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ABSTRACT

2 method is presented for computing valence atomic wave
functions and transition probabilities. This method, called the
"nodal boundary condition method', is a modified self-consistent-field
approach which makes some use of experimental term -valueﬁ in
order to eliminate the need for calculating wave functions for the
core electrons, As an application, the method is used to compute
eigenvalues, wave functions, and transition probabilities for several
atoms and ions having two valence electrons,

Various other approaches to the problem of calculating
atomic wave functions are reviewed, so that the assumptions and
approximations of the nodal boundary condition method may be
placed in perspective. The results of the present calculations are
compared in detail with previous results whenever possible,

Finally, possible applications and extensions of the method are

briefly discussed,
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I. INTRODUCTION

At the pr.esent time, there is an increasing need for reasonably
accurate atomic transition probabilities, or "oscillator strengths."

In contrast to atomic energy levels, which have been measured with
great accuracy for most important atoms and ions, and which can often
be well predicted theoretically, transition probabilities are usually only
poorly known. Both experiments and theoretical calculations are rather
difficult to perform.

From the very incomplete existing knowledge of oscillator
strengths, it is clear that more effort is required, both experimentally
and theoretically. Aside from the valuable comparisons between
measurements and calculations, in some important cases only one
method may be practicable. Experiments can be carried out on very com-
plex atoms which may be nearly impossible to compute. On the other
hand, ionized atoms are no more difficult to understand theoretically
than neutral ones, while there are numerous experimental difficulties in
making measurements with ions, because of the high temperatures in-
volved. In addition, there are a number of neutral atoms, having
inconvenient properties in the laboratory, which may be calculable,

This thesis will present a method for computing radial atomic
wave functions which are often suitable for the calculation of oscillator
strengths, The method, which is essentially a simplified self-consistent-
field approach, will be called the "nodal boundary condition method. " New
approaches to the computation of transition probabilities are a practical

necessity, In all but the simplest atoms, accurate calculations of atomic
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wave functions are generally difficult and tedious. In Section III,
various approaches to the problem of computing accurate transition
probabilities will be discussed in some detail, It is appropriate here

to mention two of these, which serve as a background to the introduction
of the nodal boundary condition method.

The most generally accurate practical method for calculating
atomic wave functions is the variational self-consistent-field (SCF)
method, This general approach may assume many forms. In any case,
computations are lengthy and the work proceeds atom by atom, some-
times only for the ground state, but scldom for more than two or three
excited states. Thus only a limited nurmber of SCF transition proba-
bilities are available.

In 1949, the problem of computing accurate oscillator strengths
for atoms with one valence electron was effectively and simply solved
by Bates and Damgaarﬁ (1 J« Their method has been extensively applied
to many kinds of atoms, but can only be consistently trustworthy for those
with one valence particle. The great advantage of their approach is that
the inner electron shells can be eliminated from the problem by the use
of experimental term values. Results obtained by this simaple method
are as good or better than full self-consistent-field calculations for the
appropriate atoms.

An important clase of atoms and ions are those having two
electrons outside closed shells, such as magnesium and calcium, Com-
pared to our knowledge of atoms with one valence electron, data for two-

electron atoms is rather meagre. A few experiments have been per-
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formed. Also a handful of SCF calculations have been completed, parti-
cularly on the resonance lines.

The nodal boundary condition method was devised in an effort
to obtain a large number of oscillator strengths for atoms and ions
having two valence electrons. The method involves a technique for
mai:ing some use of experimental energies in order to simplify the
problem, principally by making unnecessary the calculation of wave
functions for the inner electron shells, Although considerably more
complicated than the one-electron situation, in a sense this new method
can be viewed as an extension of the Bates-Damgaard method to a more
complex system.

Among the most important application of oscillator strengths
are various problems in astrophysics. Spectrographic measurements
of line intensities, from stars or other objects, can reveal a great deal
about the physical conditions under which the line was formed. Also,

a considerable amount of work is currently being done on the element
abundances in stars., Accurate cosmic abundances can provide detailed
knowledge of stellar evolution, by comparison with theories of element
formation. A crucial stage in the reduction of the observed line inten-
sities of an element to an abundance value is the use of appropriate
oscillator strengths. There are a number of approximate steps in this
reduction, such as the use of model solar atmospheres and often difficult
line intensity measurements, but particularly as the analysis improves,
there will be a growing need for accurate traneition probabilities.

The application of these oscillator strengths to the element
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abundance problem will be discussed further in Section VI, Also, there
are a number of extensions and other applications of the nodal boundary
method which will be briefly outlined,

The remaining sections are organized as follows: In Section II,
various important definitions and properties of oscillator strengths will
be reviewed. Then, in Section III, several methods of computing atomic
wave functions and transition probabilities will be discussed. Section IV
will deal entirely with the coulomb approximation and atoms with one
valence electron. The nodal boundary condition method will be explained
and justified in Section V. Finally, the results of applying the method
will be presented in Section VI. This will include eigenvalues and oscil-
lator strengths for atoms and ions with two valence electrons. Appen-
dices A and B will discuss the numerical methods and computer programs

.used in the solution of the Hartree-¥ock equationsa.
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1I. DEFINITIONS AND PROPERTIES OF OSCILLATOR STRENGTHS

The oscillator strength, or "f-value, " for a transition from

an initial state i to a final state f, is given by the formula

_ 2 pe 1 m' = gm 2
fn= ¥ :E CIF L |« |r | ¥ >
m, m'
where w is the frequency of transition, p is the electron mass, Ji
[
is the total angular momentum of the initial state, and e <\P§n [ = | \If’in>
is the dipole moment matrix eclement connecting the initial and final wave
functions of the atom. The subscripts of f are usually suppressed.
It ie convenient to introduce the line-strength 5, defined as
| .
s= ) <@ T ¥ |2

s ’
m, m

If we also define the quantity g by
g = ZJi +1

the product gf can be written

where AE is the transition energy in Rydbergs, and the line-strength
S is expressed in units of the first Bohr radius squared. The product
gf has the advantage of being symmetrical between the initial and final
states.

In terms of the oscillator strength, the transition probability,

or EZinstein "A," is written
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It has become a wide-spread custom to speak of‘the f-value, rather
than the t;'ansition probability, because the oscillator strength is a
dimensionless quantity, _often of order unity, obeying a number of sum-
rules,

There are alternative definitions of the oscillator strength, in
terms of the so-called dipole "velocity" and dipole "acceleration"
matrix elementas. These definitions are related to the dipole moment

form by the expressions

8 -
<\Iff|-5—zj | ¥, > = -An.<\Iff|zjf'Ili>

and

ov - &
< | Fz—j- | ¥, > = (AE) <wpf|zj | & >

respectively. V is the potential energy acting on the electron making
the transition, and AE = Ei - Ei‘ These definitions are all equivalent
if the wave functions used are exact solutions of the Schrodinger equa-
tion, but the three forms for the matrix element may give quite different
results using approximate functions. It is evident that in going from

the dipole moment through the dipole velocity to the dipole acceleration
forms, the ;;arta of the radial wave functions at small radii become
successively more important. The wave functions developed in this
thesis are most accurate at medium-to-large radii, so we shall use the

dipole moment form exclusively.
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The most irrportant sum-rule obeyed by oscillator strengths is

the Thomas-Reiche~-Kuhn sum-rule, or "f sum-rule, "

which maintains that the sum of f-values from any one state to all
others allowed by the dipole selection rules (including transitions to
the continuum) is equal to the number of electrons in the atom. Oscil-
lator strengths for transitions to lower energy are to be taken with a
minus sign. This rule is of rather limited usefulness in the analysis of
atomic spectra. In practice it is necessary to write the approximate

relation

where NV is the number of valence electrons, and we include only
transitions of these particles. Unfortunately, we must include jumps
down into the core which are allowed by the selection rules, but for-
bidden by the exclusion principle. For example, an approximate sum-
rule for neutral sodium is /j_, fn', 3a ® 1.0 which involves the f-values
for the valence 3s electront.l' It is necessary to include the f-value for
the 3s-Z2p transition, which cannot actually occur. Nevertheless, in
order to apply the rule, we must formally calculate this quantity.

The f sum-rule has been used to check the accuracy of calcu-

lated values, and also to normalize a set of oscillator strengths whose

relative values are known. These applications are generally unreliable
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except in the roughest sense. Unfortunately, it does not follow that
the better of two calculated sets of oscillator strengths is that which
most nearly satisfies the sum-rule. For example, Green, Weber,
and Krawitz (2) have calculated f-values for traneitions involving the
3d level of Ca II. This was done using both SCF functions with and
without exchange (see Section IIl), giving thereby two sets of f-values.
Although the individual oacillator strengths were quite different in the
two cases, the sum=-rule was about equally satisfied for both sets.
Further sum-rules and other properties of f-values are re-
viewed and proved in (for example) "Cuantum Mechanics of One and

Two Electron Atoms" by Bethe and Salpeter.
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IIl. METHODS OF CALCULATING ATOMIC WAVE FUNCTIONS

In this section, several approaches to the problem of calculating
atomic wave functions will be reviewed. Part A outlines the problem
and discuesses various properties of wave functions. The Hartree-
Fock self-consistent-field method is summarized in Part B. Part C
discusses the way in which polarization of the atomic core can be
taken into account. Part D reviews briefly various "analytic vari-
ational"™ methods for computing accurate wave functions. Finally,

the nuclear charge-expansion method of Layzer is discussed in Part &.
A, Atomic Wave Functions

The Schrodinger equation for a many-electron atom,

- & N -

N o2 .2\ 1, 25 1 1, N -

‘; -rn; ‘-/J vi Ze L—‘ ri +e L ri. I(l.-.-.N) = L-@(l,aol.N).
i=1 i=1 i<j Y

cannot be separated exactly into the sum of simpler equations; the
electrons are all coupled to one another. Therefore, the correspond-
ing wave function depends on the variables of all the electrons, and
cannot be written as the product of several functions, each involving
only a emall number of variables.

Except in the case of very few electrons, it appears that in
order to make any progress at all, separable wave functions must be
used. In fact, it is generally not only necessary to assume that the
total wave function can be approximately written as a product or sum

of products of one-electron functions, but also that each one-electron
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function is a product of radial, angular, and spin functions. It has
been shown (3) that for closed shells of electrons in the Hartree-Fock
SCF theory, the requirement that the total function be a product or
anti-symmetric product of one-electron functions also implies that
each one-electron function is a product of radial, angular, and spin
functions.

Some very lmportant work with non-separable variational wave
functions has been carried out by Hylleraas (4) and others, mostly for
helium-like ions. This work is mentioned briefly in part D of this
gsection. Since calculatione of the Hylleraas type appear to be too
complicated to extend beyond ions with 3 or 4 electrons, a great deal
of effort has been expended to develop accurate methods of computing
separable functions. In general, these are written as finite sums of
products of a radial fuaction, a spin function, and an angular function.
The latter is invariably taken to be a spherical harmonic possessing
a definite orbital angular momentum quantum number {, or a simple
trigonometric function.

The Schrodinger equation as written on the previous page in-
cludes in the potential energy only the electrostatic interaction between
all the atomic particles. There is another term in the Hamiltonian
which sometimes becomes important enough, for our purposes, to treat
as a first-order perturbation. This is the spin-orbit effect, caused by
the relativistic Thomas precessiqn. and by the action of an effective
magnetic field on the electron's spin. If the spin-orbit interaction is
negligible for a given atom, that atom is said to obey Russell-Saunders

(or LS) coupling, for which the total orbital angular momentum L and
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the total spin S (or multiplicity 25 +1) are good quantum numbers.

It is found experimentally that light atoms are described very well by
LS-coupling, but that heavier atoms :aften show marked deviations. If
the spin-orbit interaction is large, it may be that an atom obeys more
nearly the so-called jj coupling, for which the total angular momentum
j of each electron is a good guantum number. Since the majority of
atoms show only small or moderate deviations from LS coupling, it

is common to label a particular state by the Russell-Saunders notation:

25+

L. where L is writtenas S, P, D, F... for L=0,1, 2, 3, ...

J

respectively. In actual fact, particularly for heavy atoms, we must
apply intermediate coupling, which mixes the functions of different L

and S, but which have the same total angular momentum J. Thus for

nl

example a state written Pl" for an sp-configuration may contain an

1

This effect gives rise to the "intercombination” lines, involving a

appreciable amount of the 3P function for the same configuration.

change in multiplicity between the initial and final states. Transitions
of the type (52)150 - (sp)3P1 could not occur if both wave functions
were purely LS-coupled, but in many atoms these transitions are ob-
served, and are caused by an admixture of a 1P1 function in the 3P1
function. Oscillator strengths for a number of intercombination lines
aré calculated and listed in Section VI.

The spin-orbit interaction produces a splitting of the energy
levels for different values of J within the same multiplet. Therefore
a qualitative criterion for judging ;avhether strong intercombination lines

might exist for a particular change of configuration is to compare this

splitting with the difference in term values between the multiplets of
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the initial or final configuration. For example.b if the splitting among
the states 3P0,1. » 18 very small compared to the energy difference
between the states 31—"1 and lPl. all in the sp-configuration, the
intercombination line (sz)lsoo(sp)sPl must be very weak.

A number of methods for obtaining approximate product wave
functions will be discussed in the following pages of this section. It is
appropriate first to define the complete prokblem, and how these varicus
methods can approach the exact solution. Ve wish to obtain the solu-
tion of the non-separable SchrSdinger equation neglecting spin effects,
the finite nuclear size, relativity, and all interactions except the
point-charge non-relativietic electrostatic Coulomb potential between
all the particles. If needed, some other effects may be included at the
end by perturbation theory, but the initial problem can be restricted,
without necessarily reducing the difficulties to reasonable proportions,
to the non-relativistic Schrsdinger equation with Coulomb forces. The
exact wave-function ¥ can be expanded in terms of an infinite com=~
plete set of orthonormal -N-electron basis functions, and the total

energy for this state ¥ proceeds from the diagonalization of the energy

matrix

<, |Hl9;> <o, [H[¢,> ...

. .

where the ¢i are the basis functions, and. H is the Hamiltonian
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_h 2 2N z'>“ 1

H= TnTZ Vi Ze iy +e L, T
i=1 i<j

The most extensive work has been carried out using the Hartree
and the Hartree-Fock SCF methods, with or without exchange forces.
The goal of this method is to find those separated functions ¢ which
minimize the off-diagonal elements in the energy matrix. These
wave functions are then the most accurate single-function approxi-
mations to a given state as far as the variational procedure is con-
cerned. It shouid be emphasized that this does not imply that variational
functions are necessarily superior for computing matrix elements of
operators other than the Hamiltonian, but in practice they are used for
the lack of better criteria. The inclusion of off-diagonal elements ie
known as "configuration interaction” or "superposition of configura-
tions. " This matter will be reviewed in part B of this section.

Other methods relinquish the requirement that the off-diagonal
elements be as small as possible for general product functions, but
require only that they be as small as possible for product functions
of a definite algebraic form. /hile these off-diagonal elements are
larger in this case, it may be that both they and also the diagonal
elements can be more easily calculated, Wwhereupon a diagonalization
of a finite block of the energy matrix can be performed. This is the
viewpoint of various analytic variational methods reviewed in part D,

The use of approximate wave functions, whose N-electron

eigenvalues are only an approximation to the true state energies, has
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raised an interesting and important question in the calculation of f-
values. The dipole-moment definition of the oscillator strength in-

volves the product of the transition energy and the matrix element

squared:
A N ¥t 2
g=5 ) l<wg® | o] wg" >
m', m

Is it better to use the experimental value of AL or the difference in

the calculated energies corresponding to the approximate functions

\E*f gnd \Ili? Hartree and Hartree (5) have suggested that there is no
reason to expect the calculated value to compensate for errors in the
wave functions, so they use the experimental AE. On the other hand,
Trefftz (6) has computed f-values in neutral calcium by both the
dipole-moment and dipole-velocity definitions, and finds that the agree-~
ment is improved if calculated values are used for AL, Green, Webber,
and Krawitz (2) have analyzed f{-values in the ion Ca Il in some detail,
and find that more consistent results are obtained if the calculated

AE's are used. In particular, the approximate f sum-rules seem

to be better satisfied in this case. The guestion has still not been
satisfactorily answered and deserves further study. The nodal boundary
condition method to be presented in Section V will employ experimental
transition energies. This is consistent with its semi-empirical nature

and the relative inaccuracy of energies calculated by this approach.
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B. The Hartree-Fock Method

In 1928, Hartree (7) first introduced the seli-consistent-field
(SCF) method. This method, with its later refinements, has pro-
vided most of our knowledge of accurate atomic wave functions. We
begin by assuming that each electron moves in a potential caused by
the nucleus and a spherically symmetrized charge density of other

electrons. Then from classical electrostatics

ve-22. 2 ) Y*drp(r)+z> ( dr —1-(:-5-)
T E j#

where Vi is the potential acting on the i'th electron (in Hartree's

atomic units, with radii in terms of the first Bohr radius, and energies

in Rydbergs), Pj(rj) is the radial wave function of the j'th electron,

and Pf(rj) is its charge density. Therefore Schrodinger's equation

for one of the electrons in helium (for example) becomes approximately

" (2
pf(na[cl-—+—ﬂ-}1-’+ S‘d P‘,(2)+25 e l()]Pz m

which is the Hartree equation.

It was shown somewhat later that this equation follows from the
variational procedure, if it is assumed that the many-particle wave
function of an atom may be approximately written as a product of one-

electron functions,
(1,2, ... N) = ul(l)uz(Z). - uN(N)

subject to the condition of orthonormality of all distinct orbitals u,.
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Therefore the Hartres function represents the best wave function
possible as far as the variational procedure is concerned, as long as a
simple product form is assumed. In addition, we have also required
that each one-electron function be separable into products of radial
and angular parts.

Subsequently Fock (8) added the important condition that the
wave functions should obey the Pauli principle, i.e. that they should
be written in the form of an'tiaymmetric products or Slater determi-

nants. We then apply the variational method to these functions ¥:

s[<vw|H|¥> - Y
i, j

kij<ui|uj>] =0

where H is the "exact" Hamiltonian (neglecting spin forces)
H=-) V2. 22, 2
Lo Yr,.
i

and the \,, are Lagrange multipliers constraining the one-electron

ij
orbitals a, to be normalized (diagonal A's) and orthogonal (off-diagonal

A's). The Hartree-Fock equations then become

- V2, f\» ?d‘rV VJ] u

[N

2

A ]u. = -?k &({m

i ]
d

6(m o )rg V j)V

lima

“L‘V’J

The Kronecker delta &(m

“msj) contains as arguments the spin pro-

jections of functions Vl and Vj'
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These equations are sometimes referred to as the "SCF equations with
exchange, " in contrast to the Hartree equations, or "SCF equations
without exchange.” The inclusion of exchange effects produces a sub-
stantial lowering of the total energy, indicating that the wave functions
are definitely superior to those calculated without exchange.

Two other assumptions have been made in the SCF methods:
first, that each state corresponds to a definite electron configuration,
and second, that L5 coupling holds. Departures from these assump-
tions can be accounted for approximately at the end of a calculation.
The influence ofrother configurations is included by the so-called "super-

" The Hartree-Fock functions form a com-

position of configurations.
plete orthonormal set, so the true wave function can be expanded in
terms of them. This is accomplished by diagonalizing the energy
matrix using wave functions of all configurations which can contribute
to a particular state, having the correct parity, orbital; spin, and total
angular momenta. The process appears to converge slowly, however,
so in order to obtain functions a great deal better than the single-
configuration abproximation. a large number of configurations should
be included. It is apparently more practical to follow an analytic
variational method for this expansion, as discussed in part D.

Deviations from L3 coupling may be accounted for by mixing two
or more pure LS states for a particular configuration, so that the ob-
served spin-orbit splittings are reproduced. This procedure will be
treated in detail in Section V.,

Also in Section V we will need the Hartree-¥ock radial equations
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for the states (IZ)IS. (82 )lL, and (31)3L of a helium-like ion. If
we write the one-electron orbitals as products of radial, angular, and
spin functions, we are left with an integrodifferential equation for the

radial function P(r). For an '2 state, this is
Bx)
P"(r) = E - —- +— V dr P (r) + ZS‘ dr }P(r)

which is identical with the Hartree equation (without exchange) for this

state, since the antisymmetry of the 32 ISO function is provided by

the singlet spinor. For the 8! configuration, we obtain

'— 00 P(r)
P"(r)- e——-—+-—§ldrp(r)+2 dr
r

]Ps(r)

r o0 P P
L]l ety o7 2 o
and
r roo P (r)
Py(r)= [GL'%%+ i%;-l-,-i--f-_g‘odrl’ (r) +z_§ ds ]P (=)

P P
% !-ﬂ?;_rl—:ll-—;;#r S‘:drpsrlpﬂ + #y dr—I_T ]Ps‘l‘,

where the + and - signse refer to the singlet and triplet states,
respectively. The off-diagonal Lagrange multipliers have not been
included in these equations, so there is no assurance that all functions
are orthogonal. It has been found that the off-diagonal terms are small,
so that for example the 1ls and 2s radial functions for the states
(lsZa)IS or 25 are nearly orthogonal. The departures are often neg-

lected, since their systematic inclusion may take much more effort
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without making appreciable difference.
For much more thorough and lucid accounts of the SCF theory,

the reader is referred to recent books by Hartree (9) and by Slater (10).

C. Polarization of the Core

The Hartree-Fock method as described in part B assumes among
other things that the closed shells of an atom are spherically symmetric.
Aside from exchange effects, one pictures a valence electron as moving'
in a spherical potential produced by a stationary spherical charge dis-
tribution. There is at least one physical effect of importance which is
neglected by this approximation, and this is the polarization of the core
by the valence electrons. An electron in the valence shell will attract
the nucleus and repel the core slectrons, caueing a polarization effect
which in turn produces an additional attractive potential on the valence
particle. Classically, this potential is given for large radii by
V= uez/ré, where a is the polarizability.

The influence of core polarization on atomic energy levels and
transition probabilities has been studied particularly by Biermann and
his collaborators. In a series of articles in the Journal Zeitachrift

fur Astrophysik (11, 12, 13), the method has been developed and applied

to a number of atoms and ions with one or two valence electrons.
The procedure as set forth in the original article of Biermann
(11) can be briefly summarized. It is assumed that the polarization

potential can be written (in Hartree units)
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5
2 “(r/r )
2AV =S8 il we °
r-ﬁ

This is correct at large radii, and the exponential term is included
in order to cut off the potential inside some radius ¥ which is
taken to be the outer turning-point of the outermost shell of the core.
The polarizability @ is taken from experiment. Using this potential
and known SCF wave-~functions, the energy correction due to polariza-
tion can be estimated from first-order perturbation theory. This was
done for Call, K1, 5i IV, and Na I, and the results added to the
previously calculated Hartree-Fock eigenvalues. It is clear that the
change is in the right direction to approach the experimental results,
since the variational method must underestimate the one-electron
binding energies, at least for monovalent ions with nearly stationary
cores. In fact the final predicted energies agree with experiment
within 1‘;70. except in two or three of the states examined.

New valence wave-functions were then found by integrating

Schrodinger's equation

P"+(zv-e-ﬂ%+—1)-)_1>=o
b of

using experimental term values for €, and the potential

5
(r/r ) B e

-(r/rc,)5
p )

2V = 2V (1+ABre

Hartree ¥

The parameter AP is determined from the solution, since the bound-
ary conditions must be satisfied. Oscillator strengths for a few
transitions in Na I, K I, and Mg Il were calculated from these func-

tions, and were pronounced in good agreement with experimental values.
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After the war, Biermann and Lubeck (12) published some
further work on core polarization, including calculations on both the
alkalis Na I, KI, and Mg II, and also the ions C II, Al I, and 5i II,
which have an azp configuration in the valsnce shell. The polariza-
tion corrections were calculated by perturbation theory as before,
but it was found that to get sensible results a new polarization potential

was necessary:

-(r/ro)8

2
28V= (1-e )
r

which differs from Biermann's original potential in that the eighth
power rather than the fifth power is used in the exponent. The change
made little difference in the alkalis, but was quite important in the

azp ions.

A large number of wave functions were computed using the
same method as in the original article, except that (x'/ru)8 wags used.
QOscillator strengths were found from these functions. The lack of
experiments on the szp ions precludes any check on the reliability
of the calculated values, but the alkali results agreed well with ex-
pez iment.

The core polarization method was subsequently extended to
atoms with two electrons outside closed shells, in particular Mg I
and Ca l. Biermann and Trefft_z (13) calculated wave functions for
several states in Mg I, and oscillator strengths for the transitions
2) 1

(3s%) 13 - (3a3p)iP \2852,

(383p) 3P - (383d) °D  a3e32,
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and
(383d) °D - (3s4f) °F  a14877.
ae '(r/l"o)8
The polarization potential = (1-c¢ ‘ } was included in the
r

Hartree-Fock equations, which were then solved by usual methods.
The oscillator strength derived in this way for the resonance line
A2852 was f= 2,21,

A.more detailed analysis of Mgl was undertaken by Trefftz (14),
by the inclusion of term mixing or superposition of configurations as
well as core polarization. In particular, the effects of the configuration
(3pZ)ID on the terms (3a.nd)lD were calculated, and also the influence
of (3p2)15 on the ground-state (332)15 was investigated. This partial
diagonalization of the energy matrix brought the calculated and ob~-
gerved energies into better agreement than with the usual single-
configuration ap.proximation. The term mixing aleo exercised a sub-
stantial effect on the oscillator strengths. The resonance line was
computed to give an f{-value of 1. 606, considerably different than the
value 2. 21 found without term mixing.

Trefftz has also treated Ca I (15} by the same kind of calcu-

1 1

lation, for the states 4!S, 4P, 43P, and 3®D. Oscillator strengths

were found for the resonance line A4227 (f = 1.458) and for the transi-

tion 4°P = 33

D A9310 (f = 0.010). Both the dipole moment and dipole
velocity matrix elements were evaluated, and f-values derived from
each. It was discovered that the use of calculated rather than observed

transition frequencies in the f-value formulas improved the agreement

between the two results, so the calculated values were used. This is
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in contrast to the previous work on magnesium, and on the majority
of other SCF f-value calculations, for which the e¥perimental fre-
quencies are employed (and in which the dipole moment form is
almost universal). It is not clear that the greater consistency in

the calcium result should serve as a valid criterion for the use of
calculated Ireéuencies. In this particular instance the experimental
frequency (in Rydbergs) is 0. 2155, while the calculated value is

0. 2305. In other calculations the discrepancies are sometimes much
larger, so the question of which to use is important and deserves
consideration.* The oscillator strengths for the resonance lines of
Mg and Ca obtained by Trefftz agree very well with the latest
experiments, as given in Section VI. It should be emphasized that this
agreement is probably more the result of using "superposition of con-
figurations"™ than of including polarization effects.

