
Appendix A

User’s Guide to Arcreduce

Arcreduce is a Python module that provides methods for reducing data from the 40 m data archives. Its

interface is provided primarily through two classes: CalManager, a high-level data reduction interface,

and ArchiveReader, a lower-level engine for directly accessing the archives to decode procedure data. In

addition, a number of methods and classes are included in the module to support these interfaces. Arcreduce

is built atop the readarc module provided by Martin C. Shepherd. The readarc module is a Python wrapper

around a C library that provides raw access to the data in the archive. Arcreduce was written in order to

simplify access to the archive and to provide a more “Pythonic” set of interfaces.

In addition to readarc, Arcreduce depends on several other Python modules. These include the public li-

braries NumPy,1 SciPy,2 and PyEphem.3 The py40m module, a library of useful routines developed alongside

the 40 m reduction pipeline, is also required.

A.1 High-Level Data Reduction: CalManager

CalManager is the main class intended for high-level analysis and reduction of data recorded with the

MCS control system. It is built upon ArchiveReader, and uses that class to read data from the archive

and convert it into reduced procedure result data. CalManager provides tools to simplify the operations

needed to examine and calibrate those data.

A.1.1 CalManager Concepts

The work flow within CalManager is modeled after a small subset of CMBPROG (Leitch 1998). The

results of all executions of a particular procedure, are stored in an instance of the Procedure class. Within

the procedure are a set of vector-like Member objects, each of which represents a time series of values from

the results of that procedure.

1http://numpy.scipy.org/
2http://scipy.org/
3http://rhodesmill.org/pyephem/

http://numpy.scipy.org/
http://scipy.org/
http://rhodesmill.org/pyephem/

174

Table A.1. List of CalManager procedures

Attribute Radiometry Procedure Members
flux FLUX a, b, c, d, atp, btp, ctp, dtp, swd, swp
cal CAL diode, a, b, c, d, atp, btp, ctp, dtp, swd, swp

point POINT snr, hpbw, failed
— common to all source, flux, flags, time, mjd, azo, zao, az, za, taf, tlr,

focus, pa, samples

Note: Data for each procedure are contained in the members Procedure accessed as an attribute
of the CalManager object. Each procedure type contains the common members listed, as well as
members unique to its function. Table A.2 defines the various members.

The reader should be aware that the word “procedure” is frequently used in this section to refer either to

a specific execution of a radiometry procedure, to the Procedure class, or to an instance of that class. It

should be clear from context which meaning is intended, but careful reading is warranted.

A.1.1.1 Procedure Class

When data are loaded from the archive, the radiometry procedures are processed and decoded into a stream

of results. The Procedure class represents the time-ordered series of results of one of these proce-

dures. Table A.1 lists the procedures that are available. These procedures are accessible as attributes of

the CalManager instance, so results from, say, FLUX procedures are stored in cm.flux.

The CalManager class defines a number of methods needed to manage and calibrate the data stored in

the Procedure objects. Generally, methods defined in the CalManager class affect the calibration pro-

cess as a whole or operate on more than one Procedure object. Methods that affect a single Procedure

or Member are normally defined within those classes. For historical reasons, a number of relevant methods

are defined at the top level of the arcreduce module.

A.1.1.2 Member Class

The Member class represents a member of a procedure—a series of time-ordered data. All members within

a procedure share a common set of time stamps. The time stamps themselves are represented by the time

member of the procedure. The Member class supports data masking to allow the parent Procedure to

restrict operations to a subset of the values in the time series. This is used, for example, when working

with FLUX results for a single source or CAL results for only the NOISE diode. Table A.2 lists and briefly

describes the members that belong to the various procedures.

Vector arithmetic operations are supported for Member objects that contain numerical values. To avoid

wastefully copying data, unary operations (e.g., x+=y) operate in place on the data within the Member.

When a copy is desired, binary operations (e.g., z=x+y) allocate a new Member to store the result. This

behavior is illustrated in the examples in section A.1.2.3.

