 (3)

where q = (q,,q;) is the velocity and p the pressure. We first prove

a lemma concerning the existence of solutions of the above equations.

Lemma; There exists a solution of (1), (2'), (3') such that at any fixed,
but arbitrary point (t5,x;9, Xz9) wWe may prescribe arbitrarily the
values of 9, P, ﬂ;_;_ (where (qlx])o +(q2xz)° = 0), p}_‘:‘, and P

This can be done by considering g as a linear function in x

and t, 1i,e.

q = 9o + Alx-x0) - (Agg +a)(t-to)
|A| 2
P = Ppotblt-ty) +a - (x-x,4) + = (x-x)

+ (Aa - [Algqe) * (x-x4)(t-to)



where
A: matrix Aij’ arbitrary except that A, + A, =0
lA[ = determinant of A

9o, Pos» &, b arbitrary constants

Note: For a 2X2 matrix whose trace is zero A? = -|A|I, I being the
identity matrix. The above functions q and p satisfy (1), (2'), and

(3'). Sinceat x=x,4 and t=t,,

9=90
P=Po
TP
J
px. = al
1
P, =P

the lemma is proven,

For our purposes it is more convenient to use the total head,
9% +q%
2 ’

instead of the pressure, Equations (2') and (3') become

iy ~ (QZXI“ Qsz) qz + hxl =0 (2)

)41 +h =0 (3)

9z, + (qul“qixz %,

From the previous lemma it can be seen that h, hx , and ht can be
i
chosen arbitrarily at (t;,x,).
We now look for all vectors V(x,t,q,h)=(V,,V,;,V;) such

that divV = 0 for all g,h satisfying (1), (2), and (3).
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Writing out the divergence formula we get

aVy . 9V, 9V, 9V, ov, , oV, oV
st T ag, BtT Bg, 2t an Pt t ox, t oq, Yx, t ag, T2x,

9V, ov, 9V, -
& ah hxl % BXz i 3q1 qle ¥ aqz qzx2 * ah th - 0

_ 9V, 9V, v, oV, _ 9V, oV,
P bq, %2 T g, 1 7 aql]q‘x [aq 2" Bg, 1T aq, [%x,

using (1), (2), and (3)
Let us now choose a solution of (1), (2), (3) where the values of
t, x, 4, and h are fixed but arbitrary. For these fixed values let

ht’ hx’ and q, be zero, which the above lemma allows. Then we

must have

3t T ox, tox, - O

Since V4, V;, V, do not depend on any gradients of q and h we

must have



oV, av, _av :l [ Vv v Vv }
R th o el gy Yl e Bt
oh "t liach 94, | 11x, aq; 12 " bg, 11 7 aq, |Uix,
WV, .. _ 9V, fﬂ& 9. [ aVy , 9V,
® [ 9q, 42 aq 9y * aq - 9q, * on hx1
.9V, L AV, i
+[ 8q; | Bh:]hxz = 2 (4)

For the same values of t, x, g, and h choose the following six
solutions of (1), (2), (3) (whose existence are guaranteed by the above
lemma) :

I) A solution with ht =1; all other gradients zero

II) A solution with qlx1 = 1; all other gradients zero

1; all other gradients zero:

IIT) A solution with di,
2

1; all other gradients zero

IV) A solution with Az,
1

V) A solution with hx =1; all other gradients zero
1

VI) A solution with hx = 1; all other gradients zero
2

From equation (4), we then have

%‘,zo (a)
-%‘:Qz+{%‘z"11+%=o {e)
_aa_zf:+@al‘}f.11=0 (e)

oV, , Vs _

aq, T oh (£)
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Along with

0V, 9V, 9V, _
9t T ox, T ox, - 0 (&)

derived previously, (a)-(g) are equations which must be satisfied at the
fixed values t,x, q, and h. However, since these values were arbitrary,
(a)-(g) are partial differential equations in the 6 independent variables
t,x,q, and h which must be satisfied at all points t,x,q,h. (a)-(g) are
necessary conditions for divV (t,x,q,h) =0 for all q and h which are
solutions to (1), (2), and (3); they are also seen to be sufficient conditions,
Hence, the general solution of (a)-(g) will yield all possible divergence-
free vectors V (t,x,q,h) of the system (1), (2), and (3).

Using (e) and (f) in (c) and (d), we obtain

v, . _ 8V, 8V,

8h 92 = gn U1 T Bq, (c')
9V, - 9V, oV,

(c'), (d') and (b) are equations one gets from the steady state flow case
and are solved in [10] » Pp. 12-14. In the non-steady case, we treat t
along with x as a parameter in the solution of (c'), (d'), and (b) with

the result that

2 2
917492
V.l = F(t’}_{.vh)q]+c1(tn§.)( 2 ) + C2 (t.ﬁ)(th + Cl(tnl{.)h + d] (t:E)
2 2
: 9:z-9;
V, = F(t,x,h)q,+c;(t,x)q;9; + ¢; (t,a)(_z“) +c(t,x)h + d, (t,x).

Equations (e) and (f) imply



2
9V, _ 9V, _29F
3, - oh _ on %2 T c2
2
. 8f _oF __fF %
* * 9q,  oh 3 + & =ing 2 +c,q; + do(h,t,x)
Thus
2 2
oF M1 T %
Vozﬁ 2 )+C1q1+czqz+do.

But from equation (a)

2

%hbz" =0 => F =a(t,x)h + b(t, x)
av,
—_——= ) =>
oh ad,

E =O > d0=do(tt§)

Thus after satisfying (a)-(f), we have

2 2
q; + 9,
Vo = a(————z ) +cyq; + c2q; + dy
2 2
9: "9

Vi,

(ah+b)q1‘ + cl(—z-) + c;q;9; + c;h + d;
3 3

9279,
V, = (ahtb)q, + c;9;9; + c,_(——z ) + c,h + d,

where all unknown coefficients are functions of t and x only.

Using (g) and equating coefficients of independent functions
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equal to zero, we get

a, + ¢ X -czxz =0 (1) c, tcoy =0 (vi)
a, - c;xl % szz =0 (i) ciy t bx1 =0 (vii)
2x, + c‘xz =0 (iii) Czq t bx,_ =0 (viii)
a.xl = 0 (iv) dot: + d1x1+ dzx (ix)
a.xz = 0 (v)

(i), (ii), (iv), and (v) yield a = constant,

(i), (ii), (vi) imply ¢,

cle = -clxz = c(t)

-c(t)x; + r(t)

51

c(t)x; + s(t)

C2

(vii) then gives

bxl = c'(t)xz - r'(t)

b = c'(t)x;x; - r'(t)x; + w(x,,t)

From (wviii)

c (t,x;), c; =c;(t, x;). Therefore by (iii)
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cl(t)xl = s'(t) + c'(t)xl +w_ =20
X2
= c|(t) =0 => c = constant
W = -s‘(t)xz + v(t)
] 1
b= -r (t)x; - s (t)x; + v(t)

Since (a)-(g) were the necessary and sufficient conditions for V
to be divergence free, the most general divergence free vector for

equations (1), (2), and (3) depending only on t, x, g, and h is

ay 2 2
E(ql + qz) + [—cxz + r(t)}ql + l:cxl + s(t):|qz + dg (t, x)

Vo =
z 2
1 1 9:°9:
vV, = [ah -z (t)x; - 8 {t)x; + v(t):|q1 +|:-cxz + r(t)][ 5 :l
+ [cx, + s(t):]qlqz + [-cxz + r(t)]h + d, (t,x)
1 1
Vi = [:ah -r (t)x;-8 (t)x; + V“)]‘lz + l:‘cxz + r(t)] 9192

2 ' 2
92-49)
+ [cxl + s(t)] [ 2 ]+ [cxl + s(t):lh + d, (t, x)

where r(t), s(t), v(t), a, ¢ are arbitrary and d= (dy, d;, d;) is an’

arbitrary vector function of t, x;, x; suchthat divd = 0,
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V can then be seen to be a linear combination of the following

six vectors (returning to the variable p):

Vt(il) = 3(q% + q%)
Vgl) - |:P + 3 (g} + qzz)] q;

Vgl) = EP +5(q%4 + qzz)] q;

2
Vé ) = -%Xq; + x;q,
2
Vg ) = -x2 (g4 + p) + x,9,9;

2
V;. ) = “%X2q;9; + %; (g% + p)

vl = rit)q,
1 = =rh(t)x;q; + r(t)(qzl +p)

V?) = -r'(t)x;q; + r(t)q;q;

V((f) = s(t)q,
1 = -s'(t)x;q; + s(t)q;q;

V'?) = -s'(t)x;q, + s(t)(q} + p)

v = vit)q,

v = vit)q,

v = 4 (t, x)

(6) _ -
VIS = dl (t,_}_i_) Where dotl + dlx1 + dzxz = 0
v = 4, t, %)



1

i(l) and X(Z) express conservation of energy and angular momentum,
respectively. X_(S) and 1(4) are generalizations of the conservation of
momentum vector in the x; and x, directions, respectively. X(s) is
essentially the conservation of mass vector, and X‘s) is a trivial

vector not dependent on system (1), (2) and (3).
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Chapter III

Incompressible, Inviscid, Steady-state, Three-dimensional Flow

The equations describing three-dimensional steady, incompres-’

sible, inviscid flow are

» . _ 0
Beq =" () ‘B?j) ()
% %,5 % P = t=1.2,3 @)

where, in this chapter, the summation convention is used (j is summed

over 1,2, 3), q=(q;, 9, q3) is the velocity, and p is the pressure.

