
Chapter 2

Telescope, Receiver, and Radiometry

In this chapter, we discuss the telescope, optics, and receiver used to carry out the blazar monitoring program.

We also describe the radiometry and calibration procedures employed to make the measurements.

For a monitoring program of this size and cadence, making efficient use of telescope time is critically im-

portant. Although we were extremely fortunate to have use of the Owens Valley Radio Observatory (OVRO)

40 m telescope 100% of the time from the start of the program until mid-2011, and six days a week after

that, our cadence of 1500 sources every three days requires careful planning. Fortunately, the majority of

our sources are reasonably bright—more than 50 mJy at 15 GHz—so the sensitivity requirements of the

program are relatively modest. This has allowed us to optimize for rapid observations and easily repeatable

measurements rather than scrabbling for sensitivity at all costs. Still, a full understanding of the behavior of

the telescope and receiver and careful measurement and calibration are essential.

2.1 The Hardware

We begin by introducing the OVRO 40 m Telescope, its optics, and the Ku-band receiver used for this pro-

gram.

2.1.1 The OVRO 40 m Telescope

The OVRO “40 m” telescope is actually a 130-foot-diameter f/0.4 parabolic reflector with approximately

1.1 mm rms surface accuracy on an altitude-azimuth mount. The telescope is located on the floor of the

Owens Valley near Big Pine, California, at 37◦13′53.′′7 N latitude, 118◦16′53.′′83 W longitude, and 1236 m

elevation (Pearson 1999). Construction of the 40 m telescope was completed in 1966. The telescope has been

used with several different receivers since then, at frequencies as high as 45 GHz, where the surface accuracy

of the dish becomes a serious limit on antenna efficiency.
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2.1.1.1 Telescope Control Systems

The 40 m telescope is controlled by a computer control system that provides a user interface, executes sched-

ules, controls the drive system servos, and records radiometer output and housekeeping data for later analysis.

From well before the inception of this monitoring program until August 2010, these services were provided by

a control system running a Digital Equipment Corporation VAX microcomputer with user interface functions

on another VAX microcomputer connected via local-area network. This control system will be henceforth

referred to as the VAX control system. Although the VAX control system and hardware had performed ad-

mirably since its installation in the early 1990s, increasingly frequent hardware failures and concern about

replacement components and maintenance led to the design and implementation of a replacement system.

On 11 August 2010, the VAX control system was permanently disconnected and a new control system

designed and written by Martin C. Shepherd, henceforth the MCS control system, was put into operation. The

MCS control system runs on a personal computer using a real-time variant of the Linux operating system.

In addition to operating on more easily replaced hardware, the new control system makes use of the vastly

increased capabilities of modern computer hardware to log data at a greatly increased rate and to provide a

more sophisticated scheduling system.

Although the control system was replaced, the receiver, digitizer, and drive hardware were unchanged. As

a result, in large part the observing methods were unaffected by this change. The most significant impact will

be discussed in section 3.1 where we describe the software tools and reduction scripts, which were rewritten

to work with the new data format.

2.1.1.2 Mount and Drive System

The 40 m telescope is mounted on an altitude-azimuth mount. Azimuth is measured from North through

East with 0◦ at due North. The telescope can slew through 425◦, with an overlap region in the northwest

quadrant between −90◦ and +335◦. In elevation, the telescope can be pointed from 11.5◦ above the horizon

to about 10◦ past zenith. In practice, however, the control system limits the maximum elevation to 90◦, and

observations are normally only made between 30◦ and 70◦ elevation to avoid excessive airmasses at low

elevations and because the drive system has difficulty matching the sidereal rate near zenith. The telescope

can be slewed at a maximum rate of about 15◦ per minute in both azimuth and elevation, but can only track

a moving source at half this rate or less.

In a small azimuth range pointed due South (azimuth 180◦), the telescope can be tilted down to 7◦

elevation. In this “service position,” a ladder in one of the focus support legs enables access to the prime

focus. This position is used for service, maintenance, and calibration procedures that require access to the

receiver or optics. In particular, hot/cold load Y-factor measurements are performed in this position (see

section 2.2.1.1).
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Table 2.1. List of thermometers instrumenting the 40 m telescope

Label Typ. Val. Units Description
TRX 24 ◦C Ambient section of receiver enclosure
THEMT 12 K HEMT LNA temperature
T70 K 66 K 70 K stage
T15 K 11 K 15 K stage
Tplate 21 ◦C Cold plate temperature
Tswitch 80 K Dicke switch temperature
Thot 300 K Hot load temperature during Y-factor measurement,

approximate outdoor temperature otherwise
Tbackend 26 ◦C Receiver backend

2.1.1.3 Tilt and Temperature Monitoring

The 40 m telescope is equipped with two orthogonal tilt meters located in the teepee of the telescope in the

alidade above the azimuth bearing. These are carefully aligned with the telescope axes and are referred to as

the aft/forward and left/right meters. The purpose of these sensors is to monitor for tilt of the drive system

relative to the topocentric coordinate frame due to gravity or wind. These tilts are in the range of up to a few

arcminutes at most. The tilt sensor readings are used in the pointing model (see section 2.2.2.1) with a scale

parameter to compensate for errors in their output calibration.

A set of thermometers at the prime focus monitor temperatures related to the receiver and its support

electronics. Table 2.1 lists the thermometers and their purposes. These are primarily used to monitor for

problems in the receiver, except for Thot, which is used during the hot/cold load Y-factor measurement (see

section 2.2.1.1).

2.1.1.4 Weather Measurements

The weather is an important consideration for our observations, most critically because in moderate winds the

telescope cannot be accurately pointed, and high winds can even threaten the safety of the telescope. From

the beginning of the monitoring program until the transition to the MCS control system, a simple digital

weather station equipped with an anemometer reported the instantaneous wind speed to the control system.

In 2009, a Columbia Weather Systems1 Capricorn 2000EX weather station was installed. The data from the

new weather station were logged for offline use when using the VAX control system. With the switch to the

MCS control system, which uses the Capricorn 2000EX for real-time weather monitoring, the old weather

station was retired. The Capricorn 2000EX performs instantaneous and peak gust wind measurements, as

well as ambient temperature, precipitation, barometric pressure, and relative humidity measurements.

In high wind situations, wind loading on the telescope could exceed the power of the drive system, po-

tentially leading to damage to the telescope. To prevent this, in high wind conditions, the observing program

is suspended and the telescope is steered to the “stow position” at about 180◦ azimuth, 90◦ elevation. In this

1http://www.columbiaweather.com

http://www.columbiaweather.com
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position, the cross section of the telescope to the wind is minimized, so it is the safest orientation in high

winds. With the original weather station, such a “wind stow” was triggered when the instantaneous wind

speed exceeded 25 mph (11.2 m s−1). Using the Capricorn 2000EX, a wind stow is triggered by a 60 min

peak gust speed of 25 mph (11.2 m s−1) or an instantaneous wind speed of 20 mph (8.9 m s−1. The wind

stow is maintained for at least 60 min and until the instantaneous speed has fallen below 18 mph (8.0 m s−1)

and the 60 min peak gust has fallen below 22 mph (9.8 m s−1).

In addition to triggering wind stows, the wind speed is also used to identify periods when the pointing of

the telescope was degraded due to high winds. This is discussed in section 3.2.1.2.

2.1.2 Optics

At the prime focus of the 40 m telescope, two symmetric off-axis corrugated horn feeds are installed inside

the receiver cryostat. Coupled to the parabolic reflector of the 40 m telescope, this produces a pair of approx-

imately Gaussian beams with 157′′ FWHM, separated by 12.′95 on the sky. We refer to these two beams,

somewhat arbitrarily, as the “antenna” beam and the “reference” beam, or ant and ref . The beam separation

is in the azimuthal direction, and because the beams are offset symmetrically from the optical axis, they are

always located at equal elevations.

Figure 2.1 shows a schematic view of the optics and the waveguide section of the receiver before the

low-noise amplifier. In this section, both the ant and ref signal paths are identical. After the feed, a dielectric

waveguide polarizer selects left-hand circular polarization (LCP); because the received radiation is reflected

from the telescope, this corresponds to right-hand circular polarization (RCP) on the sky (M. W. Hodges,

personal communication; Moffet 1973).2 As a result, linearly polarized sources of all orientations may be

monitored in total intensity. The signal in each then passes through a circular-to-square waveguide transition,

through a 30 dB directional coupler, and then into the Dicke switch. The Dicke switch common port and the

directional couplers’ ports each pass through a transition to a coaxial connector that connects to the rest of

the receiver.

On the ant side, the directional coupler connects to the calibration noise diodes with a 30 dB reduction

of the diode signal. The ref directional coupler is simply terminated and is included only to maintain sym-

metry between the two signal paths. The Dicke switch port connects to the HEMT low-noise amplifier. The

calibration diodes and the receiver are discussed in section 2.1.3.

2Here, we adopt the Institute of Electrical and Electronics Engineers (IEEE) circular polarization conven-
tion that RCP corresponds to a clockwise temporal rotation (at a fixed position) of the electric vector from
the point of view of the source, i.e., when looking in the direction of propagation.
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Figure 2.1. Optics and waveguide section block diagram.

