The Radio Variability of Gamma-Ray Blazars

Thesis by

Joseph Lee Richards

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

2012

(Defended October 11, 2011)

© 2012 Joseph Lee Richards All Rights Reserved

Acknowledgments

I must of course thank my family for their love, support, and so much more throughout this research. Thanks to my wife, Elina, for introducing me to astronomy, for providing the impetus to return to graduate school, and for tolerating several extra years in sunny California while I finished up. Our children, Jesse and Wendy, have provided a constant reminder that there are always things more important than research. To my parents, I owe thanks for teaching me the value of education and hard work, and for making any of this possible.

I am extremely grateful to my fellow student, Walter Max-Moerbeck, who performed far more than his share of observing, and for his patiently helping a physics student learn some astronomy. Thanks also to Matthew Stevenson, who, among many things, kept the monitoring program going at a critical juncture. Postdoctoral scholar Vaso Pavlidou has provided uncountable theoretical discussions as well as reliable advice and valuable CPU cycles, for which I am grateful. Thanks are also due to Tim Pearson for scientific guidance, always-thoughtful criticism, and technical support. Martin Shepherd's tireless dedication to precision and completeness has been inspirational, and any understanding I have of spherical trigonometry is owed to him. Erik Leitch helpfully laid out the fundamentals of calibrating 40 m data in his thesis, and his assistance debugging and extending his CMBPROG software was a great help. I would also like to thank Keith Grainge for many discussions about calibration and data filtering and for his unflappable good cheer. Mark Birkinshaw also provided very helpful suggestions on this topic, as well as fascinating stories about the 40 m. Many thanks to Dave Meier for the privilege of reading a manuscript of his forthcoming textbook on AGN physics. Thanks to Michael Seiffert for his support and mentorship during my work on the QUIET project. He taught me a great deal about radiometers, and provided very helpful advice about navigating in the academic world.

That the telescope functioned during this program is thanks to Russ Keeney. His dedication to the telescope and his understanding of its intricacies are awe inspiring. It has been an honor to work with him.

Tony Readhead, my adviser, has been a great teacher and mentor. His enthusiasm for astronomy is infectious, and his obvious love of knowledge in all its forms is inspiring. The support he provided for a graduate student facing the challenges of starting a family while carrying out his research was beyond expectations. It has been a wonderful experience working in his group, and I hope that we will continue to collaborate long into the future.

There are doubtless others who should be named here but have been omitted. My sincere thanks go to all those who have assisted me in this work.

Abstract

Since late 2007, we have regularly monitored over 1100 systematically selected blazars at 15 GHz using the Owens Valley Radio Observatory 40 m radio telescope. The number of sources in the program has grown to nearly 1600, including all the active galactic nuclei associated with *Fermi* Large Area Telescope (LAT) gamma-ray point source detections north of our declination limit of -20° . Here, we describe the first 42 months of this program, including the design and implementation of an automated data reduction pipeline and a MySQL database system for storing the reduced data and intermediate data products. Using the "intrinsic modulation index," a maximum-likelihood method, we estimate the variability amplitudes for 1413 sources from their radio light curves and compare the properties of physically defined subpopulations of the sample. We find that, among our preselected sample, gamma-ray–loud blazars detected by the LAT are significantly more variable at 15 GHz, attributable to a difference in variability between the gamma-ray–loud and gamma-ray–quiet flat spectrum radio quasars. The BL Lacertae objects in the samples do not show this division in variability amplitudes. In the first two years of our program, a 3σ -significant difference between variability amplitudes for sources at redshift $z \ge 1$ and for sources at z < 1 was found. This difference is found no longer to be significant in the full 42-month data set, particularly after we apply an analysis method to account for the effect of cosmological time dilation.

Contents

Li	List of Figures x					
Li	List of Tables x					
1	Intr	oductio	n	1		
	1.1	Histori	cal Background	3		
	1.2	Blazar	Structure and Emission	4		
		1.2.1	Structure	5		
		1.2.2	Emission Processes	5		
		1.2.3	Jets and Beaming	6		
		1.2.4	AGN Unification	7		
		1.2.5	Blazars	8		
	1.3	The Ra	adio-Gamma Connection	10		
	1.4	The O	VRO 40 m Monitoring Program	11		
		1.4.1	Impact of OVRO 40 m Data	12		
		1.4.2	Statistical Considerations	12		
	1.5	Overvi	ew of Thesis	14		
2	Tele	scope, F	Receiver, and Radiometry	15		
	2.1	The Ha	ardware	15		
		2.1.1	The OVRO 40 m Telescope	15		
			2.1.1.1 Telescope Control Systems	16		
			2.1.1.2 Mount and Drive System	16		
			2.1.1.3 Tilt and Temperature Monitoring	17		
			2.1.1.4 Weather Measurements	17		
		2.1.2	Optics	18		
			2.1.2.1 Aperture Efficiency	19		
			2.1.2.2 Surface Accuracy	21		
			2.1.2.3 Antenna Gain and Focus	22		
			2.1.2.4 Beam Map	24		

