
Chapter 5

Variability Analysis

With the light curve data from the monitoring program in hand, we now turn to analyzing the 15 GHz vari-

ability of each source. In this thesis, we will focus on the amplitude of that variability, treating the light

curve as a population of samples drawn from a distribution defined by the processes responsible for the radio

emission. For the most part, we will ignore the time coordinate in these studies. Other studies, both current

and future, will examine the time dependence of these data more directly. Here, we will use a variability

amplitude metric as a simple measure of source activity and aim to use this to identify a connection between

gamma-ray emission and radio variability. Firmly and reliably establishing this connection is a prerequisite

for performing more detailed correlation studies. The methods and the two-year CGRaBS results described

in this chapter were first published in Richards et al. (2011). My colleague Dr. Vasiliki Pavlidou conceived

of and developed computer codes to implement the likelihood analysis tools that we describe here. My con-

tributions included early discussions of the standard variability methods that inspired this method, producing

the light curve data for the tests, selecting the subpopulation samples for the comparisons, and the analysis

and interpretation of the results of the tests.

In this chapter, we will first define the analytical tools we will use to characterize the variability amplitude

of a light curve and to compare the variability of source populations. We will then present the results of a

number of population studies, first demonstrating that our methods produce null results when given null

inputs, then comparing the variability amplitudes of gamma-ray–loud sources with gamma-ray–quiet ones,

of BL Lac objects with FSRQs, and of high-redshift with low-redshift FSRQs. We will then assess the impact

of cosmological time dilation on this latter effect, and finally examine the differences between our CGRaBS

and 1LAC source samples in detail.

We now have 18 months of data past the end of the set used for the Richards et al. (2011) results. These

data, collected between January 2010 and June 2011, make a number of additional tests possible. First, we

can verify that the properties of the various subpopulations we studied in the two-year results are stable as

new data are added. Second, we now have enough data to characterize the variability of the Fermi-LAT–

detected 1LAC sources, which were added to the OVRO sample in March 2010 (although some had been

added earlier). Thus, we can now compare the 1LAC sample properties to the CGRaBS sample properties.
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Finally, we have now sampled high-redshift (z ∼ 3) sources for nearly a year of their rest frame time. In

section 5.5, we will use these additional data to examine the effect of time dilation on the observed radio

variability.

5.1 Analytical Tools

In this work, we are chiefly interested in characterizing and studying the amplitude of variability for a given

blazar. This is a simple characterization of the behavior of a source that can readily be applied to the study

of the collective properties of a large population. In this section, we begin by introducing the intrinsic mod-

ulation index, a variability amplitude metric that is particularly well suited to the data from our observing

program. We will examine how this metric performs on our data set, then introduce a likelihood analysis

framework for comparing the intrinsic modulation indices of subpopulations within our sample. We will then

use these tools to explore the variability characteristics of the blazars in our program.

5.1.1 Intrinsic Modulation Index

Characterizing the variability amplitude of a source and assessing the confidence with which this can be

measured are complex problems that have been addressed using a variety of measures and tests, such as the

variability index (e.g., Aller et al. 1992); the fluctuation index (e.g., Aller et al. 2003); the modulation index

(e.g., Kraus et al. 2003); the fractional variability amplitude (e.g., Edelson et al. 2002; Soldi et al. 2008); and

χ2 tests of a null hypothesis of nonvariability. Each of these tools provides different insights to the variability

properties of sources and is sensitive to different uncertainties, biases, and systematic errors.

In this work, we will measure variability using the intrinsic modulation index, m, which we introduced

in Richards et al. (2011), where a full explanation of the likelihood analysis used to compute m is presented.

Here we will give only a brief explanation of this variability measure and its properties. The intrinsic modu-

lation index is based on the standard modulation index, defined as the standard deviation of the flux density

measurements in units of the mean measured flux density, i.e.,

mdata =

√
1
N

∑N
i=1

(
Si − 1

N

∑N
i=1 Si

)2

1
N

∑N
i=1 Si

. (5.1)

The modulation index is reasonably well behaved: it is always nonnegative and is reasonably robust against

outliers. However, it measures a convolution of intrinsic source variation and observational uncertainties—a

large modulation index could be indicative of either a strongly variable source or a faint source with high

uncertainties in individual flux density measurements. For this reason, the correct interpretation of the mod-

ulation index requires that measurement errors and the uncertainty in mdata due to the finite number of flux

density measurements be properly estimated.
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Our intrinsic modulation index is defined as

m =
σ0
S0

, (5.2)

and like the ordinary modulation index is defined by a standard deviation divided by the mean. In this case,

however, σ0 and S0 represent intrinsic quantities—properties of the light curves before they are affected by

observational noise, imperfect sampling, etc. Because we cannot directly measure these intrinsic quantities,

we will use a likelihood analysis to estimate them from the data we collect. Observational uncertainties will

affect the accuracy with which we can estimate these quantities, but we will quantify these uncertainties and

propagate them into our later analysis as errors in our estimated values.

Evaluating the significance of a difference between measured values requires a good estimate of the

uncertainty in those values. Thus, for the population comparisons we perform in this work, we require a

rigorous estimate of the uncertainty in each intrinsic modulation index we calculate. Other methods for

assessing the uncertainty in variability measures have been employed. One method that has been widely

used is to evaluate each measure for a set of constant-flux-density calibrators which are known to have a flux

density constant in time and which have been observed with the same instrument over the same periods of

time. The value of the variability measure obtained for the calibrators is then used as a threshold value, so

that any source with variability measure equal to or lower than that of the calibrators is considered consistent

with being nonvariable. However, a variability measure value higher than that of the calibrators is a necessary

but not sufficient condition for establishing variability. Calibrators are generally bright sources, with relative

flux density measurement uncertainties lower than the majority of monitored sources; additionally, variability

measures are affected by the sampling frequency, which is not necessarily the same for all monitored sources

and the calibrators.

Alternatively, the significance of variability in a given source can be established through tests (such as a

χ2 test) evaluating the consistency of the obtained set of measurements with the hypothesis that the source

was constant over the observation interval. However, such tests provide very little information on sources for

which statistically significant variability cannot be established, as they cannot distinguish between intrinsi-

cally nonvariable sources and sources that could be intrinsically variable but inadequately observed for their

variability to be revealed.

For our studies with the intrinsic modulation index, we will directly and rigorously propagate the mea-

surement uncertainty for each flux density into an uncertainty on m. In this way we will estimate both a

measure of the intrinsic variability amplitude and our uncertainty in that estimate due to the measurement

process.
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5.1.1.1 Calculating the Intrinsic Modulation Index

As in Richards et al. (2011), we will assume that the “true” flux densities for each source are normally

distributed with mean S0, standard deviation σ0, and intrinsic modulation index m = σ0/S0. That is, we

assume that the probability density for the “true” flux density St is

p(St, S0, σ0) =
1

σ0
√

2π
exp

[
− (St − S0)2

2σ2
0

]
. (5.3)

Similarly, we assume the observation process for the jth data point adds normally distributed error with mean

St and standard deviation σj . Then, the likelihood for a single observation is given by

`j =

∫

all St

dSt
exp

[
− (St−Sj)

2

2σ2
j

]

σj
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2π
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2σ2
0

]

σ0
√

2π
, (5.4)

which after combining j = 1, . . . , N measurements and substituting mS0 = σ0, gives

L(S0,m) = S0




N∏
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1√
2π(m2S2

0 + σ2
j )


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exp


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σ2
j +m2S2

0


 . (5.5)

By maximizing the likelihood given by equation (5.5), we find our estimates of S0 and m. In figure 5.1, we

plot the most likely values and the 1σ, 2σ, and 3σ isolikelihood contours for the two-year data for CGRaBS

source J1243–0218. These contours were computed to contain 68.26%, 95.45%, and 99.73% of the volume

beneath the likelihood surface.

We finally obtain our estimate ofm by marginalizing over all values of S0, which yields a one-dimensional

likelihood distribution, L(m), like that shown in figure 5.2. We compute the 1σ uncertainty by finding equal-

likelihood points m1 and m2 on either side of the maximum likelihood value where

∫m2

m1
L(m)dm

∫∞
0
L(m)dm

= 0.6826. (5.6)

When the maximum likelihood value m is less than 3σ from zero, we compute a 3σ upper limit m3 defined

by ∫m3

0
L(m)dm∫∞

0
L(m)dm

= 0.9973. (5.7)

This method makes the assumption that the distribution of flux densities from a source are distributed

normally. For many sources, this is a good description of the data. In figure 5.3, we plot the histogram of

the two-year data set flux densities from J1243–0218 along with the maximum-likelihood Gaussian model

we estimated from this analysis. In other sources, however, the distributions are clearly non-Gaussian, with
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Figure 5.1. Likelihood parameter space, showing 1σ, 2σ, and 3σ contours of the joint likelihood L(S0,m)
for blazar J1243−0218.
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Figure 5.2. Marginalized likelihood L(m) for J1243−0218 (solid curve). Dashed vertical line: best-estimate
m; dotted vertical lines: 1σ m range; solid vertical lines: 2σ m range.
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Figure 5.3. Maximum-likelihood Gaussian model for the flux density distribution (dashed line), plotted over
the histogram of measured flux densities (solid line) for blazar J1243−0218. The arrow indicates the size of
the typical measurement uncertainty.

possible evidence for, e.g., bimodality as shown in figure 5.4. However, we have verified that even when

the true distribution is not well described as Gaussian, the modulation index and uncertainty is a reasonable

description of the data. In future work, more sophisticated distributions of true flux density can be applied to

this method.