Lemma: There exists a solution of the above equations such that at any

fixed but arbitrary point (x, , X, , X3 ) we may prescribe arbitrarily
0 0 0
the values of g, p, and qi.k as long as (qi,i)o =0 and (qi,j qj,k,)0=

(qk.j qj.i)o .

Proof: The second equation is equivalent to (by using p ik= P ki)

= %
%5 Gt Y Yok T %5 bt Y G ()
Assume
g = go + A(x - %) A = matrix (Aij)
. . = A, arbitrary vector
B ™ o ¥

(All second derivatives of q are equal to zero. )
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The first equation becomes Aii =0

(*) becomes Aij A.

5k = Ak' A..

4

As long as the two above conditions are satisfied by A, then

gq=9gge + A(x-x,) is a solution. We can then solve for p which will be
a quadratic function of x-x, and since there will be an arbitrary
constant in p we take that to be the prescribed value of p at x=Xx,.
We also note that at x=x4 , g=(o.

Instead of p we will use, for convenience, h, the total head
1, 2 2 2
h=p+3(q; +q,+q3) (3)

From the above lemma we note that there exists a solution with h
chosen arbitrarily at xg.
We now look for vectors V(x, g, h) such that divV =0 for all

g, h satisfying (1), (2), and (3). Writing out divV we get

v, oV, oV,
ox; * 3g, Gitgr b= Y

Since h,i =P, + qjqj,i = qj(qj,i - q‘i.j) we have

oV, BV, oV, oV, |
o, (qu 3R Y " In qx) G =0

For any arb. x, g, h we first pick q‘j i=0 for all j,i. Thus
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oV.
5= = O (4)
1

at x,g, h since V does not depend on qj,i . Therefore

8‘{i BVi .BVJ.
(ﬁg t 2R G IR %) %7 O

For the same values of X, g, h and for each £, m, £# m, choose

q.j i 1 for j=4, i=m and q.j = 0 otherwise. This can be done by

the above lemma since

R Ml TR AL T R
This yields the equation
av.. 9V B\J'JE
G TR YR Gm T 0 LFw =
Next we choose q;,; =1, q,, =-1, q,3 =0 which, again, is allowed

by the lemma. This gives the equations

oV oV
e Xl . BlL ow B 6
9q, 99, (6)

Similarly

- - -
= 03 F}L F:) =0 (i)n ( ')
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Equations (7) and (7') are equivalent when (6) is used. Since the above
equations are to be satisfied at any arbitrary point X, g, h, they must
be satisfied for all x, g h. Thus (4), (5), (6), (7) or (7') are the
necessary, and also seen to be sufficient, conditions for divV = 0.

For (4, m)=(2,1) and (1,2), respectively, we get

oV oV oV

T L -3p 4 =0 (8)
oV oV oV

ot PR U "R 9% =0 (9)

(6), (8), (9) are equations obtained for the two-dimensional case and are
solved in [10], pp.12-14, as was previously mentioned in Chapter II. The
solution of (6), (8), (9) is then '

2 2 ,
V; = F(x h, q3) q; + ¢;(% q3) (%) + c(X, 93) 91 @2 + ¢ (%, g3 )h + dy(x, g3)

(10)

2 2
V; = F(x, b, g3)q; + c3(%,03)q; 95 + cZ(z.qs)(%) + cp%, 3 )h+ dy(x, q)
(11)

Substituting into

0 2 Vv, V;
aq3 +aah 93 - aah 9 = 0 (2’_'3: m=2)
yields

2 2
qu q, + clqs q; q,+ cz%(&liﬂl)+ czqsh + dzq3+ th2 Q3 +c,q =V3h q;
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Let gq,=0 which implies

Using

oV, Vv A"

5331+%—h’qs-%fql= (£=3 m=1)
we have

2 2
Q192 3 »

Thus, we must have (similar to the preceding argument)

c; = c;(x)

e
= -clty% + d; (x)

P
I

Hence V3h = Fq3+ Fh q3

(12)

(13)

(14)

(15)

(16)
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We now use

giving from (11) and (16)
v + F =
3q, 92 s €293

so that

2

¥y =~3L F
2

q3+cz qs 9o+ M(x, q;, 93, h) (17)

However, (16) implies

2

- q.;
F + F, = = g2 + M
qs " "his 2 4ash h

Therefore, we must have

o n=0 = Fog@, it b (18)
and
' Mh=gq3+£hq3 =>M=hgq3+fq3+N(_:_<_,q1,q3) (19)

And now using

Vs , ¢V _avy
o0 + ﬁf% 3h %2

I
o
-
=~
I
o
"
w
S—
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with (10), (16), (17), (18), (19) we get

2

Q=% =>N=—%g +¢,9;93 + P(x q3)

B

N+
q; " Bqy

Equation ( 7) gives, using the above results

2 2
-_q1+qz g + hg + P
2 93 93 93 93 93

Therefore, we must have

=0 =% = ca(x 5 20
845 qs g 3(x) q; (20)

the arbitrary function of x being absorbed in F,(x, qs), and

2

P :g=>P=C3(X) 33—+ d3(x) (21)
q3 - 2 -

Thus, we have

2 2 2
V= f(z.h)qﬁ Cx(f)h+ C1(}_)(-m)+ ca(x)g;qx+ c3(3:_)q1 Qs+ d; (E) (22)

2 4
V; = £(x,h)q, 4 ¢, (x)h+ ¢;(x)q; gz Cz@)(jig-jﬂ) tez(x)gqp+d(x)  (23)

2 2 2
Vi = £(x,h)q3+ c3(x)h+ c;(x)q; g3+ c,(x)q g3+ ¢3 (5_)(‘1_3'_21'J)+ dy(x)  (24)

The last equation to be solved is (4), which becomes, using (22)-(24),
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Z 2 2

“42-93
f ql + €y h+ Clx (————) +sz 9192 + €3, Ch‘h"'d X,

2 2 Z
G- fh
+fx qz‘i‘Cz h+ Clx q1q2+czx( )+C3x2q2q3+dzx
2 2 2
93-91-9:
ti, Bt ht o, qdstey, B4 +c3x3(———z 0y ™ ¥

Again, using the independence of the coefficients of the functions of x,

we have
£ =0=>f=fh) (26)
i
Cig C2y, O3y, = 0 (27)
szl+C1x2=0. C3xl+ Clx3=0, C3x2+ C2x3=0 (28)0(29}1(30)
Equations (27) -(30) give as solutions
Cl = ‘aax2+ a.zx3+ 31
Cz =asx1'aIX3+ez (31)
C3 = -ax;ta;xX,+e;

where a;,a;,as,e;,e,, e; are arbitrary constants. We can write (31)
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as

[e]
1
o
X
%
S
@

and V can now be written
V=fh)g+(a°a+pl)(aXx+e)+dx)
or, letting
L=g°g+pl (Lij = 9,9, + pﬁij)
T
V=1fh)g+ (xXL) a+Le+d(x)

where
f(h) is an arbitrary function of h
a, e are arbitrary constant vectors

d(x) is an arbitrary divergence-free vector function of x

Note: xX L is defined as €. x L . sothat -xXL is a second order
Fr~ = imn m nJ - =
tensor, We then see that L(aXx) = (_:»_c><g)T_e_1~ where "T"

denotes the transpose,

V thus consists of a sum of vectors which represent, respectively,
constancy of total head along streamlines and conservation of mass,
conservation of angular momentum, conservation of momentum, and a
trivial divergence-free vector. We see that the only conservation laws

obtained are the physically familiar ones,
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Chapter IV

Degrees of Freedom in Partial Differential Equations

In obtaining conservation laws, we make very strong use of what
is allowed to be prescribed in a solution to a P. D. E. To this end the
Cauchy-Kovalevskaya theorem is considered. The theorem for a system
of m first order equations for the functions Uiy eeep U of the indepen-

dent variables Xip eeey X states that the system

Buk Bui
Ex_l = fk(xi. ui, H:-j-) (k = 1, esn y m)

du.
(ﬁx_l does not appear in fk) with Cauchy initial data
1

Uy = ¢'k(xz' R xm) (B =1 e, M,

x, =0

where ¢k is assumed regular when its arguments become zero and fk
is assumed regular when its arguments become the initial values,
possesses a unique regular solution. This theorem can obviously be
generalized to the case where the initial data are evaluated on x,;=c¢;
(constant) and cpk is assumed regular when its arguments take on
constant (not necessarily zero) values. In particular, we could choose

q;k ‘to be a terminating Taylor series where the choice for
apuk it izt “'jn-] =P

TR Jn-1

axZ BX3 bt axn

p=0,1, ..., N N arbitrary

evaluated at x = ¢ is completely arbitrary. We now state the above in

a theorem.
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Theorem: For the system of m equations for the functions Uppeenyu

of the independent variables Xy eees X

n
du du,
k _ 1 _
—a—;; - fk(xi, ui, -a?j—) (k = 1, sen g m)

ou,
1 . . . .
("8?1 does not appear in fk)' a solution exists, which at an

arbitrary point x = ¢, the values of U and all its derivatives
(excluding x,; derivatives) uptoa finite order may be arbitrarily

prescribed as long as fk is regular.for these initial conditions.
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Chapter V

Laplace's Equation in Two Dimensions

In finding conservation laws, it is sometimes convenient tomake
use of complex variables to aid in the computations. Before proceeding
with Laplace's equation we define an operator and consider some of its
properties. Let F(x,y) = f(x,y) + ig(x,y), f and g real, be any
sufficiently smooth complex function of the real variables x and vy.