175

Table A.2. Descriptions of the CalManager procedure members

Member Used by Description
source all Name of source being observed
time all UTC time stamp
mjd all MJD time stamp (derived from time)
flags all Reduction flags
az all Telescope azimuth
za all Telescope zenith angle
taf all Aft-forward tilt meter reading
tlr all Left-right tilt meter reading
focus all Telescope z-axis focus setting
pa all Parallactic angle of source

samples all Number of samples in procedure (definition varies by
procedure)

diode cal Name of diode measured (“CAL” or “NOISE”)
a, b, c, d flux, cal Measured switched power in each segment of the pro-

cedure
atp, btp, ctp, dtp flux, cal Measured total power in each segment of the proce-

dure
swd, swp flux, cal “Switched difference” and “switched power” diagnos-

tic signals, as described in section 2.2.2.2.
hpbw point Half-power beam width used for pointing measure-

ment
snr point Signal-to-noise ratio of the pointing measurement

failed point True if a pointing measurement failed or gave an unre-
liable result

azo all Azimuthal offset from the pointing model (contains
the result of a pointing measurement)

zao all Zenith angle offset from the pointing model (contains
the result of a pointing measurement)

When relevant, a Member represents both a value and its uncertainty. Arithmetic operations propagate

uncertainties between members assuming they are random and uncorrelated. Care must be taken if this

assumption is not true. Constant values are assumed to have no uncertainty.

If access to the data values or uncertainties is needed, the get val() or get err() methods should

be used. These return a NumPy ndarray with the requested values, after applying any active masks. Data

stored in the member can be directly updated using the set val() or set err() method.

A.1.1.3 Masking and Flagging

When working with data, it is frequently useful to restrict the working data set to one or a few sources of

interest. For the CAL procedure, normally only one diode (CAL or NOISE) is of interest at a time. To

support this, CalManager provides a mechanism for masking procedures based on source or diode names.

Initially upon load, all data are active. If a mask is subsequently applied, only those procedures that satisfy

the mask are operated on until the mask is changed. The source mask is specified by passing a source name

176

or list of source names to the set active sources() method. The diode mask is specified via the

set active diodes() method.

During reduction, data that are unreliable must be identified and discarded. CalManager allows data

points to be flagged (stored as a bit field in the flags member) to identify the reason the data point was

discarded. Flagged data are not used during later operations nor retrieved via the get val() or get err()

methods. The remove flag() method can be used to remove all instances of a particular flag from a

Procedure.

A.1.1.4 Plotting and Advanced Processing

Python supports powerful numerical processing (e.g., the NumPy and SciPy packages) and plotting (e.g.,

Matplotlib). Routines of this nature are not implemented in CalManager. Instead, only basic, common

operations are directly implemented for the Procedure and Member classes. When necessary, the data

contained within a Member can be easily extracted to a NumPy ndarray and plotted or processed using a

suitable external routine.

A.1.2 CalManager Tutorial

This simple tutorial demonstrates the essential functions of CalManager and its related classes. Before

starting, the arcreduce module must be loaded and a CalManager object must be instantiated.

>>> import arcreduce as ar

>>> cm = ar.CalManager()

A.1.2.1 Loading Data

To load procedure data from the archive, the load data method of the CalManager object is used. The

start and end dates to be loaded can be specified as calendar dates or MJD days.

>>> cm.load_data(’2011-05-01 00:00:00’, ’2011-05-01 12:00:00’)

This example loads and decodes the procedures for 12 hours of data, beginning at midnight UTC on May 1,

2011.

A.1.2.2 Examining a Procedure

We can find the names of the members within a Procedure object as follows.

>>> print cm.flux.members

[’source’, ’flags’, ’time’, ’mjd’, ’flux’, ’az’, ’za’, ’taf’, ’tlr’,

’focus’, ’samples’, ’azo’, ’zao’, ’pa’, ’a’, ’b’, ’c’, ’d’,

’atp’, ’btp’, ’ctp’, ’dtp’]

177

Each member of the procedure is represented by a Member object, which can be accessed as an attribute of

the Procedure object. Member objects provide a convenient pretty-printing interface, illustrated here.

