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ABSTRACT FCR FART 1

Measured data for carbon dioxide emissivities at temperatures
up to 1800°K have been correlated by postulating (a) that the effective
spectral region widths, in which significant contributions are made to
the total emission of radiant energy, increase with temperature and
optical depth, and (b) that unknown combination and harmonic bands
make contributions to the integrated intensities of selected spectral
regions in such a way that the absolute values of the integrated inten-
sities (cm'z ntm'l) remain invariant with temperature.

Spectral emissivities have been calculated in the infrared for
hydrogen chloride to the rigid-rotator harmonic oscillator approxima-
tion using the ""smeared-out' rotational line model for temperatures
of 600 and 2400°K, In the weak-line approximation, this model gives
reasonable agreement with numerical calculations. In the stromg-
line approximation, there is quite a large discrepancy, particularly
in the P-branch, at 2400°K; much better agreement is obtained if
vibration-rotation interaction and anharmonicity terms are included
in the calculation.

Equilibrium spectral emissivities have been computed for water
vapor by using available low-temperature spectroscopic data. Satis-
factory agreement with experimental results at 1 111°K is obtained if
the nearly symmetric top expressions for integrated intensities are
used in conjunction with the just-overlapping line model.



ABSTRACT FCR PART 11

The general equations of radiative emergy transfer are pre-
sented. When the absorption coefficients and/or the gas volume are
sufficiently large, the general transport equation can be approximated
by the "diffusion approximation'. This approxdmation is applied to a
two-phase system consisting of carbon particles dispersed in a gas.
The Rosseland mean absorption coefficients are calculated for
spherical carbon particles of 200 and 987 A radius at temperatures of
1000 and 2000°K, and a comparison is made of the relative magnitudes
of conductive and radiative heat transfer for this system.

In the special case when scattering may be neglected, and the
temperature and pressure of the gas are constant, the transport equa-~
tion can be integrated for a particular direction. The total radiant
energy transfer to any given element of area depends upon geometri-
cal interchange factors. These interchange factors have been evalu-
ated for centrally located areas in cylindrical and conical chambers;
simple relations are given for a transparent gas and an optically dense
gas. A represemative calculation has been carried out for the radiant
energy transfer to a centrally<docated area element at the plane of

intersection of two truncated cones.
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PART I: THEORETICAL CALCULATIONS OF
EQUILIBRIUM INFRARED GAS EMISSIVITIES
FROM SFECTROSCOFIC DATA



-Z-
I. INTRODUCTION

When a body of gas is heated, it radiates energy at frequencies
characteristic of the gas. This radiation is the result of electronic,
vibrational, and rotational transitions from excited energy levels to
lower energy levels of the molecules!!) The emitted radiant energy cors
responding to these transitions is distributed over a well-defined wave-
length region. For temperatures up to 2500°K, which occur in normal
engineering applications, the bulk of the radiation is connected with
changes in vibrational or rotational energy of the molecule. The radi-
ation corresponding to these transitions lies in the near infrared, i.e.,
in the wavelength region from 1 to 30 microns.

The magnitude and spectral character of the radiant energy de-
pends upon the temperature, pressure, and molecular compositon of
the gas. It is termed '"thermal radiation' when the gas is in thermal
equilibrium. In principle, it should be possible to calculate theoreti-
cally the radiation emitted by a heated gas if sufficient information is
available on the spectroscopic constans of the molecules involved.
However, in many cases, the required constants are imperfectly known,
and most gases have been investigated experimentally only at relatively
low temperatures. High-temperature measurements of gas emissivities
under equilibrium conditions are possible, but the experiments are dif-
ficult to perform. The problem, then, is ome of extrapolating low tem-
perature laboratory data to high temperature conditions. Thus the
ultimate objective of any theory of gas emissivities is to calculate the
radiation emitted by a heated gas, at various temperatures, pressures,

and geometrical path lengths, {rom spectroscopic parameters measured
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at room temperature.

A. EMISSIVITY

The spectral emissivity, €, 0 of a distributed gaseous radiator
is defined as the ratio of the radiation emitted by the gas,in the wave-
number range between " and » + duw, to that of a blackbody at the
same temperature, viz.,

R dw

=

= [1 - exp (-P )] (1)

° l‘.:

Cw
R dmw

where P % is the spectral absorption coefficient, X is the optical
depth

X = ps (2)
(here p is the pressure of the radiating gas and s is the geometric
length), and de:' is the spectral blackbody radiancy in the wavenume
ber range between « and © + dw at the temperature T , and is given
by the expression

R?du: = 2whe st[exp(hcw /kT)-l]'ld" (3)

where h is Flanck's constant, c ise the velocity of light, « is the
wavenurmber, and k is Boltzmann's constant.
The total emissivity ¢ of the gas is obtained by integrating

equation (1). Thus

O
e = —11 IR:[I - exp(-PwX)]dw (4)
0

where O is the Stefan-Boltzmann constant. In practice, the range of
integration in equation (4) is only extended over the wavenumber range

in which wa is sensibly different from zero. In actual calculations,
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it is often convenient to use the normalized blackbody radiancy, Py ®

where

3
by = —p— = 2.097 () [emp (35) 1770 ()

The ratio of the maximum blackbody radiancy R: to the total
4 max

blackbody radiancy ¢T " is given by

o
i

R

max 0. 3148
z i 2 " (6)

eT

Using equations (5) and (6), equation (4) can be rewritten as
)

€ = —-T-—o' 3148 Jppw €, dw . (7)
0
In Figure 1 the normalized blackbody function p, 18 plotted as a func-
tion of wavenumber for various temperatures.
For the limit of very small optical depths, the exponential in
equation (1) may be expanded and

e, ™ P,X . (8)

When equation (8) applies, the gas is termed "transparent" and is said
to radiate 'in the linear region of the curve of growth", i.e., self-ab-
sorption may be neglected.

In the case of a mixture of two gases, with spectral absorption
coefficients P, and P, and partial pressures P and P, Te=

1 2
spectively, the spectral emissivity of the mixture is
o T l1-exp (- (P‘mlp1 + szpz)s]. {(9)

Equation (9) may be rewritten in terms of the spectral emissivities of

the two constituents as
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e, = r +e  =c € (10)

where e, =(1-expl-P pis] ). Thus, while the spectral absorp-
1 i
tion coefficients are additive, spectral emissivities are not additve

unless the gases are transparent.

B. ABSORPTION BANDS OF MOLECULES

A vibration-rotation band consists of allowed rotational lines
associated with a given vibrational transition. Each of these spectral
lines produces a non-zero absorption coefficient in the neighborhood of
the band center. The wavenumber w of a particular line is given by
the difference in the sum of the vibrational and rotational energies of
the final and initial states. The width of an individual line is charac=
teristic of the molecule and varies with temperature and pressure. At
sufficiently low pressures, the spectral lines may be considered to be
completely separated; at sufficiently high pressures, they merge to
form a more or less continuous region of absorption.

The resolving power of the spectrometer used in an experimental
transmission measurement of an absorption band affects the resulting
data. With very low resolution, the band seems without structure. With
somewhat higher resolution, it may be observed to consist of several
adjoining maxima which form the envelope of the band. Figure Z shows
this contour for HCL. With spectrometers of sufficiently high resolu-
tion, the measured bands in the near infrared show the rotational line
structure,which is either regularly or irregularly spaced (see Figure 3).
The area under the curve of spectral absorptivity plotted as a function of

wavenumber is independent of the spectrometer slit width (see Figure
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Figure 2. Fundamental absorption band of HCZ in the
near infrared. [From W. Burmeister,
""Untersuchungen uUber die ultraroten Absorptions-
spektra einiger Gase, ' Ber. deutsch. phys. Ges.,
15, 595 (1913). ]




Figure 3.

-sa.

Fine structure of the fundamental absorption band of
HCZL in the near infrared [from E. S. Imes, '"Measure=-
ments on the Near Infrared Absorption of Some Di-
atomic Gases,' Astrophys. J. 50, 260 (1919)].
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Flgure 4.

ﬁqa-

Effect of spectrometer slitwidth on the observed abe
sorption spectrum of carbon dioxide and water vapor
in the 2. 7 micron region. The data are plotted as per
cent absorption as a function of wavenumber (from
ref. 3).
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4)(23. This area is termed the band absorption AB and is defined by

the relation

Ap = [Tl ewp (ep, 30100 . (an
band

A more useful quantity, however, for theoretical calculations is the
integrated intensity o of the band. THe is defined as the integral of

the absorption coefficient over the region of the band

@ = | P du . (12)

Similarly, the integrated intensity of an individual spectral line S is
defined by the relation

N

S = | F, de . (13)
line

Unfortunately, it is difficult to determine experimentally the in-
tegrated intensity of a band. With a spectrometer of moderate resolu-
tion, it is found that the true spectral quantities are not measured
because the individual lines, which constitute the band, have a width
much narrower than the resolution attained with the spectrometer.
Three methods may be used to resolve this difficulty: measurements
may be made with high resolution, at emall optical depths where equa-
tion (8) applies,or the fine structure may be broadened by examining the

gas under high presnure*. When one of the specified conditions is not

The area under the absorption-coefficient ve. wavepumber curve
(a -fP dw) does not change significantly with moderate changes in pres-
gure. Hence the effect of high pressure is primarily that of minimizing
the variations of P, with w . However, for polar molecules, such as 4
H,>0, the integrated intensity may change appreciably with total preasure(. )
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met, an apparent absorption coefficient and an apparent integrated in-
tensity may be found formally, but the true value of 0 may then be as
much as ten times as great as the apparent integrated intensity. Errors
introduced by comparing the integrated intensities of two bands in the
same spectrum are not as large, but they still exist and strong bands

will appear to be less strong than they actually are. (3)

C. MCDELS OF SFECTRAL BSANDS

It may be seen from equation (13) that the absorption coefficient

at the wavenumber @ and associated with the jth spectral line, which

is centered at wj » may be represented by the relaﬁon(é's)

P, = §F(x = u;b) (14)

where b is the half-width of the line, and F(uu-wj;b) is the line shape

factor which is normalized so that

®
' Fle - ":j:b)dl!; = 1 . (15)
-0
Hence, the energy emitted by a gas at the wavenumber » can be writ-
ten as
R, = RO[1-exp[=-ps) 8 F(ren;b)]} . (16)
w w j j j

Equation (16) is true, of course, only if the gas is at a uniform temper-
ature and pressure. The problem of radiative energy transport is dis-
cussed in Fart 1L

The emitted radiation is usually desired over a finite frequency
interval containing a number of spectral lines, but when the spectral
lines are irregularly spaced or partially overlap each other, then the

integral of equation {16) becomes difficult to evaluate. However,
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various models have been proposed that lead to reasonably simple
mathematical expressions for the emitted radiant energy. The most
appropriate model for a given application depends upon the spectrum of
the molecule under consideration.

146, 9-11)

1. Just-Overlapping Line Mode This model does not

require any knowledge of spectral linewidth since the lines are assumed
to be just overlapping. The absorption coefficient for a given line is
found by dividing the integrated intensity S of that line by the mean line
spacing 5%

P, = /8" (17)
This smeared-out, average absorption coefficient will obviously show
no pressure dependence.

(6,12,13) The entire vibration-rotation band is

2. Box Model.
represented by a (constant) average absorption coefficient over an ef-
fective bandwidth, i.e., A‘ =1- exp[‘-PiX] where Pl is the average
absorption coefficient for the ith band. The box model is useful in
making crude calculations of total emissivity, the results being slightly
lower than those predicted by the juste-overlapping line model.(b' %.10)

3. Non=Overlapping Line Model. (6) The contributions of in-

dividual lines are added in the non-overlapping line model. For a band
containing n identical non-overlapping lines, the total band absorption
is

n
AB = ZlALj = uAL {18)
j=

where AL is the absorption of an individual line



A = | (l -e . )du- N (19)

This procedure is applicable only for small optical depths or at very
low pressures. At moderate optical depths, overlapping between spec~
tral lines causes the sum of the separate line contributions to yield
excessively large emissivities.

The radiation from an isoclated spectral line is discussed in

Appendix A,

4, Statistical Line Model. This model assumes

random line spacing and strength, but constant line width. The position
and intensity of a given spectral line is specified only by probability
functions.

Let N(wl. sun )dm . a df.nn be the probability that the center
of the first line is in the wavenumber interval dwl. when the center of
the second line is in the interval dee}z » etc., up toline n. We take the
origin for frequency at the center of a band of width 9_5"' where & is
the mean spacing between spectral lines. Let P(Sj)dsj be the proba-
bility of the j* line having an intensity between S, and S;+dS;. Then
the average absorption over the wavenumber interval 35' is

£ &
+nd +nd

2 Z cr?
UP J N(u.l, ...,*.L-n)dnw It rﬁpcs Jexp( =5 m]cwj
-na* end" o 0
- I Z
Se M. -l-n&u -!»nlsg
e 2 tr:‘o v}
n
j“ f N(w g ey u.n)d w J . f jP(S'j)cisj (20)
-nd -n6 0 0

Tam T



where [ is the line shape parameter of equation (14). Since

w
rP(SJ)de =] and N(u-l. eTae e wn) is a constant,

*
+nd ”
nZ (Vs

KS M * 1l - ....l-;. ; dw r[P(S) e'SFx]dSF
- - na lJ ‘ L
=nd 0
T

because the integral over each line is equal to the integral over any

This expression may be written

other line.
=
+nd
—— n
K pp =1-01-25 [ e [[es-eS sy . @
a§ v . &
-nb 0
-
Interchanging the order of integration, equation (21) becomes
+n6¢ -
@ 2
K ap =1-{1-—ty [Bisias [ 1.7 00,
néd =
0 -nd
T
or
- n
Ky o = 1- l-;—;,fP(S)dSAL : (22)
o
But the average line radiancy is just
[90 ,
AL = J AL P(S) ds (23)
0
and, therefore, the average absorption becomes
1 . B
KS.M. = 1-[1-:5-‘AL] " (24)

If the number of lines in a band is allowed to become infinite (the result-
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ing expression is known to be useful when at least 5 lines are involved),
then equa.tion'(24) becomes

l —
Es. . Voemploag by d (25)

If the distribution function for intensity is P(8) = 5(S-3), where & is

the Dirac delta function, the mean absorption is given by

K

@
s ™ 1 - exp( -~ é— JP[I - exp(=SFX)]dw 5. (26)

0
The average absorption does not depend very strongly on the particular
intensity distribution function chosen'® 15), and calculations are simpli-
fied if the lines are chosen to be of equal intensity, as was done in ar-
riving at equation (26).
If the Lorentz line shape is assumed for the individual lines (see
Appendix A), equation (26) reduces to

b 1-exp[-"-z-}‘3fgx)] . 27

Regions of the spectrum for which no line is completely absorb-
ing at the line center (i.e., for a particular value of X, P'v << 1 at
all frequencies) are regions of weak heat transfer. Here the "'weak line
approximation’ is applicable for the band absorption. This method ine
volves substitution of equation (2-7) for the absorption of a spectral line
into equation (25), viz.,

KS. M.

= 1 - exp[-s'xlﬁ.] . - (28)

Regions of the spectrum where the majority of the strongest
lines are black at the line centers (i.e., for a given optical depth X,
a line absorbs virtually all radiation at frequencies within the half-

width), are called regions of strong heat transfer. Here the ''strong
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line approximation' is used to determine the band absorption. In this
case, equation (a-11) is used for the line absorption in equatiom (25)
with the result
Ky oy = )-expl-2/6")@x)] . (29)

The purpose of the preceding approximations is evidently that
of simplifying the numerical calculations. The errors involved in using
the simplifications in the exponents are given by equations {(a-8) and
(a=12). Because of the nature of the statistical line model, equation (27)
is valid regardless of the degree of overlapping for equally intense
spectral lines having a dispersion contour.

(a) "Weak Line' and "Strong Line' Approximations for Non-
Overlapping Lines. - It is of interest to compare the weak-line and
strong-line approximations with the linear and square-root approxima-
tions. The average absorption for a band consisting of n identical
non=overlapping lines is, from equation (18),

e T 7
Evo = T F (30)

where the band width Aw = n6 . If the individual lines have a disper-
sion contour, then the aberage absorption becomes

(2ab/67) £(x) . (31)

When the lines are weak, then the average band absorption is
%

(KN o ) = (BX)/6 . (32)
- . L

Alternatively, if the lines are strong, thenthe bandabsorption becomes

i 1

Ey. 0.) = (2/56 UBbX)? , (33)

Ol R

Comparing equations (32) and (33), which are valid only for non-over-
lapping lines, with equations (28) and (29), which are valid for randomly
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distributed lines, the distinction between the weak-line and strong-line
approximation and the linear and square-root approximation is readily

apparent.

5. Elsasser Model. (7, 17-20)

If a band is assumed to consist

of an infinte number of spectral lines, each with the same intensity S

and halfewidth b, with all the lines equally spaced at intervals of &5 ,

(18,

then Elsasser o) showed that the speciral absorption coefficient at

the wavenumber ®w is given by

+0o
S b
P, = ) —w7—7 (34)
n==00 (w-n&) +b

for lines with dispersion contour. Letting
z = (2we/8") , x = (S§X/2wb), (35)

and &
B = (21b/6 ),

it is found that the fractional absorption X integrated over a frequency
range 6' for an Elsasser band can be written in the form

"
-f inh

x.'!-:.:M. = 1-(1/27)jexp[fo’:;fs-goa.}dz : (36)

-1

Although the integral in equation (36) cannot be evaluated in terms of
elementary functions, a number of approximate expressions have been
developed. For example, when p§ >3, or blﬁ* >1.

K\ = 1-exp(-SX/5") (37)

which {s the weak line approximation; when f < 0.3 and x > 1,63, the
strong line approximation applies, viz.,

K, . = e [(1/8")wsbx)

1
2

] (38)
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for the Elsasser model. It should be noted that these limiting forms

(7, 8)

were derived by Elsasser. Flass has found the error made in

using these approximations and defined their regione of validity.

1(7, 8, 16, 21-23)

6. Random Elsasser Mode This model is used

when several groups of lines are superposed and the lines are equi-
distant within each group. This model represents a case intermediate
between the statistical model and the Elsasser model and can be shmvn("
to approach the statistical model as the number of superposed bands
becomes large.

In the weak line approximation, the absorption is again

»
g E.m. = 1-ew(-SK/5T) , (39)
while, in the etrong line approximation, it becomes
N
K, pa = 1- [T - exf[(1/5" )(wS;b,X) 1) (40)
i=1

where N is the number of superposed Elsasser bands, each with a

half-width b, and line intensity Si .

., (10, 24, 25)

i

7. Statistical Band Mode Application of the Mayer-

Goody procedure to randomly distributed bands shows that the mean
value of the spectral emissivity (or the fractional absorption) at the

wavenumber Wy is given by the relation

— "
ewk = 1 -expl- (K.kIBB )] (41)

where GB* is the mean band spacing and Ek represents the mean ab-
sorption of the bands within the region k. If there are N, bands in
this region and the it'h band has an absorption Al , defined by equation

| (11), then
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E = (1/N) L Ay o (42)
th
region

Equations (41) and (42) are applicable at Wye if a large number of bands
(here, more than three) with mean spacing 6}3* contribute to 'é'_!‘ and
k
no contributions are made to E'”k by bands located outside the interval
L
The total region width Awy is defined by the expression

*
Aw, = NkBB . (43)
In terms of Awk » equation (41) may be rewritten as
e = le-exp|-(l/Aw) z A . (44)
w k i
k kth
region

In actual emissivity calculations, it is convenient to divide the
entire spectrum into k localized regions in which a number of bands
are grouped together. In order to obtain a reasonable approximation to
the total emissivity e, for the kB spectral region, an average black-
body radiancy ng is employed over the effective region width A'.*'k -

whence

o 4
e, = |R= /(0‘1‘ )Je“ Auw, (45)
k [ e e k

where ng is the blackbody radiancy for region k evaluated at the

’

average wavenumber a’k . For a given region, R:ik is the weighted

mean value

Re = z Re A } A :| 46)
Wy [ b wy T [ gth i ¢
region region

where Rg is the blackbody radiancy evaluated at a mean wavenumber

i

E’i for the 1T band (usually the band center). From equations (44) and
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(45) the total emissivity of the k' region is seen to be

¢ = [ngk/co'r“nmkm - exp [ = (1/A4) kzt:h A 4T
region

or using equation (46),

o 4

k
€ region region - (48)
(1/Awy,) ):th A
k
region

Since the emissivity of the ith band is approximately given by

= B2 /eTh) | [1-emr, X)las = RS A/OTY ,  (49)
i qth i i
band

equation (48) may be written

Z ¢ 1l - e’q":' (I/Aurk) Z;h Al]
k

kth
. region region .
e, = (50)
k (Man) ) Al
kth
region

Equation (50) shows that the emissivity of the k&

region is equal to the
sum of the emissivities of the individual bands within that region, each
multiplied by an appropriate weighting factor. This weighting factor is
shown in Figure 5. The total emissivity, e , is equal to the sum of the

emissivities of the k regions,

€ =Z¢k . (51)

k
Any calculation of the emissivity of a gas requires knowledge of
the spectral absorption coefficient F . This can be obtained theoreti~
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cally from molecular parameters in certain approximations. If the
emitters have nom-overlapping spectral lines, then detailed information
concerning the spectral line profiles is also required.