5.1.2 Properties of the Intrinsic Modulation Index

We now evaluate the properties of the intrinsic modulation index using the two-year data set. Table C.1 in

appendix C includes our measured values for m, S0, and their 1σ errors for the 42-month data set. Results

from the two-year data are available in Richards et al. (2011). In figure 5.5 we plot the intrinsic modulation

index m and associated 1σ uncertainty against the intrinsic, maximum-likelihood average flux density, S0,

for all our CGRaBS and calibrator sources. The error bar on S0 corresponds to the 1σ uncertainty in mean

flux density, calculated from the joint likelihood (equation (5.5)) marginalized over m. CGRaBS sources are

shown as black or magenta points or blue triangles for upper limits, while calibrators are shown as green

points.

Variability could only be established at the 3σ confidence level or higher for 1139 out of 1158 CGRaBS

blazars in our sample. For this study, we considered only sources for which at least 3 flux densities were mea-
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Figure 5.4. Histogram of flux density measurements for J0237+3022, demonstrating a non-Gaussian bimodal
distribution.

sured, a positive mean flux density ≥2σ from zero was found, and at least 90% of the individual flux density

measurements were≥2σ from zero. These criteria excluded two sources (J1310+3233 and J1436–1846). For

the other 17 sources we have calculated 3σ upper limits for m. We plot these upper limits with blue triangles.

Calibration sources 3C 286, DR 21, and 3C 274 are shown in green. Although, as expected, these sources

are the least variable of all sources in which variability can be established and a nonzero m can be measured,

m for these sources is finite and measurable. This means that some residual long-term variability remains in

our calibrators beyond what can be justified by statistical errors alone. This could conceivably result from

true calibrator source variation, but more likely reflects incomplete removal of small-amplitude calibration

trends. Because m < 1% for these three sources, we quote a systematic uncertainty ∆msyst = 0.01 for the

values of the intrinsic modulation index we produce through our analysis.

To ensure that our population studies are not affected by this residual systematic variability, in all analyses

discussed in sections 5.2–5.5 only sources with m ≥ 0.02 will be used, so that we remain comfortably above

this 1% systematic uncertainty limit. In addition, for sources with S0 < 60 mJy, the number of sources

for which variability can be established is of the same order as the number of sources (both CGRaBS and

non-CGRaBS) for which we could only measure an upper limit, and these upper limits are very weak and

nonconstraining. For this reason, we also exclude from our population studies any source with S0 < 60 mJy.

The part of the parameter space excluded due to these two criteria is shown in figure 5.5 as the yellow shaded

area bounded by the solid black lines.

For S0 ≥ 0.4 Jy, no obvious correlation between flux density and modulation index is apparent, and no

CGRaBS sources exist with upper limits above our cut of m = 2%. However, for sources with S0 < 0.4 Jy,

there is an absence of points in the lower-left corner of the allowed parameter space defined by the thick solid
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Figure 5.5. Two-year intrinsic modulation index m and associated 1σ uncertainty, plotted against intrinsic
maximum-likelihood average flux density, S0, for all sources in the program which have enough (more than
3) acceptable, nonnegative flux density measurements. Black points: CGRaBS sources found to be variable
with 3σ confidence by χ2 test; magenta points: CGRaBS sources found consistent with nonvariable by χ2

test; green points: calibrators 3C 286, DR 21, and 3C 274; blue triangles: 3σ upper limits for CGRaBS
sources for which variability could not be established at the ≥3σ confidence level. The error bar on S0

corresponds to the 1σ uncertainty in mean flux density, calculated from the joint likelihood (equation (5.5))
marginalized over m. Data, except for upper limits, outside the yellow and cyan shaded areas are used in the
population studies of sections 5.2–5.5.
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lines: for faint sources, we can only confidently establish variability if that variability is strong enough. The

effect disappears for variability amplitudes greater than about 6%. In addition, there are only two CGRaBS

sources with upper limits higher than 6% for sources brighter than 60 mJy (J0722+3722 and J0807+5117),

<0.5% of the 452 sources measured in this region of parameter space. We conclude that we are able to

measure variability at the level of 6% or higher for virtually all (>99% of) sources brighter than 60 mJy.

To ensure that our population studies are not affected by our decreased efficiency in measuring variability

in sources with 60 mJy ≤ S0 < 0.4 Jy and 2% ≤ m < 6%, we will also exclude this part of the (S0,m)

parameter space from our analyses in sections 5.2–5.5. The part of the parameter space excluded due to these

criteria is shown in figure 5.5 as the cyan shaded area.

For comparison, we also computed the χ2-per degrees of freedom for each source and tested whether

we could reject the hypothesis of a constant flux density at the 3σ level. Because of the long-term residual

trend described in section 3.2.2.2, we added 1% of each flux density in quadrature to the reported uncertainty

when computing χ2. Of the 1139 CGRaBS sources for which we calculated the intrinsic modulation index,

51 (4.5%) are found to be nonvariable (i.e., we cannot reject the hypothesis of constant flux) with >3σ

confidence. These are plotted as magenta points in figure 5.5. All but one of these lie within the low-flux

density and low-variability regions we have excluded from our population studies. The one such source not

excluded, J2148+0211, is very near both the flux density and intrinsic modulation index cut lines. Of the

17 sources for which we report m upper limits, 15 are judged nonvariable by the χ2 test. The two others

are dim sources with a single outlier (J1613+4223) or very few measurements (J1954+6153), which led to

large uncertainties in the estimate for m and resulted in an upper limit. Calibrator sources 3C 286, DR 21,

and 3C 274 are found to be nonvariable while 3C 48 and 3C 161 (which were not used to fit the long-term

calibration trend) are found to be variable by the χ2 test, probably due to imperfect removal of the long-

term calibration trend. Our estimates of m for both these calibrators are below our 2% intrinsic modulation

cut level. We conclude that our analysis is generally consistent with the χ2 test for identifying significant

variability and that our data cuts for our population studies conservatively exclude the regions of parameter

space where disagreements occur.

In figure 5.6 we plot the intrinsic modulation index m and associated 1σ uncertainty against the “raw”

modulation index mdata of equation (5.1). The m = mdata line is shown in blue. Green triangles are the 3σ

upper limits of sources for which variability could not be established. Calibrators 3C 286, DR 21, and 3C 274

are plotted in red. Since apparent variability due to the finite accuracy with which individual flux densities

can be measured has been corrected out of m, the expectation is that deviations from the m = mdata will

be more pronounced for sources that are not intrinsically very variable (so that the scatter in the flux density

measurements is appreciably affected, and even dominated, by measurement error). In addition, deviations

are expected to be below the line, as m should be smaller than mdata. Both these expectations are verified by

figure 5.5. Note that upper limits need not satisfy this criterion, as the “true” value of the modulation index

can take any value below the limit. Upper limits above the blue line are weak, indicating that the reason
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Figure 5.6. Two-year intrinsic modulation index m and associated 1σ uncertainty, plotted against the “raw”
modulation index, mdata, of equation (5.1) as black points with brown error bars. The m = mdata line
is shown in blue. Green triangles are the 3σ upper limits of sources for which variability could not be
established. Calibrators 3C 286, 3C 274, and DR 21 are plotted in red.
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Figure 5.7. Histogram of two-year maximum-likelihood intrinsic modulation indicesm, for the 453 CGRaBS
blazars with S0 > 400 mJy, normalized as a probability density that integrates to unity. The dashed line
represents an exponential distribution with 〈m〉 = 0.091.

variability could not be established is the poor sampling or quality of the data, and not necessarily a low

intrinsic variation in the source flux density.

For the 453 CGRaBS objects which have S0 > 400 mJy and for which variability can be established,

we plot, in figure 5.7, a histogram of their intrinsic modulation indices m normalized so that the vertical axis

has units of probability density. The dashed line represents an exponential distribution of mean 〈m〉 = 0.091

which, as we can see, is an excellent description of the data. Motivated by this plot, we will be using the

monoparametric exponential family of distributions:

f(m)dm =
1

m0
exp

[
− m

m0

]
dm, (5.8)

with mean m0 and variance m2
0, to characterize various subsamples of our blazar sample.

5.1.2.1 Impact of Longer Time Series

We now compare the results of the intrinsic modulation indices computed from the 42-month data with

those computed from the two-year data to look for systematic changes in apparent variability amplitude.

The expectation based on the two-year data set was that additional data would tend to increase the variability

amplitude on average, since many sources appeared to switch between periods of relatively steady quiescence

and periods of active variability. This is because the addition of a a period of steady flux to a source with a
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Figure 5.8. Scatter plot of 42-month versus two-year modulation indices for 1135 CGRaBS sources and
five calibrators. The single outlier well below the dashed 1:1 reference line is J1154+1225. This source
was affected by a single extreme high outlier in the two-year data set which was removed in the 42-month
analysis. Sources for which the difference in intrinsic modulation index was less than 3σ are plotted in grey.

history of strong variability will reduce its intrinsic modulation only slightly. On the other hand, a source that

has only been observed in a weakly variable state will see a large increase in its intrinsic modulation index if

it begins to vary strongly.