Let z =x+ iy and define an operator L:

_oF oF
LZF"EY"E?' (ax'“‘“)
_OoF  .0F _ g
LE=gxtloy = ox "oy * (
Since x = z;z ; JE= 2;?._12 , we could think of F as a function of z and
z, and L, F and L _F as associated with %% nd -@—E respectively
z
z of %
In fact, we note that if LEF 0 then i 3y nd % = "5" and thus

F is an analytic function of z and hence does not depend on z. Simi-
larly L F =0 => F is an analytic function of z.
The following is a list of other properties of L which can be

easily verified:

L. L F =LTEF

_ 92 F BZF
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I
If F is an analytic function of z, then LzF =2F (z)

L (FG) = (L,F)G + F(L,G)

- n - Of _0g _ . _0oh _0oh

Re(LZF)—OQé;—W-—}f—Ty’, g—a—x so that
F = -g—;l-+ ig% = iLzh » h real. Conversely, if
F =iL_h, where h is real, then L F =iL L h=

A = =3 z
iV2h sothat Re(L_F)= 0. Also Re(LzF) = .0
~ .
< F =iL k where k is real
z
L F =0 <= F is an analytic function of z
z
LF = 0 <> F is an analytic function of z

There exists an f(x,y) (may be complex) such that

F=LLf{=LLf=V¥
Zz — - Z
Z Z

for any complex F(x,y). ( This is just a statement
that Poisson's equation always has a solution).

There exists a g(x,y) such that

F=0Lg

or an h(x,y) such that

F=Lh
Z

(Follows directly from 9.)
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il. If ¥ is a sufficiently smooth function of four variables
X1, Y1» X2, Y2, letting z;, = x; +1iy,; ,

zZ, = X, +1iy, , we have

L L F=L L F
zZ; 2 z

1 2 2 24

We now look for conservation laws for Laplace's equation:

¢xx + ¢YV = 0. We will look for vectors which depend on x,y,$¢, and
up to second order derivatives of ¢, i.e, ¢x 4 ¢Y ; ¢xx . ¢XY . Since
¢YY can be solved for in terms of ¢xx (¢W = -q)xx), the vectors need

not depend on ¢YY' We also note that we may prescribe the values of
$y o ¢y v P ¢xy' ? exexc ? d')xxy arbitrarily at some arbitrary point
(x,y) and a solution to Laplace's equation will exist, This can be shown
from the Cauchy-Kovalevskaya theorem,

Let V(x,y,$,¢_,¢ _,¢6__,06_ )= (V,,V,) be a vector which is

-l Gl -

divergence-free, i.e.

oV, av, av, oV, oV, oV,

e mre i, BT el ee— ¥ ¢

ox 00 "x a¢ox XX a¢y yx 8¢xx XXX a¢xy XyxX
v, av, av, v, oV, oV,

e SO

tm—t S b b =+ +
gy~ 9¢ Ty 09¢_Txy 8¢y Yy 9¢_. Txxy 8y UV

Since V; and V, do not depend on ¢ and ¢xx and

Y
¢XYY = -¢xxx we obtain, by the independence of x,vy, ¢, ¢’x' ¢y' ¢xx’ ¢xy’
[ and ¢
XN XY av, oV, av, av,
= , = - L, ()
a¢xx a¢xy a¢xy a¢xx
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_— —_— + —_—
ox 9¢ "x 8¢x XX 8¢y ¢xy

v, Vv, av, v,

+3—Y+3_¢¢Y+8¢x¢xv'r¢y¢xx= 0 )

(1), (2) and (3) are also seen to be sufficient conditions for divV =0,
Let V=V, +1iV,

z; =x+ 1y
by +idy
Zy = ¢xx + 1¢xy

Then (1) and (2) imply V is an analytic function of z;. Now,

Zz

2z

oV, 9V,
E—+ _5; = Re LZ]V
ov, av,
i il ” a2y =
56 ®x " Tag Oy T Re [84» z*]
av, oV, oV, oV, _
— ey of mmmmmly e e =Rel:(L_V)z3:|
8¢x XX Bd)x Xy 8¢Y Xy 8¢Y xx Z,
so that (3) becomes
9V — =
Re [LZ1V+ 96 z, + (L_ V)z3:l = @ (4)

’ 2
If we take the Laplacian of (4) with respect to ¢ e’ ¢xy (vdp '® )
XX ' Xy

we get
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by using the fact that the first two terms in the bracketed expression of
(4) are analytic functions of z; (since V is an analytic function of z,;)

and hence they disappear leaving

2

S L S R

XX, ' Xy Z;

=Re§ L L [(L V)'i}” =Re[ZL (L }
3 = = Zy -

Z3 2 . Z;

0
=4R
2 2

using properties 4,6,8,5 and L V is an analytic function of z;.
-~ za
Since -a—UE—(L V)is an analytic function of z; whose real part is
P
2
zero, we must have

= L_V = iA(x, y,¢,¢x,¢y) where A is real and

independent of ¢xx and ¢xy

=> L_V =iAz; + B(x, y,¢,¢x,¢y) B complex

Z,

There exists a real a(x, y,¢,¢x,¢y) f.such that a=A or

vz
b0

L Lz a = A. Similarly there exists a b(x, y,cb,q)x ¢y) such that
— 2 £ ]

2z

L b =B. These two statements follow from properties 9 and 10
“2
respectively.
We now have, using property 8 and that everything in the

bracket is analytic in .z5,
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L I:V -i(L_a)z; -b_[:O
= ZZ
Z

=V = i(L’zza) z3 + b+ c(x, Y $, 22, Z3) . (5)

where c¢ is analytic in 2z, for fixed z; and analytic in z; for fixed z,.

Substituting into (4), we obtain

" . 0
Re[:L(Lzleza)zg, + Lzlb + Lzlc + 1—3-(—5(L a)z, 2z + = a¢
$EE 2 & ot Biuy =8 (6)
a(b 2 Zy 3

using the analyticity of ¢ in z,, the realness of a, and the fact that

Re[(L b)23} = Re [(L b) z3 :] = Re l:(Lz b) 2.3}
%3 . T 2

The term inside the bracket of (6) is an analytic function of 2z; and by
(6) its real part is zero. Hence it is equal to an imaginary constant

relative to z; (does not depend on by OF ¢xy) i. e

dc — " . 0 e -
Lzlc + "5 % + [11..2:'1 Lzza + 1W(Lzza)zz+ Lzzsza

+ L b+—§-$ 2 = iI(x,y,cb,q;x,dpy), I real (7)

Differentiating twice with respect to z; yields

d%c PBc -
Lzlaz§+a¢azzz_o (8)
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Since c¢ is analytic in z,, we must have

3
Fonn =0 => 55 fon(x vz, )
3

Therefore, there must exist a D(x, y, z;, 23) such that

9%c _ @%D
5z3z - 'B-Z—f

so that
c = D(x,v,2;,23) + E(x,y,¢, 2;) 23 ,

the constant term in 2z; being absorbed into b(x, y,q;,q;x,q;y). From

(8) we also have

d2c 2

o

,\
g

35 =0 = 1L = 0
z, Ezsz * z, 5233
—, BB : ; —
= 713 = analytic function of z,, z,, and z;
3

From a theorem in complex variables we can find a d(z,, z,, 2z3) suchthat

92D _ @%d
= o

——- D = d(z;, 23, 23) &

the linear and constant term in z; being absorbed into E(x, y, ¢, 2;)z;
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and b(x, y,¢,¢x,¢y) respectively. We now have for c:
c =d(z,2;,,23) + E (% v, ¢, 22) 23

We can always find an e(x,y, ¢, z;) such that

_;0e _ i s =
E(x, v, ¢, zz)-laz > Lzze- > Lzz (e + e)

by properties 5 and 8 and the fact that e is an analytic function of Zsy
Thus E(x,vy,¢,2,) = iLZZRe e so that the term E(x, y,$, 2,)2z; in (9)
can be absorbed in the first term of V 1in (5) so that finally we have for
ci

¢ =d{z;, 23, 23) (10)
Substituting (10) in (7) we have
|:J.L L a+ 1—(L a)za + L 5}53 + L b + = 6¢ z, = il(x, y,¢,¢x,¢y) (11)

z,; oo

Thus the bracketed term in front of z; must vanish, yielding

. . 0a — - | _
Lzz[lLZIa + 1-&5 z, + b:f =0
This, then, implies

b

-1Lzla - 1% 2z, + £(x% Y, ¢, 2;)

or b=iL a4 i%% z, + 8(% y,¢,2;) (12)

2,
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where g =f 1is an analytic function of z,.

which when (12) is substituted in becomes

% 7, | =
Re[Lzlg + 7% zz] 0

2
since iL L a =iV
Zl — K,Y
Z

a,
; da z
1LZ] Tq) ZZ + lL
2
and i 0%a z

1W zzza

are all imaginary.

With an argument similar to the one used in (4) for V an

analytic function of z;, we obtain for g,

0 o
RE[—B-Z-: -8—9-

o

(11) also gives

da — : da
- T 21Re(Lzl 7% lzz)
1

an analytic function of z,,

]=D => there exists a real m(x,y,¢) and

a complex n(x, y,¢) such that

9g _ . 9°m(x, v,4) an(x, y,d)
56 - 1T 0¢7 %2725
= i %YL?_) 2, + n(x, Y!‘t’) + P(xa Y, Zz),

p analytic in z,

(13)
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Since we can extract from n(x, y,¢) aterm ilL m and this term
Z
1

together with the first term in (14) can be absorbed into the first two

terms of (12), we now have for g :
(15)

g = n(x! Y-q’) + P(x, VE ZZ.)