v

		2.1.3	Receiver	· · · · · · · · · · · · · · · · · · ·	28
			2.1.3.1	Dicke Switching	30
			2.1.3.2	Bandwidth	30
			2.1.3.3	Sensitivity	34
			2.1.3.4	Gain Fluctuations and 1/f Noise	37
			2.1.3.5	Calibration Diodes	41
			2.1.3.6	Beam Isolation	43
			2.1.3.7	Nonlinearity	43
	2.2	Radio	metry Tech	miques	46
		2.2.1	Calibrati	on and Diagnostic Procedures	46
			2.2.1.1	Measuring Receiver and Calibration Diode Noise Temperatures	46
			2.2.1.2	Measuring Atmospheric and Ground Pickup	51
		2.2.2	Observat	ion Procedures	53
			2.2.2.1	Pointing	53
			2.2.2.2	Beam Switching and Flux Density Measurements	55
			2.2.2.3	Calibration Diode Measurements	58
			2.2.2.4	Other Observation Procedures	59
3	Data	a Reduc	tion Pipe	line	60
3	Data 3.1	a Reduc Softwa	tion Pipe are Tools	line	60 62
3	Data 3.1	a Reduc Softwa 3.1.1	e tion Pipe are Tools CMBPR	line OG and the VAX Control System	60 62 63
3	Data 3.1	a Reduc Softwa 3.1.1	etion Pipel are Tools CMBPR 3.1.1.1	Iine OG and the VAX Control System VAX Control System	 60 62 63 63
3	Data 3.1	a Reduc Softwa 3.1.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG	 60 62 63 63 64
3	Data 3.1	a Reduc Softwa 3.1.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG	 60 62 63 63 64 64
3	Data 3.1	a Reduc Softwa 3.1.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python	 60 62 63 63 64 64 64 68
3	Data 3.1	a Reduc Softwa 3.1.1 3.1.2	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, .	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System	 60 62 63 63 64 64 68 68
3	Data 3.1	a Reduc Softwa 3.1.1 3.1.2	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, 2 3.1.2.1	line OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System	 60 62 63 63 64 64 68 68 68 68
3	Data 3.1	a Reduc Softwa 3.1.1 3.1.2	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, 1 3.1.2.1 3.1.2.2	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System The Arcreduce Python Module	 60 62 63 63 64 64 68 68 68 69
3	Data 3.1	a Reduc Softwa 3.1.1 3.1.2	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, 1 3.1.2.1 3.1.2.2 3.1.2.3	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System The Arcreduce Python Module Reducing Radiometry Procedure Data	 60 62 63 63 64 64 68 68 68 69 74
3	Data 3.1	a Reduc Softwa 3.1.1 3.1.2 Reduc	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, . 3.1.2.1 3.1.2.2 3.1.2.2 3.1.2.3 ing the Da	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System The Arcreduce Python Module Reducing Radiometry Procedure Data ta	 60 62 63 63 64 64 68 68 68 69 74 76
3	Data 3.1 3.2	a Reduct Softwa 3.1.1 3.1.2 Reduct 3.2.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, . 3.1.2.1 3.1.2.2 3.1.2.3 ing the Da Data Edi	line OG and the VAX Control System	 60 62 63 64 64 68 68 69 74 76 78
3	Data 3.1 3.2	a Reduct Softwa 3.1.1 3.1.2 Reduct 3.2.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, . 3.1.2.1 3.1.2.2 3.1.2.3 ing the Da Data Edi 3.2.1.1	line OG and the VAX Control System	 60 62 63 64 64 68 68 69 74 76 78 78
3	Data 3.1 3.2	a Reduct Softwa 3.1.1 3.1.2 Reduct 3.2.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, 2 3.1.2.1 3.1.2.2 3.1.2.3 ing the Da Data Edi 3.2.1.1 3.2.1.2	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System The Arcreduce Python Module Reducing Radiometry Procedure Data ta Date Interval Cuts Wind, Sun, Moon, and Zenith Angle Cuts	 60 62 63 64 64 68 68 69 74 76 78 78 78
3	Data 3.1 3.2	A Reduct Softwar 3.1.1 3.1.2 Reduct 3.2.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, . 3.1.2.1 3.1.2.2 3.1.2.3 ing the Da Data Edi 3.2.1.1 3.2.1.2 3.2.1.3	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System The Arcreduce Python Module Reducing Radiometry Procedure Data ta Date Interval Cuts Wind, Sun, Moon, and Zenith Angle Cuts Pointing and Calibration Failures	 60 62 63 64 64 68 68 68 69 74 76 78 78 78 79
3	Data 3.1 3.2	a Reduct Softwa 3.1.1 3.1.2 Reduct 3.2.1	etion Pipel are Tools CMBPR 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 Python, . 3.1.2.1 3.1.2.2 3.1.2.3 ing the Da Data Edi 3.2.1.1 3.2.1.2 3.2.1.3 3.2.1.4	Ime OG and the VAX Control System VAX Control System Overview of CMBPROG Overview of CMBPROG Retiring CMBPROG Interface between CMBPROG and Python Arcreduce, and the MCS Control System MCS Control System The Arcreduce Python Module Reducing Radiometry Procedure Data ta Date Interval Cuts Wind, Sun, Moon, and Zenith Angle Cuts Pointing and Calibration Failures Saturation and Total Power Anomalies	 60 62 63 64 64 68 68 69 74 76 78 78 78 79 80