The data confirm our expectations. In figure 5.8 we plot the 42-month m values against the two-year

m values for the 1135 CGRaBS sources with measured m in both data sets, plus 3C 48, 3C 161, 3C 274,

3C 286, and DR 21. Figure 5.9 shows histograms of the two data sets. Clearly, most sources have 42-month

intrinsic modulation indices that are either consistent with or greater than their two-year values. Of the 1140

sources compared, 513 changed by more than 3σ. These are plotted in black in figure 5.8. One significant

exception is J1154+1225, a CGRaBS source. In the two-year light curve for this source, a single very large

high outlier survived the data cuts. This outlier was eliminated in the 42-month data set, resulting in this large

reduction in m. The actual behavior of this source does not appear to have changed substantially.

This systematic increase in the variability index suggests that the two year interval was insufficiently

long to capture the full range of behaviors in many CGRaBS sources. This is not surprising. Based on

more than 25 years of monitoring at the University of Michigan Radio Observatory and the Metsähovi Radio

Observatory in Finland, Hovatta et al. (2008) report typical flare durations of 2.5 years at 22 and 37 GHz.

In Hovatta et al. (2007), typical flaring timescales of 4–6 years, sometimes with evidence for changes on

10 year or longer timescales, were reported. In gamma rays, Abdo et al. (2010b) found higher peak-to-mean



138

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
m

0

50

100

150

200

250

300

D
en

si
ty

Figure 5.9. Histogram of the intrinsic modulation indices for the two-year (solid line) and 42-month (dashed
line) data sets for 1135 CGRaBS sources and five calibrators.

flux ratios among Fermi sources compared to those reported by EGRET. It was speculated that this difference

could result from the longer EGRET data collection period (4.5 years versus 11 months) permitting sources

to visit more emission states. Thus, our results are consistent with these explicit timescale studies and suggest

that even with the 42 month data set it is likely somewhat premature to expect our results to characterize the

full behavior of the entire sample. However, unless there is, in fact, a connection between radio variability and

gamma-ray emission, underestimates of typical variability amplitudes should affect different subpopulations

equally. This may diminish our power to compare populations, but it should not lead us to conclude that false

correlations exist.

Figure 5.10 shows a histogram of the change in intrinsic modulation index between the two-year and

42-month data sets for each source in the CGRaBS sample. The mean (median) change is 0.035 (0.021). In

figure 5.11 we show the light curves of the four sources that showed the most significant change in intrinsic

modulation index between the two data intervals. Not surprisingly, these sources all show steady flux density

prior to 2010, then either gradually increase or decrease in brightness or exhibit a sharp change in behavior

in the more recent data.

5.1.2.2 Impact of Data Outliers

The 40 m data set is not completely free of outlier points that are unlikely to represent intrinsic source

variations since the filters described in chapter 3 do not detect all such points. Although most of these

outliers are almost surely attributable to poor observing conditions, pointing offset measurement failures, and
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Figure 5.10. Change in intrinsic modulation indices between the two-year and 42-month data sets for 1135
CGRaBS sources and five calibrators.

other causes not related to actual behavior of the astronomical source, we do not delete a data point merely

based on its apparently improbable flux density value. Unless we have an unbiased criterion by which we

can eliminate the data point, we risk seriously biasing our results by rejecting source variability that does not

meet our preconceptions of “reasonable.” In many cases, detailed exploration of these data points has led to

the discovery of such independent criteria—this is how we developed the set of data filters we employ—but

at present, a fair number of these suspected unphysical outliers remain. Perhaps future work will improve the

filtering and remove these, but for now we choose to study the impact of such faulty data on our analysis to

ensure that our results are robust against their effect.

The most common extreme outliers we encounter are zero or near-zero (in some cases slightly negative)

flux density values reported for bright sources. These probably result when the telescope obtains an incorrect

pointing offset and measures blank or contaminated sky instead of the desired source. To measure the effect of

such outliers, we computed the intrinsic modulation indices for each source using the 42-month data set with

the addition of a single flux density value that was twice the average error above zero. Although in some cases

light curves are affected by multiple outliers, in general the impact of the first such outlier is much greater

than the addition of the second or third—once the probability for such an event is nonzero, the change in

likelihood due to a few additional incidents is small. This was verified by comparing the modulation indices

of the data set with one false outlier added to the same data with a second false outlier added. The mean

change in modulation index was an increase by only 0.001, which is negligible compared to the uncertainties.

We therefore only need to consider the impact of a single outlier on the intrinsic modulation index.
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Figure 5.11. Light curves for the four sources with the most significant changes in intrinsic modulation index
between the two-year and 42-month data sets. All four sources exhibit an increase in variability after 2010,
the end of the period included in the two-year data set, indicated by the dashed line.
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Figure 5.12. Grey points show the modulation index data computed with the addition of an extreme outlier
data point plotted against the modulation index for the same source calculated from the actual data. The
dashed line shows the ideal y = x line. The solid line shows the effect of adding 0.066 in quadrature with the
measured modulation index.

In figure 5.12, the grey points show the computed intrinsic modulation index using the data with the false

outlier versus the actual intrinsic modulation index for the source. In figure 5.13, the histograms of these

data sets are shown. The obvious visual difference is confirmed by a two-sample K-S test, which rejects the

hypothesis of a common parent distribution at the p ∼ 10−20 level for arising by chance. The mean of the

distribution for the real data is 0.143 and for the modified set is 0.160.

If the outliers induced a simple fixed increase in the modulation index for each source, to match the means

this would be an increase by 0.018. Applying this increase to the real data, the two sample K-S test rejects

the null hypothesis with p = 6.9× 10−4. A fixed modulation increase in quadrature with the measured value

would require an increase of 0.074 to match the means of the two data sets. The two-sample K-S test rejects

this possibility with p = 5.0 × 10−7. Apparently, and not surprisingly, the impact of an extreme outlier

depends on the properties of the light curve to which it is added.

First, we examine the change in intrinsic modulation index for a trend with the value measured for each

source. Figure 5.14 shows the quadrature difference between the intrinsic modulation index with and without

the false outlier point plotted against the actual measured value for each source. Although there is significant

scatter, it appears that the binned mean of the change is well described by a constant addition of 0.066 in

quadrature with the actual measured intrinsic modulation index. A K-S test using this constant quadrature

increase is marginally compatible, with p = 0.047 to reject the hypothesis of a common distribution. The

effect of adding this constant additional error is also shown in figure 5.12 by the solid line.

In figure 5.15 we show the same quadrature difference, now as a function of the maximum likelihood

average source flux density. A linear fit to binned mean square of the quadrature difference as a function of
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Figure 5.13. Histograms of intrinsic modulation indices for all sources using the 42-month data (solid line)
and the 42-month data with an additional extreme outlier added to each light curve (dotted line). Includes
1396 sources in each, excluding those for which only upper limits were calculated. Both curves are normal-
ized to integrate to unity.
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Figure 5.14. Grey points show the quadrature difference between the modulation indices calculated with the
addition of an extreme outlier data point and the modulation indices computed from the actual data, plotted
against the actual modulation index for the source. The black points show the binned mean difference in
modulation index. The line is the constant mean quadrature difference, 0.066. The striping evident in the
grey points is the result of rounding the modulation index values before computing the quadrature difference.
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Figure 5.15. Grey points show the quadrature difference between the modulation indices calculated with the
addition of an extreme outlier data point and the modulation indices computed from the actual data, plotted
against the maximum likelihood average flux density for the source. The black points show the binned mean
difference in modulation index using logarithmic bins in flux density. The line is a linear fit to the square of
the binned y data as a function of the logarithm of the x data, excluding the last data point.

the logarithm of the flux density is shown by the solid line, which corresponds to

∆(m2) = (0.041)2 log10

(
S0

1 Jy

)
+ (0.068)2. (5.9)

In this fit, we have excluded the last binned point because only a few data are in the bin. The lowest flux

density bin lies significantly below the trend, suggesting that sources with mean flux densities below about

100 mJy were less affected by the addition of an outlier.

Although a trend with source flux density is apparent, the systematic quadrature change in intrinsic mod-

ulation index induced by the addition of an outlier varies only between about 0.04 and 0.08. Thus, when

comparing two populations, unless the flux density distributions differ widely, this trend is unlikely to distort

the results of our population studies.

It is difficult to define a robust criterion for identifying an outlier in a data set which includes sources

that exhibit extreme actual variability. To estimate the number of such outliers, we choose a subset of the

sources for which it is relatively easy to detect an outlier. Since the processes that result in a nonphysical

outlier are connected to the instrument or observation conditions rather than astronomical effects, we can

safely assume that the fraction of affected sources in such a subset is representative of the entire sample.

We therefore examine bright sources with median flux density median(S) ≥ Smin, where low outliers are

more prominent. To avoid extremely variable sources, we further restrict this study to sources with most

measurements near the median. We require that at least a fraction Rstable of the flux densities for the source
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Table 5.1. Fraction of sources determined to be affected by an extreme low outlier

Test Parameters Test Results
Smin Rcentral Rstable Routlier Ntotal Nstable Noutlier Outlier Fraction
(Jy) (%)
1.0 0.5 0.5 0.3 163 162 8 4.9
1.0 0.5 0.5 0.2 163 162 7 4.3
0.5 0.5 0.5 0.3 408 407 34 8.4
0.5 0.8 0.5 0.3 408 407 34 8.4
0.5 0.5 0.8 0.3 408 387 30 7.8
0.5 0.5 0.8 0.2 408 387 22 5.7

Note: The estimates do not vary rapidly for small changes in test parameters. We adopt an approxi-
mate outlier fraction of 8% for our population, meaning that about 8% of sources are affected by at
least one significant outlier.

be within a ±Rcentral ×median(S) of the median. We then count the source as having an outlier if any flux

density in its light curve is below Routlier ×median(S). In table 5.1 we tabulate the results of this test for

various values of the parameters. We conclude that no more than about 8% of sources are affected by extreme

outliers.