D. MOLECULAR SPECTRA

(26) _

1. Wave Equation for a Molecule, The complete wave

equation for a molecule consisting of r nuclei and s electrons is

A B oF
Zm-h vjzfs *Z%V:Z*”E'V” = 0 (52)
j=1 J i=1
where 5 2 2
- e I Z.e
Ve ) ) AL ) (53)
i.ii u' j.jl Jj' l.j U

Here Mj is the mass of the jth nucleus of atomic number Zj’ m the

mass of an electron, ij the Laplacian operator in terms of the co=-

ordinates of the jth nucleus, Viz
th electron. The sums in equation (53) include

the Laplacian operator in terms of
the coordinates of the i
each pailr of particles only once.

Born and Oppenheimer(zﬂ were able to derive an approximate
solution of the complete wave equation for a moelecule by writing the
wave function for the molecule as the product of an electronic wave func-
tion and a nuclear wave function.

Let £ represent the 3r coordinates of the r nuclei, relative
to fixed axes in space, and let x represent the 3s ccordinates of the
s electrons relative to axes determined by the coordinates of the nuclel_.
The quantum numbers associated with motion of the nuclei will be de-
noted by v and those associated with motion of the electrons by n.
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Then, in the Born-Oppenheimer approximation,

tay ol 8) = VBNV, (6) (54)

where ﬁ;rn(x. §€) represents the electronic wave functions, corresponding
to different values of the electronic quantum number n only, and inde-
pendent of the nuclear quantum number v . The L £) are functiomns
of both the nuclear coordinates £ and the electronic coordinates, x.
The electronic wave functions are found by solving a wave equation for
the electrons alome, the nuclei being restricted to a fixed configuration.
The electronic wave equation is

8

2
D = v B )+ [U_(B) - Vix8)]¥ (x8) = O (55)
i=1

where V(x, £) is given by equation (53). For any fixed value of £,
equation (55) is an ordinary wave equation for the s electrons, with
Vix, £) depending on the value of £ chosen for the nuclear coordinates.
As a result, the electronic energy eigenvalues, U

n
of §. Once Un(ﬁ) is evaluated, the nuclear wave functions, §

» are also functions

&)

n, v
may be found by solving the nuclear wave equation
T 52' 5
> Ty Y, 84 (B o U010, (8) = 0. (56)
J=1

For each set of values of the electronic quantum number, n, equation
(56) must be solved for the set of solutions corresponding to the allowed
values of the nuclear quantum numbers, v . The values of En. , are
the energy eigenvalues for the molecule.

The Born-Cppenheimer approximation can be ju.atlned(z-” by a
procedure involving an expansion of the quantities involved in the com-

plete wave equation for the molecule, equation (52), in a power series
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in (m/M)H4

2. Vibration of Polyatomic Molecules. - The solution of equa~

in which M is an average nuclear mass.

tion (56), found by introducing for the electronic energy eigenvalues

U n(e) either an expression cbtained by solving the electronic wave
equation, equation (55), or some empirical expression (e. g., a Morse
potential), gives the rotational and vibrational motion of a polyatomic
maolecule. This treatment is so difficult that it is customary, as a first
approximation, to neglect all interaction between the rotational motion
and vibrational motion of the molecule.

The nuclear wave equation can then be separated into a rotational
wave equation, representing the rotational motion of a rigid body, and a
vibrational wave equation, representing vibrational motion of a non-
rotating molecule. Thus, while it is theoretically possible to start with
a2 model consisting of electrons and nuclei interacting coulombically and
obeying the laws of quantum mechanics, in practice it is necessary to
assume the nature of the equilibrium configuration and of the forces be-
tween the nuclei.

(a) Normal vibrations. (5) The general properties of the vibra-
tional spectra of diatomic molecules will be briefly reviewed since they
may be carried over directly to apply to the polyatomic case. Consider
a molecule consisting of two nuclei, A and B , which have a position
of stable equilibrium at r = T, where r is the distance between the
two nuclei. A typical curve representing the electrc-nlc energy function,
Un(r) is shown in Figure 6. The horizontal lines represent the possible
energy states, which are discrete below D the dissociation energy of

the molecule, and are continuous above D . It is found experimentally
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Figure 6. Electronic potential energy curve of the H, ground state
with vibrational levels and continuous term spectrum.
The broken curve is a Morse potential (from ref. 1).
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that the distance between the lower vibrational energy levels is nearly
constant and much smaller than D, h\;olD << 1. Near room tempera-
ture, infrared absorption bands arise from transitions from the lowest
vibrational energy states to those states immediately above., Under
these conditions, the force between the two nuclei is approximately a
linear function of their separation distance.

For transitions between the lowest states, it is found experi-
mentally that 1) the frequency of radiation absorbed or emitted is very
nearly the mechanical frequency of motion of a simple harmonic oscil-
lator as computed by classical mechanics; 2) the intensity of radiation
is nearly that computed by clasesical electrodynamics, i.e., it depends
on the square of the amplitude of the electric moment; 2) the wave funce
tion differs from zero only in the neighborhood of r = r o corresponding
to a classical amplitude of motion small compared with the equilibrium
distance between the nuclei, i.e., the classical theory of small oscilla-
tions is applicable.

These general properties are also true for polyatomic mole-
cules. In this case, there are r atomic nuclei, which are assumed to
have an equilibrium position. The system as a whole has 3r degrees
of freedom. Of these, three correspond to uniform translation of the
center of mass. For a non-linear molecule, there are three rotational
degrees of freedom, and 3r « 6 vibrational degrees of freedom; for a
linear molecule, there are only two rotational degrees of freedom” and
3r - 5 vibrational degrees of {reedom.

. Since it is meaningless to speak of the rotation of a linear molecule

about its axis.
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(b) Small Oscillations. (28230) Consider the motion of & molecule
about its configuration of stable equilibrium. The departures from
equilibrium are assumed to be small, so that all functions may be ex-
panded in a Taylor series about the equilibrium position, and only the
lowest order terms retained. Let the generalized coordinatea. of the
nuclei be denoted by gl % = §3r » and the deviations of the generalized
coordinates from their equilibrium position be denoted by Gy +ee Qg+
From the relation

&5 = B4 * 9 (57)

it is apparent that the qj may be taken as new generalized coordinates
of motion. Expanding the potential energy about the equilibrium position
gives

* A system of r particles, free from constraints, has 3r independent
coordinates or degrees of freedom. Frequently, it is more convenient
to use a set of coordinates other than the cartesian coordinates Xy Ve By
SRR ) UL If a set of new independent variablen Qpeereedy, is in-
troduced. the old cartesian coordinates of the l particle Xio Vg0 3; are
related to the new coordinates by the equations of transformation,

X = X9 Qpeeee0qy,) |

vy = Yylapeazee-endag,)

5 = Bla 9000 9g,) o
These is such a set of three equations for each particle i.

Generalized coordinates must not be thought of in terms of con-

ventional orthogonal position coordinates, and it may be convenient to
use quantities with the dimensions of energy or angular momentum as co=-
ordinates. The generalized momentum conjugate to a generalized coor-
dinate p; = BLI(ac}i) will not necessarily have the dimensions of mo-
mentum, but the product P9y will always have the dimensions of action
(e. g., erg=sec. ).
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I 3r 3r
UlE) = Ug)+) (3 )q +,Z 13 (W) Qay +-.e * (58)
j=1 j-

The linear term in qj vanishes automatically, from the definition of

equilibrium, i.e., when the generalized forces acting on the system
vanish: F = ( ) = 0. The first term in the series is the potential
energy of the equi.llbrium position and by shifting the arbitrary zero
of potential to coincide with the equilibrium potential, this term may

also be made to vanish. Thus, a first approximation of U is given by

3» 3» y 3»  3»
veg), ), (Fm‘) Wy ), ) By o
Jj=1 i=1 i=1 j=1

where the second derivatives of U have been designated by the con-

stants b

ij
their definition, the b

depending only on the equilibrium values of the gj's . From

's are obviously symmetrical, i.e., b,.=Db

ij A RS LA

Equation (59) can be rewritten in the form of an inner product
U = 3<a Bq> (60)

where B is a matrix with components blj and q is a vector with
components (ql. Qpreees q3r)'

A similar series expansion can be obtained for the kinetic ener-
gy. Since the generalized coordinates do not involve the time explicitly,
the kinetic energy T is a2 homogeneous quadratic function of the ve-
locities:

3 3z 3r 3r

X %Z Z% éiéj =3 ) Z ag; 58 - (61)

i=1l j=1 i=l j=1
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The coefficients a; [ are in general functions of the coordinates, gt i
but they may be expanded in a Taylor series about the equilibrium po-
sition

N N 3r 9a
a8 = aijgg)e + Z (ﬂf)eqk+"'

k=1

Retaining only the first term in the expansion of ;U » henceforth to be

denoted by a’lj » the kinetic energy can be written as

13:' 3r
Te=3) ) 25 49y - (62)
=1 a1

Since the aij's are symmetric, equation (62) can be rewritten in a

form similar to that of equation (60), i.e.,
T:%<§,Ah_> . (63)

The two quadratic forms, equations (60) and (63) can simul-
taneously be diagonalized by means of a linear transformation to the

so=called normal c:oox-dinates‘3 1) Ol' QZ’ R In terms of the

3p°
normal coordinates, the kinetic energy would have the form
2 s 2
2T = Ql oer + 0, . (64)
Similarly, the potential energy could be written as
2 2

The equations of motion of the system reduce to the equation of a

simple harmonic oscillator for each of the normal coordinates:
E)k +kuk = 0 » k = 1. 2..--'3r . (66)

In order to determine the linear transformation from the gener-
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alized coordinates to the normalized coordinates, the following eigen-
value problem must be solved. Find the eigenvalues )\ for which the

equation
(B-)A)y = 0 (67)

has a non-trivial solution. Here y is an eigenvector with 3r comse
ponents. When equation (67) is considered as a set of 3r linear equa-
tions for the components of y , it is clear that )\ is an eigenvalue if

and only if
det | B-)A! = 0, (68)

Since this determinental equation is of degree 3r , it will give 3r values
for )\ , and the eigenvector corresponding to the kt'h eigenvalue A
will be denoted by Vi *
The eigenvectors form an orthogonal set with respect to A,
which can be normalized such that
<Yy ij > = ajk (69)
where 5jk =0 for j#k and aﬁ = 1. From equation (67) it follows

that
Ve BY;> = <Vyo xJAvj> = Ay By - (70)
Hence, the matrix C , whose columns are the eigenvectors YipVaerees
Y3 is the desired linear transformation from the generalized coordi-
nates to the normal coordinates.
g = CQ (71)
From equation (71), equﬁuon (60) becomes
U = $<q,Bq> = 1<CQ,BCO> = }<0, c*BCO > (72)
where C* is the transpose of C. From equation (70) it follows that

c’BC = A (73)

where A is a diagonal matrix of the eigenvalues 1i . Hence



U = 3<Q,AQ> = %Z Ay ciz . (74)

Similarly, equation (63) becomes
T = <y, A4> = 3<0,CACE> = 1<, 0>

s 3r
1 s 2
T=3) 9 75)

since it follows from equation (69) that

c’Ac = 1 (76)
where 1 is the identity matrix. From equations (74) and (75), the total
energy of a system of particles executing small oscillations can be

written as

Daje

E =} & %4409t Lotk 77
z§¥ % %w“* ;] o (rh

where the ’Jfa are the frequencies of the corresponding independent vi-
brations (ﬁ?a_z = xn_). The subscript o denotes the frequencies and the
subscript i=1,2,..., fcx numbers the coordinates belonging to a given

) .
(¢) Applications of group theory to molecular vibrations!>2~>6)

~

frequency {.fq being the multiplicity of the frequency -
The difficulty of solving the secular equation "equation (68)] which is an
algebraic equation of degree 3r for the eigenfrequencies can be reduced
in many cases by the use of group theory. Molecules generally possess
some symmetry. This is determined by the position and type of nuclei,
and molecules of different symmetry have qualitatively different spec-
tra‘37). With the aid of group theory, the symmetry and geometry of a
molecular model can be used to determine the number of fundamental
frequencies, their degeneracies, the selection rules for the infrared and

Raman spectra, the possibility of perturbations due to resonance, etc.



() Symmetry of molecules, (3% 36 37)

- It i necessary to
have a definite method of classifying and describing the symmetry of a
given molecule. This can be done by considering all the possible reare-
rangements of the nuclei which leave the molecule in an equivalent con-
figuration, i.e., a configuration that is indistinguishable from the orig-
inal configuration when nuclei of the same kind are considered to be
indistinguishable. These rearrangements of the nuclei are called sym-=
metry operations and can be represented as a combination of one or
more of the fundamental types of operation: rotation of the molecule
through a definite plane about some axis and reflection of it in some
plane.

A molecule may have one or several symmetry elements such as
a plane of symmetry, a center of symmetry, or an axis of symmetry.
To each symmetry element, there corresponds a symmetry operation,
i. e., a reflection or rotation of the coordinates that will produce a con-
figuration of nuclei indistinguishable from the original one.

Thus, corresponding to a plane of symmetry ¢ is the operation
of reflection in that plane (also designated 0 ); for a center of symmetry
i the corresponding operation is inversion or reflection at the center
(also called i ); for a p-fold axis of symmetry Cp » the corresponding
operation (also denoted Cp) is rotation through an angle of 2w/p about
that axis; for a p~fold rotation-reflection axis Sp. the corresponding
operation Sp is 2 rotation through an angle of 2w /p about this axis fol-
lowed by reflection in a plane perpendicular to the rotation axis. There
is also the identity operation E which leaves the molecule unchanged.

(32-36, 38, 39)

(i) Groups of symmetry operations. = When a

molecule is subjected to two symmetry operations in succession, it
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reaches a point that could have been obtained by the use of one symmetry
operation. The set of all symmetry operations for a given molecule is
called its symmetry group.
) 63 Ai is an element of the group G, and it is possible to associ-
ate a square matrix I‘(At) with each member of the group in such a way
that if

A A, = A, (78)

F(Ai)I‘(Aj) = T{AY) (79)
then such matrices are said to form a representation of the group and
the order of the matrices is called the dimension of the representation. g
Every group has the identity representation in which every element of
the group is represented by the identity matrix of order one; this is re-
ferred to as the completely symmetrical representation.

Suppose that a representation of a group has been found consist-
ing of the elements I‘{Al). I‘(Az). e F(Ag) where g is the order of the
group G, i.e., the number of elements of the group. Then it is often
possible to find a transformation of the type P'II‘(Ak)P = I'(A, ) such
that every matrix I' of the representation is brought into the form

- (80)

with smaller matrices T‘“’(Ak) along the &iagona.l and zeros elsewhere.
Equation (80) {s written
r =My @, 4@ (80a)

L

Examples are given in ref. 40.
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and" is said to contain the representations I‘(i,. If there are g
elements of the group there will be g equations like the above, one
for each element of the group. Equation (80) is called the ''direct
sum" and shows that the matrix!" has been reduced. A representation

that cannot be reduced is termed irreducible.

(iii) Characters‘32'33'38) -

¥ r (Ak) is any representation of a
group of transformations Aps then the sum of the diagonal elements,
or the trace of the matrix, is called the character ¥ of Ay in this

representation, i,e.,
K (Ay) =Z Ty (AL) (81)
i

Elements of the group which can be obtained from one another by a
similarity transformation are said to be in the same class, and the
character of every element in a class will be the esame egince the
character of a matrix is unchanged by a similarity transformation.
Clearly the identity element E always forms a class of its own, and
% (E) ie the dimension of the representation,

The characters of the irreducible representations satisfy

the following orthogonality relation:‘

Z X i(A,:) xj(Ak) =86, (82)

elements

¥ The proof of this relation may be found in books on group theory such
as refs, 41-43,



=35«
Equation (82) could also be written as
i J
Z AL (A )X(A,) = gb (83)
clasases Ak Ak Ak i
where r(Ak) is the number of elements in the class of Ak .
From equation (80), the character of a reducible representation

I‘(A.k) is seen to be "

XAy = ) n xhay) (84)

i=1
where o is the number of times the irreducible component rid) occurs
in the reduction of I' . From equations (83) and (84), the number of
times an irreducible representation ri) appears in reducing a repre-
sentation I can be found from
no=d ) EauA A (85)
classes
where xi(Ak) is obtained from a character table, and x(Ak).t.he chare
acter of a particular symmetry operation,is found by methods to be dis-
cussed later.
Tables of characters have been given by many autllora(3z'38’ 40
and for convenience Tables I and II reproduce the character tables of the
point groups sz (to which H,0 belongs) and Dmh (COZ) .

(iv) Cuantum mechanical applications. - The quantum me=
chanical applications of group theory are based on the fact that Schroe=-
dinger's equation for a physical system is invariant with respect to sym-
metry transformations of the system. In other words, under a syms=
metry transformation the wave functions of the stationary states of the
system belonging to a given energy level transform into linear combi-

nations of one another. These wave functions give some representation
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of the group, and this is an irreducible representation. The dimen-
sion of this representation determines the degree of degeneracy of the
level concerned, or, the number of different states with the same en-
ergy. The fixing of the irreducible representation determines all the
symmetry properties of the given state, i.e., its behavior with respect
to the various symmetry transformations.

Group theoretical methods are extremely useful in the investie
gation of molecular vibrations“”. Equation (77) for the vibrational
energy of a molecule must be invariant with respect to symmetry
transformations. This means that, under any transformation belonging
to the symmetry point group of the molecule, the normal coordinates,
Qai , are transformed into linear combinations of themselves, in such
a way that the sum of the squares )i chz remains unchanged. In
other words, the normal coordinates belonging to any particular
eigenfrequency of the vibrations of the molecule give some irreducible
representation of its symmetry group; the multiplicity of the frequency
determines the dimension of the representation. The normal coordi-
nates and normal modes of vibration of symmetrical molecules have
certain special symmetry properties. Nonde'ganarate normal modes of
vibration are always either symmetrical (unaltered) or antisymmetrical
(changed in sign) with respect to a given symmetry operation of the
point group of the undistorted molecule.

These considerations enable the eigenvibrations of a molecule
to be classified without actually solving for its normal coordinates.

To do so, the representation given by all the vibrational coordinates
together must first be found. This representation is called the total
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representation, and is reducible. Upon decomposing it into irreducible
parts, the multiplicities of the eigenfrequencies and the symmetry
properties of the corresponding vibration modes are determined. If
the same irreducible representation appears several times in the total
representation, it means that there are several different frequencies
of the same multiplicity and with oscillations of the same symmetry.