>>> print len(cm.flux)

212

>>> print cm.flux.flux

[485.656 +/- 0.363,

148.228 +/- 0.524,

45.524 +/- 0.394,

...]

We see that 212 FLUX procedures were decoded. When the flux member of cm.flux is printed, the first

few values are shown, along with their errors. Not all members have errors defined—for those without errors,

these are shown as zero.

A.1.2.3 Working with a Member

Member objects that contain numerical data support vector arithmetic operations. In-place operations are

performed using the unary Python arithmetic operators.

>>> cm.flux.flux *= 2

>>> print cm.flux.flux

[971.313 +/- 0.726,

296.456 +/- 1.047,

91.048 +/- 0.787,

...]

Note that the errors were propagated assuming that the constant value in the multiplication was exact.

If two Member objects have the same length, they can be combined arithmetically. Within a single

Procedure, all Member objects are guaranteed to be the same length, so this is always possible.

>>> cm.flux.flux += cm.flux.flux

>>> print cm.flux.flux

[1942.625 +/- 1.026,

592.912 +/- 1.481,

182.097 +/- 1.113,

...]

The errors of the two inputs (here both cm.flux.flux) are combined to produce the error in the output.

Note that the errors are propagated assuming they are uncorrelated (which is incorrect in this case).

178

If a binary Python operator is used, a new Member is created to contain the result. This new Member

can (and normally would) be assigned to a Procedure as we do here.

>>> cm.flux.flux_copy = cm.flux.flux / 4.0

>>> print cm.flux.flux_copy

[485.656 +/- 0.257,

148.228 +/- 0.370,

45.524 +/- 0.278,

...]

We now have a new Member whose values are equal to the initial values we loaded. The errors are smaller

than they were at the start because they were assumed to be uncorrelated in the previous example. The

cm.flux.flux object is unchanged because we created a copy.

A.1.2.4 Accessing Data from a Member

While basic arithmetic operations on Member data are supported directly, it is frequently useful to use ordi-

nary Python methods to work with the data. This is possible using the get val() and get err()methods

of the Member.

>>> val = cm.flux.flux.get_val()

>>> err = cm.flux.flux.get_err()

>>> val[0:3]

array([1942.62528571, 592.91225 , 182.09658333])

>>> err[0:3]

array([1.02642661, 1.48117483, 1.11319623])

Python data may be inserted into a Member using the set val() and set err() methods. Here,

we’ll correct the uncertainty that was incorrectly propagated when we added cm.flux.flux to itself.

>>> import numpy as np

>>> cm.flux.flux.set_err(np.sqrt(2)*err)

>>> cm.flux.flux.err[0:3]

array([1.45158643, 2.09469753, 1.57429721])

When masks are applied to a procedure, such as when a specific source or diode is selected, these get and

set methods act only on the actively selected elements of the procedure.

179

A.1.2.5 Selecting a Source or Diode

To restrict a procedure to a particular source, we call the CalManager object’s set active sources()

method. A similar method, set active diodes(), allows CAL procedures to be restricted to either the

CAL or the NOISE diode.

>>> sources=cm.flux.source.get_val()

>>> print sources[0:3]

[’j0750+1231’ ’j0811+0146’ ’j0805-0111’]

>>> cm.set_active_sources(’j0750+1231’)

>>> print cm.flux.flux.get_val()

[1942.62528571]

To select multiple sources or diodes, simply pass these as a list of source names. To reenable all available

sources or diodes, call this procedure with an empty list.

>>> cm.set_active_sources([])

A.1.2.6 Applying a Calibration Factor

Calibration by dividing by a filtered member or by a polynomial function of a member are supported. For

example, we can normalize the flux density by the interpolated value of the CAL diode to remove the effect

of gain fluctuations. As an example, here we simply calibrate the CAL diode flux member by itself. The

deviation from 1.0 results from the averaging of nearby values.