The result of this work on core polarization has undoubtedly
demonstrated its importance, and has provided one of the most im-
portant physical mechanisms neglected in the standard SCF approach.
The question of exactly how this effect should be included is a difficult
question, since there remain ambiguities. Some elements, as pointed
out by Biermann and Lubeck, seem to be sensitive to the form of the
polarization potential cut-off inside the core, and also the way in which
polarizabilities are to be chosen is not very clear. It seems likely
that in the (perhaps somewhat distant) future calculations will run
more along the line of the analytic variational methods described in
part D, which are not as physically appealing, but are very well defined.

s
See Section IIIA,
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By the use of a large number of configurations involving the core as
well as the valence electrons, the polarization phenomenon should be

taken into account.
D. Analytic Variational Methods

In contrast to the Hartree-Fock method, which reqguires the
solution of a set of couplad non-linear differential-integral equatim‘s.
a variety of analytic methods have been introduced which assume
definite algebraic forms for the wave-functions. Most of these methods
use finite sums of products of one-clectron functions, but for very
light atoms, with only two or three electrons, considerable work has

been done with functions depending explicitly on r,,, the distance be-

ij
tween electrons i and j. It is clear that the inclusion of such a term
should bring about a substantial lowering of the energy, since it can
describe very efficiently the electrostatic correlation between the two
electrons. The first calculations of the type were made by Hylleraas
(4), but since that time various aulthors (16) have expanded and improved
the method, determining the ionization potential of helium to within
0.01 cm™. A discussion of the efforts in this direction, along with an
extensive bibliography, is contained in Chapter 18 of the Quantum

Theory of Atomic Structure by J. C. Slater.

Since the number of terms involving ru's rises quadratically
with the number of electrons, the work invelved with finding Hylleraas-
type functions for many~electron atoms is prohibitive, 80 we must have

recourse to other methods. The first simple analytic product wave



“ 28

functions were publisﬁed by Zener (17), Eckart (18), and by Morse,
Young and Haurwitz (19). They have the same structure (product

of single-particle radial and angular functions) as the Hartree-Fock
functions with exchange, so canrot be as accurate, since the analytic
funciions are restricted to a particular algebraic form. They are
nevertheless useful, because they .are relatively easy to find, and
because integrals over them can be explicitly performed. The Morse
function for the ls level, for example, is (FBaZ/')llze-p.ar. where
a is to be varied. Other orbitals are in general products of exponen-
tials and polynomials in the radius, and are similar in form to the
hydrogenic functions.

Within the past few years it has become generally recognized
that analytic variational methods may be the best way of obtaining
wave-functions of arbitrary accuracy. Several superposition-of-
configuration calculations have been performed with the Hartree-Fock
equations, as reviewed briefly in part B, but the calculations for each
configuration are lengthy, and the process converges slowly. An
advantage of using analytic wave functions is that the solution for each
configuration involves an algebraic expansion, rather than the numeri-
cal integration of a differential equation. By clever choice of the
functions the results may converge more rapidly, but the principal
advantage is the facility with which algebraic functions can be manipu-
lated.

Such a configuration interaction calculation has been performed

for the ground state of helium by Nesbet and Watson (20), who used 20
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configurations. The one-electron orbitals were of the form
¥, = rA”e-arYIF(O.q'))v(ms). where A is an integer. and v(m‘) is
a spinor. While their results are not as accurate as those using
Hylleraas-type wave functions, it is clear that they are superior to

a single-configuration approximation, and that in principle any atom
can be solved to arbitrary accuracy by this procedure. Watson (21)
has made a 37-configuration calculation for the ground state of
beryllium by the same method.

A large number of papers have been published by Boys and
collaborators (22), who use a roughly similar approach. They have
investigated the mathematical framework very thoroughly, and the
steps toward obtaining highly accurate functions have been set forth
in detail. The complete calculation is separated into eight distinct
stages, each of which can be precisely defined. Tentative estimates
can be given of the effect involved in programming and performing the
computation of each stage. The best source for these developments

is an article by Boys in the Reviews of Modern Physics (23) which

reviews all his procedures. The results for only a few atoms treated
by this method have been published thus far, notably b'eryllium. boron
and carbon.

Several other authors have made contributions to the analytic
methods for both atoms and molecules, much of which was presented
at a conference on molecular quantum mechanics as reported in the

Reviews of Modern Physics, Vol. 32. It is apparent that procedures

are being developed which will substantially increase our knowledge
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of atomic wave-functions, although at this point comparatively few

individual atoms have been calculated;

£. The Nuclear Charge-Expansion Method

In 1959, Layzer (24) proposed a new formulation of the atomic
structure problem. He noted that while the conventional SCF method
generally gives satisfactory eigenvalues and transition probabilities,
it is unable to reproduce certain observed regularities in spectra. In
SCF theory, there is no simple way to get wave functions and eigen-
values for N electrons around a nucleus Z in terms of those for
N electrons around a nucleus Z +1. Each atom and ion must be indi-
vidually treated. There are some well-known regularities in the spectra
of isoelectronic sequences which are left unexplained in the usua.l theory,
since the calculations do not follow the experimental data in some
respects. In particular, there are two experimental "laws" which
state that along an isoelectronic sequence

1} the square rcot of the ionization potential varies linearly

with Z (the generalized Moseley's Law)
2) the difference in energy between two terms in the same con-

figuration (e. g. :

D and °P in the pz configuration)' varies

linearly with Z (the generalized "screening doublet law").
Layzer's theory is specifically designed to explain these approximate
experimental regularities, and this is accomplished by retaining the
nuclear charge Z as a dynamical variable.

Beginning with the Hamiltonian for N electrons (in atomic

units)
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L
— P %
H(N.2)=2(7?-—-f—)+L =
i g

we can write

H(N, Z} = £(N, Z) + V(N)

where N 2
" R 1 7z
PA(NIZ)=/ (‘Z"";’)
i=l
and
N
Vi = ) -
i<j W
J

If 2 new unit of length is adopted, equal to the Bohr radius divided by

Z, we have
2 .. -1
H(N,z) = Z2°{E(N,1) + Z7"V(N)}

which may be treated by perturbation theory if Z is sufficiently large
so that the second term is small. The result is that the eigenvalues

of H can be written in the form

) 2 . S |
'__ )
H—‘-&zz +WIZ+W°+O(Z )
whare N
- 1
el o
i=1 i

and Wl are eigenvalues of the matrices VnpSL whose elements are
taken between terms having the same radial quantum number, parity,
total spin and total orbital angular momentum. These matrices are
to be evaluated using hydrogenic wave-functions with Z =1, and the
operator V = ‘_\" L . The fact that such simple functions are used

e
i<y U
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follows from the fact that the zero-order Hamiltonian Zat':(N. 1)
is a sum of single-particle hydrogenic Hamiltonians. The notation
O(Z-l) means that the product Z . O(Z-l) remains smaller than
some fixed constant for arbitrarily large Z.

From th_e above expression for H', the ionization potential

can be written

+c+olzh

2
(Z-0)
I. P, = __2._-

2n
2

if W_ is defined to be ';’:z + C. The theory of Layzer does not
predict the size of the last terfn O(Z'l). s0 the usefulness of the ex-
pression for the ionization potential rests on the fact that this term
seems to be small experimentally. Both the generalized Moseley's
Law and the screening doublet law then follow immediately from the
equation. The screening constanta ¢ can be found from the vari-
ational principle, using hydrogenic functions. The wave functions used
in this method are therefore these screened hydrogen wave-functions.
It should be mentioned that the screening theory has recently been
extended to include the effects of relativity (25).

Varsavsky (26) has attacked the problem of calculating f-values
from the standpoint of Layzer's theory. Since the work was of an ex-
ploratory nature, only the first-order wave-functions were used, and
it was further as quzned that each state belonged to a definite configura-
tion. The full first-order theory takes account of some effects of con-
figuration mixing, be’cause all configurations for a given set of radial

quantum numbers are included. The results are not uniformly success-

ful, and often disagree with experiment by large factors (almost all
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f-value theories dol). Transitions in which there is no change in the
radial guantum numbers seem to be fairly well predicted. Thie is
probably principally due to the fact that there is usually a good "over-
lap" of the initial and final wave functions for such a transition so
the matrix element is not highly sensitive to the details of the functions.
Oscillator strengths usually require very accurate functions,
80 one expects that the use of screened hydrogenic functions would be
inadequate for most transitions. The method does have the great
advantage of simplicity, so it might be feasible to include higher per-
turbations. However, the theory was not designed for the purpose of
obtaining accurate wave functions, and the addition of higher orders

in the perturbation expansion becomes difficult.
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IV. THE COULOCMB APPROXIMA TION

In this section we will be concerned with atoms having only
one electron outside closed shells. This configuration provides the
least complicated situation for the calculation of f—valuels. and in
fact very simple theories give excellent results. We will concen~
trate on a description and evaluation of the Coulomb approximation,
or method of Bates and Damgaard. It is interesting to explore the
agsumptions in this approach, since its success for monovalent atoms
is quite striking. The analysis will provide much of the motivation
for the nodal boundary condition method for more complex atoms.
Part A of this section discusses the Coulomb approximation, part B
relates these Coulomb wave functions to the more sophisticated
SCF functions, and part C compares various computed and laboratory

f-values.
A, The Method of Bates and Damgaard

In 1949, Bates and Damgaard (1) effectively solved the prob-
lem of calculating transition probabilities for atoms with one valence
electron. The results are probably the most accurate so far obtained
for fairly light atoms or ions having a ground state with an g electron
outgide a closed 8 or-p shell, such as neutral lithium, sodium, or
potassium. This fact is somewhat surprising at first, since the method
is very simple.

Bates and Damgaard use a Coulomb approximation: that is,

the valence electron is assumed to move in a pure Coulomb field.



Therefore, this method is expacted to supply a satisfactory wave
function outside the electron core, but to deviate strongly for small
radii. Fortunately, the greatest part of the valence function is out-
side the core for alkali atoms. Coupling this with the fact that the di-
pole moment matrix element stresses the parts of the initial and final
wave functions at large radii, we have one reason for the success of
the Bates-Damgaard method with these atoms. Another reason has

to do with the eigenvalues chosen for the valence electron.  From SCF
theory, Ko_oprqan's theorem (27) states that the eigenvalue of an elec-
tron in the Hartree-Fock equation will be equal to ite ionization energy
if and only if the wave functions of all other electrons are constrained
not to change (i.e. "Settle".) in the process of removing the electron
in guestion. Now in an actual SCF problem, the other wave function
do change, more or less, as .evidenced by many calculations. The
removal of one electron reduces the shielding for all the others,
causing them to be pulled in toward smaller radii. However, this
effect is usually negligible for the inner shells, which are all that
remain for alkall atoms, aside from the valence particle. Hartree
and Hartree (28), for example, have computed wave functions for_ |
neutral, first-ionized, and negatively ionized sodium. The eigen-

values of the inner shells lsz. Zsz. and 2p6

are all affected some~
what by the presence of valence electrons, but the core wave functions
themselves are essentizlly the same in all three cases.

In contrast to the stability shown for the inner shells, we can

present the results of Hartree and Hartree (78) for neutral and first-
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ionized calcium. Neutral calcium has a one-electron ecigenvalue
€ = 0, 3891 Ryd. for the s’ ground state, while the single 4s
electron of {onized calcium has an eigenvalue ¢ = 0.8295 Ryd. The;
removal of one of the s-elactrons has a large effect on the second,
causing it to collapse toward the nucleus.

As exemplified by the sodium calculation, the inner shell wave
functions of alkali atoms are negligibly affected by the presence of
the valence particle. Koopman's theorem then testifies that for these
atoms, SCF eigenvalues are also SCF ionization energies. In addition,
calculated values agree fairly well with experimental results. For

example,
€Li(23) = 0, 3964 I.P. =0,3965

ENa(3s) = 0. 361 I.P, = 0.3778

The remaining discrepancy may be due principally to core polariza-
tion, as suggested by Biermann (11). For these reasons it is per-
missible, and perhaps better, to use experimental term values rather
than the (usually unknown} SCF energies as the eigenvalues for the
Coulomb wave functions of Bates and Damgaard.

The actual wave functions used are asymptotic series repre-
sentations of Coulomb functions, depending on several parameters.
They depend upon the effective charge C acting on the valence

electron, which is equal to the degree of ionization if the active
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electron is removed. The functions also depend on the angular momen-
tum £, and on the effective radial quantum number n®* = C/V¥E, where
E is the ionization energy of the level, in Rydbergse. The radial

functions are:

n' @ - L
2rC % ' t
..;_‘_ [exp («xC/n") ] !-l +;l -r—t :]
t=]

P(r) =
[(n.)zl"(n" +1 +1)I'(n*- 2 )/C] 1/2

where
®
8 = 3z [L{L +1) - n%n®- 1)
and

%
a, = 2, (B [1¢t +1) - (2% O)(a*- ¢ +1)])

Bates and Damgaard evaluate the dipole-moment matrix ele-

mente by forming the integral S‘dr PfrP and then interchanging the

i
oum.s and integral. The integral is then simple. Finally, the double
sums can be (laboriously) computed as a function of n; and n;, and
tabulated.

The relative simplicity of the Bates-Damgaard method has come
about because the inner shells have been separated from the problem
by making use of experimental energies. These core wave functions

have not had to be computed, since there has been no need to apply the

usual boundary condition that the valence function go to zero at the origin.

l—."I"hex'e are several typographical errors in these formulas in the Bates-
Damgaard article.
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Unfortunately, the method cannot be confidently used for atoms
with more than one valence electron, for two reasons. First, the
active electron no longer moves in a Coulomb field, because of the
presence of other valence particles. Second, it is not sufficiently
accurate to use experimental term energies for the one-electron eigen-
values, since the other valence electrons are strongly affected by the
motion of the active one. The Coulomb ;.pproach hss been used rather
extensiveiy for complex atoms for want of something better. The
results are often rather good, but in other cases are wrong, so appli-
cation of the Bates-Damgaard tables to atoms with more than a single

valence particle must be viewed with caution.
3, Valence Wave Functions

It is interesting to compare the Coulomb functions with the
more sophisticated results of a SCF calculation, to see exactly where
the differences become important. The Coulomb functions are expected
to be correct at large radii, but to become inaccurate as they move
through the inner electron shells toward the nucleus. The one-electron
eigenvalues in the Bates-Damgaard method are taken from experiment,
8o we do not expect the Coulomb functions to agree perfectly with the
usual SCF results even for large radii, since the latter have different
(purely theoretical) eigenvalues. According to the work of Biermann
and collaborators, the energy discrepancy may be largely due to the
neglect (in SCF theory) of the polarization of inner electron shells by

the valence electron,
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Figures IV-Aand IV-B illustrate the similarities and
differences of the Coulomb and SCF radial functions. Figure IV-A
shows the 3s valence function for sodium as computed by the Coulomb
approximation using the experimental term value as an eigenvalue,
superimposed on the SCF function of Hartree (28). The SCF 2p
function is drawn also to indicate the position of the core electrons,

It is apparent that serious deviations of the Coulomb function do not
occur until the valence particle is well within the core. Figure IV-B
shows the same 3s function of sodium in the Coulomb approximation
and in the SCF calculation of Biermann (11), which includes polarization
of the core. The agreement is somewhat better in this case, since

the eigenvalues are the same for each function. The polarization
potential in itself only slightly changes the shape of the SCF radial
function, but the associated change in eigenvalue draws the electron
into smaller radii, agreeing more closely with the Coulomb function.

The Coulomb functions used in these comparisons were cal-
culated by the computer program described in the Appendices. It
should be noted that they are computed numerically from Schrodinger's
equation, while Bates and Damgaard use the series representation
given in part A, The results are the same within the accuracy of the

two methods.



Figure IV-A

Comparison of the Coulomb with the SCE radial function for the

38 state of Nal,



1d

sniavy

cl 0l 8 9
BHNDTNO0Y S ==mecce-

428 S¢
408 dz2 FO——

37T =

b O

WNIJOS Y04 SNOILONNS vIavy



Figure IV-B

Comparison of the coulemb with the SCIF radial function (including

core polarization) for the 3s state of Nal.
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C. Coulomb, SCF, and Experimental Oscillator Strengths

The Bates-Damgaard approximation should give accurate f-
value results for atoms with one valence electron, particularly the alkali
metals, for which the stationary core approximation is most nearly
satisfied. A great deal of effort, both experimental and theoretical,
has been expended in the determination of transgition probabilities for
some of these.atoms. It will therefore be particularly instructive to
compare the results of experiment and of self-consistent field calcula-
tions with the simple Coulomb approximation. As examples, we will

list and discuss oscillator strengths for Li I, Na I, and Ca IL

1) Lil

More than 25 papers dealing with t_heorétical and experimental
oscillator strengths of neutral lithium have appeared since 1926. Table
IV-A compares several results for four lines to the ground state.
‘Two sets of SCF calculations are listed, those of Hargreaves (29) with-
out exchange, and of Fock and Petrashen (30) with exchange. Also
given are the results of Varsavsky (26) using the charge expansion
method, and of Bates and Damgaard. The experimental f-value for
the resonance line is from Stephenson (31), and the other results are
the relative values of Filippov (32) normalized to Stephenson's scale.
From an examination of the table, one comes to admire the Bates-
Damgaard results, which are expected to be very good for such an

alkali atom.
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TABLE v-A

Fock and  Bates and
Transition Hargreaves Varsavsky Petrashen Damgaard Experiment

28-2p 0. 700 0.819 0. 769 0. 750 i 0. 7220.03
28=-3p 0.014 0.0358 0.0037 0.00565 0.0055
28-4p 0.0147 0.0177 C. 0035 0.00501 0.0047
Z2e-5p 0.0051 - 0.0015 0.00245 0.00253

2) Nal

An awesome array of about 100 papers have dealt with f-values
for Na I. Self-consistent-field calculations have been made, for
example, by Fock and Petrashen . (33) and by Biermann (11) and
Biermann and Lubeck (12). The latter two papers include the effects
of core polarization. Table IV-B lists f-values from these calcula-
tions along with those of Bates and Damgaard. Among the o ost recent
experiments on the resonance 3p-3s transition are those of
Stephenson (34) and of Ostrovskii and Penkin (35). Their results are
£f=0.97520.034 and f=1.15% 0.03, respectively. The experi-
mental values listed in the table are the relative f-values measured
by Filippov and Prokofiev (36) normalized to a compromise { = 1.00

for the resonance line.
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TABLE IV-B

Fock-Petraschen Bates-
Transition Length Velocity Biermann Damgaard Experiment

3p-3s 1.04 0.97 0. 99 0.94 1.0

4p-3s 0.014 0.010 0.014 0.014 0.0l44

5p~3s ‘ 0.06021 0.0021

bp-3s 0.00064 0.000645
3) Call

A discussion and analysis of much of the work on Ca II is con=-
tained in the thesis of Varsavsky (26). Oscillator strengths for
several lines have been computed in many different ways: by SCF
with exchange, SCF with exchange and core polarization, by the
Coulomb approximation, and by the nuclear charge expansion method.
Studies have been made of the effect of using the dipole length, velocity,
and acceleration forms of the matrix element. The result of using
experimental or calculated transition energies has also been investi-
gated,

Table IV-C containe several computed and one experimental
f-value for the resonance (4p-4s8) line of Ca II. Other results are
listed in Varsavsky's thesis (26). The SCF results (with exchange)
agree very well with experiment. The Bates-Damgaard value appears
to be somewhat small. It is to be expected that the Coulomb approxi-

mation will become poorer for heavy atoms, so this discrepancy may

.~
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indicate that the method is beginning to fail.

TABLE IV-C

SCF SCF Cther
without exchange with exchange Calculations Experiment

Hartree and
Hartree 1.42 1.19
Green and
Waber 1.36 1,19

Biermann
and Trefitz 1.10

Varsaveky L. 25

Bates and

Damgaard B3
Qstrovakii
and Penkin L.27
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V. THEZ NODAL BOUNDARY CONDITION METHOD

In this section we will introduce a method for calculating wave
functions, eigenvalues, and transition probabilities. It is-here applied
t;) atoms and ions with two valence electrons, but the general approach
has wider applications, which will be discussed in Section VI.

The purpose of the previous two sections was partly to review
various theoretical attacks on the atornic structure and f-value prob-
lems, but was also intended to serve as an introduction to some aspects
of the present method. The nodal boundary condition method uses
some of the simplifying assumptions of the Bates-Dampgaard approach so
that the calculation of wave functions for the core electrons becomes
"unnecessary. It also uses the Hartree-Fock equations to calculate the
valence wave functions.

Two of the basic assumptions of the Bates-Damgaard method are
that the valence electron moves in a Coulomb field and that its esigen-
value is the experimental term value. These two approximations are
very good for the alkaii atoms, and are often adequate for other mr;no-
valent atoms. The support for the assumptions comes from comparison
of Bates-Damgaard Coulomb functions with SCF functions, from com-
parison of experimental ionization energies with SCF eigenvalues for
such atoms, and from the agreement between Bates-Dampgaard f-values
with experiment. Neither approximation is valid, however, for more
éomplex atoms. A valence particle then does not move in a Coulomb
field, and its eigenvalues are not necessarily close to experimental

term values, due to the adjustment in position of other valence
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electrons. Nevertheless the implications of the two assumptions for
monovalent ‘atoms is important for the treatment of more complicated
situations. The Coulomb field approximation means that the valence
electron spends most of the time outside the core. The eigenvalue
approximation implies that the core is nearly unaffected by the position
of the valence electron., These facts are about equally valid for atoms
with two or more electrons outside closed shells. When combined
with the effect of 2 deep core potential, they provide the motivation for
the nodal boundary condition method.

In part C of this section the method will be described in detail,
including particular examples. It will be useful at this point to give
a brief outline of the principal features.

It will first be established that the inner nodes of many valence
radial wave functions are insenaitive to their eigenvalues. This is
here called "nodal stability, " and is explained and verified in parts A
and B. The positions of these nodes can be found for any atom with
two electrons outside closed shells by a study of the corresponding
ion with a single valence particle, for which the two Bates~-Damgaard
assumptions are valid. Nodal positions are then used as the inner
boundary conditions on the wave functions of the Hartree-Fock equations
for the two-eleétron situation. This provides sufficient information to
determine eigenvalues and wave functions. Just as in the Bates-
Damgaard method, these wave functions are adequate outside the core,
but are incorrect at small radii because of our neélect of the true cor'e

potential. Many atomic processes depend almost entirely on the main
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part of the valence functions at intermediate and large radii, and this
is the case with oscillator strengths, if the dipole-moment matrix

element is employed.
A, Nodal Stability

The nodal boundary condition method depends on the near-
independence of node positions with energy. For example, the 3s
ground-state radial wave function of sodium has two nodes. We will
make use of the fact that the 4a, 5s, ... excited states of sodium
have nearly the same two inner nodes, the higher levels merely adding
on additional loops and nodes at large radii.

There is nothing epecial about using the node positions; the
slope~to-value ratio of any part of the valence wave function inside
the electron core could be used instead. The wave functions inside
the core (exéept for normalization) are almo‘st the same for any degree
of excitation of electrons with a given angular momentum. Specifying
the node position is particularly appropriate because it is easily
visualized, and because it is convenient tc; use in calculations, involv-
ing a change in sign of the wave function.

The idea of nodal stability can be understood in several ways.
The kinetic energy of a valence electron when it falls into the deep l
potential within the core is so large that it "forgets" how much it had
when it was out on the limb of the potential, where it spends most of its

time. Looked at in terms of Schrodinger's equation

P"(r) = [ V(r) - E]P(r)
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it is seen that if the potential V(r) is large compared to the eigenvalue
%, the wave function is nearly independent of E. A small change in
energy of the valence electron, due to excitation, the presence of other
electrons, external fields, or other causes, may radically alter the
outer parts of the valence function, but the inner nodes remain quite
stable. The nodal boundary condition method leans heavily on this
stability. We will use in particular the fact that (for example) the nodes
for the single valence s-electron of Ca Il are very close to those for
the two valence s-electrons in Ca I. That is, an atom and its ion

have almost identical core potentials.

If the nodes for a particular atom are found to be stable, two
things are implied. First, that the potential inside the core is large
compared to the eigenvalue. Second, it must be true that the positions
of the core electrons are not much affected by the condition of the
valence particle.

Before presenting the evidence for nodal stability, it is neces-
sary to consider just how much stability is required. For no atom are
the nodes absolutely stable for the whole range of energies for which
data is available. The criterion which ﬁill be used is that Qe should
be able to determine the nodes sufficiently accurately so that varying
their position within the range of possible error produces only a small
change in the calculated oscillator strength. This means also that the
change in calculated eigenvalues for a two-electron function will be
small.

- The first line of evidence for nodal stability comes from all

previously calculated Hartree and Hartree-Fock functions. Many
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atoms and ions, both ground and excited states, have been solved by
the full self-consistent field method. Ve may investigate the positions
of the nodes for such an atom for electrons of a particular angular
momentum (s, p, dy ...). The known results for several atoms and
ions having one or two ground-state "s" or "p" electrons are given

in Table V-A, In brief, one finds that atoms or ions having one or two
"s" or "p" electrons outside closed "p" shells are particularly stable.
Because of the large centrifugal potential which tends to reduce the
deep central potential well, "d" electrons and those of higher angular
momenturm do not usually have sufficiently stable nodes. It is only for
heavy atoms that the method can be used for "d" electrons, since in

this case the potential is large enough. Atoms with "s" or "p" electrons

outside closed "d" shells are not as stable as those outside closed "p"
shells. This is due to the fact that the "d" shell is quite sensitive
(owing to the shallow potential in which it moves) to movements of the
valence electrons. This in turn changes somewhat the potential acting
on the valence particle, thus changing their nodes.

We can leave to experimental term-values (and the criterion

1 10 2

previously mentioned) whether a given d Os or d s atom (e.g. Cul,

Zn II) can be treated by the nodal boundary condition method. One or

" shell (e.g. Al I, Sill) are rather un-

two electrons outside a closed "s
stable, probably due to the influence of the valence particles on this
s~-shell. In this case the important influence is not due to the potential

in which the inner shell moves, which in the case of an s-shell is very

deep, but is due rather to there being only two particles in the shell,
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so that a perturbation in the potential can have a relatively large
effect. For an inner p-shell, a small change in potential is less ef-
fective in moving the electrons, as a change in one of the six tends to
shield the others from further change.

The second line of evidence for stable nodes, which serves to
find the atoms for which the method can be used, and also the "Coulomb
node" positions, comes from experimental term values for atoms and -
ions with one valence electron. This procedure will be discussed in
part B.

From the availaﬁle 5CF data and the Coulomb node results to
be given in part B, it is apparent that for most atoms the shift of
inner nodes is small, if an electron is excited or if another valence
electron is added. The direction of these shifts are easily understood.
For a monovalent ion, the greater the degree of excitation, the more
the nodes shift inward (see figure V-A). For smaller binding energies,
the quantity |V - EI becomes larger, increasing the curvature of the
radial function fof small radii, and decreasing it for large radii past
the classical turning point V = E. Therefore for smaller binding
energies, the nodes move inward. The addition of another electron
produces two effects. First of all, the valence binding energies are
different, and less than that of the single electron in the ion ground-
state; therefore the nodes will shift inward slightly. GSecondly, the
introduction of another electron, particularly an "s" electron, produces
an added shielding on the original electron which was not present in the

ion. That is, a certain amount of the wave function of the new electron



Figure V-A

A schematic diagram showing a ground-state and an excited-state
(£ = 0) radial wave function for a monovalent ion, The figure
illustrates the near-independence of the node positions with

excitation energy, and also the direction in which deviations occur.
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is inside the core, which means that the first clectron does not move
in exactly the same core potential as before. In turn, the original
electron shields the added electron more than one would expect from
the ionic situation. The effect of this shielding is to reduce the net
core potential a certain amount, which will be small for the medium-
to~-heavy atoms possessing nodal stability. But the reduction in core
potential pushes the nodes outward slightly. Therefore the correct
nodes for a neutral atom are somewhat further out (about 1%) than what
one would deduce from an interpolation of the energy versus node curve
obtained from the ionic functions. For example, Hartree and Hartree
(37) have calculated wave functions for Ca II (3p64s) and for Cal
(3p6432). As taken from Table V-A, the outermost s-node for Ca Il
(4de) is at r = 1,433 corresponding to an energy € = 0.8295 Ryd,
while the node of Ca l (432) isat r=1.442 for e = 0, 3891. If
there were no added shielding, the sa node would have shifted inward
slightly.