The total representation may be found by using the fact that
the characters of a representation are invariant with respect to 2 lin-
ear transformation of the base functions. As a result, the normal co-
ordinates need not be chosen as base functions , but the generalized
coordinates or simply the cartesian components of the displacements
of the nuclei from their equilibrium positions can be used. As a result,
the number of normal coordinates with given symmetry properties can
be obtained when the characters of the transformations of the displace-
ment coordinates are known. These could be obtained directly by
writing out the transformations, but much easier methods can be used.

Consider some operation A‘k which moves nucleus 1 to a new
position previously occupied by nucleus 2. Then the representation of
this operation I‘(A.k) will have its matrix elements 1"l 2 and 1"21 equal
to some numbers, but 1"” and 1"22 will be equal to zero, and x(Ak)
will therefore be zero. Hence, to calculate the character of some ele-
ment A, of a point group, only those nuclei need be considered whose
equilibrium position remains fixed under the given symmetry operation.

Consider a rdation C & through an angle 4 about some syme
metry axis. FEach nucleus lying on the axis of symmetry will contribute

(1 + 2cos ¢) to the character.
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X(C¢) = N, (1 +2cosd) (86)
where Nc is the total number of nuclei lying on the axis of symmetry.

For a rotary reflection S, each nucleus contributes

(-1 + 2cos ¢) to the character. '
X(S¢) = Nn (=1 + 2cos ¢) (87)
where Ns is the number of nuclei left unmoved by the operation S N
(This number is either zero or one depending on whether there is a
nucleus at the center of inversion or not. ) It follows from equation (87)

that the contribution to the character of reflection in a plane 0= Si is

Xo) = No (88)
and that of inversion i = S‘l2 is
x4) = -3N, . (89)

Except for cases of accidental degeneracy, the representation
formed by the normal coordinates is a completely reduced one. Conse=
quently, equation (85) can be applied to find the number of normal coor-
dinates of each symmetry species, i.e., in each irreducible representa-
tion.

As an illustration, consider the water molecule, HZO' The
character table for its point group, C, v 18 given in Table I.

There are four elements in the group: E, C2 - cv(xz). and
cv(yz). The character for E is 3N=9, the number of coordinates.
The character for C, is -1 (see equation (86)). while that for Gv(xs) is
1 and for 0 (yz) is 3. Therefore, XE)=9, X(C,)= -1, x(ov(xz)) =

1, and x(ﬂv(yz)) = 3. Substituting these values into equation (85) gives

n(A;) = (1/4) AN + (H)IN=1) + (ANA) + (ANIN3)]} = 3
n(A,) = (1/4) {((DAN9) + (DUN=-1) + (1)(=1)1) + (1)(=1)3)} = 1
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n(B,) = (1/4) {OANINT) + (I)(=1)=1) + {1){I)1) + (IN=1)3)]} = 2
n(B,) = (1/4) [(A)NIN9) + (IN=1N=1) + (I)(=21)(1) +(1)(1)}3)] = 3

There are three totally symmetric coordinates, Al » one coordinate with
symmetry species Az » two coordinates with symmetry species Bl s and
three with symmetry species Bz . 'The representation formed by the
cartesian coordinates (including translation and rotation) of water is

I' = 3A1+A2+ZE ~1~31.>.2 . (90)

1
Since it is desired to find the number of vibrational normal co-

ordinates with each symmetry, the symmetry of the translational and

rotational coordinates must be obtained and the proper numbers sub-

tracted from the total values of n(A, ). From Table I it is apparent that

I"“_a“‘_la = Al + Bl s IE’)z (91)
and

r‘mt = A,+B, +B, . (92)
Hence,

Pvlb = ZA1+B2 y (93)

The two vibrations of Al are non-degenerate unless they acci=-
dentally coincide. Consequently, the group-theoretical treatment pre-
dicta that HZO will have three normal frequencies, none of which are
degenerate.

A brief discussion of infra-red spectra will be given later and
the situation is as fouowa(”). if all overtones and combination fre-
quencies are neglected. A normal vibration Q[.’. gives an absorption
line in the infra-red spectrum if Q‘3 transforms in the same way as one
of the dipole moment components, b uy.us . Further, Qﬂ gives a

line in the Raman spectrum if it transforms in the same way
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as one of the polarizability tensor components, QO i {(or linear
combination thereof). The dipole moment is an ordinary vector, and

the components Mg Moge Mo transform like x, y, z. In the case of

water this is according to A+ Bl + BZ' The polarizability <, . is a

ij
symmetric tensor and hence the components transform in the same
2 2 2
wayasx , ¥ » 2 , X%, YZ, XY.

The transformation properties of these quantities are summarized
in Table III. From this table, together with the group character tables,
the symmetry species of the vibrational normal coordinates of any
molecule can easily be derived by the methods described above, and

the infra-red and Raman active ones among them immediately written

down,

Table III, Transformation Properties of Some Often Used Quantities

Quantity Transforme like
translation of center of mass x,¥,2 (vector)
X _ Y 3 Z
cm cm cm
rotational displacements I ,I ,1I (pseudo-vector)
x'y' 'z
R,R, R
x y z
dipole moment X,V %
leo Uyt U.z
- 2 & &
polarizability tensor X ,Y 22 ,XY,XZ,¥2
Q..
1)

(v) Normal Modes of Vibration for HZO . = If the coordinate

system is taken with its origin at the center of gravity of the molecule

as shown in Fig. 7, the = axis as usual being the symmetry axis, and
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the x axis chosen normal to the plane of the molecule, then the effect
of the various symmetry operations of the group sz may be

summarized as follows:

& CZ %z Oyz
xl - xl xl -t -xl xl - xl xl — -xl
xz - xz xz -- -x3 xz - x3 xz -t 'xz
x3 =th x3 x3 - -xz x3 -» xz !3 - -x3
Yl i Yl Yl ed 'Yl yl - 'Yl yl -’ Yl
Yz 5 YZ yZ e 'Y3 Y2 - "Y3 Yz -e YZ
Y3 - Y3 Y3 = 'YZ Y3 we 'Vz Y3 -» Y3
Il b !! zl - Sl Il — 81 zl - zl
lz e zz zz - 23 zz - 23 z.z - 22
53 - I3 as - zz 83 - lz 23 - !3
These give the characters ¥ (E)=9, X(Cz)z -1, X(cxz) =1, and

X (cryz) = 3 as stated earlier.

The normal coordinates corresponding to translation are:

Q1 = (xl +x, + x3) = Tx (94)
Q3 = (zl +z,+ 53) = T" (96)

which belong to the irreducible representations denoted B, B, and A,

respectively (see Table I). The normal coordinates for rotation are:
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Q4= ¥y + (M/Zm)(yz - y3)+ (33 - zz){(Zm + M)/2m} tang = Rx (97)

Q

E =x, - (M/2m) (x, + x;) = Ry (98)

Q, =%, ~% =R (99)

belonging to the irreducible representations BZ' Bl and AZ respectively.
These may be obtained by inspection if the nuclei are imagined to have
velocities 5:1, ?1. il' etc, and one asks how the velocities must be
related in order that the angular momentum about the axis in question
shall be a maximum, Here, M is the mass of the oxygen nucleus, m
is the mass of a hydrogen nucleus and 20 is the angle between the
OH bonds.

The two normal coordinates for vibration coming under A, may

be obtained from the general expression

Q = ax; +a,x, + a%,y + blyl B bzyz 4 b3y3 + c2; + ¢,2, + CaZqy - (100)

The character for CZ in Al is 1 (see Table I) and CZQ =1XQ. But

C Q- -2 X -8 X, -2,%, - b 273 b3y2+c T, +C, 2+ Ca2,. (101)

From the equation CZQ = Q, the following relations must hold:
a, = -ag; b, = -byi ¢, =+4cg and b, =a, = 0.

Similarly, from the equation ¢ YZQ = QQ, the further relations az=0'.

a,=0 are obtained. The equation ¢ xr.Q =(Q yields no new relations. So

a normal coordinate coming under the irreducible representation A

must be of the form
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bz(y?_-y3) + <% Es cz(zz+n3)

The symmetry coordinates coming under A, may be taken as any

three orthogonal combinations of Sl' SZ' 33 where

S1 =2 S, = Z, + Z,: 83 =Y, - Vg (102)
But it has already been shown that Tz belongs to this representation:
T‘ = S1 + SZ' Taking one of the symmetry coordinates as Tz. two
linear functions of Sl’ Sz, S3 can be formed which, along with T:.'

form an orthogonal set of symmetry coordinates coming under Al.

Cne such choice is as follows:

Q3=SI+SZ=T5="1+82+"3 (103)
Q, =5 -(M/2m) 5, = asl-(M/i!n'x)(’:s2 + 23) (104)
Qg =S, =y, -7, . (105)

Out of the three normal coordinates that should be expected from the
representation BZ' two have been already written down, namely Ty and
Rx' Proceeding as before, the symmetry coordinates are S4 =Yy
55 = (yz + y3); 56 = (zz -!.3) and t§e third normal coordinate, which is
unique in this case, is obtained as
Q9 = -(2m /M) y, tanc + (zz-zS)+ (yz+ y3)tancx (106)

The symmetry modes for H,0O are schematically illustrated in Figure 8.

Instead of having to solve a 9 x 9 secular determinant for the

frequencies, we have reduced the problem to solving one 2 x 2 and one

1 x 1 (since we know that the frequencies corresponding to translation



Y

Figure 8. Normal Modes of Vibration of H,O0.
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and rotation of the molecule as a whole will turn out to be zero). By
the proper choice of normal coordinates, i.e., those of only one
symmetry type rather than some mixture of types, the matrices A

and B [c.f. equation (67) Jhave already been partially diagonalized

as shown below.

217 32 O byy Py2 ©
Ax oy 8, 0 B= | by by 0
o - 0 a o 0 b
] %33 i 33 |

This is due to the fact that the matrix elements vanish which correspond
to different symmetry types. For the example chosen, HZO' it is
easier to find the normal modes of vibration by classical methods but

the advantage of using group theory for more complicated molecules

(e.g. benzene) is apparent.(so'sz)

Let us first look at the normal modes having the symmetry type

A If Q., and QB are assumed to have amplitudes § for the displace-

1
ment of nucleus | and y for the displacements of nucleus 2 and nucleus
3, respectively, and these are simultaneously excited, then the
variations in the lengths and angles are:

AR, = AR, = 6[(2m+M)/2m] cosqa - ysing (107)

12 3

ARZS = ~2y (108)
%54,213: Adypy= A¢132={(5/R)f(Zm+M)/Zrﬁjnina+(y/R)coa o} (109)

where R is the (constant) equilibrium length of Rip = Riq- If it is
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assumed that a change in the length of R, or R13 gives rise to a
Hooke's law restoring force with proportionality constant equal to Kl'

then each will contribute a term

4?.\.'l = Kl {6M(2m+M)/2m] cos o - y sing} o

2
to the potential energy of vibration of the molecule. Similarly, if the
force constants KZ' K3. and K4 refer to the changes in FZ.‘.’.' R¢ 213’

and R ¢ 123 °F R & 132° respectively, the total potential energy is

2V = ZK] (6[(2m+M)/2m] cos g - yging] $ + Kz [ -2y] 2

[ 2K, +4K,] (6[(2m+M)/2m] sing +y cosq] » (110)

The total kinetic energy is

2T = M [-2-';;-,-"1} ()% + 2m(y) . (111)

Hence the matrix elements of A and B are
a,, = M[(2m+M)/2m7 ; 8, =2, = 0; a,, =2m:

b,y = ([(2m+M)/2m) z[le <:oszcz + (2K, + 4K,) -inza]} i

b12 = b21= {{(2m+M)/2m] sina COIgtzK‘} + 4!(3 - 2K1]] :

. B 2
bo. = [ZK1 sin o +4K2+(2K4+ 4K3)cos al .

22

53-5
The roots of the secular equation are ) , and 3 2° where( i
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31,022 + 25,0
AL+ L, = .
1 2 %1822
or
K 2K K.+ 2K
1 2m 2 2 [4 3) 2m 2
Ryt g =l [1e 5 con®a] ¢ G2 4 A52] [14 57 eta®a]
(112)
and
2
bllbzz'blz
1112= a,.a
11922
or 2
% R a [Zmi-M] (Kl ( Kz\ ool K, [E4 2Ky
] 4 M m m M m

2K K + 2K
+ 2 [ 4 3} sinza . (113)
m m

~ By a similar procedure for the case of symmetry mode Q9. with & the
amplitude of vibration of nucleus 1, the variations in lengths and angles

are found to be

AR ,= AR 4= (5/sinc) { (M/2m) + sin=a) (114)
AR,y =00 _ (115)
Ab ,q= -Ad ;= (6 /R) (959{%%) { (M/2m) + sin’a} , (116)
Dby =0 . (117)

The kinetic energy is

2T = M[1 + (M/2m)(1/sinZa) 3 §)% , (118)

and the potential energy is
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2
2V = (le [(5/sina ) {(M/2m) + sin®a)}]
cot 2 2>
+ 2K, [(8—'1-'-13 ) { (M/2m) + sin“a} ] 5 (119)
Hence, the eigenfrequency for this case is
b 2K 2K
33 1 & 2 2
13 = %, =[M + 57 cot a] [(M/2m) + sin"a] . (120)
if Kz = 0 and K4 = 0, then the values of ) 1 )\z and 13 correspond to
a valence force uystem(56) while for K3=0 and K4=0. values of 11. lz
and ), appropriate to the central force system are obtained., Ex-

3

pressions relating to the frequencies in other special cases, such as a
linear symmetrical molecule (e.g.., COZ) or an equilateral triangular
structure, etc., with specific types of forces can readily be derived
from the above equations by making suitable substitutions. . By the
application of the szlection rules already given, it is possible to
determine if combinations or overtones of the normal frequencies of

a molecule are active in infrared absorption (or Raman ecattering).

For example, combinations of the fundamentals Q. QB and 09 can
combine in pairs to give lines which are active both in RFaman scattering
and infrared absorption. Similarly, first overtones of Q7. QB and Qq

are all active in both spectra,

(vi) Linear moleculelsaﬂ — The procedure for obtaining the

normal vibrations of a linear molecule is essentially the same as that

illustrated for water. There is one minor difference. If the axis of
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the molecule is chosen as the z-axis, then a rotation about 0z for the
molecule in its equilibrium position will not result in any change of
position. As a result, there are only two rotational coordinates.

The symmetry group of a linear molecule is either Dmhor
Cm vdepending upon whether the molecule has a center of inversion
symmetry or not. As an example, consider carbon dioxide which has
symmetry Dcoh'

Application of the rules for the characters [equations (86)-(89) ]

yields for the total representation (including translation and rotation of

the molecules as a whole)

Y(E) =9
x{i) = -3

X(Cq; ) = 3(142 cos ¢)

'x(iC¢ ) = xS dﬂ‘ﬂ’) = -2 cos¢ -l
X(Czl) = '1
X(iCZ') =3

whence from the character table for Dcoh (Table I1I),

T =A, +2A + E
u

E 121
tot g 2 gt “Sla (1z1)

The representations of the three translational components are given in

the character table:

r = . 122
trans AZu » Elu ( )

Here the symmetry species AZu corresponds to z and the doubly

degenerate Elu and x and y. The two rotational coordinates belong to
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the representation
r..,.=E . (123)

Subtracting equations (122) and (123) from equation (121) we obtain

= A, + A ; (124)

Tvip = #1g ¥t f2u* E

1u

There are two non-degenerate modes (Alg and AZu) and a pair of
degenerate ones (Elu)' Of these Alg is Faman but not infrared active,
and the others are infrared but not Raman active, The normal modes

are pictured in Fig. 9.

o —— —0 A mode

O— <40
‘A'Zu mode

r 3 ’;) Elu mode

Fig. 9. Vibrational normal modes of the C()z molecule.
The second E,

shown above, but in the plane perpendicular

o mode is the same as the one

to the page.

(26,34,37,60)

Having

(d) Harmonic Oscillator Approximation

;Jbtained the classical expressions for the potential and kinetic energy
of vibration for a molecul.e in terms of the normal coordinates
[equations (64) and (65) ], the nuclear wave equation [equation (56) ]

may now be written in terms of these coordinates as:
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3r
) 1 2
gVl > Z A Q5 (e =0 (125)

i=]

3r 2
Z 8 v + 2
o el n?

Equation (125) is immediately separable into 3r one-dimensional
harmonic oscillator equations, If we write

3r

L | | LR LN B (126)

k=1

each of the ¢, satisfies the equation

? 'x + 2 te-1r.a? 0 2
ey e R0 400 Toy = (127)
%

and the total vibrational energy E(v) is the sum of the energies

associated with each normal coordinate.

3r 3r
pt¥ Z EkM - Z (v, + %, By, (128)
k=1 k=1

Here Vi is the vibrational quantum number (vkz Q1. 2,..+) nllogiated
the kth classical normal mode of vibration with frequency Ve

In general if the molecule has some degree of symmetry, not all
the 3r frequencies Vi will have different numerical values, but there
may be several of the normal coordinates for which the frequencies
will be necessarily identical., If fo, is the multiplicity of the frequency

Vg * then equation (128) may be written as
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~(v) Z
E = 3
(vCJL - (l/Z)fa] h Yo (129)
a
fﬁ.
where vm “E Vi If there are multiple frequencies among the v_ ,
k=1 - s

the vibrational energy levels are in general degenerate since the

vibrational energy depends only upon the sums v _ = T v This

a ka °
degeneracy is usually removed when terms of higher order in the
normal coordinates are taken into account in the Hamiltonian
(anharmonic vibrations).

The nun:aerical values of the frequencies are always obtained
from an analysis of the spectrum of the molecule. If all (3r-6)
for (3r-5) for a linear molecule ] different frequencies are actually
observed, no mechanical analysis of the motion of the molecule is
necessary. For a aymmetriﬁal molecule, even if all the different
frequencies Vg are actually observed in the spectrum of the gas, their
total number will often be less than (3r -6) owing to the essential
degeneracies present,

To a surprisingly good first approximation, a potential function
composed only of quadratic terms in the displacements of the nuclei
form their equilibrium positions may be made to fit the vibration
spectrum of most molecules. (61) That the forces between atoms in
molecules are not strictly Hooke's law forces is evident from the fact

that overtone frequencies of the fundamentals, and sum and difference

frequencies occur, The existence and intensity of such frequencies is
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indicative of the amount of anharmonicity, The appropriate potential
should therefore include cubic and quartic terms. The inclusion of
such terms in V for polyatomic molecules enormously complicates the
problem of obtaining the harmonic frequencies as the number of nuclei
and hence the number of frequencies required is increased. For CO2
(see Fig. 9) one would expect to find two strong infra-red frequencies
and one strong line in the Faman spectrum,the frequency of which
should be between those of the two infra-red-active vibrations, The
lower of the two infra-red-active frequencies is the degenerate one.
The actual situation in COZ is complicated by the occurrence
of what is called an accidental degeneracy. The frequency of the
bending motion is almost exactly half of that of the frequency of the
Raman active vibration so that the two quantum levels, one in which
there are two quanta in the bending degrees of freedom and one in
which there is one quantum in the stretching degree of freedom, have
the same energy. These two levels combine, that is, they form two
new levels, one of lower, and one of higher energy., each of which
ilas some of the mechanical properties of both of the original levels. (62)

This is called Fermi resonance.

