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ABSTRACT 
 
 
 
 
Determining which neural circuits and proteins are involved in encoding memories is a 

central goal in neuroscience.  Protein expression in the nervous system is known to 

undergo regulated changes in response to changes in behavioral states, in particular long-

term memory formation.  In this study we developed tools to investigate protein synthesis 

in an intact organism, the larval zebrafish, capable of simple learning behavior.  Methods 

have recently been developed (BONCAT and FUNCAT), which introduce noncanonical 

amino acids bearing small bioorthogonal functional groups into proteins using the cells’ 

own translational machinery.  Using the selective ‘click reaction’, this allows for the 

identification and visualization of newly synthesized proteins in vitro.   

Here we demonstrate that noncanonical amino acid labeling can be achieved in 

vivo in the larval zebrafish. We show that azidohomoalanine is metabolically 

incorporated into newly synthesized proteins, in a time- and concentration-dependent 

manner, but has no apparent toxic effect and does not influence simple behaviors such as 

spontaneous swimming and escape responses. This enables fluorescent labeling of newly 

synthesized proteins in whole mount larval zebrafish.  Furthermore, we demonstrate that 

genetically restricted expression of a mutant methionyl-tRNA synthetase permits cell-

specific metabolic labeling with the larger noncanonical amino acid, azidonorleucine, 

both in vitro and in vivo.  Finally, we present an associative conditioning paradigm for 

larval zebrafish.  During a three-hour training period, 6-8dpf larvae learn to associate the 

social reward of visual access to a group of conspecifics with a dark environment.  The 

memory formed during this place-conditioning paradigm undergoes rapid extinction, but 
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is extremely stable, lasting for up to 36h.  Furthermore, memory formation is both protein 

synthesis- and partially NMDAR-dependent.  Together, the techniques developed in this 

study will enable the investigation of protein synthesis during long-term memory 

formation in the larval zebrafish. 
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The role of protein synthesis in long-term memory formation 

 

Changes in behavior, specifically memory formation, are thought to depend on synaptic 

plasticity in specific circuits of the nervous system.  A central goal of neuroscience is to 

characterize these physical changes that underlie learning and memory.  Learning, in the 

most general sense, is defined as the process by which new information about the 

environment is acquired.  Memory formation is considered to be the process by which 

that knowledge is stored. Over the last hundred years, researchers have developed 

countless training paradigms to investigate these processes in a variety of different model 

organisms.   

Generally, these paradigms can be classified into two main groups, those that 

induce non-associative learning and those that induce associative learning.  Non-

associative learning, such as habituation and sensitization, refers to a behavioral change 

that occurs in response to a single stimulus or to two stimuli not temporally related, while 

associative learning, such as entrained during place-conditioning, refers to the formation 

of an association either between two stimuli (classical conditioning) or between a 

behavior and a stimulus (operant conditioning). 

Both non-associative and associative learning can have different time constants.  

While short-term memory is produced immediately after information is acquired and lasts 

minutes to hours, long-term memory is formed during a distinct second phase, lasting 

from hours to days or longer depending on the organism and the type of memory.  

Furthermore, short-term memory is thought to depend on post-translational modification 

at the synapse, such as residue-specific phosphorylation or proteolytic cleavage of key 
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proteins, which can alter enzymatic activity of target molecules and regulated trafficking 

of receptors.  In contrast, long-term memory has been shown to require regulated changes 

in gene transcription and protein synthesis (reviewed in Abel and Lattal, 2001 and Goelet 

et al., 1986).  The connection between long-term memory formation and protein synthesis 

has been extensively studied using both protein synthesis inhibitors (PSI) and genetic 

manipulation of key players of translational control.   

Studies using protein synthesis inhibitors, such as the antibiotics puromycin, 

anisomycin and cycloheximide, in many different model organisms have shown that 

protein synthesis, during or shortly after learning, is an essential step in the formation of 

long-term memory (Davis and Squire, 1984).  In a seminal experiment in 1964, Agranoff 

et al. showed that the PSI puromycin injected intracranially into the goldfish produced 

impairment of memory for a shock avoidance task and that this impairment was time- and 

PSI concentration-dependent (Agranoff and Klinger, 1964; Agranoff et al., 1966). Since 

then, protein synthesis has been shown to be necessary for long-term memory formation 

in a variety of learning paradigms, including appetitively and shock-motivated 

discrimination learning, passive and active avoidance learning, shuttle box learning, and 

long-term habituation (reviewed in Davis and Squire, 1984).  These studies 

demonstrating the necessity of protein synthesis for long-term memory formation paved 

the way for the idea that the physical basis of memory lies in the learning-related growth 

or remodeling of synaptic connections in a protein synthesis-dependent manner. 

In 1973, Bliss and Lømo found that a high frequency train of action potentials 

resulting from stimulation of the perforant path in the rabbit hippocampus lead to a long-

term potentiation (LTP) of synaptic transmission in the dentate gyrus (Bliss and Lømo, 
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1973).  This phenomenon, which can also be induced in vitro in cultured slices (Alger 

and Teyler, 1976; Lynch et al., 1977; Schwartzkroin and Wester, 1975), has been widely 

regarded as a potential cellular mechanism underlying information storage, both because 

of its occurrence in the hippocampus, a structure known to be involved in memory 

formation and because of its relative stability.  Since then, the appeal of LTP has widened 

through accumulated evidence that LTP exhibits additional features that have been shown 

to reflect important characteristics of memory formation in vivo.   For one, correlates of 

short-term and long-term memory have been identified in LTP, termed early (E-LTP) and 

late (L-LTP) LTP, respectively.  Furthermore, L-LTP specifically has been shown to be 

both transcription- and translation-dependent using chemical stimulation with drugs such 

as PSI in vitro (Abraham and Williams, 2003). 

Although extremely important in elucidating the connection between long-term 

memory formation and protein synthesis, PSI, which are thought to block ~90% of all 

cellular protein synthesis (Klann and Sweatt, 2008), are relatively blunt tools.  The most 

frequently used PSI are antibiotics that interfere with the elongation step of translation.  

Puromycin causes premature chain termination as it can mimic the 3’-end of an 

aminoacylated tRNA, producing abnormal peptidyl-puromycin fragments (Flexner and 

Flexner, 1968; Nathans, 1964), while anisomycin binds to the 60S ribosomal subunit, 

blocking peptide bond formation (Pestka, 1971; Vasquez, 1979).  Cycloheximide, another 

frequently used PSI, is specific to eukaryotic cells and also binds to the 60S ribosomal 

subunit, interfering with both initiation and the translocation step of elongation (Gale et 

al., 1981).  Beyond being indiscriminant blockers of protein synthesis, most PSI have 

non-specific effects, such as activating the mitogen-activated protein kinase (MAPK) 
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superfamily pathways (Rudy et al., 2006), altering catecholamine function (Weiner and 

Rabadjija, 1968), impairing DNA and RNA synthesis (Gale et al., 1981), or causing toxic 

side effects such as seizures, lethargy and gustatory aversions when administered at high 

concentrations in vivo (Davis and Squire, 1984).   

  To investigate the role of protein synthesis in long-term memory formation 

while avoiding the use of PSI, researchers have recently started to genetically manipulate 

key players of translational control using knock-out (KO) mice models. Costa-Mattioli et 

al., for instance, examined plasticity in mice lacking general control norepressor 2 

(GCN2), a protein kinase that inhibits translation initiation by phosphorylating eukaryotic 

initiation factor 2a (eIF2a). Phosphorylation of eIF2a stimulates translation of activating 

transcription factor 4 (ATF4), an antagonist of cyclic-AMP-response-element-binding 

protein (CREB).  Thus, in the hippocampus of GCN2 KO mice expression of ATF4 is 

reduced and CREB activity is increased.  In these animals, stimuli that normally lead to 

early LTP resulted in long-lasting LTP, whereas stimuli that normally lead to late LTP 

led to reduced LTP.  Mirroring this phenotype, researchers observed an enhancement of 

learning in the Morris water maze following weak training, but a reduction in learning 

after intense training (Costa-Mattioli et al., 2005), indicating that tight translational 

control is necessary for normal memory formation.  Furthermore, Banko et al. examined 

both LTP and spatial learning in mice lacking eIF4E binding protein 2 (4E-BP2), which 

normally inhibits translation by binding to eIF4E and observed the same plasticity 

phenotype as above.  In these animals, disinhibition of protein translation results in 

impaired spatial learning and long-term contextual fear conditioning (Banko et al., 2005). 

In contrast, mice with conditional expression of a dominant-negative regulator of MAPK 
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in the forebrain exhibit inhibition of protein translation, which results in inhibition of L-

LTP, as well as deficits in spatial learning and contextual fear conditioning (Kelleher et 

al., 2004).  Although these elegant experiments provide further evidence that long-term 

memory formation is protein-synthesis dependent, they also have their disadvantages.  As 

most of the gene deletions described above were not conditional, some or all of the 

deficits observed could be due to long-term loss of these molecules, changes in 

development that compensate for lack of these molecules or lack of these molecules in 

other cell types.  Furthermore, it is possible that the deficits are due to other translation-

independent functions of the genetically manipulated molecules. 

  Both in vitro studies of LTP and in vivo experiments investigating behavioral 

correlates of learning and memory have helped form our current understanding of the 

molecular mechanisms underlying memory formation.  It is now known that once 

activated by coincident pre-synaptic release of glutamate and post-synaptic 

depolarization, N-methyl-D-aspartate (NMDA) receptors allow calcium entry into the 

cell, thereby triggering a range of intracellular signaling cascades (Collingridge et al., 

1983; Cotman et al., 1989; reviewed in Sweatt, 2009).  Among others, the influx of 

calcium stimulates calcium-binding protein Ca2+/calmodulin and increases the production 

of cyclic adenosine monophosphate (cAMP) by adenylyl cyclases.  cAMP, in turn, 

activates protein kinase A (PKA), which activates CREB, resulting in plasticity-related 

gene transcription and translation.  CREB can also be activated via calcium signaling 

through the MAPK/extracellular signal-regulated kinase (ERK) pathway by a number of 

important kinases, including Ca2+/calmodulin-dependent protein kinases II (CaMKII) and 

protein kinase C (PKC) (reviewed in Sweatt, 2009).  CREB, in concert with other 
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activity-regulated transcription factors, then controls the expression of a variety of 

plasticity-related genes with CRE response elements in their promoters (Hagiwara et al., 

1996).  These include a number of immediate-early genes (IEG), such as C/EBP, zif/268, 

and krox 20, which in turn act as transcription factors regulating the expression of 

‘effector’ genes (Sweatt, 2009).  It is the protein products of these effector genes that are 

needed for growth or stabilization of synapses, the physical change thought to underlie 

memory formation.  Effector proteins that show increased translation with memory 

formation include: neurotrophic factors such as brain-derived neurotrophic factor 

(BDNF) and neurotrophin-3; signaling molecules such as CaMKII and the atypical PKC 

protein kinase Mζ (PKMζ) (Saktor, 2011); secreted proteases such as tissue plasminogen 

activator (t-PA); α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptor subunits; the metabotropic receptor scaffolding protein homer; and activity-

regulated cytoskeleton-associated protein (arc), a cytoskeleton-associated protein that 

may be involve in stabilizing structural changes at potentiated synapses (reviewed in 

Sweatt, 2009; Hernandez and Abel, 2008).  In particular, the increased translation of 

secreted proteases is interesting, as degradation of proteins is not intuitively associated 

with synaptic growth or increased stability.  But degradation of structural proteins may be 

integral to allow for the structural rearrangement that is synaptic plasticity (Mysore et al., 

2008; Tai et al., 2008).   

  Most of the effector proteins that show activity-dependent changes in 

translation have so far been identified in vitro using targeted genetic manipulation of 

individual candidate proteins.  Aakalu et al., for example, using GFP flanked by the 5’ 

and 3’ untranslated regions of CaMKIIα, demonstrated that this reporter construct shows 
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increased local translation when neurons are stimulated with BDNF (Aakalu et al., 2001).  

More recently, Chen et al., using a photoconvertible fluorescent protein kaede to report 

new protein synthesis, have visualized CREB-dependent transcriptional activation of 

CaMKII and of period in the dorsal-anterior-lateral neurons of Drosophila after training 

that induces long-term memory formation (Chen et al., 2012).  Using these techniques the 

researchers were both able to confirm that these proteins are translationally regulated 

with memory formation and identify the neural circuits in which these particular 

translational changes occur.  

 However, such studies rely on fluorescent protein reporter systems and a candidate-

based approach, possibly perturbing endogenous localization of newly synthesized 

proteins and severely limited in their potential to identify unknown effector proteins and 

the circuits underlying memory formation.  According to conservative estimates, 

vertebrate genomes may have about 30,000 genes and recent studies have shown that at 

least 50% are expressed in the brain (Pan et al., 2011).  A large number of the protein 

products of these genes may play a role in signaling cascades and structural changes 

associated with memory and learning, which are unlikely to be identified using a 

candidate based approach.  Furthermore, monitoring translation of one or maximally a 

few candidate proteins is unlikely to lead to a complete understanding of which neuronal 

circuits show changes in translation with memory formation. Instead, we hypothesize that 

by developing new techniques utilizing bioorthogonal chemistry to tag newly synthesized 

proteins specifically, we may circumvent these problems, enabling unbiased visualization 

and identification of proteins underlying memory formation.   
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Bioorthogonal chemistry 

 

Recently, new techniques for labeling a variety of molecules based on the principle of 

bioorthogonal metabolic labeling have been developed (Best, 2009).  Here, small 

functional groups that are commonly absent in the cellular environment, most 

prominently ketones and azides or alkynes, are introduced using the cells’ own synthetic 

machinery. Using this approach, sugars (Laughlin and Bertozzi, 2009), lipids (Kho et al., 

2004), virus particles (Bruckman et al., 2008), DNA and RNA (Weisbrod et al., 2008) 

have been labeled and subsequently visualized using fluorescent dyes or enriched and 

identified using affinity reagents.  Bertozzi and coworkers, in particular, have 

demonstrated in vivo labeling of glycans in living organisms ranging from rodents 

(Prescher et al., 2004; Chang et al., 2010), to larval zebrafish (Laughlin et al., 2008; 

Baskin et al., 2010; Dehnert et al., 2011) and C. elegans (Laughlin and Bertozzi, 2009).  

In the case of larval zebrafish, embryos were treated with an unnatural azide-bearing 

sugar to metabolically label cell-surface glycans, which were subsequently reacted to 

fluorescent alkyne conjugates at different time points.  This enabled spatiotemporal 

visualization of expression and trafficking of cell-surface glycans in vivo during 

development (Laughlin et al., 2008). 

Using a similar method, proteins can be labeled with noncanonical amino acids 

bearing novel side chains.  Noncanonical amino acids are amino acids that are not part of 

the canonical set of twenty used in translation by all living systems.  Some of these 

noncanonical amino acids can act as surrogates for naturally occurring amino acids, be 

charged onto wild-type tRNAs by endogenous aminoacyl-tRNA synthetases (aaRS) and 
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therefore be metabolically incorporated into newly synthesized proteins.  However, this is 

not a new area of research.  In the 1950s, Cowie and Cohen demonstrated that 

selenomethionine serves as an effective surrogate of methionine (Cowie and Cohen, 

1957).  Since then a number of different amino acids, including methionine, leucine, 

phenylalanine, and tryptophan, have been replaced by noncanonical amino acid analogs 

bearing bromo-, iodo-, cyano- and ethynyl- substituents and thereby allowing for 

investigation of how these novel side chains effect structure and function of labeled 

proteins (reviewed in Link et al., 2003). 

More recently, Tirrell and coworkers have established the use of the azide-bearing 

noncanonical amino acid azidohomoalanine (AHA) and the alkyne-bearing noncanonical 

amino acid homopropargylglycine (HPG) as surrogates for methionine in bacterial cells 

(Figure 1.1a) (Kiick et al., 2002; Link et al., 2004; Beatty et al., 2005). Azides and 

alkynes are stable under biological conditions, essentially absent from cellular 

environments and can be covalently linked via selective Cu(I)-catalyzed [3+2] azide-

alkyne cycloaddition (Figure 1.1b) (Rostovtsev et al., 2002; Tornøe et al., 2002), making 

them ideal candidates to label proteins.  Using this approach, Dieterich et al. developed 

the sister techniques bioorthogonal noncanonical amino acid tagging (BONCAT), and 

fluorescent noncanonical amino acid tagging (FUNCAT).  During BONCAT, proteins 

labeled with noncanonical amino acids are tagged using affinity tags to enable affinity 

purification, while FUNCAT utilizes fluorescent tags to enable visualization, and thereby 

localization, of newly synthesized proteins in mammalian cells (Dieterich et al., 2006, 

2007 and 2010).  
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Figure 1.1. Chemical structures and ‘click chemistry’ reaction scheme 
 
(a) Chemical structures of methionine, azidohomoalanine (AHA) and 
homopropargylglycine (HPG). (b) Scheme of Cu(I)-catalyzed of [3+2] azide-alkyne 
cycloaddition. 
 