2.1.2.1 Aperture Efficiency

The power received by a radio telescope with effective receiving area Ae sensitive to a single polarization is

P =
1

2
Ae Sν ∆ν, (2.1)

where Sν is the incident flux density and ∆ν is the receiver bandwidth. If the antenna has a physical aperture

area Ap, the aperture efficiency, ηa, is defined by

Ae = ηaAp. (2.2)

The aperture efficiency can be factored into contributions from a number of different causes. For example, if

we combine the effects of feed illumination, spillover, and blockage into ηi, and quantify the effect of phase

errors due to surface irregularities with ηp,

ηa = ηi ηp. (2.3)

For an unresolved point source—a source of angular extent much smaller than the beam of the telescope—

the specific intensity is effectively a delta function in angle. The response to a point source of flux density Sν

will then be

P =
1

2
Ae ∆ν

∫∫
Sν δ(θ − θ0) δ(φ− φ0)B(θ, φ) dΩ =

1

2
Ae ∆ν Sν B(θ0, φ0), (2.4)

whereB(θ, φ) is the normalized antenna gain and (θ0, φ0) is the position of the source in the beam. Assuming

this is centered, B(0, 0) = 1, so P = Ae ∆ν Sν . The antenna temperature, Ta, due to this point source is the

temperature of a blackbody filling the aperture that gives the same response. The response to the blackbody

is

P =
1

2
Ae ∆ν

∫∫
IRJν B(θ, φ) dΩ =

1

2
Ae ∆ν IRJν Ωa, (2.5)
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Table 2.2. Aperture efficiency measurement results

Date ηa Source(s)
2008-11-08 0.240 DR 21, NGC 7027, 3C 286
2009-03-11 0.255 3C 286
2009-05-19 0.247 3C 48
2009-07-07 0.261 3C 286
2009-08-10 0.275 3C 286
2009-09-10 0.264 3C 286
2009-11-11 0.269 DR 21, NGC 7027, 3C 48
2010-02-08 0.247 DR 21, NGC 7027, 3C 48
2010-04-26 0.260 3C 48

Mean 0.258± 0.004

where Ωa =
∫∫

B(θ, φ) dΩ is the beam solid angle. In the Rayleigh-Jeans limit (h ν � kB Ta), the specific

intensity is proportional to temperature:

IRJν =
2 kB Ta
λ2

, (2.6)

where kB is Boltzmann’s constant and λ is the wavelength. By equating the two detected powers from

equations (2.4) and (2.5), we find

2 kB Ta =
Sν λ

2

Ωa
. (2.7)

By the antenna theorem (e.g., Rohlfs & Wilson 2000),

Ae Ωa = λ2, (2.8)

so

2 kB Ta = SνAe = Sν ηaAp. (2.9)

We use equation (2.9) to measure the aperture efficiency of the 40 m telescope. Solving for ηa, we have

ηa =
2 kB Ta
Ap Sν

(2.10)

where Ta is the measured antenna temperature for an unresolved point source of known flux density Sν .

In practice, we determine Ta by comparing the detected signal to a measurement of the CAL diode, whose

equivalent noise temperature we know from the Y-factor tests described in section 2.2.1.1. This both converts

the digitizer units (DU) to K and corrects for nonlinearity because the CAL diode measurement is affected

by nearly the same amount of gain compression as the source measurement.

In table 2.2, we tabulate the measurements of ηa made during this program. Combining these and esti-

mating uncertainty from the sample standard deviation, we find the aperture efficiency ηa = (0.258±0.004).

This relatively low aperture efficiency is due to deliberate underillumination of the dish by the feed—for mon-

itoring observations of a large sample of objects aiming at flux density measurements repeatable to within
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Figure 2.2. Predicted efficiency factor ηp calculated from equation (2.11). Points indicate 15 GHz (0.62) and
24 GHz (0.29) values.

a few percent we must consider the trade-off between aperture efficiency and pointing accuracy. Underil-

lumination of the antenna increases the beamwidth and reduces susceptibility to pointing errors relative to

more fully illuminating the antenna, in addition to reducing exposure to thermal noise from ground spillover.

Experience has shown that we are operating at close to the optimum illumination for the most efficient use

of the telescope at 15 GHz: increasing the aperture efficiency gains little because the thermal noise is already

acceptably low for observing the objects in our monitoring sample.

2.1.2.2 Surface Accuracy

The surface of the 40 m telescope is composed of 852 individually adjustable panels, each with an surface

accuracy of about 0.36 mm. After adjustment to match a parabolic figure at about 50◦ elevation, the total

surface accuracy is about 1.1 mm rms. The Ruze formula predicts the reduction of the aperture efficiency at

frequency ν due to surface errors with rms ε to be

ηp = e−(4π ε ν/c)
2

, (2.11)

where c is the speed of light. Figure 2.2 shows the predicted values for ηp at various frequencies. At 15 GHz,

ηp = 0.62. This accounts for a significant factor in the total aperture efficiency. To obtain the observed

aperture efficiency ηa = 0.258, the illumination and blockage factors must amount to ηi = ηa/ηp ≈ 0.42.
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Figure 2.3. Left: Focus curve used during observations to predict optimum focus as a function of elevation.
Points indicate the look-up table values, which are linearly interpolated as shown. The solid (dashed) line
indicates the curve before (after) the shift in April 2010. Right: Relative gain that results from a focus error
before (solid) and after (dashed) the shift. Measured flux densities are divided by the value of this curve to
compensate for use of the simple focus curve rather than the more accurate model.

2.1.2.3 Antenna Gain and Focus

When the 40 m telescope moves in elevation, gravity deforms its surface, changing the antenna gain and

focus location. The entire feed/receiver system can be moved along the optical axis to adjust the focus. The

optimum focus position as a function of elevation is measured about once per year, but has not been found

to vary significantly except when the receiver has been removed and reinstalled during maintenance. Due to

thermal effects, the optimum focus also varies slightly between day and night operation and with the angle

between the telescope structure and the Sun.

In normal operation, the focus is set before each observation procedure using a polynomial fit to the

measured optimum focus as a function of elevation using a linearly interpolated look-up table. An example

focus curve is shown in the left-hand panel of figure 2.3 with the plotted values given in table 2.3. The focus

models do not change frequently. From 2008 until April 2010, measurements indicated there was no need to

modify the focus curves. In April 2010, the receiver was removed from the telescope for maintenance and

when reinstalled, an offset of nearly 1 cm was found in the optimum focus positions was observed, so a new

focus model was determined.

During data calibration, a more complicated focus model that includes solar elongation and elevation is

evaluated and a correction is applied to account for the focus error relative to that model. The ideal focus
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Table 2.3. Focus curve values plotted in the left-hand panel of figure 2.3

Elevation z (Before) z (After)
(◦) (mm) (mm)
10 −19.70 −29.78
20 −14.64 −25.16
30 −10.27 −21.04
40 −6.57 −17.42
50 −3.56 −14.29
60 −1.22 −11.65
70 0.43 −9.50
80 1.41 −7.85
90 1.70 −6.70

Table 2.4. Polynomial coefficients for the focus models (before and after April 2010)

Before After
n an bn cn an bn cn
0 7.02 — — −1.99 — —
1 0.0102 −0.0677 −0.0355 −0.0241 −0.061 −0.0521
2 −0.00366 0.000209 0.000189 −0.00327 0.000156 0.000244

position, z, is given by

z =

Na∑
n=0

an(90◦ − θ)n +

Nb∑
n=1

bn(90◦ − θ�)n +

Nc∑
n=1

cnζ�
n, (2.12)

where θ is the source elevation, θ� is the solar elevation, and ζ� is the angular distance on the sky between

the source and the sun (all measured in degrees) and an, bn, and cn are polynomial coefficients. These

values are tabulated in table 2.4. The correction is calculated from a polynomial “focus miss” model, as

shown in the right-hand panel in figure 2.3 with coefficients given in table 2.5. The focus miss model also

changed significantly in April 2010, with the relative gain becoming much less sensitive to focus errors. This

focus model and the parameters were developed and measured by Walter Max-Moerbeck by measuring the

optimum focus position for point sources at many elevations and times of day.

Even with the focus adjustment and correction, the gain of the telescope is found to vary with elevation.

This is due to reduced antenna gain as the reflector deforms under its own weight as it slews relative to

the vertical. The surface of the reflector was set to provide an optimum parabolic surface at about 50◦

elevation (Pearson 1999). Figure 2.4 shows a 5th-order polynomial fit to the relative gain as a function

of elevation, measured by tracking 3C 286 as it moved from about 20◦ to 80◦ elevation. The polynomial

Table 2.5. Polynomial coefficients of the focus miss curve (before and after April 2010)

n cn (before) cn (after)
0 1.0 0.999
1 −9.84× 10−5 −1.81× 10−4

2 −1.20× 10−3 −2.33× 10−4
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Table 2.6. Gain curve polynomial coefficients (before and after April 2010)

n cn (before) cn (after)
0 7.158 ×10−1 8.464 ×10−1

1 4.122 ×10−3 −1.210 ×10−2

2 7.457 ×10−4 1.744 ×10−3

3 −2.913 ×10−5 −6.030 ×10−5

4 3.752 ×10−7 8.270 ×10−7

5 −1.689 ×10−9 −4.106 ×10−9
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Figure 2.4. Example antenna gain curve plotting the relative peak gain as a function of elevation. Curve is
a 5th-order polynomial fit to data collected from 3C 286 observations at a range of elevations on 09 March
2011. The coefficients of this polynomial are given in table 2.6 in the “After” column. Grey areas indicate
regions where observations are not normally permitted and where the gain curve fit may be unreliable. Points
indicate the data used for the fit, including measured uncertainties. The dashed line indicates the peak at
56.0◦ elevation.

coefficients for the gain curves used before and after the receiver was taken down and reinstalled in April

2010 are shown in table 2.6. Flux density measurements are corrected for this gain variation by dividing

the observed flux density of a source by the value of the gain curve at the elevation of the observation. It is

important to note that this correction is based on measurements of the response at the peak of the beam and

is only appropriate for point-source observations like those that make up this observing program.