Table V-2 presents the SCF node positions for Na I, Na“,
Mgl, SilVv, KI, K7, Call, and Ca I, as taken from the wave functions
published by various investigators. These results provide an idea of
the nodal stability to be expected when moving from the ground state
to excited states of atoms with one or two valence electrons, and also
indicate the expected stability when passing from ionized to neutral

.

atoms.
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Table V-A
Ion State 8 -node “s p-node 5 A Reference
Nal  3s 1.034 .361 (28)
Na~ TRk 1.038 . 0268 (28)
Mg I 38, 3p .899 1.1055 . 953 .780 (12)
Mg1 38’ ls . 896 .520 (13, 14)
3e3p 1P .890 .650 .9545 ,2485
383p OP  .896 6969  .9545 .4297
3s4s 35 .893 .B420
4s: 877 .1930
SiIV  3s, 3p .709 3.275 .698 2.639 (42)
4s, 4p .685 1.538 .672 1.319
5s, 5p 677 .893 .663 .793
K1 4s .4733 .2915 (28)
K" 4s? 1s .4721 . 02025 (28)
Call 4s, 4p 1.433 .8295 1,610 6193 (5)
Cal 4e°ls 1.442 .3891 (5)
4s4p 1P 1.433 .5052 1,650 .1720

4s4p P 1.441 L5177 1.622 .3058
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B, Coulomb Nodes

It was shown in part A that the results of SCF calculations pro-
vide evidence for nodal stability. The second line of evidence for this
method comes from a study of the ground and excited statee in atoms
or fone with one valence electron. There are many ions of this generﬁl
type which have not been computed by a SCF method., Therefore, if in
some way the wave functions of a large number of monovalent ions
could be investigated, an idea ﬁs to the.ir nodal stability could be attained.
In particular, it is necessary to study the stability of various atomic
configurations, such as pbs. dms. and azp. We will now proceed to
show how this program can be accomplished, and give the results.

The problem of 2 single valence electron was treated in section
IV. It was shown why the Bates-Damgaard wave functions are good out-
side the core, and why the method is justified in using experimental term
values for the eigenvalues. The node positions in which we are inter-
ested are all within the core, because it is only these which are stable.
Nodes for highly excited states at large radii are in a region where the
potential is too small tc insure stability.

Sir;ce the Bates-Damgaard Coulomb approximation does not take ]
into account the influence of the core potential on the valence wave-
functions, the inner node positions of this method cannot agree with SCF
results. In fact, for a given eigenvalue, the nodes obtained by the Dates-
Damgaard approach will invariably be at smaller radii than those of a
SCF calculation (see figures IV-A and IV-B). This situation prevails

because the true potential is deeper than the asymptotic Coulomb
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potential, so the 3CF function, which is identical with the Coulomb
function for large radii, "curves over" more rapidly as it enters the
core,

There is a second interesting difference between the "Coulomb
nodes" and the "SCF nodes." The inner node of an excited state function
may be at a slightly larger radius than that of the ground state function,
when calculated by the Coulomb approximation. That is, the dependence
of the node position on energy, using a Coulomb potential, caﬁ be oppo-
site to that indicated in part A for SCF {functions. This difference can
be understood when one thinks of the Coulomb functions as being com-
puted numerically by integrating inward from large to small radii. A
smaller eigenvalue (i. e. the excited state) means that the function will
curve less quickly at a given radius to the right of the classical turning
point (where E < V) and more quickly for small radii (where E > V).

Now the position of the turning point for the excited states is
nearly the same whether the Coulomb or Hartree potential ia used,
since this turning point is at a large radius where the potentials are
almost the same. However, the turning point for the ground-state
function will be at a smaller radius for the Coulomb potential than for
the Hartree potential, because of the latter's greater depth. Therefore
the region to the left of the turning point is relatively less important for
the ground -!:.a,te in the Coulomb approximation, than for the SCF calcu-
lation. This fact implies thz-lt it is possible for the Coulomb ground-
state node to be at a smaller radius than for the corresponding Coulomb
excited-state node. Some of the ions in the follow ing tables exhibit this

behavior.
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One of the purposes of these calculations was to investigate the
validity of the nodal stability approximation for various kinde of atoms

.o, &

oo. pés. azp configurations). The second purpose was to find
the nodes to be used in a subsequent two-electron calculation. There

is an apparent ambiguity in the eigenvalue to be used.for "p" and "a"
electrons, since there are two states for each configuration, corre-
sponding to j = { £1/2. For example, the splitting of the p-wave

ZPI/Z and ZP3/2 states, caused by the spin-orbit interaction, is small
for the lightest atoms, but becomes very significant for heavier atoms.
If we were only intercsted in testing nodal stability, we could merely
consgistently use just one function, e.g. 2*93/2, and use the experimental
term values for this state. However, since we will use the nodes for
two-electron calculations, the absolute values of the nodes are needead.
So it is an important matter to find the right choice of p - and d-wave
eigenvalues.

This problem is not difficult to solve, because evidently we
should use the energy corresponding to the absence of the spin-orbit
interaction. That is, the correct zero-order valence radial function
would be an eigenfunction of the Hamiltonian including only the central
potential, A better wave-function and eigenvalue could then be obtained
by using the spin-orbit interaction in perturbation theory. This new
wave function, however, would no longer be the product of radial and
angular parts, but would be a mixture of many such functions. It there-
fore only makes sense to find a particular radial function from an eigen-

value corresponding to the purely central potential. This eigenvalue is
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the "center-of-mass® of the experimental enz rgies of the states

.
Pira, 372
The well=-known relation for computing the spin-orbit matrix

2
for 2 p-clectron, or D3/2, 5/2 for a d-electron.

element between states of definite L, S, and J is

<2 |T.T) %ML = L 3@+ - LLa) - s(s) ]

from which one finds

2 - 2 _
< Pl/?lf'sf P1/3>—-1

2 o ] 1
< Ps/zli-al Py/> =3

2 — - 2 _
< D3/2 l £ B I D3/2 > = - Z
A L =y P
Tj" . >
These matrix elements are proportional to the first-order energy

splitting. Therefore the eigenvalue for a p-electron in the absence of

a spin-orbit interaction will be

1 SR SR
Ep‘“p‘E)J’?{"p(?)"“p(?”

where L"‘(-lz-) and 12(%) are the experimental ZPI/Z and 2P3/2

energies. The eigenvalue for a d-electron is
g3y, 3. ,5 ., 3
€a= Egl 3) + 3l Eyl3) - Byl3)] .

The following tables present eigenvalues and Coulomb nodes for

32 monovalent atoms and ions., The nodes were found for the lowest



three or four s, p, and d states except when sxpsrimental energies
were lacking. T'xcited states in general have more than one Coulomb
node: in this case the innermost node position is given first. Whenever
the re is a significant p- or d-wave spin-orbit splitting, three energiecs

£ +1/2, the "center of mass"

are quoted: that corresponding to j

energy, and that corresponding to j=£ -1/2, in order. In every case
the center-of-mass energy was used for the eigenvalue in the calcula-
tion. The first table gives the results for hydrogen a2nd ionized helium.'
Since these wave functions are known exactly, a comparison with the
computed nodes givee an indication of the accuracy of the numerical inte-
gration. For convenience of analysis, the remaining atoms and ions are
collected into three groups: those whose ground states have the configura-
tions p6s (or szs'), dloa. and szp respectively. At the beginning of

each group, a discussion will be given of the results obtained.

1. Hydrogen and Ionized Helium

Wave functions for hydrogen and ionized helium were computed
in order to test the accuracy of the numerical method used in the com-=-
puter program. As evidenced by the close agreement between exact and
calculated nodes, as given in the next table, the method is sufficiently
accurate for s- and p-wave electrons. The only significant discrep=-
ancies occur for d-wave nodes close to the origin, where the rapidly
varying centrifugal potential £({ +1)/:'2 introduces considerable truncation
error., Therefore d-gclectron wave functions must be computed with

caution, and small-radii Coulomb nodes considered unreliable.
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Calculations were performed for a variety of spacings and
maximum radii, but the node positions for s- and p-wave functions
varied a negligible amount unless the spacing became so large that

truncation error was important (h = spacing z 0.1) .



13.59 ev

state

54,40 ev

state_
ls
2s
3s
2p
3p
3d

engd)

1.0
0.25
0.11111
0.25
0.11111
0.11111

0.0625

e]Rxdl

4.0
1.0
0., 44444
1.0
0. 44444

0.44444

~-58=

Hydrogen

1.0 Ryd

Computed nodes

none

2.00002

1.90213, 7.09821
none

6. 0001

0. 349

0.2903, 12.000002

He 11

4.0 Ryd

Computed nodes

none

1.00004
0.95107, 3.54911
none

3.00007

none

109, 680 cm "~

Exact nodes

none
2.0
1.90193, 7.09807
none
6.0
none

12.0

438, 900 cm "~

Exact nodes

none
1.0
0.95096, 3.54903
none
3.0

none

1

1
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2, Alkali Atoms

a) Lil, Bs H, BII (le*Zs configuration)
These three iong have fairly stable s-nodes, but the p- and
d-wave Coulombd nodes are not su.fficiently stable to use for a two-
electron calculation. This instability is caused by the fact that the

.
inncrmost p- and dewave nodes are far outside the tiny 1s° core.

As a result, the Zs? ground-state energics and wave functions of Be I
and B Il can be computed, but any transition probabilities calculaied
by the nodal boundary condition method would be unrcliable.
b) Nal, MgIl, A TIL (2p°3s)
KL Call, 3¢ I  (3p%s)
Rbl, SrIl, YII  (ap°5s)
Csl, Ball, La T = (5p°6s)
These ions exhibit greater nodal stability than any other group.
In éeneral the stability is greater for the heavier than for the lighter
clements, so that even th: d-states become fairly stable by the time
one reachés barium. Therefore, in principle, oscillator strengths
can be computed for s-p transitions of all the corresponding two-
electron atoms. rowever, the experimental tarm values are not suf-
ficiently complete for o III, Y III, or La III, so that Coulomb nodes

cannot be accurately determined for these ions. Tranaition probabilities

waera computed for rMg I, AL I Cal, Sr I, and Ba L
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Lil

5.390 ev 0.3965 Ryd 43,367 cm ™t
state g_R_xg) Coulomb nodes

2s 0.3965 0.819

3s 0.1485 0.806, 4.643

4 0.07727 0.803, 4,364, 11.719

2p 0.2606 none

3p 0.1145 5, 698

4p 0.06398 5.240, 14,003

3d 0.1113 none

44 - 0.06258 11,973

5d C. 04004 10.862, 24.080



18. 21 ev

state

28

3s

4d

5d

e(Ryd)
1.3390
0.5348
0.2865
1.048

0.4594
0.2564
0.4452
0. 2504

0.1602

b1~

Be II

1.339 Ryd ' 146, 882 em”

Coulomb nodes

0. 5816

0.5667, 2.715
0.5626, 2.543, 6.484
none

2.834

2. 608, 6.963

none

5.983

5.428, 12.036

1
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B III

37.92 ev 2.7894 Ryd 305,931 cm ™
state_ €(Ryd) Coulomb nodes

28 2,7894 0.4504

38 1.1464 0.4366, 1.943

4g 0. 6221 0.4324, 1.818, 4.532

Zp 2. 3484 none

3p 1.0300 1.901

4p 0.5753 1.750, 4. 674

3d 1.0017 none

4d 0.5634 3.989

5d C.3605 3.617, 8.022°
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Na I

5.156 ev 0.3778 Ryd 41, 450 em ™t
state €(Ryd) Coulomb nodas

is 0.3778 0.9081

4s 0.1432 0.9114, 4,903

53 0.07521 0.9105, 4,611, 12,151

ip 0.2232 1.033

4p 0.10194 1.033, 6.929

Sp 0.05843 1.031, 6.413, 15.895

3d 0.1119 none

44 0.06292 11. 859

5d 0.04024 ‘ 10.742, 23,909



Bl

Mg 11
15.03 ev 1.108 Ryd - 121, 267 e
state ¢(Ryd) Coulomb nodes
3s 1.1057 0.8360
4s 0.4692 0.8245, 3. 284
58 0. 2597 0.8197, 3.077, 7.382
0.7804
3p 0.7799 0. 8838
0.7796
0.3706
4p 0,37C4 0.8673, 4.043
0.3703
5p 0. 2170  0.8603, 3.745, 8.799
34 0.4538 none
4d 0. 2549 5,797

5d 0.1627 5.244, 11.772



AL III
28.44 ev 2.092 Ryd 229, 454 cm™}
state e(Ryd) Coulomb nodes
3a 2.0921 0.7560
4s 0.9418 0.7375, 2.576
59 0.5363 0.7308, 2.407, 5.504
1.6026 ,
3p 1.6012 0.7651
1. 6005
0.7825
4p 0.7820 0.7416, 2.976
0.7818
0.4652
5p 0. 4650 0.7321, 2.755, 6.268
0.4649
3d 1.0348 none
4d 0.5805 3.782

5d 0.3700 3.412, 7.729
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KI
4,339 ev C. 3192 Ryd 15,010 con
state E!Rxd) Coulomb nodes
45 0. 3192 1.2767
58 0.1275 1.3058, 5.821
bs 0.0689 1.3134, 5.488, 12,653
0. 2008
4p 0, 2005 1,.6136
0.20603
0.09399
5p 0.093868 1.6327, 7.513
0.C9382 '
0.05481
ép 0.05475 1.6350, 7.352, 17.381
0.05472
3d £.1229 none
4d 0.06941 9.9062
5d 0. 0440 8.715, 21.003

6d 0.0302 8.226, 18,934, 35.437
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Call
11.87 ev 0.8730 Ryd 95, 748 cm”
state eSde) Coulomb nodes
48 0.8730 1.2614
58 0.3974 1.254)1, 4.155
bs 0.2286 1,2504, 3.897, 8.715
0. 6433
4p 0, 6420 1.473
0.6413
0.3211
5p 0,3206 1.451, 5,047
0.3203 '
0.1939
6p C.19364 1.441, 4.690, 10, 259
0.1935
0, 7485
3d 0,7482 none
0.7480
0.3548
4d 0. 3547 2.850
0. 3546
5d 0. 2099 2.610, 8.029

6d . 1338 2,507, 7.294, 14,683
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se IIX
24,75 ev 1.8207 Ryd 199,593 cm ™}
state e(Ryd) Coulomb nodes
4g 1.5879 0.1355, 1. 1.869
5s 0.7724 0.1511, 1.1621, 3.383
bs 0.4599 0.1576, 1.1553, 3.168, 6,707
1,2545
4p 1.2516 1.328
1.2502
0. 6520
5p 0. 6509 1.292, 3.916
0. 6504
6p no data
1.8207
3d 1. 8196 none
1.8189
0.7972
44 0.7970 1.907
0.7968
0.4689
5d 0y 24688 1.785, 5.414
C. 4687

6d no data
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Rbl
4.1/6 ev i 0. 3072 Ryaé 33, 691 em"}
siate ¢(Ryd) Coulomb nodes
58 0. 3072 1.3741
b8 0.1236 1.4274, 6.091
(L . 0.06729 1.4376, 5.746, 14.085
G, 1925
5p 00,1910 1.8829
0.1903
U. 09096
ép 0. 09049 1.9083, 8.384
0. 09025
0.05339
p 0. 05318 1.9121, 7.801, 18,083
0. 05307
4d 0. 1307 none
0,07286
5d U. 07284 9. 007
0.07283
0. 04562
&d 0. 04561 7.955, 19.914
0. 04561
0.03110
7d 0.03109° 7.521, 17.968, 34.100

0. 03108
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Sr I
11.027 ev 0.8111 Ryd . 88, 964 cm™
state €(Ryd) Coulomb nodes
58 0.8111 0.0938, 1,4244
68 0.3759 0.1184, 1.4278, 4.489
78 0. 21882 0.1267, i.4263, 4.215, 9,219
0. 5949
5p 0. 5900 1.7684
0. 5876
0.3027
6p 0.3009 1.7433, 5,545
0. 3000
0.1853
7p 0.18436 1.7197, 5.140, 10.940
0.1839
0. 6784
4d 0. 6769 none
0. 6759
0.3253
5d 0.3248 3.563
0.3245
0.1955
6d 0.19527 3.295, 8.984
0.1951
0.1308
7d 0.13066 3,190, 8,207, 15.969

0.1306



20.5 ev

state
58
és

T8

5p

4d

5d

6d

€(Ryd)
1.4390
0.7164
no data
1.1300

1,1203
1.1154

. no data

no data

1.5071
1.5031
1.5004

0.7012
0.7001
0. 6994

no data

Y

V'

1. 5070 Ryd 165, 289 ecm”

Coulomb nodes

0.2052, 1.3831
0.2316, 1.3678, 3.753

1. 637

none

2,616

1
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Csl
3.893 ev 0. 2864 Ryd 31, 407 em™!
state ¢ (Ryd) Coulomb acdes
& 0.2864 1. 5669
78 0.1175 1. 6414, 6.553
8a 0. 06464 1. 6649, 6.205, 14,849
. 0.1844
6p 0.1811 2. 1897
0.1794
0.¢8790
7p 0. 08680 2.2327, 8.943
0. 08625
0.05195
8p 0.05145 2.2387, 8.333, 18.910
0. 05120
0. 1542
5d 0,1537 none
0.1533
0. 08040
64 0.08017 7.338
0. 08001
0. 04886
7d 0. 04875 6. 617, 18.006
0. 04867
0.03279
8d 0.03272 6.336, 17.353, 31.850

0.03268
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Ba II
10. 001 ev 0.7357 Ryd 80, 687 em™}
gtate qnxd) Coulomb nodes
bs 0.7357 0.1661, 1.6670
7s - 0.3495 0. 2038, 1. 6809, 4. 961
8s 0. 2066 0.2174, 1.6835, 4,667, 9.928
0. 5509
op 0.5406 2.106
0.5355
0. 2854
7p 0.2816 2.078, 6.109
0. 2797 '
0.1764
8p 0.17461 2.058, 5,678, 11,748
0.1737
0. 6912
5d 0. 6868 none
0. 6839
0.3167
6d 0.3156 3. 803
0.3149
0.1904
7d 0.18992 3.569, 9.373
0.1896
0.1278
8d 0.12748 3.474, 8.593, 16.507

0.1273
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La II1
19.17 ev | 1. 4099 Ryd 154, 630 em "}
state €(Ryd) Coulomb nodes
6s 1,2859 0.3061, 1,6400
78 0. 65907 0. 3414, 11,6220, 4.1974
8s 0. 37505 0.5183, 1.948, 4.471, 8,678
1.0268
ép : 1. 0080 1.973
0. 9986
7 o no data
8p no data
1.4099
5d 1.4011 none
1.3953
0. 6588
6d 0. 6564 2. 995
0. 6548

74 no data
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3. Cul, ZnII, Ga III (3a*%4¢)
Agl, CdII, InIII (4a'%55)
Aul, HgII, T1 I - (5a%se)

On the whole, the Coulomb nodes for this group of ions are not
as stable as those for the alkali methals with the pbs ground-state
configuration. As previously explained, this is due to the sensitivity
of the le shell to the excitation energy of the valence electron. Some
wave functions and/or transition probabilities were calculated for all
of the following two-electron ions: Zn I, GalIll, Cd I, InII, Hgl, and

Tl II. In some cases, either the p- or d-wave states were unstable

or the experimental term-values inadequate.
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Cul
7.724 ev 0. 5682 Ryd 62, 317 cm™}
state engd) Coulomb nodes
4s 0. 5682 0. 331
58 0.1749 0.423, 3.610
6a . 0.08633 0.440, 3.451, 10,087
0.2898
4p 0.2883 none
- 0. 2875
5p 0.1179 5.414
0.06868 ‘
ép - 0.06720 4.665, 13,061
0.06646
4d 0.1129 none
5d 0.06317 11.776

64 0.04033 16, 689, 23.833
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Zn 11
17.96 ev 1.3211 Ryd 144, 891 em™}
state ¢(Ryd) Coulomb nodes
4s 1.3211 0.5972
58 0.5147 0. 6356, 2.872
68 0. 2771 0. 6429, 2.715, 6.778
0. 8790 '
4p 0.8737 0.5756
0.8710
0.3969
5p 0.3954 0. 6286, 3. 643
0.3946
0.2280
6p 0.2275 0. 6407, 3.396, 8. 248
0.2273
0. 4375
4d 0.4372 0.9457
0.4370
0. 2455
5d 0. 24534 0.9853, 6. 201
0. 2452
0.1574
6d 0.15731 0.9878, 5.649, 12.351

0.1573
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Ga IlI
30.70 ev 2.2584 Ryd 247, 700 em™}
state €(Ryd) Coulomb nodes
4s 2. 2584 0. 6624
58 0.9752 0.6761, 2,452
bs 0. 5483 0. 6799, 2.311, 5.348
1.6643
4p 1. 6538 0.7015
1, 6486
0.7927
5p 0.7894 0.7167, 2.933
0.7878
6p no data
0. 9448
4d 0. 9441 0.9709
0.9437
0.5335
5d 0.5332 0.9589, 4,387
0. 5330

6d no data



-79-

Agl
7.574 ev 0.5572 Ryd 61, 107 cm "~
state e!de! Coulomb nodes
5s 0.5572 0. 351
bs 0.1691 0.490, 3,805
T8 0,08407 0.516, 3.655, 10.458
0. 2877
5p 0, 2821 none
0.2793
0.1168
6p 0.1155 5,612
0.1149
- 0.06443
ip 0.06394 5,247, 14,016
0.06370
0.112%7
5d 0.1126 none
0.1125
0.06295
6d 0.06290 11,866
0.06826
0.04018
7d 0.04015 10.796, 23.986

0.04013
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cd i
16.904 ev 1.2434 Ryd 136, 375 em™
state €(Ryd) Coulomb nodes
58 1. 2434 0. 6717
6s 0. 4867 0.7458, 3.116
78 0. 2651 0.7606, 2.958, 7.185
0.8410
5p 0.8259 0.7271
0.8184
0.3800
6p 0.3758 0.8136, 3.952
0.3737
0.2190
7p 0.21817 . 0.8354, 3,705, 8,735
0.2178
0.4257
54 0. 4249 1.3256
0. 4243
0. 2389
6a 0. 23849 1.3667, 6.510
0. 2382
0.1537
7d 0.15344 1.3697, 5.958, 12,792

0.,1533
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In III
28.03 ev 2.0615 Ryd 226, 100 em™}
astate e! Rxd! Coulomb nodes
58 2.0615 0.7752
68 0. 9047 0.8130, 2.725
7s © 0.5167 _0.8219, 2.577, 5.776
1, 5401
5p 1.5138 0.880
1.5006
0.7432 |
6p 0.7351 0.912, 3.270
0.7310
0.4153
7p 0.4116 1.180, 3,480, 7.375
0. 4098
0.8903
5d 0.8887 1.329
0. 8877
0. 5067
6d 0. 5057 1.314, 4,792
0. 5050
0.3288
7d 0.3283 1.311, 4.409, 9.150

0.3279
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Aul
9.22 ev 0. 6784 Ryd 74,410 em”
state €(Ryd) Coulomb nodes
bs 0. 6784 0.182
s '0.1817 0.353, 3.399
8s 0.08815 ~ 0.384, 3,297, 9.803
_ 0.3378
6p 0.3146 none
0. 3030
0.1311 :
7P 0.1268 4.749
0.1247
0.07116
8p 0.06931 4,323, 12.494
C.06838
0.1136 ;
6d 0.1131 none
0.1128
0.06328
74 0.06306 11.813
0.06291
0.04047
8d 0.04027 10,724, 23,884

0.04014
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Hg 11
18.751 ev 1.3793 Ryd 151, 280 cm ™}
state €(Ryd) Coulomb nodes
68 1.3753 0. 5481
7s 0. 5066 0. 6657, 2.939
8s 0.2723 0. 6880, 2.809, 6.936
0. 9099
6p 0. 8544 0. 6358
0. 8267
0. 3919
p 0.3696 0.8753, 4.057
0. 3584
0.2219 -
8p 0.21672 0.8669, 3.756, 8.815
0. 2146
0.4221
6d 0.4188 1.4752
0. 4166
0. 2367
7d 0.23527 1.5168, 6. 662
- 0.2343
0.1524
8d 0.15168 1.5164, 6.104, 13,000

0.1512
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™ iy -
29.8 ev 2.194 Ryd 240, 600 cm ™}
state engdl Coulomb nodes
és 2.194 0. 6968
7s 0.9254  0.7699, 2.640
8s 0.5235 0.7897, 2.5161, 5.679
1. 6088
6p 1.5187 0.874
1.4737
0.7545
7P 0.7200 0.973, 3.374
0.7027
8p no data
0. 8684
6d 0.8612 1.499
0.8564
0.4946
7d 0.4914 1.493, 5.022
0. 4892

8d no data
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4. BI CI (2622p)
All, sill (3823p)
Gal, Gell (48%4p)

Thé Coulomb nodes for this group of ions are found to be less
stable than for either of the previous groups, except for the s- and
p-wave states of All, Ga I, and Ge IlI, and the s-wave states of Si Il
Therefore the only reasonably reliable transition probabilities that
could be computed for a two-electron situation are those for Ge I, As
a result, no two-electron calculations &t all were mada for this group,
because previous theoretical and experimental resulte are almost -
entirely lacking. No basis for reliability can be established within the
group. There is also evidence that there is strong interaction betwean
various configurations inveolving all three of the outer electrons, so
that it is probably not a good approximation to treat these fons as having

a stationary ez shell and one valence electron.
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Bl

8.296 ev 0. 6101 Ryd 66, 930 cm "1
state €(Ryd) Coulomb nodes

3s 0. 2452 2.069

4s 0.1087 2.012, 7.323

58 0.06185 1.939, 6.741, 15.731
2p 0. 6101 none

3p no data

4p no data

3d 0.1109 ’ 1.0538

4d | 0.06329 - 11.737

5d 0.04056 - = 10,554, 23,640
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CcCll
24.376 ev 1.7931 Ryd 196,659 cm™!
state €(Ryd) Coulomb nodes
38 0.7305 0.1721, 1.686
48 0.3595 0.1687, 1.580, 4,774
58 0.2125 0.1699, 1.552, 4.439, 9.573
1.7931
2p 1, T927 none
1.7925
3p 0.5920 1.756
4p 0.3113 1.584, 5.274
5p 0.19484 1.407, 4.635, 10.175
3d 0.4660 none
4d : 0.2602 5,587

5d 0.1656 5.038, 11.477
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Al l
5.984 ev 0.4402 Ryd 48,279 em”
state €(Ryd) Coulombl nodes
48 0. 2091 0.150, 2.709
58 0.09656 0.184, 2.682, 8. 646
6s _ 0.05593 0.196, 2.670, 8.102, 17.921
0.4402
3p 0.4395 none
0.4392
0.1398
4p 0.1397 3.948
0.1396
0.07301
5p 0.07297 3.786, 11,597
0.07295
0.04508
6p 0. 04506 3.722, 10.731, 22.564
0.04505
3d 0.1444 none
0.08525
4d 0.08522 6.336
0.08520 4
0.05512
5d 0.05510 . 4,310, 14, 844
0.05508
0.03750
6d 0.03748 3.317, 12.514, 26.436

0.03747
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5111
16. 34 ev 1. 2019 Ryd 131, 818 em ™}
gtate e(Ryd) Coulomb nodes

48 0. 6047 0,3785, 2.260

58 0. 3086 . 0.4047, 2.189, 5,872
1,2019

3p none
1.1993
0.3705

4p 0.3701 3 0.8703, 4,048
0.3699
0. 2550 ,

S5p 0.2548 - - , 2,646, 7.045
0. 2547
0.1620 '

ép 0.1619 - , 2.588, 6.508, 12.979
0,1619 :
0.4785

3d 0.4784 none
0.4784

4d 0, 2808 4, 844

5d 0.17715 4,288, 10,402

6d 0.12127 - » 9.412, 17. 646



Ga I
6.00 ev 0.4411 Ryd 48,380 cm "}
state €(Ryd) Coulomb nodes
58 0.2151 2. 585
bs 0.09843 0.150, 2.564, 8.418
s 0.05673 0.162, 2.558, 7.898, 17.596
0.4411
4p 0.4361 none
0.4336
0.1398
5p 0.1391 - 3.981
00,1388
0.07298
ép 0.07272 3.821, 11,655
0.07259
0.04503
p 0.04490 3.766, 10.082, 22.670
0.04484
44 _ 0.1239 none
0.06908
5d 0.06904 10,004
0.06901
0.04381
6d 0.04378 8.824, 21.159
0.04376
0.03016
7d 0.03014 8. 275, 19.001, 35,530

0.03012
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Ge 11
15,93 ev 1.1718 Ryd 128, 518 em"}
state €(Ryd) Coulomb nodes
56 0. 6028 0.383, 2;270
6s 0.3078 0.410, 2.200, 5.892
7s 0.18767 0.421, 2.178, 5.503, 11.214
1.1718
4p . 1.1611 none
1.1557
0.4514
5p 0. 4493 2. 945
0. 4482
ép 0. 24868 0.152, 2.797, 7.290
7P © 0.15958 0.125, 2.697, 6.675, 13.224
0. 4347
4a 0. 4337 1.073
0. 4331
0. 2592
5d 0. 2590 -, 5.634
' 0. 2588
0.1654
6d 0.1653 -, 5.059, 11,508

0.1652
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C. The Method with Calcium as an Example

In parts A and B of this section, evidence has been presented
for the nodal stability of several types of ions. It is now possible to
show how this property can be used to calculate radial wave functions
for atoms with two valence electrons. At medium to large radii, these
functions will compare in accuracy to those calculated from the full
SCF treatment with exchange. To be deﬁnite. the method will be ex-

21 1
8, = 4s4p Pl,

plained by referring to the resonant A4227 line (4s
of neutral calcium. An example of the calculation of an intercombination

line (singlet to triplet) will be given in part D.