Affinity-tagged proteins can be quantified using immunoblot analysis or separated 

from the preexisting proteome by affinity purification and identified by tandem mass 

spectrometry.  BONCAT has already been successfully applied to study the proteome of 

HEK293 cells during a two hour time window, allowing the identification of 195 newly 

synthesized proteins (Dieterich et al., 2006).  Fluorescent tags can be used to visualize 
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newly synthesized proteins, including those proteins of interest whose identities may not 

be known.  In this manner, FUNCAT has been used to investigate temporally defined 

protein populations in Rat-1 fibroblast (Beatty et al., 2006; Beatty and Tirrell, 2008) and 

local protein synthesis in dissociated hippocampal neurons and hippocampal slices 

(Dieterich et al., 2010).  Furthermore, metabolic AHA incorporation has been used to 

identify regions of the Drosophila genome that show high levels of histone turnover 

(Deal et al., 2010), to show that Chlamydia co-opt the functions of the lysosomes of their 

host cells to acquire essential amino acids (Ouellette et al., 2011), as well as to 

demonstrate that treatment of primary sensory neurons with the cytokine interleukin-6 or 

the neurotrophin nerve growth factor (NGF) increases nascent protein synthesis in axons 

(Melemedjian et al., 2010).  Recently, these techniques have also been used to show that 

the transmembrane receptor DCC may regulate protein synthesis in a localized manner 

within the cells, as DCC enrichment was found to mark areas of new protein synthesis at 

the tips of filopodia in commissural neurons (Tcherkezian et al., 2010).  

AHA and HPG are able to penetrate cell membranes, bind to methionyl-tRNA 

synthetase (MetRS) and be charged onto met-tRNAs in wild-type cells.  BONCAT and 

FUNCAT depend on this promiscuous nature of MetRS that enables the charging of these 

structurally similar methionine analogs and thereby their incorporation into newly 

synthesized proteins.  AaRS specificity is the most critical proofreading mechanism to 

ensure accurate translation of proteins from their respective mRNAs, as the ribosome 

lacks proofreading capabilities.   

AaRS catalyze the aminoacylation of their cognate tRNAs by activation of the 

amino acid by ATP, followed by transfer onto the 3’ end of the tRNA molecule.  The 
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recognition of the cognate amino acid by the aaRS is a multistep process. First, amino 

acids and ATP physically bind to aaRS to induce a conformational change in the aaRS 

that leads to the formation of the aminoacyl-adenylate complex.  Next, misactivated 

noncognate animoacyl-adenylate complexes are eliminated, followed by transfer of the 

aminoacyl group to the tRNA and pretransfer proofreading.  Finally some aaRS have 

sieve-type post-transfer proofreading capabilities to eliminate mischarged tRNAs.  Each 

of these steps leads to increased specificity for the cognate amino acid, while 

discriminating against the noncognate amino acid.   

MetRS is a member of the class I aaRS. Crystal structures are available of E. coli 

MetRS both with and without bound methionine (Mechulam et al., 1999 [PDB:1QQT]; 

Serre et al., 2001 [PDB:1F4L]).  From these structures, it has been determined that 

MetRS undergoes a significant conformational change upon binding its substrate, but 

apparently lacks a sieve-type proofreading mechanism.  This structural change is thought 

to be associated with the main proofreading step in the selective recognition of 

methionine (Datta et al., 2004).  Twelve amino acids are found within 4Å of bound 

methionine and are therefore predicted to be part of the catalytic binding pocket (Figure 

1.2).  These residues include L13, Y260 and H301.  Both the NH2 moiety and the sulfur 

atom of the side chain of methionine form hydrogen bonds with the L13 carbonyl oxygen 

atom and the L13 backbone amide, respectively.  The sulfur atom of the side chain of 

methionine forms another hydrogen bond with Y260, while the backbone of methionine 

makes electrostatic interactions with H301 (Fourmy et al., 1991; Ghosh et al., 1991).  

Most of the residues that are in close contact with the methionine are strictly conserved 

among MetRS of different bacterial organisms.  This is particularly the case for L13, 
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Y260, D52, W253, Y15, A256 and H301 (Serre et al., 2001).  Although, MetRS has been 

observed to be slightly promiscuous and has been seen to incorporate a variety of 

different noncanonical amino acid analogs, such as AHA (Kiick et al., 2001), the 

significant conformational change of the catalytic pocket after binding of methionine 

increases the specificity of MetRS for methionine.  This severely limits the chemical 

functionalities that can be introduced into newly synthesized proteins. 

 

 

Figure 1.2. The twelve amino acid residues of MetRS found within 4Å of bound 
methionine are predicted to be part of the catalytic binding pocket.  
 
(a) and (b) show two different orientations of MetRS (top) and its catalytic binding 
pocket (bottom). L13 is highlighted in red, Y260 and H301 are shown in orange and A12, 
P14, Y15, D52, V252, W253, A256, P257 and F300 are shown in yellow. The structure 
was first published by Serre et al., 2001; PDB:1F4L. 
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BONCAT and FUNCAT may be ideal techniques to visualize and identify 

effector proteins synthesized during memory formation. As opposed to genetically 

encoded fluorescent proteins, azides and alkynes are small, so labeling with AHA or 

HPG is likely to only cause modest, perhaps even insignificant, perturbations of protein 

folding and localization (Dieterich et al., 2006) and therefore function of the labeled 

proteins in vivo.  Furthermore, introduction of a chemical handle allows for affinity 

purification of newly synthesized proteins specifically.  As the nervous system proteome 

is extremely complex, reducing the complexity of the sample may facilitate the 

identification of proteins of low abundance.  However, so far, these techniques have only 

been applied in vitro.  Given the role of protein synthesis in learning and memory, 

described earlier, developing BONCAT and FUNCAT for use in an intact organism in 

which simple forms of learning may be investigated, such as the larval zebrafish, is the 

essential next step. 

 

 

The larval zebrafish as a model organism 

 

The zebrafish is a tropical sweet-water cyprinid found mainly on the Indian subcontinent, 

its range extending from Pakistan in the west to Myanmar in the east and Nepal in the 

north (Engeszer et al., 2007).  Adults live in shallow vegetated areas in rivers and small 

streams and are thought to feed mainly on insects and zooplankton, while they 

themselves are hunted by a variety of fishes including the snakehead (Channa) (Spence et 

al., 2008).  During the monsoon season, adults move to shallow flooded ponds, often 
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connected with rice cultivation, to spawn.  Adult zebrafish are about 4cm long, become 

sexually mature after about 3 months and females lay clutches of several hundred eggs in 

a single spawning.  They have been reported to survive temperature ranges from 6˚C to 

38˚C (Spence et al., 2008) in the wild, and are usually found in environments with a pH 

range of pH 7.9-8.2 (Engeszer et al., 2007).  

Due to their high fecundity, rapid development, relatively fast generation time, 

external fertilization and environmental robustness, the zebrafish has emerged as an 

important model organism for developmental genetics and biomedical research.  In the 

laboratory, a large number of zebrafish can be housed in a small area as a result of their 

social nature.  A number of companies sell customizable aquatic habitats that can self-

regulate temperature, pH, conductivity and water quality, greatly reducing maintenance 

time.  In captivity, females can spawn up to twice a week, laying large, optically 

transparent embryos.  Eggs are fertilized externally and adult zebrafish provide no 

parental care, enabling researchers to collect single cell embryos for genetic manipulation 

and developmental study.  Embryos develop rapidly; the first neurons can be identified 

approximately 24 hours post-fertilization (hpf) (Kimmel et al., 1995).  After 3 days post-

fertilization (dpf) larvae hatch; by 5dpf larvae are estimated to have 100,000 neurons and 

by 7dpf larvae, now approximately 5mm long, are capable of a diverse set of simple 

behaviors.  Interestingly, in zebrafish, all gonads originally develop as ovaries, which in 

males start maturing around 6-7 weeks post-fertilization and reach maturity after 

approximately three months (Devlin and Nagahama, 2002; Maak and Segner, 2003).  

Although the genetic mechanism of sex determination is unknown, evidence suggests a 

role for food availability and water temperature (Lawrence et al., 2007). Furthermore, 
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larval zebrafish can absorb a variety of small chemical compounds directly from their 

surrounding environment, making them amenable to chemical screens (Zhong and Lin, 

2011) and possibly noncanonical amino acid labeling techniques.  

Over the last 15 years a number of genetic tools have been developed, mainly to 

study larval zebrafish development, but also extremely useful in investigating neuronal 

circuit morphology and function.  The discovery and development of the Tol2 

transposable element, originally described in medaka fish, which has a very high rate of 

genomic integration in the germline, immensely facilitates the construction of stable 

transgenics (Kawakami, 2005; Suster et al., 2009).  DNA fragments of up to 10kb can be 

flanked with Tol2 sequences and co-injected with transposase mRNA into single-cell 

embryos to enable germline integration rates up to 50-70% (Suster et al., 2009).  Using 

this system, a large number of gene- and enhancer-trap constructs have been generated to 

study the expression, function and localization of a number of genes.   

More recently, Tol2 was used to create transgenic zebrafish for targeted gene 

expression in specific tissues and cells using the binary Gal4-UAS system (Figure 1.2.).  

Gal4 is a yeast transcriptional activator which can bind to its cognate upstream activating 

sequence (UAS) to activate transcription of target genes.  The Gal4-UAS system can be 

used as a two-component gene expression system in a number of different model animals, 

including the zebrafish (Sheer and Campos-Ortega, 1999; Köster and Fraser, 2001).  Two 

transgenic lines are created: one expressing the Gal4 sequence under the control of a cell-

type-specific promoter (termed driver line), the other expressing a gene of interest, such 

as GFP, under the control of the UAS promoter (termed the responder line).  Crossing 

driver lines with responder lines allows for expression of a variety of genes of interest 
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(determined by the responder line) in a variety of specific cells or tissues (determined by 

the driver line).  

 

 
Figure 1.3. The binary Gal4-UAS gene expression system 
 
Crossing Gal4 driver lines with UAS responder lines allows for expression of a variety of 
genes of interest (determined by the UAS responder line) in a variety of specific cells or 
tissues (determined by the Gal4 driver line).  [Adult zebrafish schematic adapted from 
Smith and Croll, 2011.] 
 

Recently, large enhancer-trapping screens have led to the creation of hundreds of 

nervous system-specific Gal4 driver lines with different, sometimes cell-type-specific 

expression patterns (Davison et al., 2007; Scott et al., 2007; Asakawa et al., 2008).  

Furthermore, a variety of different responder lines now allow for the visualization of 

expression using fluorescent proteins (Scott et al., 2007; Asakawa et al., 2008), targeted 

cell ablation using NTR system or KillerRed (Davidson et al., 2007; Del Bene et al., 

2010), light-gated control of neuronal activity using engineered ion channels (Szobota et 
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al., 2007; Janovjak et al., 2010) and inhibition of neurotransmitter release by tetanus 

toxin light chain (Asakawa et al., 2008), making this binary system extremely useful for 

studying nervous system development and function (reviewed in Asakawa and 

Kawakami, 2009).  Furthermore, pigment mutants lacking melanophores, such as the 

nacre line, have been identified in mutant screens, enabling direct imaging of the larval 

zebrafish nervous system in intact animals (Lister et al., 1999). 

Despite some obvious differences in size and complexity of certain structures of 

the zebrafish brain, the overall organization of the major brain components is comparable 

to that of the mammalian brain (Tropepe and Sive, 2003).  Furthermore, as in other 

vertebrates, zebrafish possess all of the classical senses (vision, olfaction, taste, tactile, 

balance and hearing) and their sensory pathways share an overall homology with 

mammals.  However, in mammals the telencephalon undergoes evagination during 

development, while in teleost fish such as the zebrafish, the telencephalon is everted.  As 

a result, the hippocampus, which in mammals is structurally derived from the medial part 

of the dorsal telencephalon, is thought to be structurally homologous to the dorsal lateral 

telencephalon in zebrafish.  In contrast, the amygdala, which is a lateral structure in 

mammals, is thought to be structurally homologous to the dorsal medial telencephalon in 

zebrafish (Broglio et al., 2005).   

Despite differences in location, a number of lesion studies in the closely related 

goldfish have demonstrated that lesions of the dorsal lateral telencephalon result in 

deficits in tasks that, in mammals, rely on the hippocampus, such as spatial learning and 

trace classical conditioning, but do not affect hippocampus-independent delay 

conditioning and heart-rate conditioning. In contrast, lesions of the dorsal medial 
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telencephalon disrupt amygdala-dependent emotional, heart-rate conditioning and 

avoidance conditioning, but spare spatial memory and temporal stimulus processing 

(Vargas et al., 2006; Saito and Watanabe, 2006; Salas et al., 1996; Overmier and Papini, 

1986; Portavella et al., 2004a; Portabella et al., 2004b; Portavella et al., 2002; reviewed in 

Broglio et al., 2005).  Gross similarity in brain structure and identification of homologous 

areas involved in memory storage indicate that this simple vertebrate, the zebrafish, is 

more comparable to humans than invertebrate models such as Drosophila and C. elegans 

and therefore a preferable model organism to investigate neuronal circuits underlying 

behavior.  

Not only are zebrafish easily maintained, genetically tractable, simple vertebrates, 

they also have an extensive behavioral repertoire.  Adults show a range of complex and 

well-described social behaviors including courtship (Darrow and Harris, 2004), shoaling, 

aggression and dominance (Larson et al., 2006), escape and avoidance (reviewed in 

Colwill and Creton, 2011) and exploratory behaviors (reviewed in Spence et al., 2008).  

Some simple behaviors develop early and can be observed during the first week of 

development.  The spontaneous locomotor repertoire of the larval zebrafish includes 

routine turns and slow scoots, while they produce a well-characterized C-bend escape 

response to escape from threatening stimuli (Budick and O’Malley, 2000).  Even before 

hatching from the chorion, larvae begin to show startle responses when exposed to abrupt 

stimuli.  By 4dpf larvae will induce rapid escape responses to tactile stimuli (Granato et 

al., 1996; McLean and Fetcho, 2009), water flow (Froehlicher et al., 2009; Kohashi and 

Oda, 2008) and visual stimuli (Emran et al., 2008); by 5-6dpf larvae will respond to 

acoustic stimuli (Burgess and Granato, 2007).  Between 4-5dpf larvae will begin to 
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follow moving objects with their eyes, a behavior that is referred to as the optokinetic 

response (OKR) and by 5dpf larvae are actively hunting for food (Neuhauss, 2003).  

Furthermore, larvae have been shown to swim in the same direction as a pattern of 

moving stripes, a behavior that is called the optomotor response (OMR) (Fleisch and 

Neuhauss, 2006) and display diurnal rhythms in activity (Prober et al., 2006).   

Memory and learning capabilities of the zebrafish have been extensively explored 

in the adult.  In the last decade, a number of conditioning paradigms have been 

developed, including avoidance-conditioning (Ng et al., 2012; Blank et al., 2009; Xu et 

al., 2006; Pradel et al., 2000; Pradel et al., 1999), place-conditioning (Mathur et al., 

2011), plus maze learning (Sison and Gerlai, 2010) and shuttle box conditioning 

(Williams et al., 2002).  These paradigms use food and social rewards (Al-Imari and 

Gerlai, 2007), as well as mild electroshock and exposure to alarm signal as unconditioned 

stimuli and visual, olfactory (Braubach et al., 2009) and acoustic stimuli as conditioned 

stimuli.  However, very few conditioning paradigms exist for the larval zebrafish to date.   

The first study investigating the learning capabilities of larval zebrafish showed 

that larvae can learn to habituate to an acoustic stimulus (Best et al., 2008).  In this non-

associative conditioning paradigm, 7dpf larvae individually placed in 96-well plates and 

repeatedly exposed to an acoustic stimulus exhibited an iterative reduction in startle 

response, which spontaneously recovered and showed dishabituation when exposed to a 

visual stimulus.  This work was extended upon by the Wolman and colleagues, who 

showed that spaced training blocks of repetitive visual stimuli elicit protein synthesis-

dependent long-term habituation in larval zebrafish, lasting up to 24h (Wolman et al., 

2011).  Finally, previous studies from our laboratory demonstrated that 6-8dpf larval 
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zebrafish can be associatively conditioned (Aizenberg and Schuman, 2011).  Trained 

using an hour-long classical conditioning paradigm, larvae rapidly developed an 

enhanced motor response to a visual stimulus when it was paired with a tactile stimulus.  

Memory retention, in this very labor-intensive paradigm, is unfortunately not long term 

and decays to baseline within 1hr of acquisition.  To enable visualization and 

identification of proteins newly synthesized with memory formation using bioorthogonal 

protein labeling techniques in the larval zebrafish, a high throughput, protein synthesis-

dependent conditioning paradigm needs to be established. 

To conclude, the larval zebrafish is an excellent model organism, as it is a 

genetically tractable, simple vertebrate which is transparent and therefore ideal for 

imaging. Furthermore, adult zebrafish, as well as larval zebrafish, have a well-defined 

behavioral repertoire (Colwill and Creton, 2012), and the range of experimental 

paradigms to test this has recently been expanded to include associative conditioning 

(Aizenberg and Schuman, 2011).  Larval zebrafish can absorb small chemical compounds 

directly from their surrounding environment, all of which makes them not only amenable 

to chemical screens and an emerging human disease model, but also an excellent system 

in which to study the applicability of bioorthogonal metabolic labeling of newly 

synthesized proteins underlying memory formation in vivo. 

 

 

Memory formation, thought to depend on physical changes at specific synapses, has been 

conclusively shown to be protein synthesis-dependent.  However, a majority of proteins 

regulated with memory formation to bring about these changes in signaling cascades and 
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synaptic structure have most likely not yet been identified.  Furthermore, although it is 

well established that the mammalian hippocampus is necessary for memory formation, 

precisely which neuronal circuits and how many neurons are involved has not been 

investigated using an unbiased approach. In this study we show that the bioorthogonal 

metabolic labeling techniques BONCAT and FUNCAT can be applied in vivo to 

visualize and affinity purify newly synthesized proteins of the larval zebrafish.  We 

explore the possibility of genetically restricting metabolic labeling via selective 

expression of a mutant MetRS and demonstrate that larval zebrafish can undergo protein 

synthesis-dependent place-conditioning.  Thus, we have developed the tools necessary to 

monitor changes in protein synthesis in the larval zebrafish nervous system and therefore 

possibly identify neuronal circuits involved in long-term memory formation.  