2.1.2.4 Beam Map

The telescope beam is characterized by the normalized power pattern B(θ, φ), which gives the power re-

sponse of the telescope to a uniform plane wave incident from direction (θ, φ) relative to the peak response

max{B} = 1. The two feeds at the 40 m prime focus project two symmetric beams on the sky, ant and ref ,
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Table 2.7. Properties of a few point sources suitable for beam mapping

Name RA (J2000) Dec (J2000) Sizea Flux Density
(h m s) (◦ ′ ′′) (′′) (Jy)

3C 48 01 37 41.3 +33 09 35 <1 1.72
3C 147 05 42 36.1 +49 51 07 <1 2.65
3C 286 13 31 08.3 +30 30 33 <5 3.44
3C 295 14 11 20.5 +52 12 10 4 1.61

Source: Flux densities and angular sizes are from Baars et al. (1977).
a Angular sizes specified at 1.4 GHz.

Table 2.8. Results of fitting Gaussian components to the beam center scan in figure 2.5

Beam Amplitude φ
(DU) (′)

ant 76.1 −0.24
ref −82.2 12.73

with an angular separation Ψ. We decompose the beam response into separate terms for each beam, that is

B(θ, φ) = Bant(θ, φ−
Ψ

2
) +Bref(θ, φ+

Ψ

2
). (2.13)

Because of the identical construction and symmetric placement of the feeds, the individual beams are ex-

pected to have very similar responses relative to their centers, with any deviations likely to be mirror-

symmetric between the beams. Unless otherwise specified, when we describe properties “the beam,” we

refer to one of the two offset beams, Bant or Bref .

The coordinates (θ, φ) are given relative to the optical axis of the telescope. Neglecting misalignment

with the mount, the θ axis is the same as the elevation axis and the φ axis measures angle along the great

circle on the sky that is tangent to the azimuth axis. These coordinates are properly measured in the spherical

geometry of the sky. However, for the very small angular extent (.15′) of the 40 m beam, we can safely

treat the coordinates as Cartesian, remembering that the scale factor between φ and the mount’s azimuth

coordinate varies with elevation.

To measure the beam response, we use an unresolved astronomical source to sample the response of the

telescope at various angular offsets. For the 40 m with a beam FWHM ≈ 2.′6, a source must have an angular

size �1′ to be unresolved and regarded as a point source. Table 2.7 lists the properties of a few suitable

sources.

In figure 2.5, we show the result of 50 min continuous scanning in φ across a source (3C 295) positioned

at the elevation center of the beams. Each scan spanned ±2◦ around the source, but only the center region

is plotted. After removing the median background, we fitted an independent Gaussian profile with a fixed

157′′ FWHM and free amplitude and φ position to each beam. The fitting results are shown in table 2.8. The

separation between the beams was thus measured to be 12.′97. This is sufficiently close to the previous value

of Ψ = 12.′95, reported by Bustos (2008), that we continue to quote the old value for continuity.
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Figure 2.5. Binned switched signal (ant−ref) from 50 min of continuous azimuth scans through the elevation
center of both ant and ref beams, measured on 31 Aug, 2011, using 3C 295. Lines are individual fixed-
beamwidth Gaussian fits to the data spanned by the plotted line. The separation between the two beams is
12.′97 on the sky.

In July 2011, we measured the beam response using 3C 286, 3C 295, and 3C 48. FLUX procedures were

performed on a triangular grid with 45′′ spacing between centers. Because the beam changes as the telescope

changes elevation, we restrict the measurements to elevations near 45◦. Scans at constant elevation offsets

from the source position were performed as sources rose or set through approximately 40◦–50◦ elevation.

To cover the region with radius 4′ requires 109 pointings, or about 2 hours of observing, which we split into

alternate elevation rows due to the elevation constraint. Several repetitions of this procedure are averaged to

reduce noise, then contours are computed and plotted using the Matplotlib3 tricontour routine to linearly

interpolate between data points on the triangular grid.

Because FLUX procedures sample the source in both the ant and ref beams, this procedure measures

the average of the two beams. This resulting average beam is shown in figure 2.6. To separate the beam

responses, we also perform the same scans with an additional φ offset equal to the beam separation, Ψ.

Using this offset, a FLUX procedure now measures blank sky during the A and D segments and the

source through the ref beam in the B and C segments. This, of course, reduces the on-source integration

time by a factor of two, so results in a reduction in the gain of the FLUX procedure. Using an offset of

−Ψ similarly allows measurement of the ant beam alone. The separated beams, measured using 3C 48

are shown in figure 2.7. It appears that a slight inclination relative to the intended azimuthal separation is

present. Elliptical Gaussian beams were fitted to the ant and ref beams individually and are plotted using

the same (θ, φ) grid and contours in figure 2.8. Residuals from the fits are shown in figure 2.9 and the fit

3http://matplotlib.scipy.org

http://matplotlib.scipy.org
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Figure 2.6. Normalized beam response for the average of the ant and ref beams, measured using 3C 286
and 3C 295. Contours are in dB relative to the peak. This depicts the effective beam for a FLUX procedure
(neglecting the negative reference field lobes that are ±12.′95 away).
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Figure 2.7. Normalized beam response for both ant (positive) and ref (negative) beams. Measured using
3C 48. Contours are 0, ±5%, ±10%, ±25%, ±50%, and ±90% of the ant peak, with dashed contours
indicating negative values. The dotted line indicates pure azimuthal offset along which the beam separation
is measured (see figure 2.5). Some inclination relative to this axis is apparent.
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Figure 2.8. Elliptical Gaussian beam fits to the ant (positive) and ref (negative) beams. Contours are 0,±5%,
±10%, ±25%, ±50%, and ±90% of the measured ant peak, matching the contours in figure 2.7.

Table 2.9. Elliptical Gaussian beam fit parameters

Parameter ant ref
Amplitude 1 0.99

Major FWHM 3.′07 2.′88
Minor FWHM 2.′57 2.′69
φ center 0 13.′10
θ center 0 −0.′28

Major axis inclination −57◦ −60◦

Note: The Gaussian parameterization is that
described in Leitch (1998).

parameters are shown in table 2.8. The results suggest that our nominal adopted beam FWHM of 157′′ (2.′62)

is underestimated, but this does not affect the observations in this program.

2.1.3 Receiver

A block diagram of the receiver is shown in figure 2.10. The receiver operates in the Ku band with a center

frequency of 15.0 GHz. The receiver noise temperature is about 30 K, and the typical system noise temper-

ature including receiver, cosmic microwave background (CMB), atmospheric, and ground contributions is

about 55 K.

The receiver front end consists of a cooled (T≈80 K), low-loss ferrite RF Dicke switch followed by a

cryogenic (T≈13 K) HEMT low-noise amplifier. This is followed by additional room-temperature amplifiers,

a 13.5–16.5 GHz band definition filter, and an electronically controlled attenuator used to adjust the overall

gain of the receiver. The signal is detected directly using a square law detector diode. The detected signal is

digitized with a 16-bit analog-to-digital converter and then recorded.
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Figure 2.9. Residuals from fits to the beam map data shown in figure 2.7 for the ant (left) and ref (right).
Contours show 0, ±5%, ±10%, and ±25% of the ant peak value.
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Figure 2.10. Block diagram of the Ku-band receiver.
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2.1.3.1 Dicke Switching

In order to make the most efficient use of the telescope, a Dicke-switched dual-beam system is used (e.g.,

Rohlfs & Wilson 2000). The ferrite RF Dicke switch is switched at 500 Hz, alternately delivers the ant and

ref beams to the receiver input. The radiometer output is integrated by an analog integrator circuit in each

1 ms half-period and then sampled. In software, the ant and ref samples are normally subtracted to produce

the switched power, ξ = Pant − Prefbeam. In some applications, such as when computing a nonlinearity

correction, the average (or total) power P = 0.5(Pant + Pref) is required.

The most important benefit of Dicke switching is the removal of the large, slowly varying total power

signal, which is made up of contributions from ground, atmosphere, and receiver thermal noise. Variations in

the gain of the low noise amplifier cause variations in the large total power signal, and in addition the signals

themselves vary slowly with time and with the position of the telescope. The resulting large variations in

power limit the sensitivity of the receiving system, as discussed in section 2.1.3.3. Ground spillover, like gain

variations, contributes directly to the system noise, but the effect is difficult to quantify due to the complexity

of the far sidelobes of the telescope beam. Dicke switching removes or reduces these large slowly varying

signals.

A second benefit of Dicke switching is the reduction of noise due to the rapidly varying atmosphere above

the telescope. With a beam separation of 12.′95, and for a water vapor scale height of 1.5 km, 75% of the total

mass of water vapor seen by the telescope lies in the overlapping portions of the two beams. This fraction

does not change substantially with scale height, dropping only to 72% (69%) for a water vapor scale height

of 2 km (2.5 km). So Dicke switching reduces the effects of the varying atmosphere by about a factor of four.

A third benefit of Dicke switching is that the on-off measurement of the source against the reference

allows the flux density of the source to be measured in a single pointing. This is much faster than the

alternative strategy of scanning a single beam across the source. Additionally, because the source is near

the peak of the beam response for the entire integration, the effective sensitivity is greater for the same

integration time. This is at the cost of more stringent pointing requirements, since a mispointing will reduce

the apparent brightness of the source. More details of the flux density measurement procedure are provided

in section 2.2.2.2 below.