			3.2.1.6 Switched Difference Cuts	82
		3.2.2	Flux Density Calibration	82
			3.2.2.1 Relative Calibration	83
			3.2.2.2 Long-Term Trends in 3C 286, 3C 274, and DR 21	84
			3.2.2.3 Flux Density Calibration	85
		3.2.3	Uncertainties in Individual Flux Density Measurements	86
			3.2.3.1 Error Model	87
			3.2.3.2 Scaling of the Nonthermal Error	88
	3.3	Storing	g and Retrieving the Data	91
		3.3.1	Database Design Principles	91
			3.3.1.1 Normal Forms	91
			3.3.1.2 Table Indexes	92
		3.3.2	Representing Sources	93
		3.3.3	Storing Observation Data	94
			3.3.3.1 FLUX and POINT Procedures	94
			3.3.3.2 Flag Tables	96
		3.3.4	Managing Data Reduction	97
		3.3.5	The Results Database	99
4	Obs	erving l	Program	100
4	Obs 4.1	erving I Source	Program	100 100
4	Obs 4.1	erving I Source 4.1.1	Program e Selection CGRaBS	100 100 101
4	Obs 4.1	erving I Source 4.1.1 4.1.2	Program Image: Selection e Selection Image: Selection CGRaBS Image: Selection <i>Fermi</i> -Detected Sources: The 1LAC Sample Image: Selection	100 100 101 102
4	Obs 4.1	erving I Source 4.1.1 4.1.2 4.1.3	Program Image: Selection e Selection Image: Selection CGRaBS Image: Selection Fermi-Detected Sources: The 1LAC Sample Calibration Sources Image: Selection	100 100 101 102 103
4	Obs 4.1	erving I Source 4.1.1 4.1.2 4.1.3 Classif	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts	100 100 101 102 103 104
4	Obs 4.1 4.2 4.3	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ	Program Image: Selection cGRaBS Image: Selection <i>Fermi</i> -Detected Sources: The 1LAC Sample Image: Selection Calibration Sources Image: Selection fications and Redshifts Image: Selection vation Scheduling Image: Selection	100 100 101 102 103 104
4	Obs 4.1 4.2 4.3 4.4	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an	Program Image: Selection cGRaBS Image: Selection <i>CGRaBS</i> Image: Selection <i>Fermi</i> -Detected Sources: The 1LAC Sample Image: Selection Calibration Sources Image: Selection fications and Redshifts Image: Selection vation Scheduling Image: Selection ad Moon Interference Image: Selection	100 100 101 102 103 104 109 111
4	Obs 4.1 4.2 4.3 4.4 4.5	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confus	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts vation Scheduling nd Moon Interference sion	100 100 101 102 103 104 109 111
4	Obs 4.1 4.2 4.3 4.4 4.5	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confus 4.5.1	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts vation Scheduling nd Moon Interference sion Basic Calculation	 100 100 101 102 103 104 109 111 116 116
4	Obs 4.1 4.2 4.3 4.4 4.5	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confus 4.5.1 4.5.2	Program Image: Selection CGRaBS Image: Selection <i>Fermi</i> -Detected Sources: The 1LAC Sample Image: Selection Calibration Sources Image: Selection fications and Redshifts Image: Selection vation Scheduling Image: Selection nd Moon Interference Image: Selection sion Image: Selection Basic Calculation Image: Selection Contaminated FLUX Procedures Image: Selection	<pre>100 100 101 102 103 104 109 111 116 116 116</pre>
4	Obs 4.1 4.2 4.3 4.4 4.5 4.6	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confue 4.5.1 4.5.2 Observ	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts vation Scheduling and Moon Interference sion Basic Calculation Contaminated FLUX Procedures vation Results	100 100 101 102 103 104 109 111 116 116 116
4	Obs 4.1 4.2 4.3 4.4 4.5 4.6	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confu: 4.5.1 4.5.2 Observ 4.6.1	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts vation Scheduling ad Moon Interference sion Basic Calculation Contaminated FLUX Procedures vation Results Observing Efficiency	100 100 101 102 103 104 109 111 116 116 117 118
4	Obs 4.1 4.2 4.3 4.4 4.5 4.6	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confu: 4.5.1 4.5.2 Observ 4.6.1 4.6.2	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts store store ad Moon Interference sion Basic Calculation Contaminated FLUX Procedures vation Results Observing Efficiency Flux Density Results	100 100 101 102 103 104 109 111 116 116 117 118 118
4	Obs 4.1 4.2 4.3 4.4 4.5 4.6	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confu: 4.5.1 4.5.2 Observ 4.6.1 4.6.2 4.6.3	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts vation Scheduling and Moon Interference sion Basic Calculation Contaminated FLUX Procedures vation Results Observing Efficiency Flux Density Results Future Prospects	100 100 101 102 103 104 109 111 116 117 118 118 118 122
4	Obs 4.1 4.2 4.3 4.4 4.5 4.6	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confu: 4.5.1 4.5.2 Observ 4.6.1 4.6.2 4.6.3	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources Calibration Sources fications and Redshifts vation Scheduling and Moon Interference sion Contaminated FLUX Procedures vation Results Observing Efficiency Flux Density Results Future Prospects	100 100 101 102 103 104 109 111 116 117 118 118 122 122
4	Obs 4.1 4.2 4.3 4.4 4.5 4.6 Vari 5.1	erving I Source 4.1.1 4.1.2 4.1.3 Classif Observ Sun an Confu: 4.5.1 4.5.2 Observ 4.6.1 4.6.2 4.6.3 ability	Program e Selection CGRaBS Fermi-Detected Sources: The 1LAC Sample Calibration Sources fications and Redshifts vation Scheduling and Moon Interference sion Basic Calculation Contaminated FLUX Procedures vation Results Observing Efficiency Flux Density Results Future Prospects	<pre>100 100 101 102 103 104 109 111 116 116 117 118 122 122 126 127</pre>