>>> cm.set_active_diodes(’CAL’)

>>> print cm.cal.flux.get_val()[0:3]

[471.95144286 472.43159286 471.22714286]

>>> cm.apply_flux_cal(cm.cal, cm.cal.flux, 1.0)

>>> print cm.cal.flux.get_val()[0:3]

[0.99949928 1.00051614 0.99920581]

A.1.2.7 Flagging Data

Unreliable data points can be flagged to remove them from further processing and to indicate the nature of the

problem with the data point. Table A.3 lists the supported flags. Several processing routines will implicitly

flag data points when problems are encountered. Additionally, explicit flagging based on data or uncertainty

values can be performed. In this example, we flag CAL values between 0 and 1, leaving only values greater

than 1 unflagged.

>>> print cm.cal.flux.get_val()[0:3]

180

Table A.3. Flag values supported by CalManager

Name Value Description
FLAG OUTLIER 1 Outlying data point flagged by

arcreduce.flag outliers().
FLAG SWEEP 2 Outlying data point flagged by

arcreduce.flag sweep outliers().
FLAG VALUE CLIP 4 Value was explicitly flagged by the user via

arcreduce.clip values().
FLAG ERROR CLIP 8 Uncertainty was explicitly clipped by the user via

arcreduce.clip errors().
FLAG FAILED POINT 16 Procedure was preceded by a failed (or no) point.
FLAG BAD CAL 32 Problem interpolating calibration diode to the data

time stamp.

[0.99949928 1.00051614 0.99920581]

>>> ar.clip_values(cm.cal.flux, 0, 1.0, inclusive=True)

>>> print cm.cal.flux.get_val()[0:3]

[1.00051614 1.00238618 1.00077693]

A.1.2.8 Example Reduction Script

Listings A.1 and A.2 are excerpts of the Python reduction pipeline script and demonstrate actual use of the

CalManager class.

A.1.3 Module Reference

• class arcreduce.CalManager: Interface class to manage high-level reduction and calibration.

– load data(start date, end date)

Loads data from the archive.

– apply flux cal(target proc, source mem, cal value, inverse=False)

Scales appropriate flux density-like members of target proc by dividing by the value of

source mem at each sample. This is normally used to calibrate flux densities by dividing by

an interpolated CAL member. Note: this method implicitly applies a 7200 s boxcar interpolation

to the source member to reconcile its time base with that of the target procedure.

– apply polynomial cal(target mem, source mem, poly, inverse=False)

Divide flux density-like members of target proc by a polynomial evaluated at the value of

source mem at each sample. This is normally used to apply the gain-versus-elevation curve

using the flux.za member as source mem.

– set active diodes(diodes)

181

def reduce_data(start_date, stop_date):
"""Reduce data between given dates."""
cm = arcreduce.CalManager()
cm.load_data(start_date, stop_date)

clip low-SNR POINTs
arcreduce.clip_values(cm.point.snr, -np.inf, 2, inclusive=True)

flag FLUXes with bad pointings
arcreduce.flag_failed_point(cm.flux, cm.point, 4800)

clip total powers to plausible levels
arcreduce.clip_values(cm.flux.atp, 10000, 50000, inclusive=False)
arcreduce.clip_values(cm.flux.btp, 10000, 50000, inclusive=False)
arcreduce.clip_values(cm.flux.ctp, 10000, 50000, inclusive=False)
arcreduce.clip_values(cm.flux.dtp, 10000, 50000, inclusive=False)

clean the cal procedure
cm.set_active_diodes([’CAL’]) # use small cal diode
clean_cal(cm.cal)

apply the CAL diode
cm.apply_flux_cal(cm.flux, cm.cal.flux, 8.33/2.0)

All done.
return cm

Listing A.1. The CalManager class is the foundation for calibration of data in the reduction pipeline.

Limits all CAL procedures to those using the specified diodes (CAL or NOISE). To activate all

diodes, call with diodes=None. By default, all diodes are active.