2.1.3.2 Bandwidth

The output of the receiver in response to a narrowband input signal varies depending on the frequency of that

input. In general, this is a complicated function with peaks and valleys. However, the response is normally

approximately zero except in some range of frequencies around the nominal frequency of the receiver. The

width of this range is characterized by the bandwidth of the receiver. Qualitatively, the meaning of bandwidth

is clear. However, there are several quantitative definitions, each useful for different calculations. Three

common definitions are the half-power bandwidth, ∆ν, the noise bandwidth, ∆νnoise, and the radiometer
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Figure 2.11. Photograph of spectrum analyzer sweep of the receiver response. Center frequency is 15 GHz,
frequency span is 5 GHz (i.e., 500 MHz per division). Vertical scale is 5 dB per division. Reproduced
from Bustos (2008).

reception bandwidth, ∆νrec. For reasonably flat frequency responses, these bandwidths are of similar magni-

tude. In the literature, the nomenclature for these definitions varies, so care must be taken to determine what

definition a particular author is using. Here, we adopt the convention used by Evans & McLeish (1977).

To compute these bandwidths, we begin with a spectrum analyzer trace of the receiver response. Fig-

ure 2.11 shows this response on a semilogarithmic plot, reproduced here from Bustos (2008). To work quan-

titatively, a piecewise linear approximation to the curve was estimated in the pass band between 13.5 and

16.5 GHz. This estimate is shown in figure 2.12 and the estimated values are tabulated in table 2.10.

Half-power bandwidth. The half-power, or 3 dB, bandwidth is the difference between the frequencies at

which the receiver’s power response is half that of the peak. If the ripple in the response is greater than 3 dB,

the lowest and highest 3 dB points are used. This is the simplest bandwidth to measure and is frequently

implied when a specific bandwidth definition is not given. Using the approximate bandpass data plotted

in figure 2.12, the 40 m Ku-band receiver has a half-power bandwidth ∆ν = 1.5 GHz between 14.3 and

15.8 GHz.

Noise bandwidth. The noise bandwidth is the bandwidth of a hypothetical receiver with perfectly flat

response, the same peak gain, and the same response to a wideband white noise input as the receiver in

question. That is,

∆νnoise ≡
∫ ∞
0

G(ν)

Gmax
dν. (2.14)
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Figure 2.12. Piecewise linear approximation to the spectrum analyzer response shown in figure 2.11. Numer-
ical values are listed in table 2.10. Attenuation is assumed infinite outside the 13.5–16.5 GHz band.

Table 2.10. Segment endpoints for the piecewise linear approximation to the measured receiver gain

ν (GHz) GdB (dB)
13.50 1.0
13.65 −1.0
13.70 3.0
13.85 0.0
14.00 3.5
14.05 1.0
14.35 5.0
14.65 3.0
14.85 7.0
15.10 3.0
15.45 6.0
16.50 0.0

Note: The approximation linearly connects these
points in the semilogarithmic gain-frequency plane.
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The noise bandwidth of the postdetection filter is a particularly important application of this definition. As

discussed in section 2.1.3.3, it quantifies the postdetection circuit’s contribution to the radiometer sensitivity.

In this section, however, we compute the noise bandwidth of the receiver.

To compute the noise bandwidth from our approximate response, we must first convert the log-linear

piecewise approximation into a linear-linear model. Normalizing for unity peak gain, the result is shown in

the solid lines in figure 2.13. Note that our piecewise-linear model was expressed in dB, so it becomes a

piecewise-exponential model rather than the piecewise-linear model shown in dashed lines. The distinction

between the two is small, but we would slightly overestimate bandwidths by using the linear interpolation.

Although we could integrate numerically, it is straightforward to evaluate the integral analytically for one

exponential segment of our model. For later use, we will evaluate the integral of an arbitrary nonzero power

of the gain, p. If the kth segment connects (ν0, G0) with (ν1, G1), we have

I
(p)
k =

∫ ν1

ν0

(
G0 10m(ν−ν0)

)p
dν, (2.15)

where m is the semilogarithmic slope of the segment. This has the solution

I
(p)
k =

(ν1 − ν0) (Gp1 −Gp0)

p (lnG1 − lnG0)
. (2.16)

Applying this to the data from table 2.10 gives ∆νnoise =
∑
k I

(1)
k /Gmax = 1.37 GHz.

As a test of the sensitivity of the result to errors in reading data points from figure 2.11, 104 perturbed

piecewise models were generated by adding a random offset to each of the gain values in table 2.10 and

recalculating ∆νnoise with the perturbed model. Each offset was chosen from a uniform distribution between

−1 and 1 dB. The mean value for this test was 1.38 GHz with a standard deviation of 0.07 GHz. We therefore

quote ∆νnoise = (1.4± 0.1) GHz.

Radiometer reception bandwidth. The radiometer reception bandwidth ∆νrec is the bandwidth used

to characterize the predetection radio-frequency bandpass of the receiver when calculating the sensitivity

through the radiometer equation described in section 2.1.3.3. It is defined as

∆νrec =

[∫∞
0
G(ν)dν

]2∫∞
0
G2(ν)dν

. (2.17)

Using the integral result from equation (2.16) and the data in table 2.10, we find

∆νrec =

(∑
k

I
(1)
k

)2

∑
k

I
(2)
k

= 2.57 GHz. (2.18)
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Figure 2.13. Comparison of the linear interpolation (dashed lines) with exponential interpolation (solid lines)
in a linear plot of the receiver gain. Values have been normalized to unity at the peak response.

For most radiometers, the reception bandwidth is somewhat larger than the half-power or noise bandwidths,

so it is not surprising that ∆νrec/∆ν ≈ 1.7 (e.g., Evans & McLeish 1977). To evaluate the uncertainty, we

use the same random perturbation method described for ∆νnoise, and find a mean value of 2.57 GHz and a

standard deviation of 0.06 GHz. Thus, ∆νrec = (2.6± 0.1) GHz. In section 2.1.3.3, we compare this to the

observed thermal noise of the receiver.

2.1.3.3 Sensitivity

A very simple model of a direct detection radiometer, shown in figure 2.14, consists of a radio-frequency

amplifier, a detector, and a postdetection filter. As derived in, e.g., Evans & McLeish (1977), the radiometer

equation relates the rms variation in the output signal, ∆T , to the system temperature at the input, TSYS:

∆T

TSYS
= K

(
2∆νnoise

∆νrec

)1/2

. (2.19)

Here ∆νnoise is the noise bandwidth of the postdetection filter and ∆νrec is the radiometer reception band-

width of the amplifier, and the detector has been assumed to be a square-law device. The constant K is a

factor that can be used to generalize this result to other receiver architectures. If the postdetection filter is a

boxcar integrator of integration time τ , the noise bandwidth ∆νnoise = (2τ)−1. This gives the more familiar

form
∆T

TSYS
=

K√
∆νrec τ

. (2.20)
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Figure 2.14. Simple radiometer model.

The radiometer equation quantifies the minimum achievable noise level with a given receiver and inte-

gration time. In practice, additional sources of noise will result in a a higher level. For example, if the gain

of the receiver varies significantly over the integration time, output changes due to gain fluctuations will be

indistinguishable from changes due to input variation. As a result, gain fluctuations reduce the sensitivity of

the receiver. If such fluctuations have rms amplitude ∆G, as shown in Rohlfs & Wilson (2000) this gives

∆T

TSYS
=

√
K2

∆νrec τ
+

(
∆G

G

)2

. (2.21)

Other noise sources will similarly add in quadrature on the right-hand side.

Equation (2.20) with K = 1 is valid for a total power radiometer. For a Dicke-switched receiver, K = 2.

This can be understood as two factors of
√

2: one because only half the integration time τ is spent on-source

and another because the source and reference integrations are subtracted, combining their independent noises

in quadrature. It is important to note that τ is taken to be the full integration time including both Dicke switch

states. Although Dicke switching appears to increase the noise level by a factor of two through the K factor,

in practice it usually greatly reduces the radiometer noise level by eliminating much of the ∆G/G factor in

equation (2.21).

We now compare the observed noise level to that expected from the radiometer equation. The simplest

comparison results from observations of blank sky at zenith, where the input system temperature should be

its most stable. In figure 2.15, we plot the first two seconds of the radiometer output measured in DU for the

individual beams and the difference between the two beams. These data were collected when the telescope

was pointed at zenith for a one-hour period on 17 September 2011.

Using the ant and ref beam data separately, the receiver acts as a total power radiometer (K = 1) with

τ = 1 ms per sample. If we compute the difference ant − ref, the output corresponds instead to a Dicke

switched receiver (K = 2) with τ = 2 ms per sample. In table 2.11, we use the results from the hour-long

data set to estimate the per-sample rms noise and compare this to the results of the radiometer equation. For

convenience, we measure TSYS and ∆T in DU rather than converting to K. In this case, TSYS is the average

level of the radiometer input—for the switched case, this is the average of the level for the two beams.

Both the ant and ref data give consistent results. This demonstrates that the two signal paths have nearly

equal TSYS and bandpass contributions from the sections of the signal path not in common, i.e., skyward of
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Figure 2.15. Uncalibrated full-rate (500 Hz) Dicke-switched radiometer samples (in DU) collected while
pointed at zenith on 17 September 2010. The differenced signal is much flatter, indicating a reduction in
slow fluctuations due to atmospheric or receiver variations or other common-mode noise sources. This is at
the cost of a

√
2 increase in the white noise level, visible as an increase in the high-frequency scatter in the

bottom panel.

Table 2.11. Calculation of receiver sensitivity and comparison with the radiometer equation

Input K τ TSYS ∆T Expected ∆T ∆G/G
(ms) (DU) (DU) (DU)

ant 1 1 23,844.2 24.6 14.8 8.2× 10−4

ref 1 1 24,453.4 25.1 15.2 8.2× 10−4

ant− ref 2 2 24,148.8 22.9 21.2 3.6× 10−4

Note: Summary of data and calculations comparing the noise in one hour of blank-sky data
(the first two seconds are shown in figure 2.15) to the radiometer equation. K = 1 for
the total power radiometer mode and K = 2 for the Dicke-switched mode. Expected ∆T
is computed from equation (2.20) and ∆G/G is computed from equation (2.21) assuming
any excess noise results from gain fluctuations.

the Dicke switch. Thus, the difference in DC signal levels between the ant and ref signals is mostly due to a

gain mismatch between the two signal paths rather than a source of excess noise in one.