	5.1.1	Intrinsic Modulation Index	27
		5.1.1.1 Calculating the Intrinsic Modulation Index	29
	5.1.2	Properties of the Intrinsic Modulation Index	31
		5.1.2.1 Impact of Longer Time Series	36
		5.1.2.2 Impact of Data Outliers	38
	5.1.3	A Formalism for Population Studies	45
5.2	Null Te	ests	46
	5.2.1	Verifying Data Cuts	47
	5.2.2	Physically Insignificant Population Split	48
	5.2.3	Galactic Latitude Split	49
5.3	Gamm	a-Ray Loud versus Quiet Populations	50
5.4	BL La	c Object versus FSRQ Populations	52
5.5	Redshi	ft Trend	56
	5.5.1	Cosmological Time Dilation	60
	5.5.2	Compensating for Time Dilation	61
	5.5.3	Selecting Time Intervals	61
	5.5.4	Equal Rest-Frame Time Interval Results	64
5.6	CGRal	3S versus 1LAC	65
	5.6.1	Flux Density Comparisons	66
	5.6.2	High Redshift FSRQ Populations	70
Append	ix A U	ser's Guide to Arcreduce 1	173
A.1	High-L	evel Data Reduction: CalManager	173
	A.1.1	CalManager Concepts 1	173
		A.1.1.1 Procedure Class 1	174
		A.1.1.2 Member Class	174
		A.1.1.3 Masking and Flagging	75
		A.1.1.4 Plotting and Advanced Processing	76
	A.1.2	CalManager Tutorial 1	76
		A.1.2.1 Loading Data	76
		A.1.2.2 Examining a Procedure 1	76
		A.1.2.3 Working with a Member 1	177
		A.1.2.4 Accessing Data from a Member 1	178
		A.1.2.5 Selecting a Source or Diode	179
		A.1.2.6 Applying a Calibration Factor	79
		A.1.2.7 Flagging Data	179

	A.1.2.8 Example Reduction Script	180
	A.1.3 Module Reference	180
A.2	Low-Level Data Processing: ArchiveReader	183
	A.2.1 ArchiveReader Class	183
	A.2.2 Decoders	185
	A.2.3 Output Handlers	189
	A.2.4 Procedure Data Structures	189
	A.2.5 Exceptions	189
Append	ix B Detailed Database Specification	191
B .1	Database Table Diagrams	191
B.2	Domain Table Contents	194
Append	ix C. Source List	199
rippenu		177
Append	ix D QUIET	243
D.1	Bias Electronics	243
D.2	Module Protection Circuitry	269
D.3	Housekeeping Measurement Procedures	277
D.4	Receiver Characterization	287
D.5	Low-Noise Preamplifier Design	329
	D.5.1 Analysis	329
	D.5.1.1 Input Stage	330
	D.5.1.2 Differential Stage	330
	D.5.1.3 Full Amplifier	332
	D.5.2 Prototype Circuit	332
	D.5.3 Detector Diode Biasing	333
		224
	D.5.4 Conclusions	334