Furthermore, the techniques described here could be paired to facilitate the identification 

of effector proteins that are necessary for the physical changes underlying memory 

formation.   
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Chapter II 
 
 

NONCANONICAL AMINO ACID LABELING IN VIVO TO VISUALIZE AND 
AFFINITY PURIFY NEWLY SYNTHESIZED PROTEINS IN LARVAL ZEBRAFISH 
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Introduction 

 

Long-term memory formation requires new protein synthesis.  Understanding what 

physical changes within the nervous system underlie learning and memory, specifically 

what neuronal circuits are involved and what proteins are newly synthesized during 

memory formation, are major goals in modern neuroscience.  However, the identification 

of newly synthesized proteins has been sparse and limited to individually identified 

candidate proteins.  Advances in mass spectrometry-based approaches now permit the 

characterization and quantification of proteins, especially when paired with approaches 

such as stable isotope labeling with amino acids in cell culture (SILAC) (Ong et al., 

2002), which allow for comparative quantification between proteomes of differentially 

stimulated cell populations.  However, the proteome of the nervous system is complex 

and without a chemical handle to enable affinity purification of the newly synthesized 

proteins specifically, proteins of low abundance will likely be missed.  

In addition, the identification of cells or neural circuits that show increased 

protein synthesis in response to memory formation would allow us to understand the 

components of memory circuits that undergo long-term modifications after learning.  

Genetically encoded fluorescent tags, such as GFP, have revolutionized cell biology by 

permitting visualization of fusion proteins of interest in vivo (Tsien, 1998).  However, the 

size of GFP and the requirement for genetic manipulation of the target protein may 

interfere with its endogenous function, while at the same time only permitting 

investigation of a small number of candidates at once.   
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Recently, new techniques for labeling a variety of molecules based on the 

principle of bioorthogonal metabolic labeling have been developed (Best, 2009).  Here, 

small functional groups that are commonly absent from the cellular environment, most 

prominently ketones and azides or alkynes, are introduced using the cells’ own synthetic 

machinery. BONCAT (Dieterich et al., 2006; Dieterich et al., 2007) and FUNCAT 

(Dieterich et al., 2010), two such techniques, have been used to tag and identify or 

visualize newly synthesized proteins, respectively. BONCAT and FUNCAT utilize 

noncanonical methionine derivatives, such as the azide-bearing AHA, to bioorthogonally 

label newly synthesized proteins.  AHA can cross cell membranes and be charged onto 

methionine tRNAs by the endogenous MetRS.  During protein synthesis, AHA is 

introduced in place of methionine, resulting in the introduction of azide groups into the 

newly synthesized proteins.  These azide groups can be used to tag proteins with either an 

alkyne affinity tag (BONCAT) or an alkyne fluorescent tag (FUNCAT) via selective 

Cu(I)-catalyzed or strain-promoted [3+2] azide-alkyne cycloaddition (Rostovtsev et al., 

2002; Tornøe et al., 2002; Agard et al., 2004). Affinity-tagged proteins can be quantified 

using immunoblot analysis or separated from the pre-existing proteome by affinity 

purification and identified by tandem mass spectrometry.  Fluorescent tags can be used to 

visualize newly synthesized proteins, including those proteins of interest whose identities 

may not be known.   Alternatively, the alkyne moiety may also be introduced into newly 

synthesized proteins by replacing methionine with the noncanonical amino acid 

homopropargylglycine (HPG) and subsequently labeled using azide-bearing affinity or 

fluorescent tags. Azides and alkynes are small, so labeling with AHA or HPG is likely to 

only cause modest, perhaps even insignificant, perturbations of protein folding, 
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localization (Dieterich et al., 2006) and therefore function of the labeled protein in vivo.  

Furthermore, azides and alkynes are stable under biological conditions and essentially 

absent from vertebrate cells, which makes the azide-alkyne ligation (‘click chemistry’) 

very selective.   

BONCAT and FUNCAT techniques have already successfully been applied to 

study changes in protein synthesis in a variety of different in vitro systems in order to 

investigate a diverse set of biological questions, as described in the introduction. 

However, given the role of protein synthesis in learning and memory, developing 

BONCAT and FUNCAT for use in an intact organism in which simple forms of learning 

may be investigated is the essential next step.   

In this chapter we describe the application of these techniques in vivo, in the 7-

day-old larval zebrafish.  We show that AHA is metabolically incorporated into newly 

synthesized proteins, in a time- and concentration-dependent manner, but has no apparent 

toxic effects and does not influence simple behaviors. This enables fluorescent labeling 

of newly synthesized proteins in whole-mount larval zebrafish.  Furthermore, we find that 

stimulation with the GABA antagonist, pentylenetetrazole (PTZ), causes an increase in 

protein synthesis throughout the proteome, which can also be visualized in intact larvae. 

 

 

Application of BONCAT and FUNCAT techniques to larval zebrafish 

 

The BONCAT and FUNCAT protocols were adapted to larval zebrafish (Figure 2.1a).  

All larvae, unless otherwise noted, were analyzed at 7dpf.  We incubated larvae in E3  



 
 

28 

 

 

Figure 2.1. Labeling of newly synthesized proteins for quantification, affinity 
purification (BONCAT) and visualization (FUNCAT) in larval zebrafish 
 
Scheme depicting metabolic labeling of newly synthesized proteins in 7-day-old larval 
zebrafish using AHA incorporation and Cu(I)-catalyzed [3+2] azide-alkyne 
cycloaddition.  TCEP, tris(2-carboxyethyl)phosphine. 
 

embryo medium supplemented with the methionine surrogate AHA (Figure 2.1b) for a 

period of 0-72h immediately prior to harvesting, with the aim of incorporating the azide 

group into newly synthesized proteins throughout the zebrafish proteome.  To quantify 

successful incorporation of AHA into protein, larvae were washed, anesthetized, 

homogenized and the resulting lysate was reacted with biotin-alkyne in the presence of 

CuBr and the triazole ligand (see Methods).  This allowed for detection and 

quantification of newly synthesized biotin-labeled proteins using immunoblot analysis or 

for affinity purification of the newly synthesized proteins (BONCAT).  To visualize 

newly synthesized proteins following AHA exposure, larvae were washed, anesthetized, 
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fixed and permeabilized. Whole mounted larval zebrafish were reacted with AlexaFluor-

488-alkyne in the presence of CuSO4, the reducing agent tris(2-carboxyethyl)phosphine 

(TCEP) and the triazole ligand, before being imaged using a confocal microscope 

(FUNCAT).  This allowed for visualization of new protein synthesis in the intact larval 

zebrafish. 

 

 

Incubation with AHA is not toxic to larval zebrafish and does not alter simple behaviors 

 

Previously, Dieterich et al. showed that metabolic labeling of mammalian cell culture 

with AHA does not alter global protein synthesis rates or promote ubiquitin-mediated 

degradation, indicating that AHA incorporation does not cause severe protein misfolding 

or degradation (Dieterich et al., 2006).  To ensure that incubation and incorporation of 

AHA into newly synthesized proteins is not toxic to the living animal, larvae were 

exposed to E3 embryo medium supplemented with 0 to 20mM AHA, or 10mM 

methionine, for 6 to 72h.  Larvae were scored as healthy if after incubation they were still 

responsive to light touch.  No significant toxic effects were observed when larvae were 

incubated with 1-10mM AHA, even after 72h incubations (Figure 2.2a).  Only 

incubations with extremely high (20mM) concentrations of AHA were toxic, beginning 

around 24h after onset of incubation.  This indicates that incubation with low-to-

moderate concentrations of AHA, even over extended periods of time, is not toxic to the 

living animal.  In the remainder of the studies reported here concentrations < 4mM AHA 

were used. 



 
 

30 

 

 

Figure 2.2. At low concentrations, AHA exposure is not toxic and does not significantly 
alter simple behaviors.  
 
(a) Survival rate of 7-day-old larval zebrafish when incubated with AHA (0 to 20mM, 6 
to 72h) or methionine (10mM, 6 to 72h), n=20. (b) Quantification of spontaneous 
swimming behavior of larval zebrafish after AHA incubation (4mM, 0 to 48h).  
Percentage of larvae that show no spontaneous swimming behavior per 15 minute 
interval.  Mean swimming bursts per 15 minute interval, n = 10-12.  Differences are not 
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statistically significant. (c) Traces depicting the angle of eye rotation during a typical 
optokinetic response after AHA incubation (4mM, 0h to 48h). (d) Sample startle response 
upon light flash after AHA incubation (4mM, 24h). (e) Mean response percentage to light 
or dark flash after AHA incubation (4mM, 0 to 48h), n=5 larvae, flashed three times 
each. Error bars represent standard deviation of response percentage. Differences are not 
statistically significant. (f) Mean delay in response to light or dark flash after AHA 
incubation (4mM, 0 to 48h), n=5 larvae, flashed three times each. Error bars represent 
standard deviation of response time. Differences are not statistically significant. 
 

 

Next, we explored whether incorporation of AHA causes changes in simple 

behaviors.  We conducted a series of behavioral tests after incubation in E3 medium 

supplemented with 4mM AHA, for 0-48h.  First we investigated spontaneous swimming 

behavior.  7-day-old larval zebrafish were incubated in 4mM AHA for 0-48h prior to 

observation, and then placed individually into a 1-cm-by-7.5 cm swimming chamber 

(Figure 2.3) and their spontaneous swimming bouts were recorded for a period of 15 min. 

Sample traces of spontaneous swimming behavior are depicted in Figure 2.3. There was 

no significant difference in the number of individual spontaneous swimming bouts 

initiated between 48h AHA-incubated, 24h AHA-incubated and control larvae, although 

there was a small, not significant decrease in the 48h and 24h AHA groups as compared 

to the control group (Figure 2.2b). There was also no difference in the number of AHA 

incubated and control larvae that failed to exhibit spontaneous swimming bouts during 

the 15 minute trial period (Figure 2.2b). 

To study whether AHA incubation causes deficits in visual tracking, 7-day-old 

larvae were tested for the optokinetic response (Huang and Neuhauss, 2008) after 

incubation in 4mM AHA for 24-48h.  Larvae were immobilized in 0.4% low-melting-

point agarose in a circular array of LEDs, which delivered a spot of white light that 

moved in a horizontal plane around the immobilized larvae.  Similar to control larvae,  
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Figure 2.3. Tracks of spontaneous swimming behavior of 7-day-old larval zebrafish with 
AHA incubation (4mM, 0 to 48h), indicating that spontaneous swimming behavior is not 
altered by prolonged AHA incubation.  15min interval; frame captured every 10s.  
 

AHA-incubated larvae were able to track the light stimulus, producing smooth tracking 

eye movements and rapid saccades (Figure 2.2c), indicating that neither visual acuity nor 

neural circuits underlying visual tracking behavior seem to be affected by prolonged 

incubation with 4mM AHA.  To further test whether AHA incubation altered visual 

acuity and simple reflexive behaviors, we tested the animal’s startle response to light 

flash and dark flash.  Larvae were placed in a circular array of LEDs, which delivered 

either a light flash or a dark flash while the response of the larva was monitored. Figure 

2.2d shows a representative startle response to a light flash in an animal following a 24h 

incubation with 4mM AHA.  The larva is clearly exhibiting a stereotypical C-bend escape 

response (Kimmel et al., 1974) indicating that AHA has no effect on the motor function 

associated with escape behavior.  Furthermore, incubation with 4mM AHA for 24-48h 

did not alter the percentage of larval zebrafish that responded to either light or dark flash 

(Figure 2.2e) nor did it affect the delay in response to either light or dark flash (Figure 

2.2f).  Therefore, we conclude that AHA incorporation is not toxic and has no effects on 
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simple behaviors at low concentrations (4mM), even over prolonged incubation periods, 

making it suitable for labeling newly synthesized proteins in vivo. 

 

 

AHA is metabolically incorporated in larval zebrafish 

 

To determine whether AHA is metabolically incorporated into newly synthesized 

proteins, we tagged lysates prepared from larval zebrafish incubated for 0-72h with 4mM 

AHA with biotin-alkyne in the presence of the Cu(I) catalyst.  Subsequent dot blot 

analysis with a biotin antibody revealed successful incorporation of AHA into proteins in 

an incubation-time dependent manner.  A sample dot blot is shown in Figure 2.4a, along 

with quantification of several experiments.  After only a 6h incubation period with E3 

embryo medium supplemented with 4mM AHA, statistically significant (p<0.005) AHA 

incorporation could be detected.  After 24h, 48h and 72h incubations, approximately 

140ng (±8ng), 375ng (±34ng) and 699ng (±72ng) of biotinylated protein were detected 

per homogenized larva, respectively. The total soluble protein per larva under the 

experimental conditions we used was 6.38µg (±0.53µg).  From this we can estimate that 

24h, 48h or 72h incubation with 4mM AHA leads to labeling and tagging of 

approximately 2.2%, 5.9% and 10.9%, respectively, of the total soluble protein per larval 

zebrafish. However, as different proteins may show different levels of AHA 

incorporation, and therefore different biotin signal strength, the analysis given here 

should be regarded as semi-quantitative.  
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Figure 2.4. AHA is metabolically incorporated into larval zebrafish proteins in vivo.  



 
 

35 

Labeling is both incubation time- and protein synthesis-dependent. Sample immunoblot 
and quantification of immunoblots of lysates from AHA-treated 7-day-old larval 
zebrafish reacted with biotin-alkyne (10µM) for 12h, probed with antibody against biotin. 
(a) Larval zebrafish were incubated with 4mM AHA for 0 to 72h, n=4 (b) Larval 
zebrafish were incubated with AHA (0 or 4mM) or 4mM AHA in the presence of 
puromycin (2.5µg/ml to 10µg/ml) for 48 h, n=3. ***p<0.001. 
 
 

To verify the specificity of AHA incorporation into newly synthesized proteins, 

we incubated larval zebrafish in E3 embryo medium supplemented with AHA along with 

low concentrations of the protein synthesis inhibitor puromycin.  These very low 

concentrations of PSI did not have a toxic effect on larval zebrafish (data not shown).  

Although abundant biotin signal was detected in lysates of larval zebrafish incubated with 

AHA only, no signal was detected when larval zebrafish were incubated without AHA, 

and a significantly lower signal was detected when larval zebrafish were incubated in 

AHA in the presence of puromycin (Figure 2.4b).   Furthermore, when the concentration 

of PSI in the incubation medium was increased from 2.5µg/ml to 5µg/ml, a significant 

decrease in AHA-labeled and biotinylated proteins was observed.  However, no further 

decrease was observed when the PSI concentration was further increased to 10µg/ml.   

The above results confirm that BONCAT labels newly synthesized proteins with 

high specificity in the larval zebrafish. In addition, we observed that AHA incorporation 

in larval zebrafish scales non-linearly with incubation time (Figure 2.4a) and we assume 

that an incorporation plateau would be reached after even longer incubation periods.  

Also, labeling was AHA concentration-dependent (Figure 2.5).  While no signal was 

detected when 4-day-old larval zebrafish were incubated with 0mM AHA, increasing the 

concentration of AHA in the incubation medium from 1mM to 4mM resulted in a 

detectable signal increase.  Furthermore, AHA was incorporated not only into a few 
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select proteins, but into a large variety of newly synthesized proteins throughout the 

proteome over time, as is shown by the abundance of protein bands on the western blot of 

affinity purified biotinylated proteins from whole larval zebrafish lysates reacted with the 

biotin-alkyne and probed against biotin (Figure 2.6a).   Biotin signal detected in the 

samples not incubated with AHA are likely a result of endogenous biotinylation. 

 

 

 

Figure 2.5. Metabolic labeling is AHA concentration-dependent.  
 
Immunoblot of lysates from 4-day-old larval zebrafish reacted with biotin-alkyne (10µM) 
for 12h, probed with an antibody against biotin.  Larval zebrafish were incubated with 0 
to 4mM AHA for 48h. 
 

To examine whether AHA is also incorporated into newly synthesized proteins in 

deeper structures such as the nervous system, we incubated 4-day-old transgenic 

HuC::GFP larval zebrafish with 4mM AHA for 48h. HuC encodes an RNA-binding 

protein that serves as an excellent early marker for differentiating neurons and the 

HuC::GFP line is a stable zebrafish transgenic line in which GFP is expressed 
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specifically in neurons (Park et al., 2000).  With the exception of a few cells in the 

olfactory pit and the lateral line, the majority of these neurons are not surface structures. 

As before, whole zebrafish lysates were labeled with the biotin-alkyne, affinity purified, 

and then analyzed using western blot probed against GFP.  Only in the sample that was 

incubated in 4mM AHA for 48h were we able to affinity purify AHA-labeled, biotin-

tagged GFP, indicating that AHA is not only incorporated into newly synthesized 

proteins in surface structures of the larval zebrafish, but also in the nervous system, the 

sole area of GFP expression in the HuC::GFP transgenic line (Figure 2.6b). 

 

 

 

Figure 2.6. AHA incorporation occurs throughout the proteome.  
 