The switched data match the radiometer equation more closely than do those for the individual channels.

In fact, although the predicted ∆T is greater for the Dicke switched mode (21.2 DU versus 14.8 DU or

15.2 DU), the switching eliminates enough excess noise due to atmospheric and receiver gain fluctuations

that the measured rms is lower (22.9 DU versus 24.6 DU or 25.1 DU). Trading a factor of two increase in the

theoretical noise level (i.e., letting K = 2 in equation (2.21)) for the elimination of gain fluctuations through

Dicke switching actually lowered the measured noise level.
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2.1.3.4 Gain Fluctuations and 1/f Noise

So far in the sensitivity discussion, we have implicitly assumed that fluctuations are spectrally white—that

they are constant in amplitude over all frequencies. This leads to the result, embodied in the radiometer

equation (equation (2.20)) that increasing the integration time will reduce the uncertainty in the measurement.

This is generally a reasonable assumption for short times, but often breaks down for long integrations. The

reason is the presence of noise processes with amplitudes that increase at lower frequencies. These processes

are characterized by a power spectral density, Φ(f) ∝ 1/fα for some α ≈ 1, and are frequently referred to as

“red,” “pink,” or simply “1/f” noise. Such noise processes are ubiquitous in nature, and have been observed

in systems ranging from turbulence scale distributions in lakes to gain fluctuations in semiconductor devices

such as amplifiers and detector diodes (e.g., Schmid 2007; van der Ziel 1988). These latter phenomena affect

radiometer sensitivity through the gain fluctuation term in equation (2.21). Note that in this section, we refer

to frequency as f rather than ν, both to match the literature on this topic, and to avoid confusion between

radio frequency, ν and frequencies in the postdetection signal, f .

On 27 October 2010, 27 min of data were collected while the telescope was pointed at blank sky. Fig-

ure 2.16 shows the power spectral density of the average of the ant and ref signals during 10 min of this

period. The 1/f behavior is evident, as is contamination due to mains power at 60 Hz and harmonics and

a signal from the cryogenic compressor cycling at about 1 Hz and harmonics. The white noise limit at high

frequencies is estimated from data, neglecting the narrowband contamination, to be 0.53 DU2 Hz−1. The

“knee frequency,” fknee, is the frequency at which the 1/f noise component equals the white noise, leading

to a total noise that is double the white noise floor. This occurs at about fknee = 17 Hz.

In figure 2.17, we show the power spectral density for the differenced data, ant − ref, during the same

10 min period. The white noise level is found to be 2.07 DU2 Hz−1, or a factor of about four higher, as

expected when comparing the variance of a difference to that of an average. There is no evidence for the

onset of 1/f noise in this plot—it has been reduced tremendously by the differencing. Although in the ideal

case all 1/f noise due to sources in the common signal path would be eliminated, in practice there is some

residual effect due to imbalances between the inputs in the two switch states.

In figure 2.18, we plot the power spectral density of the difference ant− ref over the entire 27 min period,

computed to a much lower minimum frequency. Because this increases the number of data points in the plot

enormously, we have downsampled by a factor of 30 to reduce the number of points. The white noise level

from these data is found to be 2.10 DU2 Hz−1 in agreement with figure 2.17. It appears that residual 1/f

noise is becoming significant at very low frequencies, with an estimated fknee = 5 mHz.
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Figure 2.16. Power spectral density of 10 min of averaged ant and ref samples, illustrating clear 1/f -type
behavior at low frequencies. The horizontal lines indicate 1× and 2× the white noise level (0.53 DU2 Hz−1).
The vertical line indicates the estimated knee frequency, fknee ≈ 17 Hz.
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Figure 2.17. Power spectral density of the same 10 min of data shown in figure 2.16, now computed from the
difference signal ant − ref. The reduction in 1/f noise is evident. The horizontal lines indicate 1× and 2×
the white noise level (2.07 DU2 Hz−1).
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Figure 2.18. Power spectral density of about 27 min of data that overlaps the 10 min interval shown in
figures 2.16 and 2.17. The spectrum is computed with finer resolution to accurately measure very low fre-
quencies. To keep the number of data points manageable, the data were down-sampled by a factor of 30
and averaged. The horizontal lines indicate 1× and 2× the white noise level (2.10 DU2 Hz−1). The vertical
line indicates the estimated knee frequency, fknee ≈ 5 mHz. The “bushy” appearance of the plot at high
frequencies is a visual artifact of the logarithmic binning—there is no actual increase in the white noise level
at high frequencies.
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The radiometer equation can be used to estimate the reception bandwidth of a receiver from the white

noise level in the power spectral density of the output. Given a white noise power spectral density Φ0 in units

of power per Hz, we use ∆νnoise = 1 Hz in equation (2.19) and find

∆νrec =
2K2 TSYS

2

Φ0
. (2.22)

In place of TSYS, we insert the average level of the input signal in DU. The average value of the input

during this test was 2.5265 × 104 DU. We find ∆νrec = 2.41 GHz using the averaged data (K = 1 and

Φ0 = 0.53 DU2 Hz−1) and ∆νrec = 2.47 GHz from the differenced data (K = 2 and Φ0 = 2.07 DU2 Hz−1).

This agrees reasonably well with the value ∆νrec = (2.6±0.1) GHz we computed from the receiver bandpass

in section 2.1.3.2.

2.1.3.5 Calibration Diodes

A pair of calibrated noise diodes, referred to as the NOISE and CAL diodes, are connected to the main beam

input via directional couplers to the Dicke switch. At their outputs, these noise diodes provide an excess

noise ratio of (31± 1) dB from 12–18 GHz with compensation to maintain output stability with temperature.

The outputs of the noise diodes are reduced in amplitude without introducing excessive thermal noise by

connecting them to the ant signal chain through directional couplers as shown in figure 2.10.

These calibration diodes provide two equivalent noise temperatures for calibration. The NOISE diode

provides a noise temperature comparable to the system temperature and the CAL diode provides a noise tem-

perature comparable to the antenna temperature of the astronomical sources we are observing. The equivalent

noise temperatures of the NOISE and CAL diodes at the receiver input are about 67.3 K and 1 K—see fig-

ures 2.23 and 2.25.

The temperature stability of the NOISE and CAL diodes was measured using a calibrated continuous-

wave RF power meter to measure the output level as the temperature was raised from room temperature (near

300 K) to about 325 K using a hot air gun. The diode under test was removed from the receiver and its metal

case was bolted to a thick aluminum plate. The hot air gun was applied to the back side of the plate away from

the diode and a few seconds were allowed for the diode to equilibrate with its case temperature before the

output of the power meter was recorded. The case temperature was measured using an infrared thermometer

(specified accuracy ±0.2 K) aimed at a piece of tape with high infrared emissivity that was securely attached

to the diode case. After the temperature was raised to the maximum tested, the diode was allowed to cool

back to room temperature. Measurements were made both during heating and cooling.

Both diodes were tested, but the more accurate absolute power reading was only recorded for the CAL

diode. The results are plotted in figure 2.19, showing variation of about 8 × 10−4 dB ·K−1 assuming a

linear model. The NOISE diode exhibited nearly identical relative output measurements, so we believe its

temperature stability to be similar.
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Figure 2.19. Change in absolute CAL diode power output versus its case temperature. The dashed line is a
linear fit with slope 8× 10−4 dB ·K−1.

Table 2.12. Results of a stability test of CAL diode output versus diode case temperature

Case Temp Relative Absolute
(◦C) (dB) (dBm)
26.9 0.00 −40.457
36.5 0.01 −40.443
41.1 0.02 −40.439
53.6 0.02 −40.432
38.1 0.01 −40.441
34.4 0.01 −40.443
31.1 0.01 −40.446
28.9 0.01 −40.449

Table 2.13. Results of a stability test of NOISE diode output versus diode case temperature

Case Temp Relative
(◦C) (dB)
27.1 0.00
28.6 0.00
31.7 0.00
35.6 0.01
36.1 0.01
39.7 0.01
44.4 0.01
48.4 0.02
45.0 0.02
33.7 0.00
28.8 −0.01

Note: During this test, the absolute output
was not recorded.



43

Although the calibration diodes’ physical temperatures are not regulated or monitored directly, they are

located inside the warm section of the receiver enclosure. This is regulated at an air temperature of ap-

proximately 300 K with rms fluctuations of about 1.1 K. In 2009, during hot weather when the ambient air

temperature reached &310 K, excursions up to about 307 K inside the enclosure were observed. During

winter months occasional brief decreases as low as 288 K occurred. Using the temperature coefficient we

measured, this corresponds to a 0.015 dB (0.3%) change in the output level from one extreme to the other

if the diodes vary over the full range of temperatures in the enclosure. If we fit a quadratic instead of linear

model to the data in figure 2.19, we predict a 0.031 dB (0.7%), still well less than 1%.

Even this level of temperature-induced output variation is unlikely to occur on short timescales. Temper-

ature swings this large occur between seasons, not diurnally. We therefore need not worry about variations

in calibration diode output due to temperature changes in the course of a day—we may treat their outputs as

constant to the level of precision we require.

2.1.3.6 Beam Isolation

The Dicke switch is a ferrite switch that couples one of two feed-side ports to the common port connected to

the radiometer. The device is controlled electronically by reversing the magnetic field domains in a ferrite.

Such an electronic device is the only practical microwave RF switch capable of continuous 500 Hz switch-

ing for years. A trade-off must be made in the isolation between the ant and ref ports—the isolation of a

ferrite switch is much lower than a mechanical switch, but the latter would wear out in a very short time.