(e} Fermi Relonnnceﬂ” If two vibrational levele of the same

electronic state which belong to different vibrations have nearly the

same energy, i.e., E_ and E, are degenerate, then first order per-

turbation theory(26' 34) predicts the perturbed energy levels to be given

by
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E.—.%[Ea-r Ebi\/(Ea-Eb)z+4<a|w1b> 2] (130)

where W is, in general, a small correction to the unperturbed
Hamiltonian operator H. For a harmonic oscillator, W ie essentially
given by the anharmonic (cubic, quartic, ...) terms in the potential
energy. From equation (130) Fermi resonance can occur only between
vibrational levels of the same symmetry species, i.e., belonging to
the same irreducible representation, since H (and hence W) belongs
to the totally symmetric representation. This follows from the

(34)

general theorem of group theory which states: If ¢ is a function

belonging to some reducible representation of 2 group, the integral
&dw will be zero except when this representation contains the

L5

totally symmetric representation. Hence,

32
<alw!p> = F"a; W -'-bﬁ" dar (131)
v » »

where VY ao and V bo are the eigenfunctions of the unperturbed
operator H, will be zero unless the representation ri) x I‘(p)
contains the totally symmetric representation. The direct product of
two different irreducible representations does not contain the totally
symmetric representation, while the direct product of an irreducible
representation with itself glways contains the totally symmetric

representation, and only once. Thus the matrix element < al w|b>

will be mero unless the vibrational levels a and b belong to the same

representation.
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As mentioned above, for CC‘)2 there is a very close resonance
between the levels (1,0, 0) and (0,2, 0) since 2 vy happens to be very
nearly equal to v 1 The level (0,2, 0) consists of two sublevels
(0, 2°. 0) and (O, ZZ. 0) with Lz=o and 2, * and which have the symmetry
species Zg+ and Ag' Since the (1, OO.O) level has the species Zs+.
only the (0,2°,0) sublevel can perturb it. This is shown in Fig. 10,
The separation of the two levels {1,0°,0) (= 1388.3 cm-l) and (0, 2°, 0)
(= 1285.5 cm-l) is much larger than would have been expected on the
basis of the value for v ,(=667.3 cm'l). In consequence of the strong
perturbation, a strong mixing of the eigenfunctions of the levels (1, Oo. 0)
and (0, Zo. 0) occurs. Each actual level is a mixture of the two; this is
exhibited experimentally by the presence of two strong Faman lines
rather than one.

A8 a consequence of the Fermi resonance between the levels
(1, Oo. 0) and (0.20. 0) of COZ' there are also perturbations between

certain higher levels. This has been discussed in detail by Adel and

s I - (63) [ see also references 37 and 64 7.

A somewhat different perturbation has been found to occur in

1

H,O by Darling and Dennison.'>?) The two vibrations v =3652 cm’

2

and vg® 3756 cm-l have a similar magnitude but cannot perturb each

other since they have different species. The two overtones 2 v 1 and

2 Vg however, have the same species (Al) and can perturb each other

—

* The {’i are integral numberlbv)which assume the values Liavi.

v, =2, vi-4. ...» 1l or 0; for non-degenerate vibrations Li'_' 0,

i
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Figure 10. Schematic energy level diagram for carbon dioxide.
The broken lines represent the unperturbed levels
which go over, on account of Fermi resonance, into
the two levels to which the arrows point (from ref.
37).
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and, in general, any state (vl. vz,vs) with v1> 2 is perturbed by a

state (vl-Z. Vo v3+2).

(37)

(f) Anharmonicity The concept of normal vibrations rests upon

the assumption of '""small" amplitudes of oscillation, when only quadratic
terms in the potential energy need to be considered. However, the
amplitudes of the quantized oscillations are not infinitesimal, and
higher terms must be included in the potential energy, i.e., the
oscillations are anharmonic, If the potential energy of a polyatomic
molecule contains terms of degree higher than quadratic, then it is
no longer rigorously possible to resolve the vibrational motion into a
number of normal vibrations.

The vibrational energy is no longer a sum of independent terms
corresponding to the different normal vibrations, but it contains cross-
terms containing the vibrational quantum numbers of two or more

normal vibrations [see equation (128)7. Thus for a nonlinear tri-

atomic molecule (e.g., HZO) the energy is given l:,Y(S'?, 59,64)

E(v}e Y30 Vy) = e {y, (v + 21" + owplvyt ';" + wylvyt %’
5 xu(v1+ %)z + xzz(vz+ %)z + 133(v3+ %)2
s Itv. s Lyd x vt vt 3+ x (vt Divs L) 4 (132)
+ x5Vt U+ 3) + x,5(vot FHVLE ) + x4Vt FHVaH )+ ..l
For a diatomic molecule, ghe energy is given by(l)

E(v)ﬂ he {,,_.e(v+ %) - 1,bxe(v+ i—)z+ %ye(‘”’ %-)3-& ree 1. (133)
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A comparison of equations (132) and (133) shows that the constants
Byr W and w 3 for a polyatomic molecule are analogous to . o

for a diatomic molecule; similarly, the X, &re analogous to eXe'
In the harmonic oecillator approximation, the total vibrational
eigenfunction is simply a product of oscillator eigenfunctions
corresponding to the different normal coordinates [ compare equation
(126)] . If the anharmonicity is taken into account, this is no longer

the case, but the symmetry species of vibrational levels remain the

same whether the oscillations are harmonic or anharmonic.

(37,60)

(8) Infrared Vibration Spectra and Selection Rules According

to classical electrodynamics, any motion of an atomic system which
leads to a change in the electric dipole moment of that system will

cause the emission or absorption of radiation.. During the vibrational
motion of a molecule, the charge distribution undergoes a periodic
change and so, in general, the dipole moment will also vary periodically.
In the harmonic oscillator approximation, any vibrational motion of the
molecule can be resolved into 2 sum of normal vibrations with
appropriate amplitudes., The normal frequencies are the only simple
periodic motions and hence these are the frequencies emitted or

absorbed by the molecule. They lie in the near infrared. Only the

» : :
A change of the quadrupole moment or the magnetic dipole moment
may also lead to the emission or absorption of radiation. The

intensity of this is negligible, howevey, in the infrared.(1'6o'65)
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fundamentals, v, are active, in this approximation, since the
vibrational motion does not contain the overtone frequencies 2 Vv i
3v gt oor combination frequencies Mo Weptrb g If an-
harmonicity is taken into account, the classical vibrational motion
will contain combinations and overtones. Hence they may also
occur in the infrared spectrum but will be much weaker than the
fundamentals since anharmonicities are generally slight,

Apart from this mechanical anharmonicity, an electrical
anharmonicity may also cause overtones and combination vibrations
to occur., In fact, electrical anharmonicity muet occur for homopolar
bonds since the dipcle moment vanishes both for zero and infinitely
large internuclear distance.

In quantum mechanics, the electric dipole moment of a molecule o

is represented by a matrix with matrix elements

ﬁ'nm = <n h.x [m > (134)

where J is a vector, The diagonal matrix elements amm = U
represent the permanent dipole moments of the states m. The off-
diagonal matrix elements are related to the transitions from the state
n to the state m. In fact, the vibrational transition probability is

proportional to the square of

R, o= <uldle> (135)

where u denotes the upper state and { the lower state. The matrix
element given in equation (135) will vanish unless at least one

component of 1 has the same symmetry species as the product
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Va w{, according to the general theorem of group theory stated
earlier. This gives a simple method of finding the selection rules
for vibrational transitions. In the harmonic oscillator approximation,
one finds that Rmn'—" 0 for m # n £ 1, and hence for the infrared,
we have the selection rule
Avi =% 1 (136)

for each normal vibration, Ve

3. Rotation of Polyatomic Moleculeu(26’34'37’6o)

The investigation of the rotational levels of a polyatomic
molecule is complicated by the necessity of considering the rotation
simultaneously with the vibrations. As a first approximation, it is
customary to regard the nuclei as fixed and to consider the rotation
of a molecule as a rigid body..

let £ ,n , ( be a system of coordinates with axes along the
principal axes of inertia of a rigid body, and rotating with it.‘" The
quantum mechanical Hamiltonian is obtained from the classical one
simply by replacing the components of the classical angular momentum

Jg e o ne Jg by their corresponding operators:

See, however, references (66-70).

* Every body has three axes which allow the kinetic energy to be ex-
pressed in a particularly simple form. These are called the principal
axes of inertia. The moment of inertia about a principal axis is

defined by I = pl‘zd T where p is the deneity of matter in the volume

element d T, r is the perpendicular distance of dt from the axis in
question, and the integration ie over the volume of the solid [ see
references 28-30 ],
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He P82 | 2 s 4 (137)
A B C

A IB and IC are the principal moments of inertia of the body.

The commutation rules for the operators Jg . J,n s J, of

where [

the angular momentum components in a rotating system of coordinates
are not obvious, but they can be shown to be the complex conjugate of
those for a fixed coordinate syltem.(34, Hence, all the results which
can be deduced from the commutation rules, relating to eigenvalues
and matrix elements, still hold with the difference that all expressions
must be replaced by their complex conjugates. In particuiar. the
eigenvalues of J ¢ areK = -J,--+,J,

The energy eigenvalues of a rotating body are easiest to find for
the caee of a spherical top, where all three principal moments of
inertia of the body are equal: 1A= IB= IC= I. In this case equation
(137) becomes

H = (ﬁz,’ZI) i (138)

with the energy eigenvalues

e awmiizn s+ ) (129)

As usual every energy level is (2J+1)-fold degenerate with respect to
the (2J+1) orientations of the angular momentum in space, but in
addition there is a (2J+1)-fold degeneracy with respect to the directions

of the angular momentum relative to the body itself. Therefore the
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*
total degeneracy g5 is

By =(2J + 2. (140)

A rigid body in which two of the three principal moments of
inertia are equal (lAz IB# IC) is called a symmetrical top. For this

case, equation (137) becomes

2 2 2 -1 -1 &
H=z=th /ZIA)J + (A /Z)(IC -IA )JC (141)
and in a state with given J and K, the energy will be
£ @ ?/21,) 3 + P2, Y K2 (142)

The (2J+1)-fold degeneracy with respect to values of K which occurred
for a symmetrical top is now partially removed, and values of the
energy will be the same only for K values differing in sign. Hence the
total degree of degeneracy for a symmetric top is

g; = 2 (23+1) for K 40

and (143)
gy = (2J+1) for K =0,

An asymmetric top molecule (e.g., HZO) has all three principal
moments of inertia unequal: I, # 1, #1.. In this case it is impossible
to calculate the energy eigenvalues in a general form, However, their
degeneracy with respect to K is completely removed, so

gy =(2J+1) . (144)

y This is the total degeneracy, apart from a constant factor correspond-
ing to nuclear spin, only for a molecule that is accidentally a
spherical top rather than by virtue of its symmetry, [ See reference
(37) for a more detailed discussion. ]
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Fairly elaborate calculations are necessary in order to obtain
a representation of the energy levels by quantitative Iormulae‘.s'n'ss)n is
convenient in practical calculations to use the simpler "nearly
symmetric top" representation in the form:

-1/2

elr) cn"/z)(xBxc) J(I+1) + B 2/2) [IA'I-(IBIC)'”Z'} K? (145)

where IA< IB< IC. The degeneracies of the energy levels are given
by equation (143).

A linear molecule, diatomic or polyatomic, has the energy
levels of a ''simple rotator' whose moment of inertia about the inter-

nuclear axie is identically sercv:ml
) nef BI(3+1) -DI3IH1)2 4+ -1 03 (146)

where B is the rotational constant

B =5(4uch)‘1 (147)

and IB is the moment of inertia about an axis perpendicular to the
internuclear axis and going through the centre of mass. The term
DJ'Z(JH)2 in equation (146) arises from the non-rigidity of the molecule
and is related to B and the vibrational frequency » by
D= 4B% 2, (148)
The selection rule for the infrared spectrum

AT =+ 1 (149)

= This is true if the angular momentum of the electrons about the inter-
nuclear axis is zero, which is the case for the ground states of most

linear molecules.
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is valid whether the rotator is rigid or not.(37)

For a linear molecule of point group Ccov (no centre of
symmetry) the statistical weight of a rotational level in a totally
+

)

symmetric electronic state (1 Z7)is

g5 =23+ 1, (150)

If the molecule belongs to the point group Dmh. alternate
rotational levels have different statistical weights, as in the case of
homonuclear diatomic molecules. If the spins of all the nuclei are
zero (with the possible exception of the one at the centre of symmetry)
the antisymmetric rotational levels are missing entirely, i.e., for
E;' electronic states the odd rotational levels are absent, This is the

case for COZ‘

(37)

4. Vibration-Eotation Interaction

In the zeroth approximation, the energy of a vibrating and
rotating molecule is simply the sum of the vibrational energy [ equations
(129) or (132) ] and the rotational energy [ equations (139), (_142). (145) or
(146)]. In higher approximation, account must be taken of the fact
(26, 34, 84-9])

the moments of inertia change periodically during the vibration,

As a first approximation, a formulae of the type

B
Bryq= B, - Z o By, + £/2) (151)
i
might be expected to hold, where the a iB are small compared to Be.

which is the rotational constant for the equilibrium position, #nd fi is

the degree of degeneracy of the vibration v it The variation o of the
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rotational constant is due to several reasons: (1) the mean value of

{1 is not equal to (IB )-1 although the mean value of r is T
e

B,_1
(2) due to anharmonicity of the vibrations the mean value of r is
greater than X, (3) the Coriolis force acte to couple vibration and
rotation,

If a linear molecule is in a degenerate vibrational state
(77,4, ...) there is a vibrational angular momentum, 4% (4 =1,2,...)
about the internuclear axis and the symmetric-top energy formulae

have to be applied. Apart from an additive constant, the rotational

energy is given by
2

{ ) 2 P
E[v]" =hc[3[v]EJ(J+1)-4 T-pp 40334271 3 . (152)

For the degenerate vibrational levels J must be larger than or at least

equal to £
J = L ] L +1. L +z. LU (153)

The total energy of vibration and rotation of a linear molecule is given

by
[E(v)+ E(r’] =z he [Z.;_: i(vi+ fiIZ) + Z Z "ik(vi+ fi/Z)(vk-l- fklz)
i i k
+ ): - £ iZ + B[v]J(JH) -D[v] JZ(J+!)2] (154)
i

where the terms in 4 . have been taken into the term ¥y B¢ iz.

To a good approximation, selection rules for the pure vibration
spectrum and the pure rotation spectrum are not changed by the inter-
action of vibration and rotation, (3% The selection rules for several

types of rotors are summarized in Table IV.
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Table 1V. Infrared Rotational Selection Rules

Rotor type Band type Selection rules
Linear ) AT = 31
_!_(ux.uy) AT = 0, +1
Spherical (“x’uy'“z) AT = 0, +1
Symmetric ) AT=0, +1; AK=0i{ K40

AJ=+)1; AK=01f K= 0

Lsgn) AT=0, +1; K= +1
Asymmetric‘ l]x(ux) AT=0, +1
! "
l"y(uy)
o) "

* & Herzberg, Infrared and Raman Spectira of Folyatomic Molecules,

Pp. 468-491, Van Nostrand, New York (1945).
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I1. CRUDE EMISSIVITY CALCULATIONS

EMPLOYING STATISTICAL MOCDELS

A. APFPROXIMATE TOTAL EMISSIVITY CALCULATIONS FOR CO;
(10, 25)

USING THE STATISTICAL BAND MODEL

1. Introduction. It has been shown previrmsly“:)’) that the

measured equilibrium emissivities for carbon dioxide at room tempera-
ture are consistent with the results derived from approximate compu-
tations using a '"box approximation' for the vibration-rotation bands

and the best available spectroscopic data for the fundamental vibration-

rotation bands(6’ 13) g

More recently, Plass has performed machine
calculatlonﬂ(‘n) for the spectral equilibrium emissivities of carbon di-
oxide and has obtained numerical data that are in good accord with
direct experimental measurements at temperatures up to about 600°K.

The calculated emissivities become relatively too small as the
temperature is raised, and significant discrepancies (of about a factor
of two to four) have been noted at temperatures between 1200°K and

2000%Kk (92+ 93),

These discrepancies are probably produced by the ap-
pearance of new bands which are not observed at 300°K and which make
significant contributions to the total emissivity at higher temperatures.
To account for the contributions of unobserved bands at elevated teme=
peratures, some sort of intensity multiplication scheme may be used.
Since the location of the new bands, the effective bandwidths, line shapes,
and line widtha(94) are unknown, a statistical treatment is indicated. A
proper analysis should lead to the same emissivity estimates as those

(13) (21) (21)

of Penner and Plass at 300°K. those of Flass at 6DO°K, and



values in agreement with experimental data on spectral and total emis~

(92, 93, 95, 96) at elevated temperatures. *

sivities

A correlation of available emissivity data at temperatures up to
1800°K has been performed utilizing an intensity multiplication pro-
cedure at elevated temperatures. The effect of lack of knowledge con~-
cerning spectral line shapes and widths has been minimized by using
the Mayer-Goody statistical model(é).

2. Emissivity Calculations for Superpositions of Randomly

Distributed Weak Dands and of Strong Fundamental Bands. The deri-

vation of formal expressions for the average spectral emissivities has
been presented earlier in the discussion of the statistical band model.
Since the numerical estimates depend upon the band structure, it will
be necessary to examine, in some detail, the structure of individual
vibration-rotation bands.

(a) Rotatiomnal structure of the vibration-rotation bands. - It is

reasonable to use a box model or a just-overlapping line model for the
stronger bands at moderate optical depths. For the weak bands, a
non-overlapping line model may actually be more appropriate at very
small optical depths. IHowever, in view of the experimentally observed
lack of sensitivity of total emissivity to pressure, the present analysis
will use the simpler just-overlapping line model for all of the bands.

In this model, the absorption coefficient for the Jth line is represented

» While numerous measurements have been made of the infrared

spectra of carbon dioxdde!?7-220) e majority of these experiments
were concerned with obtaining data pertaining to the structure of the
molecule. Relatively few measurements or calculations have been
made of the spectral or total emissivity at elevated temperatures for
a wide range of carbon dioxide concentrations.



-71-

by the average value across the line: PJ = SJIB‘ where S, is the
integrated intensity of the Jth line and & is the line spacing, viz.,
6*= 4Be for large J for CO 2 By = rotational constant). ¥

For a linear triatomic molecule(eo),

X L 1!
Stnyn, “nyiJ-nint ‘ayid') W i it v e ol B AT A

< r‘f - ,..r g - J4
f,“‘“x 2 By™@)R; Ny) Qr ‘5
; <E_(J)/kT
x e =R p

where NNy, and n, are the vibrational quantum numbers corre~
aponding to the three fundamental vibrational frequencies Vye Voo and
Vg and { is the quantum number that measures the angular momen-
tum about the symmetry axis of the bending mode. The rotational
transition is identified by the symbol nlnzl’n:,';.!—m‘ln:;"x':%;r ; the quan=
tum numbers of the initial state are unprimed, whereas the final state
numbers are primed; W is the wave number for the J=0~J'=0
transition; Byip is the statistical weight of the upper state and is equal
to 2J'+1 for 4'=0 orto 2(2J'+1) for 1'#4 0; 8, is the statistical
weight of the lower state and is equal to 1 for 2 =0 or 2 for 4 # 0;

| ® J'* | represents tabulated (60) rotational amplitudes for the tran-
sition Ji - J'L'; R(:J') = he Be J(J+1) is the rotational energy for
quantum number J ; Qp = E 8y exp[-ER(J)/kT] is the rotational par-
tition function. Since we shall consider many rotational lines, we may
use the following relation, valid only to the harmonic-oscillator rigid-

rotator approximation,

* The line spacing is 4B since alternate rotational levels are miss-

ing.
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heB heB_J(J+1)
S(J~J-1) + S{T=J+1) = (2J+1)a(-.m..-)e:q> b (155)

Derivation of equation (155) involves use of the following approximations:

]
w* o w(n1n2£n3:J-'nin'an:‘,’:J')» a= Za(nlnz 3.J-m1n'2!“n3:J');

Q, = kTIthBe » and w® >> 2B oJ for the important contributing lines.