It is extremely unlikely that the incidence of such outliers is tied to physical properties of the sources being

observed, so we can reasonably assume that about 8% of the sources in any of the subsamples we select for

population studies are affected by outliers. We conclude from these studies that the net effect of outliers in

the data set is to add a false modulation of about 0.066 in quadrature with the intrinsic modulation index that

would be measured in the absence of such outliers. This increase will affect about 8% of the sources in any

physically selected sample. When comparing samples, these conclusions are valid as long as the flux density

distributions of the two samples have similar dynamic ranges. If one sample is substantially different in flux

density, particularly if it is clustered below about 100 mJy, then the inclusion of outliers in the data set may

affect the samples differently.

More sources are likely to be affected by random outliers in the 42-month data set than the two-year

data set, simply because each additional observation provides an opportunity for an outlier. Assuming the

outlier incidence rate is constant, a rough estimate of the number of sources affected in the two-year data set

is 8% × 24/42 = 5%. In other words, 3% fewer sources are likely to be affected in the two-year data set.

For simplicity, if we assume the 0.066 average modulation index increase were added linearly, the additional

3% of affected sources would be expected to add about 0.03× 0.066 = 0.002 to the mean modulation index

of the population. Because the addition is in quadrature, this is an overestimate of the likely impact. The

actual mean increase of 0.035 discussed in section 5.1.2.1, therefore, cannot be explained by the additional

exposure to outliers and can be safely attributed to changes in the observed source behavior.
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5.1.3 A Formalism for Population Studies

We now turn our attention to whether the intrinsic variability amplitude at 15 GHz, as quantified by m,

correlates with the physical properties of the sources in our sample. To this end, we will determine the

distribution of intrinsic variability indices m for various subsets of our monitoring sample, and we will

examine whether the various subsets are consistent with being drawn from the same distribution.

We will do so using again a likelihood analysis. We will assume that the distribution of m in any subset is

an exponential distribution of the form given in equation (5.8). Since distributions of this family are uniquely

described by the value of the mean, m0, our aim is to determine m0, or rather the probability distribution of

possible m0 values, in any specific subset.

The likelihood of a single observation of a modulation index mi of Gaussian uncertainty σi drawn from

an exponential distribution of mean m0 is

`i =

∫ ∞

m=0

dm
1

m0
exp

(
− m

m0

)
1

σi
√

2π
exp

[
− (m−mi)

2

2σ2
i

]

=
1

m0σi
√

2π
exp

[
−mi

m0

(
1− σ2

i

2m0mi

)]
×

∫ ∞

m=0

dm exp

[
− [m− (mi − σ2

i /m0)]2

2σ2
i

]
, (5.10)

where, to obtain the second expression, we have completed the square in the exponent of the integrand. The

last integral can be calculated analytically, yielding

`i =
1

2m0
exp

[
−mi

m0

(
1− σ2

i

2m0mi

)]
×

{
1 + erf

[
mi

σi
√

2

(
1− σ2

i

m0mi

)]}
. (5.11)

If we want (as is the case for our data set) to implement data cuts that restrict the values of mi to be larger

than some limiting value ml, the likelihood of a single observation of a modulation index mi will be the

expression above multiplied by a Heaviside step function, and renormalized so that the likelihood `i,cuts to

obtain any value of mi above ml is 1:

`i,cuts[ml] =
H(mi −ml)`i∫∞
mi=ml

dmi`i
. (5.12)

This renormalization enforces that there is no probability density for observed events “leaking” in the pa-

rameter space of rejected mi values. In this way, it “informs” the likelihood that the reason why no objects

of mi < ml are observed is not because such objects are not found in nature, but rather because we have

excluded them “by hand.”
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The integral in the denominator is analytically calculable,

∫ ∞

mi=ml

dmi`i =
1

2

{
exp

(
σ2
i

2m2
0

− ml

m0

)
×

[
1 + erf

(
ml

σi
√

2
− σi

m0

√
2

)]

+1− erf

(
ml

σi
√

2

)}
. (5.13)

The likelihood of N observations of this type is

L(m0) =

N∏

i=1

`i,cuts[ml] . (5.14)

If we wish to study two parts of the S0 parameter space with different cuts (as in, for example, figure 5.5,

where we have a cut of ml = 0.02 for S0 > 0.4 Jy, and a different cut of mu = 0.06 for 0.06 Jy ≤ S0 ≤
0.4 Jy), we can implement this in a straightforward way, by considering each segment of the S0 parameter

space as a distinct “experiment,” with its own data cut. If the first “experiment” involves Nl objects surviving

theml cut, and the second “experiment” involvesNu objects surviving themu cut, then the overall likelihood

will simply be

L(m0) =

Nl∏

i=1

`i,cuts[ml]

Nu∏

i=1

`i,cuts[mu] . (5.15)

Maximizing equation (5.15) we obtain the maximum-likelihood value of m0, m0,maxL. Statistical uncertain-

ties on this value can also be obtained in a straightforward way, as equation (5.15), assuming a flat prior on

m0, gives the probability density of the mean intrinsic modulation index m0 of the subset under study.

5.2 Null Tests

Here we begin to apply the formalism introduced in section 5.1.3 to examine whether the intrinsic modu-

lation index m correlates with the properties of the sources in our sample. We will be testing whether the

distributions of m-values in subsets of our monitoring sample split according to some source property are

consistent with each other. Before considering physically motivated population splits, we need to be certain

that our formalism is correctly implemented. To verify that our analysis does not yield spurious results, we

first discuss three null test cases where the likelihood analysis should not find a difference in the variability

properties of the different subsets considered.

Because these null tests are tests of the method rather than tests of the source populations, we do not

expect any significant change between the two-year and 42-month data sets. We therefore performed two

of the three tests with only the two-year data set. As a sanity check we verified that the test described in

section 5.2.2 below returned a null result with both two-year and the 42-month data sets.
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Figure 5.16. Verification that the data cuts described in section 5.1.2 are correctly implemented, using the
two-year CGRaBS data. Left: Probability density of m0 for the subset of bright CGRaBS blazars not found
in 1LAC, for two values of the cutoff for data acceptance: ml = 0.02 (solid line, maximum-likelihood value
and 1σ error m0 = 0.073 ± 0.004), and ml = 0.06 (dashed line, maximum-likelihood value and 1σ error
m0 = 0.072+0.006

−0.005). The two distributions are consistent with a single value. Right: Probability density of
the difference between the mean modulation index m0 for the two sets. The difference (0.001 ± 0.007) is
consistent with zero within 1σ.

This and the following sections include a number of histograms of modulation index for various sub-

populations of the sample. It is important to remember that we have employed the data cuts described in

section 5.1.2 prior to constructing these subpopulations. This distorts the appearance of the lowest bins in

these histograms where we have excluded the parameter space region in which our sampling is incomplete.

The likelihood analysis is properly “informed” that this parameter space region has been excluded, so this is

merely an aesthetic effect.

5.2.1 Verifying Data Cuts

The first case tests whether the data cuts discussed in section 5.1.2 are implemented correctly in section 5.1.3.

To this end, we calculateL(m0) for the set of gamma-ray–quiet CGRaBS blazars (blazars not found in 1LAC)

in our monitoring sample with S > 0.4 Jy, in two different ways: first, by applying an m cut at ml = 0.02;

second, by applying an m cut at ml = 0.06 (a much more aggressive cut than necessary for the particular

bright blazar population). The increased value of ml in the second case should not affect the result other than

by reducing the number of data points and thus resulting in a less constraining likelihood for m0. This is

indeed the case, as we see in the left panel of figure 5.16, where we plot the probability density of m0 for the

two subsets. That the two distributions are consistent with each other is explicitly demonstrated in the right

panel of figure 5.16, where we plot the probability density of the difference between the means m0 of the two
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Figure 5.17. Null test verification using the two-year data. Left: Probability density ofm0 for bright CGRaBS
blazars with seconds of right ascension < 30 s (solid line, maximum-likelihood value and 1σ error m0 =
0.088± 0.006) or≥ 30 s (dashed line, maximum-likelihood value and 1σ error m0 = 0.096+0.007

−0.006). The two
distributions are consistent with a single value. Right: Probability density of the difference between the mean
modulation index m0 for the two sets. The difference (−0.008± 0.009) is consistent with zero within 1σ.

subsets (which is formally equal to the cross-correlation of their individual distributions). The difference is

consistent with zero within 1σ.

5.2.2 Physically Insignificant Population Split

The second case tests whether a split according to a source property without physical meaning and with the

same value for the cutoff modulation index ml will yield probability densities for the m0 that are consistent

with each other. For this reason, we split the population of bright (S > 0.4 Jy) blazars in the sample into two

subsets in the following way: we divide the right ascension of each source by 1 min. If the remainder of this

operation is <30 s, we include this source in the first subsample; if the remainder is ≥30 s we include the

source in the second subsample.

We first applied this test to the two-year CGRaBS data set. The results are shown in figure 5.17. As

expected, the probability distributions of m0 for the two subsamples, shown in the left panel of figure 5.17,

are consistent with each other. This is explicitly demonstrated in the right panel, which shows the probability

density of the difference between the m0 in the two subsamples. The difference is consistent with zero

within 1σ.