– set active sources()

Limits all procedures to those with the specified source name. To activate all sources, call with

sources=None. By default, all sources are active.

– boxcar interpolate(source time, source y, target time,

dt max, n min, dy max)

Creates a new Member containing the±dt max seconds boxcar interpolation of the source y

member with sample times from source time. The new samples are evaluated at times from

target time. If any such interpolation has fewer than n min input samples or if

|max(y)−min(y)| / |min(y)| ≥ dy max

within that bin, that sample is flagged with the BAD CAL flag.

• class arcreduce.Procedure: Container for the results from a particular radiometer proce-

dure. These results are stored in Member objects that are accessible as attributes of the Procedure.

182

def clean_cal(cal):
"""Apply the cal cleaning process to the procedure."""
first flag data that’s equal to zero (with a little wiggle-room
since they’re float values)
arcreduce.clip_values(cal.a, -1e-6, 1e-6, inclusive=True)
arcreduce.clip_values(cal.b, -1e-6, 1e-6, inclusive=True)
arcreduce.clip_values(cal.c, -1e-6, 1e-6, inclusive=True)
arcreduce.clip_values(cal.d, -1e-6, 1e-6, inclusive=True)

Now clip values less than 5 which are completely unbelievable.
arcreduce.clip_values(cal.flux, -np.inf, 5, inclusive=True)

Clip values with implausible measured uncertainties. The range
0 to 6 is acceptable; flag OUTSIDE that range.
arcreduce.clip_errors(cal.flux, 0, 6, inclusive=False)

Apply iterative outlier filters. We apply to swp twice because
the swd filter sometimes triggers a few new swp outliers.
arcreduce.flag_outliers(cal.swp, 4)
arcreduce.flag_outliers(cal.swd, 4)
arcreduce.flag_outliers(cal.swp, 4)

Now sweep along in day-long buffers and flag outliers
arcreduce.flag_sweep_outliers(cal.mjd, cal.flux, 1.0, 3.5)

Listing A.2. Helper function used by the reduction routine in Listing A.1.

Member objects can be added to a Procedure using simple Python assignment, e.g.,

proc.new mem=Member(...).

– remove flag(flag)

Remove the specified flag from all data points in each Member of the Procedure.

• class arcreduce.Member: Representation of one parameter or result of the execution of a pro-

cedure.

– get err()

Return a NumPy ndarray containing the uncertainties of the active elements of the Member.

– set err(err)

Set the uncertainties of the active elements of the Member to the values given.

– get val()

Return a NumPy ndarray containing the data values of the active elements of the Member.

– set val(val)

Set the data values of the active elements of the Member to the values given.

• arcreduce.clip errors(mem, emin, emax, inclusive=False)

183

Apply the ERROR CLIP flag to data when the uncertainty in member mem is outside (inside if

inclusive is True) the specified range.

• arcreduce.clip values(mem, xmin, xmax, inclusive=False)

Apply the VALUE CLIP flag to data when the value in member mem is outside (inside if inclusive

is True) the specified range.

• arcreduce.flag failed point(target proc, point proc, dt max)

Apply the FAILED POINT flag to data in target proc if the procedure in point proc that im-

mediately precedes it failed, or if there is no procedure within dt max seconds prior.

• arcreduce.flag outliers(mem, nsigma)

Iteratively apply the OUTLIER flag to data that lie more than nsigma standard deviations from the

mean of the mem member until no further data are flagged.

• arcreduce.flag sweep outliers(xmem, ymem, dx, nsigma)

Apply the SWEEP flag to data in a sliding window spanning ±dx/2 along xmem when the value in

member ymem exceeds nsigma standard deviations from the mean in the window.

A.2 Low-Level Data Processing: ArchiveReader

The ArchiveReader class is the low-level Python interface to the data archive. It relies on the readarc

module to extract data from the binary archive files recorded by the MCS control system. Details about the

architecture and use of this class are described in section 3.1.2.2. In this section, we provide a detailed module

reference for the classes and methods relevant to the ArchiveReader class.