Furthermore, devices of this sort designed for cryogenic operation were not available at the time the receiver

was constructed (and are now extremely rare in any form). Thus, the Dicke switch is a device intended for

room temperature operation that was found to behave reasonably at temperatures down to about 70 K (Leitch

1998). As the temperature is lowered below this, the isolation drops to unacceptable levels.

By observing the response in the ref channel when the NOISE diode (in the ant channel), the isolation of

the Dicke switch is found to be about 15 dB. The isolation need not be symmetric, but Leitch (1998) found the

two directions to match to about 0.5 dB. Because the isolation is nearly symmetric, the effect of isolation is

to reduce the effective gain for a flux density measurement measured as described in section 2.2.2.2. Because

we observe our astronomical calibration sources with the same procedures as our program sources, therefore,

an explicit isolation correction is not required.

2.1.3.7 Nonlinearity

Although amplifiers and detectors are designed to exhibit linear response, deviation from linearity at some

level is inevitable. The most important nonlinear effect for our receiver is gain compression, a reduction in

gain as the output level increases. This effect is demonstrated in figure 2.20, where the difference between

the ideal linear response (solid line) and the actual response (dashed line) is due to compression.
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Figure 2.20. One trial of a hot/cold Y-factor measurement demonstrates the presence of gain compression
in the receiver. The four input levels, here measured in K, correspond to the LN2 cold load (assumed to be
77.4 K) and the ambient-temperature hot load (measured to be 294.4 K), each with and without the NOISE
diode enabled (equivalent noise temperature measured to be 67.6 K). The measured receiver temperature from
this trial, 28.5 K, is also included. The solid line is a constant gain of 161 DU · K−1 with no compression.
The dashed line through the data points is the same gain, but including compression with b = −9.824 ×
10−7 DU−1.

Modeling the exact nonlinear behavior of a receiver system is complicated, but for our needs, a simple

empirical model is sufficient. We use the same nonlinearity model developed in Herbig (1994) and also

described in Leitch (1998), where deviation from linear response is characterized by a single parameter, b.

The model simply adds a gain factor proportional to the output level to the constant component of the gain,

y = G (1 + b y)x, (2.23)

where x and y are the input and output signals, respectively, and G is the nominal gain measured well below

where compression effects are significant. Here, b is given in inverse units of the output signal. This model

is reasonable for responses that exhibit slight compression, when |b| � y−1. Figure 2.21 demonstrates the

effect of various b values. For a system with gain compression, b < 0. When b > 0, the model response

describes a gain expansion.

Equation (2.23) describes the response of the system for any input. For many measurements, we are

interested in the small-signal gain. To find this, we solve for y as a function of x, giving

y =
Gx

1− bG−1 x. (2.24)
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Figure 2.21. Behavior of the compression model given by equation (2.23) for b = 0 (dashed line) and −0.3,
−0.2, −0.1, 0.1, 0.2, 0.3 (solid lines, bottom to top).

The small-signal gain near an input operating point x0 with corresponding output y0 is then given by the

derivative at that point,
dy

dx

∣∣∣∣
x0

=
G

(1− bG−1 x0)
2 = G (1 + b y0)

2
. (2.25)

This is the correction that would apply to a differential measurement, such as when Dicke switching is

employed.

This compression model is convenient because the correction can be applied given the output level and a

measured value for b. For a measured output y, the corrected input level is simply

x =
G−1 y
1 + b y

. (2.26)

For a differential measurement ∆y, the input difference is given by

∆x =
G−1 ∆y

(1 + b y)
2 . (2.27)

Our receiver is constructed of several components that each individually exhibit compression. As de-

scribed in Leitch (1998), the total compression of the system will depend on the signal level presented to each

component and will change if the attenuation between components changes. Most significantly, the nonlin-

earity parameter must be measured for each setting of the programmable attenuator shown in figure 2.10.

During normal observations, the attenuator is very rarely adjusted, so we simply measure the overall b pa-

rameter for the operating attenuation. However, during hot/cold calibration procedures, a higher attenuation

level is used, so b must be measured separately for these procedures.
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2.2 Radiometry Techniques

In order to make use of the hardware described in the previous section, its performance characteristics must

be measured and understood and measurement techniques must be specified. In this section, we first describe

several calibration procedures that are performed to measure and monitor the receiver performance. We then

describe the measurement procedures that are used as the basis for the monitoring program.

2.2.1 Calibration and Diagnostic Procedures

Regular diagnostic tests must be performed to ensure that the telescope and receiver are performing as ex-

pected and that the data can be properly calibrated. Fortunately, the 40 m telescope and receiver have been

very stable and reliable, simplifying these tasks a great deal. Calibrations have been performed regularly, on

a schedule that has evolved as we have better understood the stability and requirements of the instrument.

From 2007 until November 2008, receiver calibrations were performed occasionally but without a regular

schedule. Beginning in November 2008, approximately monthly calibrations were performed. In December,

2009, the schedule was reduced to semimonthly, which has proven adequate. These calibrations include Y-

factor measurements to characterize receiver temperatures, sky dips to measure atmospheric optical depth and

to determine the ground spillover, calibration diode effective temperature measurements, and observations of

calibration sources to measure the aperture efficiency. We describe these methods here (see section 2.1.2.1

for the aperture efficiency measurement procedure).

2.2.1.1 Measuring Receiver and Calibration Diode Noise Temperatures

We use a single calibration procedure to determine the receiver noise temperature and to find the equivalent

noise temperature of the calibration diodes. The basis for our measurement is the Y-factor method (e.g.,

Evans & McLeish 1977; Rohlfs & Wilson 2000).

To measure the receiver noise temperature using the Y-factor method, two input loads of different known

brightness temperatures are needed. The Y-factor is defined as

Y ≡ PH
PC

, (2.28)

where PH and PC are the receiver output levels when presented with hot and cold loads at temperatures TH

and TC , respectively. For a receiver with a noise temperature TRX and an input temperature T ,

P = G (T + TRX) . (2.29)

Using the two loads and solving, we find

TRX =
TH − Y TC
Y − 1

. (2.30)
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The uncertainty in this measurement is then given by

σ2
TRX

=

(
1

Y − 1

)2

σ2
TH

+

(
Y

Y − 1

)2

σ2
TC

+

(
TH − TC
(Y − 1)

2

)2

σ2
Y , (2.31)

where σ2
x is the mean-squared uncertainty in the value of x. Note that in equation (2.29), the receiver response

was assumed to be linear with no offset. In practice, neither assumption is valid, so corrections must be

applied.

The procedure we follow when performing a hot/cold load test comprises a series of five measurements

performed with the receiver on the telescope:

1. fill the feed aperture with the hot load and measure PH ;

2. enable the NOISE diode and measure PH+N ;

3. disable the NOISE diode, disconnect the radiometer input from the DAQ back end and measure PZ ;

4. remove the hot load, fill the feed aperture with the cold load, and measure PC ; and

5. enable the NOISE diode and measure PC+N .

This procedure is repeated several times. The results are averaged and their scatter is used to estimate the

uncertainty in the result.

Both the hot and cold loads are constructed from blocks of radio-absorbent foam mounted with a reflective

metal backing. The hot load is kept at the ambient temperature and is instrumented with a thermometer

to measure TH . The cold load is enclosed in a radio-transparent insulating box that is filled with liquid

nitrogen (LN2), so TC ≈ 77 K. Care must be taken to minimize uncertainty in TH and TC , e.g., by giving

the cold load time to equilibrate with its LN2 bath, by keeping the hot load in the shade to avoid direct

solar heating, and by working quickly to minimize changes in ambient temperature and avoid excessive

LN2 boil-off. Even with these precautions, it is difficult to precisely estimate the effective load brightness

temperature, which depends both on the physical temperature of the LN2 and the effect of reflections due to

imperfect matching and absorption by the absorbing foam. Based on experience, the effective 2 cm brightness

temperature for a well-matched box load is likely within 1–2 K of the physical temperature (D. P. Woody and

J. W. Lamb, personal communication). We adopt a value of TC = 77.4 K for the cold load, which may be

a slight underestimate of its true brightness temperature. For the typical value Y ≈ 3 in our tests, each 1 K

underestimate in TC would result in a ∼1.5 K overestimate of TRX.

The hot load brightness temperature is similarly uncertain due to reflection and imperfections in the load,

as well as the possibility that the thermometer does not reflect the physical temperature of the load due to

thermal gradients in the foam. It is more difficult to estimate the uncertainty because reflections from the load

may be terminated on the ground (T ≈ 300 K), on the sky (T ≈ 10 K, including the CMB contribution), or

within the cryostat. In any case, the temperature of the terminating material is likely to be similar to or less
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than the measured temperature of the hot load, so the measured TH is probably a slight overestimate of the

true brightness temperature. Each 1 K overestimate in TH increases the measured TRX by ∼0.5 K for our

typical value Y ≈ 3. Thus, the receiver temperatures we report are perhaps slightly conservative.

Given a single trial, the data are reduced as follows. First, we estimate the nonlinearity parameter bHC in

equation (2.23) applicable for the measurement. Because the ∼300 K temperature of the hot load dictates a

higher programmable attenuator setting for this test than is used for normal observing, this measurement of

bHC cannot be used to correct other data. We find bHC by comparing the change in receiver output due to

the NOISE diode when measured against the hot load (∆H ≡ PH+N − PH ) versus when measured against

the cold load (∆C ≡ PC+N − PC). The parameter bHC is given by

bHC =
2
(√

∆C −
√

∆H

)
ΣC
√

∆H − ΣH
√

∆C

, (2.32)

where ΣH = PH + PH+N − 2PZ and ΣC = PC + PC+N − 2PZ are the average offset-corrected output

levels.