1. Location of the Coulomb Nodes

The first stage in the calcium calculation is the preparation of
the table of Coulomb nodes for Ca II (p. 67). These are found by solving
the one-electron Schrodinger equation numerically, using experimental
term-values for the eigenvalues. The results , taken from p. 67, show

the inner s~ and p-wave nodes to be stable:

state € (Ryd) Coulomb node
48 0.8730 1.2614
5s 0.3974 1, 2541
6s 0.2286 1.2504
4p 0. 6420 1.473
5p 0.3206 1.451
ébp 0. 19364 1,441

The p-wave energies correspond to the "center-of-mass" of the ZPI/Z

and ZP3/Z states, as explained in part B.
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2. The sz Ground-State inergy and Wave Function

The second stage in the calculation of the calcium resonance line
is the determination of the 492 ground-state energy, using the Ca Il
s-wave Coulomb node data just quoted, and also the 52 energy-node
table on p. 107 The latter table was prepared with the assistance of
the s-squared program discussed in the appendices. Nodes for sz
states were found as a function of the eigenvalue €, by solving the

Hartree-Fock equation

r oo Z
Pos) = le- 26 1 2 S‘drPZJ-Z(‘ de = JP(r)
i b o Tr Jo ,)r T

Therefore we have available two curves of energy vs. node: that from
the s-states of Ca II, and also the sz curve. If we neglect the effects
of the small change in core potential as another a-electron is added to
Ca II, then the correct 52 energy and node for the ground state of Ca I
can be read from the intersection of the two curves.

In practice this was accomplished in the following way: The
Ca Il energies 0.8730 and 0. 3974 with corresponding nodes 1. 2614 and
1. 254] define a linear variation of node with energy. Using also a
linear interpolation between the '2 energies 0.40 and 0.41 from p. |07
one finds the intersection at EBZ = 0.4093 with node at 1. 2542. Another
linear relation for Ca Il comes from using the two energies 0.3974 and
0. 2286 with nodes 1, 2541 and 1. 2504, This line has 2 somewhat different
slope than that used before, but not enough to change the point of inter-
section with the sz curve by an appreciable amount. We therefore

conclude that € = 00,4093 with a Coulomb node at 1. 2542.

gl
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The result derived by Hartree and Hartree (37) from a full SCF
calculation is € > = 0. 3891, The SCF electrons are thus not quite so
tightly bound. F?art of this difference is due to the neglect of core
polarization in the usual SCF metht;d. Core 'polar{sation is roughly
accounted for in the nodal boundary condition method by the use of
empirical nodes. Another part of the difference is due, in the nodal
boundary condition method, to a neglect of the slight reduction in core
potential when a second valence electron is added to a monovalent ion.
The order of magnitude of the influence of this effect on the node positions
can be estimated from the SCF node data of table V-A, This table sug-
gests that the radius of the node should be increased by about 1% when
passing from the monovalent to the divalent situation. Using .then a
‘Coulomb node of 1, 266 instead of 1. 2542, the one electron energy is
found to decrease from 0.4093 to 0,4070. Thie change is small, amount-
ing to only 1/2 %, Therafore it is likely that the full SCF calculation,
perhaps because of the neglect of core polarization, underestimates the

binding energy by 3 to 4%.

3. The Excited sp 1p1 State

The most difficult calculation is that for the sp-configuration.
This involves solving simultaneously the two non-linear Hartree-Fock
equations given in Section III-B and Appendix A. Coulomb nodes are
extracted from the Ca Il data, assuming a linear relation between
energy and node., A fair guess can be made of the 8- and p-wave
eigenvalues expected, so that for a preliminary run, nodes correspond-

ing to these energies are used as inner boundary conditions on the wave
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functions. If the derived ecigenvalues differ significantly from those
guessed, the nodes are readjusted and the whole calculation repeated.

In the case of calcium, the initial 45 and 4p Coulomb nodes
were chosen to be 1. 263 and 1,438, r=spectively. The 4s4p ]I-"l calcu-
lation resulted in the eigenvalues €, * 0.555 and Ep = 0,180, From
these energies, better nodes can be found by interpolating the Ca II
data, These are: s-node l.256; p-node 1. 440. The final resulting
energles are €_=0.5353 and ep = 0,1792.

Hartree and Hartree (37) have calculated the 4s4p lPl state
of Cal by the full SCF method with exchange, and obtained €_ =
0.5052 and ep = 0.1720. As with the Bz configuration, these eigen-
values are less than those obtained by the nodal boundary condition
method. It is again our contention that the discrepancy is due largely
to the neglect of core polarization or other correlation effects in the
SCF method, which are implicitly accounted for roughly in the nodal

boundary condition method by the use of experimental energies.

4, Calculation of Oscillator Strengths

Once the initial and final wave functions have been determined,
the calculation of the dipole moment matrix element requires only the
evaluation of two numerical integrals by Simpson's rule. The com-
puter program calculates both of the two electron functions, the radial

integrals, the line strengths, and the gf-value.
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D, Intercombination Lines

The effects of a deviation from LS-coupling were reviewed in
section IlI-A. The resulting mixture of the LS basis functions provides
a means by which the so~called "intercombination lines" can occur,
These are transitions involving a change of multiplicity or total spin §,
which means for two-electron functions that tripiet to singlet transitions
are possible. For the configurations sz. se', and ep, which we have

been considering, the following intercombination lines can occur:
(%) 1‘30 e (zu:*)sPl
(sa') ISO - (sp)'al::‘1
(ss") %3, - (sp) 'P)

To find oscillator strengths for these transitions, it is first
necessary to calculate the amount of mixing from observed spin-orbit
splittings., These wave functions can then be inserted in the dipole
moment matrix element. For example, if the experimentally designated

(sp) " 3'F'l " state is actually

u3 n _ .3 1
Pl —aPl+bP1

where az

+ bz = ], then for the transition (az) J‘SO - {sp) 3P1.
gl 3 1 =i 3 1 s T |
<Y, |r|¥>=<a’P +b Pllrl S,>=b<'Py|r|’s >

Condon and Shortley (38) give a complete discussion of intermediate

coupling, The encrgy matrix for the sp-configuration is



<97

3 3, 1. 3.
¥ 1 L Fa
5.,
31::1 -C/2-G, e/ Vz
1,
Py YA G,
3"Fo =(=Gy

where G, and ( denote electrostatic and gpin-orbit matrix elements.
Following King and Van Vleck (39), the parameter )\ has been ine
serted to try to account empirically for the ratio of the off-diagonal to
the diagonal radial matrix elements of the spineorbit interaction. In
the more common approximation (as in Condon and Shortley), )\ is
set ecual to unity, but King and Van Vleck point out that the ratio
V= | ar (R3R1/r3)/;;ﬂdr (R,%/2°) (where R, and R, are the
tﬂpl;;et and singlet ra;:ilal functions) is unlikely to be unity, because of
imperfect overlap of R, and R,. The 1/r’ factor weights small
radii so heavily that only the inmost parts of the wave functions cone
tribute to the integrals. Dut in this region the overlap is almost per-
fect (in the SCI' approximation) between the singlet and triplet functions,
i. e., the nodes coincide. However, the normalization differs cone-
siderably between the two, the singlet function being smaller for small
radii, so that the ratio R should be less than one.

Dy diagonalizing the matrix exactly, one finds the following
energies for the four states (apart from a single additive constant):

3

P Cl2 =G

2 1

2
1

3

e 1
By : =C/4= 174G, % 4 2G,C + (1 + 810y cP/a03

]
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L
2

/445046, % + 26,¢ + (1 + 8Py P/a]

-C.Gl

Several relations then follow:

s 3/2¢

Py +lp %, -%p, s 2G

1
IPI. - 3131 = {4012 + ZGIC + {1+ SA,Z)C2/4]3 .

Using experimental term values, (, Gl , and ) can be determined
from these three equations.
The wave functions corresponding to am energy matrix

V11 . Viz
; . (vi2® va)
21 22

with eigenvalues

1
Es %t(vll + sz)i [(vll *¥ay )2 + 4(‘712)2}2]

are
t3Cy ¥, +Cy b,
where i
o Vlz { ¥ vll - VZZ -
z‘ i — &
G (v = vz2)" + 4vy )15
and

fujms

v v -V
12 — 11 " V22
C,= + T 14 s uil
i AT [ (vyy - vap)" + 4“’13’2}"’:}
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so that one obtains (defining A=vy, =vy =2G; +C/2)

i
%, %
n1P1||= 1 1 A ) 3P1+ 1 (1+ A )lpl
N2 (AZ+2>.21:2)2’ N2 (A2+2k2c2)2

) |
W g 1 1*’—2_%7'1' 1 (1. A “zflp
LI ( 2 ( (als22 2 %yt ) P

by

N (A+215)a) 177
which are correctly normalized. These wave function mixings were
calculated for the lowest and next-to-lowest sp-configurations of the
atoms and ions treated.

For the lowest sp-configuration of Cal, 7nl, Srl, Cdl, Bal,
and Hgl, King and Van Vleck obtain )'s varying between 0. 758 and
0. 841, agreeing with out expectation that A < 1. The same analysis
can be carried through for the lowest sp-configurations of Mgl, ALll,
Call, Inll, and TZII, and also the excited sp-configurations of all the
divalent atoms and {ons. The resulis are given in Table V-B. The
numbers were computed using the recent term-value tables of Moore
{40), so they differ somewhat from those of King and Van Vleck.
The values of )\ for the lowest sp-configuration of all elements cou;
sidered from Cal through T{II fall between the limits 0. 747 and
0.891. Mgl and ALII have anomalously high 1's : 1,778 and 1. 349,
respectively, as previously noted by Rubenstein (41) for Mgl (who
obtained )\ = 2.4). The l-results for the next-higher sp-configuration
are larger than unity for almost all ions, which may indicate that the
simple single~configuration assumption has broken down.
Experimental evidence supports the introduction of the )\ -

ratio for the lowest sp~configurations of Cal through T{II as reviewed
by King and Van Vleck, and as displayed in Table V-C, which gives
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the ratios of singlet to triplet resonance f-;valuea. There is no ex-
perimental data for the next excited sp-configurations, so it was
judged very dubious to calculate intercombination lines involving
these configurations, for which )\ > 1.0. Therefore, only two or
three intercombination lines were computed for each ion, all arising
from the lowest sp-configuration. Table V-BE gives the calculated
values of (, Gy, and )\ , along with the previously published \'s
of King and Van Vleck (39) (Cal, Znl, Srl, Cdl, Bal, Hgl) and of
Rubenstein (41) (Mgl). The last two columns contain the coefficients
"a' and '"b' for the expressions

1 1 3

18 Pl" = a P1+b Pl

and

3 . 1
1" it - .
P1 = a I-’1 b Pl

As an example of a complete calculation of an intercombination
line, comsider the transition (4s4p) 3Pl - (492) lS0 in neutral calcium.
From Moore's tables (40), the excitation energies of the 4s4p states

are:
state energy (cm'l)
IPl 23652, 324
’P4 15157. 910
3p 15210, 067

Py 156315, 948
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From the equation 3}"2 - 3PO = 3/2 ( one obtains ( = 105.36, and

from 3P + lP - 3P - 3P = 2G, one finds that G, = 4194, 27.
1 1 2 0 1 1
The factor )\ is then found from

I 3 2
Py - Pl = [4('}1

2y 24 4%
+ZG1C +{1 +8\7)c"/4]
tobe )\ =0.891. The constants 'a" and '"b!' are thea 0.99997 and

0. 007867, respectively. To find the 3Pl - IS(J matrix element, we

have

3 1 1

P Pl" l;{ so> = « ,00787 < Pl ;;E IS >

0
The latter matrix element has already been computed in the course
of ﬂnding the oscillator strength for the 432 ISO - 4g4p 1P y transi-

tion, so the work is completed.
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TABLE V-C

Resonance Line Ratios

I(QZ lS - 8p 1P)/f(sz ,'S - 8p 3P)
Ion King and Fresent Experiment
Van Vleck Calculation
Cal 30180 25200 33000 (P)
36000 (OFP)
7al 6757 7000 7200 (W)
" Gall 2420
Srl 1582 1570 1660 (P)
cd 1 637 641 680 + 100 (W)
In I 260
Bal 169 170 146 (P)
164 (OP)
Hgl 53. 4 55 46.8 + 2 (W)
T I 29.3

References: P = Prokofiev; CP = Ostrovskii and Penkin; W =
Wolfsohn

References quoted after each element in Section VI-B, or in the

paper of King and Van Vieck (ref. 39).



105«
VI. RESULTS AND APPLICATIONS

Evidence for nodal stability and the details of applying the
nodal boundary condition method have been given in Section V. Cal-
cium was used as an example, and the eigenvalues, eigenfunctions,
and oscillator strengths were compared with those found from a come
plete SCF calculation. | In this section, the entire results of calcu-
lating with the method will be tabulated. In Part A, the 8°
configuration is discussed, and tables of the variation in Coulomb
node with energy are given. Fart B collects together eigenvalues
and oscillator strengths for transitions in thirteen atoms and ions
with two valence electrons. The application of these results to as-
tronomically observed lines, and to the problem of element abundances,
is treated briefly in FPart C. TFinally, in Part D, possible extensions
of the technique are outlined, along with other uses of the nodal
boundary condition method.

A. The S-Squared Calculations

The s-squared program discussed in the appendices computes
wave functions for given one-electron eigenvalues. Therefore, a
table of energy versus node can be constructed for this configuration.
From this table, if the Coulomb nodes are known for a particular
atom, the 32 one-electron energy can be interpolated. The details
of making this interpolation were treated in Section V-C. If one sub-
sequently wishes to compute a transition probability involving this
sz ground-state, the elgenvalﬁe i{s known, so that the wave-function

is determined.
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The eigenvalues found from these calculations can be compared

with SCF results for various atoms. For example, the Coulomb s
node for magnesium (from the data of Section V«D)is at r = , 825,
From the node versus energy curve for the az configuration of
neutral atoms (Table V1-A), one finds a one-electron energy for the
ground-state valence function of magnesium to be . 5194 Ryd. This

is close to the result (. 520) of Biermann and Trefftz (13) using SCF
with core polarization. The case of the ground state of neutral cal-
cium was discussed in Section V-C. A systematic comparison with

previous results is given atom by atom in Part B of this section.

B. Eigenvalues and Oscillator Strengths
The following tables contain the results of all the computations
made for atoms with two valence electrons. Altogether, some calcu-

lations were carried out for thirteen atpms and ions:

Ion Conﬁzgpratlon

He I, Lill (187}

Mg 1, AL II (2p°38%)
Cal 3pas?)
Znl, Gall (3a1%4s2)
Srl (496532)
CdI, InII (4a1%542)
Bal (5p°6s%)

10652

Hgl, TL1I (54 )
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TABPLE Vi-A
Neutral Atoms

€ = one=-clectron energy for the sz coanfiguration.

_€_ Coulomb node e Coulomb node
1. 00 . 1933 . 50 . 8842
.90 . 2567 . 49 . 9169
.80 . 3417 .48 . 9513
.70 . 4592 . 47 . 9875
. 69 . 4735 . 46 1. 0256
.68 . 4881 . 45 1. 0658
.67 . 5034 . 44 1. 1081
. 66 . 5192 . 43 1. 1529
. 65 . 5356 . 42 1. 2002
. 64 . 5527 . 41 1. 2503
.63 . 5704 . 40 1.3033
.62 . 5889 .39 1. 3597
.61 . 6081 .38 1. 4195
. 60 . 6281 . 37 1. 4832
. 59 . 6490 .36 1.5510, .1186
. 58 . 6707 .35 1.6235, .1396
.57 . 6939 .34 1.7009, .1630
.56 T L33 1.7837, .1890
.55 . 7419 .32 1.8726, .2180
. 54 . 7678 .31 1.9681, .2503
.53 . 7949 .30 2.0709, .2863
.52 . 8232 .29 2.1818, .3263

. 51 . 8530 .28 2.3017, . 3711
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TABLE VI-B

First - Icnized Atoms

_€_ Coulomb node £ Coulomb node
3.0 . 1342 1. 45 . 6447
2.8 . 1617 1. 40 . 6858
2.6 . 1950 ' 1.35 . 7307
2.4 . 2358 1. 30 . 7798
2.3 . 2597 1. 25 . 8336
2.2 . 2864 1. 20 . 8927
2.1 . 3163 1. 175 . 9246
2.0 ) . 3501 1. 150 . 9580
1.9 . 3883 1. 125 . 9933
1.8 . 4318 : 1. 100 1. 0304
1.7 . 4818 1. 075 . 1.0696
1.6 . 5395 1. 050 1. 1109

1.5 . 6068 1. 025 1. 1547



«109=-
The iong Sc II, Y 1I, and La II following Ca I, Sr I, and Ba I could
not be treated because of Vthe lack of sufficient experimental data for
the monovalent ions Sc III, Y III, and La IIl. The various isoelec-
tronic sequences, beginning with the neutral atom on the left, could
be extended to arbitrary degrees of ionization, if enough data were
available from the corresponding monovalent ions to establish the
Coulomb nodes. The same method and the same computer programs
are applicable,

Two tables are given for each ion. The first table lists the
levels calculated, the experimental excitation energy of these levels
in inverse centimeters, the s- and p-wave Coulomb nodes used, and
finally the resulting eigenvalues. For the first four ions, He I, Li'll,
Mg I, and Al II, the eigenvalues for the various configurations cal-
cula.te;«.i without exchange are included for comparison.

The second table for each ion lists the transitions calculated
(including some intercombination lines), the transition energy in cm >,
and the wavelength for each line. Then, in order, the following

quantities are given:

"
re =jP'()P(r)dr FIZ’(:r.-)rn (r) dr
b) Jl J2 - 8 o 8 J e T 21
c) | S, the line strength, defined as
2
S = z .!<wf"' EXARAES
i, M
d) gf = %E-:- S where f is the oscillator strength, g = 2.‘Ii + 3

is the multiplicity of the initial state, and AE is the transition
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energy in Rydbergs.

Following the tables for each ion, a comparison is made with
previous experimental and theoretical results, whenever such exist.
An attempt was made to locate all the appropriate papers, those which
guote relevant f-values, or those which only compute wave functions.
The exceptions to this are papers wherein analytic functions are
calculated which cannot be directly compared with nodal boundary
condition functions. For example, Hylleraas~type wave functions do
not posseses one-electron eigenvalues, so they cannot be compared in
this way. A list of references follows the results for each ion, with

a brief indication of the contents of each paper.
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Comparison with Previous Fesults

The le=2 ground-state function for He I could not be
found accurately by the sz computer program (described in
fppendix B), because the '"node'" is at the origin. The method
of inward integration can give only a lower limit to the eigenvalue
in this case, since any eigenvalue greater than or equal to the correct
value will result in no node., Therefore the eigenvalue o = 1,836
as calculated by Wilson (Helium reference 5) was used in the
program, This differs only slightly from the earlier calculation
s =1,835 of Hartree (1). All excited states could be calculated
by the programs, so that only the ground-state was taken from
previous work,

The 1s2s and 1s2p states have been computed without
exchange by Wilson, and the eigenvalues compare as follows

with the present calculations if exchange is neglected:

leZs 1s2p
€18 €26 €1s €2p
3.469 .3068 3.496 « 2522 Wilson
3.460 .3068 3.480 «2521 Present

Calculation
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ECF functions with exchange have been computed by Trefftz

et al:

182p lP

183p 1}?

1s2p P

1s3p P

Trefftz
€1g = 3.5127
ezpz . 2450
€1 = 3.7816
e3p = ,1095
€14 3.4675
Ry ™ .2631
€ = 33,7683

1s

€3p= .

1152

Present Calculation

3.502
. 2448

3.777
«1103

3.460
. 2636

3.744
.1136
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1s

21

S-183p P (1537)

Author 1s% 1s.1e2p & (1584)
Vinti . 349
Wheeler . 266
Hylleraas - 3555
Korwein . 365
Dalgarno and Lynn . 239
Dalgarno and Stewart « 275
Trefftz, et al. . 2719
Salpeter and Zaidi « 2717
Weiss . 2760
Present Calculation . 259
Author 1s2e s - l1a2p p
Hylleraas . 3918
Goldberg . 389
Trefftz, et al. . 3578
VVeién « 377
Fresent Calculation . 265

. 0928
. 0722
. 089
. 081
. 0746
. 0720
. 0706
. 0730
. 068
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References for ielium

A great deal of work has been done on helium by analytic

variational methods and by Hylleraas-type wawve functions (depending

explicitly on r,,) We refer here (and also for all other atoms) only

to SCF calculations and other theoretical or experimental results with

which our eigenfunctions, eigenvalues, or traunsition probabilities can

be directly compared.

1)

2)

5)

6)

Hartree, D.R.

~ Proc. Camb, FPhil. Soc. 24, 111, '27

Computes the ground-state function and one-clectron eigen~
value.

Vintd, J. F.

Fhys. Rev. 42, 632, '32

Calculates f-values for single-excited, doubly-excited, and
continuuam states from screened wave functions.

Wheeler, J. A.
Phys. Rev, 43, 258, '3
Computes the lezolsZp f-value using variational functions.

Korwein, H.

Z. Phystk 91, 1, '34

Computes lszolsép and 182-183p favalues from variational
functions.

Wilson, W.S., and Lindsay, R. B.

Phys. Rev. 47, 681, '35

Computes SCF functions without exchange for the configurations
(18)%, (1828), (1e2p) (262) (2p°) and (282p). Wave functions
and eigenvalues are given.

Wilson, W.S.

Fhys. Rev. 48, 536, '35

The total atomic energles are computed for the states of refe-
erence 5).
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7) Morse, P. M., Young, L.A., and Faurwitz, E.S.
Fhys. Rev. 48, 948, '35
Analytic wave functions. Used by Veselov for f-value calcu-
lations (ref. 10).

8) Hylleraas, . A.
7. Physik 106, 395, '37
Computes oscillator strengthe for many helium transitions
using previously calculated wave functions.

9) Goldberg, L.
Ap. J. 90, 414, '39
Uses simple variational analytic-type wave functions to obtain
fevalues for the series 2s-np and 2p-nd.

10) Veselov, M. G.
Jour. Ex. and Theo. Phys. (USSR) 19, 959, '49
Computes {-values for the transitions ls-Zp and 2s8-2p using
Morse wave functions (from ref. 7).

11) Vizbaraite, Ya. 1, Kantserevichyua, A.l., and Vutsis, A.F.
Optika { Spek. 1, 9, 156
Computes the 1s2s, 1838, ls4p states by SCI" with exchange.

12) Heron, 5., McWhirter, R. W, Fo, and Rhoderick, E.H.
Nature 234, 565, '56
Measures lifetime of the 3 l}'J state.

13) Dalgarno, A., and Lynn, N.
Proc. Physt Soc. London A70. 802-. 57
Modifies previously calculated f-values to satisfy the f sume
rule.

14) Trefftz, E., Schliiter, A., Dettmar, . -H., and J¥rgens, K.
Z. f. Ap. 44, 1, '58
Calculates eigenvalues and eigenfunctions by an extended
Hartree=I'ock scheme. Oscillator strengths are given for
many transitions.



15)

16)

17)

18)
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Csherovich, A. L., and Savich, 1. G.
Optika { Spek. 4, 715, '88

3 1

Measures lifetimes of 3 "1 and 3 “P states.

Dalgarno, A., and Stewart, A. L.
Proc. Phys. Soc. London A 76, 49, '60
Gives f-values for 152-1329 and ls?‘-lsBp transitions.

Salpeter, E. E., and Zaidi, M..
Phys. Rev. 125, 248, '62
Calculates f-values using many-parameter functions.

National Bureau of Standards (private communication).
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References for 1Li il

Veselov, M. G.
J. Expt. Theo. hys. USSR 19, 959, 149

Calculates f-values for 182 ‘S - 182p 11‘«‘ s lo2s 1S - 182p lF.

2
and 1ls2s °S = ls2p “P.

Yutsis, A.>., Ushpalis, IX. K., Kavetskis, V.I., and
Levinson, 1. B.

Optika i Spektroskopia 1, 601, '56

SCTF calculations with exchange.
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Comparison with Frevious Results

Eigenvalues:

State Bilermann and Trefftz (ref. 3) Fresent Calculation
302 15 £y, ® +520 cgq = +5194
383p e Eyy ® . 650 €3g = ° 7056

€35 = , 2485 €3p = ,2022
3a83p 3 Cag = . 6969 eqq = 06934
€3p * . 4297 €3p * . 3683
e Values:
3% lSo - 383p lFl A\ 2852
Biermann and Trefftz (4) Ostrovakii DemtrYder Fresent
Trefftz (3) et al Calculation
2. 21 1. 606 1.2+.3 1. 11 1. 85
Trefftz (5)
1. 674
3848 75, = 383p *p, 1 5167
Kersten and Trefftz Treffts Fresent
Grnstein (4) {5) Calculation
. 164 . 128 . 134 .14
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2)

3)

4)

3)
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References for Magnesium

Prokofiev, W.
Zeit. £. Ph. 50, 701, '28

Extrapolatea lifetime s of the transitions 2 ll‘l -1 S and

2 3}“-"1
transitions in Ca, Sr, and Ba.