R
At elevated temperatures, a large number of rotational lines contrib-

ute to the emission. Hence we may make the further approximation that

S(J = J-1) = §(J = J+1) = S
and, for large values of J,
(2341)/2 ~ T 3 JI+1) = 32,

Thus the average absorption coefficient for the just-overlapping line

model becomes

S;
B, %— S%) T exp (= heB_J°/KT) . (156)

If we let y=th°/kT and § = \/y J, then

- {{i“ g exp(-2%). (157)
e

% Ea
But w=® iZBeJ = izaegh/y whence dw = + (ZBelﬁ)d& . Thus

2
-_Z.Bﬂa-x get Hdg : (158)
e

the band absorption becomes
@

4B
Alo) = L. r [1 - exp
Y L%

If we let K =aX\/y/2B_ and

w 2
IK) = fr - ep(-x 8,75 )1ag, (159)
0

equation (158) reduces to A = (4B_/1/Y)I(X). Values of the integral
I(K) for K up to 120 have been obtained previously through use of a
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digital computer(s). For small K, which corresponds to the trans-

parent gas regime, I=K/2 (good to 2 per cent for K = 0.05); in the

other extreme, lim I = "/ in(CK/2) , where C is Euler's constant.*
K=o

In order to find I{(X) for intermediate values of K , an extrapolation

was performed subject to the restriction that I(K) is of the form

(constant) x \/tn(connta.nt' X K) .
This expression was then fitted to the I(K) versus K curve for large
values of K and led to the expression I=1.117\/In(l.21K) .

3. Values of Integrated Intensities and Region Widths Assumed
(10, 25)

for Empirical Correlation of Data. Experimentally determined

values of the total emissivity of CO, may be correlated satisfactorily if
the value of integrated intensity of the bands at all temperatures is set
equal to the value at 300°K. 1. 8.,

o(T) = a(300°K) . (160)
Equation (160) implies that the actual ratio of the intensities

a(T)/a(300°K) has been multiplied by the factor'®?)

N..(300) Q_(T) I: E J [ %
T v vl _ 1 1-exp(~-hew /kBOO):’
N {TT T, 300) (1 - 300) J-gnplehor 7k T)

where NT = total number of molecules per unit volume per umit pres-
6) 3n-5 exp(- %hcml/kT)
=

sure, QV = vibration partition function Hlmm ’
and Ey= vibrational energy. Thus, the simple assumption of constant

integrated intensity represents physically a very complicated tempera=-
ture-dependent scheme of intensity multiplication. However, emissivity
calculations using the correct values of o(T) rather than equation (160)

* ¢=0.57721...

Curves showing I(K) as a function of K for 0.02 ¢ K £ 10, 000 are
given in reference (24).
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for optical depths of 1 and 2 ft-atmos, yield emissivities at 1200°k
that are approximately half of the experimental values as may be seen
from Fig. 11.

We assume that the region widths may be represented by a re-
lation of the form Aw = cxa(TIBOO)b where a, b, and ¢ are comatants.
Variation of region width with optical depth and temperature appears
intuitively plausible. In order to obtain reasonably good agreement
with the experimentally measured values of Hottel, we use the relation

o o G )

Here Awo was found by taking the difference between the wavenumbers
of the band centers of the extreme bands of a region and multiplying by
the factor N/(N-1) where N is the number of bands in the region.

4. Outline of Calculations. In the present calculations, the

spectrum has been divided into four regions, as indicated in Table V.
Within each of these four regions, bands which have an integrated in-
tensity at 300°K in excess of 10 em™~? atmos™! have been treated sepa=
rately, whereas the contributions of the weaker bands have been added
together to form an effective integrated intensity, u.; + which was then

distributed uniformly throughout the A region.

The emisglvity of the kth region is given by equation (50). We
may illustrate the method of calculation by finding the emissivity at

o
1500°K and 0. 1 ft-atmos. For region one, g = 240 and a =

-1

- -]
9. 675 cm™2-atmos™! whence Kyyp = 18.13and K," = 0.73 5 IKger)

= 1.951 and I(X,") = 0.325. Thus ¢, = 0080, -
lst region l1st region
183.70 , and Z .AiIAm1 = 0. 625 ; from Fig. 5 the weighting factor
lst region

is 0, 744 and, therefore, €, =- 0059 . Similar calculations for the
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Table V. Integrated Intensities of the Stronger

Vibration-Rotation Bands of CO, (®)

Band Transition a(300°K) Region
Cenielr {em” 2 oatmos”! )
(em™)
648" 0110~00% 1.88
667. 3 01}0-00% 240 ™
720. 5 10%-01%0 7.5
740. 8 11} 0-02%0 B2 !
960. 8 00%1-10% . 0219
1063, 6 00°1-02% . 0532
1886 04%-0110 .0415 **
1932, 5 0320-00% .0415 **
2076. 5 1110~00% g
2094 1220-01%0 .020 ** 2
2137 20%0-010 .008 **
2284.5 00%1-00% 30.0
2394.3 00%1-00% 2676
3609 02%1-00% 28.5
3716 10%1-00% 42.3 ’
4860. 5 04°1-00% . 272
4983. 5 12%1-00% 1.01 4
5109 20%1-00% . 426

TTransitions of CIB_D

1e 1o
pA

is assumed to represent 1. 1 per

cent of the total coz“. )

o Theae' numerical values have been chosen to equal the listed band
intensities (see reference 6, pp. 310,314),
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other three regions yield €, =. 0363, €3 = . 0169, = .0069. Addi-

€4
tion of these partial emiesivities gives ¢ = .060. Hottel's measured
value(gs) is €py = - 057. The results of all of our calculations are
summarized in Fig. 11.

The semi~-empirical calculations are seen to be quite successful
(compare Fig. 11) for correlating emissivity data over a wide range of
temperature and optical depths. Our approximate computation pro-
cedure is easily applied and the method yields values that differ from
the experimentally observed data by less than 10 per cent at all optical
depths and temperatures.

{#00) has obtained a correlation using Hottel's total

Bevans
emissivity measurements of carbon dioxide by means of an empirical
expression of the form

1
X + KZXE + K

e = K Iog (I‘(4X) »

1 3
where Kl ’ Kz . K3 sand K4 are functions of temperature. While
Bevans has been able to fit the preceding expression to Hottel's data
with an accuracy of 3 per cent, his method is unsuitable for extrapoe-
lating to the higher temperatures where emissivity measurements have
not been made.

The experimental values of total emissivity given by Hottel and

his co-workere(ms’ 146)

(147,221)

were chosen in preference to data obtained by
Eckert since Hottel covered a larger range of optical depths

and temperatures. Hottel has estimated the experimental errors to be
about 5 per cent; the discrepancies between Hottel's values and those of

Eckert are of the order of 5 per cent! 200).
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Numerous measurements and calculations have been made of
spectral emissivities and of the absorption by individual bands of car-

bon dioxide. These are summarized in Table VI.

Table VI. Measurements or Calculations of Spectral
Emissivities or of the Absorption by Individual Bands
of Carbon Dioxide

Spectral _ Total Optical Depth Temperature Referencew
Region (cm °) Pressure (cm atm) (°K)
(atm)
2150=2400 0.1-8.0 .06« 2,5 1200 (220) cell
CO?_ '
2272 0.26 - 0.92 0.1-1.0 1273 (219) cell
cozi Ozl Zl
CO, H,0
2272 1.0 0.07 - 0,30 1620, 1710 (219) burner

2000 - 2400 . 0066 - 2.0 .003 - 3,56 1200, 1500 (218) cell
CO.,, N

2" 2
3250 « 3800
500 - 10,000 .01 « 1.0 . 001 - 50 300 (212)
2150 - 2500 1.0 .05 = 500 280, 217 (206)
283 2500
2272 0.26 = 0.92 0.1-3.0 1273 (203) cell
Nz » He

The species used to broaden the spectral lines is indicated; CC,
indicates self-broadening.

b The experimental apparatus is indicated after the number of the
reference; no such indication appears in the case of theoretical calcu-
lations.
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Spectral -1 Total Optical Depth Temperature Reference
Region (cm™ ') Pressure {cm atm) (°K)
{atm)
500-9500 1, 10, 31 10° « 2.34x107 300 (217)
2100 - 2400  0.58 0.40 - 0.70 120042400  (216) rocket
exhaust
2000 - 2400 349 .40 - .83 300, 600, (22)
1200, 1800,
2400
550 - 850 .026 - .98 1-863 295 (3) cell
2000 - 2500 .0013 « 1.0 4.7 - 1565
3400 - 3900 .0013 <« 1.0 4,74 « 1730
4600 = 5400 ,046 -« 1.0 540 - 8630
6000 - 7300 .013 « 1,0 108 - 8630
N»
2225 - 2405 ,065 = 1,0 5 = 100 318 (173) cell
3520 « 3820 Nz ‘
540 -« 820 1.0 100 300 (177)
2100 « 2500 0,07 = .92 .84 - 11.7 298 « 1273 (210) cell
Ndn CO?_
3400 - 3800 +' 92 1. 67 « 10.0 1273 (204) cell
Ny
2200 - 2500 0.07 « .92 0.84 « 11.7 300 -« 1273 {(93) cell
3400 - 3800
N




Spectral -1 Total Optical Depth Temperature Reference
Region (em ) Pressure {cm atm) (°K)
(atm)
2000 - 2400 1.0 0.4=-0.8 1200 « 2400 {(211) rocket
exhaust
400 « 9000 0.5« 10 3.05 - 305 300 - 1400 (208) cell
2174 - 2288 0.26 - 1.05 0.1«0.4 1200 - 2100 (209) shock
N tube
2
1800 2500 1.0 .01 - 100 300 - 2400 (21)
450 « 9000 0.5 « 10 1.9 « 1290 300 « 1400 (96) cell
N, COZ

B. APPROXIMATE CALCULATIONS OF SPECTRAL EMISSIVITIES IN

THE INFRA-RED FOR HC

. (222)

1. Introduction. In a recent paper

(16)

» Stull and Plase have

presented the results of infrared emissivity calculations for HCL at

elevated tempe ratures.

The data were obtained through the use of ma-

chine computations by employing the best available spectroscopic data.

Numerical values that are in good accord with their spectral absorption

coefficients may be obtained, when the weak line approximation holds,

by utilizing the results of a relatively simple analytical treatment to the

harmonic oscillator approximation.

This method is similar to an analy-

sis first used by Kivel, Mayer, and Bethe(zz” in emissivity calculations

on the ultraviolet bands of NC.

Their method of treatment for elec=-

tronic band systems has been refined recently by Keck, Camm, Kivel,

and Wentink(224) in order to account for the influence of vibrational
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structure on emissivities. A derivation of the basic equations given
by Keck, et al. (as) has receantly been published by Patch, Shackleford,
and Penner(zzs) who show, to the same order of approximation, that
the equations of this "smeared out rotational line model" yield results
identical with those of the "just-overlapping' line model. Golden!220)
has shown that this is also true for pure rotational transitions.

2. Outline of Theoretical Considerations. (223 227)

{a) Calculation of spectral absorption coefficients and of

spectral emissivities for fundamental vibration-rotation bands. « Cone

sider transitions between the ground state with vibrational qm@n
number v" and rotational quantum number J" and the upper state

v', J' . Since both vibrational levels belong to the same electronic state
of the HCZ molecule, the respective rotational energies (EJ) may be
written in the form

E,, = IJ"+1)he B, (162a)

Ep = JJ'+1)he B, . (162b)

JI
The selection rules allow AJ = +1 for a rigid rotator. e Hence the
energy of vibration-rotation transition (v, J") -~ (v', J') is

hew = hcwv,' it X 27" he B, (163)

for molecules without O=branch, where w = (E:v, - Ev..)/hc and

V'. v

we have assumed that J+ 1=J or J'"=7J', which is true at sufficiently

high temperatures. If the dominant contributions to the absorption are

bl Observations of the infrared spectrum of FIC{ show no spectral line
corresponding to a O-branch (i.e., corresponding to AJ = 0 transitions).
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made by the higher rotational energy levels, then, using equation (163),
equation (162a) may be written as

2
i 2 ( viy!!
EJ" e (J") hCBe = L-—Z-E——:] hCBe . (164)

The spectral absorption coefficient P for the transition
(v'' 3) = (v, I") is

2 N, df [ ]
we v Tvilesy! hew
P o I - exp| = . 165
LI > P dm ( TT)J (165)

Equation (165) follows from the definition of the f-number, or oscilla-
tor strength for a vibrational transition:

f* ve> Ny hcw
aV'. v = J Pu; ' "dﬂ-‘ = ——z _I_)- fV"-’V' 1 -exp(- -ET) . (166)
band Vi,V mc

Here e and m denote, respectively, the charge (in esu) and mass

(in gm) of an electron, and Nv../p is the total number of molecules in
the lower vibrational state v'' per unit volume per unit pressure. The
fenumber may be thought of as a dimensionless integrated intensity; it
is proportional to the square of the matrix element [@ {u! 5 for the
transition.

For a non~degenerate rotational line, the integrated intensity

le‘
S i 8'3 bl.vn2 JH. MJ" "
(v T My, Do (v J', M o) Jhe P (v I My, s (V' T% My,)
2
X rl.ejgp(-}ww(v,,. Iv, M_TH)' (V', , MJD) /kT)] IR(V". Jn, MJ")' (v"’ J MJ") l
(167)

For degenerate energy levels, equation (167) becomes
* See reference 60, equations (7-82) and (7-84).
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3“.3 an. J’n

S(v", I, tv's IY) " )%he -5 1’-?‘(‘,.-' Iy, (v', IY)
X [1 « exp(~ hcw(v,,. I, (v Jl)/kT)]

IZ

X (ZJ""'l)-l !m(vn. Jfl). (V', J!, rJ”an-l. Jl+(J"+l)6J‘u+1. Jl.!} (168)

where the relations

'ﬁ‘ ! 2 = ¢ e | 2
(V", JH). (vl. J!) ‘_'!'J+I (V”. J’". M |). (V', JI' M ').
M M J* J
J* gm
and
|8 o 4
My My, 70 3% Mpuh (75 I Mp)l™ = L, !
X ”"5:"-1. I + (J“+')5J,,+l. J,T

for the square of the matrix element of a diatomic molecule repre-
sented by the superposition of a (possibly) anharmonic oscillator and a
rigid rotator have been used.

In oxrder to obtaln the integrated intensity of the band, equation
(168) must be summed over all values of J. It may be shown, for

example, that*

a'v". vi$l T Z S(V”o J')e (v''+1, T')
It J

3. N hew
8 TN e " 1] 2
= (3 )Ty, g o1 [1-exp(- — )] My, grga | (169)

is the effective wavenumber of the band and Won il
L]

* See reference 60, equation (7-90).



~34=
corresponds to B(yn, 0), (v''+1, 0) in equation (168).
Comparing equations (168) and (169), the variation of £

VH"V'
with wavenumber would be expected to be given by
dfvﬂw' Jll NVH J’"

—q -~ comstant X oymhy TN et

—~ e@('EJnlkT)
— constant X J''f

ot (170)

where QR is the rotational partition function. For the rigid rotator,

Qp ™ kT/the . The constant in equation (170) ie determined by the

condition
o 3]
af i
£t = 2 j —'lezz';"v" dw | . (171)
EV' RH
=—-rc——

Substituting for Egn

tion indicated by equation (171), we see the constant in equation (170)

from equation (164) and carrying out the integra-

must be equal to %Be . Hence equation {170) becomes

2
" ‘m‘w ") hc
Wit * 1By Loy ( s )(E—)exp( 4}.';:;'1' } (11%)

where we have used equations (163) and (164). Substituting equation
(172) into equation (165) for the spectral absorption coefficient and using
the relation Nv"/NT = exp(-Ev,,lkT)/QV » where O, is the vibrational
partition function, we obtain

~ | we® N (E /KT ( £ 1y """w"'r—' ")
P V' v - Z —P— e H e

mc e

he{wew_, )
[ _.m.ﬁ..'z_.} [1-.;:@(-3;{,1‘3 ]) (173)

1
X .c—.-exp
‘R e
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where N'I‘ is the total number of molecules per unit volume.

At elevated temperatures, many vibrational transitions occur
in a given spectral region, and the total spectral absorption coefficient
P is obtained by summing over the P”'v'v” that fall within that re-
gion.

Before performing the summation, it is now convenient to write

£ (174)

= f 2
vil=y?! 0"(V'-V”)XV',V”

where f is the f-number for the transition from the ground

O—=(vi=v')
vibrational state that falls in the same spectral region as the transition
vi=v'!, and Xy, oo is proportional to the vibrational matrix element
for the transition.

In the harmonic oscillator approximation, only the transitions

v'-vi'+] are allowed (in absorption), and

2 1" =
Kv',v“ = v''+l v . (175)
Furthermore,
E,n = (v +3)hecu  , (176)
o = Wy o (177)

h. o. 1 we N'I‘ 1m”o 1
Py = | 78~ =% fou) oy (VUM Iexp |~ pp= (Vi)
v, w! c T
2
W) he(wew )
X (-Z-B-e—o)expi:- zs:mz—} [1 - exp (- %EI";)} ) (178)

where OT = OVQR is the total partition function. Summing equation

(178) over v'', the absorption coefficient, to the harmonic oscillator
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approximation, la'

2 £ N Wetw
phoo . xe _%_1_.7__ ['l-exp(-hcwlkT)](-ZE-E-)
he(w=tw ) hcw hcw -2
°"P[' -zz;;rer"—] iy [* -zm?'} [ 1-exp(- oy ﬂ : (179)

The spectral emissivities for gases uniformly distributed throughout a
length s at a partial pressure p; may be computed readily from equae

tion (179). Thus

h.0. . h. o.
€y =1 -exp(-Pm pis) . (180)

(b) Approximate spectral emissivity calculations for HCL. =

Calculations performed for the spectral emissivity of the 3. 46 micron
bandes of HCL using equation (179) are compared with the numerical cal-
culations of Stull and Plass(m) in Figs. 12 and 13. For purposes of

comparison, we used a numerical estimate of fl 0 equivalent to that
L]

employed by Stull and Plass for the sum of the isotopic species HCLSS

and HCL Y. This value is probably somewhat low. !

(c) _Approad.mate calculations of spectral emissivities in the
(231)

infrared for HC{ in the strong line approximation. - At the ele-

vated temperatures for which equation (179) is applicable, a great num-
ber of rotational lines belonging to different vibrational transitions
(e. g., 1-2, 2-3) will lie within the same spectral region as the funda-

mental band. Since a great many lines are distributed more or less at

since
o0

Y e = g ) e g Meem(ex)]] = Neexpen))™

n=0 n=0

i Stull and Flass used the data of Benedict, et al. 1228) for the inte=- 2

intensity of the HC{ fundamental. e is 130 + 7 cm
g:;tef pesiue- Y with the values 150 cmTlie e obtained By Fe (ﬁ$1

x5
and Webor&% 3 and 150 + 5 em” < atm=1 obta.inod by Babrov, et al.
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Figure 12. Comparison of spectral emissivities in the weak-line ap-
proximation obtained by Stull and Flass (dashed curves),
with the spectral emissivities calculated to the harmonic
oscillator - rigid rotator approximation (solid curves)

for various optical depths at 600°K.
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Figure 13. Comparison of spectral emissivities in the weak-ine ap-
proximation obtained by Stull and Plass (dashed curves)
with the spectral emissivities calculated to the harmonic
oscillator - rigid rotator approximation (selid curves) for
various optical depths at 2400°%. The spectral emissivity
for an optical depth of 100 cnratm as calculated by
Malkmus and Thomson is also shown (dot-dash curves).
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random within this region, the statistical line model should be appli-
cable. From equation (28), the spectral emissivity in the weak-line

approximation is

¢ rl-exp(—%)" . (181)

sk
However, B5/6 = P if the rotational lines are assumed to be just over-
lapping, and hence equation (181) is identical with equation (180).