(a-b) Western blot analysis of biotin affinity-purified lysates of larval zebrafish incubated 
with 4mM AHA for 0 to 72h. (a) Probed with an antibody against biotin. (b) HuC::GFP 
larval zebrafish lysates probed with an antibody against GFP. 
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Newly synthesized proteins can be visualized in whole-mount larval zebrafish 

 

We next optimized the labeling and reaction conditions to maximize specific 

visualization of newly synthesized proteins (FUNCAT) in the intact larval zebrafish.  For 

this purpose we used the mutant zebrafish line nacre, which lacks melanophores 

throughout development (Lister et al., 1999) and thus is relatively transparent and ideal 

for imaging.  Larval zebrafish were, as before, incubated in E3 medium supplemented 

with 4mM AHA for 0-72h.  Larvae were anesthetized, fixed, and permeabilized before 

whole mount samples were reacted with 5µM AlexaFluor-488-alkyne, in the presence of 

CuSO4, TCEP and the triazole ligand at room temperature overnight.  After several 

washes in PBDTT buffer, samples were immobilized in 0.4% agarose and imaged using a 

confocal microscope.  

Incubation of larval zebrafish with 4mM AHA followed by reaction with Alexa-

488-alkyne resulted in an incubation time-dependent fluorescent labeling of newly 

synthesized proteins throughout the larval zebrafish (Figure 2.7a).  Low fluorescent 

signals, especially in the muscles of the tail, could be detected after as little as 12h 

incubation with AHA.  Other structures, including the brain, spinal cord, liver, intestines 

and heart could be readily visualized after 24h incubation with AHA.  Specifically, 

sensory organs such as the neuromasts of the lateral line (indicated by arrow heads in 

Figure 2.7a, 72h incubation dorsal view panel) and the olfactory pit (Figure 2.7c) seem to 

be areas of especially high levels of fluorescence.  Furthermore, deeper structures such as 

the optic tectum, cerebellum (Figure 2.7b), and the spinal cord (Figure 2.7d) are not only 

readily labeled and tagged using the AlexaFluor-488 alkyne, but show differences in  
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Figure 2.7.  Newly synthesized proteins can be visualized in whole-mount larval 
zebrafish after in vivo labeling.   
 
Labeling is both incubation time- and protein synthesis-dependent. (a) 7dpf larval 
zebrafish were metabolically labeled with 4mM AHA for 0 to 72h prior to fixation and 
reacted with 5µM AlexaFluor-488-alkyne tag for 12h.  Left panel, lateral view; right 
panel, dorsal view.  Arrowheads indicate neuromasts of the lateral line. (b-d) 7-day-old 
larval zebrafish labeled with 4mM AHA for 48h imaged at higher magnification.  Dorsal 
views of (b) optic tectum and cerebellum, (c) olfactory pits, (d) dorsal cross-section of 
tail, showing tail muscles and spinal cord. Arrows indicate potential DRG neurons. Scale 
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bar in (a), 150µm; in (b-e), 20µm.  (e) Larval zebrafish were metabolically labeled with 
4mM AHA for 0h, 48h or 48h in the presence of 5µg/ml puromycin.  Dorsal view, scale 
bar is 100µm, n=5. 
 

fluorescence intensity on the cellular level.  In the case of the spinal cord, we believe this 

population of brightly labeled cells corresponds to dorsal root ganglion (DRG) neurons 

(An et al., 2002) (Figure 2.7d, as indicated by arrows).  To verify that the fluorescent 

signal observed in the above experiments represents incorporation of AHA into newly 

synthesized proteins, larval zebrafish were incubated in E3 medium containing 4mM 

AHA in the presence of 5µg/ml puromycin (Figure 2.7e).  In agreement with previously 

described results from lysates, abundant fluorescent signal was detected in whole mounts 

of larval zebrafish incubated with AHA only, while no signal was detected when larval 

zebrafish were incubated without AHA, and only background signal was detected when 

larval zebrafish were incubated in AHA in the presence of puromycin. These results 

suggest that FUNCAT may be used to visualize regions of protein synthesis, specific 

cells or groups of cells that are metabolically active, during the AHA incubation window 

in intact larval zebrafish. 

The identification of these metabolically active cells or groups of cells may be 

facilitated by FUNCAT/antibody co-labeling. Antibody staining in whole-mount larval 

zebrafish has previously been described (Nüsslein-Volhard and Dahm, 2002) and can be 

used to visualize cell morphology, as well as characterize specific subpopulations of cells 

based on the expression of marker proteins.  However, it was unclear whether the 

FUNCAT signal would be stable enough to withstand the further sample processing 

required for concurrent antibody staining.  To investigate this, we probed the whole-

mount larval zebrafish with an antibody specific to parvalbumin, a calcium-binding 
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albumin localized in fast-contracting muscles and GABAergic neurons, such as the 

Purkinje cells of the cerebellum (Schwaller et al., 2002) after the FUNCAT reaction.  

Larval zebrafish were incubated in E3 medium supplemented with 4mM AHA for 0h or 

72h.  Following the previously described FUNCAT procedure, samples were probed with 

parvalbumin primary antibody overnight, washed with PBDTT and incubated with 

AlexaFluor-488 secondary antibody overnight.  After several washes in PBDTT buffer, 

samples were immobilized in 0.4% agarose and imaged using a confocal microscope, as 

before.   

Visualization of highly metabolically active cells via FUNCAT can be combined 

with antibody staining to identify these cells in whole-mount larval zebrafish.  When 

paired with antibody staining, larval zebrafish incubated without AHA (Figure 2.8a) 

showed no FUNCAT signal, while larval zebrafish incubated with 4mM AHA for 72h 

showed strong FUNCAT signal (Figure 2.8b). Fluorescent signal from parvalbumin 

antibody staining, however, remained constant, indicating that metabolic labeling with 

AHA does not interfere with antibody specificity or development and differentiation of 

specific cell types.  Co-labeling with FUNCAT and parvalbumin antibody allows for 

identification for Purkinje cells of the cerebellum (Figure 2.8c) and GABAergic neurons 

in the telencephalon (Figure 2.8d), fast-spiking muscle cells in the pectorial fin (Figure 

2.8e) as well as GABAergic interneurons in the hindbrain (Figure 2.8f) and spinal cord 

(Figure 2.8g), while at the same time enabling visualization of relative amounts of new 

proteins synthesis in these cells.  Areas of new protein synthesis can be visualized either 

with AlexaFluor-488-alkyne concurrently with antibody staining using AlexaFluor-594 

secondary (Figure 2.8a-e) or vice versa (Figures 2.8f-g), where newly synthesized 
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proteins are labeled with AlexaFluor-488-alkyne while parvalbumin presence is detected 

using AlexaFluor-488 secondary.  These results demonstrate that FUNCAT can be 

combined with antibody labeling in whole-mount larval zebrafish to help identify 

metabolically active cells. 

 

 

Figure 2.8. FUNCAT can be combined with antibody staining to identify specific cell 
populations in the whole-mount larval zebrafish.  
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Larval zebrafish were metabolically labeled with 0mM (a) or 4mM AHA (b) for 72h 
prior to fixation, reacted with 5µM AlexaFluor-488-alkyne for 12h and then probed with 
primary antibody against parvalbumin and AlexaFluor-594 secondary antibody. (c-e) 7-
day-old larval zebrafish labeled with 4mM AHA for 72h (green signal; AlexaFluor-488-
alkyne), probed against parvalbumin (red signal; AlexaFluor-594 secondary), imaged at 
higher magnification.  Dorsal view of Purkinje cells of the cerebellum (c); dorsal view of 
GABAergic neurons in telencephalon (d); lateral view of pectoral fin (e).  (f-g) 7-day-old 
larval zebrafish labeled with 4mM AHA for 72h (AlexaFluor-594-alkyne tag), probed 
against parvalbumin (AlexaFluor-488 secondary), imaged at higher magnification. 
Lateral view of hindbrain and caudal spinal cord (f); dorsal view of dorsal cross-section 
of tail, showing tail muscles and spinal cord, as well as GABAergic interneurons.  Scale 
bar in (a-b) is 100µm; in (c-f), 10µm. 
 
 

FUNCAT and BONCAT can be used to detect changes in protein synthesis with chemical 

stimulation in larval zebrafish 

 

To further investigate whether BONCAT and FUNCAT can be used to identify changes 

in protein synthesis in vivo, larval zebrafish were exposed to PTZ, a GABAergic receptor 

antagonist that induces epileptic-like neuronal discharges and seizure-like behaviors in 

rodents and zebrafish (Baraban et al., 2005; Baraban et al., 2007; Naumann et al., 2010).  

It has been shown that exposure to PTZ induces expression of immediate early genes in 

larval zebrafish (Baraban et al., 2005), and leads to changes in postsynaptic GABA 

receptor expression (Brooks-Kayal et al., 1998) and hilar neurogenesis (Parent et al., 

1997) in rodents.   

Larval zebrafish were exposed to 15mM PTZ for two two-hour periods, 24h and 

6h before anesthesia while, being incubated in 4mM AHA for 30h. The amount of 

biotinylated protein per larva was detected using dot blot analysis, as previously 

described.  We observed a significant increase in the amount of biotinylated protein in 

larval zebrafish exposed to PTZ during AHA incubation, as compared to larvae that were  
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Figure 2.9. The GABA antagonist PTZ induces increased protein synthesis in larval 
zebrafish.  
 
(a) Sample immunoblot and quantification of immunoblots of lysates from 7-day-old 
larval zebrafish reacted with biotin-alkyne tag (10µM) for 12h, probed with antibody 
against biotin.  Zebrafish were incubated with 4mM AHA (0h or 30h) or with 4mM AHA 
for 30h as well as 15mM PTZ for two periods of 2h, at 20h and 6h before harvesting, 
n=3. ***p<0.001. (b) Western blot of biotin affinity-purified lysates of zebrafish 
incubated with 4mM AHA for 30h with or without 4h 15mM PTZ exposure. (c) Imaging 
of 7-day-old larval zebrafish after 48h 4mM AHA incubation with or without 4h 15mM 
PTZ exposure, reacted with AlexaFluor-488-alkyne (5µM, 12h); dorsal view. Scale bar is 
150µm; n=6. 
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not exposed to PTZ (Figure 2.9a), indicating that PTZ induces an increase in protein 

synthesis.  This increase in biotinylated protein signal is not specific to one or a few 

protein bands, but seems to be the result of a general increase of protein synthesis 

throughout the proteome, as detected by western blot analysis of affinity-purified samples 

(Figure 2.9b).  Furthermore, using the FUNCAT technique, we were able to visualize an 

increase in fluorescent signal in the brain and tail muscles in larval zebrafish that had 

been incubated in 4mM AHA for 48h and exposed to 15mM PTZ for two two-hour 

periods (Figure 2.9c).  These results indicate that chemical stimulation with the 

GABAergic receptor antagonist PTZ induces an increase in protein synthesis, which can 

be quantified and localized using the BONCAT and FUNCAT techniques in larval 

zebrafish. 

 

Discussion 

 

In this chapter we have shown that the BONCAT and FUNCAT techniques, which 

introduce bioorthogonal chemical groups into newly synthesized proteins using the 

endogenous cellular translation machinery, can be applied to the live, 7-day-old larval 

zebrafish.  This enables the enrichment and quantification of newly synthesized proteins 

when using an affinity tag such as the biotin-alkyne, and the visualization of protein 

synthesis when using fluorescent-alkyne tags such as the AlexaFluor-488-alkyne.  

Furthermore, we have shown that chemical stimulation with the proconvulsant PTZ 

increases protein synthesis, which can be detected using the methods developed in this 

study. 
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BONCAT and FUNCAT techniques enable labeling of newly synthesized 

proteins only when methionine is substituted by noncanonical amino acids during 

translation.  However, AHA competes with endogenous methionine for charging onto 

methionyl-tRNA by the somewhat promiscuous MetRS.  Previous work by the Tirrell 

group has shown that the charging rate of AHA relative to that of methionine onto 

methionyl-tRNA in bacterial cells is 1/390, as indicated by the specificity constant 

kcat/Km (Kiick et al., 2002), suggesting that not all newly synthesized proteins may 

incorporate AHA in the presence of endogenous methionine.  Furthermore, only proteins 

that contain at least one methionine residue can be labeled.  This, however, is not an 

important factor in zebrafish, as 97.97% of zebrafish proteins contain at least one non-

terminal methionine.  Only two of 27,014 currently annotated zebrafish proteins contain 

no methionine at all (NCBI Danio rerio protein database, 5.17.2011).  

Recently, the larval zebrafish has become a model organism for small molecule 

screens, permitting identification of small neuroactive molecules, which alter motor 

activity (Kokel et al., 2010) or circadian rhythm (Rihel et al., 2010).  In the future, the 

FUNCAT and BONCAT techniques can be paired with different chemical stimuli that 

cause behavioral changes in order to investigate underlying adjustments of the proteome 

in distinct regions of the nervous system. Even complex tasks known to be protein 

synthesis-dependent, such as long-term memory formation, may now be tackled with 

these techniques to elucidate which neurons and neuronal circuits are affected or 

involved. 

 

 



 
 

47 

Methods 

Reagents 

 

All chemical reagents were of analytical grade, obtained from Sigma unless 

otherwise noted, and used without further purification.  We prepared AHA as described 

previously (Link et al., 2007).  The AlexaFluor-488 alkyne was purchased from 

Invitrogen (catalog number A10267), while the biotin-alkyne tag was purchased from 

Jena Biosciences (catalog number TA105).   

 

Zebrafish stocks and husbandry 

 

Adult fish strains AB, HuC::GFP and nacre were kept at 28°C on a 14h light/10h 

dark cycle.  Embryos were obtained from natural spawnings and were maintained in E3 

embryo medium (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4) (Nüsslein-

Volhard and Dahm, 2002). 

 

Toxicity and behavioral tests 

 

To test AHA toxicity, larvae were placed five at a time in a 24-well Falcon culture 

dish well.  Each well contained approximately 2ml of embryo medium.  Medium was 

replaced with embryo medium supplemented with 0-20mM AHA or 10mM methionine at 

the appropriate time point.  Larvae were checked for response to light touch at 7 dpf.  
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For other behavioral tests larvae were incubated in 10ml of embryo medium or 

embryo medium supplemented with 4mM AHA for 24-48h in a 6-cm petri dish.  To 

monitor spontaneous swimming bouts, larvae were placed individually in a 1cm-by-

7.5cm behavioral chamber and spontaneous swimming was recorded using a webcam for 

15min.  Subsequently, swimming bouts were scored.  The optokinetic response was 

measured by immobilizing 7dpf larval zebrafish in a drop of 0.4% low-melting-point 

agarose (Promega) in embryo medium.  Immobilized larvae were placed in a circular 

array of LEDs, which delivered a spot of white light that moved in a horizontal plane 

around the immobilized larvae.  The optokinetic response was recorded using a high-

speed camera (Redlake MotionScope M3) and eye movements were analyzed using 

Matlab.  The startle response was measured by placing larval zebrafish in a 5cm petri 

dish in a circular array of LEDs.  LEDs delivered 50ms light or dark flashes, while a 

high-speed camera mounted above the arena recorded responses.  Response onset was 

scored. 

 

Copper-catalyzed [3+2] azide-alkyne cycloaddition chemistry and detection of tagged 

proteins using biotin-alkyne (BONCAT) 

 

Zebrafish larvae were incubated in embryo medium supplemented with AHA, 

after which larvae were washed three times in 25ml embryo medium.  Larvae were 

moved into a 1ml Eppendorf tube in ~1ml of embryo medium and anesthetized on ice for 

one hour. Remaining medium was removed and anesthetized fish were washed once with 

1ml of ice-cold PBS + protease inhibitor (PI; Roche, complete ULTRA Tablets, Mini, 
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EDTA-free Protease Inhibitor cocktail tablets).  PBS+PI was removed and replaced with 

100µL of fresh PBS+PI.  Zebrafish larvae were homogenized using a Kontes Pellet Pestle 

Motor.  1% SDS and 1µL of Benzonase (≥500U) were added and the lysate vortexed and 

heated at 95°C for 10min.  Lysate was allowed to cool to room temperature, before 400µl 

of PBS+PI and 0.2% triton X-100 were added. Then, lysates were centrifuged at 15,000g 

at 4°C for 10min.  Supernatant was transferred to a new 1ml Eppendorf tube.  For 

BONCAT, samples were reacted with 10µM biotin-alkyne in the presence of 200µM 

triazole ligand (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine, 97%) and 5mg/ml 

CuBr suspension and incubated at 4°C with agitation overnight.  Samples were then 

centrifuged at 4°C for 5min at 5,000g to pellet CuBr.  Supernatant was moved into a new 

1ml Eppendorf tube.  To remove excess, unligated biotin-alkyne, samples were applied to 

a PD MiniTrap G-25 size exclusion column (GE Healthcare).  Samples were then 

analyzed using ‘dot blots’ and affinity purified as described in Dieterich et al. (2007).  

For western blot analysis of affinity purified samples, 25µL of washed NeutrAvidin 

beads (Thermo Scientific) previously incubated with sample were heated at 95°C for 

5min in 50µl of LDS sample buffer (Invitrogen) containing reducing agent (Invitrogen).  

Proteins were separated on precast NuPAGE 4-12% Bis-Tris gels (Invitrogen) and 

transferred to PVDF membranes and blocked in PBST (PBS+0.1% Tween-20) containing 

5% milk.  For detection, membranes were probed with goat anti-biotin (Biomol) and 

mouse anti-goat LI-COR-IR 800 secondary antibody and analyzed using the Odyssey 

Infrared Imaging System (LI-COR). 

 

 



 
 

50 

Copper-catalyzed [3+2] azide-alkyne cycloaddition chemistry and detection of tagged 

proteins using fluorescent-alkyne (FUNCAT) 

 

To image AHA-labeled proteins, larval zebrafish were incubated in embryo 

medium supplemented with AHA, washed and anesthetized as described above. 