As a sanity check, we repeated this null test with the 42-month data set including bright (S > 0.4 Jy)

sources from both the CGRaBS and 1LAC samples. The resulting probability distributions are shown in

figure 5.18. Again, the populations are consistent with each other to well within 1σ. The most likely values

for the m0 have increased for both bins relative to the two-year results. This is because we now include the
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Figure 5.18. Null test verification using the 42-month data. Left: Probability density of m0 for sources with
seconds of right ascension<30 s (solid line, maximum likelihood value and 1σ error 0.127+0.009

−0.008) and≥30 s
(dashed line, maximum likelihood value and 1σ error 0.129 ± 0.008). The two distributions are consistent
with a single value. Right: Probability density of the difference between the mean modulation index m0 for
the two sets. The peak of the distribution (0.002+0.011

−0.012) is much less than 1σ from zero, as expected.

more variable 1LAC sample (see section 5.3) and because we have increased the time series length for the

CGRaBS sample which, in section 5.1.2.1, we showed leads to a systematic increase in measured variability

amplitude. In figure 5.19 we show the histograms of the intrinsic modulation indices in the two populations

for the 42-month data set.

5.2.3 Galactic Latitude Split

In the final test case, we use the two-year CGRaBS data set to examine whether a split in galactic latitude

yields consistent probability densities for the two subsamples. Again, we expect consistent distributions

because this division does not reflect an intrinsic physical property of the sources. For this test, we restrict

the sample to bright (S > 0.4 Jy) FSRQs and use the cutoff modulation index ml = 0.02. We split between

low- and high-galactic latitude at |b| = 39◦. This produces similarly sized subsamples (181 and 168 for low-

and high-latitude, respectively). The left panel in figure 5.20 shows the probability distributions for m0 for

these two subsamples, which, as anticipated, are consistent with each other. The right panel of figure 5.20

shows the probability density for the difference between m0 for the two subsamples, which is consistent with

zero to within 1σ.

This test is not a pure null test because there is a potentially significant observational difference between

the sources in the two populations. Sources at lower galactic latitudes are more likely to be affected by

scintillation due to the galactic interstellar medium (e.g., Rickett et al. 2006). However, due to the galactic
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Figure 5.19. Histograms of 42-month intrinsic modulation index values for bright (S0 > 0.4 Jy) sources
with seconds of right ascension ≥30 s (top, 246 sources) and <30 s (bottom, 264 sources). Each histogram
is normalized to integrate to unity.

latitude cut |b| ≥ 10◦ that defines our samples and the relatively high observation frequency, this was not

expected to be a significant effect. This expectation was confirmed by our results.

5.3 Gamma-Ray Loud versus Quiet Populations

We now turn from null tests to studying subsets defined according to physical properties of the sources.

The first criterion we apply is whether the source has been detected by Fermi-LAT at a significance level

high enough to warrant inclusion in the 1LAC catalog. For sources with S0 < 0.4 Jy we apply a cut

m > mu = 0.06 and for sources with S0 ≥ 0.4 Jy a cut m > ml = 0.02. The results for the two-year

data set are shown in figure 5.21. The set of sources that are included in 1LAC is depicted by a solid line,

while the set of sources that are not in 1LAC is depicted by a dashed line. The two are not consistent with

each other at a confidence level of 6σ (right panel of figure 5.21), with a maximum-likelihood difference of

5.7 percentage points, with gamma-ray–loud blazars exhibiting, on average, a higher variability amplitude by

almost a factor of 2 versus gamma-ray–quiet blazars.

This significant difference persists in the 42-month data set. Here again, we have considered a CGRaBS

source to be gamma-ray loud if it appeared in the 1LAC sample. The likelihood distributions for the popula-

tion mean intrinsic modulation indices are shown in the left panel of figure 5.22. The right panel shows the

probability density for the difference in m0 between the two populations. The values for both subpopulations

are somewhat larger than before, but the most likely difference has increased and continues to be significant
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Figure 5.20. Comparison of bright (S > 0.4 Jy) FSRQs at high and low galactic latitude using the two-year
data set. Left: Probability density ofm0 for the subset of bright (S > 0.4 Jy) CGRaBS FSRQs withm > 0.02
at low galactic latitude (|b| < 39◦, solid line, maximum-likelihood value and 1σ error m0 = 0.084+0.007

−0.006) or
high galactic latitude (|b| ≥ 39◦, dashed line, maximum-likelihood value and 1σ error m0 = 0.087+0.007

−0.006).
The two distributions are consistent with a single value. Right: Probability density of the difference between
the mean modulation index m0 for the two sets. The difference (−0.003 ± 0.009) is consistent with zero
within 1σ.
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Figure 5.21. Comparison of gamma-ray–loud and gamma-ray–quiet CGRaBS populations using the two-year
data set. Left: Probability density of m0 for CGRaBS blazars in our monitoring sample that are (solid line,
maximum-likelihood value and 1σ error m0 = 0.127+0.010

−0.009) and are not (dashed line, maximum-likelihood
value and 1σ error m0 = 0.070 ± 0.003) included in 1LAC. The two distributions are not consistent with a
single value. Right: Probability density of the difference between the mean modulation index m0 for the two
sets. The peak of the distribution (0.057+0.010

−0.009) is 6σ away from zero.
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Figure 5.22. Comparison of gamma-ray–loud and gamma-ray–quiet CGRaBS populations using the 42-
month data set. Left: Probability density of m0 for the CGRaBS blazars in our monitoring sample that
are (solid line, maximum likelihood value and 1σ error 0.163+0.012

−0.011) and are not (dashed line, maximum
likelihood value and 1σ error 0.096± 0.003) included in 1LAC. The two distributions are not consistent with
a single value. Right: Probability density of the difference between the mean modulation index m0 for the
two sets. The peak of the distribution (0.066+0.013

−0.012) is more than 6σ away from zero.

at the 6σ level. In figure 5.23, we plot the histograms of intrinsic modulation indices for the gamma-ray–loud

and gamma-ray–quiet CGRaBS subpopulations using the 42-month data.

Clearly the gamma-ray–loud subset of the CGRaBS sample is much more variable, on average, than the

gamma-ray–quiet subset. While this is likely an important clue about the physical conditions necessary for

the production of observable gamma rays in a blazar, before further discussing this result we will examine

the variability difference between other subsets of our sample. Both the CGRaBS and 1LAC samples contain

a variety of source types and properties, so this may shed further light on the significant differences between

gamma-ray–loud and gamma-ray–quiet sources.

5.4 BL Lac Object versus FSRQ Populations

We next examine the variability amplitude as a function of optical spectral classification. In this section we

consider the BL Lac and FSRQ subsets of our samples and examine whether they differ in terms of 15 GHz

variability. First, we examine the CGRaBS sample using the two-year data set. The probability densities for

the mean m0 of the two subsets are shown in the left panel of figure 5.24. The results for BL Lacs (FSRQs)

are plotted as a solid (dashed) line. The two curves are not consistent with each other—the BL Lacs appear

to have, on average, higher variability amplitude than the FSRQs. We verify this finding by plotting, in the

right panel, the probability density of the difference between the m0 of BL Lacs and FSRQs. The most likely

difference is 3.2 percentage points, and it is more than 3σ away from zero. Note that the difference between
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Figure 5.23. Histograms of 42-month intrinsic modulation index values for CGRaBS sources detected (top,
197 sources) and not detected (bottom, 833 sources) in gamma rays by the LAT in the 1LAC catalog. Each
histogram is normalized to integrate to unity.

BL Lacs and FSRQs is less significant than that between gamma-ray–loud and gamma-ray–quiet blazars.

This is both because the most likely difference in m0 values between the BL Lac and FSRQ subsets is

smaller and because the BL Lac sample is smaller than the gamma-ray–loud blazar sample: only 94 BL Lacs

satisfy the data cuts we impose, versus 191 gamma-ray–loud blazars of all types. As a result, the constraints

on the intrinsic distribution of modulation indices (i.e., on m0) are stronger in the latter case.

Turning now to the 42-month data set, we first examine the CGRaBS population. The likelihood distri-

butions for the population mean intrinsic modulation indices are shown in figure 5.25 and figure 5.26 shows

the histogram of the intrinsic modulation indices for sources identified as BL Lacs or as FSRQs within the

CGRaBS sample. The significant distinction in variability between CGRaBS BL Lac and FSRQ sources

remains, and continues to appear at the >3σ confidence level.