In the strong line approximation, the spectral emissivity is

given by [see equation (29)]

e = [1a- exp(- -g-*‘VSbX )} " (182)

In order to include the pressure dependence of the collision half
width b, equation (182) may be written as‘

e = [1 - exp (- ‘\ﬁibo(Pujlﬁ*)p?‘s' )J ’ (183)

where bo is the half width at a pressure of one atmosphere. The

values of b, used by Stull and Plass are given in Table VIIL

Table VIiI. Average Half Widths of HC! Rotational

Lines at One Atmosphere Pressure“b)

T b
° 21 -1
("K) (em™ " atm” )
300 0. 184
600 0. 109
1200 0. 059
1800 0. 039
2400 0.031
Oblervatiom(zza) at room temperature indicate that the rotational

lines of HC{ have a dispersion contour, except in the wings.
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The mean line spacing 5" will decrease as the temperature is
raised and vibrational transitions from excited states (e. g., 2~3) bee
come appreciable. Hence the number of llneé contributing in any given
spectral range is assumed to be proportional to the number of excited
vibrational energy states. In this case

A -1
-ié—‘zo’— = {1 B Z (v”+l)exp[-(v"+%)hcwlkT]} . (184)
5 (300°K) v

The calculation of the spectral emissivity of hydrogen chloride
was further refined to include the effects of the following isotopes:
uct3% (75. 4 per cent); HCL3" (24. 6 per cent); DCL3? (0. 012 per cent);
DC4.37 (0. 003 per cent). While the abundance of DCZ is relatively small
in natural hydrogen chloride, it can have a significant effect on the
spectral emissivity in the strong-line approximation. This is due to the
fact that, for a diatomic molecule, the rotatiomnal and vibrational con-
stants, B - and We » B¥e inversely proportional to the reduced mass of
the molecule and the square root of the reduced mass, respectively.
The molecular constants for HC{ are given in Table VII.

Teble VIII. Molecular Constants for Hct (16)
wy (cm-l) B, (Cm-l)
uce>® 2989. 74 10. 5909
uce®? 2987. 47 10. 5748
pce>? 2144, 77 5. 449
pct3? 2141.82 5. 432
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In order to make a quantitative comparison with the results ob-
tained by Stull and Planaué’) by numerical calculations, their estimates
for the integrated intensities of the bands will be used. These are
given in Table IX.

Table IX. Eadmates(m) for the Total Band Integrated Intensity o

v'iesy!
Molecular Species Temperature Integrated Intensity
(°x) (cm'z atm'l)
Hee 3> 300 gy = 98.0
uc3? 300 agy = 32.0
ue3? 600 a;, = 0.111
Hee T 600 6, = 0.036
Het 33 1200 0,5 = 0.078
uct>? 1200 0,5 = 0.025
pce?? 300 agy = 7.9 x 1073
pct>? 300 = 2.6 x10"3

A band head is formed in the R branch of each vibration =

rotation band at approximately 3187 cm™! for HCL and at 2218 cm™! for

DC4i. Emission in the wave number interval beyond the band head is

produced by intense rotational lines near the band center and was cal-

culated from the relaﬂm:‘zn)

Qo

P(e) = Z [Pj-j-l(w)"'pjﬂj-rl(w)} . (185)
j=0

Spectral emissivities computed by the use of equation (183) are
compared with the data of Stull and Plass!!®) in Figs. 14 and 15. At
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600°K. the agreement is satisfactory but there is quite a large dis-
crepancy, particularly in the P branch, at 2400°%. For the strong=-
line approximation, it appears that vibrationerotation interaction and
anharmonicity terms should be included in the calculation of spectral
absorption coefficients at elevated temperatures. However, for the
weake-line approximation, the harmonic-oscillator rigid-rotator model
gives reasonable agreement with the more elaborate numerical calcu-
lations as may be seen from Figs. 12 and 13,

Malkmus and Tlnmson(?‘” have recently made an improved cale-
culation of spectral emissivity employing a digital computer. They
chose for their model of a diatomic molecule an anharmonic oscillator
with the first approximation to the vibration-rotation interaction; i.e.,

the energy levels are given by the expression
Elv, J) = (o (v+i)-w x (v+2)P +u v (v+1)? +u_z_(vad)?
s STy eXelV?3 olat': T gt e

+ B J(J+1) - ae(v+%,_-).r(3+1)} he .

Malkmus and Thomson used the random Elsasser model(z'ss)

» assumed
a Lorentz line shape, but neglected line wing emission beyond the band
head. For HC{, Malkmus and Thomson used the data of Benedict, et
al. {228) g0 the fundamental band strength and line widths in order to
make a direct comparison with the more elaborate calculations of Stull

(16)

and Flase Their results are also shown in Figs. 12 to 15, and may

be seen to be in better agreement with Stull and Plass than our calcula-
tions, as would be expected. However, our crude approximation yields
a fair estimate of the spectral emissivity of a diatomic molecule without
involving such lengthy computations as to necessitate the use of a digital

computer.



95
III. APPROXIMATE SPECTRAL EMISSIVITY CALCULATIONS
FOR WATER VAPCR AT ELEVATED TEMPERATURES

A. INTRODUCTION.

At the high temperatures encountered in combustion, an appre=-
ciable fraction of the energy transfer is by radiation. For this reason,
a knowledge of the emissivities of the combustion products (e.g., HCZ,
COZ’ HZO) is important. Until recently, (234) the basic spectroscopic
constants for H,O, required for an a priori emissivity calculation,
were unknown. Since it is possible(b’ 11) ¢ correlate the total emise
sivity data of water vapor in terme of a just-overlapping line model and
effective bandwidths, in the temperature range between 333 and 1666° .
by assuming '"reasonable' values for the integrated intensities of the
various bands, the choice of a just-overlapping line model for a spec~
tral emissivity calculation appears justified. This model assumes that
the individual spectral lines are sufficiently pressure-broadened that
they overlap one another, smearing out the structure of the band, For
water vapor, overlapping begins to occur at room temperature for a

preasure of about 3 atm(zas)

and as the temperature is increased, the
pressure required for overlapping should decrease.

An a priori spectral emissivity calculation at 1111°% has been
performed for self-broadening water vapor at a pressure of Z atm using

a "harmonic oscillator''-symmetric top approximation.

B. THE INFRARED SPECTRUM OF WATER VAPOR.

The infrared spectrum of water vapor consists of spectral lines
corresponding to transitions between various vibration-rotation energy

levels. The wave number w of a given line is given by the difference
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in the sum of the vibrational and rotational energies of the final and
initial states. The intensity of an individual line is given by the rela-

ton
awawiu N 2 cw,

where N {s the number of molecules per unit volume, Or is the total
partition function, and @ su 18 the electric dipole matrix element cor-
responding to the transition; E, is the sum of the vibrational and ro-
tational energies of the lower (initial) state.

Hersberg(“) gives the selection rules governing allowed tran-
sitions for a triatomic, asymmetric molecule such as H,O. For the
molecular species HHO, two types of rotational transitions are allowed:
AK=0 and AKX =s+1 corresponding, respectively, to the parallel and
perpendicular transitions of a symmetric top molecule. Here K is
the component of angular momentum about the symmetry axis, It is
related to the total a.nguiar momentum J in that J takes on the values
K, K41, ... « Vibration-rotation bands of water vapor, composed of
one of these types of transitions, will approach as limits the parallel or
perpendicular bands of the equivalent symmetric top molecule, and they
will have the same general structure. The structure of the band de-
pends greatly on the relative values of the moments of inertia; only for
the limiting cases of the symmetrical top or the linear molecule can
any simple regularities be expected. For an asymmetric molecule such
as HDO, a given vibrational band will contain rotational transitions of

(236)

both types The corresponding band for HDO of the equivalent

* Reference (60), equation (7-125).
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symmetric top molecule will be a hybrid band containing both AK = 0
and AK = + 1 transitions (for HHO molecules, this is not the case).

The usual rotation selection rule AJ =0, + 1 applies to all transitions.
Unfortunately, the matrix element R bix for an asymmetric top

cannot be expressed explicitly in terms of ''good' quantum mambers{?""
60, 8” For a aymmetrlc top. equation (186) becomes'
2
3 !
8’ w ' E J.
By = p "'CS""‘ Z By o[- R - e

K=0
Here we are assuming that practically all of the molecules are in the
ground vibrational level. Furthermore, at infrared frequencies, the
induced emission term [1 - exp(-hcw/kT)] has been approximated by
unity. '
TFor a symmetric top, the rot-;.tiona.l energy is given by*

E(J,K) = he{ J(J+1)BC + K%(A~BC ) (188)
where A >DB >C ., For the ground state of the water molecule, the
-1 -1

following numerical values apply: A =27.8cm °, B=14.5¢em ~, and

C=9 28 cm'l + The degeneracies of the energy levels are

8y = 2(23+1) for X#0, and gp = 2J+1 for K=0. (189)

From equations (188) and (189) we find that
J

S g o[- EE] = (a7emp - BEE #)[e p [- 2UAABC) xZ]ax

K=0

(190)

® See Reference (6), equation (11-137).
* See Reference (60), equation (7-123).
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where the summation has been replaced by an integral. Letting

y = he\/BC /KT , (191)

p = (AVBC-1), (192)
. |

u' = 2yJ , ' (193)

equation (190) may be written as

J u'/2y
z 8yrc exp[— %‘;‘;’rﬁ] o 3;:,3'- exp[- -‘%—:—] JP e@F-vBKZ]dK (194)
K=0 0

n
or,

: o
3 2 3
5 e[ 25) = (w3 o g @] asm
K=0 Y
Substituting the rotational partition functionZ> ')
3/2 1/2 1/2
kid w
= (196)
) (mme) = (=)

and equation (195) in equation (187), the integrated intemsity of the J=°

— kT
o9 = (5

line in the vibration=-rotation spectrum is given by

1/2 2 e o VE
sy 3ot () e[ glen(3 6] wem
where
Bﬂsiho N 2
Q=2 aOV. = -—m-—f)- ’Rov'; - ‘198)

Equation (198) refers to each branch of a vibration-rotation band con-
sisting of P and R branches, and the wavenumber @ has been ap~

proximated by the wavenumber w, at the band center. For a

2 Here we use the definition

erf(x) "—2'— Jpexpr"ﬁzjde .
.0



«99-
vibration-rotation band, '

hc!w-wol

u' = Zy.]' = s . s {(193a)
For the pure rotation spectrum, equation (187) becomes

5; = a‘u'z(%ﬂ)% oxp [- ;:.;] erf[%: (%)%J (197a)

3
a' = —T-zuo . (198a)

where

The vibrational matrix element for this case is lﬂcol 4 = uoz where

Mo is the permanent dipole moment of the molecule. For water vapor,
My = 1. 87 Debyes. Edquation (197a) has a different functional form than
equation (197) because, for the pure rotation spectrum,

w o= 2y7 = . (193b)

- In the just-overlapping line model, the average spectral ab-
sorption coeificient P is equal to S y divided by the mean line spac-
ing. For vibration-rotation bands, we have

Po * 7 “'(lé’e)iw{-%ﬁerf{-“z'(%ﬂ. (199)

4\/BC

since the mean line spacing is & = 27\/BC.

Measurements of the absolute intensities of all the individual
bands in the water vapor spectrum have not been made. Goldstal.n(zsﬁ
has recently obtained absolute intensity values for the bands in the
1.38u, 1.87u, and 2.7 u regions using a high-pressure absorption
cell. These spectral regions each contain several bands which overlap

one another.
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From a table similar" to Table ¥, the relative intensity of each
of the various bands lying within a particular spectral region can be
found. This allows the fenumber for each transition to be determined,
and hence, in principle, the intensity at any temperature. Benedict and
Plyler(zss) have given fenumbers for the transitions with the greatest
intensity in the 1.1, 1.38, 1.87, 2.7, and 6.3 u regions. These values
differ somewhat from Goldstein's. and were obtained from flame meas-
urements which are inherently less accurate than cell measurements.
Goldstein's values were used in this calculation for the 1. 38, 1. 87, and
2. 7 u spectral regions, and Benedict and Plyler's for the 1.1 u and
6.3 1 regions. £ Table XI presents a comparison of the integrated ine
tensity measurements for various transitions. The 3.2 u (020-000)

band was assumed to have an integrated intensity of 2 cm"Z a.tm"l.

C. APPROXIMATE SPECTRAL EMISSIVITY CALCULATIONS FOR
YATER VAPOR.
From these integrated intensities andequations (1), (17), (197), and

(1972), an a priori calculation of the spectral emissivity of water vapor
was performed at a temperature of 1111°K. and an optical depth of
77.42 cm atm. Table X gives the relative intensities of all of the bands

for the species HI-IO16 for T = 300°K. The relative intensities for the

* Table X gives the relative intensities of the bands falling within a

given spectral region which are the principal contributors to the total
intensity at 300°K. At higher temperatures, other transitions must be
taken into account, and their relative intensities calculated at that
temperature.

! The bands with wavelengths shorter than li (e.g., 0.94 u, 0.90u)
contribute very little to the total emissivity for the temperature range
of interest here, and will be neglected in this calculation.
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Table X. Vibrational Transitions of HHO'® at T = 300%%(236)

Group Transition u_F Relative Intensity AK
(em™!)
6.3 000-010 1595. 0 1. 00 +1
010020 1656.4 9.6 x 10™% 41
010-100 2056. 7 1.9 x 1072 +1
010-001 2160.6 9.6 x 107° 0
3.2u 000-020 3151. 4 1. 00 +1
010-030 3073.4  4.8x107% +1
2.7u 000-001 3755. 8 1. 00 0
000-100 3651. 7 . 10 +1
010-011 3737.0 4.8 x 1074 0
010-110 3630.0 4.8 % 107> +1
1.87u 000~011 5332.0 1. 00 0
000110 5225 2.0 x 1072 +1
000=030 4668.4 6.7 % 1073 +1
010=021 5279. 0 4.8 x 104 0
010~120  5166.0 9.6 x 107° +1
010-040 4551, 0 3,2x 10"° +1
010-101 5656.6 4.8 x 10°% 0
010-200  5593.1  3.8x 107" +1
010002  5847.2 5.8 x 107> +1
1.38 000-101 7251. 6 1. 00 0
000-021 6874 1.0 x 107} 0
-2

000-120 6761 1.3 X 10 +1
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Group Transition u:Y Relative Intensity AK
000040 6146 a3 x10°3 +1
000-200  7188.1  2.5x 107} +1
000002  7442.2  2.5x 107} +1
010-111 7212.0 4.8 x 1074 0
010-031 6769 4.8 x 1072 0
010-130 6663 6.2 « 10~° +1
010-050 5990 2.4 % 1070 +1
010-210  7148.1  lL.2x107% +1
010012  7402.6  l.2x 10°% +1

1.1y 000-111 8807.05  1.00 0
000-031 8364. 0 3.3 % 107! 0
000130 8258 6.0 x 10~2 41
000-050 7585 2.0 x 10°° 41
000-210  8743.1  8.0x 1072 +1
000-012 8997.55 1.2 x 10"} +1
010-121 8727.12 4.8 x 10°% 0
010-041 8227. 2 1.6 x 1074 0
010-140 8121 2.9 x 10™2 41
010060 7390 9.6 x 107° +1
010+220 . 7050 3.8 x 1070 41
010~022 7304 5.8 x 107° +1
010-300 8994 1.2 1076 +1
010-003 9437 3,2 x 1076 0
010-201 9018 6.4 x 1076 0
010~102 9266 9.6 x 1076 + 1
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Table X (continued)

The wave numbers of the band centers were computed from equa-
tion (132) using the following vibrational constants of Darling and Den-
nison(®?) (all in cm™');

w, = 3825.32, U:.-Z = 1653.91, wy = 3938,59,
3% Bl 43.89, Xopy = = 19. 5, Xaq = = 46,37,
Xig ® ° 20,02, Xy3 = = 155, 06 , X,3 ® = 19.81,

ly! = 74. 46 , where y is the perturbation constant appearing in the

matrix element:

<vvu vyl Wlvie2, v, vo42> = .‘é\/vl(vl-x)(v3+1 Wvy+2)

for H,O. The constants of Darling and Dennison were obtained by
gatiTr2al) Slightly different
constants have been given by Nielnen( e and are based upon subse-

fitting equation (132) to experimental da
quent measurements‘ab). For !—IZO. the two vibrations vy = 3652 cm'l
and vy = 3756 r.:m'l have a similar magnitude but can not perturb each
other since they belong to different symmetry species. The two over-

tones 2v, and Zu3 » however, have the same species (Al) and can

1
perturb each other. In general, there is F'ermi resonance between any
state (vl.vz. v3) with vi > 2 and the state (vl-z.vz. v3+2) . The

perturbed energy levels are given by equation (130).

other isotopic species are obtained by multipl.ylng the values in Table
X by the relative abundances. !

At room temperatures, the absorption is due primarily to vibra-
tional transitions from the ground state. As the temperature is raised,
a number of higher vibrational states are excited with appreciable

populations. Transitions with Av, = 2 will lie in the 3. 2 u region.

Water vapor contains the following isotopes: HHO16 (99. 8 per cent),

1108 (0. 2 per cent), HHO!? (0. 04 per cent), HDO (0. 03 per cent).
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Table XI. Integrated Intensities of Water Vapor Transitions

Sg:;it::.l ey Transition Integrated Intensity %;;z;'? atm'l)
o T i Y 20
6.3 1 1595 010-000 300
2.7 u 3755 001-000 100 180 192 + 28
1.87u 5331 011000 30 23,2
1.38u 7250 101-000 20 8.7
1.1u 8807 111-000 0.6

It is apparent that many hundreds of vibrational transitions must be
taken into account at temperatures of the order of 1200°K. An accurate
calculation, including all transitions comntributing significantly to the
total absorption in any spectral region, would obviously require the use
of a digital computer. Hence we shall make the approximation, valid
only for diatomic molecules, that

. z , c,(vl. Ve v3-vv1+Avl. v2+Av2. v3+Av3) ~q(0, 0, O*Avl. sz. AVS)
L

and furthermore, that the temperature variation of the integrated inten-
sity is given by @(T) = (321935)6(300%:) .

It should be noted that the intensity distribution within a group of
vibrational transitions actually shifts to lower frequencies as the tem-
perature is increased and transitions from higher vibrational initial
states become important. ¥ This shift obviously cannot be accounted for

in our approximate calculation and, therefore, the computed spectral

* This shift follows from the fact that the vibrational constants x,; ap-
pearing in equation (132) are nagative.
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absorption coefficients can be expected to differ noticeably from meas-
ured values as the temperature is increaged.,

Within a given group of transitions, the relative intensites ap-
pearing in Table X for transitions from the ground state have been used.
The absolute intensities used in the calculations are shown in Table XI
only for the strongest transitions. The intensities of the other transi-
tions in the spectral regions were obtained from the tabulated relative
intensities.

The values thus obtained were compared with Nolaon's‘z“) ob-
served values.” Nelson's measurements were made on self-broadened
water vapor at temperatures from 555°K to 1111°K and total pressures
of 1 and 2 atm. Table XII lists the spectral emissivity measurements
on H,O that have been made to date. Agreement between the calculated
and measured values is expected to be poorest at the lowest pressure,
since the rotational lines are insufficiently pressure-broadened. This
expectation is verified by the data in Fig. 22 where a comparison is
made for the 6.3 | band at a total pressure of 1 atm. Nelson's meas-
urements were made with low spectral resolution and necessarily in-
clude all of the weaker bands which occur in the same frequency interval
with the most intense transitions. Figures 16 through 21 show the cal-
culated spectral emissivities for the various spectral regions and
Nelson's measured values. The spectral

,:Ot the many mﬁ%mumm@s made of the water vapor
spectra in the infrared - » the majority have been concerned with
the structure of the molecule. Most of the avallable data for the spec-
tral absorption were obtained in connection with atmospheric transmis-
sion studies at low temperatures and low partial pressures of water
vapor where the bands are not pressure-broadened.