Substituting (15) into (13) yields
(16)

an N
ReliLzzn+ Lzlp + 79 zZJ =0

so that the bracketed term must be equal to an imaginary constant

relative to 2z, which, then implies
52
922 szp =0 sz 0z

— 9%p _
._>azz_

2

analytic function of 3z,

Thus there exists an analytic function of z; and z, such that its

2
second derivative equals -a—f » S0 that we have for p:
|
(17)

pP= fcn(?l, z,) + Q(x, y)z, + fen(x, y)

The first term in (17) can be absorbed in d( ;1- z,, z3) and the last term

can be absorbed in n(x, y,¢) thus giving for p:
P = QAx, y) 2, (18)
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Substituting back into (16) we find
Re|L_n+(L_Q)z +aHz =0
s i A T .

80 that we must have

LZIQ+ % = 0 (19)
Re [:Lzln:] =0 (20)

Integrating (19), we have
n=-(L_R)¢ +R(xvy) (21)

Z,

and now substituting into (20)

Re [-(LZIL__'Q'M) + LZIR] =0

|
Since Q and R do not depend on ¢

Re|L, L_T|=0 | (22)

L. "1 g,

Re| L R}=0 (23)
2,

From property 7, (22) states
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L Q=iL_ ql%y) where q 1is real
z) 2

=> (W =iq+ analytic function of z,

Q = -iq + analytic function of z,

The last term in Q will drop out in the expression for n, (21), and in
the expression for p, (18),as it can be absorbed into d( ;1: Z,, 23), SO

that we have for Q:
Q = -iq (24)
Again using property 7, (23) yields

R=iL_ r(xy) , r real (25)
&y

Hence the expression for g becomes (from (15) ),

g = -i{L_q)¢ +iL_r -iqgz,
3 1

We can absorb g completely in the first two terms of b, (12), by

absorbing -q¢ + r into a, sothat b finally becomes

_ . da ‘
b = lL_z- a+ 15-&-) Z, (26)
1

And now we can finally write down for V:



_39-

V= i‘:Lzza(x, y,¢,¢x,¢y)_]z3+ 1L4 a+i 5‘_¢ zs 4 M 2y, 22, Ba) (27)
1

where a(x, y,¢,¢x,¢y) is any real function of x, y,¢,¢x,¢y

and d(z,, z;,23) is any jointly analytic function of z,, z,, 2;.

Transforming back to real variables we have for V; and V,

da da da 0da =
V, = = Re d
1 5¢x ¢xY+ §¢Y¢xx ry T ¢y+ € (zllZth3)
da da aa
V; = b+ b+ =— ¢ + imd(z,,z,, 2;)
2 §¢x XX 5¢Y Xy o= ¢ sl
or
d _
V; = = g;a(x. Y.¢.¢xr¢y) + Red(z;, z;, 23) (28)
d —
Vz = a'x-a(xs yt¢s¢xt¢y) + -ﬂmd(zli z2'Z3) (29)
where % - % denote partial derivatives when ¢, ¢ 0 ¢Y are functions

‘of x and y. The first terms in (28) and (29) make up a trivial diver-
gence-free vector because it's divergence-free for any function &(x, y)
whether or not it satisfies Laplace's equation. The interesting terms
relative to Laplace's equation are the last terms in (28) and (29). We

can see how they came about as follows: The statement that Y

be divergence-free is equivalent to

Re [Lz VJ = 0 where total derivatives (30)
1
' with respect to x and vy

are now taken



sl

We. note that if V 1is any analytic function of ;1, (30) will be satisfied

since

szf(zl) = 0

where f is any analytic function of z,. Now Laplace's equation states

2 p—
V¢ =0 = L, L ¢ =0 = L_ ¢ =1(z)
1 2 1
1 1

But L_¢ =¢_+ ic:])Y =z, sothat z, is an analytic function of z,. Also
zl .
any derivative of an analytic function of z; will be an analytic function

— dz d : !
e, S —. 1 = i
of z,, so that = 1 (@, * 1¢Y) b+ 1¢xy z; is also an analytic
- 1 =
function of z;. Therefore any analytic function of z;,z, and 2z;

will be an analytic function of z; and hence will give a divergence-free
vector.

We could generalize our results to include higher derivatives of
¢, but from the above discussion it is not hard to see what the results
would be.

It is interesting to compare these results with those of Noether's
theorem concerning equations which come from a variational principle.
Let u_, a= 1, ..., n, be functions of the m independent variables

 STRETEIEE S Let J[E] be a functional of u:

J[_\}_] = S L(xi, u, u j)d_}s

D

ou
_ a : . :
where ua,j = -ax—J and the integral is a volume integral over some
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arbitrary domain [ in x-space. If we consider the first variation in

J{u] and require it to vanish, u_ must satisfy

m
v _d (_dL oL .
L dx]( (auak)-aua 0 w=l e (%)

whichare the Euler-Lagrange equations, Assuming that there exists an
L such that the equations for u take the above form, these equations
are said to come from a variational principle and any solution ua(gc_)
is said to be an extremal.

Consider now a one-parameter group of transformations:

1 ou
X, = X, +Xi(£,2, % e)
1 ou
ua:ua+]Ia e @; e)

such that at €= 0, Xi = IIa =0, If u is a function of x, then the
1 I
above transformations induce a function u of x and ¢; the domain
1 !
[ in x-space goes inté a domain /) (¢) in x -space. Noether's

theorem tells us that if J'[ u]| is invariant under this group of trans-

formations, i, e.
ou

Df L(E.B.a g) dx = Df' L(zt..z, "':r)dz

for any u(x) which is an extremal, we obtain a conservation law for

the system of equations (*), What's more, every conservation law of
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(*), involving no higher than first derivatives, can be obtained from
some one-parameter group of transformations which leaves J[u]

invariant. To exhibit the conservation law associated with the above

transformation, let

n m e
\ \
T. = ( -u_ .X.)|+L
k & Jz;l aua’k a a,j _]) xk
Then
m
Z di ,
k=1 k
For Laplace's equation, ¢xx+¢w= 0, we have for J[¢] :

o) = [ [H(egre,) axay

with the corresponding infinitesimal transformations

»
1

X + X(X,Y,é, ¢X’ ¢Y) €

1

¥

V& XY 0d b )E

¢ =4 By, 0,0, 0 )¢
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J[¢] is invariant under the above transformations for all ¢ satisfying

Laplace's equation if and only if the following vector 1T = (T,,T,) is

divergence-free;

Ti=¢,(8-6. X -0 Y)+3(e2 +42)X
=0,2-2(02-00)X -¢ 6 ¥
T =0, (2-6. X -0 Y)+3(62+¢0)Y
=6 2 -6, 0 X - 2(62 -02)Y
Letting T = T, + iT,, we have
T= (¢, +ig )T - 2o+ i¢Y)2 (X-iY)

From our previous work T will be a divergence-free vector depending

x,y,¢>,¢x, and t.’py if and only if T has the form
T=F(x-iy¢+i¢)+i(d_a(xY¢)+i“dj;(XY¢))
2 ¥y y dx » Vs d'y » Yy

where F is analytic in x-iy and ¢x+ i¢y and a(x,y,®) is a real
function. We can then solve for X,Y,% to obtain groups of transfor-
mations leaving J[¢ ] invariant. Notice that since there are two
equations for the three unknowns X,Y, and &, we will have infinitely
many transformations corresponding to the same conservation law,

Consider now the surface integral of T:
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f’I‘l dy - T,dx = f (ReF)dy - (4mF)dx c: closed curve in
C c (x,y) plane

,ernff(x-iy,¢x+i¢y) dz .where z=x+iy
c

1]

4m {G(x+ iy, ¢, -i¢ ) dz

where F(x-iy, ¢x+i¢y) = G(x + iy, b - 1¢Y). Note that if there are no
singularities in the solution on and within ¢, then qax-i:;r:y is analytic

in x + iy and hence the surface integral is zero. If we let

S, ﬂmf -iGdz = Re f Gdz since -iG is analytic
c

c in x+iy and dpx—iépy

2]
~
|

-frndez,
C

we then associate two constants s = s; + is, = dez with a given
function G(x+iy, dpx - iq)y) and a given curve c.c

As an example consider irrotational flow past a body with a
uniform velocity at infinity, Then the velocity components u,v are

$

asymptotically expanded as

- and ¢Y respectively. The flow near infinity is assumed

. AL Ay
W=u-iv=Ag+— +—-3+ " as z—
. z z
If we take a curve cg around the body and another curve c¢; enclosing

the body far away from it, then since there are no singularities

between ¢, and c;
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fcdz = dez
Co c, -

Letting G = (u-iv)z", we get

[ (u-iv) z%dz =(A_.,) 27

Co

n+l

so that if we know the flow at the body or simply the values of

f (u-iv) z.ndz, we can find the flow far away from the body.

Co
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Chapter VI

Incompressible, Inviscid, Steady-state Two-dimensional Flow,

Incorporating First Derivatives

The equations given for the two-dimensional flow are

9,1 * 92,2 = 0 (1)
99,1 + 99,2 + P,y = 0 (2)
9,1 t 9%,z TP =0 (3)

2 2
For convenience we change from p to h=p+3(q,+q,) sothat (2)

and (3) become

h ) =q,(q;;-49,2) (2')

o
~
I

= q;(qy,2 - 92,1) (2"}

If we solve for the x, derivatives of gq;,q,, and h we get

h,
—3 - —— 4
d,2 = 9,1 @ (4)
Qz,2 = ~91,1 (5)

h,z"'"g":hl (6)
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We also note that by differentiating (2) with respect to x; and (3) with

respect to x; we obtain

Gz - @,21) + 9,1z - 9,2) = 0 (7)

(7) states that the gradient of the vorticity, (q,,; - q),2), is perpendicular
to the velocity field.