References

Figures

2.1	Optics and waveguide section block diagram.	19
2.2	Predicted efficiency factor η_p	21
2.3	Focus curve and relative gain due to focus error	22
2.4	Example antenna gain curve plotting the relative peak gain as a function of elevation	24
2.5	Binned switched signal $(ant - ref)$ from 50 min of continuous azimuth scans	26
2.6	Normalized beam response for the average of the <i>ant</i> and <i>ref</i> beams	27
2.7	Normalized beam response for both <i>ant</i> (positive) and <i>ref</i> (negative) beams	27
2.8	Elliptical Gaussian beam fits to the <i>ant</i> (positive) and <i>ref</i> (negative) beams	28
2.9	Residuals from fits to the beam map data shown in figure 2.7	29
2.10	Block diagram of the Ku-band receiver.	29
2.11	Photograph of spectrum analyzer sweep of the receiver response	31
2.12	Piecewise linear approximation to the spectrum analyzer response shown in figure 2.11	32
2.13	Comparison of the linear and exponential interpolations of the receiver gain	34
2.14	Simple radiometer model	35
2.15	Uncalibrated full-rate (500 Hz) Dicke-switched radiometer noise samples	36
2.16	Power spectral density of 10 min of averaged data, illustrating $1/f$ behavior	38
2.17	Power spectral density of 10 min of differenced data, illustrating reduced $1/f$ noise	39
2.18	Power spectral density of about 27 min of noise data.	40
2.19	Change in absolute CAL diode power output versus its case temperature	42
2.20	One trial of a Y-factor measurement, demonstrating gain compression in the receiver	44
2.21	Behavior of the compression model.	45
2.22	Receiver temperature measurements	49
2.23	NOISE diode equivalent noise temperature measurements.	49
2.24	Nonlinearity-corrected NOISE to CAL output ratio measurements	49
2.25	CAL diode equivalent noise temperature measurements	50
2.26	Nonlinearity parameter b measurements.	50
2.27	Nonlinearity parameter $b_{\rm HC}$ measurements.	50
2.28	Downward portion of a sky dip (27 April, 2011).	52
2.29	Residual error between the pointing model and the actual requested position	54

2.30	Pattern of offsets for a POINT2D procedure	56
2.31	Schematic illustration of the FLUX procedure.	56
2.1		(1
3.1	Overview of the data reduction pipeline.	61
3.2	Schematic overview of the MCS control system architecture	69
3.3	Architecture of the ArchiveReader engine.	73
3.4	Class hierarchy for procedure decoders in the ArchiveReader module.	74
3.5	Illustration of the FLUX procedure decoder.	75
3.6	Illustration of the POINT2D procedure.	77
3.7	Identifying inclement weather using FLUX procedure total power data.	80
3.8	Logarithmic plot of σ_{15}^2 versus S_{15}^2 .	81
3.9	Plot of the switched difference, μ normalized by σ_{15} , versus S_{15}	83
3.10) Normalized flux densities for 3C 274, DR 21, and 3C 286 after outlier removal	84
3.11	Normalized flux densities for 3C 274, DR 21, and 3C 286 after dividing by the spline fit	85
3.12	2 Comparison of residual standard deviation with ϵ -only error model	88
3.13	B Example of the error scale factor correction using data for J1044+5322	90
3.14	Histogram of the change in error scale factors for CGRaBS.	90
3.15	5 Diagram illustrating the database tables used for storing source data	93
3.16	5 Diagram illustrating the database tables used for storing observation data	95
3.17	7 Diagram illustrating the database tables used for storing flag types and parameters	96
3.18	B Diagram illustrating the database tables used for storing date interval flags	97
3.19	Diagram illustrating the database tables used for storing reduction data.	98
4.1	Positions of the CGRaBS sources in our program in equatorial coordinates	101
4.2	Positions of the 1LAC sources in our program in equatorial coordinates.	103
4.3	Optical classifications for the CGRaBS sample.	105
4.4	Optical classifications for the 1LAC sample.	106
4.5	Histograms of redshifts for CGRaBS, the FSRQ subset, and the BL Lac subset	106
4.6	Histograms of redshifts for 1LAC, the FSRQ subset, and the BL Lac subset	107
4.7	Venn diagram showing the relationship between the CGRaBS and 1LAC samples	109
4.8	Example of an observation region.	111
4.9	Source-nulled flux (S_{null}) as a function of solar elongation.	112
4.10	Detail of figure 4.9, showing features at small solar elongation	113
4.1	Evidence of contamination in the total power signal at small solar elongations	114
4.12	2 Detail of figure 4.11 with bins of $\sim 0.25^{\circ}$.	115
4.13	Reference field coverage during the full data set for four sources	119
4.14	Histogram of per-source observing efficiency for CGRaBS sources.	120