In figure 5.27, we show the 42-month results for the 1LAC sample, and in figure 5.28 we show the

modulation index histograms. Using this sample, the most likely difference in variability amplitude between

the two samples is now found to be less than 2σ significant. Remarkably, the difference has not only faded

in significance, but the sign of the most likely difference has switched. In the 1LAC sample, the BL Lac

subpopulation is found to be less variable than the FSRQ subpopulation, whereas BL Lacs were found to be

more variable in the CGRaBS sample. We will discuss this further in section 5.6 below.
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Figure 5.24. Comparison of CGRaBS BL Lac and FSRQ populations using two-year data. Left: Probability
density of m0 for BL Lac (solid line, maximum-likelihood value and 1σ error m0 = 0.112+0.013

−0.011) and
FSRQ (dashed line, maximum-likelihood value and 1σ error m0 = 0.080 ± 0.003) CGRaBS blazars in our
monitoring sample. The two distributions are not consistent with a single value. Right: Probability density
of the difference between the mean modulation index m0 for the two sets. The peak of the distribution
(0.032+0.013

−0.011) is more than 3σ away from zero.
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Figure 5.25. Comparison of CGRaBS BL Lac and FSRQ populations using 42-month data. Left: Probability
density of m0 for the CGRaBS blazars in our monitoring sample that are identified as BL Lac (solid line,
maximum likelihood value and 1σ error 0.150+0.015

−0.013) and as FSRQ (dashed line, maximum likelihood value
and 1σ error 0.105± 0.004). The two distributions are not consistent with a single value. Right: Probability
density of the difference between the mean modulation indexm0 for the two sets. The peak of the distribution
(0.045+0.015

−0.014) is about 3.5σ away from zero.
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Figure 5.26. Histograms of 42-month intrinsic modulation index values for CGRaBS sources classified as
BL Lac (top, 119 sources) and as FSRQ (bottom, 727 sources). Each histogram is normalized to integrate to
unity.
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Figure 5.27. Comparison of 1LAC BL Lac and FSRQ populations using 42-month data. Left: Probability
density of m0 for the 1LAC blazars in our monitoring sample that are identified as BL Lac (solid line,
maximum likelihood value and 1σ error 0.142+0.015

−0.013) and as FSRQ (dashed line, maximum likelihood value
and 1σ error 0.168+0.014

−0.012). The two distributions are consistent with a single value. Right: Probability
density of the difference between the mean modulation indexm0 for the two sets. The peak of the distribution
(0.027± 0.019) is less than 2σ away from zero.
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Figure 5.28. Histograms of 42-month intrinsic modulation index values for 1LAC sources classified as
BL Lac (top, 107 sources) and as FSRQ (bottom, 176 sources). Each histogram is normalized to integrate to
unity.

5.5 Redshift Trend

Finally, we examine the dependence of variability amplitude on redshift. In the left panel of figure 5.29

we plot the mean m (as calculated by a simple average rather than the likelihood analysis) in redshift bins

of ∆z = 0.5 for bright (S ≥ 400 mJy) CGRaBS FSRQs with known redshifts in our monitoring sample,

using the two-year data set. We exclude BL Lacs from this analysis so as not to bias the result, as BL Lacs

with known redshifts are located at low z, and we have also already shown that they have a higher mean

m compared to FSRQs within the CGRaBS sample. Although the errors are large, there is a hint of a trend

toward decreasing variability amplitude with increasing redshift. We further test the significance of this result

by splitting sources in our monitored sample in high- and low-redshift subsets with the dividing redshift at

z = 1 (dashed line in figure 5.29). In the two subsets we also include faint (S < 400 mJy) sources, with the

usual cut at mu = 0.06. The probability density for the mean m0 of each subset is shown in the left panel of

figure 5.30, where the solid curve corresponds to low-redshift blazars and the dashed curve to high-redshift

FSRQs. We find that low-redshift FSRQs have higher, on average, intrinsic modulation indices. The result

is shown to be statistically significant in the right panel of figure 5.30, where we plot the probability density

of the difference between m0 in each subset. The most likely difference is found to be about 2.4 percentage

points, and more than 3σ away from zero.

In figures 5.31 and 5.32, we plot the likelihood distributions and m0 difference probability distributions

for high- and low-redshift subpopulations of the CGRaBS and 1LAC samples, now computed using the 42-

month data set. The histograms of the modulation indices in each sample are shown in figures 5.33 and 5.34.

Although in both cases we continue to find that the low-redshift sources are characterized by greater average
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Figure 5.29. Mean m in redshift bins of 0.5 for bright (S > 400 mJy) FSRQs in our CGRaBS monitoring
sample using the two-year (left) and 42-month (right) data. Horizontal error bars indicate the bin width,
vertical error bars indicate the uncertainty in the mean computed from the scatter in the data in that bin.
The dashed line indicates the z = 1 split between high and low redshift sources used for the population
comparison.
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Figure 5.30. Comparison of high- and low-redshift CGRaBS FSRQs using the two-year data set. Left:
Probability density ofm0 for FSRQs in our monitoring sample with z < 1.0 (solid line, maximum-likelihood
value and 1σ error m0 = 0.095± 0.006) and z ≥ 1.0 (dashed line, maximum-likelihood value and 1σ error
m0 = 0.071±0.004). The two distributions are not consistent with a single value. Right: Probability density
of the difference between the mean modulation index m0 for the two sets. The peak of the distribution
(0.024± 0.007) is more than 3σ away from zero.
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Figure 5.31. Comparison of high- and low-redshift CGRaBS FSRQ populations using 42-month data. Left:
Probability density of m0 for the CGRaBS FSRQs with known redshift in our monitoring sample with z < 1
(solid line, maximum likelihood value and 1σ error 0.114 ± 0.007) and z ≥ 1 (dashed line, maximum
likelihood value and 1σ error 0.100± 0.005). The two distributions are consistent with a single value. Right:
Probability density of the difference between the mean modulation index m0 for the two sets. The peak of
the distribution (0.014+0.009

−0.008) is less than 2σ away from zero.
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Figure 5.32. Comparison of high- and low-redshift 1LAC FSRQ populations using 42-month data. Left:
Probability density of m0 for the 1LAC FSRQs with known redshift in our monitoring sample with z < 1
(solid line, maximum likelihood value and 1σ error 0.192+0.023

−0.020) and z ≥ 1 (dashed line, maximum likelihood
value and 1σ error 0.149+0.017

−0.014). The two distributions are consistent with a single value. Right: Probability
density of the difference between the mean modulation indexm0 for the two sets. The peak of the distribution
(0.043+0.028

−0.026) is less than 2σ away from zero.
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Figure 5.33. Histograms of 42-month intrinsic modulation index values for CGRaBS sources at z ≥ 1 (top,
450 sources) and z < 1 (bottom, 277 sources). Each histogram is normalized to integrate to unity.

0

1

2

3

4

5

6

7

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
m

0

1

2

3

4

5

D
en

si
ty

Figure 5.34. Histograms of 42-month intrinsic modulation index values for 1LAC sources at z ≥ 1 (top, 95
sources) and z < 1 (bottom, 81 sources). Each histogram is normalized to integrate to unity.
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intrinsic modulation index, with 42 months of data this difference is no longer even 2σ significant for either

the CGRaBS or the 1LAC samples. In the right panel of figure 5.29, we plot the binned average modulation

index versus redshift using the 42-month CGRaBS data set. Although the mean value in each bin still shows

a hint of a trend, the scatter has also increased in the higher-z bins, diluting the appearance of a trend. That

the additional data has reduced, not enhanced, the significance of this result suggests that it was merely a

chance effect. Nonetheless, because evidence for cosmological evolution of blazar variability would be an

important finding, we will examine this more closely.

Understanding the implications of the presence or absence of a trend of variability amplitude with redshift

is complicated by competing observational and selection effects that can push the trend in either direction.

To claim or rule out cosmological source evolution will require quantitative measurement or modeling of

these effects. For example, at higher redshift, the 15 GHz observation frequency corresponds to a higher rest

frame emission frequency. Because variability amplitude generally increases with increasing cm-wave radio

frequency Stevens et al. (e.g., 1994), this would lead to an increase in variability amplitude with increasing z.

The effects of Doppler beaming of the blazar jet emission also gives rise to selection effects which are

somewhat more difficult to quantify (Lister & Marscher 1997). In this section, we will examine in detail the

effect of one effect—cosmological time dilation—which leads to an underestimate of variability amplitude

at higher z.

5.5.1 Cosmological Time Dilation

The redshifts assigned to the sources in our sample are determined spectroscopically—that is, by identifying

the observer-frame wavelengths, λobs, of photons that are emitted or absorbed in the rest frame of the source.

By identifying patterns of emission or absorption lines that correspond to atomic or molecular line spectra,

the rest-frame wavelengths, λrest, of those lines can be determined. Then the redshift z of the source is

obtained as

z =
λobs
λrest

− 1 =
νrest
νobs

− 1. (5.16)

This redshift is normally dominated by the expansion of space, so this redshift is ascribed to the Doppler

effect due to the cosmological motion of the source away from the observer.

Because this effect is due to the expansion of space, it is expected that the observed spectral redshift

will be accompanied by a cosmological time dilation effect. This has been confirmed by, e.g., Blondin et al.

(2008), who compared the evolution of Type Ia supernovae at various redshifts. Thus, a rest-frame time

interval ∆trest for a source at redshift z will correspond to an observed interval

∆tobs = (1 + z) ∆trest. (5.17)
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Inverting equation (5.17), it is clear that, for equal observer time intervals, a source that is at a lower

redshift has been observed for a longer rest frame interval. The observer is thus more likely to observe a full

cycle1 of variability behavior from a source at lower z since more rest-frame time has passed during which

variability-causing events, whatever their physical nature, can occur. As a result, we are likely to sample

more flares and observe more periods of variability in a source for which we have observed a long rest-frame

time interval.

We need not rely on our intuition to conclude that time dilation will tend to reduce variability amplitude as

redshift increases—we have data to prove it. In section 5.1.2.1, we demonstrated that in almost all cases, the

intrinsic modulation index for a source increased or remained level between the two-year and the 42-month

data sets. That is, by increasing the observed time period for a given source, a larger variability amplitude

typically results.