A.2.1 ArchiveReader Class

• class arcreduce.ArchiveReader: Pythonic object-oriented wrapper around the readarc li-

brary. Instances of this class manage a data reduction session.

– add frame handler(self, fh)

Add a decoder that should be notified when data from a new frame are read. The object must

implement the decoder interface and should normally be a subclass of the GenericDecoder

class.

– add output handler(self, oh)

Add an output handler to be notified when a completed procedure result is available from any

of the attached decoders. The object must implement the object handler interface and should

normally be a subclass of the OutputHandler class.

184

– add register(self, reg name, reg type, index=0, length=None,

our name=None)

Add a register to the set that will be extracted from each frame.

∗ reg name: name of the register in the archive

∗ type: one of the RT * types indicating the type of the register

∗ index: index of the register element to read (default: 0)

∗ length: max length of the array to be returned, only used for arrays where it must be set

∗ our name: name by which to refer to the register (see below)

If a register is added with an existing name, an ArchiveError will be raised if the parameters

for the new register do not exactly match the existing entry. Otherwise the second addition of the

register will have no effect.

If a local name is needed (e.g., to provide a shorthand name for one index in a multi-index

register), specify it with our name. By default, registers are known by their official names.

For example, to extract mount.tracker.horiz actual[1] and refer to it by the name

mount.tracker.horiz actual el, one would call

add_register(’mount.tracker.horiz_actual’, RT_FLOAT, index=1,

our_name=’mount.tracker.horiz_actual_el’)

– dispatch frame(self)

Call all registered frame handlers to notify of new frame.

Might be able to allow handlers to notify this class which frame labels are of interest, but would

have to add a protocol to let them detect the end of a sequence of frames. For now easier to just

let them implement that as needed.

Handler should return a ProcedureData object when a complete procedure has been pro-

cessed. It will then be output using the current output method. If a procedure is not complete,

return None.

– handle completed procedure(self, p)

Manage output of a completed procedure by calling output handlers.

– handle frame(self)

Process the next frame. Returns True until all frames are consumed. After each call, the label of

the frame just processed will be available from the self.last frame label member. (This

will be None before the first or after the last frame).

– read register(self, our name)

Read a register, properly managing the data type.

185

– update registers(self)

Read next frame and all the configured registers in an unspecified order. Returns True on suc-

cess, False if no more frames were available.

A.2.2 Decoders

• class arcreduce.GenericDecoder: Generic base class for decoder implementations.

A decoder is an object that can be called by the ArchiveReader to process frames for a particu-

lar type of procedure (or, perhaps, for other reasons). The GenericDecoder base class provides

generally useful features, such as a dynamically sized buffer for storing samples.

Buffers are stored as NumPy ndarray objects with an array size that is generally larger than the

valid data stored. The buffer index member stores the index of the next element to be written,

which equals the number of valid entries in the array. Buffers added through add buffer() will

be managed (via reset buffers() and grow buffers()). These can be accessed as member

variables (i.e., self.x). There is some risk of namespace collisions, but this is unlikely.

Procedure decoders should be subclasses of GenericDecoder. To implement the decoder inter-

face, they must provide handle frame(self, timestamp, frame label, registers)

to process data from each frame and a install registers(self, ar) method to notify their

parent ArchiveReader instance of the registers from which they require data. These methods are

not explicitly listed in the references below for subclasses of this class.

– add buffer(self, buffer name, dtype, register name=None)

Add a buffer to be managed.

– finalize buffers(self)

Clip the buffers to their actual length so that they can be accessed without considering the

buffer index member. Do not load any additional data after doing this.

– grow buffers(self)

Increase the size of the managed buffers by a factor of 2.

– reset buffers(self)

Resets the data buffers and associated data to prepare for a fresh decoding attempt.

– update buffers(self, registers, data len)

Pull data out of the register associated with each buffer. Pulls data len samples out of each

register. Grows buffers as needed.