4.15	Histogram of per-source observing efficiency for 1LAC sources.	120
4.16	Weekly observation counts for each year of observations	121
4.17	Histograms of the distributions of per-source median flux density in the CGRaBS sample	123
4.18	Histograms of the distributions of per-source median flux density in the 1LAC sample	124
5.1	Likelihood parameter space, showing 1σ , 2σ , and 3σ contours for blazar J1243–0218	130
5.2	Marginalized likelihood $\mathcal{L}(m)$ for J1243–0218	130
5.3	Maximum-likelihood Gaussian model for the flux density distribution of J1243 -0218	131
5.4	Histogram of measurements for J0237+3022, demonstrating a bimodal distribution	132
5.5	Intrinsic modulation index versus average flux density.	133
5.6	Intrinsic modulation index versus "raw" modulation index	135
5.7	Histogram of intrinsic modulation indices for bright CGRaBS blazars	136
5.8	Scatter plot comparing 42-month and two-year modulation indices	137
5.9	Histogram of the intrinsic modulation indices for the two-year and 42-month data sets	138
5.10	Change in intrinsic modulation indices between the two-year and 42-month data sets	139
5.11	Light curves for sources with the most significant changes in intrinsic modulation index	140
5.12	Effect of an extreme outlier data point on the intrinsic modulation index	141
5.13	Histogram of intrinsic modulation indices with and without an extreme outlier.	142
5.14	Effect of an extreme outlier versus true intrinsic modulation index	142
5.15	Effect of an extreme outlier versus average flux density	143
5.16	Verification that the data cuts described in section 5.1.2 are correctly implemented	147
5.17	Null test of population comparison method using two-year data.	148
5.18	Null test of population comparison method using 42-month data	149
5.19	Histograms comparing intrinsic modulation indices for the 42-month null test	150
5.20	Comparison of high and low galactic latitude bright CGRaBS populations	151
5.21	Comparison of gamma-ray-loud and gamma-ray-quiet CGRaBS using two-year data	151
5.22	Comparison of gamma-ray-loud and gamma-ray-quiet CGRaBS using 42-month data	152
5.23	Intrinsic modulation indices of gamma-ray-loud and gamma-ray-quiet CGRaBS	153
5.24	Comparison of CGRaBS BL Lac and FSRQ populations using two-year data.	154
5.25	Comparison of CGRaBS BL Lac and FSRQ populations using 42-month data	154
5.26	Intrinsic modulation indices of CGRaBS BL Lac and FSRQ sources	155
5.27	Comparison of 1LAC BL Lac and FSRQ populations using 42-month data.	155
5.28	Intrinsic modulation indices of 1LAC BL Lac and FSRQ sources.	156
5.29	Mean \overline{m} versus z for bright CGRaBS FSRQs, comparing two-year and 42-month data	157
5.30	Comparison of high- and low-redshift CGRaBS FSRQs using two-year data	157
5.31	Comparison of high- and low-redshift CGRaBS FSRQs using 42-month data.	158

5.32	Comparison of high- and low-redshift 1LAC FSRQ populations using 42-month data	158
5.33	Intrinsic modulation indices for high- and low-redshift CGRaBS sources.	159
5.34	Intrinsic modulation indices for high- and low-redshift 1LAC sources	159
5.35	Observer time interval for each source plotted versus redshift	162
5.36	Number of data points in the equal- $\Delta t_{ m rest}$ data sample for each source	163
5.37	Histogram of redshifts for the 1LAC FSRQs with known $z < 3.0.$	163
5.38	Comparison of high- and low-redshift 1LAC FSRQs with equal rest-frame intervals	164
5.39	Comparison of CGRaBS and 1LAC BL Lac populations.	166
5.40	Comparison of CGRaBS and 1LAC FSRQ populations	167
5.41	Histograms of S_0 comparing overall CGRaBS and 1LAC populations	167
5.42	Histograms of S_0 comparing FSRQ and BL Lac subsamples of CGRaBS and 1LAC samples.	168
5.43	Histograms of S_0 comparing CGRaBS and 1LAC subsamples of FSRQ and BL Lac samples.	169
5.44	OVRO 40 m 15 GHz average flux density versus archival 8 GHz flux density	170
5.45	Histograms of intrinsic modulation indices for CGRaBS FSRQs at $z > 1.5.$	171
5.46	Comparison between high-redshift CGRaBS FSRQ populations in and not in 1LAC	171
D 1		101
B.1	Diagram illustrating the database tables used for storing wind speed data.	191
В.2	Diagram illustrating the database tables used for storing epoch definitions.	192
B.3	Diagram illustrating the database tables used for storing error scale factors.	192
В.4	Diagram illustrating the database tables used for storing focus model data.	192
B.5	Diagram illustrating the database tables used for storing gain curves.	193
B.6	Diagram illustrating the database tables used for storing polynomial definitions.	193
B .7	Diagram illustrating the database tables used for storing calibration spline definitions	193
D.1	Figure 1: Mechanical drawing of board outline and keep-outs.	256
D.2	Figure 1: Schematic of gate protection to be installed on MAB.	272
D.3	Figure 2: Schematic of drain protection to be installed on MAB.	272
D.4	Figure 3: Schematic of phase switch protection to be installed on MAB.	272
D.5	Figure 4: Schematic of gate protection on the MMIC bias card	273
D.6	Figure 5: Schematic of drain protection circuit on the MMIC bias card	273
D.7	Figure 6: Schematic of protection circuit on the phase switch bias card.	273
D.8	Figure 1: Housekeeping analog optoisolator voltage transfer curve	280
D.9	Figure 2: Schematic of a single gate control and housekeeping circuit.	281
D.10	Figure 3: Gate measurement errors for a W-band single-board MAB with no module	283
D.11	Figure 4: Simplified drain schematic	284
D.12	Figure 5: Drain voltage and current estimate errors versus actual drain voltage	285
D.13	Figure 6: Same data from Figure 5, now plotted versus the housekeeping drain voltage	286