S from measurements on the correspondlng

Kersten, J. A. H., and Ornstein, L. S.

Physica 8, 1124, '41

Measures relative transition probabilities for a large number
of31ines. é,Of interest tlca us arelprimarily ;he translitions

4 Sl-3 P0.1.2;3 }*1-3 SoﬁandS P1-3 SO'

Biermann, L. and Trefitz, E.

Zeit. f. Ap. 26, 213, '49

Ca.lculates wave functions for the statea (33) S. (38)(3p)1P.
(38)(3p) P s (38)(3d) D. and (38)(4f) "I from the Hartree-
Fock equations, including core polarization. Computes fe

values for 12852 3 ls -3 lp , 13832 3 3p -3 Sp , and

214877 3 °D « 4 3¢,

Trefftz, L.

Zeit. f. Ap. 26, 240, '49

Calculates functions and energies for the states (33)(3(1)1{) §
(38)(4d) 'p, (3e,5d) 'D, (3s)4f) ‘¥, (3s)(4s) s, (3p)°?

and (3p)2 3P » using SCT with exchange, and the effects of
configuration interaction. That is, mixing is included between
the states (3p)2 lD and (3s8)(nd) lD. and between the states
(Bp)z ls and (33)2 ls . Gives i-values for several transitions,

2
including 3 's < 3 'p and 33p . a3s.

Trefftz, E.

Zeit. £f. Ap. 28, 67, '50

Calculation s including both core polarization and term mixing.
The usually designated (3:3)2 lSO state is expanded in terms of



6)

7)

8)

2)

10)

11)
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the pure configurations (3s)°, (3s){48), (3p)%, and (3p)(4p).
Similarly, for example, * lS is given in terms of the {35)2.
(38){(<s), (3p)2. and (3p){(4p) configurations; 4 3S in terms of
(38){4s) and (3p)(4p); 3 lI— in terms of (38)(3p) and (3p)(3d);
and 3 3P in terms of (38)(3p), (38){4p)s (38)(5p), and (3p)(3d).
Oscillator strengths are quoted for BIS -3 l}. 3 1P - 415 i

and 3 °P = 4 S, among others.

Allen, C. W,

Monthly Notices, Royal Astron. Soc. 117, 622, '57
Measures absolute oscillator strengths and compares with
previous experiments and with calculations of Trefftz and
Bates=Damgaard.

Zeit. £f. Phys. 150, 205, '58
Measurements of the absorption f-value for the intercombina-
1 3

tion line 14571 3 SO -3 }"'1 .

Ostrovskii, Iu. 1., Penkin, N.P., and Shabanova, L. N.

Sov. Phys. Doklady 3, 538, '58

Measurement of the resonance line )2852 3 lso -3 lPl by
simultaneous measurement of total absorption and dispersion.

Varsavsky, C. M.

Thesis, Harvard University, 1958

Calculates various line-strengths by the charge-expansion
method.

Brehm, B., Demtroder, W., and Osberghaus, O.

Z. Naturforsh. l16a, 843, '61
Measures the resonance line 3 2852.

Demtrbder, W.
7. Physik 166, 42, 162
Measures the resonance line ) 2852.
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Biermann and Harting have computed the ground state of
A% 11 by SCF without exchange, obtaining €qg * 1. 212, compared
with our result €y ® 3. 336 .

Reference:

Biermann, L. and Harting, .
zZ. £. Ap. 22, 81, '43
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Comra.riaon with Previous Results
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Eigenvalues:
45 1g asap 'p 4s4p °p
Ha(rrt:feaer:::eigﬂree €48 3891 £ 4e™" 5052 € 48> 5177
4:4p=. 1720 c4p=l. 3058
Fresent calculation “4e™ 4093 % 40> 5305 £ 48" 5315
<‘4p=. 1795 €4p=' 3181.
Resonance Line FeValue (4 lS0 -4 1P1 A4227)
Author E_
Steinhaliser 2.3
Hartree and Hartree 2.2
Trefftz 1. 46
Allen 1.6
Ostrovakii and Penkin 1.3 +.2 (ref. 11)
Ostrovsekii and Fenkin 1.49 + .04 (ref. 13)
FPresent calculation 2,02
FeValue (484p “F, = 4556 °S, 16103)
Authbor -
Olsen, Roufly, King « 162
Allen | . 085
Bates-Damgaard . 0795
Weinstein . 138
Present calculation . 154




1)

2)

3)

4)

5)

6)

7)

8)
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References for Cal

Frokofiev, V.K.
7. Physik 50, 701, '28
measures relative f-values for the resonance lines

Fllppov, A., and Kremenevsky, N.
Physik 7. Sowjetunion 1, 299, 32
measures relative f-values for the resonance lines

Hartree, D. R., and Hartree, W.

Froc., Roy. Soc. 149, 210, '35

calculates the ground-state wave functions and eigenvalues by
SCF without exchange

Steinhaifser, A.
Z. Phyeik 95, 669, '35 and 99, 300, '36
measures the lifetime of the resonance line ) 4227

Hartree, D. R., and Hartree, W.

Proc. Roy. Soc. 164, 167, '37

calculates the ground and excited states by SCF with exchange,
and the transition probability for the resonance line

Schuttevaer, J. W., De Bont, M. J., and Van Den Broek, Th. H.
Fhysica 10, 544, '43
measurement of some relative f-values for triplet lines, including

n3s - 43P where n = 5, 6, 7, and the intercombination line
16573.

1 0,1,2
&’p -als,
Trefftz, E.

7. f. Ap. 29, 287, '50

calculates the state 415, 4'p, 4°p, and 3°D by SCF with polariza-
tion and term mixing. Fevalues given for the transitions 415-4113

24227, and 4°F-3°D 119700

Auen. C. W’.
M. N., 117, 622, '57 .
measures absolute f-values for a number of lines, including



?)

10)

11)

12)

13)

14)

-134-

14227 and 16162, Comparisons are made with other experiments
and calculations,

Weinstein, 1. A.
Optika i Spektr. 3, 313, '57

Olsen, X.H., Routly, .M., and Xing, R.B.
Ap. J. 130, 688, '59
measures relative f-values for 107 lines

Varsavsky, C. M.

Thesis, Harvard University

calculates line-strengths for 415-41P and &
expansion method

P-33D by the charge

Osgtrovekii, Yu. I., Penkin, N. ., and Shabanova, L. N.
Soviet Physice = Doklady 3, 538, '59
measures the fevalue for the resonance line 14227

Osgtrovskii, Yu. 1., and Penkin, N. .
Optics and Spectroscopy 10, 4, '61
measures relative f-values of 34 lines

Ostrovakii, Yu. 1., and Penkin, N. F.
Optics and Spectroscopy 11, 307, '61
measures the f-value for the resonance line 14227
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Comparison with Previous Results

wigenvalue: 452 150 ground state
Hartree et al ‘:45 = ,539 (without exchange)
Present 548 = ,598
Calculation

GF -values:

2 1 1 A .
4g So - 4g4p Pl 2139 (resonance line)
Prokofiev 1.2
Filippov 1.2
Billeter 1. 1%
Present Calculation 1.77
48 lso - 4s84p 391 A 3076
g -4

Prokofiev 1.3 . 10
Filippov ) (T 10-4
Billeter . 1.6 . 107%
Soleillet 2 .10
Present Calculation A 10-'4

4s84p 3P - 4858 35 Schuttevaer Bates- Present

& Smit Damgaard  Calculation
2 -1 A 4811 .813 .603 TR
1 -1 4722 . 468 . 346 .47

0-1 4680 . 1445 .112 .16



1)

2)

3)

4)

5)

6)

7)
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References for “nl

Frokofiev, V. K.
7. Physik 50, 701, '28
Measures the resonance lines 22139 and 13076,

Mlippov, A.N.
Phys. Z. Sowjetunion 1, 289, '32
Measures the resonance lines.

Billeter, W.
Helv. Thys. Acta 7, 505, '34 and 7, 341, '34

Measures the absolute f-value for the line 13076 and quotes an

f-value for 12139 using previous relative measurements.

Soleillet, F.
Compt. Rend. 204, 253, '37
Measures the transition )3076.

Hartree, W., Hartree, D.R., and Manning, M. F.
FPhys. Rev. 59, 299, '41
Calculates the ground-state by SCF without exchange.

Schuitevaer, J. W., and Smit, J. A.
FPhysica 19, 502, '43
Measures several relative f-values.

Penkin, N.P. and Red'ko, T. .
Optice and Spectroscopy 9, 360, '60
Measures relative f-values.
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Hartree, Hartree, and Manning have calculated the

ground-state functions of CGa II by SCF without exchange. They

obtain € = 1,28 for the 45~ *

S state, compared toour ¢ = 1,417,
Reference:
Hartree, W,, Hartree, D.R., and Manning, M., F,

Phys. Pev, 59, 299 '41
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Comparison with Previous Results

Resonance f-value 592 ISO - 585p IPI 14607
Prokofiev 1i.2
Cstrovekii, Penkin and
Shabanova 1.5+.2
Ostrovskii and Penkin 1.54 + .05
Fresent Calculation 2. 12
Intercombination f-value 532 lSO - 585p 31—“'1 16893
Prokofiev . 00071
Fresent Calculation . 00135
3. 3
fevalue 585p "F - 5s8bs ~S
Bates- Eberhagen Fresent
Damgaard Calculation
2~-1 A 7070 . 446 1. 26 .79
1 -1 % 6878 « 215 . 725 .49



1)

3)

4)

5)

145«

References for Sr I

Prokofiev, W,

Z. Physik 50, 701 '28

measures resonance lines X 4607 and ) 6893

Schuttevaer, J. V.., de Bont, M.J., and Van den Bruek,

Th., H,
Physica 10, 544, '43

measures intercombination line A 6893
and mass relative {-values

berhagen, 2.
Z. f. Phys. 143, 392 '58

measures many relative f-values
Ostrovekii, Yu, I., Penkin, N,P,, and Shabanova,

Doklady 3, 538 '58

measure resonance line )\ 4607

Ostrovsekii,. Yu, I., and Penkin, N,P,
Optics & Spectroscopy 11, 307 '61

measure resonance line i 4607

I

N.
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Comparison with Previous Results

resonance f-value 592 l30 - 585p lPl ) 2288
Kuhn 1.20 = ,05
Zemansky 1.19
Present 1.95
Calculation
7 . : 21 3
intercombination f-value 5s 8g - 585p Pl A 3261
Kuhn: 1.90 . 1073
Konig & Sllett 1.90 . 107°
King & 2.3 . 1073
Stockbarger
Webb & Messenger 2.2 ., 10™°
Matland 2.3 .10
Present 3.0 .1072

Calculation



1)

2)

3)

4)

5)

6)

7)

8)

9)
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References for Cd 1

Kuhn. v:"‘.
Die Naturwiss, 14, 48 26

measures the resonance line ) 2288

Zemaﬁsky, M. W,

Z, Physik 72, 587 '31
measures the resonance line
Filippov, A, N.

Phys, Z. Sowjetunion 1, 289 '32

measures the relative f-values for the resonance lines ) 2288
and ) 3261

¥onig, H.D., and Ellett, A.
Phys., Fev, 39, 576 '32
measure the lifetime of A 3261

King, R.D., and Stockbarger, D.C.
Ap, J, 91, 488 '40

measure absolute f-values for ) 3261, X 3247, and ) 3274

‘A',ebbp Ia- V‘., and N!eSEengel', i'Ic A-
Phys, Rev, 66, 77 '44

measure the resonance lines A 3261 and ) 2288

Matland, C.G.
Phys, Rev, 91, 436 '53

measures the line A 3261

Van Hengstum, J.P.A., and Smit, J. A.

measuve & 3261 5° Pi8lg, % 5086 6°5,~ 5°

3 3 by &

14800 675, - 5°P, and )\ 4678 6381- 5°P,

Penkin, N,P., and Red'ko, J.P,
Optics and Spectroscopy 9, 360 '60
measure relative f-values for 5313J - 6351. J=0,1,2
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Comparison with Previous Results

1

Resonance f-value 68> S5 - 6sbp 1P1 ) 5535

Wessel 1.8
Ostrovskii, Penkin

and Shabanova 1.6 +. 2
Ostrovskii and

Penldn 1.40 + .05

Present Calculation 2,14



1)

z2)

3)

4)

5)

6)

«155«

References for BDa l

Prokofiev, W,
Z, Physik 50, 701 '28

measures relative f-values of the resonance lines A 5535
& A 7911

King, G.W., and Van Vleck, J, H.

Phys, Fev, 56, 464, '39

calculate relative f-values of the resonance lines
Vessel, G,

Z. Physik 126, 440 '49 and Z. Physik 130, 100 *'51
measures absolute f-value of the resonance line A 5535
Ostrovskii, Yu, I,, Penkin, N.P,, and Shabanova, L.N.
Soviet Physics - Doklady 3, 538 '58

;'neaaure absolute f-value of the resonance line
Cstrovekii, Yu, 1., and Penkin, N,P,

Optice and Spectroscopy 9, 371 '60

measure relative f-values for 65 lines

Cstrovskii, Yu, 1., and Penkin, N,P,

Optics and Spectroscopy 11, 307 '%61

measure absolute f-value of the resonance line
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Comparison with Previous Resgults

Eigenvalues:
68° 6abp 6s7s
Hartree and Hartree . 471
Mishra (no exchange) - €6p =, 2515 Cog 3 o 1548
Cohen . 5665
Present Calculation . 584 en IIJ 4 2065 €ae 1S . 1034
3p 333 %2 . 0981

A large number of experiments have been performed on the lines
A 2537, )\ 4348, ) 4047, and ) 5461, which are described in the ref-
erences cited on pp. 158-160. We haven't calculated any of these

transitions.



1)

2)

3)

4)

5)

6)

7)

8)

=158e

Feferences for Hg 1

Tolman, R.C,

Phys, Fev, 23, 693 '24

measures ) 2537 transition probability

Wien, W,

Ann, d, Physik 73, 483 '24

measures ) 2537 and )\ 4358 transition probabilities
Webb, H,W., and Messenger, H. 2.

Phys, Fev, 33 319 '29

measure the resonance line A\ 1850

Ladenburg, R., and Wolfsohn, G.

2. Physik 63, 616 '30, and 65, 207 '30

measure transition probabilities for ) 2537, ) 1850, & ) 1190

Randall, R, H,

Phys, Fev, 35, 1161, '30

measures lifetimes for transitions )\ 4047, ) 4358,
Garrett, P, H,, and iebb, H. W,

Phys. Rev, 37, 1686, '31

measures the lifetime of ) 2537

Mitchell, A, C.G,

Phys, Rev, 43, 837 '33

lifetimes for traneitions ) 4047, A 4358, & )\ 5461
Volfsohn, C.

Z. Physik 83, 234 '33 and 85, 366 '33
f-values for )\ 2537, ) 1850, and ) 1338



2)

10)

11)

12)

13)

14)

15)

159«
Hartree, DI. R .» and Hartree, V.
Proc. Roy. Soc., London A 149, 210 '35
calculate the ground-state by SCI without exchange
King, G.V.., and Van Vleck, J, .
Phys, Fev, 56, 464 '39
calculate relative f-values for the rescnance lines
Schouten, J.W., and Smit, J. A,
Physica 10, 661 '43

give absolute transition probabilities for ) 2537, ) 4078,
A 5461, ) 4358, and ) 4047

Lennuier, R,, and Cojan, J. L,
Compt, Rend, 231, 1450 '50

measure lifetime of first 3? level for three different Hg

isotopes
Mishra, B.
Phys. Bev. 77, 153 '50

calculates 6s86p state by SCEF, and combines with Hartree's

ground-state to get the resonance line f-value
Erossel, J.

Phys, Rev., 83, 210 '5]1

measures lifetime of first o level for Hg isotopes
Brossel, J., and Bitter, .

Phys. Rev, 86, 308 '52

measure lifetime of first 31-" level for Iig isotope
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16) Miehra, B,
Proc., Camb, Phil, Soc. 48, 511 '52

calculates SCE excited states for Hg without exchange:

686bp, 686d, 6878, 687p, and 687d Btates
17) Brannen, L., Hunt, '.R.,, Adlington, R,H., and Nicholls, R, W,
Nature 175, 810 '55
measure )\ 4358 transition probability
18) Cohen, 8.
Pesearch Memorandum-Rand Corporation '59

relativistic SC¥ with exchange for the ground-state
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Douglas, Hartree, and Runciman have calculated the ground-
state functions of T4 II without exchange. They obtain an eigenvalue
e = 1,054 for the 68 electrons.

Reference:
Douglas, A.S., Hartree, D.R., and Runciman, W.A.
Proc. Camb. FPhil. Soc. 51, 486, '55
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C. Comparison with the Coulomb Approximation, and with

' Lxperimental Results of the National Bureau of Standards
Although the Pates-Damgaard method, as discussed in

Section IV, is not expected to be justified for divalent atoms, it is
useful to systematically compare results, Table VI-C contrasts
the absolute values of the radial integrals IPf r Pi dr of the
Coulomb approximation with those of the nodal boundary condition
(NBEC) method, The Coulomb values were calculated directly from
the tables of Bates and Damgaard (1), For the most part, transitions
of the types sz 1S - 8p 1P (lowest), B8’ 1S - 8p 1P (excited), and
ss' 3'S - 8p 3I:’ (excited), are not in bad disagreement, These

IP. 5ebe lS - 586p IF'.

R P

transitions include (for example) 582 lS - 585p
and 5s6s 35 - 586p 3'P. all in Sr I. However, transitions s
(excited), ss" 1S - 8p 1P (lowest), and ss' 38 - 8p 3P {(lowest), often
disagree by a factor of four, corresponding to a factor of 16 in the
f-value, Theee latter transitions include, for example, 562 1S -
Ss6p P, -5e6s 'S - 5a5p 'P, and 5868 >5 - Sa5p P in 5r I.

The explanation of why one group is in fair agreement, and
why the other is not, undoubtedly stems from the amount of can-
cellation in the radial matrix elements, Cancellation is small for
the first group, but larger for the second. This implies that
calculations made with transitions of the second group are more

sensitive to the detailed shape of the wave functions used,
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The National Bureau of Standards has recently published a
volume of tables entitled '""Zxperimental Transition Probabilities fo'r
Spectral Lines of Seventy Clements' (NBS Monograph 53, 1962).
Lctually, relative f-values were measured, but the results were
normalized by previously measured (or calculated) absolute f-values
for several elements., As stated in the Monograph, relative
gf-values within the spectrum of a single ion may deviate from
correct values by a factor of 1,5, Absolute values may deviate by
up to a factor 2.0.

All lines in common with our results are compared in
Table VI-D. Some agree well, others not at all, For example,
the resonance f-value of Ca I () 4227), from at least six previous
experiments and calculations, is almost certainly at least 1,45
{(see p. 132), which is a factor of five greater than the NES value
0.28, Thereiore f-values from th.ese tables should be used with

some caution, unless only fairly rough values are needed.
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Table VI-D
Nodal
o Boundary
element transition wavelength (A) National Bureau Condition
Mgl 2852 1.1 1.85
5167 .48 .14
5173 1.4 .42
5184 2.6 .70
Cal 4227 .28 2.02
2399 .03 31
6103 .24 . 154
6124 .68 . 46
6164 1.0 =71
6573 .00014 . 00008
Znl 2139 1.3 1.77
4680 1.9 .16
4722 4.9 .47
4811 7.2 .77
Srl 2932 . 0071 . 356
4607 .27 2:12
6791 .19 .16
6878 .53 .49
7070 .65 .79
6893 .0014 .0014
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Table VI-D (Cont'd)

Nodal
Boundary
element transition wavelength (R) National Bureau Condition
cdl 2288 .92 1. 95
3261 . U014 . 0030
4678 2.6 .17
4801 4.9 « 51
5086 12.0 . 80
Inll 2306 . 0025 . 0094
Bal 3072 . 25 . 41
5535 .90 2, 14
7195 . 18 « 18
7393 .36 « 5
7506 . 67 .81
7911 . 0026 . 0126
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D. GENERAL CONCLUSIONS

In Section B , eigenvalues and transition probabili-
ties have been compared atom by atom with previous experimental
and theoretical results. Some generalizations can be inferred from
the detailed comparisons:

1) Eigenvalues

The one-electron eigenvalues can only be compared with
previous SCF single-configuration calculations. The nodal boundary
condition electrons are almost invariably more tightly bound than
those of the usual SCF approach. As explained in Section V-C, this
is to be expected. The use of experimental information roughly
takes into account polarization of the core electrons, which provides
an additional attractive force on the valence particle.
2) Transition Probabilities

Oscillator strengths can be compared with several sources:
experimental valuss, standard SCF calculations (with and without
exchange), and SCF calculations including core polarization and
configuration interaction. In the special case of Hel, comparisons
can be made with highly accurate Hylleraas-type calculations. The
latter comparisons are listed on p. 115, showing surprisingly good
agreement for most transitions. For this case, the nodal boundary
condition method reduces to the usual single-configuration SCF
approximation with exchange. The only other SCF f-value calcula-
tions which have been made among the atoms we've been treating

are for Mgl and Cal. For the resonance lines, both have been done
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by single-configuration and by configuration~interaction methods.
The nodal boundary condition f-values in each case are less than
the single-configuration, but greater than the configuration-inter-
action results. For the resonance line of Mgl, these are respec-
tively gf = 2.21, 1.85, and 1.67. For Cal, they are gf = 2.2, 2.02,
and 1.46. Experimental results favor the lower values. According
to Ostrovskii et al, the resonance gf-values are 1.2 = .3 for Mgl,
and 1.49 = .04 for Cal. Although resonance-line f-values have
not been calculated by SCF methods for other atoms of this type,
there are experimental measurements for Znl, Srl, Cdl, Bal,
and Hgl. These are all lower than our results by about the same
amount as for Mgl and Cal. These comparisons therefore strongly
indicate that the calculation of resonance f~values to better than
25 accuracy will require configuration-interaction methods.
Also, future ordinary SCF single-configuration results will prob-
ably be slightly larger than those quoted here, and in poorer agree-
ment with experiment'.

There is another reason for believing that our resonance
f-value results are up to 25% too large. The relative f-values be-
tween the triplet and singlet resonance lines (as listed in Section
V-D) agree very well with experiment. But absolute measurements
on f-values of the triplet (intercombination) resonance lines are
generally smaller than what is found by applying our theoretical
ratios to the calculated singlet f-value.

Further experimental results will be very useful in deter-

mining the accuracy of the nodal boundary condition method and
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single-configuration SCF calculations in general. It should be em-
phasized that a measurement of a line in a particular element will
help in calibrating similar transitions in all the atoms and ions of

this group.
E. ASTROPHYSICAL APPLICATIONS

A number of trans'itione computed by the nodal boundary
condition method are listed in Charlotte Moore's ''A Multiplet
Table of Astrophyeical Interest'' (43). Table VI-E collects these
transitions along with our f-values. Very likely there are other
lines in our tables which are now, or soon will be, of use in astro-
physics. Stars of unusual abundances are being increasingly stud-
ied, so that transitions which are usually too weak may be observed.
Also it may soon be possible to view 2 wider range of the spectrum.
Asgide from observations of spectra, transition probabilities are
required for detailed investigation of stellar opacities.

It is of interest to compare our f-value results with those
used by Goldberg, Mfllller, and Aller (44) in their recent analysis
of element abundances in the sun. Among lines we have computed,
there are surprisingly few of use in their investigations. These
include two lines in Cal, three in Znl, and three in Srl. Table VI-F
lists these transitions, the f-values quoted by Goldberg, Mtiller,
and Aller, along with the nodal boundary condition results. It is
evident from a comparison that the use of our f-values would make
no substantial changes in the abundance analysis for these three

elements.
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Thorough abundance investigations have also been carried
out on B stars, for example by Aller and Jugaku (45). Among our
f-values, the only ones of interest in that analysis are those for Hel.
They use values calculated by Trefftz, et al. {(Helium reference 14),
which are in falr agreement with the few we have done (sece p. 115).
The most important difficulty for He 1 was the uncertainty of mease

ured equivalent widths, because the lines were so strong.
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4722
4680
3076
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Table Vi-.

transition

ladp 32«' - ls2s 38

383p IP -~ 3@4s 1{5

383p 3P - Sa4a 35

452 lS - 484p lP

R
4% g - 484p 3

2
4s4p lP - 4858 15

4adp lf‘- 4858 3S

4s84p 313' - 4858 3S

432 1S - 4P 3P

4s4p 3P - 4858 1S

552 ls - 585p l1—"

585p -P = 5868 °S

- 104
. 016
.70
. 42
o 14

2. 02
. 00008
. 0054
. 765

. 46

« 00025

2.12
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ion wavelength transition aJ gf
6878 1= .49
6791 0w i .16
21 3
6893 58 15-585p 2P 0«1 .00135
cal 10397 5e5p ‘P-586s 1S 1-0 . 043
5086 585p “P-5868 S 2.1 .80
4801 1-1 .51
4678 0-1 17
21 3
3261 582 15.5¢5p 3p 0-1 .00305
Bal 5535 652 1s-6s6p 1P 0-1 2.14
7911 682 1s-6s6p 3P 0-1 .0126
3072 68% 1s.687p P 0-1 .41
7906 686p JP-687s S i .81
7393 I i .52

7195 0-1 .18
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Cal

Znl

Srl
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Table VI-F

transition
21 3
4s” "Sy-4sdp Il’1
A 6573
3 3
484p Po-4559 S1
A 6103
3 3
4s4p P2-4858 5,
A 4811
3 3
pl" Sl
N4&T722
v s,
0 :
A\ 4680
21 1
5s 80-5551) Pl
A\ 4607
3 3
585p P2-596s S,
A 7070
3 3
i $1
A 6878

Goldberg, Miiller, Aller

gf-values quoted by

1.
2.18
2.29
1.

1

4.46 - 10~3 (Olsen,
Routly, and King)

7.95 + 10°° (Allen)

. 162 (Olsen, Routly, King)

. 085 (Allen)

. 0795 (Bates-Damgaard)

. 138 (Weinstein)

. 813 (Schuttevaer-Smit)
.603 (Bates-Damgaard)

. 468 (Schuttevaer-Smit)

. 346 (B-D)
. 145 (Schut. ~-Smit)

.112 (B-D)

82 (B-D)
(Eberhagen)
(Unsold)

54 (Ostrovskii)
.446 (B-D)

.26 (Eberhagen)
.275 (B-D)

. 725 (Eberhagen)

gf
present

calculation

8.02 - 1073

.154

17

l47

.16

2.12

.79

.49
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F. lxtensions and Further Applications of the Nodal Eoundary

Condition Method

1. Configuration Interaction

The nodal boundary condition method has been used to find
approximate SCF wave functions corresponding to a single Slater
determinant. That is, we have found a good approximation to those
functions which are the best poegible functions (from an energy
standpoint), having a definite electron configuration. Arbitrarily
accurate wave functions can be obtained by relaxing the .Iatter
restriction, or in other words by carrying out a configuration
interaction calculation. This process was described in section III-A
for SCF functions, The question of interest now is whether the nodal
boundary condition functions can be used in such an expansion,

There are two general practical approaches toward the
goal of finding exact functions. The first is to calculate the best wave
functions (SCF) for each configuration. Then the matrix elements

< ""A P H | -&B > can be evaluated, and the energy matrix
diagonalized. The second approach is to use a complete set of simple
analytic variational basis functions, which have larger off-diagonal
elements than the SCF functions, but offer the advantage of ease of
manipulation and calculation. Both these methods involve a great deal

of labor, but it is clear from calculations performed that substantially

better wave functions are obtained. Since even single-configuration
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SCF functions are not simple to compute anyway, i;t is logical that
one might as well proceed to do the whole problem through, super-
imposing several configurations,

Unfortunately, the nodal boundary condition method cannot
be accurately used for such a complete configuration-interaction
calculation, The reason is this: we have found nodal stability to apply
usually only for s- and p-wave functions. Therefore only wave
functions for configurations involving s and p electrons can be
computed with any accuracy. Eut it is usually the case that configur -
ations involving d electrons mix appreciably with the (s‘2 )IS, (ap)IP.
and (sp)3P configurations in which we are interested. Ior example,

Trefftz (15) has found that for calcium,
¢(4'P) = .9480 ¥ (4s4p) - .3184 ! (3d4p)
#43P) & .9967 *(4s4p) + . 08125 ¥ (3d4p).