Remaining embryo medium was removed and replaced with ~1ml of fixation solution 

(4% PFA, 88mM sucrose in PBS).  Larvae were fixed at room temperature for 3h, 

dehydrated in 100% methanol and stored at -20°C overnight.  Larvae were rehydrated 

through successive 5min washes with 75% methanol in PBST, 50% methanol in PBST, 

25% methanol in PBST and finally PBST.  This was followed by two washes in PBDTT 

(PBST + 1% DMSO and 0.5% Triton X-100) and an hour permeabilization in Protease K 

(10µg/ml in PBST).  After permeabilization, larvae were briefly washed with PBST and 

then immediately post-fixed for 20min.  Larvae were washed twice for 5 minutes with 

PBST and three times for 5min with PBDTT, before blocking (5% BSA, 10% goat serum 

in PBDTT) for at least 3h at 4°C.  Larvae were washed three times in PBST (pH 7.8), 

before being conjugated to the probe by addition of 200µM triazole ligand, 5µM 

AlexaFluor-488-alkyne, 200µM CuSO4 and 400µM TCEP at room temperature overnight 

with gentle agitation.  Samples were washed four times for 30min in PBDTT+0.5mM 

EDTA, and twice for 1h in PBDTT, before being rinsed in PBST and immobilized on 

Matek dishes using 0.4% low-melting-point agarose.   

For subsequent antibody staining, samples were washed four times for 30min in 

PBDTT+0.5mM EDTA after ligation to fluorescent-alkyne.  Samples were then 

incubated in primary antibody (mouse monoclonal parvalbumin, concentration of 1:500; 
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Shimizu lab) in a 1:5 dilution of blocking solution overnight at 4˚C.  Samples were 

washed four times for 30min in PBDTT before incubation with secondary antibody 

overnight at 4˚C.  Finally, samples were washed four times for 30min, and twice for 1h in 

PBDTT, before being washed in PBST and immobilized on Matek dishes using 0.4% 

low-melting-point agarose. Images were obtained using a Zeiss LSM780 laser scanning 

confocal microscope with 10X or 20X air lens.  AlexaFluor-488 was excited with the 

488nm line of an argon ion laser and the emitted light was detected between 510 and 550 

nm.  We performed all post-acquisition processing and analysis with ImageJ (NIH).  

Significance was tested for using the two-tailed T-test and error bars represent standard 

deviation. 
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Chapter III 
 
 

LABELING NEWLY SYNTHESIZED PROTEINS IN GENETICALLY SPECIFIED 
LARVAL ZEBRAFISH CELL POPULATIONS MEDIATED BY SELECTIVE 

EXPRESSION OF A MUTANT MetRS 
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Introduction 

 

MetRS catalyzes the charging of methionine onto methionyl-tRNAs through a two-step 

mechanism involving activation of methionine by ATP, followed by transfer onto the 3’ 

end of methionyl-tRNA. The binding specificity and the catalytic efficiency of aaRS, 

such as MetRS, are key features of the translation process. Despite the specificity of 

MetRS for methionine, BONCAT and FUNCAT have exploited the somewhat 

promiscuous nature of this enzyme that enables the charging of the structurally similar 

methionine analog AHA to methionyl-tRNA and thereby the incorporation of AHA into 

newly synthesized proteins in wild-type cells.  Although the number of noncanonical 

amino acids, such as AHA, which are conclusively translationally active in vivo is 

growing, it is generally still limited to only those analogs that are structurally and 

functionally similar to the cognate amino acids they are replacing.  

The introduction of specific mutations into the protein sequences of aaRS’ eases 

these limitations.  In particular, the Tirrell group showed that altering the specificity of E. 

coli MetRS enables metabolic incorporation of otherwise inert noncanonical amino acids, 

such as the long-chain azide-bearing Azidonorleucine (ANL), in a bacterial system.  ANL 

cannot bind to wild-type MetRS and therefore cannot be incorporated into newly 

synthesized proteins in wild-type cells. MetRS is the ideal candidate for such an approach 

due to the wealth of structural data available and the fact that MetRS lacks the ‘sieve-

type’ editing activity found in related aaRS, so that only mutations of the well-

characterized synthetic binding pocket region of MetRS need to be considered.  Using a 

rapid, flow-cytometery-based screening protocol, the investigators first examined a non-
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saturated library of mutant MetRS for their ability to enable incorporation of ANL into 

proteins (Link et al., 2006). Four highly conserved residues, L13, P257, Y260 and H301, 

thought to be essential to binding specificity, were mutated to all other possible amino 

acids and the L13G mutation was identified as sufficient to enable incorporation of ANL 

into newly synthesized proteins in E. coli.  In 2009, Tanrikulu et al. followed up on this 

study by describing a screen of a saturated library of mutant MetRS, focusing exclusively 

on mutations of L13, Y260 and H301 (Tanrikulu et al., 2009).  Here, two new E. coli 

MetRS mutants with higher charging rates and greater specificity for ANL in the 

presence of methionine than the previously described L13G mutant were introduced: 

NLL in which L13, Y260 and H301 are replaced by asparagine (N), leucine (L) and 

leucine (L), respectively, and PLL in which L13, Y260 and H301 are replaced with 

proline (P), leucine (L) and leucine (L), respectively. 

The ability of cells expressing these mutant MetRS constructs to incorporate 

ANL, a noncanonical amino acid that is excluded by the endogenous protein synthesis 

machinery, opens the door to cell-specific metabolic labeling of proteins.  Building on the 

previously described work, Ngo et al. showed that E. coli cells bearing the NLL mutant 

MetRS are able to utilize ANL as a surrogate for methionine in protein synthesis, while 

wild-type cells are inert to ANL and proteins made in these cells are not labeled.  In co-

culture experiments, labeling of newly synthesized proteins with affinity reagents or 

fluorescent dyes is restricted to cells expressing the mutant MetRS, therefore enabling 

cell-specific enrichment, identification and visualization, even in mixtures of different 

cell types.  This approach, when applied to complex bacterial communities, may allow 

for the selective investigation of proteomes of specific species in their native 
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environmental niche, which might be occupied by hundreds of other microorganisms and 

be otherwise inaccessible to specific metabolic labeling.  

When applied to multicellular organisms, cell-type-specific metabolic labeling 

will facilitate the visualization of protein synthesis in specific cell types by preventing 

labeling in other cell types.  This will improve detection of protein synthesis differences 

between cells within the labeled group, within different cellular compartments of the 

labeled cell, as well as between the same cells after different types of stimulation, either 

chemical or behavioral.  Also, removal of background labeling will improve the 

visualization of the morphology of the labeled cells, thereby permitting the identification 

of cells of high metabolic activity.  Furthermore, genetic restriction of metabolic labeling 

will reduce the complexity of the newly synthesized proteome during the labeling 

window, thereby possibly permitting the identification of proteins of low abundance that 

might otherwise have been missed. 

In this chapter, we demonstrate that genetically restricted expression of a 

zebrafish mutant MetRS in the larval zebrafish enabled cell-specific metabolic labeling of 

proteins in vivo.   MetRS binding pocket residues are highly conserved between E. coli 

and zebrafish and when the L13G mutation was introduced into the zebrafish MetRS 

protein sequence, COS7 cells transiently expressing this mutant MetRS incorporated 

ANL into newly synthesized proteins specifically.  Furthermore, cell-specific transient 

and stable expression of the L13G-MetRS permitted restricted metabolic labeling and 

therefore visualization of newly synthesized proteins in the larval zebrafish.  In contrast, 

neither NLL nor PLL mutations of the zebrafish MetRS protein sequence resulted in 

incorporation of ANL either in vitro or in vivo. 
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Cell-specific metabolic labeling of a multicellular organism, the larval zebrafish 

 

The azide-bearing noncanonical amino acid AHA is structurally similar to methionine, 

allowing it to act as a surrogate for methionine and to bind to the catalytic domain of 

wild-type zebrafish MetRS.  This allows for charging of AHA onto methionyl-tRNA and 

incorporation of AHA in place of methionine into newly synthesized proteins both in 

vitro (Dieterich et al., 2006; Dieterich et al., 2007; Dieterich et al., 2010) and in vivo 

(Hinz et al., 2012).  As described previously, metabolic labeling with AHA occurs 

throughout all tissues of the larval zebrafish, but cell-type-specific labeling has obvious 

advantages.  ANL, a long-chain azide bearing noncanonical amino acid could 

alternatively be used for the click chemistry ligation of labeled, newly synthesized 

proteins to alkyne-affinity and alkyne-fluorescent tags.  However, ANL has been shown 

to be metabolically inert in wild-type cells, as it is too bulky to fit into the binding pocket 

of endogenous MetRS and can therefore not be charged onto methionyl-tRNA in wild-

type cells.  Hence, wild-type larval zebrafish incubated with ANL show no fluorescent 

signal after click reaction with fluorescent-alkyne. 

However, screens of E. coli mutant MetRS libraries have identified specific 

mutations that impart bacterial cells with the ability to metabolically incorporate ANL.  

Specifically, the residues L13, Y260 and H301 were shown to play an important role in 

the substrate specificity of MetRS.  As schematically depicted in Figure 3.1, we propose 

that introduction of the L13G mutation into the zebrafish MetRS protein sequence will 

enable metabolic labeling with ANL.  By constructing a stable transgenic zebrafish 

expressing this zebrafish mutant MetRS in specific cell populations, such as the 
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telencephalon, we aim to restrict metabolic labeling in vivo. Subsequent incubation of the 

transgenic fish with ANL should enable us to observe labeling and downstream 

identification of newly synthesized proteins in these specific cell populations, as opposed 

to the whole organism.  

 

 

 
Figure 3.1. Genetically restricted metabolic labeling 
 
Scheme of binding pocket of wild-type (WT) and mutant (L13G) MetRS, highlighting 
residues important for binding specificity, which interact with methionine, AHA or 
Azidonorleucine (ANL). Cartoons of larvae indicate hypothetical scenarios in which 
either the WT MetRS or the L13G mutant is expressed.  Cerulean signal indicates 
hypothetical expression of mutant MetRS in the telencephalon.  Red signal indicates 
hypothetical FUNCAT signal. Restricted expression of L13G MetRS in larval zebrafish 
enables cell-specific metabolic labeling with ANL. 
 

 The residues involved in forming the catalytic domain and hence in determining 

the substrate specificity of MetRS, are highly conserved between different species 

ranging from E. coli to humans, as evidenced by the sequence alignment of E. coli, 

zebrafish, mouse and human MetRS protein sequences (Figure 3.2).  Residues 

highlighted in Figure 3.2 have been determined to be less than 4Å away from the bound  
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Figure 3.2. MetRS protein sequence alignment of E. coli, Danio rerio, Mus musculus and 
Homo sapiens 
 
Residues highlighted are involved in binding pocket formation and highly conserved 
between species.  L13 is highlighted in red. 
 

methionine using structural analysis of the 3-dimensional model of methionine-charged 

MetRS (Serre et al., 2001), and therefore are likely to play an important role in 

determining the substrate specificity of the enzyme.  These residues are all highly 

conserved between species and include the residues L13 (highlighted in red), Y260 and 
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H301 (highlighted in orange) that were mutated in the E. coli MetRS to enable ANL 

charging onto methionyl-tRNA.  Due to this conservation between the mutated residues 

of the E. coli and the zebrafish MetRS protein sequence, we hypothesized that 

introducing the same mutations into the zebrafish MetRS protein sequence would permit 

ANL charging onto methionyl-tRNA in cells expressing this mutant zebrafish MetRS. 

 
 
 

Zebrafish L13G-MetRS mutant enables metabolic labeling with ANL in vitro. 

 

To investigate whether the zebrafish L13G-MetRS mutant enables ANL incorporation in 

vitro, we cloned the zebrafish MetRS cDNA sequence into the Clontech pEGFP-C2 

vector to create a CMV-promoter-driven, MetRS N-terminal EGFP fusion construct 

(L13G MetRS-C2-EGFP; see Appendix A for vector map and sequence).  The L13G 

mutation was introduced into the zebrafish MetRS sequence of this construct using site-

directed mutagenesis and the construct was transiently transfected into COS7 cells.  

Transfected COS7 cells were incubated with 4mM AHA for 4h in the presence or 

absence of the protein synthesis inhibitor anisomycin.  These samples served as positive 

controls to ensure that transfection with the L13G MetRS-C2-EGFP construct does not 

interfere with metabolic labeling.  Alternatively, transfected cells were incubated with 

4mM ANL for 4h in the presence or absence of anisomycin.  Additionally, untransfected 

cells were incubated with 4mM ANL for 4h.  This sample served as a negative control.   

Lysates of all samples were reacted to 10µM biotin-alkyne overnight and analyzed using 

western blots probed against biotin. Equal volumes of samples were loaded onto a second 
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gel, which was stained with Coomassie Brilliant Blue.  Biotinylated-protein signal was 

normalized to Coomassie signal to evaluate relative incorporation of ANL and AHA into 

newly synthesized proteins. 

 Only COS7 cells expressing L13G MetRS-C2-EGFP incubated in AHA or ANL 

in the absence of protein synthesis inhibitors showed labeling after reaction to the biotin-

alkyne (Figure 3.3).  Co-incubation with anisomycin abolished the biotin signal, 

indicating that specifically newly synthesized proteins were detected.  COS7 cells not 

expressing the L13G MetRS-C2-EGFP but incubated with ANL in the absence of 

anisomycin also showed no biotin signal. This demonstrates that metabolic ANL 

incorporation and subsequent detection of newly synthesized proteins using the biotin-

alkyne is specific to cells expressing the L13G MetRS-C2-EGFP (Figure 3.3a).  

Normalized biotin signals from transfected cells incubated with either AHA or ANL were 

very similar (Figure 3.3b).   However, due to limitations of transfection rates, only 

approximately 70-80% of COS7 cells expressed the L13G MetRS-C2-EGFP construct, as 

determined by visual inspection of EGFP expressing cultured cells before harvesting.  

This suggests that the charging rate of ANL by the zebrafish L13G-MetRS mutant onto 

methionyl-tRNAs may be slightly higher than the charging rate of AHA by wild-type 

MetRS, possibly making metabolic labeling with ANL in cells expressing the mutant 

MetRS more efficient.  The results described in this section confirm that the L13G 

mutation discovered in E. coli, when introduced into the zebrafish MetRS protein 

sequence and expressed in vitro, imparts to cells the ability to metabolically incorporate 

the larger noncanonical amino acid ANL.   
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Figure 3.3. Cell-selective labeling with ANL in vitro 
 
(a) COS7 cells were transfected with the zebrafish L13G MetRS-GFP fusion construct, 
metabolically labeled with 4mM AHA, 4mM ANL or no noncanonical amino acid in the 
presence or absence of anisomycin (40µM).  Cells were homogenized and reacted to the 
biotin-alkyne (10µM) for 12h. Coomassie detection of total protein from pulse-labeled 
cells (right) and western blot probed against biotin (left).  (b) Relative quantification of 
biotin signal.  
 

 

Zebrafish L13G-MetRS mutant enables metabolic labeling with ANL in vivo 

 

To investigate whether the zebrafish L13G-MetRS mutant enables ANL incorporation in 

vivo, we created the Upstream Activator Sequence (UAS)::L13G-MetRS responder 

construct illustrated in Figure 3.4a (for vector map and sequence see Appendix A).  Here 

the 4x non-repetitive (nr) UAS sequence designed by the Halpern lab (Akitake et al., 

2011) drives expression of the fluorescent protein cerulean and zebrafish mutant L13G-

MetRS.  The 4x nr UAS sequence has been shown to be far less susceptible to 

methylation than the previously standard 14x UAS sequence and thereby decreases the 

likelihood of variegation of expression in subsequent generations.  The viral 2A peptide 
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sequence (Szymczak et al., 2004; Provost et al., 2007) causes ribosomal skipping and 

therefore hinders peptide bond formation between the penultimate glycine residue and the 

terminal proline residue within the 2A sequence (Donnelly et al., 2001).  The inclusion of 

this sequence enables translation of equimolar amounts of the fluorescent protein and the 

L13G-MetRS.  As a result, the cerulean contains a short 2A peptide C-terminal fusion (17 

AA), whereas the L13G-MetRS only contains a single proline residue at its N-terminus, 

unlikely to interfere with protein folding.  The short 6X His tag was included as a C-

terminal fusion to the L13G-MetRS to enable antibody detection and quantification of the 

mutant MetRS protein levels, while the Tol2 transposable element sequences originally 

discovered in Medaka fish (Kawakami, 2005), when co-injected with transposase mRNA, 

facilitate integration into the genome.   

First, we investigated whether transient mosaic expression of the UAS::L13G-

MetRS construct would enable metabolic labeling with ANL and subsequent fluorescent 

labeling of newly synthesized proteins in vivo.  The UAS::L13G-MetRS construct was 

injected into single-cell embryos of a pan-neuronally expressing Gal4 driver line (s1101t) 

and embryos were sorted for cerulean fluorescence at 30hpf.  Cerulean-positive embryos 

were incubated in E3 embryo medium without noncanonical amino acid, or supplemented 

with either 4mM AHA or 4mM ANL for 48h, beginning 5dpf.  Cerulean-negative 

embryos were incubated in E3 embryo medium supplemented with 4mM ANL for 48h, 

again beginning 5dpf. Larvae were anesthetized, fixed, and permeabilized, before whole-

mount samples were reacted with 5µM AlexaFluor-488-alkyne, in the presence of 

CuSO4, TCEP and the triazole ligand, at room temperature overnight.  After several 



 
 

63 

washes in PBDTT buffer, samples were immobilized in 0.4% agarose and imaged using a 

confocal microscope. 