Next, using equation (2.26) we correct our measured values for nonlinearity and offset using the measured

value for bHC . For PH , this is

P ′H =
PH − PZ

1 + bHC (PH − PZ)
, (2.33)

and similar for PC , etc. Now using the corrected P ′H and P ′C values to compute Y , equation (2.30) yields

TRX.

The receiver gain (in DU ·K−1) at this attenuator setting can be calculated as

GHC =
P ′H − P ′C
TH − TC

. (2.34)

This can be used to convert the measured noise diode response from DU into its equivalent noise temperature

in K:

TNOISE = G−1HC ×
(
P ′H+N − P ′H

)
. (2.35)

Although bHC and GHC are only applicable to the attenuator setting used for the hot/cold load test, TNOISE

is a property of the NOISE diode output and does not depend on the attenuator. The equivalent temperature

of the CAL diode, TCAL, is determined from the ratio of its response to that of the NOISE diode. Because

the response of the CAL diode is much smaller than that of the NOISE diode, this comparison is performed

at the normal operating attenuator setting rather than at the hot/cold load test setting.

Results from the Y-factor tests and the related measurements are shown in figures 2.22 through 2.27. In

figure 2.22, the large TRX outlier in February 2010 resulted from a hardware problem in the receiver that was

corrected shortly after the measurement.
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Figure 2.22. Receiver temperature measured between November 2008 and July 2011. Error bars estimated on
individual measurements, typically about 0.15 K, are smaller than the plotted points. Dashed line indicates
the mean, TRX = (29.4 ± 0.2) K, excluding the outlier in February 2010 and using the sample standard
deviation to estimate the uncertainty.
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Figure 2.23. NOISE diode equivalent noise temperature measured between November 2008 and July 2011.
Error bars estimated on individual measurements, typically about 0.05 K, are smaller than the plotted points.
Dashed line indicates the mean, TNOISE = (67.3 ± 0.1) K, where the uncertainty is estimated from the
sample standard deviation.
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Figure 2.24. Nonlinearity-corrected NOISE to CAL output ratio measured between November 2008 and July
2011. Error bars estimated on individual measurements, typically about 0.06, are mostly smaller than the
data points. Dashed line indicates the mean ratio, (68.0 ± 0.1), where the uncertainty is estimated from the
sample standard deviation.
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Figure 2.25. CAL diode equivalent noise temperature measured between November 2008 and July 2011.
Error bars estimated on individual measurements, typically about 0.001 K, are mostly smaller than the data
points. Dashed line indicates the mean, TCAL = (0.991± 0.003) K, where the uncertainty is estimated from
the sample standard deviation.
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Figure 2.26. Nonlinearity parameter b measured during skydip tests between November 2008 and July 2011.
The uncertainty is typically about 10−8 and many error bars are smaller than the data points. The 2008
data were measured with the programmable attenuator set to 5, leading to a smaller |b| on those dates. The
decrease in |b| in the June and July 2011 may result from a change in receiver gain following maintenance or
from a change in the measurement procedure.
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Figure 2.27. Nonlinearity parameter bHC measured during hot/cold load tests between November 2008 and
July 2011. The uncertainty is typically about 10−8 and many error bars are smaller than the data points.
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2.2.1.2 Measuring Atmospheric and Ground Pickup

In order to measure the emission due to the atmosphere, we perform a “sky dip” measurement. That is, we

measure the receiver output as we dip the telescope from near zenith to near the horizon. At lower elevations,

the path length through the atmosphere—the air mass—increases. The air mass at the moderate elevations at

which we observe is well approximated by assuming a plane-parallel atmosphere, where the air mass datm at

zenith angle z in atmospheric depths is

datm ≈ sec z. (2.36)

If we assume that the absorption coefficient α of the atmosphere is uniform, then the atmospheric optical

depth is simply

τ =

∫ datm

0

αdy = αdatm. (2.37)

When observing an astronomical source with a brightness temperature Ts, the detected signal will then

be

T = (Ts + TCMB) e−τ + TATM

(
1− e−τ

)
+ TGND + TRX (2.38)

≈ (Ts + TCMB) (1− αdatm) + TATM αdatm + TGND + TRX, (2.39)

where TATM is the atmospheric temperature, assumed constant, TGND is the temperature due to ground

pickup, and TRX is the receiver noise temperature. The latter approximation applies if τ � 1. We are

normally justified in assuming TGND is constant over short times because the antenna sidelobes that couple

it to the receiver are extended in solid angle, so it measures the average temperature over a large area of the

ground. Exceptions to this occur, for example, during periods when the ambient temperature is changing

rapidly, when localized radio-frequency interference sources are present, or when the telescope is tipped

to low enough elevation that near-in sidelobes intersect the ground. The latter can occur at relatively high

elevations when pointed toward nearby mountains, but as these are less than 10◦ elevation, this is not a

concern for normal observing.

Figure 2.28 shows the results for a single sky dip performed on 27 April, 2011. The radiometer data

were corrected for nonlinearity, then converted to temperatures by comparing their response to NOISE diode

measurements just before the sky dip. In panel (c), the dashed line is the fit

Tant = (5.2 datm + 47.3) K. (2.40)

Comparing this to equation (2.39) with Ts = 0, we conclude α (TATM − TCMB) = 5.2 K and TGND+TRX+

TCMB = 47.3 K. Although the temperature of the atmosphere varies, in the troposphere where most of the

water vapor responsible for atmospheric radio absorption and emission is located, temperatures are typically



52

52

54

56

58

60

62

T
a
n
t

(K
)

(a)

0 10 20 30 40 50 60 70 80 90
Zenith Angle (deg)

1.0

1.5

2.0

2.5

3.0

A
ir

M
as

s

(b)

52

54

56

58

60

62

T
a
n
t

(K
)

(c)

1.0 1.5 2.0 2.5 3.0
Air Mass

−1.0

−0.5

0.0

0.5

1.0

R
es

id
ua

l(
K

)

(d)

Figure 2.28. Downward portion of a sky dip (27 April, 2011). (a) Calibrated radiometer output as a function
of zenith angle. (b) Approximate air mass as a function of zenith angle, computed from equation (2.36).
(c) Radiometer output, now plotted against air mass. The dashed line is a linear fit to the data with slope
5.2 K and intercept 47.3 K. (d) Residual after removing the linear fit from the data, showing small nonrandom
deviation from the linear model.
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230–300 K (e.g, NOAA 2010)), so 270 K is a reasonable estimate of TATM. This gives τ0 ≈ 0.02 as the

atmospheric optical depth at zenith, justifying the small-τ approximation in equation (2.39).

The residuals from the fit, shown in panel (d) of figure 2.28, systematically deviate from the linear

model—much of this structure is consistent from one sky dip to the next. This most likely results from

changes in the ground pickup term as the telescope slews. In particular, the sharp increase near zenith occurs

when the telescope feed is looking into the ground, perhaps coupling around the edge of the dish or detecting

emission through the dish, much of which is perforated rather than solid.

A sky dip procedure is also used to measure the nonlinearity parameter, b, of the receiver, defined by

equation (2.23). The calibration diodes produce a constant input noise temperature increment. By measuring

the resulting receiver output increment at several background levels, and fitting to the nonlinearity model, b

can be estimated. By measuring the calibration diode response at several elevations, the varying atmospheric

signal that results from variations in τ with elevation provides this varying background level. Normally the

NOISE diode, with a temperature increment of about 70 K, is used for this measurement. The fainter CAL

diode signal (∼1 K) is not strong enough for a reliable measurement of the nonlinearity effect for typical

background variations.

2.2.2 Observation Procedures

2.2.2.1 Pointing

Pointing the 40 m telescope accurately is a crucial requirement for this observing program. As discussed

in section 2.2.2.2, flux densities are measured using an on-off sky switching, which requires that the 40 m

telescope be able to reliably position the center of the beam pattern on the target. Although the beam width

of θFWHM ≈ 2.′6 is relatively broad, even a 15′′ pointing error will result in a 2.5% reduction in gain.

Pointing model. The 40 m telescope is equipped with encoders on the azimuth and elevation shafts. These

readings and the readings from the tilt sensors (see section 2.1.1.3) are combined in a pointing model that

generates encoder azimuth and zenith angle offsets based on the requested position on the sky. The pointing

model has 9 terms for the azimuth angle correction and 5 terms for the zenith angle correction,

∆φmodel = A1 sin θ +A2 +A3 sinφ cos θ

+ A4 cosφ cos θ +A5 cos θ +A6 sinφ sin θ (2.41)

+ A7 cosφ sin θ +A8 sin (4θ) +A9TLR cos θ,

∆θmodel = Z1 + Z2 sin θ − Z3 cosφ+ Z4 sinφ+ Z5TAF . (2.42)
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Figure 2.29. Residual error between the pointing model and the actual requested position, plotted in week-
long bins for 2008 and 2009. The plotted data and errors are the weekly means and standard deviations of the
pointing offsets measured by the pointing calibrations.

Here, φ and θ are the requested azimuth and zenith angles, ∆φmodel and ∆θmodel are the pointing model

corrections for the azimuth and zenith angles, Ai and Zi are the pointing model coefficients, and TAF and

TLR are the aft-forward and left-right tilt meter readings.

The pointing model is determined by performing POINT procedures, described below, at a range of

mount coordinates that spans its range. Each POINT produces a measurement of the offset between the

encoder readings and the actual position of the telescope beam on the sky. The pointing model coefficients

are fit using a least-squares procedure to minimize the error between the model prediction and the measured

offsets. The rms residual between the pointing model and the offsets is typically about 15′′ on the sky. This

quantifies our ability to point the telescope blindly at a desired position.