We may, according to our previous theorem, choose q,;, q;# 0,
h, 9,15 9,1+ b1, Q115 9,1, and hy arbitrarily at éome arbitrary
point x;, x, and a solution to (4), (5), and (6) will exist. The choice
of h, is equivalent to a choice of gq; ,. Also, a choice of h,;, is
equivalent to a choice of q, 33 - q;,; so that a choice of ‘qz,11 is
equivalent to a choice of 9,21+ We could have also solved (1), (2'), and
(3') for the x, derivatives of the dependent variables. With a similar
argument as above we could choose arbitrarily at some arbitrary point'
Xy, X, the values of q #0, q;, h, q,;, 9,1, 95,20 11> 91,21> and

G2,12 - 91,22+ Summing up we state:

Theorem: There exists a solution of (1), (2), (3) where at some
arbitrary point x;, %, the values of q, qz(q21+ qzz #0) h, 9,1, 9,1
Qi,2» 91,110 91,21, @and the magnitude of the gradient of q, ,-q;, may
be chosen arbitrarily. The last conclusion makes use of equation (7).

. We now look for a vector V = fen(xy, %,, q;, gz, h, di,1» 92,10 ql,z)
(all other gradients can be solved for in terms of the above) such that
divV = 0 for all q;(xy, X;), Q2(%;,%;), and h(x,;,x;) which are

solutions of (1), (2), and (3). Since V will be considered not only a
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continuous function of its variables butas smooth a function as necessary,
we may exclude the case q; = g, = 0, because this can be obtained by
taking the limit as q; — 0 and g, — 0. Forming the divergence and
setting it equal to zero we have

ov. oV, oV, E)Vi

i i i
= + =——q. . + h.+ Q. . =0
8:4:i qu j,i 0h i qu'k 3, ki

j and k not equal to 2

simultaneously

ovV. ,aVv. oV, av. oV,
= e e P Y TR 4) % e Y = O
5%, "\Bgq R oh 4)9,i 9 - Gk

We keep all the variables that V depends on fixed but arbitrary. By

choosing g to be a linear function so that q.j i = 0 we obtain
2

BVi oV, 0oV, ov

1 i __i -
w gty Wt ()
and
oV, ‘
'gm % 15 * 0 j and k not equal to 2 (9)
simultaneously
By the above theorem, we may choose q; ;; = -1, q;; =0 andthe

gradient of g, ; - q;,, equalto zero so that

—
I

= =0y qy = Gasy = Yags = Qyss
0 =4q521 = %n

= a2 = =dz,z
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Substituting into {(9) gives

9V, , 8V, , 8V,

. = 0. (10)
94q;,1 99, 9qy,2
Similarly, we now choose q;1; =0, gq)2 =1 and the gradient of
92,1 - 91,2 €qual to zero and obtain
av, oV, av,
+ + = 0 11
99,1 99z, 9qy,2 (11)
Substituting (10) and (11) back into (9) we are left with
oV oV
”g'qu‘l (92,11 - ,21) ‘a—q:‘—z(%,lz - q,22) =0 (12)

The fact that we may choose the magnitude of the gradient of ¢, ;-q,.

to be non-zero combined with equations (7) and (12) allows us to conclude

v, oV,
4 = 0 13
3%’1 9 aql.z q ( )

Equations (8), (10), (11), and (13) are the necessary conditions for
divV = 0. They are also seen to be sufficient conditions.
Equations (10) and (11) can best be understood by a change of

variables. Let

- . o _ 0
g = q3,1 r"ql'l €
¥ = Q2,1 * 85, 9 _ 10 10
g 0q;,, 2 09n 270
2 9qz,; 2 9n ' ¢ 0L
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Then (10) and (11) become, respectively,

oV, _oV
3E "D VA
8V, _ oV,

= (15)

(14) and (15) state that V = V; + iV, is an analytic function of z=§+in,
V=V(x, g h L, z). Let x=x, +ix,, q=q; +1iq;; x is the vector
(x;, X,), x is the complex variable x; + ix;, and X is its conjugate;

the same applies to q, q, and q. Equation (13) becomes
oV oV =7 _
R[a q+18§ qJ-O (16)

Since V is analytic in z, (16) implies there exists a real H(x, q, h, z)

such that

5z 9+izr 4=ig7 (% 0,0 a9 (17)

(17) can be solved like a first order P. D. E. in real variables. Let

F(x,qh,§2)=V - Hq. Note: Hq is a particular solution of (17). The

equation for F is

(18)

S
Mol
= =
5
&
o
]
o

Change variablesfrom ¢{,z— {, W where
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£=¢
W=z + iﬂg Note: F is analytic in W for fixed
q
& | x|
9% | ¢ fixed Wl ¢ fixed
aFl = 11 oF [ + OF
Bl g fixed q ow g fixed 5 W fixed
Equation (18) becomes
4 . 0 4 :
ol where we are in {, W coordinates

=> F = F(x,q, h, W), F analyticin W

We now have for V:

V = H(x, a0 h, L)q + F(_:f.ﬁ.g, h, W), H real (19.) |

Equation (8) becomes after transforming to §,n, and f variables

dV, , 8V, . (dV, 2V aV, , VvV
7t et (oo - oar) 8¢ (Bt oad)

oV oV oV
t (32 - gt e Rt a -2 w) L= 0 (20)

We now use the L operator notation and (20) transforms to
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]
Re} LV + (L V)z + i(qu +2 %E)gt =0 (21)
q

which after substitution of (19) becomes

— G G Ve
Re} qlL H + LxF +[qL_H +L P~ :g—a—w-] W
x q q q
sid e et Fszaat L 0 (22)
& q oh

We eliminate all terms involving F by taking the { derivative of (22)
twice yielding

2 2

- L
R T ek i =0 23
e{ q _5¢2 qu 202 Wf (23)

Q

Since H does not involve W, we must have

9%H
= 2
" 52K i
Re! qL — =0 (25)
i zaézf

Since H is real (24) implies

9%H
TR © fen(x, h, T)
This statement coupled with (25) gives

L—%gzo —_ %%g = fen(h,{) => H=a(h, L)+ b(x,q,h)L (20)
x - —
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where a and b are both real; the constant term in § can be incor-

porated in F.

When (26) is substituted back into (22), we get a linear expression

in { equated to zero, so that the coefficient of the [ term along with

terms not involving { must each be zero, i.e.

aF . .
Re qub + qWqu 2i E—q 4 q LqF +iLF + zlqg—. =0 (27)

»nl

Re LF+"‘LF£=0

x & (28)
q
Except for the term involving W, each term in (27) is an analytic
function of W. As in preceding arguments, we must have
.9 9%F | _
RE[-ZI:-E SWZ .J =0
q
Thus there exists a real A(x, g, h) such that
q 9°F
'—21 _—Z- W —ZlAqq
0%F =3
= we - 44
== Fz%A(f q, )W + B(x, q,h)W+ C(x, q,h) (29)

where B and C are complex. Similarly (28) implies

[;_%}0
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which becomes using (29)

Re[WL_(AT;3 )+ L B|=
q

so that

L (Ag3) = 0 (30) - -
q :
ReL B =0 (31)
q
(31) implies that
B = ian:(f. q, h), «areal (32)

When (29) is substituted back into (27) we get

Re {qL b+ GWL b 4 21 WB+15(I.. ByW+id L C
$ x q 1 q

. -
+ i[% Lq(AES)W +L BIW + L C J

9B BC}:O

'?1( 3% w+a—w+5— (33)

: 2
This is a quadratic expression in W so that the coefficient of the W

term must be zero, 1i.e.

i—Lq(Aq )+iq gp=0 = LA+ 29 5}.‘}* (34)
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Now, (30) states

1
o

LA + 6A (35)

so that by (34)

SIS
1
A
>

>

I

=

_?4

9

(v}

But by (35)

which implies that A = 0,

sothat A =0, Thus F
of W,

is a linear function

F=B(x,q,h)W+C(x,q h)

(36)
The coefficient of the W term of (33) must also vanish giving
Lb+21§+—LB+—LB+21—-=0 (37)
q 9" q oh
q q
" —_ 1 2
Since ReL B=0, LB =-L B and L (-—) ==L B ~-—B
q q q qq q q q

. [b+i.§-iB:]-ziaE
q q

i == =0 (38)
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Now, using (32), (38) becomes

L a
La <
L |bs—3ecnd<222 |0
9 m 9% =
so that
L a L_a oa L o o g
B & wion; i 2 55 Note: —& + —3~ is real (39)
g % 8 g ¢

where the function of x and h coming from the integration can be
2
absorbed into @(x, q, h). After the elimination of the W and W terms

in (33), we have

Re{ELb+i-9-Lc+iLc+ZiT; }=0 : (40)
% q 3 q

| @
518

which we shall come back to later.

We are still left with solving (28), which becomes a linear
expression in W when (36) is substituted in. Again,the coefficient of
W must be set equal to zero along with the real part of the term not

involving W, i.e.