Only the larvae transiently expressing the UAS::L13G-MetRS construct, as 

indicated by cerulean fluorescence, and incubated in 4mM ANL showed cell-type-

specific metabolic labeling (Figure 3.4).  Larvae expressing the L13G-MetRS, incubated 

without noncanonical amino acid, showed no fluorescent signal after reaction to 

AlexaFluor-594 (signal seen in Figure 3.4b represents laser line reflection off of the lens), 

while those incubated in 4mM AHA showed non-cell-specific metabolic labeling 

throughout all tissues.  Larval zebrafish incubated in 4mM ANL but not expressing the 

L13G-MetRS, as evident by lack of cerulean expression at 30hpf, did not show metabolic 

labeling (Figure 3.4e). Higher magnification images of a dorsal view of the telencephalon 

and nasal cavity of cerulean-positive larvae incubated with either AHA (Figure 3.4f) or 

ANL (Figure 3.4g) clearly showed that incubation with AHA leads to diffuse labeling, 

while incubation with ANL leads to cell-specific labeling.  In Figure 3.4g, cell-type-

specific metabolic labeling allows for differences in fluorescent signal between individual 

labeled cells to be easily observed and in some cases for neurites to be identified.    

Next, metabolic labeling with ANL or AHA in L13G-MetRS transiently 

transfected zebrafish larvae was examined using the biotin-alkyne tag.  As before, the 

UAS::L13G-MetRS construct was injected into single-cell embryos of the pan-neuronally 

expressing Gal4 driver line and embryos were sorted for cerulean fluorescence at 30hpf.  

Cerulean-positive embryos were incubated in E3 embryo medium without noncanonical 

amino acid, or supplemented with either 4mM AHA or 4mM ANL for 48h, beginning 

5dpf.  Cerulean-negative embryos were incubated in E3 embryo medium supplemented  
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Figure 3.4.  Cell-selective labeling with ANL in transiently L13G-MetRS-expressing 
larval zebrafish 
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(a) Scheme of zebrafish UAS::L13G-MetRS construct.  (b-g) Single-cell embryos from 
pan-neuronally expressing Gal4 driver line were injected with zebrafish L13G-MetRS 
construct, sorted for cerulean expression after 30h and metabolically labeled with 4mM 
AHA, 4mM ANL or no noncanonical amino acid for 48h, 5dpf. 7dpf, larvae were fixed 
and reacted with 5µM AlexaFluor-488-alkyne tag for 12h (right panels).  Transgenic line 
also expressed UAS::kaede, which is used as a marker for orientation (left panels). (f-g) 
Higher magnification of telencephalon and nasal cavity of (c) and (d), respectively. Scale 
bar in (b-e), 200µm; in (f-g), 50µm. (h) Single cell embryos from pan-neuronally 
expressing Gal4 driver line were injected with zebrafish L13G-MetRS construct, sorted 
for cerulean expression after 30h and metabolically labeled with 4mM AHA, 4mM ANL 
or no noncanonical amino acid for 48h. Sample immunoblot of three dilutions of lysates 
reacted with biotin-alkyne tag (10µM) for 12h, probed with antibody against biotin, as 
well as biotinylated-BSA-standards (50-6.25ng). 
 

with 4mM ANL for 48h, again beginning 5dpf. Larvae were then anesthetized and 

homogenized and the lysate was reacted with biotin-alkyne in the presence of CuBr and 

the triazole ligand.  Three different dilutions of sample reactions were spotted on a dot 

blot, which was then probed against biotin.  

Similar to previous results using the AlexaFluor-594-alkyne, lysates from larvae 

expressing L13G-MetRS incubated with ANL or AHA showed metabolic labeling 

(Figure 3.4h).  Lysates from larvae not incubated with a noncanonical amino acid, or 

incubated with ANL but not expressing L13G-MetRS, did not contain detectable amounts 

of biotinylated proteins.  Interestingly, the amount of biotinylated protein in lysates from 

larvae expressing L13G-MetRS and incubated in ANL is only slightly less than that from 

lysates of larvae incubated in AHA.  All cells can charge and incorporate AHA, whereas 

only cells expressing L13G-MetRS can charge and incorporate ANL into newly 

synthesized proteins. Expression of the L13G-MetRS in these larvae is very mosaic 

within the Gal4-expressing nervous system. These results are in line with previous 

observations that the charging rate of ANL by zebrafish L13G-MetRS onto methionyl-

tRNAs may be slightly higher than the charging rate of AHA by wild-type MetRS. 
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Stable transgenic UAS::L13G-MetRS animals were created by injecting the 

UAS::L13G-MetRS construct previously described as well as Tol2 transposase mRNA 

into single-cell nacre embryos.  Larvae were raised to adult stage and crossed with the 

s1101t Gal4 pan-neuronal driver line. F1 embryos resulting from these crosses were 

inspected for cerulean fluorescence to identify UAS::L13G-MetRS founder fish.  Select 

F1 embryos were tested for ability to metabolically incorporate ANL using the 

AlexaFluor-594-alkyne.  Embryos identified as cerulean positive at 30hpf, when 

incubated in 4mM ANL for 48h, showed cell-specific metabolic labeling in regions of the 

telencephalon, while embryos sorted as cerulean negative under the same conditions 

showed no fluorescent signal (Figure 3.5).   

So far only one founder fish has been identified and the L13G-MetRS expression 

in F1 embryos from this founder was not pan-neuronal and therefore, did not seem to 

fully recapitulate Gal4 expression.  Furthermore, expression of the L13G-MetRS 

construct seemed to be variegated between larvae of the same spawning, as shown in 

Figure 3.5b.  However, many of the potential founder fish have not yet been screened, 

and we expect that future screening will identify additional, more stably expressing 

founder fish.   
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Figure 3.5. Cell-selective labeling with ANL in F1 transgenic larval zebrafish expressing 
L13G-MetRS 
 
5dpf larval zebrafish siblings from crosses between UAS::L13G-MetRS founders and 
pan-neuronal Gal4 driver lines, were sorted as cerulean negative (a) and cerulean positive 
(b).  Larvae were metabolically labeled with 4mM ANL for 48h prior to fixation and 
reacted with 5µM AlexaFluor-488-alkyne tag for 12h.  Shown are dorsal views of the 
telencephalon and nasal cavity. In cerulean-positive samples, strong FUNCAT labeling 
can be observed in ~50-100 cells of the anterior dorsal telencephalon and slight 
FUNCAT labeling can be observed in some cells of the dorsal olfactory bulbs.  FUNCAT 
labeling of different samples is not stereotyped within the telencephalon and olfactory 
bulbs, but uniformly restricted to these two brain regions. Scale bar is 40µm. 
 

 

Parallel efforts in collaboration with Dr. Le Trinh are underway to create a stable 

transgenic zebrafish expressing zebrafish mutant MetRS in the telencephalon, utilizing 

the newly developed ‘FlipTrap’ system (Trinh et al., 2011).  The ‘FlipTrap’ is a 

multifunctional gene trap that, once inserted into the genome, allows for Flp 

recombinase-mediated excision and replacement of the FlipTrap cassette for any other 

exogenous DNA containing the same FRT sites (Figure 3.6a).  This allows for targeted 

genetic manipulation of the FlipTrap locus.  170 FlipTrap zebrafish lines with diverse 

tissue-specific expression patterns have been generated, including line ct500a, which 

traps nucleolar protein 4 and shows telencephalon-specific expression.  In goldfish lesion 

studies, the telencephalon has been shown to be involved in memory formation and is 



 
 

68 

thought to be homologous to the mammalian hippocampus and amygdala (Broglio et al., 

2005).  This makes it an ideal structure to which to localize metabolic labeling in order to 

investigate new protein synthesis in the context of memory formation.   

 

 

 

Figure 3.6. Restricted mutant MetRS expression in the telencephalon of larval zebrafish 
via FlipTrap gene trapping 
 
(a) Scheme of mutant MetRS-FlipTrap insertion construct and replacement of FlipTrap 
cassette in the genome by Flp recombinase. (b) Fluorescent images showing replacement 
of FlipTrap cassette, driving citrine expression, by mutant MetRS-FlipTrap insertion 
construct, driving cerulean expression, in the telencephalon of founder larvae.  
 

The MetRS-FlipTrap exchange vector (Figure 3.6a, second line; Appendix A for 

vector map and full sequence), containing the cerulean-2A-mutant MetRS-6XHis cassette 
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previously described (Figure 3.4a) flanked by FRT sites, was created and injected with 

Flp recombinase into single-cell embryos of the ct500a FlipTrap line.  This should permit 

excision and replacement of the citrine-containing FlipTrap cassette with the cerulean-

containing MetRS-FlipTrap exchange cassette, to enable expression of exon 1-cerulean 

fusion proteins, as well as equimolar amounts of mutant MetRS.  When the injected 

embryos were imaged, cerulean expression with a background of citrine expression could 

be detected in the telencephalon (Figure 3.6b), indicating that the FlipTrap cassette was 

successfully replaced by the MetRS-FlipTrap exchange cassette in some cells.  These F0 

founder fish are currently being raised and F1 embryos will be screened and tested for the 

ability to incorporate ANL.  As the FlipTrap system allows for targeted locus, single-

copy integration of the mutant MetRS sequence, we hope that variegated expression will 

be prevented. 

 

 

NLL and PLL mutations of the zebrafish MetRS sequence enable ANL incorporation 

neither in vitro nor in vivo 

 

The NLL and PLL E. coli MetRS mutations were identified by Tanrikulu and colleagues 

(Tanrikulu et al., 2009).  In vitro, the mutations were found to have both higher ANL 

charging rates (410±80 kcat/km and 650±150 kcat/km, respectively) and greater selectivity1 

for ANL in the presence of methionine (1.2 and 3.2, respectively) than the L13G E. coli 

MetRS mutant previously described by Link et al. (which Tanrikulu et al. report as 

                                                        
1 Selectivity is defined as the ratio of kcat/km for ANL to that for methionine. 
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having a charging rate of 170±40 kcat/km and a selectivity of 0.03).  As the L13, the T260 

and the H301 residue are all conserved between E. coli and zebrafish, we introduced not 

only the L13G mutation into the zebrafish MetRS protein sequence, but also made 

zebrafish NLL MetRS and zebrafish PLL MetRS constructs, in order to test both in 

COS7 cells and in larval zebrafish.   

 In contrast to results from studies using E. coli, we found that neither the 

zebrafish NLL MetRS mutant nor the zebrafish PLL MetRS mutant, when expressed in 

COS7 cells enabled metabolic labeling with ANL (Figure 3.7a and 3.7b).  When COS7 

cells were incubated with 4mM AHA or transfected with the zebrafish L13G MetRS 

mutant and incubated in 4mM ANL before lysis and reaction to biotin-alkyne, strong 

metabolic labeling was detected throughout the proteome, as previously described.  

However, when COS7 cells were not transfected or transfected with zebrafish NLL or 

PLL MetRS mutants and incubated in 4mM ANL before lysis and reaction to biotin-

alkyne, no metabolic labeling was observed.   

Furthermore, transient expression of the zebrafish NLL MetRS mutant, via 

injection of the construct into single-cell, pan-neuronally expressing Gal4 embryos, 

followed by incubation in 4mM ANL for 48h at 5dpf, did not result in cell-specific 

fluorescent labeling (Figure 3.7e), as previously described when using the L13G MetRS 

(Figure 3.4d). Only when larvae were incubated with AHA (Figure 3.7d) could FUNCAT 

signal be detected.  These results together indicate that, although the residues involved 

are conserved between E. coli and zebrafish, expression of the zebrafish NLL and PLL 

MetRS mutations do not enable metabolic labeling with ANL. 
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Figure 3.7. NLL and PLL mutations of zebrafish MetRS do not enable metabolic 
labeling with ANL in vitro or in vivo.  
 
(a-b) COS7 cells were transfected with zebrafish NLL (a) or PLL (b) MetRS-GFP fusion 
construct, or L13G MetRS-GFP fusion construct (positive control).  Untransfected cells 
were metabolically labeled with 4mM AHA or 4mM ANL; transfected cells were 
metabolically labeled with 4mM ANL.  Cells were homogenized, reacted to the biotin-
alkyne (10µM) for 12h and analyzed using western blots probed against biotin. (c-f) 
Single-cell embryos from a pan-neuronally expressing Gal4 driver line were injected with 
zebrafish NLL-MetRS construct, sorted for cerulean expression after 30h and 
metabolically labeled with 4mM AHA, 4mM ANL or no noncanonical amino acid for 
48h, 5dpf. At 7dpf, larvae were fixed and reacted with 5µM AlexaFluor-488-alkyne tag 
for 12h (right panels). FUNCAT labeling (red) was not observed in (c), (e) or (f) [red 
signal in (e) is minor background and signal in (f) is caused by reflection of the laser line 
from the lens of the eye].  Only when larvae were incubated with AHA (d) could 
FUNCAT signal be detected.  The transgenic line was also expressed UAS::kaede 
(green), which is used as a marker for orientation (left panels).  
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Discussion 

 

In this chapter we have shown that expression of the zebrafish L13G-MetRS mutant 

endows cells with the ability to incorporate the larger, usually metabolically inert, 

noncanonical amino acid ANL into newly synthesized proteins.  The MetRS sequence, 

especially those residues involved in forming the catalytic binding pocket, is highly 

conserved between E. coli and zebrafish.  Introduction of the L13G mutation, first 

described in E. coli, into the zebrafish MetRS sequence enables labeling with ANL both 

in COS7 cells and in larval zebrafish.  This labeling is specific to the cells expressing the 

L13G-MetRS, thereby enabling genetically restricted metabolic labeling in a 

multicellular organism.  Currently, efforts to create a stable transgenic zebrafish using 

either the UAS-Gal4 binary expression system or via targeted replacement using FlipTrap 

recombination are underway and will soon allow us to target metabolic labeling 

specifically to structures of the nervous system involved in memory formation.  

 Interestingly, the NLL and PLL MetRS mutations, which were described in E. 

coli as having higher ANL charging rates and higher specificity for ANL in the presence 

of methionine than the L13G MetRS mutation, do not show the same behavior when 

introduced into the zebrafish MetRS protein sequence.  Although the residues of the 

MetRS binding pocket are highly conserved between species, the E. coli MetRS sequence 

lacks ~250 residues at its N-terminal end when compared to vertebrate MetRS sequences 

such as zebrafish and mouse.  Structural rearrangements in the conformation of the 

MetRS binding pocket caused by such protein sequence differences, may lead to the L13 

residue playing a more important role in substrate specificity in vertebrates than in 
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bacteria.  In the mouse MetRS, the L13G mutation also enables incorporation of ANL in 

vitro and in vivo, while the NLL and PLL mutations do not (data not shown).  This 

similarity between the vertebrate species further supports the idea that sequence 

differences between the vertebrate MetRS and the E. coli MetRS may influence the ANL 

charging efficiencies of the different MetRS mutations. 

 In the future, cell-type-specific metabolic labeling in stable transgenic zebrafish 

will enable identification of more subtle differences in protein synthesis in response to 

either chemical or behavioral stimuli.  This may enable the visualization of cells or 

neuronal circuits involved in memory formation, as well as facilitate the identification of 

proteins of low abundance expressed during memory formation in specific cell 

populations. 

 

 

Methods 

Reagents 

 

All chemical reagents were of analytical grade, obtained from Sigma unless 

otherwise noted, and used without further purification.  We prepared ANL as described 

previously (Link et al., 2007), using Boc-Lys as a starting reagent.  The AlexaFluor-488 

alkyne and AlexaFluor-594 alkyne were purchased from Invitrogen (catalog number 

A10267 and A10275, respectively), while the biotin-alkyne tag was purchased from Jena 

Biosciences (catalog number TA105).  All primers were purchased from IDT (Integrated 

DNA Technologies) or eurofins mwg/operon. 
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Zebrafish stocks and husbandry 

 

Adult fish strains AB, nacre and Gal4 s1101t driver line were kept at 28°C on a 

14h light/10h dark cycle.  Embryos were obtained from natural spawnings and were 

maintained in E3 embryo medium (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM 

MgSO4) (Nüsslein-Volhard and Dahm, 2002).  The Gal4 s1101t driver line was a kind 

gift from Dr. Arrestedes Arrenberg. 

 

Construction of MetRS-EGFP vectors 

 

Clone-containing zebrafish MetRS cDNA sequence (identification number: 

Zebrafish 2639182, pME18S-FL3) was purchased from ATCC, transformed, amplified 

and sequenced using the following primers: 

 

Primer Sequence 5’-3’ 
MARS247F CAG CTT GTG AAA CAC GAG GA 

MARS789F CAG AGA CAG TCC CAG CAA CA 

MARS1237F CAC CAG ACA GAA ATC GCT CA 

MARS2172F GCT GCT GAA TGA CGA CGA TA 

MARS2268F GCT GAA GTG CAT CCT CAA CA 

MARS994R GCG GCA CAT TGT TGA CAT AC 

MARS2397R ATT CAC TGA CAC ACC CGT CA 
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pME18S-FL3 zebrafish MetRS sequence was cloned into Clontech pEGFP-C1 

vector (GenBank Accession #: U55763, Catalog #:6084-1) and the NLL mutations (CTC 

 GAC at position 807-809 after ATG; TAC  CUC at position 1566-1568 after ATG; 

CAC  CUC at position 1671-1673 after ATG) were introduced by Genscript.  This 

construct was named NLL MetRS-C1-EGFP.  Concurrently, the MetRS sequence was 

amplified from pME18S-FL3 using primers 144XhoIF and EcoRIR and cloned into 

Clontech pEGFP-C2 (GenBank Accession #:U57606, Catalog #:6083-1) using EcoRI and 

XhoI sites.  This construct was named MetRS-C2-EGFP.  NLL MetRS sequence was 

amplified from NLL MetRS-C1-EGFP and cloned into Clontech pEGFP-C2, again using 

EcoRI and XhoI sites. This construct was named NLL MetRS-C2-EGFP.  A Stratagene 

QuikChange Site-Directed Mutagenesis Kit, in combination with primers L13GQCF and 

L13GQCR, was used to insert L13G mutation (CTC  GGC at position 807-809 after 

ATG) into MetRS-C2-EGFP vector. This construct was named L13G MetRS-C2-EGFP.  