To obtain better wave functions and transition probakilities, the next
step would have to be the inclusion of such competing configurations.
But the problem in a configuration interaction treatment is our
inability to obtain accurate d-wave functions., This trouble affects
both of the general methods of obtaining accurate functions. 7o apply
the analytic function approach via the nodal boundary condition

method, one can imagine choosing a set of analytic s-functions,
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p-functions, d-functions, etc., each of which is constrained to
vanish at the appropriate coulomb node position, but which can be
varied in other ways. Dut again, the proper nodes for the d-wave
functions and those for higher angular momenta are not known.

We conclude that the nodal boundary condition method may
be a good approximation to the full SCF calculation as long as we are
satisfied with a single Slater determinant, but cannot be accurately

used in the more ambitious program,

2 Additional Electron Con figurations

The first obvious extension of the method is to apply it to
the configurations p2 and pp'. The Hartree-Fock equations are more
complicated, but the same general method can be used. These con-
figurations all involve the excitation of both valence electrons, so are
usually less important than those we have calculated.

Perhaps more important would be the extension to atoms
with three valence electrons, Ions having an szp valence ground-state
configuration are very interesting. These include the isoelectronic
sequences DI (CII, NIII,..), Al (Sill, PlII,..), and Ga I (Gell, Aslll,..).
The coulomb nodes for some of these ions were computed and listed
in section V-B, These calculations assumed that ions of this type had

only a single valence electron: i, e., the sz subshell was kept
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stationary. The coulomb nodes show a good deal of instability for
some of the states, which indicates that probably the participation of
the sz electrons should be accounted for, It would therefore ble quite
| interesting to calculate states with configurations szp. szs'. and ezd
to see how much the 82 subghell is influenced by the position of the
outermost electron, The coulomb nodes for these ions would be
calculated from experimental term values for the p6s (or dma) ion:
e.g., A1 111, 51 IV, *++ , The Hartree-Fock equations are not
difficult, because of the two identical s-electrons, The extension to
doubly-excited states, such as ss'p, is more complicated because
three functions must be computed.

If energy prevails, work can be done on the important atoms
with an s?'p2 ground state. These include CI, Sil, Gel, Snl, and Pbl.
If calculations cn sz'at configurations indicate that the 92 electrons
actually remain quite stable, the four-electron problem reduces
essentially to a two-electron problem. IHowever, this simplification
is probably not sufficiently valid. In any case, excitations of the
inner s-electrons are unimportant, so that the four -electron calculations

can be restricted mainly to the configurations sz'p2 and azps'.

3 Cther Applications
There are several other possible applications of nodal
boundary condition wave functions. For any situation in which the

usual SCF valence wave functions (without configuration interaction)
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are adequate, and where also the behavior of the functione at small
radii is unimportant, one may use nodal boundary condition functions,
For example, in the calculation of quadrupole transition probabilities,
one is interested in the matrix element < R, | r? ]Ri > , which
certainly depends only on the parts of the radial functions at large radii,
The inelastic scattering crose-section of a fast charged
particle by an atomn is computed in the Born approximation via the

matrix element

iZ. 7, 2
M= {:]Pe l e }

=
o be(2) 4 () drydr, .

Here £ and ; are the final and initial wave functions of the atom,
. .

and K = Ki - Kf is the momentum transfer (-I.{i and Kf are the initial

—_

and final momenta of the scattered particle). This expression reduces

to the single integral

2 .7
rb

If we are interested in collisione involving only small momentum

transfer, then in first approximation

2
- P
M= ZES g R. b ' F b dr

X
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which is the same dipole moment integral needed for oscillator
strengths. Then if only transitions of valence electrons are required,
and if we restrict ourselves to small momentum transfer (ka << 1,
where a is the atomic diameter), nodal boundary condition functions
can be used,

There are also physical situations where the outer parts of
the valence wave functions are distorted, while the inner parts, locked
in the deep cex_ztral potential, remained undisturbed. For example,
nodal boundary condition functions might be useful in calculating wave
functions for molecules or for electrons in a crystal lattice. In both
of these cases, the outer parts of the valence functions are greatly
distorted, but if the interaction energy is not too large, the inner
coulomb nodes would be the same as for a single atom. Again a
problem is the instability of nodes for orbital angular momenta of two
(d-wave) or greater, so that calculating SCF functions using the nodal
boundary condition would be generally inaccurate unless s- and p-waves

formed the only significant contributions to the total wave function.
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APPENDIX A

NUMERICAL SOLUTION OF THE EQUATIONS

In the course of this work, we have dealt with three different

numerical problems. These are:

A. The radial Schrodinger equation in a Coulomb field.

B. The Hartree-Fock equation for the 82 ISO state.

C. The two coupled Hartree-Fock equations for the si

and 3LJ states.

ILJ
Problem B is a special case of problem C, but is much simpler than
the general case, since the two electrons are equivalent, and because
there is no exchange term.

These equations were solved numerically using a program
wirtten for the IBM 7090 computer. Appendix B will describe the

programs themselves, but in this Appendix the numerical procedures

will be described, as well as the general method of solution.

A. THE SCHRODINGER EGUATION IN A COULOMB FIELD

The radial equation to be solved is

P"(r) = {:e - —2;-_§+ﬂ1—;ll]P(r)
r

where the eigenvalue € is given. We require that the function P(r)
have the correct asymptotic form for large radii, but not that it vanish
at the origin. Therefore it is appropriate to begin at large radii and

integrate inwards.
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The numerical procedure is the following. We begin by calcu-
lating two "etarting values, " P, and P,, from the asymptotic series
representation given in Section IV-A, which is the Coulomb function
- employed by Bates and Damgaard. That is, a large value "R" is

chosen for the radius such that P(R) is small. Then P, = P(R) and

1
P, = P(R~h) where "h" is the spacing Ar used in the numerical
calculations. The equation can be integrated inward using the two first-
order relations

1) hP'(r - 3) T P(r) - P(r-h)

and

2) kE"(x) T Pz + 3) - P'(r - 3)
along with the Schrodinger equation itself.

It is considerably easier for a computer to solve the differential
equation than it is to solve the asymptotic series representation for a
large number of radii. The results should be the same within the
accuracy of the calculations.

The numerical accuracy of this method was investigated by
comparing computed wave functions using hydrogen eigenvalues with
the exact hydrogen wave functions. It was found that the accuracy was
greater than required, if a spacing h =0.05 or less was used. Results
remained constant at least down to h = 0,01, so that in the range of
spacings used, round-off error was not significant. A comparison of
the computed and the exact Coulomb nodes for hydrogen and ionized

helium is given in the first table of Section V.
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1S
0
The equation to be solved is

B, THE 82 HARTREE-FOCK E(_UATION

3 a0
P"(r) = }LC-EE,»_Y drP(r)vPZ(‘ drp—(ﬁJP(r)

I‘

where C is the net atomic charge if both valence electrons are re-

moved. Here again, the cigenvalue € is to be specified at the start.
C
Since ‘) PZ(r) dr = 1, we can write

= Pee) z
P"(r) = }Le - g—‘%ﬂ -% V dr Pz(r) +2 gmdr Pr(r) :“ P(r)
g > 4

This is a more convenient expreasion for inward integration. The
same basic numerical method used to solve the Coulomb potential
Schradinger equation can be used to solve this eguation., Zince the
last two terms in the brackets are small for large radii (and their sum
even smaller), Coulomb starting values are again appropriate. After

integrating inwardes three or four steps, the terms

oo a 2
-ég dr P2(r) + 2 dr-l-:’-r‘—"L
e o r

can be evaluated by Simpson's rule, and included in subsegquent calcu-
lations of P"(r) from ti‘xe known P(r) at each step.

There is an important difference between this equation and the
SchrSdinger equation with Coulomb potential. The Hartresz-Fock equation
is non-linear, so that if the computed 32 function P(r) is found to be

unnormalized, the correct function is not P(r) divided by the square



=159~
root of the normalization integral. The procedure used is to calculate
P(r), evaluate N = ‘:m dr Pz(r). and define new starting values
P;xew = P?ld/ﬂﬁ*l and opgew = Pgld/\ﬂ-\l and try again. This procedure

is repeated until the computed function is correctly normalized to

within 0.05%, which usually requires 6 to 8 iterations.

3

C., THE ai ll AND "L HARTREE-FOCK ECUATIONS

These eguations are

)
" r ~r Fgls o} P
po=le, - F 2 arpl 42| art |
8 | "8 r T g T &
r 4
r =2} PP
tomT [‘LZTI' (‘od”{'ﬁ mpreet (T g —Trf-] P,
T 2 m - T
and
n [ ~r ~0D p?
4+ { &
P =l€ﬁ’_-2r£+£( 1)4_%1‘ drP§+2‘*’ dr-?sJPE
2 1 S . LI i
PP
1 z ot &(‘“’ s 4
0.1 T [ﬁr"!' " drrk BPQ +2r \ dr —;ﬂ—-l-T Ps
W

where the plus and minus signs refer to the singlet and triplet states,
respecti\'rely, and £ =0,1, 2, «v. . The solution of these equations is
by far the most difficult of all the calculations. An almost completely
different procedure from the previous methods is necessary. ‘

For these equations, in contrast to the 92 1."30 Hartree-Fock

equation, both outer and inner boundary conditions are specified for

each function, so that we can solve for the wave functions and eigenvalues.



=190-

The outer boundary condition is the usual requirement that each function
approach zero asymptotically for large radii. The inner boundary con-
dition is the node position ag found by the method described in Section V.

The equations can be written

"
Pa -~ hARTs(r) PB 3 FOChs(r)

and
L]
P!Z = HARTg(r) Pz & FOCK!(:')
where
2 2(‘1- 2 Q0 Pf
HART (r) = [es - F+z) dr Py +z) dr — ]
- C r
l' (-r Pz
. 2C £(£+1) 2 : .
HART!(r)- Leg--;—+-—-z— drP +2(‘ dr-——:]
r 0 T
P P
. pao. k[z O LS“”
FOCE\s(r)um[‘—:rgbsG drr&PsPE+2r . dr —7"—1— P
and
! 2 (T L ) @ P P
FOCKE(I) = m-i:-rmjodrr PBPE +2r . dr —rz-—r-

The overall procedure of solution is to first specify trial eigenvalues
€, and € and compute trial Coulomb functions Ps and Pl' cor-
responding to these eigenvalues. If these eigenvalues and functions are
used to evaluate HARTz(r) and FOCKi(r). the equation for P; can
be solved, resulting in a new function P,, and eigenvalue €y The
new €, will in general be different from the trial value because the

function I?z is forced to satisfiy the inner and outer boundary conditions



-191-

by varying €,. Then HARTa(r) and FOCK(r) can be found by using
the initial trial values for . and Ps(r), but the new computed PI (r).
Solving the equation for P:. a new Ps and €, are obtained, This
iterative procedure is continued until the eigenfunctions and eigenvalues
(hopefully) converge.

With these equations, it is best to integrate starting from the
(given) Coulomb node position, rather than from large radii inward.
That is, beginning at the Coulomb node "rc". we can first integrate
outwards to large radii to see if the function is approaching zero asymp-
totically. If it does not, the eigenvalue is varied until this outer boundary
condition is satisfied. Then we can integrate inward from r. to amall
values of r to obtain the remainder of the function, There are several
advantages to this procedure over the inward integration used for the
one-electron Schrodinger equation and the sz configuration Hartree-
Fock équa.tion. With the advent of exchange terms, it is no longer true
that Coulomb-approximation starting values are adequate at large radii.
The entire functions are sensitive to the starting values, so that this
difficulty ie important. Another advantage of beginning at the Coulomb
node is related to the fact that some rather odd behavior can occur at
large radii for ss' or sp singlet functions. Sometimes an "anomalous
node" can app'ear at large radii for the most tightly bound s-electron,
a fact discovered by Hartree in the calculation of wave functions for
Mg I. The wave function appears ordinary for small and medium radii,
but instead of gradually approaching zero as the radius is increased, it

barely dips under the axis, has a minimum, and then approaches the
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axis from below. This behavior is not hard to understand. The singlet

equation is written
"
Ps = HARTB(r) Pa + FOCKs(r) .

At large radii, HARTB(r) is positive, and also FOCKs(r) is positive
and quite large, since it contains as a factor the other wave function
Pl(r). which is an excited state and therefore is mostly at fairly large
radii. 5o if Ps is slightly negative, Pa" can still be positive, causing
the function to curve up toward the axis. Therefore an extra node can
occur at a large radius for the singlet function. This effect cannot occur
for triplet functions because of the minus sign in the triplet equation
"

Ps = HAR'I‘s(r) Pa - FOCKs(r) .

If we integrate outwards starting at the Coulomb node r_, one

c
of the two starting values is already known (Pl = 0), so the slope-to-
value ratio in the immediate vicinity of this point is determined. A mis-
take in the choice of the other starting value will then result in the com-
puted function being unnormalized, which can be corrected in succeeding
iterations. For example, if the Coulomb node for the s-function of an
sp 1o state is at r. =1L 00, we may begin by setting P, = 0.0l. Then
in general the normalization integral (: Pi (r)dr = N # 1.0, so that in

the next iteration for P_, we choose a starting value P, = 0. 01/VN .

The equations are non-linear, so that this substitution does not guarantee

that the new Ps(r) will be normalized, but the process is found to con-

verge.
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Because of the "anomalous node" difficulty, it is more con-
venient to integrate outwards from small radii, rather than inwards
from large radii. Within a particular iteration, a wave function is cal-
culated several times with different eigenvalues until the boundary con-
ditions are satisfied. For slightly different eigenvalues, the main parts
of the wave function at intermediate radii vary in a smooth way. Buta
slightly different eigenvalue can mean the appearance or disappearance
of an "anomalous" node at larger radii, which can only be easily handled
from outward integration. If one starts at large radii and integrates
inward, the whole character of the calculation depends upon whether or
not an anomalous node is present. The logic and convergence problems
become very difficult.

The method of solving these two coupled equations can now be
summarized. From trial eigenvalues and eigenfunctions, the subsidiary
functions HARTZ (r) and FOCK! (r) are computed. Then, using the
ecuation

P, = HART,(r) P, # FOCK,(r) ,
the function P, is cvaluated by integrating outwards from the Coulomb
node. If the asymptotic boundary condition is not satisfied, the eigen-
value €, within the function HART,(r) is varied until the boundary
condition is satisfied. This may or may not involve the appearance of
an "anomalous node". Using the original P and €_, and the new com-

puted PE , the equation
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n

P = HART (r) P_ % FOCK (r)
-] 8 a8 a8

can be solved for a new Ps' The eigenvalue €, is varied until the
boundary conditions are satisfied. Then a better PI is computed
using the new Ps. This iterative procedure is continued until conver-
gence ie obtained. It is necessary that for the final iteration, the initial
eigenvalues for that iteration be within 0,05 % of those eigenvalues
needed to satisfy the boundary conditions. Also the functions as com-
puted must be normalized within 0.1%.

The exact description of how each of these steps is accomplished
would be very lengthy. These details can be gleaned from a study of

the Fortran program reproduced at the end of Appendix B.
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APPENDIX B

THE COMPUTER PROGRAMS

The programs were designed to do almost all of the numerical
work required in the calculation of wave functions and transition proba-
bilities. They were written in the Fortran language, suitable for the
IBEM 7090 computing machine.

Six principal types of calculation can be performed with these
programs for atoms or ions with one or two electrons outside closed
shells. These include:

1) Coulomb-approximation valence functions (with given eigen-

value and angular momentum) for a single valence electron

2) Valence ground-state e;Z 150 functions (two valence electrons)

3) Valence excited-state sf 1L or 3I.f functions (two valence

electrons)
4) Oscillator strengths for £ - £' transitions (one valence

electron)

21 1o transitions (two

5) Oscillator strengths for s 1

bo sp
valence electrons)

1 1

6) Oscillator strengths for sf "L — gf{' "L' transitions or

st I, =egpv 3

L' transitions (two valence electrons). In
practice, { is limited to ¢ or 1.
The principal purpose of this work was to calculate valence wave

functions and transition probabilities for atoms and ions with two elec-

trons outside closed shells, In carrying out this project, it was
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necessary for two reasons to compute Coulomb-approximation single-
electron functions., They were employed in finding Coulomb nodes
for two-electron situations, and also as first trial functions for sf-
configuration calculations. Since single-electron functions had to be
computed anyway, it was deemed useful and convenient to have the
option of computing them for their own sake, which accounts for
calculation types (1) and (4). These functions should be the same as
the results of using the asymptotic series representation of Bates and
Damgaard (Section IV-4A), and the corresponding transition probabilities
should agree with the Bates-Damgaard tables. Results were com-
pared in several cases, substantiating this expectation.

In general, for a particular day's "run", calculations can
be performed with one or several of the six basic types of problem.
Fach calculation requires two or more input data cards. The number
of input cards can be reduced if the whole "run" consists only of one-
electron function calculations, or if it consists only of sz-conﬁguration
calculations. These are called the "efficient" one-electron mode, and
the "efficient" g2 mode, in contrast to the "generai" mode. These
modes were defined by the first data card for the run, which contains
-1, #1, or 00 in the first two spaces, depending upon whether one wishes
to use the efficient one-electron, efficient s-squared, or general mode.
The necessary data-cards for the various kinds of calculation will now

be listed.
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INPUT DATA CARDS

A. Efficient One-Electron Mode
First card negative (-1)
For each group of six wave functions, one begins with a single

card of type (1), followed by six cards of type (2).

10 10 10 10 10 10
th)

El E2 3 E4 ES5 £6

i

10 10 10 10 10 1 8
(2)

£L.B Rl H N C NRAD ATOM

The numbers above each argument correspond to the number
of spaces available for that argument. The quantities El, E2, ...
on the first card are the eigenvalues (in Rydbergs) for the six functions.
For each of the cards (2), ELB is the angular momentum £ (e.g. 1.0),
Rl is the maximum radius in units of the first Bohr radius a, (typi-
cally R1=10,0, 15.0, 20,0 or 25,0), H is the spacing used (typically
0.05 or 0,025), N is the number of points (must be even), C is the
net charge acting on the valence electron (1.0, 2.0, etc.), NRAD is
the radial quantum number n=1,2,... , and ATOM is written in
letters (e.g. MG I). It is necessary for the quantity N (e.g. 1000)
to be written in the very last spaces available to it, and for ATOM fo
be written in the last 6 of the 8 spaces available to it.

This mode prints out Coulomb nodes only, and cannot print out
the computed wave functions. To end the series of calculations, the very

last data card for the day's run must have - .l in the first three spaces.
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B. Efficient S-5quared Mode
First card positive (+1)
For each group of six sz functions, one begins with a single

card of type (1), followed by six cards of type (2).

10 10 10 10 10 10

1)

£l E2 E £4 E5  E6

10 10 10 10 10 10
(2)

R1 H N C NRAD ATOM

The cuantities El, ... are the one-clectron eigenvalues
(in Rydbergs) used for the six s2 functions. Rl, H, and N are
the maximum radius, spacing and number of points. C is the net
charge on the ion if one valence electron is removed. NRAD is the
radial quantum nurnber, and ATOM is the atomic symbol written in
letters.

This mode also prints out Coulomb nodes only, and cannot
print out wave functions. The very last data card for a day's run

raust have - 0.1 in the first three spaces, to end the calculations.

C. The General Mode (for arbitrary calculations)

First card zero (0)

For each individual calculation, two or three data cards are
needed. Any number of calculations of any kind can be performed.
To end the day's calculations, the final data card must contain - .1

in the {irst three spaces.
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I. One-Electron Function

Two cards are required for each function, These are:

10 10 10 10 3
(1
EB 0.0 0.0 0.0 PO
10 10 10 10 10 1 8
(2)

ELB Rl H N C NRAD ATOM

EB is the eigenvalue, PO is one (1) if the wave function
is to be printed out, and zero (0) if not. ELB (e.g. 1.0) is the
angular momentum {. Rl, H, N, and C are the maximum radius,
spaciﬁg, number of points, and net charge (acting on the valence
electron). NRAD is the radial quantum number n=1, 2, ... , and
ATOM is written in letters (e.g. MG II). The non-decimal number
N (e.g. 1000) must be placed in the very last of its available ten

spaces. N must not be larger than 1200.

II. 5-Squared Function

Two cards are required for each function:

10 10 10 10 3

(1)
0.0 0.0 EA 0.0 PO

10 10 10 10 1 &

(2)
R1 H N C NRAD ATOM

Here C =1.0 for neutral atoms, 2.0 for lst-ionized, etc.
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1. 5-1. Functions

Two cards are required to compute the two functions:

10 10 10 10 3
(1)
ZB  EBB 0.0 0.0 PO
2 2 5 5 5 5 5

(2)
NRADS NRADL ELB Rl H N C

SN NS PN NP MULT ATOM

=B and EBB are rcspectively the s-wave and £-wave trial eigen-
values., NRADS and NRADIL are the radial quantum numbers for the
8- and fe-electrons. =L B =1 (e.g. 1.0). SN and PN are the
values for the s-wave and {-wave Coulomb nodes, while NS and NP

designate which node it is., That is, the lowest-energy s-wave ({-

wave) function will have N5 =1 (NP = 1), the next-lowest s-wave (f-

wave) function will have NS = 2 (NP = 2), etc. MULT is the multi-

plicity (=1 for singlet, = 3 for triplet states).
The quantities NRADS, NRADL, N, NS, NP, and MULT must

all be placed in the last columns available to them.

IV, Ome-Electron F-Value

Two cards are required to compute the two functions and their

f-value:
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10 10 10 10 3

(1)
EB 0.0 EA 0.0 PO

2 2 5 5 5 5 5
(2)

NRADE NRADA ELB ELA R1 H N
5 3 10 8

C JUMP FREQ ATOM

£B and EA are the eigenvalues of the initial and final functions.
NRADB and ELE are the radial quantum number and f-value for
the initial function, while NRADA and ELA are the corresponding
quantities for the final function. JUMP is a code designating the
transition involved (see p. 204 ), and FREQ is the experimental line

irequency in cmbl.

v. s .sp 150 - lpl F«Value

Two cards are required to compute the three functions and the

f-value:
10 10 10 10 3
(1)
EB 0.0 LA EAA PO
2 e 5 5 5
(2)
NRADS NRADP Rl H N C
8 3 8 3 10 8

SN N& PN NP FREC ATOM
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-
£B is the eigenvalue for the 8° configuration, and EA and EAA
are the trial eigenvalues for the s- and p-wave functions, respectively.

All the other arguments are explained under problem types III and IV,

VI. SL - SL' F-Value
Three cards are required to compute the four functions and the

i-value:

10 10 10 10 3

(1) (
EB ZBB EA EAA PO
2 2 2 5 5 8
(2)
NRADS NRADL.B NRADLA ELB ELA SNB
3 8 = 3 8 3 8 3

NSB ELNB NELB SNA NSA ELNA NELA

3 10 8

5 5 5 5 3
FREC ATOM

(3)
Rl H N C JUMP MULT

EB and EBB are the initial state s~ and !-wave trial eigenvalues,

and £A and EAA are the final state s- and {-wave trial eigen-

values. NRADS, NRADLB, and NRADLA are the radial quantum num-=

bers for the s-wave, initial {-wave, and final {'-wave functions,
ZLB and ELA are the initial and final angular momenta { and £,

SN, ZLNB, and ELNA are the Coulombt node positions for the s,
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initial {, and final !' states, while NS, NELB, and NELA designate
which node is involved (as explained under problem type IlI). JUMP
is the transition code given on p. 204, MULT =1 or 3 for singlet or
triplet functions, and FREQ is the experimental line frequency in

Cm-l.
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The Transition Code JUMPF

(A) Single valence-electron ions

transition JUMP
g ZS1/2 'Zpl/z o
e . -2
ped 2P1,'2. - 2Ds/.z =
'zp3/2 - zDsfz ~4
~*py), -2

(B) Two valence-electron ions

transition JUMP
52 sp lSo - IPI 1
Bs' 8p 150 - IPI 2
351- 3P0_ 3
-%p, 4
.Ip 5
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THE SUBROUTINES

The computer program is reproduced in full (in the FORTRAN
language) on pp. 223-239 , It is necessary first to discuss the pur-
pose and contents of each subroutine, supplemented with block dia-

grams of those requiring a detailed description.

DIRECTOR-MAIN PROGRAM
All calculations begin with the Director. From the first data

' the Director determines what "mode" of

card for a complete "run, '
computations will be carried out -- whether

1) efficient one-elzactron,

2) efficient s~-squared, or

3) general
as defined on p. 197. If the "general™ mode is to.be uged (which is
usually the case), the Director finds from the first data card for each
calculation what kind of calculation is to be performed, and transfers

to the appropriate Sub-program (one-electron, s-squared, s{, one-

electron f-value, or two-electron f-value).
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ONE-ELECTRON (MAIN PROGRAM)
SUBROUTINE OEMP(£B, PO)

This program reads input data, calls Subroutine ONELEZC (which
computes a monovalent wave function), and prints out input data and
computed nodes, along with the wave function, if desired.

Arguments
EB: eigenvalue

PO: print-out code

S-SCUARED (MAIN PROGRAM)
SUBROUTINlE SSMP(EA, PO)

This subroutine is similar to Subroutine OEMP except that it
calls Subroutine SSCRD (to compute an 32 wave function) instead of
calling ONEL EC,

Arguments .
EA: eigenvalue

PO: print-out code

S-L (MAIN PROGRA M)
SUBROUTINE SLMP(EB, EBL, PO)
Calls Subroutine SL (which computes s- and {-functions for

lL or 3I_ states), but is otherwise similar to the previous subroutine.

Arguments
EB: s-wave trial eigenvalue
ZBB: f-wave trial eigenvalue

PO: print-out code
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ONE-ELEZCTRON F-VALUZ (MAIN PROGRAM)
SUBROUTINE OEFVMP(EB, TA, PO)

This subroutine reads input data, calls the ONEL ZC subroutine
twice (to compute the initial and final wave functions), uses the OVLP
function to calculate the radial integral (:P*.r.-f.-’1 dr and the FVALUE

Subroutine to compute the line-strength and gf-value. Formats,

v

input data, and final results are printed, along with the wave functions,
if desired.