LB+LTC=0 =>LB+LC=0 (41)
q x q
ReL C =0 (22)
X

Using (32) in (41), we get

C=iL_a 4 M(x,h, qg), where M is analyticin g (43)
x
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We now substitute the expression for b, (39), and theexpression for

C, (43), into (40) giving

Re{i

Since M is analytic in q, there must exista real N(x,h) such that

(=]

L%/

M ,.— oM }H
q+1qa—~ =0 (44)

Thus
M=N(x,h)qg + P(x,h) + R(x,q) (45)

where P(x,h) is complex and R(x, q) is analytic in q. Substituting

(45) back into (44) gives

.dR . 0P | _ .
Rei:lﬁ-la—h—qj—o (46)
which implies
9%R 2
7 -0 => R=z8(x)q +p(x)q (47)
where "8(x), f(x) are complex. The term involving x alone was

absorbed into ?(-E' h) . Using (47) in (46) we are leit with a linear

function of g so that
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5(x) -3 =0

Re [i{i(i)}zo => B(x) is real. (48)

B(x) may be taken to be zero as the B(x)q term in (47) can be

absorbed in N(x, h)q in (45) so that

R = %Ngg)qz (49)
From (48)

P =3(§_)h+ €(x), where €(x) is complex (50)

The final equation to be solved is (42), which becomes after substitution

of (43), (45), (49), and (50)

Re { qL N+ hL_§ + L € + -;-quxa } =0 (51)
so_tha.t
1..)"6 =0 (52)
L N=0 (53)
Re L §=0 => ReL 6§=0 (54)
xX

Re Lxﬁ =0 (55)
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(52) implies that 6 = &§(x) is analytic in x and hence (54) states

Re -?—E =0 => ég = im, where m is a real constant
ox ax
so that
8§ =imx + in, where n is a complex constant (56)

(53) implies that N is a function of h alone (since N is real) and

hence can be absorbed in a(h,), (26), so that
N=0 (57)

(55) gives € =iL_e(x) where e is real. e may be taken to be zero as
x
it can be absorbed in a(x, g, h), so that

€(x)=0. (58)

Thus the expression for F. is, from (36), (32), (43), (45), (49), (50),

(56), (57), and (58),

2
F = ian‘.(_:i. 9 h)W + iL_a(x, g, h) + (-imx+ n)h+ 3{imX+7)q
Nt 2
(59)

and thus for V from (19), (26), (39), (59) and W = z + i2¢

q

ts o B
V = a(h, {)q + (-imx-in)h + 3(imX+in)q +izL o+ L a+ Zg—a {q+il «
q 3 h o=
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Letting n = n;+in,, we then have for V; and V,;:

2 2
V,; =a(h, f)q; + {mx;+n;)h + %(rnxz-i- n,)(q,-9,;)-(mx;+n;)q; q; -% ofx, E’h)
1 ¢ @ d
V, = a(h, {)q; -(mx;+n;)h + z(mx; +n;)(q, -q,) + (mx; +n,)q; qz+a-;(-1-a(_::c_,ﬂ, h)

d d
-'a;z'a;a;; s

allowing V to contain gradients of q changes only the term a(h)q to

Except for the addition of a trivial divergence-free vector,

a(h,;)g. The fact that the vorticity, {, is constant along streamlines

accounts for this term.
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Chapter VII

First Order Equations

In this chapter, we will be considering functions of the two
ind‘ependent variables x; and x,, the dependent variable u(x;, x;),

and x,-derivatives of u. _ Let Fn(xl, X, u(o), u(l), v u(n)) be such
a function, where u(‘j)=ij—1'1—j and the superscript n of F" refers to
the fact that F" depend:)fjln X, -~derivatives of u up to order n. F"

is assumed to be a sufficiently smooth function of its arguments, which

are to be taken as independent variables of F" For a given function

f(x;,x%; ,u,u(l}), we define two operators Df_: and Df(’ :

p 1 2
n n
P —~n _oF (m+1) 0F
DXIF = % + u W (]-)
m=0
p —n _OF™ N
D Ft=8E-4) o ) o
m=0 1 u
where
df !
—r, =Y £ Note: If >n
dxl 1 P
s 2 gf P W
n n
—_— = D _— D F = D F
dx4q x; dxg 1 X
m m m-1 P n
df.‘Dx dmf D F® = p FP
dx, 1 dx, 2 *2
n
If we think of u as being a function of x,;, x,, then Dx F" is the
1
. n
total partial derivative of F? with respect to x,, fi—i-— , and the
2 1
. df d f a"¢ . _ :
notation & g — has the obvious interpretation of,

dx;



vy
respectively, the first, second, ..., and nth total partial derivative of
f with respect to x,. If we now know that u(x;,x;) is a solution to the
first order partial differential equation
du
e (3)

a_xz & f(xll xz. u, axl ’

The operators Dx and Dx obey the same addition and multi-

1 2
plication rules as the normal differential operator. One other important

property is the following:

DnH(Dn Fn) - Dn+l Dn Fn) (4)
X X3 Xz b 3

To prove (4) we let
pitl pB pR F'n+2(xl s i Wy xcd u(n-i-z))

n+! _n n_ ~n+2 (n+2)
sz DxlF =Q (xl,xz,u, sy W )

If u(x;, x;) is any solution of (3) then

n+2 (n+2) n+2 (n+2)
) 2o (xloxzsu(xhxz)o ess U (x]:xl’.) =Q (xlnxzau(xl,xz). ass 3 U (xl,xz)) (5)

since (4) then states



s iFn - N —d— F", F" function of Xys X;

which is just the commutativity property of the differential operators

33%1_ and -d%z . By a previous theorem, there exists a solution of (3)

such that at any arbitrary but fixed point xlo, X, , the values of
0

u(n+ 2) '()n+z) (n+2)

Wi s are equal to ug,...,u , respectively, ug,...,ug

being completely arbitrary numbers. Thus at x; , x, (5) states
0 0

n+2 (n+2) n+2 (n+2
P (xl s Ky oy Nigiy weon B ) =Q (xl r X 3 Ugy ese s g (6)
0 0 o o

The arbitrariness of the arguments of phtd and Q‘ﬂz in (6) then

proves (4).
n

)

n

such that divV =0 for all u which are solutions of (3). We need not
n

include x,-derivatives in V  since they can be solved for in terms of

n (n) n n
We now look for all vectors V (xl, Xyg Uy esey U ),y_:(vl, Vv

x, -derivatives. Since u is now thought of as a function of x; and x,,

we have for the divergence

n n n n
xl xz 2

(n+1)

Since Xj,X;,U, <., U can be chosen independently, (7) is an

equation for the n+4 above independent variables. At this point we

. . .. . . of
will now assume that (3) is a quasi-linear equation, i.e. l=fcn(x1,xz,u).

(n+1) B 0u’ (nt1)
u will appear linearly in (7). (X does not depend on u ) é

Hence its coefficient must vanish identically. The coefficient of u(n+1)
G N 5 - (n+1) R @

T is 1 ; the coefficient of u in DV is

*1 ' au(n) x, 2




“hde

n
af 9V,

() m) * Thus we must have
ou du

n s
oV of oV
—(-L -5 ——(-—’ = 0
ou n) i du z ou'” (8

In solving (8) we only consider n=1, so that(8) implies

n

-1
vi=-2 yiE (x X,, u u(“")) n=1(9)
1 m 2 12 29 Uy eeny » =

n
Substituting (9) back into (7), we have a first order P.D.E. for V, in

-l
terms of Frl :

of d of B B=d R

n n n I
- V, +D V -(-- )v F
AR s T khe L ¥ POV ¥ Dx1

0. (10)

where
a of _ "t et _° af
dx; aum *1 autl’ 1 auhj
and
n n-1 n-1 n-1
D F = D F
X1 X1

(n+1)

(The individual terms in (10) involving u will cancel when combined).

' )
For each F© ' let Q" be a solution of (10), i.e.

af n n n n-1

n d of n n-1
- a—(T)Dxl Q +-sz Q - azm) Q +Dxl F 0 | (11)

u



n n n n n
Q will be exhibited later. Let V, =W + Q. Therefore W must

satisfy

of n n n n d o n
-m Dxl w +szW "(Ex—l m)w =0 (12)

Before solving (12), we observe that the solution of

S5f Do 0 DO 0 3
- auh; x, 7 TP ¥ *
of 9 ) 0 ] of (1)\ o 3
: < p L " 1 T =
1. e. m -SXLI'I‘E‘F(E -a—u(T)-u )au 0 (13)
independent
of u(l)
0 0

will have two independent solutions y,;, y, depending only on x;, X;, u.

We also note that if y'], j =20, is a solution of

L] Dj j D'j j 0 1
- + = 4
2 xy x; Y (14)
j+l
then by applying the operator D to (14), we get
1

TR j) (o 2t R B R
= ot i 4 =
au(li X, le dx, 3uhi) xly X, le
. LG
using (4). Thus y =Dx y 1is a solution of
1
j+1  j+1 j+1  j+l j+1
T L il d _af\ .7
- D +D - ( ) =0 15
PO e ™ y x, ¥ T 0 y (15)
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' 0
Hence a particular solution of (12) will be w =D_ vy, . If we now let

n 1 I n
W =w Y, then Y will satisfy the homogeneous equation
of n n n n
- a—u(T]- Dle + szY = 0 (16)

Since (16) is a homogeneous linear first order P.D. E. in the n+3
variables x;,x;,u, ..., u(n), the general solution of (16) will be an

arbitrary function of n+2 independent solutions of (16). We already
0 0 0o 0

know two solutions, y,, y,. From our previous discussion D_ vy,
1
i o 0
will be a solution of (15) and hence y = — j D. Y2 will be a solution
1 -

J
of (16) since w' is also a solution of (15). In general, if y is a

solution of (16), then
j+l

1 ’
y = ?D y § =05 e0e5071 (17)