• class arcreduce.MillisecondSampleDumpDecoder(GenericDecoder): Decoder for

dumping millisecond samples. Implements the decoder interface.

186

• class arcreduce.Point2dDecoder(GenericDecoder): Class to decode POINT2D pro-

cedures. The FWHM beam width must be specified when instantiating this object. Implements the

decoder interface.

– decode(self)

Decode the results and compute flux / bg levels and some statistics.

We do not fit the beam ourselves, we just take the results from the on-line procedure. We compute

the signal-to-noise ratio (SNR) in a method roughly analogous to the old control system’s SNR

method, which was the minimum of the peak or half-power SNRs. Here, we take the minimum

among any points measured at half-power or greater.

Raises PointError if there is a problem decoding the data.

– find result frame index(self)

Find the frame that indicates the completion of the procedure.

– find valid data(self, start, end, acq delay=6)

Find valid data for integrating.

Looks only between start and end indexes. Currently just identifies the last run of source-acquired

data according to tracker state. Returns indexes of valid data.

Note: indexes are relative to the same zero-point as start/end, i.e., the absolute origin of the

buffers.

Waits acq delay frames (seconds) after acquisition before it considers the source really ac-

quired.

Raises:

∗ AcquisitionLostError: lost acquisition during the segment.

∗ NoDataError: no valid data available.

– finish proc(self, timestamp)

Called when the end of a procedure has been found. Processes the data and fills in a

PointProcedureData object with the result.

– fit gauss amp(self, x, y, y err, fwhm, amp0, bg0)

Helper function. Fits amplitude and background level of Gaussian.

∗ fwhm: FWHM of the Gaussian

∗ amp0: initial guess for amplitude

∗ bg0: initial guess for background level

– identify segments(self)

Identify pointing segments in the data.

187

This only identifies the start and end index of the period during which the telescope was intended

to track a particular offset. It does not check that the telescope was acquired, that is done else-

where.

– integrate segment(self, start, end)

Integrate a single segment.

– integrate segments(self, segs)

Integrate valid data within all the segments.

• class arcreduce.PointDecoder(GenericDecoder): Class to decode POINT procedures.

Implements the decoder interface.

– find segments(self)

Locate the start and and indexes of each of the POINT segments.

Since the details of when tracker acquisitions occur is a bit fragile, we look at the commanded

tracker offsets as a more reliable indicator of what is going on. We count the final acquisition

within each segment as the one intended for integration.

– finish proc(self, timestamp)

Called when the end of a procedure has been found. Processes the data and fills in a

PointProcedureData object with the result.

• class arcreduce.RegisterDumpDecoder(GenericDecoder): Decoder class for dump-

ing samples. Only works for one-sample-per-frame registers (will read only the first element from each

frame for array registers). Implements the decoder interface.

• class arcreduce.SimpleAbcdDecoder(GenericDecoder): Class for decoding ABCD

procedures. This includes FLUX and CAL procedures, and eventually perhaps others. Implements the

decoder interface.

To create a decoder, subclass this and call its init () routine. Pass a four-element list with the

names of the labels that correspond to the four states of the procedure. For a FLUX, these are ‘flux:A’

through ‘flux:D’.

– finish proc(self)

An entire procedure has been received, process it.

– flux a handle frame(self, timestamp, frame label, registers)

Handle ‘flux:A’ state and keep accepting ‘flux:A’ frames until ‘flux:B’ comes along.

– flux b handle frame(self, timestamp, frame label, registers)

Handle ‘flux:B’ state and keep accepting ‘flux:B’ frames until ‘flux:C’ comes along.

188

– flux c handle frame(self, timestamp, frame label, registers)

Handle ‘flux:C’ state and keep accepting ‘flux:C’ frames until ‘flux:D’ comes along.

– flux d handle frame(self, timestamp, frame label, registers)

Handle ‘flux:D’ state and keep accepting ‘flux:D’ frames, then wrap up.

– handle frame(self, timestamp, frame label, registers)

An entire procedure has been received, process it.