5.5.2 Compensating for Time Dilation

Virtually all monitoring programs, including ours, observe their sources either over a time interval that is the

same for each source—the total length of operation of the program—or that may be shorter for sources added

or dropped during operation, but not selected with regard to the redshift of the source. To compensate for this

effect, we simply discard some data from low-z sources in order to compare the intrinsic modulation index

found in equal rest-frame time intervals.

For sources at near-zero redshift, the time dilation effect will not be significant so the rest-frame and

observer-frame intervals will be nearly equal. Our sample includes redshifts as high as 5.47 (J0906+6930),

however, for which the dilation factor will be 1 + z = 6.47, which is clearly significant. Our 42 months of

data correspond to only 6.5 months in the rest frame at this redshift. Because the level of short-timescale

variability in a given blazar seems to vary with time, sometimes apparently switching from a stable state to

a variable one, we want to keep our measurement intervals long enough to give each source a fair chance to

enter a variable state. We therefore use only sources with a redshift z ≤ 3.0, for which we have sampled a

rest-frame interval of 10.5 months, or 315 d.

5.5.3 Selecting Time Intervals

A subset of the data for each source to use for the equal-∆trest comparison was selected as follows. First,

from the redshift z, the time dilation factor (1 + z) determines the observer-frame time period to sample,

∆tobs = (1 + z) × 315 d. Next, we must choose a segment of the data for the source with this length. To

1The term “cycle” is used loosely here: although it is clear from our light curve data that many blazars
exhibit long periods of low variability followed by flares or periods of rapid variation, there is no particular
reason to believe this is cyclical in a periodic sense. Searches for periodicity have not found convincing
evidence, see, e.g., Hovatta et al. (2007).
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Figure 5.35. Observer time interval for each source plotted versus redshift. The dashed line shows the
expected slope, dt/dz = 315 d, for reference.

do this, we choose a random start date within the data set for the source, at least ∆tobs days before the last

measurement.

We choose a random start date for each source to avoid correlating the redshift of a source with the observ-

ing conditions. If, say, we simply chose an interval of the desired length that ended on the last measurement

for each source, low-redshift sources would all include data observed in the winter and spring of 2011. If the

conditions were slightly different during that time than the average over the 42 months of the program, this

would lead to a bias. By choosing the interval at random, any such changing conditions are averaged as much

as possible over the population of low-z sources.

After selecting a start date, we must ensure that interruptions in our program have not drastically reduced

the number of measurements in the interval. First, we extend the end date of the selection to ensure that

an outage ∆tobs days after the start date does not reduce the actual observed interval. Figure 5.35 shows

the actual observer time interval selected for each source. We also require that the selected interval contains

at least an average of one data point per 11 d (in the observer frame). If fewer data than this have been

chosen, we select another random start date and repeat this process until an adequate number of data survive.

Figure 5.36 shows the number of data points selected per source as a function of redshift.

From our 1LAC sample, 4 sources were dropped from this analysis because they were observed for less

than 315 d in their rest frame. As shown in figure 5.37, these did not substantially alter the redshift distribu-

tion. A K-S test comparing the full data set with that of the surviving data does not reject the hypothesis that

the two are drawn from the same distribution, with 1− p = 2× 10−15 (i.e., p ∼ 1).
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Figure 5.36. Number of data points in the equal-∆trest data sample for each source. The dashed line shows
the minimum accepted number of data at each z.
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Figure 5.37. Histogram of redshifts for the 1LAC FSRQs with known z < 3.0. Hatched regions show the
effect of dropping 4 sources that were sampled less than 315 d in their rest frames. A K-S test comparing
these distributions does not reject the null hypothesis that the distributions are equal.
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Figure 5.38. Comparison of high- and low-redshift 1LAC FSRQ populations using equal rest-frame time
periods from the 42-month data. Left: Probability density of m0 for the 1LAC FSRQs with known redshift
in monitoring sample with z < 1 (solid line, maximum likelihood value and 1σ error 0.162+0.020

−0.017) and z ≥ 1

(dashed line, maximum likelihood value and 1σ error 0.128+0.017
−0.014). The two distributions are consistent with

a single value. Right: Probability density of the difference between the mean modulation index m0 for the
two sets. The peak of the distribution (0.034+0.024

−0.025) is less than 2σ away from zero.

5.5.4 Equal Rest-Frame Time Interval Results

Using the shortened data sets to provide equal rest-frame time intervals for all sources in the 1LAC population

with z < 3, we remove the effect of time dilation from the observed modulation index. In figure 5.38, we

plot the likelihood distribution for the m0 parameters and for the difference in m0 between the 1LAC FSRQs

at z < 1 from those at z ≥ 1. The low-redshift source population is still found to have a larger average

modulation index, and this is still not a statistically significant result.

As expected, the average intrinsic modulation index in both the high- and low-redshift bins were smaller

when the shorter equal rest-frame time intervals were used, although in both cases the difference was not a

statistically significant change beyond the 1σ level. For the high-redshift population, the difference was

∆mz≥1 = 0.128− 0.149 = −0.021± 0.021, (5.18)

where we have computed the uncertainty in this difference approximately, using the average of the upper and

lower error bars for the quantities being subtracted. For the low-redshift population, the difference was

∆mz<1 = 0.162− 0.192 = −0.030± 0.029, (5.19)

again computing uncertainties using the average of the upper and lower error bars for each value.
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We conclude that the effect of cosmological time dilation on our earlier result was not significant, but

our results are consistent with there being a small effect on our data. The change was smaller for high-z

sources, as expected because nearly the entire time series was used, whereas time series for low-z sources

were trimmed more substantially.

5.6 CGRaBS versus 1LAC

It is clear that the population of sources predicted to be gamma-ray loud in the CGRaBS paper differed sub-

stantially from the sources actually detected by the Fermi-LAT instrument during the first year of operation.

In section 4.2, we demonstrated BL Lac objects made up a much larger fraction of the 1LAC sample than of

the CGRaBS sample. This can be attributed to instrumental differences between EGRET and the LAT. This

became evident from the reported EGRET “GeV excess” (Hunter et al. 1997). This excess diffuse gamma-ray

emission was not confirmed by Fermi (Abdo et al. 2009b) and is now believed to be a systematic artifact due

to uncertain instrumental response above about 1 GeV (Stecker et al. 2008). As a result, high-energy results

from the EGRET instrument are suspect, limiting its ability to detect spectrally hard sources. The LAT, which

is especially efficient at detecting sources via 1 GeV photons, is thus more efficient than EGRET at detecting

BL Lacs because they typically exhibit hard gamma-ray spectra (Abdo et al. 2010a, 2010c).

We found in section 5.3 that gamma-ray–loud CGRaBS sources that were part of the 1LAC sample are

significantly—more than 6σ—more variable than are gamma-ray–quiet sources. Then in section 5.4 we

showed that in the CGRaBS sample, BL Lac objects are significantly more variable than FSRQs, whereas in

1LAC, the situation is reversed (and no longer statistically significant). What can we conclude from these

observations?

We know that the CGRaBS and 1LAC samples are not drawn from the same parent distribution. Is

this true of subpopulations within those two samples? First, let us examine whether the BL Lac objects

are consistent with coming from a common parent sample. In the left panel of figure 5.39 we compare the

likelihood distributions for m0 for the BL Lac objects in the CGRaBS and 1LAC samples. These samples

are consistent with a common value for m0 to within 1σ. Since the BL Lac populations appear to exhibit

the same average variability amplitude, the FSRQ variability amplitudes must differ to explain the overall

disagreement between the CGRaBS and 1LAC samples.

This is just what we find. In the right panel of figure 5.40, we compare the FSRQ variability amplitudes

between the CGRaBS and 1LAC samples. The 1LAC FSRQ population is much more variable with m0 =

0.168+0.014
−0.012 whereas for the CGRaBS FSRQsm0 = 0.105±0.004. This most likely difference of 0.063+0.014

−0.014

is significant at nearly the 6σ level. The CGRaBS FSRQs are, on average, much less variable at 15 GHz than

the gamma-ray–loud 1LAC FSRQs.

This enhanced radio variability amplitude among gamma-ray–loud FSRQs together with the equivalence

of the variability in the BL Lac population would be expected if the gamma-ray–loud FSRQs are more
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Figure 5.39. Comparison of CGRaBS and 1LAC BL Lac populations using the 42-month data. Left: Probabil-
ity density of m0 for the CGRaBS BL Lacs (solid line, maximum likelihood value and 1σ error 0.150+0.015

−0.013)
and 1LAC BL Lacs (dashed line, maximum likelihood value and 1σ error 0.142+0.015

−0.013). The two distributions
are consistent with a single value. Right: Probability density of the difference between the mean modulation
index m0 for the two sets. The peak of the distribution (0.008± 0.020) is less than 1σ away from zero.

strongly beamed than their gamma-ray–quiet counterparts. This could be due to different inverse Compton

seed photon sources between the two classes. The Doppler beaming pattern for the Compton component of

EC models is narrower about the jet axis than that for the synchrotron component, while both components are

affected by the same beaming pattern in SSC sources (Dermer 1995). The SEDs of FSRQ sources frequently

require EC models, while BL Lac objects with high-frequency SED peaks (HBLs) are usually consistent with

SSC models (e.g., Böttcher 2007; Abdo et al. 2010c). While low spectrally peaked BL Lacs (LBLs) more

often resemble FSRQs in this regard, Fermi was much more efficient at detecting the HBLs, which may be

reflected in the statistics. Thus, it seems that for FSRQ sources, radio spectral properties alone are insufficient

to predict gamma-ray emission. Additional data sensitive to the beaming angle, such as variability statistics,

are also needed to discriminate between the gamma-ray–loud and gamma-ray–quiet FSRQs.