D.14 Figure 1: Rising edge of phase switch clock and falling voltage on phase switch diode	290
D.15 Figure 2: Falling edge of phase switch clock and rising voltage on phase switch diode	291
D.16 Figure 3: Gain curve for D1	293
D.17 Figure 4: Gain curve for D4	293
D.18 Figure 5: Channel A data acquisition system noise baseline.	294
D.19 Figure 6: Channel B data acquisition system noise baseline	294
D.20 Figure 7: A-B difference noise spectrum.	295
D.21 Figure 8: Comparison of time series data from D1 in the two phase states	296
D.22 Figure 9: Noise spectrum of D1 "plus" state with no differencing.	296
D.23 Figure 10: Noise spectrum of D4 "plus" state with no differencing.	297
D.24 Figure 11: Single-difference noise spectrum from D1	297
D.25 Figure 12: Single-difference noise spectrum from D4	298
D.26 Figure 13: Single-difference noise spectrum of D1 "plus" minus D4 "plus."	298
D.27 Figure 14: Single-difference noise spectrum of D1 "plus" minus D4 "minus."	299
D.28 Figure 15: Single-difference noise spectrum of D1 "minus" minus D4 "plus."	299
D.29 Figure 16: Single-difference noise spectrum of D1 "minus" minus D4 "minus."	300
D.30 Figure 17: Double-difference noise spectrum between D1 and D4	300
D.31 Figure 18: Weighted D1 single-difference noise spectrum.	301
D.32 Figure 19: Weighted double-difference noise spectrum between D1 and D4	302
D.33 Figure 1: Alignment of blanking period with actual phase switch transition	304
D.34 Figure 2: D1 "plus" phase state spectrum before and after the blanking fix	304
D.35 Figure 3: Comparison of equal-length "before" and "after" noise spectra.	305
D.36 Figure 4: Unweighted single-difference data from D1 for "before" and "after" data	305
D.37 Figure 5: Undifferenced D1 "plus" state spectrum.	306
D.38 Figure 6: D1 unweighted single difference spectrum	307
D.39 Figure 7: D1 weighted single difference spectrum	307
D.40 Figure 8: D4 unweighted single difference spectrum	308
D.41 Figure 9: D4 weighted single difference spectrum	308
D.42 Figure 10: Unweighted double difference spectrum	309
D.43 Figure 11: Doubly-weighted double difference spectrum	309
D.44 Figure 12: Undifferenced data plotted separately for each diode and phase switch state	310
D.45 Figure 13: D1 unweighted single difference spectrum	311
D.46 Figure 14: D1 weighted single difference spectrum	311
D.47 Figure 15: D4 unweighted single difference spectrum	312
D.48 Figure 16: D4 weighted single difference spectrum	312
D.49 Figure 17: Unweighted double difference spectrum	313

D.50 Figure 18: Doubly-weighted double difference spectrum	13
D.51 Figure 1: Schematic of the RF portion of the test apparatus	16
D.52 Figure 2: Typical spectrum of test set noise	16
D.53 Figure 3: Typical spectrum from a 5000-second (1.4 hour) data set	18
D.54 Figure 4: Gain fluctuations as a function of MMIC drain voltage	18
D.55 Figure 5: Gain fluctuations as a function of MMIC drain current	19
D.56 Figure 6: Gain fluctuations as a function of DC detected voltage	19
D.57 Figure 7: Spectral density at 1 Hz as a function of MMIC drain voltage	20
D.58 Figure 8: Spectral density at 1 Hz as a function of MMIC drain current	20
D.59 Figure 1: RF test set schematic for the uncorrelated MMIC tests	23
D.60 Figure 2: Simulated cross-spectrum of two independent $1/f$ -noise series	24
D.61 Figure 3: Power and cross-spectra of fully independent input signals	24
D.62 Figure 4: High-frequency power and cross-spectra of independent input signals	25
D.63 Figure 5: Histogram of the cross-spectrum data from Figure 4	26
D.64 Figure 6: Histogram of power spectral density data	26
D.65 Figure 7: Probability density function of $sign(x)\sqrt{ x }$ for a Gaussian random variable x 32	27
D.66 Full preamp schematic	29
D.67 Schematic of input amplifier stage	30
D.68 Schematic of differential amplifier stage	31
D.69 One possible scheme for biasing the detector diode and generating a DC offset signal 33	33
D.70 Fig. 1— Overview of the QUIET instrument	36
D.71 Fig. 2— The CMB and Galactic patches, in equatorial coordinates	37
D.72 Fig. 3—Polarimeter responses from the central feed horn to the polarization of Tau A 33	38
D.73 Fig. 4— Map of the polarization of the Moon from one detector diode	39
D.74 Fig. 5— Polarization beam profile and beam window function	40
D.75 Fig. 6— EE and BB power spectra for the patch CMB-1 null test	44
D.76 Fig. 7— Power-spectra differences between the final data selection and earlier iterations 34	45
D.77 Fig. 8— Null-suite statistics	45
D.78 Fig. 9— EE, BB, and EB power spectra from each QUIET pipeline, all four patches combined.34	46
D.79 Fig. 10— Maps of patch CMB-1 in Galactic coordinates	47
D.80 Fig. 11— EE and BB results	48
D.81 Fig. 12— CMB power spectra are shown for each patch individually	49
D.82 Fig. 13— CMB temperature map and power spectra	49
D.83 Fig. 14— Systematic uncertainty estimates for EE, BB, and EB power spectra	50