We have found that the pointing model terms drift slowly with time. Figure 2.29 shows the residual offset

between the pointing model and the actual requested position for 2008 and 2009. The sharp steps in the

average offset correspond to adjustments in the pointing model. Before 2010, we adjusted the pointing model

two to three times per year to minimize the scatter in the offset and maintain an average offset less than about

0.′5 to ensure accurate pointing. The data for the fit were collected in a two day period when the telescope

was dedicated to measuring the pointing model.

In 2010, we changed our procedure and eliminated the dedicated pointing model measurements. Instead,

the POINT procedures executed as part of the monitoring program were collected and the residuals were used

to fit pointing model updates as necessary. This eliminates the engineering time overhead of the dedicated

measurements and ensures that the model is fit to data collected at mount positions corresponding to those

spanned by our program.
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Pointing offsets. In addition to the pointing model correction, at least once per hour we measure the point-

ing offset between a bright pointing calibrator and the model prediction. This measures the effect of wind

and thermal loading. In early 2009, we determined that these pointing offsets have the accuracy we require

only at separations up to about 30◦ from the position where the pointing offset was measured. Because of

this effect, after MJD 54906 (16 March 2009), care was taken when scheduling to ensure that flux density

measurements were always made at separations of less than 15◦ from the pointing offset measurement. Prior

to this, no such limit was in place. We have discarded flux densities measured with a separation of more than

30◦.

POINT procedure. Before December 2010, pointing offsets were measured using the POINT procedure,

which was implemented in both the VAX and MCS control systems. This procedure operated by performing

3-point cross-scans of the calibrator in both azimuth and zenith angle and fitting a fixed-width Gaussian

beam profile to each axis to determine the position of the peak. A pointing offset measurement is considered

invalid if its signal-to-noise ratio is less than two, or if the offset indicates that the peak was outside the span

of the cross-scan, ±θFWHM/2. When using the POINT procedure, several iterations are normally attempted,

moving the cross-scan center by up to θFWHM/2 after each attempt. This allows offsets less than the θFWHM

to be measured reliably.

POINT2D procedure. In December 2010, the POINT2D procedure was introduced in the MCS control

system as a more efficient procedure for measuring pointing offsets. As suggested by its name, the POINT2D

procedure measures the two dimensions of the sky offset at once, rather than first scanning in azimuth and

then in elevation. In this procedure, measurements are performed at the expected peak position of the beam

and 12 other positions in a pair of hexagons centered on the expected peak at 0.4 θFWHM and 0.7 θFWHM

radii. A final point at an azimuth offset about 8′ from the expected peak is measured to sample the sky

background. The pattern of measurement positions is shown in figure 2.30. Using a least-squares fit to the

results, the offsets in both directions can be measured simultaneously. This procedure has been found to be

more robust and, importantly, faster than the original POINT procedure.

2.2.2.2 Beam Switching and Flux Density Measurements

While Dicke switching does much to reduce the large error terms due to the atmosphere, the ground, and gain

fluctuations in the receiver, it does not remove linear drifts in any of these quantities and the situation can be

further improved by beam switching. Beam switching in azimuth is optimum because by maintaining a con-

stant elevation we minimize changes to the atmospheric and ground spillover signals and thereby maximize

their cancellation. We therefore adopt the same “double switching” technique introduced in Readhead et al.

(1989) and also discussed in Myers et al. (1997), Leitch (1998) and Angelakis et al. (2009). In this method,

in addition to the dual-beam Dicke switching, we also switch the target between the two beams and hence
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Figure 2.30. Pattern of offsets for a POINT2D procedure. The expected position of the source is at 0.
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Figure 2.31. Schematic illustration of the FLUX procedure. The source (S) and reference fields (R1 and R2)
alternate between the ant and ref in the four segments of the procedure.

remove both the constant term and any linear drifts in the power from these unwanted components of the

signal.

FLUX procedure. The FLUX procedure implements double-switching and is the measurement procedure

by which we collect the flux densities for this monitoring program. Figure 2.31 illustrates the procedure

schematically. Each FLUX procedure encompasses four Dicke-switched integration periods of length τ ,

labeled A, B, C, and D. The FLUX measurement is executed as follows. First, the ref beam is positioned on

the source and integrated, yielding the power difference ξA. Then the ant beam is positioned on the source

and integrated to produce ξB. Next, ξC is measured with ant still on-source, and finally the ref beam is again

positioned on the source for a final integration, ξD. Thus we spend a total time of 4τ actually integrating on

the source for each flux density measurement. Of course, slewing and settling times have to be allowed for at

the beginning of the A, B and D integrations. In this program, τ = 8 s is used and with slewing overhead,
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the total time for a FLUX procedure is about 1 min, yielding an on-source efficiency of about 50% for the

FLUX procedure.

From the A, B, C, and D integrations, the corresponding flux density is given by

S15 =
κ

4
(ξB + ξC − ξA − ξD), (2.43)

where κ is the calibration factor required to turn DUinto Jy, and the rms error is given by

σ15 =
κ

4

√
σA2 + σB2 + σC2 + σD2. (2.44)

The calibration factor consists of a relative calibration factor that is computed for each measurement (sec-

tion 3.2.2.1) and an flux density calibration factor (section 3.2.2.3).

The four integrations also contain interesting information about the stability of the instrument and, more

importantly, the atmosphere, during the observations. For each flux density measurement, we therefore also

compute two other quantities—one that we call the “switched power,” ψ, given by

ψ =
κ

4
(ξB + ξD − ξA − ξC) , (2.45)

and the other that we call the “switched difference,” µ, given by

µ =
κ

4
(ξC + ξD − ξA − ξB) . (2.46)

Both ψ and µ should be zero in the absence of gain or atmospheric drifts so we use these as a way of

estimating such variations in our error model (section 3.2.3) and to reject badly contaminated measurements

(section 3.2.1.6). The uncertainties in ψ and µ are clearly given by equation (2.44).

A third combination of the four integrations cancels the contribution of the source field. We call this the

“source-nulled flux,” and it is defined as

Snull =
κ

4
(ξA + ξB + ξC + ξD) . (2.47)

In Snull, the source field is canceled, leaving behind a signal proportional to the difference in brightness

between the two reference fields. This property makes it a good detector for astronomical confusion, of

which solar interference is an example. We do not use this combination during normal observing or data

reduction, but we use it in section 4.4 to detect solar interference.

In practice, the 1 ms samples recorded by the data acquisition system are accumulated into 1 s averages

for the ant and ref beams. The uncertainties σi2 are measured from the sample variances in the 1 s averages

rather than from the 1 ms samples directly.
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Impact of contamination. Although we will show in section 4.5 that bright radio sources at high galactic

latitudes are rare enough that very few source or reference fields will be affected by confusion, it is important

to understand the effect of such contaminants. A contaminating source near enough the intended target to

appear in the main on-source beam will introduce an artificially high flux density measurement. Fortunately,

the average beam for the on-source field (figure 2.6) is nearly circularly symmetric, so if the 40 m pointing is

repeatable, such contamination will occur with a constant antenna gain in every observation regardless of the

parallactic angle. As a result, although the flux density measurements may be spuriously offset, no or very

little artificial variability will be inferred.

Confusion from sources found in the off-source reference beams will reduce the measured flux density

for a source. Fortunately, because each reference field is only integrated half as long as the source field, the

amplitude of the contamination will be reduced by a factor of two. However, contamination in the reference

fields is more likely to result in false variability because the beams are no longer symmetric under parallactic

angle rotations. We discuss the effects of confusion further in section 4.5.

2.2.2.3 Calibration Diode Measurements

The output of the CAL and NOISE diodes is measured via the CAL procedure, which is very similar in

operation to the FLUX procedure. If a source is being tracked, the telescope first slews to an offset position

so the antenna beams are (most likely) positioned on blank sky near the target. A four-integration A, B, C, D

procedure is executed, but no slew is required. Instead, during the B and C integrations, the NOISE or CAL

diode is enabled. The output of the CAL procedure is then given by

SCAL =
1

2
(ξB + ξC − ξA − ξD) , (2.48)

and the rms error by

σCAL =
1

2

√
σ2
A + σ2

B + σ2
C + σ2

D, (2.49)

with similar expressions for SNOISE and σNOISE. Note that the normalization factor is 1/2 rather than 1/4 as

for the FLUX—this is because the diode is only active for two of the four integrations of the CAL procedure,

whereas one beam is on-source for all four integrations in the FLUXPROC procedure.

Because the offset position at which the CAL measurement is executed is near the position of the source

being tracked, the background level of the radiometer due to receiver noise, CMB, atmospheric, and ground

contamination should be similar to that of a subsequent FLUX procedure. This is convenient because it

leads to a similar level of gain compression for a CAL diode measurement as for a FLUX measurement of

the source. Thus, unless the source is extraordinarily bright, calibrating a measured source flux density by

comparing it to a nearby CAL will implicitly correct for nonlinearity. This is not true for the NOISE diode—

the NOISE diode produces so large a signal that it induces a significant change in compression. Neither the

CAL diode nor typical program sources are bright enough to induce such changes.
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2.2.2.4 Other Observation Procedures

Two other procedures are used for calibration purposes. The ZERO procedure is used to measure the output

of the detector when the radiometer is disconnected. This is achieved via an RF switch that can connect the

detector diode input to a matched termination instead of the radiometer output. This procedure is used to

distinguish the amplitude of the detected signal due to power incident on the radiometer from the offset due

to the back-end itself. Such an offset measurement is not required for the differenced output, ξ, since any

such offset would be canceled by the subtraction.

The AVERAGE procedure was used in the VAX control system to integrate the switched, ξ, and total

power, P, signals from the radiometer without performing sky switching through the FLUX procedure. Be-

cause the MCS control system constantly stores the raw output samples, an explicit procedure for this is no

longer required.
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