– identify segment(self, segment num, i start, i end)

Pick out a valid segment and return the valid indexes for the segment. Override this to change the

behavior of identifying segments.

– init abcd(self)

Set or reset data to prepare for a new procedure.

– store samples(self, registers)

Store samples to the appropriate location in self.switched samples.

Updates auxiliary variables as necessary. Data to copy should be passed in the new samples

argument. Extra samples will be ignored.

– waiting handle frame(self, timestamp, frame label, registers)

Method to implement the “waiting” state: goes from anything to ‘flux:A’.

• class arcreduce.SimpleCalDecoder(SimpleAbcdDecoder): Class for decoding CAL

procedures. This uses only the mean value from each frame rather than the low-level millisecond

samples. Implements the decoder interface.

– finish proc(self)

Finish the procedure. Overrides the parent class. Uses the SimpleAbcdDecoder to do the real

work, but need to do a few CAL-specific checks also.

– identify segment(self, segment num, i start, i end)

Identify segment indices for a CAL procedure.

• class arcreduce.SimpleFluxDecoder(SimpleAbcdDecoder): Class for decoding

FLUX procedures. This uses only the mean value from each frame rather than the low-level samples.

Implements the decoder interface.

– finish proc(self)

Finish the procedure. Overrides the parent class. Uses the SimpleAbcdDecoder to do the real

work, but need to do a few FLUX-specific checks also.

189

A.2.3 Output Handlers

• class arcreduce.OutputHandler: Generic output handler class, just defines the interface.

Subclasses must provide a handle procedure(self, p) to process ProcedureData objects

containing processed results.

• class arcreduce.CallbackOutputHandler(OutputHandler): Output class that passes

the output procedure to a callback. The callback should accept two parameters. First is the procedure

just completed, second is the argument passed to the init () routine. Implements the output

handler interface. This is the output handler used for actual data reduction in the pipeline.

• class arcreduce.FileOutputHandler: Output class that dumps to a file handle. Default

output file is stdout.

– handle cal procedure(self, p)

Output details of a CAL procedure.

– handle flux procedure(self, p)

Output details of a FLUX procedure.

– handle point procedure(self, p)

Output details of a POINT procedure.

A.2.4 Procedure Data Structures

• class arcreduce.ProcedureData: Generic class to contain procedure output data.

• class arcreduce.AbcdProcedureData(ProcedureData): Class to contain output data

relevant to ABCD procedures. Not normally used directly.

• class arcreduce.CalProcedureData(AbcdProcedureData: CAL procedure data out-

put class.

• class arcreduce.FluxProcedureData(AbcdProcedureData): FLUX procedure data

output class.

• class arcreduce.PointProcedureData: Point procedure data output class.

A.2.5 Exceptions

• class arcreduce.ArchiveReduceError(Exception): Superclass for all the exceptions

defined in this module.

190

• class arcreduce.ArchiveError(ArchiveReduceError): Generic exception for errors

during archive data processing.

• class arcreduce.AcquisitionLostError: Irrecoverably lost acquisition of a source dur-

ing a procedure.

• class arcreduce.FluxError: Error encountered while processing a procedure with a

SimpleAbcdDecoder (FLUX or CAL).

• class arcreduce.NoDataError: Encountered a procedure segment with no valid data.

• class arcreduce.OutputHandlerError: Error encountered during output handling.

• class arcreduce.PointError: Error occurred during handling of a POINT procedure.

	Appendix User's Guide to Arcreduce
	High-Level Data Reduction: CalManager
	CalManager Concepts
	Procedure Class
	Member Class
	Masking and Flagging
	Plotting and Advanced Processing

	CalManager Tutorial
	Loading Data
	Examining a Procedure
	Working with a Member
	Accessing Data from a Member
	Selecting a Source or Diode
	Applying a Calibration Factor
	Flagging Data
	Example Reduction Script

	Module Reference

	Low-Level Data Processing: ArchiveReader
	ArchiveReader Class
	Decoders
	Output Handlers
	Procedure Data Structures
	Exceptions