Tables

2.1	List of thermometers instrumenting the 40 m telescope	17
2.2	Aperture efficiency measurement results	20
2.3	Focus curve values plotted in the left-hand panel of figure 2.3	23
2.4	Polynomial coefficients for the focus models (before and after April 2010)	23
2.5	Polynomial coefficients of the focus miss curve (before and after April 2010)	23
2.6	Gain curve polynomial coefficients (before and after April 2010)	24
2.7	Properties of a few point sources suitable for beam mapping	25
2.8	Results of fitting Gaussian components to the beam center scan in figure 2.5	25
2.9	Elliptical Gaussian beam fit parameters	28
2.10	Segment endpoints for the piecewise linear approximation to the measured receiver gain	32
2.11	Calculation of receiver sensitivity and comparison with the radiometer equation $\ldots \ldots \ldots$	36
2.12	Results of a stability test of CAL diode output versus diode case temperature	42
2.13	Results of a stability test of NOISE diode output versus diode case temperature	42
3.1	Flux density bins used for fitting the measured uncertainty filter parameters	81
3.2	Calibrator spline epochs	85
3.3	Flux density calibration epochs	86
3.4	Error model parameters	87
4.1	Source counts in the CGRaBS and Fermi 1LAC samples	102
4.2	Usage of calibration sources in this program	103
4.3	Contamination estimates at various flux density limits, $S_c \ldots \ldots \ldots \ldots \ldots \ldots$	118
5.1	Fraction of sources determined to be affected by an extreme low outlier	144
A.1	List of CalManager procedures	174
A.2	Descriptions of the CalManager procedure members	175
A.3	Flag values supported by CalManager	180
B.1	Contents of the Active table	194
B.2	Contents of the Catalog table	194

B.3	Contents of the Classification table	194
B.4	Contents of the Reference table	195
B.5	Contents of the FluxType table	195
B.6	Contents of the ReductionParameterName table	195
B.7	Contents of the ReductionType table	195
B.8	Contents of the ParameterDataType table	196
B.9	Contents of the DataSource table	196
B.10	Contents of the FlagType table	196
B.11	Contents of the FlaggedDateType table	197
B.12	Contents of the EpochType table	197
B.13	Contents of the FocusModelTerm table	197
B.14	Contents of the SplineDatumType table	197
B.15	Contents of the WeatherDataSource table	198
C.1	List of sources in the monitoring program	199
D.1	Table 1: MMIC bias card design/construction schedule	245
D.2	Table 2: Summary of interface signal counts for the MMIC bias card	247
D.3	Table 3: 90 GHz module bias control signals and DAC channel assignments	248
D.4	Table 4: 40 GHz and 90 GHz module gate bias requirements	248
D.5	Table 5: 40 GHz and 90 GHz module drain bias requirements	249
D.6	Table 6: MMIC bias card output capabilities	249
D.7	Table 7: Bias output noise requirements	250
D.8	Table 8: DAC interface signals	250
D.9	Table 9: DAC control word ordering	250
D.10	Table 10: DAC control word format	251
D.11	Table 11: Time required to set DAC control words at various serial clock rates	251
D.12	2 Table 12: Receiver module multiplexer sub-addresses	252
D.13	Table 13: MMIC bias monitor signals for each receiver module	253
D.14	Table 14: Main power supplies for each MAB	253
D.15	Table 15: Optoisolator power supplies for each MMIC bias card	254
D.16	Table 16: FPC connection requirements	255
D.17	7 Table 17: Per-card overhead power dissipation estimates	257
D.18	3 Table 1: Phase switch bias card design/construction schedule	259
D.19	Table 2: Summary of interface signal counts for the phase switch bias card	260
D.20	Table 3: Phase switch bias control signals	261
D.21	Table 4: Phase switch bias requirements	261

D.22 Table 5: Phase switch bias card output capabilities	61
D.23 Table 6: DAC interface signals	262
D.24 Table 7: DAC interface signals	:63
D.25 Table 8: DAC control word format	:63
D.26 Table 9: PCLK truth table	:64
D.27 Table 10: Receiver module multiplexer sub-addresses	:64
D.28 Table 11: Phase switch bias monitor signals for each receiver module	:65
D.29 Table 12: Main power supplies for each phase switch bias card	265
D.30 Table 13: Optoisolator power supplies for each phase switch bias card 2	266
D.31 Table 14: FPC connection requirements	266
D.32 Table 1: Gate circuit resistor values for W- and Q-band 2	281
D.33 Table 2: Drain circuit values for both W- and Q-bands	282
D.34 Table 1: Noise-effective bandwidths	92
D.35 Table 2: Data for noise-effective bandwidth calculation	92
D.36 Table 1. Patch locations and integration times	38
D.37 Table 2. Regular calibration observations	38
D.38 Table 3. Total hours observed and data-selection efficiencies	42
D.39 Table 4. Null suite probability to exceed by patch	45
D.40 Table 5. CMB-spectra band powers from QUIET Q-band data	47
D.41 Table 6. Band and cross powers for $\ell = 25-75$	649

xviii