*1

0 0 1 -
is also a solution. Thus we have n+2 solutions, y ;, V2, ¥ 4 veey ¥

which can be seen to be independent so that we have for w

n ' 0o 0 1 - '
W = wG(yl,Yz, Yo soep ¥ ) » G: arbitrary function of (18)

its n+2 wvariables

n
To solve for Q , the form of equation (11) and the preceding discussion

suggests that we consider the following equation for -

'-(T)'D P + D P + F = 0 (19)



6T

-1 . ; n-1
We note that for every Fo there exists a solution P of (19) by
=1 .
the linearity of the equation. Also, since F! was an arbitrary
-1 ; 2 ;
function, P" is an arbitrary function, Proceeding as above, we

apply the operator D:l to (19) giving

9f & n-1 n- n n-1 n-1 d of n-1 n-= n";..n-x

. p” (p. P ) 4D (D P )-(— ) D P 4D =0

auils X\ x; X, \ X, dx, auh; b3 X,
n-1 n-1 n

so that Q" = D_ P is a solution of (11). Thus the vector V is,
' vy

from (9) and the above

n ¢ o o0 1 n n-1 n-j
= 1 o
Vl = mWG(Yl, V21¥Ys voeey ¥ ) sz = (20)
n o o 1 n n-1 n-i
Vo, = WGy, V2 Vs eov0 ¥ ) + Dx1 P (21)
n-1 n-1 n-1 n-1
Note: The vector (-Dx P, Dx P ) is the trivial
2 1

i dPn-l dpn-l
dx, ' dx;

divergence -free vector

It is interesting to note that w' is a linear function of 4, -
1

. - . e n
To give an interpretation to the non-trivial terms of V, we

first note that since (3) is quasi-linear it can be written

of ; of of o
= u =1 - f-
ou “xl - b ou uxz ) 5a ux1 is independent of uxl
xl xl xl

The characteristics for this equation are the solution of
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dx, _ _ of d, _, du_ . of
i e A A i A Y2 (2}

If the variable § is used to denote the characteristic we are on, then

(22) has the solution
X; = Xl(s, £, x, =X,(s,§), u=7U(s, E‘)

determined by particular initial data. We could solve s and £ in
terms of x; and x, and then substitute into U(s, §|] to get u as a
fun.ction of x; and x,.

Let u = u(x;,x,) be a solution of (3). Then if F(x;, x,,u) is

any function which is constant along characteristics, then

ar .
-a-;—O

i. e.

e BB R OF _
Euxl %, 0x, Euxl T i i

which is the same equation as (13). Thus
0
y1 = Fi(€)

0
y2 = F,(§)
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Now

so that
v .0 o avo [ ay]
ek L Hvs ) dy;
y ==D_ y, = dxl/ ot = fen(®)

Similarly all yJ , J=1, ..., n are functions of £. Since

of dE 5 d¢

dag _
as=% = T ax, Tax
1

I
o

then

d¢ _ _of _at
dx, = Ou dx,
g

It can then be seen that the first terms of (20) and (21) can be written
respectively as
of

0 (4] 1 n
T 3a Wi flya.ye.ys sy )
x)

—5 H(E)= - g B(E)

n

—E‘H(E.)-'—htﬁ)

0 0 1
w, ftyl'thY’ eee y Yn)
where hl{g) = H(E)

which are obviously divergence-free, These results can be generalized

to the full non-linear case, i.e, f is non-linear in a_ by solving (8)
1
for n 2 2 and proceeding in a similar fashion,
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Chapter VII

Totally Hyperbolic Equations

Consider the system of m first order linear equations:
Ve © A(x, .xz)xxl +Blx;, %) ¥ + c(x;, %) (1)

where v: vector vi(i=1, ess sy M), A: matrix Aij(i.j 2 Ly cauig i)

B = matrix Bj(i,j=1, ..., m), c: vector ¢;(i=1, ..., m). If in a
given domain of the x;,x, plane, the matrix A has distinct real
eigenvalues \,;(x;,X;), ..., )\m(xl ,X;), then the above system is called
totally hyperbolic in that domain. Assuming that this is the case in the
entire x;,x, plane, then there exists a matrix D(x;,x;) such that

D 'AD = A, where A is a diagonal matrix whose diagonal elements are
the eigenvalues \,,...,\__. By making a change of dependent variables,

m

v = Du, we get as an equation for u:

u, = Abu,x)u + Tk, x)a +50a, %)
2 %

where "'=D 'BD+ D 'AD -D'D
X X2

=1

|on
"
W)
10

The equations we will then consider are

u, =fi(ui ,g,:_-:_)=)xiui+yi fTiEidy weay M (2)
x2 X, X

where )‘i and y; are functions of x; and x,, Y being linear in u,
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As an obvious extension of the operators introduced in the

preceding chapter we define

Dzlpn ?&:Q'H‘.(l)o seey

k

where u. = ’
J 3x,k

and

with the obvious interpretation of —i{l . Again, for any function u(x;,x;)
dx;

which satisfy (2), the above operators, for p=n, are simply the total
derivatives of F" with respect to x; and x, respectively, The

commutation relation between the two operators still holds, i.e.

(The proof in the preceding chapter generalizes in an obvious way.)

e

" X1
We now consider vectors V (x,u, . e g(n)) whose

divergence is zero for all u satisfying (2), i.e.

n n . -0 ) -
Dxl Vi # sz vV, = 0. (3)
2 , o (n+1)
quating the coefficients of uj to zero, we have
n n

v} . avh |
pulm) auj‘n)

G=1, ..., m) (4)
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We will assume that m 2 2. Solving the j =1 equation, we obtain
Ve n n (n) (n)
1 - "'le2 + G (Uz 3 sss g um )
where the dependence of G on x and lower derivatives of u is not
exhibited., Substituting this expression into the j=2 equation and

solving, we get

n, ran (@ (0 M @ ()
vV, = W [F (ul s U3 5 ees ,um) + G 23, aee 'um)]
1 n n
Absorbing Sk into ¥ and G vyields for V; and V,
17A2
n n (n) n (n)
n n (n) n (n})
V, = F(u )+ G (u,

(n) “(n)

where the dependence on u; , ..., u s omitted since they acted
only as parameters in solving the j=1,2 equations.

By induction, we show that the general solution of (4) is

n n (n) n (n) n (n)
Vl = -kl Fl (ul ) -kz Fz (uz ) ey “RmFm(um)
(5)
n n (n) n (n) n (n)
VZ = Fl (u 1 ) + Fz (Uz ) + esw 4 Fm(u m)
n (n) (n)
where Fj depends on uj and not on u, £+ j. We assume that the

first j equations of (4) have as a solution
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n ~ 1 ~n
Vi = =MF; = s0e =0F.
1 f S 53
n ~n ~n
VvV, = F,+---+I:"j

~n
where Fk depends on u,f(n) and not on uin), £=<j, £+ k and that

~n
(;i: o ,u:::) appear simply as parameters in Fk' Substituting into

the equation for j+1 vyields

~n
J
z( 1 k) {n)
k=1 J+1
2~n
3 F
et i) aulfn) i
jh
~n n (n) n (n)
e Fre ™ Epig 330G 0y, )

and
ZJ n
(n -\ Gy =
A jH k
n
the 1ntegrat1on constant being absorbed into the G Letting
j+1 i\ G we get
n n n n
VI = -KIFI vy SR }\ij i kj+1Fj+1
n n n n
Vv, = F1+“'+Fj+}-:i+l
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thus establishing (5). Substituting (5) into (3) givés

m n n n n
Y, (-p, F D F) 0 (6)
I X2 )
j=1
n n n n (n)
We note that D N, F, + D F is linear in u, for j# k, so that by
X1 k k ) azEn
differentiating (6) twice with re5pect to u.k yields, letting G (n';z P
a“k
n n n n )\ ayk n
-D, NGy + D, G +z( 31 )G
or
n n n n 8?\k aYk n
-=», D G +D G +(2n1)—+2.—G = 0 (7
k X1 k Xz k au-k
n
Since the coefficient of Gk is a function of x; and x, alone, we can

find a particular solution of (7) depending only on x; and x,, i.e,

there exists a gk(x1 ,Xz31m) such that

n n agk ng Bkk Byk
_)\_kal g * sz By = )«,k Bxl B, = [(Zn-lj ——-axl + 2 ——"auk] 8 (7a)

n
A 8y satisfying the above equation can always be found. Letting

n _ n . n &L 4 )
Gk = ng'k we find that Hk satisfies the following equation:

n n n n
"?\.k Dxl H'k. + sz I{k = 0 (82)

(8a) is a first order linear homogeneous partial differential equation for

I-I.kn, However, since H” must not depend on u( ), j# k, the

k
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(n)

coefficients of uj , j # kK, must be set equal to zero. Hence

0 n
. =n) LR e BT j m (8b)
3TN S P, o) ELE T
J 4k itk

The m-1l equations (8b) along with equation (8a) constitute a highly
overdetermined system, There always exists a solution of (8) which
depends only on x; and x,, because there exists an hk(xl »Xz) which
satisfies

oh,  oh

o _fifx #ig (9)

Since (8) is a homogeneous system, then an arbitrary function of any set
of solutions is also a solution. Thus given a maximal set of independent
solutions of (8), the general solution is an arbitrary function of these
independent solutions. (Independence, here, means functional independ-
enceJ) We also note that any solution of (8) for the case £< n"is also a
solution for the case n,

The first property of system (8) to be shown is that to a set of

maximal solutions of (8) for the case n-1 (solutions depending on u(;:l—l)

l(cn) need be

and lower derivatives), only one solution depending on u
added to give a set of maximal solutions of (8) for the case n. Of course,
it is possible that no sclutions need be added as in the case where no

solution depending on u(l:l) exists, for if H®™ is a solution depending on

(n-1)

no higher derivatives than u , then
n-1 n- n-t n-l
D _H #+#D. H =20



e

has a solution only if the coefficients of g(n) vanish, so that

aH(n-l)

(s d oa (0D

=0 3 Bida awess I

and thus H" '= I—I.k'ﬂ"I , i.e. does not depend on uénnl) j# k. If there
exists a solution to (8) depending on u{cn), say PE, then make a change

of variables from ulin) to P]: leaving the other variables unch.anged.