Arguments

£B: initial eigenvalue

A final eigenvalue

PO: print-out code

TWO-ELECTRON F-VALUE (MAIN PROGRAM)
SUBROUTINE TEFVMP(EB, EBB, EA, ZAA, PO)

This Subroutine consists of two parts, one to compute sz-sp
f-values, and one to compute sl - sf' f-values. In each case, input
data is read, and formats are printed. For an szosp f-value,
Subroutines SS(URD and SL are called. For an sf - sf' f-value,
Subroutine SL is called twice. The overlap integrals (: PsPs.dr

and (-:P rPE dr are computed from the OVLP function, and the

¢
line strength and gf-value are computed by calling Subroutine FVALUE,

Finally, wave functions are printed out, if desired.
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Arguments

£B: initial s-wave eigenvalue

EBB: zero (0) for sz-sp f-value, initial {-wave eigenvalue for
sf-sl' f-value

EA: final s-wave eigenvalue

ZAA: final f-wave eigenvalue

PO: print-out code

THE ONE-ZLECTRON SUBROUTINE
SUBROUTINE ON£LEC(E, EL, R1, H, C, N, P, Z)

Computes normalized one-electron functions from the Coulomb-
potential .Schrsdinger aqguation with given eigenvalue E.

Input arguments

- eigenvalue

EL: angular momentum {

RI1: maximum (starting} radius

H: spacing (Ar)

C: charge (C =1 for neutral, C = 2 for first ionized, etc.)
N: number of points

Output Arguments

P: wave function

Z3 nodes positions
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THE S«SQUARED SUBRCUTINE
SUBROUTINE SSCRD(E, Rl, 2, C, N, ¥, Z, ¥#0, ETCOT)
Computes normalized 52 functions from the artrece>ock
equation. [he eigenvalue E must be specified. The subroutine also

calculates the electrostatic interaction energy

r_ =

re2
o g g

2 2
(1) =— *“(2) dr, dr
o 1 2

and the total energy of the two electrons

Ernnm = 2E+ F

LT o
Input Arguments Cutput Arguments
E: eigenvalue = wave function
R1l: maximum (starting) radius Zs node position
H: spacing PO: electrostatic integral
C: charge (C = 1 for neutral, ETOT: 2E + Fo

C = 2 for lst ionized, etc.)

N: number of points

THE SL OUT SUBROUTINE
SUBROCUTINE SL(EI. EZ2, EL, H, C, RB, NN, SND, PND, NS, NF,
| MU, PS, PFP)
In principle, the method of solution used in this subroutine (see
Appendix A) can be used for any 1L or 3L 8l - configuration two-
electron state. In practice, partly because the nodal boundary condition

method becomes invalid for 1 > 2 ,» and partly because of convergence
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difficulties, the program can be used only for ss' lb or 35 and
sp 1p or %p states. Also only states of fairly low excitation energy
were actually computed, as listed in Section VI. The program may
work correctly for more highly excited states, but convergence prob-
lems may be expected to require some alteration in the procedure.

The SL subroutine is quite lengthy and complicated. It begins
by using the s and £ trial eigenvalues El and <2 to compute trial
Coulomb functions via the ONEZLEC OUubroutine. It is necessary to
force the trial s-wave function to approach zero at the given Coulomb
s-node, so that it looks roughly like the final result.

At this point, the first iteration begins. Subroutines MARGS
and VENUS are called to help in the tabulation of the HART, and

FOCKt functions for the equation
L]
P,(r) = [e + HART;(r)] P,(r) = FOCK,(r) .

Subroutine BEGIN is called to provide starting values for the calcu-
lation. The equation is then integrated outward numerically., At each
new point, it is determined whether or not one of the following "events"
has taken place:

0) function "blows up" (P(r) > 10.0)

1) inflection point

2) maximum or minimum

3) node

4) end of calculation (r = rmax)

5) function "blows down" (P(r) < - 1.0)

If none of these six events have occurred, the integration is continued.
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If one of them has taken place, the program is routed to Subroutine
EVENT, which analyzes what is going on. If the function is not be-
having properly, EVENT chooses 2 new eigenvalue which should
improve the situation. For example, if the function (while being inte-
grated outward from the Coulomb node) has passed through an inflection
point, maximum, inflection point and minimum, the function will blow
up instead of approaching the axis asymptotically, EVENT lowers the
eigenvalue and directs the SL. program to start over again with this
new eigenvalue. The process is continued until the function passes
through the correct sequence of events: a) inflection point, b) maxi-
mum, c) inflection point, and d) end. The correct eigenvalue for the
iteration has then been found.

As explained in Appendix A, someti.me.s an extra node is
required at large radii for the inner s-function for singlet states.

The program determines whether such a node is necessary by
finding the difference in energy between an eigenvalue which causes
the function to reach a minimum (above the axis) and then blow up,
and an eigenvalue which causes the function to cross the axis and then
blow "down. " If this energy difference is small (lees than 0.05%),
and if the radius at which the second function has crossed the axis is
not too large (r < rmu/Z). then an extra node is required. The
functions obtained for various eigenvalues in such a case are repre-
sented in figure B-1. Subroutine EXND is employed to guide the pro-
gram in case such an extra node is required.

When the correct eigenvalue has been obtained, the function
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is completaed by integrating inward from the Coulomb node. The
function is finally normalized using function SIMP to compute the
integral.

The first s-wave calculation is then begun, using the same
basic procedure. The iterations are continued until both functions
converge, meaaning then they maintain constant energies and are
correctly normalized within limits given in Appendix A. All major

steps in the calculations are printed out as completed.

Input Arguments

El, £2: trial s= and {-wave eigenvalues

EL: ?

H: spacing (Ar)

C: charge

RB: maximum radius

NN: number of points

SND, PND: s- and p-~-Coulomb nodes
NS, NP: number of nodes

MU:  multiplicity (1 or 3)

Output Arguments

Ps, PP: radial wave functions
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Diagram for Subroutine SL

Compute >—1 Subroutine
trial functions [—<— ONELEC
Y
Compute HART Subroutine MARS |
& FOCK fncs -
<] Subroutine VENU.‘:‘J
Get starting < Subroutine BEGIN
values
¥ ~< if new eigenvalue needed, start over
Wave function Subroutine if Subroutine
SVENT EXND
Computer event extra
| TTTTTTTTTETTTT node
je rc. n, ) needed
i By =
Y if new eigenvalue not needed, continue
Wave function
Computer
funct:o::n Function SIMP
normalized =%
:er;::i':n::tzign 77| Subroutine RENORM
et ate < Y-wave singlets only
starting values

::———;-——— if too many iterations, leave SLL. ——=>

Switch
E, 2, PN, NP

PP <> PSS

N

— if calculation completed

l

next iteration
< |




E‘igge Bal

Schematic diagram {llustrating the appearance of an extra

node at large radii for s-wave singlet functions.
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THE MARS SUBRCUTINE
SUBROUTINE MARS (PSS, FP, Rl, EL, H, N, G, RHO)

This subroutine calculates the function
co

r :
G‘r) = wz—-rl:m Jdr r‘L}." z" - rdr :]

and also the quantity
)

p = Idrr’*;—a Fy
0
The SL Subroutine uses G(r) and p in the exchange term of the
Hartree-TFock equation. The integrals are evaluated by Simpeseon's
rule. The upper limits are actually R1 , where both of the wave

functions Py and ¥, are supposed to be small.

Arpuments

FS, FP: radial wave functions
R1: maximum radius

EL: L

H: spacing Ar

N: number of points

G: output function G(r)

RHC: output p integral
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THE VENUS SUBROUTINE
SUBROUTINE VENUS (F, R1l, H, N, F)
Calculates the function

> L2
Flr) = 2 de Eﬁz(r) - Zidr £ (=)
T J N T
b r

which is needed in the SL Subroutine. The integrals are evaluated
within the subroutine, and the upper limits are actually the maximum

radius R1.

Arguments

P input wave function P(r)
R1: mavdimum radius

H: spacing Ar

N: number of points

- output function I“(r)

THE F=VALUE SUBROUTINE
SUBRCUTINE FVALUE (OVLP, JUMP, FREQ, STR, GF)

This subroutine computes the line strength and gf-value for a
transition. Input data needed includes the radial matrix element, a
code (JUMPF) defining the transition (see p. )» and the experimental

line frequency.

Arguments
QVLFE the total radial matrix elerment

JUMP the transition code

FREQ line frequency in em™]
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STR line strength (output)

GF gi-value {output)

THE OVERLAF FUNCTION
FUNCTION OVLP (H, FA, B, R1l, N, 0O)

Glven two radial functions PA(r) and PB(r), along with the
spacing H = Ar , number of points N, and maximum radius R1,
this function can calculate either 'J’ FA+ PBdr or J-' PA . ¥B r dr.

Arguments

H spacing

PA, PB wave functions

R1 maximum radius

N number of points

O = 0 for j\};A- FBdr; =1 for JPPA- FB r dr

SIMPSON'S RULE FUNCTION
FUNCTION SIMP (H, N, B)

Computes the integral of a function B(r), given the spacing H
and the number of polnts N. The wave function calculations use an
even number of points, 80 N must be even. Since Simpson's rule re=-
quires an odd number of points, the last function value B(N) is dropped
in computing the integral, so that
SIMP = -‘;:- (B(1) + 4B(2) + 2B(3) + ... + 4B(N=2) + B(N-1)).

The neglect of the last point is not important for all calculations made

with these programs.
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Arguments

H: spacing

N: number of points (even)
B: function B(r)

THE FACTORIAL FUNCTION
FUNCTION FACTO(X)

Computes x! for 0% x €1 to within  per cent accuracy.

THE STARTING VALUE SUBROUTINE
Is used to find starting values for solution of the one-electron

Schridinger equation in a Coulomb fleld and of the g? lS

0 Hartree-
F'ock equatinn. Thie 18 done by solving the asymptotic series repre=~
sentation of the Coulomb function (using only the first three termas) for
two {large) radil R1 and Rl-H , where Il is the masxdmum radius,
and H is the spacing Ar . The representation ie written in general

form in Section IV=A.

Arguments
E: eigenvalue

EL: angular momentum 4

Rl mazimum radius

rd

spacing

b

C charge
Fl, 72 comaputed (R1l), H(Rl=H)
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THE EVENT SUBROUTINE
SUBROUTINE EVENT (NE, KIND, ¥, R, EIN, IN, EDB, EUB, NIT,
NEA, EOCUT, 1T, EDA, EUA, ND)

Thie subroutine is used by the SL subroutine to keep track of
the progress of a function as it is being integrated outward. If the
asymptotic boundary condition is not satisfied, the subroutine chooses
a new eigenvalie. For example, if the function "blows up' (instead of
approaching zero for large radil), a emaller eigenvalue is chosen.
However, if the function crosses the axis, a larger eigenvalue ia re-
quired. As mentioned in the description of the SL Subroutine, several
"events'' are possible, labeled by code numbers 0 to 5:

Event KIND (code)
"bloweup' 0
inflection point 1
maximum or miaimum 2
node %
end of calculation 2
""blow=down' 5

Another code (NE) refers to the events in order. For example,
starting from the Coulomb node and integrating outward, a function

might go through the following cecuence of events:

(a) inflection point (NE =1, KIND=1)
{(b) maximum (NE = 2, XIND = 2)
(¢) inflection point (NE = 3, KIND = 1)

(d) minimum (NE = 4, KIND = 2)
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This function will blow up, so the EVENT Subroutine lowers the eigen-
value to recompute the function. The results of each cholce of eigen-

values are printed out.

Input Arguments Output Arguments

NE event number NEA new event number
KIND kind of event EOUT next eigenvalue

P function T new number of tries
R radius EDA = EIN if EIN caused

"blowedown'', Othere
wise, EDA = EDB.

EIN eigenvalue used
IN number of tries
EUA = EIN if EIN caused

EDB most recent eigenvalue "blow=up', Otherwise
- -’ °

causing ‘‘blowedown’

EUA = EUB.
EUB most recent eigenvalue ND code with potential for
' D!
causing ""blow-up ending calculation
NIT iteration number

THE EXTRA NODE SUBRCOUTINE
SUBROUTINE EXND (NE, KIND, R, EIN, IN, EUB, EDB, NEA,
ECUT, IT, EUA, EDA, ND)

This subroutine is quite similar to subroutine EVENT, but is
only called in when an extra node is required in the s-wave function for
22 l.L. states. It keeps track of what events have occurred in integrating
a function outward (inflection polints, nodes, maxima, etc. ) and chooses
eigenvalues to satisfy the boundary condition, including an extra large~
radius node,

Armnta
All defined under the EVENT Subroutine.
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THE BEGINNING VALUE SUBROUTINE
SUBROUTINE BEGIN (PN, NP, EL, MULT, R}, H, 5, RL, RM, FL,
M, L)

This subroutine chooses the starting values to be used for each
iteration of the SL Subroutine. These starting values correspond to the
function values on either side of the specified Coulomb node position.
For example, if the Coulomb node is at r = .833, and the mesh spacing
used in the calculation is Ar = . 05, Subroutine BEGIN provides function
values PL and FM at r= RL =.80 andat r= RM =,85 such thata
straight line between them crosses the axis at r = .833. The slope of
this line depends on the type of function to be computed, and is chosen
by the subroutine to try to make the resulting function normalized.
After the first iteration, the starting values ' are found by ' =
¥/ VN, where P is the starting value used in the previous iteration,

and N 1is the normalization integral found in the previous iteration.

Input Arguments Cutput Arguments
PN Coulomb node RL radius of inner starting
NP aumber of nodes VIS

RM radius of outer starting
value

EL angular momentum 4

MULT multiplicity (1 or 3)
FL  starting velue at RL
R1 maximum radius

H spacing Ar
b 4 number of mesh points
s previous normalization between PN and RI1.

integral

¥M starting value at RM
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THE RENORMALIZATION SUBROUTINES (NOS. 1 AND 2)
SUBRCOUTINE RENCRM (S1, S2, S3, DENOM)

Two subroutines called RENORM were used in the course of
these calculations. Their purpose is to speed convergence of the
ss’ lS0 functions. The majority of these functions converge using
no. 1, but some require no. 2. In practice, RENORM no. 2 was come
piled only if convergence was not achieved with no. 1.

The iterative calculations for these ss' lSo functions are
found to be overdamped, so convergence is slow, A fairly effective
way to overcome this difficulty is to choose proper, or ''renormalized"
starting values. The usual procedure ie to choose 2 starting value by
the prescription ? = P/ (N, where P is the starting value used
in the previous iteration, and N 1is the normalization integral obtained
in the previous iteration. For ss' 1S states, this method does not sufe
ficiently improve the normalization for the s' function, so instead,
the formulae P;. = P‘s.I W or P;, =P / (5N are used in
RENOCRM no. 1, depending on whether the normalization integrals tend
to be consistently too large or consistenﬂ.y too small. The Renormali-
zation Subroutine decides which denominator is needed, and supplies it
to the SL Subrmtine.l RENCRM no. 2 uses different dividing factors,
which depend on how fast the function is approaching the correct nor-

malization.

Arguments
S1,82,53 three successive normalization integrals for s' functions

DENCM denominator chosen
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LIRECTLR MAIN PROGRAM

REAC INPLT TAPE 5, 1C1e IN
FORMAT([2)

IF(In) 102, 1, 105

REAC INPUT TAPE 5, 103, El, €2, E3, E4, E5, t6
FORMAT(6FL10.0)

TFILEL) 11, 11s 104

CALL CEMP(ELl, .0)

CALL OEMPlLZ, .0C)

CALL CEMP(E3, .0)

CALL UEMP(E4, .0)

CALL CEMP(ES. .0)

CALL CEMP(EL, .0)

GO TO 102

REAC INPUT TAPE S5, 106, Fl, F2y E3, F&, £S5, Eb
FORMAT(6FL0.0)

[FIEL) 11, 11, 1C7

CALL SSNP(El, .01}

CALL SSMP(E2, .0)

CALL SSMP(E3, .0O)

CALL SSMP(E4, .0)

CALL SSMP(ES, .0)

CALL SSNPI(Eb, .0)

GC TC 105

READ INPUT TAPE 5, 2, EB, EBB, EA, EAA, PC
FORMAT(&4F10.C, F3.1)

IF (EA) 11, 3, &

IF (EBB) 11, 4, 5

CALL OEMP(EB, PO)

GO TC 1

CALL SULMP(EBR, EBH, PO)

GO T0 1

IF (EAA) 11, 7, 1O

IF (€EB) 11, 8, 9

CALL SSHPIEA, PU)

GO TC 1

CALL CEFVMP(ER, EA, PO)

GC TC 1

CALL TEFVMP(EB, EBB, EA, EAA, PO)
GO TO 1

CALL EXITY

TO END RUN, MAKE ANY ENERGY NEGATIVE
END

S SQUARED  MAIN PROGRAM
SUBRROUTINE SSMPLEA, POD)
DIMENSION P(1200), 2(5)
REAC INPUT TAPE S5, 301, R1l, Hse N, Cy NRAL, ATCM
FORMAT(2F10.0, I10s F10.0, Il, AB)
CALL SSQRDIEA, Rl, He C, Ny, P, Z, FO, ETCT)
IF(PC) 304, 308, 304
WRITE CUTPUT TAPE 6, 305

INSOFORMAT (TSH RADIUS FUNCTION RADIUS

3d6
LI )
8

FUNCTION )
R = R1
oz N-]
00 307 1 = lv o, 2
L = KR =H
Yl = P(1)
Y2 = PL1 + 1)
WRITE CUTPUT TAPE 6, 306, Rs Yls C, Y2
FURMAT(&E20.7)
R = R-(2.0eH)
PETURN
END
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ONE ELECTRON MAIN PROGRAM
SUBRRUUTINE UEMPLIEB, PO)
DIMENSION PL12D0), 21(5)
REAC INPUT TAPE S, 201, ELR, R1, H, Ny, C, NRAD, AlCNM
FORMATI(3F10.0, 110, F10.0, 11, AB)
CALL ONELEC (EBy ELB, Rly My Cy Ny P, 1)
wRITE CUTPUT TAPE 6, 202
JU2 FORMAT (22H ONE ELECTRON FUNCTION/)
1 = 211
212) 5
213)
Zl4)
9 = 245)
WRITE CUTPUT TAPE &, 203, ATCM, NRAC, ELH, EB, Rly Hy Ny C

h o
Ao
- O

~
-
. W

2C30FURMAT(AE, 6H N = 1, 64 L = F3.1, 11H ENERGY = Fl10.8,
1134  RYD Rl = FS5.1, 8H H = F5,3, 6H N = 15, 6 C = F5.3/7/)
WRITE CUTPUT TAPE 6, 209, IZl, 12y 13, 24, 15

209 FORMAT(LlOH NODES AT Fl0.6, 4Fl0.6/7/77)
1F(PC) 204, 208, 204

204 WRITE CUTPUT TAPE &, 205

2050F0RMAT( TSH RADIUS FUNCTION RADIUS
1 FUNCTION )
R = R]
M o= N=]
po 207 I = 1, M, 2
Q = K-k
Yl = PUI)

Y2 = Pll+l)

WRITE QUTPUT TAPE 6, 206, R, Y1, C, Y2
206 FORMAT(4E20.8)
207 R = R = | 2.0eH)
208 RETURN

S L MAIN PROGRAM
SURRUUTINE SLMPLEB, EBB, PO)
DIMENSION PS(1200), PP(1200)
4000READ INPUT TAPE S, 4«C1, NRADS, NRADL, ELB, Rl, H, Ng C,
1SNy NSy PN, NP, MULT, ATOM
401 FORmMAT(212, 3¥5.0, 1%, F5.0, FB.O, 13, F8.0, 13, )3, AB)
WRITE QUTPUT TAPE 64 403, ATOM, NRADS, NRADL, ELB, NS, SN, NP, PN
4030FORMATI(13H SL FUNCTIONS//AB, 7TH NS = [1, TH NL = {1,
16H L = F3.1, 9H NUMBER 1, llH S NODE AT F15.8, 9H NuMBER I1,
2114 L NODE AT F15.8 //7)
WRITE CUTPUT TAPE b6, 409, Rl, Hs N, C
409 FORMAT(&H R1 = F5.,2, 6H H = F5.3, 6H N = 15, 6H C = F5.3///)
CALL SLIFB, EBH, ELBy, H, C, Rly N, SN, PN, NS, NP, NULT, PS5, PP)
IF(PQ) 4Q4, 40B, 404
404 WRITE OQUTPUT TAPE 6, 405
4C5 FOURMAT(55H RADIUS S FUNCTIDN P FUNCTION)
R = R1

CO 4C7 | = 1s N

Q = PS(I)

Y = PP(I)

WRITE CUTPUT TAPE 6, 406, Ry Qyp Y
40h FORMAT(3F18.8)
417 R = R-F
408 RETURN

FND
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Tw( ELECTRCN F-VALUE
SURRUUTINE TEFVMP(EB, EBR, EA, EARA, PC)

DIMENSION PA(1200), PB(12770), PCIL1200), 215), PDILL200)
WRITE CUuTPUT TAPE 6, 599
599 FORMAT(1rL)
600 IFLEBB) 700, 601, TGO
GO10READ INPUT TAPE 5, 602, NRADS, NRANP, R1l, Hy Ny Cys SN, NS,
1PNy, NP, FREQ, ATOM
602 FORMAT(212, 2F5.0, 1S, F5.0, FB.C, 13, FE.Oy 13, F10.0, AB)
WRITE CUTPUT TAPE 6, 605
605 FORMAT(36H S-SQUARED TQ SP OSCILLATOR STRENGTH //)
OWRITE CUTPUT TAPE &, 606, ATOM, NRADS, NRADS, MNRACP, Rl, Hy N, C,
LNS, SN, NP, PN, FREQ
6I60FURMAT (AR, [2, L3IHS-SQUARED TO 12, 3HS 12,
122HP TRANSITION Rl = FSe4le SH H = FS.3y 6H N = [5,
26H C = FS.3//7, 9H THE NO. [2s 14H S—=NOCE IS AT Fl.4,
39K TrHE NO, [2,14H P-NODE IS AT F7.4,18H THE FREQUENCY [S F10.0/7727)
CALL SSQROIEB, R1, H, C, N, PA, 2, FO, ETOT)
Il = I1(1)
= 1(2)
T o ZU)
= L&)
2S5 = I15)
WRITE CUTPUT TAPE 6, 607, B, 21y 224 23, 24, I5, FO, ETUT
HUTOFCRMAT(20H S-SUUARED ENERGY = F9.6, 16H wWITH NODES AT FT.4,
L4FT.44 61 FO = FT.4, 1S5H TOTAL ENERGY = FT.&/7/)
CALL SLUEA, EAA, 1.0y, H, C, R1ly, N, SN, PNye NS, NP, 1, PB, PC)
Jdl = OVLP{(H, PA, PC, Rl, N, 1.0)
U = Cle0OVLPIH, PA, PB, R1l, Ny 0.0)
CALL FVALUELD, l, FREQ, STR, GF)
WwRITE CUTPUT TAPE 6, 609, 01, O, STR, GF
HOGOFORMAT (184 RADIAL INTEGRAL = F9.5, LTH TCTAL OVERLAP = F9.5,
112H STRENGTH = F9,5, TH GF = F9,5//7/)
IFtPC) 610, 614, 610
£10 WRITE GUTPUTYT TAPE 64611

HGLI0OFORMAT(BILIH RADIUS S SCUARED FUNCT ION FINAL S FuUN
1CTICN FINAL P FUNCTION /7 )
R = R1
NO 613 1 = 1,N
¢ = PA(])
x = PBIIL)
Yy = PC(L)

WRITE CUTPUT TAPE by 612, Ry Qs Xy Y
512 FORMAT(4E20.8)
513 R = R=p
Aléd RETURN
TC00RcAC INPUY TAPE S5, 7Cle NRADS, NRADLB, NRADLA, ELE, ELA,
LSNB, NSB, ELNB, NELB, SNA, NSA, ELNA, NELA
701 FORMAT(312, 2F5.D2, FB.O0, 13, FB8.0, 13, FB.0s 13, F8.0, 13 )
REAC INPUT TAPE 5, 702y Rls Hs Ny Cy JUMP, MULT, FREQ, ATCHM
792 FORMAT(2FS5.0, 15, F5.0,213, F10.0, AB)
wRITE QUTPUT TAPE &, 703
703 FORMAT(3IH SLL1 TO SL2 CSCILLATOR STRENGTH //)
WRITE CUulPuUT TAPL &, 704, ATOM, NRADS, NRADLB, ELER, NRADLA, ELA
T740FQORMAT (AR, SH N = [2,6Th FOR THE STATIONARY S-wAVE ELECTRON.
1THE TRANSITION IS FROM N = 12, 5K L = Fl.1, 8¢ TO N = 124
2 5K L = F3.1 777)
OWRITE CUTPUT TAPE b, 705, Rle He Ny, C,o NSBe SNB, AMELB, ELNS,
INELA, ELNA, MULT, JUMP, FREQ
TOSOFURMAT(6K R1 = F5,2, 6K H = F5.3, 6H WITH (4, L&H POINTS C =
1F5.3, llH THE NUMBER [2,17H S=-NODE [S AT R = F7.4 //, 11K THE NuMg
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2R 12424H L-NUDE BEFORE 1S AT R = FT7.4, 15H AND THE NUMBER 12,

1234 L-NODE AFTER [S AT R = F7,4/7, 19H THE MULTIPRICITY = (2,

416+ THE JUMP CODE = 12,20H AND THE FREQUENCY = FL1C.1// )

CALL SUIEB,EBRB,ELB,H,C, R1, N, SNB, ELNB, NSB, NELB, MULT, PA,P8)

CALL SLIEA, FAAGELA,H,C, R1, N, SNA, ELNA, NSA, NELA, MULT,PC,PD)

Cl = UVLP(H, PB, PO, R1l, N, 1.0)

C = CleDVLPtH, PAy, PCy Rl, N, 0.0)

CALL FVALUE!O, JUMP, FREQ, STR, GF)

WRITE CUTPUT TAPE 6, 706, Ol, O, STR, GF
TOADFORMAT L9 RADIAL INTEGRAL = F9.,5, L7H TOTAL OVERLAP = F9.5//,

L12H STRENGTH = F 4.5, 6H GF = F9.5//47)

IF(PG) 7CT7, Tll, TO07
107 WRITE CUYPUT TAPE 64 708
JTUBOFORMAT(1OLH RADIUS INITIAL S FUNCT ION INITIAL L F

LUNC TION FINAL S FUNCTIUN FINAL L FUNCTION /7 )

R = R1

py 710 1 = 1, N

Q = PALL)

W = PBLI)

X = PCLI)

Y = PD(L)

WRITE OUTPUT TAPE 64 709, R, Qs Wy, X, Y
109 FORMATISE2D0.8B)
710 R = R=-H
711 RETURN

END

ONE ELECTRCN F-VALUE
SUBROUTINE OEFVMP(EB, EA, PO)
DIMENSION PB(1200), PALL200), LI5)
5O00OREAC INPUT TAPE 5, 501, NRADB, NRADA, ELB, ELA, R1l, H, N, C.
1JumpP, FREQ, ATOM
501 FORMAT(212, &4F5,04 15, F5.0, 134 F10.0, A8)
WRITE CUTPUT TAPE 6, 503
503 FORMAT(1K1 3I2HONE ELECTRON OSCILLATOR STRENGTH /)
WRITE OUTPUT TAPE &, 504, ATOM, NRADB, ELB, EB, NRADA, ELA, EA
5040FORMAT(AB, 6H N = I1, 6H L = F3.1l, 13H WITH ENERGY F15.8,
113H RYD TU N = I1, 6H L = F3.1, 13H WITH ENERGY F15.8, 4K RYD/)
CALL CNELEC(EB, ELB, Rl, H, Cy N, PB, Z)
WRITE CUTPUT TAPE 64 5154 R1y Hy Ny Cs JUMP, FREQ
5150FORMAT(7IH R1 = FS5.2, 6H H = FS.3, 6H N = 15, 6H C = F5.3,
110H JuMpP = 13, 15H FREQUENCY IS FB.1//1
1 = (1)
12 = 112)
13 = I13)
24 = I(4)
15 = 2(5)
WRITE CUTPUT TAPE 6, 505, 21, 22, 23, 214, I5
505 FORMAT({24H THE FLIRST HAS NUDES AT F10.64 4F10.67/)
CALL ONELECIEA, ELA, R1, H, C¢ N, PA, )
i1 = 2(1),
12 = 2(2)
23 = 213)
14 = 1(&)
15 = 2(5)
WRITE CUTPUT TAPE 64 506, 1, 22, 13, l4. 15
5046 FORMAT(25H THE SECOND HAS NODES AT F10.6, 4F10.6//)
D = CVLP(H, PA, PB, Rls Ny 1.0)
CALL FVALUE(O, JumP, FREQ, STR, GF)
WRITE CUTPUT TAPE &, 507, 0O, STR, GF
SCTOFORMAT( LKD 1BHRADIAL INTEGRAL = Fl2.8, l4H STRENGTH = F9.5,
181 GF = F9.5/777)
IFLPC) 508, 512, 508
508 WRITE CUuTPUT TAPE 6, 509
539 FORMAT(55H RADIUS INITIAL FUNCTION FINAL FUNCTION)
R = R]
DO S1L 1 = 1y N
¢ = PBRILIL)
Y = PALL)
WRITE CUTPUT TAPE 64 510, Ry Qyp ¥
510 FORMAT(3E20.8)
511 R = R=-¥
512 RETURN
END
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S=SQUARED SUBROUTINE
SUBRCUTINE SSCRDIE, R1, Hy, Cy Ny P, 2, FGC, ETCT)
DIMENSIUN P(1200), PSQR(1200), Z2(5), QUALC211200)
COMMCN PSQR, QUAD?2

Zt1) = 0.0

2(2) = 0.9

I(3) = 0,0

2l4) = 0.0

2(5) = 0.0

K = ]

CALL START(E, 0.0, R1l, H, Cy PLl, P2)
Pll) = P1

PL2) = P2

PSQR(1) = P(l)me?