106~

Table XII. Measurements of Spectral Emissivitiea or of the

Absorption by Individual Bands of Water Vapor

Spectral Total Optical Tesaperature Reference and
Region FPressure Depth (TK) Method of Meas~-
(cm-l) (atm) and (cm atm) urement
gas used
for prese
sure broad-
ening
3929 0. 066=0.92 0.5=3, 14 1273 (219) cell
3497
N,
2900-4300 .063-1.0 .002-,032 900, 1200, (218) cell
1500
Hzo
2900-6000 0. 58 0.40-0.80 1200-2400 (216) rocket
exhaust
1100=-2200 .0033-.98 12-1850
2800-4400 . 0028-. 99 3-3000
49006100 . 0039~ 97 15-4800 295 (3) cell
6500-8000 . 0068-. 97 32-660
8000-9500 .013-.97 32-2300
NZ
3100-4200 .92 1.67-4.18 1275 (204) cell
Mo
2900-4200 « 13-, 92 1.67=7.2 500-1273 (93) cell
N,
2900=6200 1 1. 5=2. 7 1600-2400 (211) rocket

exhaust
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Table XII (continued)

400-10, 000 1, 2 38.7,77.4 555=1111 (208) cell
H,0
400-10, 000 1, 2 38.7,77.4 5551111 (244) cell
H,0

agreement i8 fair in the majority of the spectral regions. Due to the
low spectral resolution of Nelson's measurements, better spectral

agreement is not to be expected. The band absorption

P (1= exp(-P X)ldw = }Pewdu' (200)

Apand

band
is independent of the spectral slit width!?), and cur calculated values of
the band absorption are in good agreemeni with observed values.

The total -emi.uiv!ty of water vapor was obtained from the re-
lation

‘= B_}F f RS ¢, dv (201)

where R’ ie the blackbody spectral radiancy. The calculated total
emissivity was ¢ = 0. 382. Hottel(gs) gives a value of ¢ = 0,340 for

X = 3,54 ft. atm. at 1111°K with a total preasure of 1 atm and a zero
partial pressure of water vapor. Hottel presents curves of a correction
factor to be applied to the emissivity for other values of partial pres-
sure and total pressure. IHe warns against extrapolating these curves
beyond partial pressure of water vapor greater than 1 atm, where the
correction factor is equal to 1.3 . This leads to a {(corrected) emis-

sivity value of ¢ = 0.442. Due to the uncertainty in Hottel's correction



=108«

factor, it is felt that the agreement of this calculation is quite good.

Table XIII gives a comparison of the calculated and observed
values of absorption in the various spectral regions. Goldntein(:,' 17)
has recently made further integrated intensity measurements. Using
his new values, %500-101 * 7.3 and %000-011 = 20, the spectral
emiseivity of the 1,38 1, and 1. 87 u regions was recalcudated, and the
results are shown in Figures 17 and 18. The new values of the ab-
sorption for these regions are given in parentheses in Table XIIL

page 116.
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Table ¥XIII. Calculated Absorption of Water Vapor for
Various Spectral Regions at a Temperature of 1111°%
and a Path Length of 1. 27 Ft.

Spectral Total Absorption (cm"l)
Region Pressure Calculated Observed Percentage
{in ) (atm) Difference
1.1 2 25. 4 26 -2
1.38 2 300 217 + 38
(256) (+18)
1. 87 2 392 260 + 50
(368) (+41)
2.7 and 3. 2 2 648 785 +8
6.3 2 815 857 -5
6.3 1 726 654 o+
pure 2 578 .. sos

rotation
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APPENDIX A
Radiation from Isolated Spectral Lines

The total emitted radiation of an isolated single spectral line

with dispersion contour is described by the Landenburg and Relc_:he
law(6' 7, 308, 309).

'-EToLrw

r'l
~ A= m' (1= ex:p(-Pqu)]dw  (a=1)
J*° line

g - 5,bX/nw
A = f 1 - exp [-‘lﬂ—z] d(ety ) (a-2)

26 (wew j) +b
8.X
Ag = 2ubi(x) = 2ubf (1!775') (a=3)
where RL is the radiancy of the Jth line whose integrated intensity is

J
S:, b is the halfwidth of the line, and R-G?- is the average blackbody
J
radiancy of the line centered at tuj . The function f(x) is defined by
flx) = xe™ {I(x) + I(x)] (a-4)

where I and I, are Bessel functions of imaginary argument and
x = SX/2wb .
This law reduces to a simpler form for the limiting cases of

large or small x. For small values of x, ln(x) may be replaced by
(310)

% n+2r
e = ) Sk (-8}
r=0

and similarly, exp(-x) can be expanded in powers of x. Retaining

the series expansion

only terms of order :A:Z » equation (a~4) becomes
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flx) = %[l (x/2)4...] . (a<6)

Hence, for small values of x, the approximate relation
& 2 = X o
Aj wbxj Sj {(2=T7)

can be used. It is apparent from equation (a=6) that equation (a-7) is
accurate to within q percent if(é' 7

x<0.02q . (a=8)
For large values of x, an asymptotic formu.lawm) for 1 n(x) ’

- 1-4n® | (1ed0®)9-an®) |

Lx) & —=grr 1 + s

b5 (3'9)
(27x) : 2! (8x)

may be used in equation (a-4). Keeping only the first two terms yields

) = (25/m) %11 - 1/8%) 4 ... ] (2-10)
or, for large values of x,
Ay = 2ub(2x/w)}/? = 25X . (a=11)

Equation (a-11) is accurate within q percent u“" 7
x>12.5/q , (a=12)
i.e., it is accurate within 10 per cent when x > 1. 25 .
These two limiting forms for the absorption by a single line with
dispersion contour are referred to as the linear approximation and the
square root approximation.

If a line undergoes pure Doppler broadening, the absorption co=-

efficient is given by(ao‘”
1
. s [_me 2 .mcz(w-wj)z (a1}
= exp ae
w | aekTw jz Zk'I‘wJ.z

where m is the mass per molecule.
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In terms of the Doppler haliwidth('?'oq).

bD = ZkTin2 ) w (a-14)

and the absorption coefficient at the center line
3 1

P! = sj( :’“" - {a=15)

the spectral absorption coefficient becomes
Wil |

P, = P'exp -( ) a2 , (a=16)

and the line absorption AL is given by
® '
5 2

Ay = J:n {1 - expf-ijexp(-e )])d% (a=17)

where %
(w-wj Nin2)
D

In general, both the Doppler effect and collision damping would
be expected to contribute to line shape, and in this case, the line -ra.dl-
ancy may be most easily obtained by reference to the curve of growth
(see ref. 309, Fig. 4;-8). An asymptotic expansion for line radiancy valid
in the wings of a spectral line has been derived by Flass and Fivel(3u)

3
-]
AL = Z‘S‘bX)a l - —_Bi——— +* .aiw (3'19,
where
b,.+b
% ¥ __32___9 (2n2)% (2=20)

D

and bN and bC

Equation (a-19) is obtained by expanding

refer to natural and collisjon halfwidths, respectively.



P, = PY2) r 2Py ) ay (a=21)

oo 2 T I(E-Y)
for values of !ru-wjf >> a and Iw-wjl >> b, to obtain

i Si{bgto o) "

w(w-wj)

P

1+(%.az)glz + (12 - 5a +a4)§4+... , (a=22)

which is then substituted into equation (a;l) to obtain the line radiancy.

It should be noted that, even if the Doppler halfwidth is consid-
erably greater than the Lorentz halfwidth, the square root approximation
is still valid for sufficiently large x . FPhysically, this is because the
absorption coeificient falls off expomentially in the wings of a Doppler
line, while it only falls off as (1/w)? in the wings of the Lorentz line
shape. Thus, at optical depths where a line is essentially black at its
center, the variation in absorption with path length is determined by the
wings of the lines where the (!/u;)z term dominates.

The collision halfwidth, bc » varies inversely as the square root
of temperature and directly as the pressure of the broadening gas.
Hence the square root approximation for the line absorption can be
written as

AL = Z(Sspabcopt)% {a=23)
where the subscripts Py and P refer to the absorber and total pres-
sures, respectively, and bco is the line halfwidth per unit pressure.
Since the collision halfwidth b C° depends upon whether the line is
self-broadened, or broadened by a foreign gu(sn'“é) (and self-
broadening is much more effective), one can write

o . o 3
bo Py = by Py +hy By (a=24)
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where the subscript b refers to the foreign gas broadener.

Both limiting cases of the Landenburg and Reiche law may be
written in the iorm(z°3)

Ay, = Ksp,)" (p)" (a-25)

where KX {is a proportionality factor which depends upon the tempera-
ture as well as the nature of the gases. For the limiting case of weak
absorption, the exponent m = 1 and a = 0 ; while for the case of strong
absorption, m =4 and n= 1. The use of total pressure in equation
(a=25) instead of a linear combination of Py and Py implies either that
p, << p, or that self-broadening and foreign gas broadening are
equally effective.
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TRANSFER CALCULATIONS FOR TRANSFARENT
AND OPTICALLY DENSE MEDIA
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1. INTRODUCTION

Radiant energy transfer in two-phase media may be signifi-
cantly greater than for the case of pure gases because of the much
higher emissivities of condensed phases. However, when the local ab-
sorption coefficient becomes very large, the radiation becomes ‘'trap-
ped' locally, in which case it must ''diffuse’’ to the walls. In the diffu-
sion approximation, the medium is assumed to be optically dense and
the distribution of radiant energy is nearly taotropic;

For the case of a medium at constant temperature and pressure,
radiant energy transfer is dependent on geometrical interchange factors.
These have been evaluated for various conical configurations, and a
representative calculation has been carried out of the radiant energy
transfer to a centrally located area element at the plane of intersection
between two truncated cones.

Finally, an estimate of the Rosseland mean absorption coeffi-

cient is made for dispersed carbon particles at 1000 and 2000°K.
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II. GENERAL EQUATIONS OF RADIATIVE

ENERGY TRANSFER!~7

A, Fundamental Quantities and Definitions

Consider a small volume element with radiant energy density

£ i.e.
» de

Py = IV (1)
is the radiant energy in unit volume in the frequency range between v
and v + dv.

Fig. 1. Schematic diagram showing the geometric configuration
discussed in the text.

The energy ©, in the frequency interval v to v+ dv passing
through an element of area dA , in a direction 0 with respect to the
normal, into the solid angle dp in time dt is

de = l\) cos 0 dA dw dy dt . (2)

A%

Equation (2) is the defining relation for I\, » the radiant flux in the



frequency interval between v and v + dy per unit projected area per
unit solid angle; Iv is termed the (spectral) intensity of radiation. The
spectral radiant energy passing through the cone subtended by the solid
angle dy in time t= 8/c (s is the distance traveled; c is the velocity
of light) is

pvdV = I\, cos 8 dn(s/c)dA .

The total radiant energy contained in the volume V is

)
va = JPJ I\Jcosedw(slc)dA
w A

or, since dV = dA 8 cos 8,

P, ™ -(-l:- f I\, dw . (3)

LW
In terms of the mean intensity, J'u » defined as the value of the
monochromatic intensity of radiation averaged over all directions around

a point, viz.,

= diy
I, 7 J I 2= » (4)

we find that

(5)

P ™ N

.
Ay c
Equation (2) gives the radiant energy in the frequency interval v to
v+ dv which passes across an element of area dA in a direction in-
clined at an angle 9 with respect to the cutward normal into the solid
angle dw . The net flux in all directions passing unit area in the fre-

quency interval between v and v + dv in unit time is, therefore,



«151=
o F = rl cos B dn . (6)
v J AV :
w
The net flux, wE . depends on the choice of direction of the normal
with respect to the reference area. For later convenience*, we define

a quantity Hv by the relation

i
Hv = jlv cos f = {7)
w
whence Fv = 4Hv . (8)
The pressure exerted by the radiation field in the frequency

interval v to v+ dv on the element of area dA is

Iv cosze
. J“_.._._c dw . (9)

®
Equation (9) represents the rate of change of the momentum ev/c in

the direction normal to dA . It is now convenient to define

2. dw
K = ‘J-\I\J cos” 8 o= (10)
w .
so that
4w
P = —c-— I{V . (11)

For isotropic radiation, it is apparent that

Pp = %1 JV coa:!e = -}pv 3 (12)

equation (12) is a well-known result and shows that the radiation prese-

sure equals one-third of the energy density.

The quantities H, and Kv were first introduced into radiative
transfer theory by Eddington.



B. Continuity Equation for Radiant Energy

Consider a small cylindrical volume element within a radiating
medium (see Fig. 2). The height of the cylinder is des and the base
has an area dA.,

’
I/
u(:)—. ( ’9— Iy (s +ds)
\\
\g
S= d

s = S+dS

Fig. 2. Schematic diagram of an infinitesimal cylinder which constitutes
a useful concept for a derivation of the continuity equation for
radiative energy transfer.

The radiant energy, in the frequency interval v to v + dv,
passing through the surface at the plane s is

dev(!l) = lv(s) dA dw dv dt,
whereas the amount passing through the surface at s + ds is
dev(s +ds) = I (s+ds)dA dwdv dt.

In traveling a distance ds , the radiant intensity will be diminished by

*, IV(-)da dA dwdv dt where ", is the absorption coefficient at the
frequency v . On the other hand, the intemsity j (s)dA ds dwdv dt will
be emitted by the material within the cylinder, where jv is the emission
coefficient at the frequency v . If we allow for the energy within the
cylinder to vary with time, then the amount of energy stored within the
velume is + xI (s) dA dw de dv. Dividing the resulting equation by



ds dA duw dv dt , we find that

1 20 oL (e)
¢ dt J8

= - 1 (8)+j(s). (13)

Eqnation' (13) iz the Schwarzschild-Milne equation of transfer and is of
great generality since it clearly applies even if radiant energy transfer

is not the only mode of energy transfer. ?

C. The Source Function SM

For the case of thermodynamic equilibrium, it follows from
Kirchhoff's law, that
jJ = » B

) v W
where Bv is the Kirchhoff=-Flanck function. However, following Une
siﬂd;, we prefer to define a source function, Sv » by the expression

jv - 8, . (14)

In order to calculate the source function 5,6 as a function of

frequency Vv and geometrical depth 8 , we must loock more closely at
the physical mechanisms of radiant energy emiseion. The following
special cases are of interest:

1) Local thermodynamic equilibrium. For this case, the source func-

tion is given by the Kirchhoff«Flanck function

3
s, = B, = 2% 1 (15)
i1 Vo e [exp(hy/kT)=1]

where T is the local temperature.
2) Pure scattering. The energy absorbed in unit volume in unit time is

2 flu de where o is the scattering coefficient at the frequency v .

)
The source function becomes now



0- 4
S, = "T\i lplu %;:r' ’ (16)
\) W .

3) Both absorption and scattering occur. For this case, equation (13)

becomes

1 al\) a P d;u

Vv
st = -~k tO )+ B +o J L (17)
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Ill. THE DIFFUSION APPROXIMATION

When the absorption coefficients and/or the gas volume are suf-
ficiently large, radiant transfer calculations are mma de by utilizing the
diffusion approximation. The diffusion approximation is applicable
when the radiation mean free path is small compared with the charac-
teristic dimensions of the problem for the wavelengths of interest.
Before presenting a derivation of this approximation, it is of interest
to note that there have, in fact, been two different approaches which
led to a diffusion equation for radiative energy transfer.

Early experiments on resonance radiation suggested that when a
photon is emitted by an individual atom, it does not travel directly to
the walls of the enclosure, but after traversing a short distance it may
be absorbed by another atom raising the latter to an excited state.

This process of emission and reabsorption results in the transfer of
excitation energy from atom to atom, and the eventual escape of the ra-
diation to the boundary of the enclosure requires a large number of such

transfers. The radiation in such cases is termed '"imprisoned’'. .

K. T. Comptcng’ ke regarded the passage of the quanta of resonance
radiation through a gas as analogous to the diffusion of foreign gas
molecules and obtained a ''diffusion’' equation for the number density of

excited atoms, n, in the form

2
%‘i - .;_) v2n (18)

where 7T is the lifetime of an individual atom in an excited state and T

is 2 mean free path.

Milne11 later arrived at an equation for the diffusion of radiation
without recourse to the analogy with molecular diffusion. Milne's



wlb6=
result is
i‘;(u,%‘%) = 4(.;3.)27 = (19)
where N is the total concentration of atoms.
Difficulty in defining a '‘correct'' value of ) , which would be
valid over a range of frequencies, led Holstein to the conclusion that
the description of radiative transport by a diffusion equation was logi-

12 had earlier included the frequency

cally imposaible, although Kentry
spectrum for a single line in computing 3 . ¥

The second approach, and the omne which we shall follow here,
was suggested by Eddington7 who introduced a method involving spherical
harmonics for reducing the exact integro-differential transfer equation to
an approximate differential equation which could be more readily solved.
This technique has become a standard pmcedure“ for solving the equa~

tion of neutron tra.naportM' L

A. Equation of Transfer for Plane Geometries!™7

It is convenient to rewrite the equation of transfer, equation (17),
in terms of the geometrical depth x measured from the surface. Ref-
erence to Fig. 3 shows that

dx = «dscosb. (20)

Setting 1 = cos § and using equation (4), equation (17) becomes

* See also ref. 13.

o The equation for radiative transfer, equation (17), for a grey atmos-
phere and unpeolarized light is identical withthe equation of neutron trans-
port for the case of constant collision croes section.
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/ 1(®) dwy

o —-.— — —|

~ 8

\ ds

Fig. 3. Schematic diagram showing the geometric arrangement dis-
cussed in the text.

g AL (mu) O (xu)
] = H =7

= =(x 4o ) +x B +9 T . (21)

In terms of the dimensionless variables

t* = (x, +0 et (22)

and -
v = Jf’ (x, +0,) dx , (23)

-0

where Ty is the optical depth, equation (21) becomes

BIfT vu) AL T 4u)
S s = <L (T eu) 4 By + (Len),  (24)
ot v
'and
n = H.\)/(nv + J\J (25)

B. The Spherical Harmonic Method'* > 1% 15, 16

The angular dependence of the intensity, I,, may be expressed
conveniently in terms of Legendre polynomials. Thus we set

a
Liram) = ) 21 W e ) (26)
1=0
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where
' 1
LWy = 1 e, . (27)
-1

From equations (4), (7), (10), and (27) it is now apparent that

(0)
' .23, (28a)
(1)
1M .2y, (28b)
142 . 3k .3 . (28¢)
v v v

jid Iv('rv. 1) is replaced by the first three terms of the expansion

given in equation (26) we obtain Chandrasekhar'sm first approximation,

viz.,
it ew eyl Op +31 We 431 Blp,
= JP +3HP, +32x 17 )p
v o i T S R T o

The equation of transfer now reduces to

it OH, g 2 1
P ) 4 3P + 32 p (K ==J)
© 5 15 2 T2 TNTE

o uP aJ"-BP aH"-ls P, (K =33
Llnﬁ-rv H lﬁ-r\J TUZS‘T\)(\)-.S \;)

15 1
= - 3P1H\: o PZ(K\;- T J’\)) + nPo‘Bv - J\)) « (29)

Using the recursion formula”

(3&4'1)1.113&&1) = (L+1)P-L+l‘u) + ‘LPL-I(U) ] UPO = Pl »

and equating the coefficients of the Legendre polynomials, equation (29)
leads to the following set of equations:
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8y oH

Pl - Fr':’- = n(B, =T ), (30a)
M, 1

?-?U’F\:-BT_\:(K\J.EJ\J)z 'H\). {30b)

OH
15 9 1 -15 1
T?‘K\,‘B’Jv)‘zvﬁi = = (K -xJ), (30¢)
o . 1
g.-,.-; (K, =-xJ) = 0. (30d)

%
Eddington assumed that the anisotropy of radiation ie sufficiently
small to permit replacement of coaz ® in equation (10) by its mean

value, i.e., 1
K\J oo J\, . (31)

Equations (30a) to (30d) are now simplified to the following expressions:

BJ\) BH\J

—s = 35— = B, ~T) , (32a)

ot v

8H\) a9y

1 g

e "S'T—fv = - Hv 5 {32b)

ot v

BH\;

= 0o . {32¢)

v
Equation (32¢c) shows that the net flux is constant [see equations (6) to

: i«
@)]. 1 IBH\,IBt | << ’H\; | 4 i.e., if the radiation mean free path

ozv + o\’)'l is ama;ll compared to a characteristic dimension of the con-

tainer, then equation (32b) becomes

. Eddl‘:gtou'a approximation was originally applied to the interior of a
ph

star, ysical reasoning leads to the conjecture that, in strict radie
ative equilibrium, the radiation becgmes nearly isotropic at a great
depth below the surface of the star. :
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oJ

1
H, = 357 (33)
Y
whereas equation (32a) takes the form
aJv 1 aZJ\J
— = x—g +n(B,-J). (34)
at B'rv

Equation (34) {s known as the ''diffusion approximation'’ to the equation
of radiative transfer. |

Lehner and Wing?® 19

attacked directly the time-dependent

transport equation, equation (17). Their method of solution involves
advanced-function theory and the theory of semigroups of operators.
. A simpler version is needed for practical work and, for this reasom,

solutions of the diffusion approximation are of interest.