(8a) can be written as

n
-1 n-1 n 0
Ay D H.k +D, H+ }2‘1) ) (10)

We note that it is sufficient to consider equation (8a) alone as long as it

is remembered that HII: does not depend on u;n,) j # k. Under the

above change of variables

(n-x) (n) n (n-1) n

Hk(x Y,.e,0 LU ) - Hk(}‘g,u,....E 'Pk)

n
£ o oal g T i=1,2
9x ox ox n =
i oP
k
T -— -
a - a + 3Pk a .E ;i-n .. » ;}l
ou®) st pll) gpn
j J j k
n
s __ °F s
(n) (n)
auk auk SP;:

n

so that (10) becomes, remembering that Pk is a solution of (10),

n-l n n-1
-ka H +-D

n
v Hy = (11)



o e
In (11) there are no derivatives with respect to PE nor does PE appear
in any of the coefficients, so that PE simply acts as if arbitrarily

introduced into H; Using the same reasoning as above, HE cannot

depend on u(n 1) , J#k (except through PE), bécause such a depen-
(n)

dence would mtroduce uy into (11) and the equation could not be

satisfied. Thus to a set of maximal independent solutions for the case
n-1 we need only add P;: to get a set of maximal independent solutions
for the case n,

If we have a solution of (8a) for the case n-1, n=1, i.e. a

function PE_I which satisfies

n n-i n n-i n-1 n-1 n-1 n-l

“\ D, P +D sz ND, Py +D P =0, (12)

(n-1)
and which depends on uo then a solution for the case n can be
n
generated by the following: Apply Dx to (12) and using the commutation
1

relation, we get

n-i n n-1 n-1

D (XD Pk)+D D, P )=0

or

n-1 n-l n n-1 n-1 8?\k n-1 n-1
-RkaI(D P, ) +D, (D, P, ) e AP P )=o (13)

There exists a function sk(xl , Xz) which satisfies

n n os Js o

-ka s, + D s, = -\ k k k

X, k X, K k ox, +3xz = 0x, \

k



.

In fact, = , where h'k satisfies (9), is such a function, Thus,

Sk

S

the quotient (D -I / —= satisfies the homogeneous equation
n n n n
“»D P.+D P = 0.,

k Vi kT gt K

(n)

Now, it is not necessarily true that if a solution, depending on u s

k
exists for the case n, that a solution depending on ul((n-l) exists for

the case n-1. An example of this is the system
ulxz =

u =u -
ZX2 le X

for which no solution of (8) exists for the case n=1, k=1 and depend-

(1)

ing on u'’, while for the case n=2, the function
P2 =u(z)-u(1)~—iu(1)+iu +'Au
1 1 2 x; xg 1T, Y2

satisfies (8). We can sum up the above as follows: Let ﬂk be the first
(L)

case for which a solution to (8) exists depending on u:k . Then for all

n<f the maximal set of independent solutions consists only of hk(xl,xz).

For n 2 £, the maximal set of independent solutions consists of

b “ o a P]+1 i o) oy
hk’ Pk » «ees Py, where (D ) 8x1 L <j< -1, For
the case n < "‘k
2
0 Fk n
au(“)z = Gk = gk(x1 , Xz 3n) Hk ]:hk(xl ,xz):]
k o)
- k n-1 _(n) n-1
= Fo = gHMb) —S— +a uy '+ by (14)
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where Hk is an arbitrary function of hk’ and 8 satisfies (7a). For

n
the case n 2 ﬂk' it can be shown that Pk can be taken to be a linear

(n)

function of u, and in fact, the coefficient of u{‘n) can be taken to
be a function of x; and x, alone. We may also note that g, can be

taken as

axl ( (n))

which can be seen to satisfy (7a) so that we get for F;

n 3hk n n-l (n) n-
Fk=a—le(hkP k) a, u +tb, (15)
where
n !k n
Hk is an arbitrary function of h'k' Pry wien Pk
a®? and B®7  are functions of x,u,... ,g(n-n.

k k =

which at this stage in the analysis are arbitrary

functions,

We note that h-k("l ,X;) = constant is the equation for the characteristic

£ n
corresponding to \,. Also, as in the preceding chapter, P. k, PR
P g k P P k k

are all constants along the characteristic corresponding to A, SO
that that first term in (15) can be thought of as % H(h ), where H
is an arbitrary function of hk The first term in -kka, from V? -
would then be - -— H(h.k) We can divide the solutions into three

cases:

Case 1 n?Ij, JoEy ey M
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Then each F? has the form (15), When we substitute (15) into (6), we

arrive at
n-1 (n) n-l n-1 (n) n-1 -[
Z o i Yen ( § b, ):o (16)
x, J J J J Xz J J J
n n n n n
since the first term in Fj satisfies -Dx RJFJ + D FJ 0. In (16) we
1

(n)

and products of u.

(m) ,(n)
J

In particular, setting the coefﬁczent of Ui

must set all coefficients of u

jn) equal to zero,

equal to zero gives

-1 n-1
da

(n1) T ("j"‘k) au(};-l) St

(%) ul j

so that

n-1 n-1
8a.j ) aak -
sulB) g n-1)
k j
By induction, we can show that the solution to (17) is given by
n-1 n=1
da
TR B e (18)
J auf“ 1)
: n-l (n-1)
where a is an arbitrary function of x, u, ..., u . We see that

(18) is a solution (17) and that (18) is a generalization of the fact that if
the curl of a vector is zero, then the vector can be written as the

gradient of a scalar. We can now write, using (18),

Z (aj uj T bj ): Dx a +V,; (19a)



and =
. n-1 (n) n-1 -1 n=1 n-1
s la @ b ):-D a =V 19b
Z’ J( j j j Xz : (135)
j=1 '
where
n"l i w
= | - - -
v, = (D —-J— o +Dnaanl-2>\.br?l
: , X ou (n-l) Xz =)
j=1
n-1 n-z2 n-1 m pn-1
V; =-D_a +), b,
=y =1 J

n-1 n-1
Since bj is arbitrary at this stage of the analysis, V; and V,

are also arbitrary at this stage. Substituting (19) into (16) and remem-

bering that D D:'l 7+ D) D’“ P71 20, we find that V' and
1 2 2 X

V2T satisfy

n-1 n=1 n=l n=1

D V, +D V. =0
X1 X2

Thus for the case n = fj , J=1, ..., m, we have

n m : Ji n-1 n-1 n-i

Vo mrm T (h.,P.j, wsB)=D, a4V
! );1 Jaxl i ) :

(20)
n m 8h 24 n-1 n-1 n-l
v, = (h P,..,P)+D a +V
" Z; Bxl =
where Xn-l = (Vl ] . 2 I) is an arbitrary divergence-free vector

(n-1)

depending on x, U, ..., U . The problem is thus reduced to the



next lower case, If n-12 Ej, j=1, ..., m, then the first two expresions
in __\_'_'_ndl can be incorporated into the corresponding two expressions in
y_“ so that the solution for y_n would now be the same except for the
last term which would be replaced by In-z . .We continue this until we
get to the point where _Y_k is such that k < fj for some j=1,...,m,
which brings us to Case 2,

k

k=1, ..., m, Assume for definiteness that j=1 and k=2, ..., m,

Case 2: n(!:j for some j=1, ..., m and n = £, for some

From this particular case it is easy to generalize the results, When we
compute the coefficient of uﬁ“’ u]E:l), k>1, in (6), and set it equal to

zero, the result is, using (14),

n'l

g, H, (h) +(>\ x) aa +(x1 ) =0 (21)

ou ln-l)

From the cross product terms u(nhl((n) , i>1, k>1, we obtain as we

did above

n-1
Hs da
ak = N 1) k>1
Yk

After substituting into (21), it can then be shown that

i 3y, (m7)
a, = aug“"’ E Z‘, Koo S ) g vy

We can then proceed as above and conclude that
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n m 8h; n ﬂj n. n- n- ( )
VvV, ==~ A\.— H.(h.,PY, ...,P.)-D_ a + quadratic function of u
: J?;z j 9%, J( 3" J) Xz 1
e N
V, & Z’ = H. (h i 2 J, — )+ D a + quadratic function of u}
= 90X
J= = :
NG

(n

The quadratic functions of u, ) have no noteworthy general structure
but can be obtained for each particular system (2).

Case3:n< Ej' j=1, ..., m, In this case, all we can say is that
V?‘ and V? are sums of quadratic functions of u‘gn) .

The particular case ‘Ej = 0 occurs if and only if fi is independ-

ent of uj, j# i, i.e. when the equations are completely uncoupled,

The divergence-free vector Xn then takes the form

n m n -1 n-1

Vy=-) s ( s s P.) -D_ a
=1 xl J J’ J J %2

n m ah- n-1 n-i

Vz-z 5-::_!- J(h P,...,P)+D a

-

J:

which is just the sum of divergence-free vectors, obtained in the previous
chapter for single first order equations, with the addition of a trivial
divergence-free vector.

In general, the vector Xn will consist of; 1) terms in which

arbitrary functions of quantities constant along characteristics appear;

2) quadratic terms; and 3) trivial divergence-free vectors.
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