The same method was employed in combination with primers ZFNtoPF and ZFNtoPR to 

insert PLL mutation (GAC  CCC at position 807-809 after ATG) into NLL MetRS-C2-

EGFP vector.  This construct was named PLL MetRS-C2-EGFP.  Vector map and 

sequence are included in Appendix A. 

 

Primer Sequence 5’-3’ 

144XhoIF CCG CTC GAG CGG CAT AAT CGC G 

EcoRIR GCC GGA ATT CCG TCC ATC CTC AT 

L13GQCF GAT CAC CAG CGC TGG CCC GTA TGT CAA C 

L13GQCR GTT GAC ATA CGG GCC AGC GCT GGT GAT C 

ZFNtoPF GTT GAT CAC CAG CGC TCC CCC GTA TGT CAA CAA TGT G 

ZFNtoPR CAC ATT GTT GAC ATA CGG GGG AGC GCT GGT GAT CAA C 
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Construction of MetRS-FlipTrap exchange vectors 

 

Mutated MetRS sequence were amplified from MetRS-C2-EGFP vectors using 

MRS-Nco1-F and MRS-His-EcoRI-R primers and cloned into FlipTrap vector (Trinh et 

al., 2011; NCBI accession no. JN564735) using NcoI and EcoRI sites.  Vectors were 

amplified and sequenced using sequencing primers previously described.  Vector map 

and sequence are included in Appendix A. 

 

Primer Sequence 5’-3’ 

MRS-NcoI-F ATC CCG GGC CCC CAT GGA TGA AGC TGT TTA TCG 

GTG AGG GAA 

MRS-His-EcoRI-R TGG ATA TTG AAT TCC TAA TGA TGA TGA TGA TGA 

TGA GAC CCC CC 

 

 

Construction of UAS::MetRS vectors 

 

Genscript amplified the Cerulean-2A-MetRS-6XHis tag sequence from L13G-

MetRS-FlipTrap exchange vectors and cloned it into pBT2-4Xnr UAS-GFP (Akitake et 

al., 2011).  Vectors were named UAS::L13G-MetRS and UAS::NLL-MetRS, amplified 

and sequenced using previously described sequencing primers.  Vector map and sequence 

are included in Appendix A. 
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Splice site removal from MetRS-FlipTrap exchange vectors and UAS::MetRS vectors 

 

Stratagene QuikChange Site-Directed Mutagenesis Kit and QuikChange Multi 

Site-Directed Mutagenesis Kit were used to remove nine high-scoring splice donor sites 

from L13G MetRS-FlipTrap exchange vector, NLL MetRS-FlipTrap exchange vector, 

UAS::L13G-MetRS vector and UAS::NLL-MetRS vector (see table below). Splice sites 

were identified using the Splice Site Prediction by Neural Network tool provided by the 

Berkeley Drosophila Genome Project (http://www.fruitfly.org/seq_tools/splice.html). 

 

Splice Site Sequence Score 

1 CGGCGACGTAACGG 0.41 

2 TTTATCGGTGAGGGA 0.87 

3 CTGCAGGGTAAAGGA 0.72 

4 TCGCCAGGTATGGC 0.99 

5 GTGTAAGGTGTGTAA  0.98 

6 GTGACGGGTGTGTCA  0.56 

7 CCCACAGTGAGTCT  0.83 

8 CGGCACGGTCAGTCC  0.97 

9 GAACAAGGTGAAAAA 0.73 

 

 The Multi Site-Directed Mutagenesis Kit was used in combination with primers 

ss1-ss4 and ss6-ss9 to remove all splice sites except site 5 from UAS::MetRS vectors.  

Simultaneously, an ATG-start site was inserted into cerulean in these vectors using 

primer startsite.  The Site-Directed Mutagenesis Kit, in combination with primers 

ss_5singleT3F and ss_5singleT3R, was used to remove splice site 5.  

 The Multi Site-Directed Mutagenesis Kit was used in combination with primers 
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ss1-ss4, ss_5singleT3F, ss6, ss8 and ss9 to remove all splice sites except site 7 from 

MetRS-FlipTrap exchange vectors. The Site-Directed Mutagenesis Kit, in combination 

with primers ss7 and ss_7R, was used to remove splice site 5.  

 

Primer Sequence 5’-3’ 

startsite CGCGTGGATCCATGGTCAGCAAGGGCGAGG 

Ss1 CTGGACGGCGACGTGAACGGCCACAAG 

Ss2 GCTGTTTATCGGCGAGGGAAACCCGC 

Ss3 GTCCTGCAGGGCAAAGGAGCCGAAGC 

Ss4 GTGTTCGCCAGATATGGGCGTCTGCG 

Ss6 GACTGTGACGGGCGTGTCAGTGAATG 

Ss7 CATGCCCACACGTCAGTCTCAGCATCC 

Ss8 CATCGGCACGGTGAGTCCTCTGTTCC 

Ss9 GTGGCAGAACAAGGCGAAAAAGTTCGAGC 

Ss_5singleT3F GAATCCTCAGTGTAAAGTGTGTAAGGAGACGCC 

Ss_5singleT3R GGCGTCTCCTTACACACTTTACACTGAGGATTC 

Ss_7R GGATGCTGAGACTGACTGTGGGCATG 

 

 

Transfecting COS7 cells with MetRS-EGFP vectors 

 

1.5ml of 80-90% confluent COS7 cells were plated in a T25 cell flask in 5ml of 

prewarmed DMEM++ (Gibco) and incubated overnight at 37˚C.  To transfect, 5.875µg 

plasmid DNA was diluted in prewarmed OptiMEM+GlutaMax (Gibco) to bring it to a 

final volume of 300µl. 11.75µl lipofectamin-2000 (Invitrogen) was diluted in 282µl of 

prewarmed OptiMEM+GlutaMax.  Both the plasmid DNA mixture and lipofectamin 
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mixture were incubated for 5min at room temperature.  Then the lipofectamin mixture 

was added to the plasmid DNA mixture, vortexed and incubated at room temperature for 

20min.  COS7 cells were washed with 5ml of prewarmed OptiMEM (Gibco).  2.35ml of 

prewarmed OptiMEM was added to the plasmid DNA/lipofectamin mixture, vortexed 

and added to COS7 cells.  Cells were incubated at 37˚C for 24h. 

 

Metabolic labeling of transfected COS7 cells 

 

 COS7 cells were washed with 5ml prewarmed HBS (20mM HEPES (Gibco), 

238mM NaCl, 4mM CaCl2, 4mM MgCl2, 10mM KCl, 60mM Glucose), then incubated in 

HBS supplemented with either 4mM ANL or 4mM AHA in the presence or absence of 

40µM anisomycin for 4h at 37˚C.  Cells were washed with 5ml of ice-cold PBS-MC 

(1XPBS, 1mM MgCl2, 0.1mM CaCl2) on ice, before cells were scraped from flask in 

500µl PBS (pH 7.6) + Protease Inhibitor (PI; Roche, complete ULTRA Tablets, Mini, 

EDTA-free Protease Inhibitor cocktail tablets) twice.  Cell solution was collected in an 

1.5ml Eppendorf tube and centrifuged.  Supernatant was removed, 25µl of PBS+PI was 

added and the cells were homogenized using a Kontes Pellet Pestle Motor.  1% SDS and 

0.1µL of Benzonase (≥500U) were added and the lysate was vortexed and heated at 95°C 

for 5min.  Lysate was cooled to room temperature before 220µl of PBS+PI and 0.1% 

triton X-100 were added. Then lysates were centrifuged at 15,000g at 4°C for 10min.  

Supernatant was transferred to a new 1.5ml Eppendorf tube.  For BONCAT, samples 

were reacted with 10µM biotin-alkyne and processed as previously described in Chapter 

II.  
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Microinjection to transiently express UAS::MetRS construct in vivo 

 

To transiently express UAS::MetRS constructs in larval zebrafish, ~2nl DNA 

injection solution (Suster et al., 2007) was injected into one-cell-stage embryos of the 

Gal4 s1101t driver line.  The injected embryos were screened for cerulean fluorescence at 

30hpf and metabolically labeled as described in Chapter 2. 

 

Microinjection to create stable UAS::MetRS responder line 

 

To create stable UAS::MetRS responder lines, ~2nl DNA injection solution 

(Suster et al., 2007) was injected into one-cellstage nacre embryos.  The injected 

embryos were raised and crossed to Gal4 s1101t lines.  Resulting F1 embryos were 

screened and metabolically labeled as previously described. 
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Chapter IV 
 
 

PROTEIN SYNTHESIS-DEPENDENT PLACE-CONDITIONING IN LARVAL 
ZEBRAFISH 
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Introduction 

 

Long-term memory formation has been shown to be protein synthesis-dependent in a 

number of different model organisms including teleost fish (Agranoff and Klinger, 1964; 

reviewed in Davis and Squire, 1984). In the previous chapters, we have described the 

development of metabolic labeling techniques that allow for the visualization of newly 

synthesized proteins in genetically restricted cell populations of the larval zebrafish 

nervous system.  One main goal of these studies was to develop techniques that could be 

paired with a protein synthesis-dependent learning paradigm to visualize circuits involved 

in memory formation, as well as to identify proteins newly synthesized during memory 

formation in these circuits.   

Although the larval zebrafish has become a prominent model organism for 

studying neural circuitry underlying behavior in recent years (e.g. Wyart et al., 2009; Del 

Bene et al., 2010; Fetcho and McLean, 2010; reviewed in Fetcho and Lui, 1998), there is 

still a dearth of robust, protein synthesis-dependent learning paradigms.  While a number 

of associative conditioning paradigms have recently been developed for adult zebrafish, 

including one-trial avoidance learning (Blank et al., 2009), olfactory conditioning 

(Braubach et al., 2009), shuttle box active appetitive conditioning (Pather and Gerlai, 

2009), place-conditioning (Eddins et al., 2009; Mathur et al., 2011), appetitive choice 

discrimination (Bilotta et al., 2005), active avoidance conditioning (Pradel et al., 1999; 

Pradel et al., 2000; Xu et al., 2007), an alternation memory task (Williams et al., 2002), 

and a plus-maze non-spatial and spatial associative learning task (Sison and Gerlai, 

2010), currently only non-associative paradigms (Best et al., 2006; Wolman et al., 2011; 
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Roberts et al., 2011) or restrained associative paradigms (Aizenberg and Schuman, 2011) 

exist for larval zebrafish.  Memory retention in all of these larval zebrafish paradigms is 

short-lived, suggesting that these paradigms entrain forms of protein synthesis-

independent short-term memory.  Furthermore, the restrained associative paradigms are 

often very labor intensive and therefore not easily paired with high-throughput screening 

or proteomics approaches.  Only very recently, have Wolman et al. shown that spaced 

training blocks of repetitive visual stimuli elicit protein synthesis-dependent long-term 

habituation in larval zebrafish lasting up to 24h, that is disrupted by cycloheximide 

incubation during training (Wolman et al., 2011). 

In this chapter, we describe a simple unrestrained associative place-conditioning 

paradigm. Using a custom built conditioning chamber, we show that visual access to a 

group of conspecifics has rewarding properties for 6-8-day-old larval zebrafish, as 

previously described for adult zebrafish (Al-Imari and Gerlai, 2007; Gomez-Laplaza and 

Gerlai, 2009; Sison and Gerlai, 2011).  We then use this social reward as an 

unconditioned stimulus and pair it with a distinct visual environment over a three hour 

training period. Following training, larvae retained a preference for the visually 

demarcated area of the chamber previously paired with the social reward for up to 36h, 

indicating that this novel reinforcer can support long-term associative learning in 

zebrafish larvae. Furthermore, incubation with the protein synthesis inhibitors puromycin 

or cycloheximide, as well as the non-competitive NMDAR-antagonist, MK-801, during 

the three hour training period impaired memory retention.  This demonstrates that the 

associative place-conditioning paradigm described here is protein synthesis- and partially 
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NMDAR-dependent.  In future experiments, this learning paradigm will be paired with 

cell-specific metabolic labeling to visualize circuits underlying memory formation.  

 

 

Associative place-conditioning paradigm for 6-8dpf larval zebrafish 

 

This place-conditioning paradigm pairs a social reward, visual access to a group of 

conspecifics, with a distinct environment indicated by light intensity. We designed two 

different behavioral chambers (Figure 4.1a) custom built from plastic and Plexiglas 

elements.  The testing chamber consisted of 14 channels (to house individual larvae) 

separated by opaque barriers, while in the training chamber, only one half of each of the 

barriers was opaque and the remainder was transparent.  This created two distinct 

environments: one, an individual environment in which the larvae could not see their 

neighbors, the other a social environment in which the larvae had visual access to their 

conspecifics in neighboring channels.  Both the testing and the training chamber were 

approximately the size of a 96-well plate, had a transparent bottom and slightly slanted 

dividing barriers, which allowed for visual monitoring of larvae position from a fixed 

camera mounted above.  The testing and training chambers were placed in a custom-built, 

white plastic, enclosed behavioral chamber (Figure 4.1b) which isolated the chambers 

from any outside visual or acoustic stimuli or cues.  The behavioral chamber had a semi-

transparent bottom, onto which different light environments were projected using a 

computer-controlled beamer, and a fixed opening at the top, into which a camera was 

fixed to monitor larvae position.    
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Figure 4.1. Place-conditioning apparatus and experimental set up 
 
(a) Testing and training chambers are the size of 96-well plates.  Testing chamber 
consists of 14 individual channels separated by opaque barriers.  Training chamber 
consists of 14 individual channels, separated on one side of the chamber by opaque 
barriers, creating an individual environment and on the other side by clear barriers, 
creating a social environment in which larvae can see their conspecifics in neighboring 
channels. (b) Testing or training chambers were placed in a closed behavioral chamber, 
which allowed for projection of different light environments from below and monitoring 
of larva position from above. 
  

First, we determined the light and social preference of unconditioned larval 

zebrafish.  To test for light preference, 6-8 dpf wild-type larvae were individually placed 

in the channels of the testing chamber, which was then illuminated with two different 

light intensities creating equally sized dark and light environments (Figure 4.2a, scheme).  

Larvae position was captured every 10 seconds for a 15 minute period (90 frames in 
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total) and scored.  If the larva was in the light environment during a given frame it was 

scored as +1, while if it was in the dark environment it was scored as -1.  If the larva 

could not be detected, it did not receive a score.  Scores for all 90 frames were added 

individually for each larva and normalized to one hundred to determine light preference 

with age (Figure 4.2a).  Positive scores indicate a preference for the light environment, 

negative scores indicate a preference for the dark environment and a score of zero 

indicates no preference.  Social preference was evaluated in a similar manner.  Here 

larvae were placed individually in the training chamber (with an opportunity to view 

conspecifics) in either completely dark or completely light environments for a 15 minute 

period (Figure 4.2b, scheme).  Larvae that were detected in the social environment 

(transparent barrier) were scored as +1, while larvae detected in the individual 

environment (opaque barrier) were scored as -1.  Scores for all frames were added and 

normalized to determine social preference with age in both a light and a dark 

environment (Figure 4.2b).  Positive scores indicate a preference for the social 

environment, while negative scores indicate a preference for the individual environment. 

 6-8dpf larvae showed a moderate preference for light under the conditions tested 

here, which increased slightly, though not significantly (6dpf vs. 8dpf, p=0.091), with age 

(Figure 4.2a).    In contrast, 6-8dpf larvae showed a strong preference for the social 

environment where they had visual access to their conspecifics, both in light and dark 

conditions (Figure 4.2b). Despite a trend for slightly higher scores in the light 

environment that likely resulted from better visibility of conspecifics in neighboring 

chambers, this social preference remained stable with age and was not significantly 

affected by illumination conditions.  Placing an individual larva in the training chamber 
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when the neighboring chambers were unoccupied did not cause preference for the social 

(transparent) environment (data not shown).  This indicates that visual access to 

conspecifics, not some other aspect of the social environment such as light intensity or 

transparency, acted as the reward.  These results demonstrate that 6-8dpf larval zebrafish 

show moderate light environment preference and strong social environment preference, 

which remains stable during the ages investigated.  Thus, unconditioned preferences may 

be exploited to “place condition” 6-8pdf larvae. 

 

 
 
Figure 4.2. 6-8pdf larval zebrafish show unconditioned preference for light and social 
environment.  
 