C. Boundary Conditions
A physically meaningful solution of equation (34) requires im-

position of appropriate boundary conditions. However, since the diffu-
sion approximation cannot apply in the immgdiate neighborhood of the
boundary of the system, considerable caution is necessary in using the
diffusion apprmdmaﬂonzo.

The boundary conditions for a medium radiating to a black en=
closing surface at temperature T = 0, which corresponds to maximum
heat transfer from the medium to the surface, are the same as for the
problem of radiative equilibrium of a stellar atmosphere, i.e.,

I\’(O.p) s 0 for -l<y<0, (35)

6

As was noted by Chmdrasekharl » this boundary condition is equivalent

to an infinite set of linear relations as 7 ,— 0 among the quantitics
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zv‘“ defined in equation (27), which clearly cannot all be satisfled by

retaining only a finite number of terms in the expansion given in equae~
tion (26). Nevertheless, the use of equation (35) should give a reasone
able approximation to the actual radiative transfer.

Equation (32c) leads at once to the integral

F
H, = comstant = —p , (36)

which clearly insures the constancy of the net integrated flux. Since
H, is conastant, equation (33) can be integrated with the result
3 = %FVT\,-I»E (37)
where a is an arbitrary comstant. As the optical depth T, @,
equation (37) shows that
J\J - % Fv Ty (38}
In order to determine the constant a, Chandrasekhar requires the flux

incident on the surface as Ty ™ 0 to be equal to the constant net flux

J, = Z,Hv = FVIZ in the interior of the radiating gases. Thue 1©

3 2
JV(T) s ¥ Fv('fv +tx). (39)
Una&dlhas discussed the exact solution to the Schwarzschild-

Milne [see equation (13)] integral equation by numerical methods. He

replaces equation (39) by the relation
3
Jyir) = I ¥ [r_ +qir )] (40)
where q(0) = 0. 5774 and q(o) = 0.7104. According to equation (40),

at a plane boundary between a radiating medium and a completely ab-
sorbing surface, the asymptotic distribution of the radiation intensity



=16 2=

should extrapolate to zeroc at an ''extrapolation length'' corresponding
to the distance 0.5774 (x, +0_)"' beyond the surface. Mazur’® and
Kad;anoifu' ZZ. however, have ignored this extrapolation length in
formulating the boundary conditions in their treatment otf radiative

transfer by the diffusion approximation.
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IV. RADIATIVE ENERGY TRANSFER TO CENTRALLY LOCATED
AREAS IN CYLINDRICAL AND CONICAL CHAMBERS

CONTAINING ISCTHERMAL, GREY EMITTERS

In the special case where scattering may be neglected, and the
temperature and pressure are constant, the transfer relation given in

equation (13) may be integrated for a particular direction with the result

I, =B [1 - exp(=n )] . (41)

Substituting equation (41) into equation (7), the net radiant flux is found

to be 11/2

r\
= { - - ' ! '
Q,= wF = 2w J Bv[l exp( uvs)’]cos 8" sing' do (42)
0
where 8 is in general a function of &', and nBv = RS is the black=
body radiancy in the frequency range between v and v + dy.
Consider the axisymmetric geometric arrangement sketched
in Fig. 4. The path length for the region labeled 1 is
8, = H/cos §' ' (43a)
and the path length in the region labeled 2 is
o
8, = - . {43b)

[oing' « (2ol ;
ginf' - (--H-—)coeej

The total radiant flux, Q , incident in unit time on unit area dA is
found by substituting equations (432) and (43b) into equation (42) and
integrating over {requency. =2 The result is
8
H

o (] K,,
O=2 ijTm)dv j [1-expl ) Jcos 0! gin n' dB'
5 5 cos §'
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w/2 Koy T
+j [:l-oxp (- ?’r l_r )}cose’line'de' (44)

' 2 1 '
Bo sinf' - (—H——)coae

Iig, 4. Schematic diagram of an axisymmetric radiating region in the
shape of a truncated cone.

where Tm is the agsumed constant temperature of the medium. If a

constant value EL is used for the linear absorption coefficient (i.e.,

the emitter is assumed to be grey), then equation (44) may be written

as
Q = oT_ e, +¢,) (45)
where
90 E
H
€ = 2 f [1‘3@("3'31:”?)} cos 0' sin ' do' {46)
0
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and

w/2 k r
gz-zf {l-exp(- L:-r ):|cose'sine'd9' (47)
eo sinf' - (-——H-—-)COB Q'

By making the substitution” u=1l/cos ', equation (46) is re-

duced to the form

1/cos®
2 exp(-f Hu)
e = eoin e—zj\ ——3—————du (48)
1
and carrying out the integration givea24
2
e; = sin"8 - 2E,(K, H) + 2cos 2 Eg(m) (49)
The functions E,_(r) = f e""ﬁ:“” dz are tabulated by Kourganoff-.
Z
It ehould be noted that E3('r) = 43(71) where 3(7) is the function defined
by Schmids. 23 24

The integral appearing in equation (47) can be easily evaluated
only for the case ry=r,=r. Thus, for the cylinder, we find (com-
pare Ref. 23) that

2
¢, = cos" @ = 2E4(k, r) + 2sin’6 1:3(_3{-55-) (50)

For the more general case of a truncated cone, the integral in equation
(47) has been evaluated numerically using the WDFPC IBM 7090 com=
1:01:.&1::-:'l The results of these numerical calculations are presented in
Figs. 5, 6, and 7, where

w/2
1= Nupi 0= | [1- exp (grpr—fzgzyr)]eind' cose' a0 (1)
%
is plotted as a function of f = (r,- rl,/H for fixed values of o = ELri

r'rhe aid of Mr. B. E. Gray in programming the problem is gratefully

acknowledged.
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1
5oo=10° .
OO 1 20° 25°, 0 40
——d VP gn® g
—_— 5
50 550 .
K| . .
10 ___________.._-—650
80°
T
107
85°
___——-—-
1062 1 I R B 1 [ N I
1 1 10
ﬁ—-—-
Fig. 5

The quantity I(a,f, 90) , defined in equation (51), as a function

of p for 10°«p_<85° and a=F r =1.
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1
_ (o] o 3 o
o)
2
107 =
/ .
"/?800
o

10—3— /85
o L gt I N A N

2l .2 3 4 5 538391 2 3 4 5 678910

ﬁ _— -
Fig. 6 The quantity I(x,p, 80) , defined in equation (51), as a function

of B for 10°£30585° and o=k r) =1x10"
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859
T el (I
107 | Lo | I
1 1 10
p———
Fig. 7 The quantity I(c,(, , defined in equation (51), as a function

of B for 10° ¢ eo

o
S
<

= 1x10"2.

o
o
85° and a _T‘Lrl =
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with 6 o 382 variable parameter.

For o <1072 » it is readily shown that the quantities
o, By eo)lrz are essentially constant for fixed values of § and ©
The exponent varies from -o/p at flo =0 to o at g = w/2 ; hence
for .18 €10 and o= 10°2 s the maximum value of the exponent is

10‘1. For small values of « , the exponential in equation (47) may be

expanded and
w/2 :
i 1
t~a | SrAessar  or small values of = ). (52)
bo
M ¢ =(+y where tany = p , then equation (52) becomes
('?"IZJ-Y
| £
1~ 2 CO8 | rainZC can\;I-;;:an sinly Tdr (53)
R |
and
1=~ a cosy },cosy(l-sinﬂo) = siny cosb
1+cos(q
cOo8y
+ giny cosy in [( Trslny )( o -ﬂ } . (54)

Therefore, in terms of § = tan vy, equation (54) can be written as

N l-slneo-ﬁcoseo i pzl,n (ﬁ " m)
“/1+ﬁ2 V1spZ 148

coseo + ﬁsineo + 7\ !.-9-532
+ —E-z in

140 sIng - pcosd ) (for small o) . (55)

vor as 10", p= 0.5, 0, = 45°, the exact result ia I = 0.429839

whereas equation (55) leads to the value I = 0.429895.
For large values of o, the exponential term is negligibly
gmall and »
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w/2
I ~ f gin 6' cos /' d8 (for =« large) , {56)
eo ;
or
1 ~ %coszeo (for o large) . (57)

For a = 10, Bo = 45° » the exact value of I varies from I = . 249996 at
=0 tol=.250000 at § =1.0.

To summarize, for o« 2 10, I(x,p, eo) is well approximated by
equation (57) and, for o € 10'3 » by equation (55). For intermediate
values of a , the desired results may be obtained from Figs. 5, 6, and
7. Thus the problem of radiant heat transfer to a centrally located
area in cylindrical and conical enclosures has been completely solved
subject to the assumptions that the emitting system is at the constant
temperature T _  and the linear absorption coefficient has the constant
value EL . For convenience, the function E3('rv) is listed in Table I
for representative values of 7 .

As an example, the radiant heat transfer has been calculated to
an area element at the throat of two intersecting cones for the geo=-

metrical configuration indicated in Fig. 8 and for EI.. = 1. 2x10™> cm-l .

j—~8.18" 1

Fig. 8, Diagram showing the geometric configuration used in the text
for the computation of radiant heat transfer to a centrally lo-~
cated area at the intersection of two cones.
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TABLE L Values of Es(r ) s

% Eq(7) Ty Eq(7 )
0 . 5000000000 0. 60 . 1915506378
0.01 . 4902765642 0.70 . 1660611621
0.02 . 4809682915 0.80 . 1443238017
0.03 . 4719976872 0.90 . 1257029783
0.04 . 4633239418 1. 00 . 1096919670
0.05 . 4549188498 1. 25 . 0785723481
0. 06 . 4467608833 1. 50 . 0567394897
0. 07 . 4388326798 1.75 . 0412393202
0. 08 «4311197306 2,00 . 0301333804
0. 09 . 4236096057 2.25 . 0221169820
0.10 ;4162914579 2,50 . 0162953698
0. 20 . 3519453121 2.75 . 0120459808
0.30 . 3000418266 3.00 . 0089306461
0. 40 . 2572864233 3.25 . 0066380708

0. 50 . 2216043643 3. 50 . 0049453783

The total radiant heat transfer from the fluid to unit area at the center
of the plane located at the intersection between the two cones is

4
Q= oT_*(e;+e,4e54e,) = 0.084707_ %,

since
€ = 0.0141 , €, = 0. 0095, €y = 0.0131, and €, 0. 0080

for the assumed configuration.
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V. ROSSELAND MEAN ABSORFPTION COEFFICIENTS
IN TWO-PHASE SYSTEMS

A. Definition of Rosseland Mean Absorption Coefficient

The equations of transfer in the diffusion approximation given
in equations (32a) to (32c) refer to monochromatic radiation. To obtain
the total radiant edergy transfer, these expressions must be integrated
over all frequencies, To each monochromatic quantity, Cv (e. g5 »in-
tensity Iv s mean intensity Jv . etc. ), there corresponds an integral

C =

o
JP C'\_, dy {58)
0

and the equation of transfer for the integrated quantities will have the

same form as for the monochromatic quantities if a mean absorption

coefficient, EL ,» is defined as’?
9B
f =2 -B-T-v dv
1 By
= = 1) . (59)
Idl Ro Jr —ET\-,- dv
1, 2,7, 26
The quantity EL. Ro 18 the Rosseland mean absorption coefficient.

Substituting for the Kirchhoff-Flanck function B\) in equation (59) leads

to the expression

4 x
1 S 154 M = c; 5 dsx 2 1.54 j‘ G(:t)dx (60)
EL.RO dr J uv(e -1) 4w v

whaze x® hv/RT, and Gx) = x e*(e*-1)"2

is the "Rosseland weight-
ing function. "

If induced emission is included, ", in equation (60) should be



-173=-
replaced by

n,' = ,{Vu-e"‘) . (61)

a correction which is important only when x< 1.

B. Mean Absorption Coefficients for Dispersed Carbon Particles

In a two-phase system consisting of particles dispersed in a
gas, the particles may be treated as molecules if they are sufficiently
emall for the wavelengths of interest and scattering is unimportant. »
In this case, _

w, = PP+ No, (62)

AV
where P is the spectral absorption coefficient of the gas in appropri-
ate units, p the pressure of the gas, N the number of solid particles

per unit volume, and o_ the absorption cross section of the particle.

a
If the gas radiation is negligible compared to that of the particles

at a given wavelength, then ® = No_ . (63)
Theoretical estimates of © a Ay be made, in principle, for

all particles by using the Mie theoryzg' =

provided the optical constants
are available for the particle system. Usually they are not. Henace it is
customary to assume that low-temperature measurements of bulk
properties may be extrapolated to high temperatures and apply to par-
ticles. Stull and Plass’® have performed extension calculations of scate
tering and total cross sections and of spectral emissivities for carbon

using (extrapolated) bulk properties measured by Halpern and Ha.llal.

* The GA‘)“ where scattering cannot be n:ﬁected has besen discussed by
Bartky;2! however, the calculations of Stull and Flass2® show that the
scattering croes section for finely divided ca;btm particles is usually

much smaller than the total cross section.
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Their results have been used to estimate the Rosseland mean absorp-
tion coefficient for carbon particles of 200A and 987A radius for a
number density of 1012 particles per cm3. From equations (60) and
(62) it is apparent that the Rosseland mean absorption coefficient is
directly proportional to the number density and, therefore, EL. Ro
may be calculated for any concentration of carbon particles having the
specified radii.

The total cross section is plotted as a function of wavelength in
Fig. 9 for carbon particles with 200A and 987A radius using the results
of Stull and Plaseza. For these carbon particles, the scattering cross
section is negligibly small compared with the absorption cress section,
and hence the latter is practically identical with the total cross section.

The dashed portions of the curve were extrapolated by using the
relatlon32

A» = constant. {64)

N

Equation (64) follows directly from the expressions 8, 23, 30

for the
total cross section, dt ,» and scatte:"lng cross section, os » given by

the Mie theory:

e )
op = 2w (2) e ) (201)a) + 1)), (65a)
t=1
ao
cg = 20(2)? ) emudla 14 )15, (65b)
1=1

where e denotes the real part of the summation, the parameter p is
equal to 2wa/), a is the radius of the sphere, and the complex coef-
ficients a: and b: can be expressed in terms of p and N En-ix',

the ratio of the propagation constant of the sphere to that of the medium.
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Fig. 9 The total atsorption cross section o,,t for spherical carbon

particles with radius 200A and 987 A as a function of wave-
length (from ref. 28)s The dashed part of the curve is extra-
polated.
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Here n is the refractive index of the particle and / is the absorpe
tion index of the particle.

When the ratio of radius a to the wavelength ) is g0 sman that

ps can be neglected in comparison with p3 » all the coefficients are

negligibly small except fxt:):r‘?‘9

2 2 2 /
r _=2i N'-1 3 «2f Y(n'=r"=1)~i{2nx") 3
b, =~ p- = [ {66)
1 =73 N2 3 (nl-v?42) - 1 (20x)

In this case, the absorption cross section, 0_ , becomes simply

a

2
o, = o =0, = 6bula/p)” e (bl").

It now follows that

3
48w a” ns’ 1
Ly, 2 . ' (67)
a {(nZ_x,Z+Z)+(Z H,)Z? &

In Figure 10 the quantity G(x)/» is plotted as a function of

x = hv/kT for 200A«radius carbon particles with a number density of

012 particles per cm3 , at temperatures of 1000 and 2000°K. The

1
Rosseland mean absorption coefficients are seen to be 0.318 and 0, 937
cm.l. respectively. Similarly, in FFig. 11, the results are plotted for
987A-radius carbon particles with a number density of 10l . particles
per cm3z the corresponding Rosseland mean a.baorption coefficients

1 at 1000 and 2000°K, respectively. Thus, the

are 20. 6 and 65. 5 cm”
expected result is found that the mean absorption coefficient for carbon
particles increases with temperature and particle size, for a fixed

number density.

C. A Comparison of Radiative and Conductive Heat Trms£9226

For a system in which the local temperature is defined, it is

interesting to compare the relative magnitudes of conductive and
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radiative heat transfer. For the one-dimensional case, Fourier's

equation of heat conduction is

o, = =\, & (68)

where ), is the thermal conductivity [cal/sec cm OK'J and @ is the
heat energy flowing through a unit area in unit time. From
equations (8) and (42), we find for the radiant energy flux

@

Q, = 4 J‘ H dv. (69)
0

If the diffusion approximation, equation (33), is used, equation (69) be-

comes
(s8]
dJ dJ
4ar o A - dar 1 A 70
Q=3 J a?";d“=—rf""uv T W Vo
0 ' 0

where scattering has been neglected, and the x'=direction has now been
chosen to be in the direction of increasing temperature [compare equa=-

tion (20)]. Rosselandzs

has shown that for large optical depths the
spectral radiant intensity, 1\)(6) » becomes essentially isotropic, and
approaches the local spectral steradiancy, B\,(T) . Hence J\, in equa-

tion (70) can be replaced by Bv ,» and
@

(s 2]
dB dB
- [ | v 4 4T 1 v
Q=% |5 =¥ * 7T = fr-a*rd“- (71)
o Vv o
Using equation (60), equation (71) reduces to
a
dB 3
-4y 4T 1 r v «16cT” 4T aT
Q7 (Wr— | Ird = ¢ (" ) - 13

LyRo g4 k1., Ro
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Comparing equations (68) and (72), it is apparent that radiative energy

transfer will dominate if

A = -ﬂg—l&”s > (73)
r LR, &

Consider, for example, a two-phase system consisting of

spherical carbon particles dispersed in a gas whose average molecular

welight is 36. Assuming the carbon partlclés to have a radius of 2004,

=17 3
€

the volume per particle is approximately 2 X 10 m~ . Thus, for

15 per ch, the thermal conductivity,

33

particle densities lese than 10
),» will be essentially that of the gas alone.
Assuming, for simplicity, that the gas i®s monatomic, then the

thermal conductivity is given by34

_ L99x 107t ATW
Ac LA A

(74)

where )_is in cal/em sec °K). W is the molecular weight in
gm/mole, T is the absolute temperature in ®°K, & represents the
collision diameter in A , and a!% 2" ig a collision integral. Setting
dz" ™ 1 and 7 = 3, 5A , we obtain .= 0.86 x 10'4ca1/(:m sec °K)

at 1000°% , and ) = 1. 21 x 10% cal fem sec °K) at 2000°K.

The Stefan-Boltzmann constantl. o= 1.355 X 10'12 call(cm'2
sec OK‘%Z Hence, for a temperature of 1000°K. we have (16/3)o T3 =

7. 227 x 10~ calfem® sec °X) and the energy transport will be domi-

1

nated by radiation if K <84 cm”™" at 1000°K. Reference to Figs.

L, Ro
10 and 11 shows that this condition corresponds, for carbon particles,

to number densities of less than 2.5 % l(:!14 pa.rﬁcleslcm3 with 200A

radius particles or 4 X 1012 partlcles/cm3 for particles of 987A radius.
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Similarly, at ZOOOOK. we must have & < 475 cm'1 for

L, Ro

radiative transfer to exceed the energy transport by conduction, which
would require, for carbon particles, number densities of less than
5 X 101-4 parﬂcles/cm3 for particles of 200A radius or 7 X 1012 partie
cles/cm’ for particles with 987A radius.

The concept of a'radiation conductivity, " L has also been
used in calculations of the heat transfer in molten gla.-s(as"‘o). the
heat flux being given by

d
Q =-Regs 'J:%"' ==, +1,) %r" ‘ (73)
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