PSQR(2) = P(2)ee?

DP = PL1)=PI12)

R = RI-(2.0%H)

DOP = (Hea2)a(E-(2.00C)/(ReH))@P(2)
DP = DP-DDP

PL3) = PL2)=DP

TABLlA = 0.0
TAB2A = 0.0
TABIB = 0.0
TAB28 = 0.0

PSQRI(3) = P(3)ma?

J = 1

QUAC2(1) = 0.0

QuAD2(2) = 0.0

M o= N=2

DO 55 1 = 3, M, 2

QUADL = (H/3.0)®tPSQRII)*+(4.0ePSQRII-1))+PSQRII-2))+TABLA
OQUAD2(I) = (H/3.0)e((PSQRITI)/R)+4.0e(PSQRILI-1)/(ReH]))
1+#(PSQRUE-2)/(R+(12.0aH) ) ))+TAB2A

TABLA = QUADI

TAR2A = QUAD2(I)

COP = (Hee2)e(E—((2.0¢C)/R)=(2.02QUADL/R)+(2.00QUAD2(L)))eP(I)
P = DP-DODP

Pllel) = PL]1)-DP

QUADL = (H/3.0)e(PSQRIT+1)+(4.0ePSQRI1))+PSQRI(E-1))+TABIE =
QQUADZ2(I#l) = (H/3.0)e((PSQRITI#4L)/(R-H))+& ., 00 (PSQRII)/R])
L+(PSQRII-L1)/(R+H)))+TAB28B

TABLR = QUADI

TAB2B = QUAD2I1+1)

DNP = (Hew2)e (E=(2.00C/(R-H))-12.0¢QUADL/(R-H]1)*(2.0eQUAC2(I+1))]
LeP([+]1)

DP = DP-DDP

P(1+2) = PlL1+1)-0DP

R = R=(2.0eH)

PSUR(I+]1) = Pllel)ea?

PSQRII#2) = Pll+2)wa2

IF(P(I)aP(]l+1)) 52, 52, 51

IFIP(I+1)eP(]®2)) 53, 53, 55

IiJ) = R & H - (HeP{I+1))/(PLL) - PLI+1))
GO Tu 54

2(J) = R = (HeP([«2))/(P(l«l) - PL]1+2))

J = Jol

CONTINUE

S = SIMP(H, N, PSQR)

A = ABSF(1.0 - S)

1IF(.0005 - A) 56,57, 517
P(1) = PL1)/SQRTFI(S)

PL2) = P(2)/SQRTFI(S)

K o= Kel

GO 1O S9

0O 58 [ = 1, N

PSQRI]) = PSQR(I)eQuUAD2(I)
FO = &4 _.0eSIMP(H, N, PSQR)
ETUT = (2.0eE)¢FO

RETURN

IF(k - 10) 50, 50, 1000
wRITE OQUTPUT TAPE &, 1001
FORMAT(37H ERRCR IN S SQRD TOO MANY [TERATICNS )
CALL EXIY

END
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ONE ELECTRON SUBROUTINE

SUBRCUTINE ONELECIE, ELe R1l, Hy Cy N, P, Z)
ODIMENSION P(1200), PSQRI1200), Z(5)

COMNCN PSQR

{1} = 0.0

I12) = 0.0

t3) = 0.0

I{4) = 0.0

2(5) = 0.0

CALL START(E, EL, R1, H, Cy Pl, P2}
PLL) = P1

P{2) = P2

PSQRIL1) = Pll)ee?
PSQRI(2) = P(2)w=e?
DP = PL1) - PL2)
R = RIl-H

J =1

M o= N-1

D0 41 [ = 2, m

ODP = (Hee2)e((E¢(ELOIEL*L1.0))/(Rea2)})-(2.04C)1/R)OP(I])

DP =

oP-DDP

Pll+1l) = PLI)-DP

PSQR(L1+1) = Plle¢l)ee?
R = R-F
IFtPLLIeL)oPIL]l)) &0, 40, 41

1)
Jd = J

= R
+1

CONT INUE
S = SIMP(H, N, PSQR)

DO &2

= (HeP(Lel))/UIPIL) = P(Iel))

= 1y N

P{L) 3 P(I)/SQRTFI(S)
RETURN

END

THE MARS SUBROUTINE

SUBROUTINE MARSIPS, PP, R1, ELs Hys¢ Ns G, RHE)
ODIMENSION PS(1200), PP(1200), B1(1200), B2(1200), G1(1200),
16211200), G(1200)

COMMCN B1, B2

R = R
DO 18
R1C(I)

1
1

R = R-k

R = R
DO 19
A2{1)
R = R
TABLA
TAB18B
Glt1)
G2(1)
Glta)
G2(2)
TAB2A
TAB28B

1
I

=H

WK KR ER

Moz N-]

DO 20
Gltil)
TABlA
Glil+
TABLSB
Ga2u1)
TAB2A
G2(1+
TABZ28

I

=
1)
=
=
1)

= 1, N
(ResEL)ePS(1)ePP(I)

= 1, N
PSII)ePP(1)/(Rae(EL+1.0))

OO0cCO0O0000
. e o8 e
OoO00QO0COo00

= 3, M, 2
(H/3.0)o(BLI1)+4.CoBL(I-11¢BLII-21)#TABLA
Gl

= (H/3.0)e(B1{1+1)+4.0eBLIL)*#BL(I-10)+TABIB
Gltle+1l)
(H/3.0)e(B2U1)+4.CeB21I-1)+B2(]-2))+TAB2A
G2i1)

= (M/3.0)0(B2(1l+1)+4.0eB2(1)+B2(1-1))+TAB28
G2(1+1)

R = Rl=-(12.0eH)
C = 2.0/(2.0¢EL*1.0)

Gl
GL2)
Do 21

= 0.0
= 0

]
= 3¢ No 1

GII) = Col(GI(T)/(Ree[EL+1.0)L)-(RenEL)®G2(L)]
R = R=HK

RHO =

Ta

RETURN

END

Bla
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SUBROUTINE VENUS (P, RLl, H, N, F)
DIMENSION P(1200), F1(1200), F2¢1200),y F{1200)

THE VENUS SUBROUTINE

CCHMMCN Fl, F2
TAB1A
TAaB18B
TAB2A
TAB28B
FI (1) =
Fl (2) =

0
Q
0
0

0
(4]
0
0

Fz t1)
F2 12)
M o= N-1
en 22 1 = 3, K, 2

FLUI) = (H/3.0)e((P(l)ae?)
L+{4.00(P(] - 1)me2))

2¢ (P(] = 2)=e2)) + TABLA
TABLA = F1l(1)

F1L (1el) = (H/3.0) & ((P(]l+1)

0.0
0.0
0.0
0.0

-
.
-

“e2)

L+4,0 @ (P(1) ee2) + (P(l-1)e=2)) ¢ TABIB

TABLIB = F1 (1¢1)
Y
F2 (1) = (H/3.0) & [((P(])se?

1 /7 (Rl = (Y=1.0)

1+ 4.0 » ((PlI-1)ee2) / (R1=-(Y=2.0) =H))
2+ ((P([=2)ee2) / (R1-(Y=3.0)eH))) + TAB2A

TAB2A = F2 (1)

F2 (I+1) = (H/3.0) & (((PlI+]l)ea2) / (Rl1-YeH])]

le 4.0 = ((P(l)wea2) / (R1-(Y-1

«0)eH))

2+ ((P(]I—=1)=e2) / (R1-(Y-2.0)eH))) + TAB2B

TAB2B = F2(1+1l)

R = Rl = (2.00H)
Fil) = 0.0

Ft2) = 0.0

DO 23 I = 3, N, 1

Fil) = 2.0 ¢« ((F1(1l) 2 R)= F2(I))

R = R=-p¢
RETURN
ENO

FACTURIAL FUNCTION
FUNCTION FACTO (X)

Y = (O.%6lexe(X - 1.0)) ¢+ 1.0
A = ABSFIX-0.461)

IF(A - 0.15) 94, 94, 90
[F(A - 0.4861) 91, 91, 94
IF (X-0.461) 92, 93, 93
FACTC = Y-0.005

GO TC S5

FACTC = Y « 0.005

6O TC 95

FACTC = Y

RETURN

END

THE OVERLAP FUNCTION

FUNCTICN OVLP(H, PA, PB, R],
DIMENSION PA(1200), PB(1200),
COMNCN 8

IFtQ) 13, 13, 15

DO 14 I = 14 N

BUI) = PALI)=PBI])

GO TC 17

R = R1

DO 16 I = 1, N

BUl) = RePA(L)ePBI(I])

R = R=-p

OVLP = BIMP{H, N, B)

RETURN

END

N, Q)
B(1200)

* H))
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STARTING VALUE SUBROUTINE
SUBRCUTINE STARY (E, EL, Rl, H, C, Pl, P2]
EN = C/ SQRTF (E)

Y = 1.0

A = 1.0

l;' IEN’EL"., 32' 32| 31

Y = Y®(EN+EL-A+1.0)

A = 101.0

GO TC 30

EN¢+EL—-A+].0

YeFACTOUX)

1.0

H 1.0

IF(EN - EL - 2.0) 36, 386, 33
IF (EN-=EL-B-1.0) 35, 35, 34

X
F

z

W M N N

lZ = 1« (EN-EL-B)

B =8 ¢« 1.0

GO YC 33

X = EN=EL-B

G = Fele FACTO (X)
GO TC 39

IF (EN-EL+B-2.0) 37,138,138
? = 1« (EN-EL-1.0+8)
B = B+1.0

GO TC 36

X = EN~EL¢B=2.0

IFtZ) 70, 71, 70

G = FefACTO(X)/2

S = ENe LOGF (2.0=C/EN)

T = (EXPF(S)e SQRTFI(C))/(EN®SQRTFI(G))

8l = ENe((EL*(EL + 1.0)) — (EN®(EN - 1.0)0)712.0%(C)

B2 = EN® Bl » ((clL ®» (EL*1.0)) - ((EN-1.0) & (EN-2.0)))/ (4.0eC)
B3 = EN & B2 » ((EL® (EL*1.0))-((EN-2.0)®(EN-3.0)))1/(6.0eC)

Ul = EN = LOGF (R1)

PlL = T & (EXPF(UL-CeRL1/EN)})®(1.0+(B1/R1)

1+(B2/(R1ea2)) ¢ (B3/(Rlewe3)))

R2 = Rl - H
U2 = EN = LOGF (R2)
P2 = T & (EXPF (U2-C*RZ2/EN)) & (1.0+(BL/R2)

1+ (B2/(R2#%2)) + (B3/(R2es3)))

71l
12

80

81

RETURN

WRITE CUTPUT TAPE 6, 72

FORMAT(26H ERROR IN START, Z IS ZERC)
CALL EXIT

END

SIMPSCNS RULE FUNCTICN
FUNCTICN SIMP ( Hy N, B)
DIMENSION B (1200)

S = 0.0

M o= N=2

Cco 8C I = 24 M, 2

S =S + 8 (1)

S = 2.0 & S

K = N-3

DO 81 1 = 3, K, 2

S =S +« B (1)

SIMP = (R/3.0)e((2.0%S) #B(1l) + B(N-1))
RETURN
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THE EVENT SUBROUTINE

OSUBRCUTINE EVENTI(NE, KIND, P, Ry EIN, IN, ECB, EUBR, NIT,
LNEA, ECuUT, IT, EDA, EUA, ND )

ENIT = NIT

EDA = EDB

EUA = EUR

EOUT = EIN

ND = O

IFINE - 2) 1, 10, 20
1 IF(KIND - 1) 2, 58, 5
2 17T = IN + 1

EOUT = EIN/I1.0 + 0.2¢EIN)

GO TO 59
5 IFIKIND - 3) 6, 2, 2
6 IT = 1
NEA = 2
GO TC 60
10 IF(KIND = 1) 11, 15, 12
12 TFLKING - 3) 11, 11y 2
11 IT = IN ¢ 1
EOUT = (1.0 ¢+ 0.2 @ ELN) = EIN
GO TC 59
15 IV = 1
NEA = 3
GO0 TO ¢0
20 IFIKINC - 1) 21, 21, 23
21 NEA = 3
IT = IN
GO TC 60
23 IFIKIND - 3) 30, 40, 29
25 WRITE OQUTPUT TAPE 64 26, EIN, Py R
Z60FORMAT(FB.S, 44H MAXIPUM INFLECTION PT MONOTONRC TO P = FT7.5,

1 10H AT R = F8.5 7//)
ND = 1
IT = IN
NEA = 4
GO TC 60
30 IT = IN ¢ 1
EUA = EIN

IFtece) 31, 31, 35
31 FOUT = EIN/{1.0 ¢ (0.1/((ENIT = 1.0) ee 21))
GO YO 36
35 EOUT = (EUA ¢ EDB)/2.0
36 WRITE CUTPUT TAPE &, 37, EIN, P, R
ITOFORMAT(FB.5, 44H MAXIMUM INFLECTICN PY MINLMUM WITH P = FT.5,
110K AT R = F8.5 )
GO TC 59
40 IT = IN ¢ |
41 EDA = EIN
IF(EUB) &2, 42, 45
42 EQUT = (1.0 + (0.Y1/((ENIT - 1.0) ws 2))) & EIN
GO TC 46
45 EFOUT = (EUB + EDA)/2.0
46 WRITE CUTPUT TAPE 64 47, EIN, R
47 FORMAT[{FB.S5, 434 MAXIMUM [NFLECTICON PT AND NODE AT R = FB8.5 )
GO TU S9
58 IT = IN
59 NEA = 1
60 RETURN
END
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EXTRA NODE SUBROUTINE
OSUBRUUTINE EXNDINE, KIND, R, EIN, IN, EUB, ECB, NEA,
1e0UT, 1T, EUA, EDA, ND )

fUA = EUB
ECA = ECR
ND = O
EOUT = EIN
NEA = 1

IT = IN

IFINE - 5) 1

IF(KIND - 2)

10, 30

2y B, 4

WRITE CUTPUT TAPE 6, 3, EINy R
37TH EXTRA NUCE INFLECTICN PCINT AT R =

FORMAT(FB8.5,
EDA = EIN
IT = IN + 1
ECUT = (EIN
GO TG 45

'

EUB) /2.0

WRITE CUTPUT TAPE 6, 5, R

FORMAT (& TH
IT = 20

GO TC 45

NEA = NE + 1
GO TN 45
IF(KINC - 3)
NEA = NE + 1
GU TL 45
wWRITeE CUTPUT
FORMAT(FB,.5,
ND = 1

e TC 45

E

XTRA NODE FCLLOWEDR

Ile 20, 12

TAPE 64 13, EIN, R

BY BLOW UP CR ENDL AT R

Fa.5 )

F8.5 )

38H EXVTRA NUDE MINIMUM MONOTCNIC TC R = FB8.5)

WRITE CUTPUT TAPE 64 21y EIN, R

FORMAT(FB.5,
EUA = EIN
IT = IN ¢+ 1

34H EXTRA NODE MINIMUM NODE AT R = FB8.5

EQUT = (EIN ¢ EDR)/2.0

6O TO 45
[FIKIND - 3)

31y 35, 4C

WRITE CUTPUT TAPE 6,4 32, EIN, R

FORMAT(FB.S,
IT = IN ¢ 1
EOQUT = (EIN
GO TC 45

+

38H EXTRA NODE MIN

Eus) /2.0

wRITE CUTPUT TAPE 6. 36, EIN, R

FNRMAT(FB8.5,
NOD = 2

LU TC 45
WRITE CuTPUT
FNRMAT(FR.S,
ND o= ]

LO TO 45
RETURN

END

354 EXTRA NCCE MIN

TAPE &, 41, EIN, R
40H EXTRA NUDE MIN

INFLEC MAX{NUM AT R =

INFLEC NCDE AT R = FB.5

INFLEC MCNOTONIC TO R

FB8.5 )

)

FB.5

)
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F-vALUL SUBROUT INE
SURRCUTING FVALUE (OVLP, JuMP,
IFIJumP) 900, 900, 9C1
JUumMp = = juymp
GO YC (902,
TC (998,
9191,
C = 2,0/3.u
G0 TL 920
C = 4,0/2,0
G0 TCL 922
C = 4.0/715.C
GO TL Ss20
C = 12.0/75.0
ud 1C 920
r = 6.0/35.0
GO TC 920
C = 24.0/7.0
GO TQ 920
C = 2.0
G0N TO 920
E & 1.0
Gu TC 920
C = 1.,073.0
60 TU 920
C = 1.0
GO TC 920
C = 5.0/3.0
50 TC S20
C &= Z30
o TC 920
C = 2.0/3.0
60 TC 920
C = 1.0/2.0
GL I1C 920
C = 3,0/2.0
GO TL 92C
C = 1.0/30.0
GL TO 920
cC = l.072.0
GO TC 920
C = 14,0s5.C
STR = Ce(OVLPes?2)

GF = ,0000030324eFREUSSTR
RETURN
END

903,
90Y,
Jurp

03,
910,

904,
qll.

9Ns5,
912,

LGN ING
SORRGYT ENE
L
o=
LIy =
= 2 N -
L = X
1R(Q -
o % gl
Il = AN] 4,
PORNC I W R
L b )
“m =
Ty = LR
1FLRAN - T.5)
IFLEL] LEy
1RLYAHY 14,
tv = TL AN
Q¥ 13
PEe = (0a2
g T 13
TAL™ELT -
kY =2 §9.°
G ¥C 13
IFLEL 2]

YALUE SURRCUTEANE
BEGINLPNG ARy FLe PULT,

~ =

BNl 24 29 )

Y B

14,y
15y LA
169 11

144 1IC

12
124 12

= PNI/LKE ®
PRI/LR =

«C1
Pe s (] e
“ETUMN

N

a LHL

Lim = i

FREC,

905,
913,

STR, GF)

9071,
15,

Jume
G916,

906,

14, 0

TABy Rly Fy SRLARF LR, L]

Clv & SCRTIFLSIT)
& SERTIF(S))
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THE RENORMALIZATICN SURRCLTINE NO. 1
SUBRGUTENE RENCRM(SIy S24 S35, CEBNCNM)
G = 1.0

€l = S1 - 1.C

Q2 = 52 - 1.0

€3 = 3531 = laf

1ROl & C2] 8y 8y 1
IR(Q2 « C3) 8y 8y 3
IFLQ3 = .05) 449 54 5
IFLQ3 ¢« .03) 649 €4 .8
CENCM = 1.5

G0 ¥C S

CENGM = 0.7

cQ ¥C S

CENOF = 140

RETURN

END

THE RENCORMALEFZATICN SUBRCUTINE NO. 2
SUBRCUTEANE RENCRM(SLy S2, S3, DENCHN]
C = 1aC

I = &5 = 1
cz2 = 82 - 1
¢3 = §2 - 1
IF(CC]l = Q2) = (G2 < Q3)) 8y 8y 1
IF(Q]1l ¢« (3] By By 2

IFLARSFLCI) - ARSFLG2)) 84 84 3
IPLABSFLEC3) - J39%) 84 8¢ 4

CAY = (LQ1/G2) « (Q27Q3))/2.0

L

-l
)

-~
-ls

P2 1

F = 140 & (Q3740AYea}l])
I1FLABSFLF — 1a0) = aCS) 14 T €
L = F a G

P = 1 ¢+ 1

GG ¥L S

CENCP = SQRFFLGI]
GG ¥C S

CENOMF =

RETURN

Fin

L0
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54
59
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51
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€1

]
<
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IFE SL Out
USUHRCLTENE SLLEL,
LvSy PP)
GPEIVMENSHON ASC]1200)
I~ARTL12GC)Y, »SURILI
COmMCN PSQR

CENCP = 1.0

S1 =
SZ =
53 =
“+01
RECZ =
] = RH

N = NN

SN = SNO

P = PNO

MULTY = WL

NIRY = G

NET = 1

SU = 1.6

Sieps = 1.0

TAR = 1aC

NRHO = ¢

EL2 = gU

fLl = CaC

CALU CNELECC(El, Oa
CALUL UNBLEBCI(ZZ¢ FL
LFIN = Q

o= R

B0 12 v = 1¢p N
IFLR - SANI 124 1)y
IFLR = Sk - 1.0] 1
PS(E) = (it — SKN]epP
R = R - h

IFLTAH) 61y €1y 55
«2}TE GQUTAUT TAPL
FURMAT(L7H FTErATL
NET = NEFT ¢ ]
IFtdL2 < 1.C) &1y
wRITE QUTALT TAPE
FORMAT(34H H-WANE
Ga ¥C 63

WRITE GUTRUT TAPE
FURMAY(34+ MN—-wAVc
GO ¥C &3

wRITE CUTRUY TAPE
FORMATLI4AH S—-HAVE
TARB = - TAB

("=
.
[= I~ I~ R i o]

.
o 0
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SUBRGUT ENE

€2¢ €Ly He Cy REs NN,y

SNC y

RNy NSy NPy, MUy

v PPL1I2CC), GLLlcOC)y FCOAKEL120GILy

2GC)y 2SU5)¢ 2ZPLS)

C¢ Rly Fy Cy Ny PSg 2S)

¢ Rly Hy Cy Ny FPy

&
»

le 1Ly 12
SELl

b SEg¢ NIT
UON NUMBEK 12 f777)

334 39
b6¢g 524 PN
FUNCTEIUN WITH NCDE

6y 6Gy PN
FUNCT LN WITH NCCE

Gy 62y PN
FUNCIION WITH NQACEH

iP)

AT K

AT R

AT R

=

F8a5£11

Fa.5/271

P« L]

FLl2uC)y
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I a2 ]

ECH = = ]t

tUR = - 1.0

NER = =)

AMSTRAC = 0

CALL MARSL HS, APy Rly ELy He N¢ Lty RHC )

FnN2 = g2

Lap = €

W = R]

JRL*LLT - 1] Z84 289 15
IF(BL2] By 1€, 2P
IF(RHCIT 128y 174 18

RECL = RHO

;0 JC 28

I1R(RPCZ]Y 20y LYy <0

H+C2 = REN

L0 1C 28

W J1E CUTRLT TARE 69 21y RHU

FORMAT(L18F LNAVERAGELD RHC = FB&.S //1)

(MUY = LRHCL1 + RHCZ2 « RHL) /7 3.0

~FCL = RFOZ

RECZ = RFOIT

“FC = R&CY

g IC1 F = 14 K

FOCKLE) = RSUHB)@a(( (2 CoRFL)/(LLZ.CaBLI®LlC)o(RuaCELU+L.OCLITY«CLE]]
4} = H =

LALL VYENULSIHSy Rly Hy g F)

W = R]

CO Y3 F = 1lg N

HARBLE) = 2{2.08C/R) & (LELZ2 & (EL2 & 1 011/(Ruwz]] - FLE)
¥ = R =

CALL REBOINLANg KPPy bLZy MLLT, TARG R1y HySUgyRLyRMy FLy ¥Fy LU
wH ITE CUTRALTF TAPE 6y b4y PMy RNy RHO

FOARMAT(Z1IH STARTING VALLE P = FI10.T74¢47H AT R =Fa 3¢5+ RHOaFELS/L/2)
NEIR = C

NATY = g

wrR1TE OQUTRLT T1APL £y €3

FURMATL4OH ENEXGY HVENTS 17 )
0L T |

POy = = 1.3

R = PN~ P,

<« 3 Rp

J = ]

PRLLL) = HL

PRLLE — L} =2 pp

PG k53 F =2 3% LL

o= ke o | % 2

CCpPB = CCH

ceR = CR

IF(MLBLT] Lll4y 114e 111

IR(MGLY - 1} 1144 1124 113

NCR = Lhee2) o [(LLENZ ¢ HART(L)) & PPLL)) ¢ FCOCKLAN)I]

GZ ¥C lis

COP = LFea/) & LILENZ ¢ HAQT(L]]) o PPLL)) - FOCKLL)]
6L Wu I1%

COP = AtFeaZ] o (LENZ + HARTLLI) = PRLL))

< = 3 4 F

ch s TR o4 BLP

PULL = 1) 2 BRLL) ¢ TP



115
111
iz
119
12¢
Y

Leé

125

| G

Y B
o o I U
O o~ & BN

YN ~
—_C
<

|
o
P
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IRLCEPE o COP] 125, 1254 116
IFLCPE & DP) 126¢ 12€s L1117

IPLPPLL - 1) = ®PLLY) 1274 127¢ 118
IFLABSRELPRIL — 1)) = 2Cal) L1Sey 1284 128
IR(NF - 11 120s 1229 121

IFLRPLL = 1) + 1.C] 12GS¢ 129, 121
IFLR & LFZ24° 1 = R11 153, 153, 122
KENC = 4

GC ¥L 13¢

KERC = 1

G ¥C 13C

“iNE = 2

God ¥ 13

KINC = 3

GO Y 147

KEN. = )

Q@ ¥G 13C

KEINC = 5

GEC ¥y 13

IPLNE = J) 123y 133y 131

IFLKINC - 3] 158y 1324 158

J = 4 + |

wrRFIE CUTHGLT 1APC 6y 136, C
FORMATL2CH FERST NUCE AT « = FExS )
FRENIR =« 300) 303, Y60y 31C
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