5.6.1 Flux Density Comparisons

We can also compare the brightness distributions of the CGRaBS and 1LAC samples. Figure 5.41, we

compare the measured average flux density (S0) distributions for subsets of CGRaBS sources in 1LAC and

not in 1LAC (left panel), and for subsets of 1LAC sources in CGRaBS and not in CGRaBS (right panel).

The overlap of the samples clearly preferentially selects the brighter sources in each. That is, the brightest

CGRaBS predictions are more likely to be in 1LAC and the brightest 1LAC detections are more likely to be

in CGRaBS.
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Figure 5.40. Comparison of CGRaBS and 1LAC FSRQ populations using the 42-month data. Left: Probabil-
ity density ofm0 for the CGRaBS FSRQs (solid line, maximum likelihood value and 1σ error 0.105±0.004)
and 1LAC FSRQs (dashed line, maximum likelihood value and 1σ error 0.168+0.014

−0.012). The two distribu-
tions are not consistent with a single value. Right: Probability density of the difference between the mean
modulation index m0 for the two sets. The peak of the distribution (0.063+0.014

−0.013) is almost 6σ away from
zero.
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Figure 5.41. Histograms of S0, normalized to integrate to unity. Left: Distribution of CGRaBS sources in
1LAC (solid) and not in 1LAC (dashed). A K-S test rejects the null hypothesis that these samples are drawn
from the same distribution with p < 5 × 10−21. Right: Distribution of 1LAC sources in CGRaBS (dashed)
and not in CGRaBS (solid). A K-S test rejects the null hypothesis with p < 10−7. The dashed line in the
right panel is the same as the solid line in the left panel.



168

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
log10(S0/1 Jy)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
D

en
si

ty

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
log10(S0/1 Jy)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
en

si
ty

Figure 5.42. B
L Lac populations.] Histograms of S0 for FSRQs (left) and BL Lacs (right) in the 1LAC (solid) and

CGRaBS (dashed) samples. Each histogram is normalized to integrate to unity. A K-S test gives
p < 7× 10−12 (FSRQ) and p < 4× 10−5 (BL Lac) for these data to come from the same distribution.

In figure 5.42, we again plot histograms of the distributions of the average flux density, S0, now separating

the FSRQ and BL Lac subpopulations of the two samples. The mean S0 values for the FSRQs in the 1LAC

and CGRaBS samples are (1.35 ± 0.20) Jy and (0.66 ± 0.05) Jy, respectively, and a K-S test gives p <

7×10−12 that the two data sets are drawn from the same distribution. Note that, as can be seen in figure 5.44,

the 1LAC FSRQs in CGRaBS (mean S0 = (1.70± 0.29) Jy) are brighter, on average, than the overall 1LAC

FSRQ population. Thus, as we saw for the samples overall, brighter CGRaBS FSRQs were more likely to

be detected by Fermi and brighter Fermi-detected FSRQs were more likely to have been predicted by the

CGRaBS figure of merit (FoM) as gamma-ray emitters. Among BL Lacs, the mean S0 for the 1LAC and

CGRaBS samples are (0.46±0.05) Jy and (0.62±0.06) Jy, respectively, and a K-S test gives p < 4×10−5

that the two data sets come from the same distribution. Additionally, a number of sources were excluded from

this histogram because the radio flux density measurements gave a < 2σ detection. Most of these sources

were 1LAC BL Lacs, so inclusion of these would further separate the 1LAC and CGRaBS BL Lac mean flux

densities.

Among FSRQs, the result that gamma-ray–bright sources are on average brighter in the radio is consistent

with the general trend found in radio-gamma connection studies, as discussed in section 1.3. If the increased

variability we detect in the gamma-ray–loud FSRQs is a result of preferentially enhanced beaming in these

sources, the higher Doppler factor in these sources could also give rise to this increased radio flux density.

Some of this difference is probably attributable to the lower average redshift of 1LAC FSRQs, rather than

intrinsic differences between sources. The reverse trend among BL Lacs—LAT-detected BL Lacs are some-

what dimmer on average than the CGRaBS BL Lacs—is most likely a result of the CGRaBS being a poor
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Figure 5.43. Histograms of S0 for CGRaBS sources in 1LAC (left) and not in 1LAC (right), separately
showing the distributions of FSRQ (solid) and BL Lac (dashed) samples. Each histogram is normalized to
integrate to unity. A K-S test gives p = 0.001 (in 1LAC) and p = 0.991 (not in 1LAC) for these data to come
from the same distribution.

prediction of the BL Lac sources likely to be detected by the LAT, reflecting the influence of the EGRET sen-

sitivity bias on the CGRaBS selection. Thus, the LAT may simply be detecting a sample of BL Lac sources

dimmer in gamma rays, and thus likely to be dimmer in radio as well.

This explanation is consistent with the average flux density distributions shown in figure 5.43, which

show that among CGRaBS sources, the BL Lacs and FSRQs detected in gamma rays are quite different

(p = 0.001 to come from the same distribution), while the gamma-ray–quiet sources in both classes are

indistinguishable (p = 0.991 to come from the same distribution). Since the selection criteria for the CGRaBS

predominantly chose FSRQs, it seems that many of the BL Lac sources in the were selected because their

properties resembled those of FSRQs, not necessarily those of gamma-ray–loud BL Lacs.

Our data do not explain the population of 1LAC FSRQs that were not included in CGRaBS. It is possible

this results from the use of archival radio data, which would reflect the emission state of the source at some

past time rather than during the Fermi observation era. We do not find evidence that this is caused by an overall

radio brightening: in figure 5.44 we see 1LAC detections that were well above the CGRaBS minimum radio

flux density. There is no evidence that 1LAC sources are preferentially brighter in the concurrent 15 GHz

data than non-1LAC sources. However, as we are comparing two different radio frequencies, it is possible

that spectral index variation is masking an effect. This possibility is enhanced because the CGRaBS FoM

depended strongly on the radio spectral index of the source.
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Figure 5.44. OVRO 40 m 15 GHz average flux densities (S0) versus the archival 8 GHz flux densities
tabulated in Ackermann et al. (2011) for 1LAC FSRQs. FSRQs in CGRaBS are plotted as crosses, those not
in CGRaBS are plotted as points.

5.6.2 High Redshift FSRQ Populations

In addition to the differences in source classification, the redshift distributions of the 1LAC sources and

CGRaBS differed. Within the BL Lac population, both 1LAC and CGRaBS were consistent with the same

redshift distribution. Among FSRQs, however, the distributions were clearly not consistent. Examining the

histograms in figures 4.5 and 4.6, it appears that the CGRaBS distribution is quite similar below z ∼ 1.5 and

the CGRaBS are clearly more numerous at high redshifts z & 1.5.

To examine this, we compare the properties of the CGRaBS FSRQ populations in 1LAC and not in 1LAC

at redshifts z > 1.5. Histograms of the intrinsic modulation indices are shown in figure 5.45. Although there

are only 26 samples in the overlap between CGRaBS and 1LAC, the distribution extends to very high intrinsic

modulation indices. The likelihood distributions for the population parameters are shown in figure 5.46.

Despite the small sample size, the high-redshift CGRaBS FSRQs in 1LAC are significantly more variable

than those not in 1LAC, with more than 3.5σ significance. The maximum-likelihood difference (0.096+0.045
−0.034)

is larger than was found between gamma-ray–loud and gamma-ray–quiet CGRaBS including all redshifts

(0.066+0.013
−0.012), but is consistent within 1σ of being the same.

Thus, it would seem that the CGRaBS selection criteria simply were not well tuned to picking out the

systematically higher-variability sources that are bright gamma-ray emitters. By comparing Fermi 1LAC de-

tections against the Australia Telescope 20 GHz survey catalog (AT20G), Mahony et al. (2010) conclude that

the AGN in 1LAC are predominantly characterized by flat radio spectral indices and that there is no missing

steep-spectrum population among the gamma-ray–loud population. This confirms that the most important

CGRaBS selection criterion—a flat radio spectral index—is an effective method for selecting gamma-ray–
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Figure 5.45. Histograms of 42-month intrinsic modulation index values for CGRaBS FSRQs at z > 1.5
in 1LAC (top, 26 sources) and those not in 1LAC (bottom, 233 sources). Each histogram is normalized to
integrate to unity.
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Figure 5.46. Comparison between high-redshift (z ≥ 1.5) CGRaBS FSRQ populations in and not in the
1LAC sample, using the 42-month data. Left: Probability density of m0 for the z ≥ 1.5 CGRaBS FSRQs in
the 1LAC sample (solid line, maximum likelihood value and 1σ error 0.187+0.044

−0.034) and those not in 1LAC
(dashed line, maximum likelihood value and 1σ error 0.091±0.006). The two distributions are not consistent
with a single value. Right: Probability density of the difference between the mean modulation index m0 for
the two sets. The peak of the distribution (0.096+0.045

−0.034) is more than 3.5σ away from zero.
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loud AGN. That there is no evidence for a missing population is consistent with our conclusion that the

CGRaBS sample is drawn from a superset of the 1LAC parent population. Although it is unclear precisely

what mechanism connects between 15 GHz radio variability and gamma-ray emission, it seems evident that

the presence of variability in radio is a good predictor of gamma-ray emission from a blazar.
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