(a) Mean light preference during 15 minute period of 6-8dpf larval zebrafish. Differences 
are not statistically significant.  (b) Mean social preference during 15 minute period of 6-
8dpf larval zebrafish, in both light and dark conditions. Differences are not statistically 
significant.  Error bars in (a) and (b) denote SEM. 
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 The place-conditioning paradigm that we establish here consisted of three distinct 

phases (Figure 4.3a).  During test 1, the naive light environment preference of individual 

larval zebrafish was determined over two 15 minute periods.  Between the two periods of 

test 1, the orientation of the testing chamber within the behavioral chamber remained 

constant, but the light/dark environment orientation was rotated by 180˚ to ensure that the 

monitored larval position truly reflected light environment preference and not testing 

chamber side preference.  During training, the social environment was paired with the 

dark environment for a three-hour period.  Every 45 minutes during the training phase, 

the orientation of the training chamber in the behavioral chamber was rotated by 180˚ 

along with the illumination to prevent association between the social environment and 

visual cues that may have been present in the behavioral chamber.  After training the 

larvae were individually placed overnight in a 12-well plate, which in turn was placed in 

an incubator with a 10h dark 14h light cycle.  Approximately 14h after training, the 

(conditioned) light environment preference of each larval zebrafish was determined (test 

2) as previously described for test 1.  Control larvae were exposed to exactly the same 

procedure, except that this group was placed in the testing chamber, which did not posses 

a social environment, during training. 

 During the two 15 minute periods of test 1, larval zebrafish generally spent most 

of their time in the light environment, regardless of orientation with respect to the testing 

chamber (Figure 4.3b, test 1).  This supported our previous observation that 6-8dpf larval 

zebrafish have a moderate preference for the light environment (Figure 4.2a).  However, 

after training, during the first part of test 2, this preference was abolished.  In some cases, 

individual larvae now preferred the dark environment to the light environment, while in  
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Figure 4.3. Associative place-conditioning paradigm for 6-8dpf larval zebrafish 
 
(a) Scheme depicting associative place-conditioning paradigm.  Unconditioned light 
preference was determined during test 1, followed by a 3h training period during which 
dark and social environment were paired, but orientation of the training chamber in the 
behavioral enclosure was rotated by 180° every 45 minutes.  Light preference after 
conditioning was determined during test 2, 14h after training.  Control fish were exposed 
to the same pattern of light and dark environments in the testing chamber, which 
contained no social environment. (b) Sample position traces during test 1 and first part of 
test 2, 14h after training. Frames captured every 10s. (c) Light preference before (x-axis) 
and after (y-axis) training of experimental (blue) and control (red) larvae.  Larger markers 
denote mean light preference. (d) Light preference difference of experimental (blue) and 
control (red) groups, determined by subtracting light preference after training from light 
preference before training. Error bars denote SEM, ***p<0.001.  (e) Preference 
difference distribution of experimental (blue) and control (red) groups. 
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most cases we observed a preference shift from light environment towards dark 

environment (Figure 4.3b, test 2).  This change in preference is quantified in Figure 4.3c, 

where the preference for light environment before training (test 1) of both experimental 

(blue) and control (red) larvae is plotted on the x-axis, while preference for light 

environment after training (test 2, first 15 minute period) is plotted on the y-axis.  While 

control larvae clustered in the upper right quadrant of the scatter plot, indicating that their 

preference for light environment remained constant, experimental larvae clustered in the 

lower right quadrant.  This confirmed that while experimental larvae, like controls, 

preferred the light environment before training, their preference had changed after 

training.  Here experimental larvae shifted their preference toward the dark environment, 

which during training was paired with the social reward, the environment in which larvae 

had visual access to their conspecifics.  

 By subtracting the light environment preference score calculated for the first 15 

minute period of test 2 from the light environment preference score calculated for test 1, 

we quantified this preference difference after training for both experimental and control 

groups (Figure 4.3d).  While the control group showed no light environment preference 

difference, the experimental group showed a very large preference difference.  

Differences in light environment preference difference between experimental and control 

were statistically significant (p=2.4·10-5).  This indicates that the larvae exposed to dark 

environment paired with the social reward were able to learn the association between the 

two stimuli.  The distribution of this preference difference centered on zero for the 

control group, while it was significantly shifted in the direction of dark environment 

preference for the experimental group.  However, the shape and width of the preference 
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distribution curve was the same for control and experimental groups.  We therefore 

conclude that larval zebrafish can learn to associate the dark environment with the social 

environment, which caused individuals to change their light environment preference after 

a training period during which these two were paired. 

 

 

Memory extinction occurs rapidly, whereas memory retention lasts up to 36h 

 

Memory extinction is defined as a process in which a conditioned response diminishes 

over time when the association between unconditioned and conditioned stimuli are no 

longer present.  Extinction occurred rapidly in the place-conditioning paradigm described 

here.  Test 2, the light environment preference after conditioning, consisted of two 15-

minute periods between which the illumination orientation with respect to the testing 

chamber was rotated by 180˚, while the orientation of the testing chamber remained 

constant within the behavioral chamber.  This means that larvae positioned in the dark 

environment at the end of the first period of test 2 were automatically in the light 

environment at the beginning of the second period of test 2 (Figure 4.4a).  

While experimental larvae shifted their preference toward the dark environment 

during the first part of test 2, as compared to test 1 before training, these larvae spent the 

majority of the second part of test 2 in the light environment (Figure 4.4b).  In contrast, 

control larvae preferred the light environment during both parts of test 2.  The difference 

of light environment preference difference within test 2 between control and 

experimental groups was statistically significant (p=3.13·10-7) (Figure 4.4c).  The shift  
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Figure 4.4. Rapid extinction of the conditioned association 
 
(a) Scheme depicting test 2, during which larvae were exposed to dark environment, not 
paired with social environment.  Green vertical line denotes time when the position of 
light and dark environment was switched.  (b) Mean light preference of experimental 
(blue) and control (red) during every 100s period during test 2 (30 minutes total). Green 
vertical line denotes time when the position of light and dark environment was switched.  
(c) Light preference difference of experimental (blue) and control (red) between the first 
and second 15-minute period of test 2.  Error bars in (b) and (c) denote SEM; 
***p<0.001. 
 

back to preference for the light environment after a 15 minute exposure to the dark 

environment that no longer predicts social reward, suggests that memory of the 
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association undergoes rapid extinction.  Under conditions in which preference for dark 

environment was no longer reinforced, larvae quickly learned to uncouple the social 

reward from the dark environment stimulus. 

 To test how long memory retention of the learned association remains stable, we 

varied the length of the interval between training and test 2 from 14h-48h (Figure 4.5a).  

Memory retention, as measured by preference difference, was significantly different from 

untrained control group when the interval between training and test 2 is 14h, 24h and 36h 

(Figure 4.5b).  Only when the interval between training and test 2 was increased to 48h 

was the light environment preference difference no longer significantly different from the 

control group.  These results demonstrate that memory of the association between dark 

environment and social reward was stable for at least 36h in 6-8dpf larvae.  Interestingly, 

the preference difference distributions of the 36h and 48h interval groups did not show a 

normal distribution like control, 14h and 24h interval groups (Figure 4.5c).  Instead, the 

preference difference distribution of the 36h interval group revealed that the population 

had split into two groups, one with low negative preference difference (indicating a slight 

preference shift towards the light environment after training) and the other with a 

moderate positive preference difference (indicating a preference shift towards the dark 

environment after training).  The emergence of two distinct populations was even more 

dramatic in the 48h interval group (Figure 4.5c).  While on average the 48h interval 

group did not show a significant preference difference associated with learning, these 

results indicated that a subpopulation may still be able to retain the associative memory 

after intervals as great as 48h between training and test 2.  These results indicated that, 
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while extinction of the learned association occurred rapidly, memory retention in this 

paradigm was remarkably stable. 

 

 

 

 

 
Figure 4.5. Memory of association persists for at least 36h.  
 
(a) Scheme depicting place-conditioning paradigm.  To test memory retention, time 
between training and test 2 was increased up to 48h. (b) Light preference difference of 
larvae tested 14h-48h (blue to light blue) after training and control (red) larvae, 
determined by subtracting light preference after training from light preference before 
training. Error bars denote SEM, ***p<0.001, **p<0.01, *p<0.05.  (e) Preference 
difference distribution of larvae tested 14h-48h (blue to light blue) after training. 
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Memory formation is protein synthesis- and NMDAR-dependent 

 

FUNCAT and BONCAT were adapted for larval zebrafish to permit investigation of 

protein synthesis in cells and neuronal circuits underlying memory formation.  Therefore, 

any learning paradigm that is to be paired with these techniques must induce protein 

synthesis during memory formation.  We tested whether the long-lasting memory 

described above requires new protein synthesis directly, by applying the protein synthesis 

inhibitors puromycin or cycloheximide during the three hour training period (Figure 

4.6a).   

 Incubation with 5µg/ml puromycin exclusively during training completely 

abolished memory formation, while incubation with 10µM cycloheximide, a 

concentration previously used by others to impair long-term habituation in larval 

zebrafish (Wolman et al., 2011), had a less profound but still marked effect (Figure 4.6b).  

The distributions of preference differences are shown in Figure 4.6c.  The preference 

difference distributions of both puromycin- and cycloheximide-incubated groups centered 

on zero and showed a normal distribution, reflecting normal variability of the light 

environment preference.  Scatter plots of light environment preference before training 

plotted against light environment preference after training further illustrate that most 

larvae incubated in the protein synthesis inhibitors showed no change in light 

environment preference after training (Figure 4.6d and e).  The difference in the 

impairment of memory retention caused by puromycin and cycloheximide may be 

concentration-dependent and memory retention may be completely abolished by 

incubations in higher concentrations of cycloheximide during training.   
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Figure 4.6. Memory formation is protein-synthesis dependent.   
 
(a) Scheme depicting place-conditioning paradigm.  To test whether memory formation is 
protein-synthesis dependent, larval zebrafish were incubated in puromycin (5µg/ml), 
cycloheximide (10µM) or MK-801 (100µM) during the 3h-training period.  (b) Light 
preference differences of experimental (blue), control (red) and larvae exposed to 
puromycin (light green), cycloheximide (green) or MK-801 (dark green) tested 14h after 
training. Error bars denote SEM, ***p<0.001, **p<0.01, *p<0.05.  (c) Preference 
difference distributions of larvae incubated in puromycin (light green), cycloheximide 
(green) and MK-801 (dark green) during 3h training period.  (d-f) Light preference before 
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(x-axis) and after (y-axis) training of puromycin-incubated (light green), cycloheximide-
incubated (green) and MK-801-incubated (dark green) larvae.  Larger markers denote 
mean light preference. 
 

 The NMDA receptor (NMDAR) has been shown to play a fundamental role in 

learning and memory and to underlie synaptic processes including LTP and LTD, 

especially in rodents.  Two paralogs of each of the five mammalian NMDA receptor 

subunits (NR1 and NR2A through D) have been found in zebrafish.  The nucleotide 

sequences of the subunit genes, especially NR1, are highly conserved between zebrafish 

and rodents (Cox et al., 2005).   As observed in mammals, NR1 is widely expressed in 

the zebrafish brain, while NR2 subunits show more specific distribution patterns in 

distinct neuronal populations (Pan et al., 2010; Cox et al., 2005). Recently, Sison and 

Gerlai, as well as Blank and colleagues, showed that associative learning in adult 

zebrafish is NMDAR-dependent, using the selective non-competitive NMDAR 

antagonist, MK-801 (Wong et al., 1986; Sison and Gerlai, 2011; Blank et al., 2009).   

Here we incubated larval zebrafish in 100µM MK-801 to investigate whether 

memory formation during the place-conditioning paradigm developed was NMDAR-

dependent. Although not completely abolished, memory retention after incubation with 

MK-801 was significantly impaired, as compared to the experimental group, suggesting 

at least partial NMDAR dependence (Figure 4.6b).  It is worth noting that most larvae 

exposed to MK-801 during training exhibited very little preference difference after 

conditioning, as illustrated by the fact that most clustered in the upper-right-hand 

quadrant of the light environment preference scatter plot (Figure 4.6f).  However, four 

individuals (11.4%) showed significant changes in light environment preference towards 
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dark, indicating that they learned the trained association and that memory formation in 

these individuals may not be NMDAR-dependent.   

 

 

 
Figure 4.7. 3h incubation with puromycin, cycloheximide or MK-801 does not 
significantly alter unconditioned light and social environment preference.  
 
Mean social (a) and light (b) preference during 15 minute period of 6-8dpf larval 
zebrafish after 3h incubation in puromycin (5µg/ml), cycloheximide (10 µM) or MK-801 
(100µM). Differences are not statistically significant.  Error bars denote SEM. 
 

 

 Incubation with PSI and NMDAR-antagonists may affect behaviors other than 

learning and memory, which may indirectly impair performance in the place-conditioning 

paradigm.  To examine whether the incubation conditions used influence simple 

behaviors, larval zebrafish were incubated in puromycin, cycloheximide or MK-801 for 

three hours, after which time the unconditioned social environment and light environment 

preferences were monitored as described previously.  Both social and light environment 

preference did not change in the presence of PSI or the NMDAR antagonist (Figure 4.7).  
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Although, larvae incubated in cycloheximide showed a slight decrease in light 

environment preference, this decrease was not statistically significant.  Together, these 

results demonstrate that formation of the association memory is protein synthesis-

dependent and partially NMDAR-dependent, making the place-conditioning paradigm 

described here an ideal candidate for pairing with metabolic labeling techniques to 

identify cells and circuits involved in memory formation.   

 

 

Exposure to social environment sustains exploratory behavior 

 

Next, we investigated whether exposure to the training protocol or learning induced other 

quantifiable behavioral changes, such as changes in the level of exploratory behavior.  

Midline crossing, movement from the light environment to the dark environment or vice 

versa between subsequent frames during test 1 or test 2, can be used as a measure of 

exploratory behavior.  During test 1, both control and experimental groups showed a 

mean midline crossing of around 13 crossings per 15 minute period.  However after 

mock-training in the testing chamber (in which there were no conspecifics visible), 

control fish showed a drastic decrease in midline crossing to about 6 crossings per 15 

minute period, while experimental larvae that were exposed to the social environment of 

the training chamber showed no such decrease (Figure 4.8c).  The difference in midline 

crossing between test 1 and test 2 was significantly different between control and 

experimental groups.  To test whether this sustained exploratory behavior of the 

experimental group was a result of associative learning or simply caused by exposure to 
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the social environment of the training chamber, we designed and tested a second 

‘unpaired’ control.   

 

 

Figure 4.8. Exposure to social environment sustains exploratory behavior.   
 
(a) Scheme depicting place-conditioning paradigm.  Unpaired control larvae were 
exposed to unpaired social and dark environments during the training period. (b) Light 
preference difference of experimental (blue), control (red) and unpaired control (pink). 
Error bars denote SEM, ***p<0.001.  (c) Mean midline crossing during 15 minute period 
before training, after training and mean midline crossing difference.  Midline crossing 
was scored as movement of larva from light to dark environment or vice versa between 
two subsequent frames (10 second interval). Error bars denote SEM, ***p<0.001, 
**p<0.01, *p<0.05. 
 

 Under unpaired control conditions, larvae were subjected to unpaired 

presentations of social environment and dark environment during the training period 
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(Figure 4.8a).  While the dark environment orientation with respect to the behavioral 

chamber was rotated by 180˚ every 45 minutes, the orientation of the training chamber 

and hence the social environment with respect to the behavioral chamber was kept 

constant.  This way dark and social environment were only paired during two of the four 

45 minute training intervals.  During the other two training intervals light and social 

environment were paired.  As dark environment does not predict the social reward under 

these conditions, larvae should not learn to associate the two and therefore should not 

shift light environment preference toward the dark environment after training.  However, 

as larvae were still exposed to the social environment, this allowed us to distinguish 

whether sustained exploratory behavior was linked with social reward exposure or 

learning. 

 The unpaired control group, like the control group, did not show a preference for 

light environment difference after training (Figure 4.8b) demonstrating that under the 

unpaired control conditions described above, larvae did not learn to associate dark 

environment and social reward.  Furthermore, unpaired controls produced a similar 

number of midline crossing during test 1, before training, as both the control and 

experimental groups.  However, unlike the control group, the unpaired control group 

showed a high number of midline crossings after training, during test 2.  This difference 

in mean midline crossing between test 1 and test 2 was significantly different between 

unpaired control and control groups, while it was not significantly different between 

unpaired control and experimental groups.  As the unpaired control groups were exposed 

to the social environment which allowed visual access of conspecifics, but did not learn 

to associate this social reward with the dark environment, we conclude that sustained 
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exploratory behavior, as measured by midline crossing, is a result of exposure to the 

social environment and not related to associative learning. 

 

 

Discussion 

 

In this chapter we have described a new associative place-conditioning paradigm for 

larval zebrafish.  During a three hour training period experimental larvae learned to 

associate the social reward of visual access to a group of conspecifics with a dark 

environment.  In contrast, control groups that were either not exposed to the social reward 

or to whom the social reward was presented in a manner unpaired with light environment, 

did not change their preference for light environment.  Furthermore, we have 

demonstrated that this associative memory underwent rapid extinction but was 

remarkably stable, lasting for up to 36h.  Incubating larvae in protein synthesis inhibitors 

or NMDAR antagonists during training, prevented and impaired memory formation, 

respectively, confirming that this associative learning is protein synthesis and partially 

NMDAR-dependent.   

In establishing this paradigm, we have demonstrated both that 6-8dpf larvae are 

capable of associative learning and that the unconditioned stimulus of visual access to a 

group of conspecifics may act as a social reward. Previous attempts to associatively 

condition larval zebrafish relied on restriction of the larva by embedding it in agarose 

(Aizenberg and Schuman, 2011; Florian Engert personal communication), with the aim 

of combining these paradigms with calcium imaging of neural activity.  However, using 
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this technique, larval zebrafish were only weakly trained and rapidly forgot the learned 

association or did not learn the association at all.  One cause of weak training with 

agarose embedding may be that movement restriction of larval zebrafish significantly 

decreases overall neural activity, as was recently shown using bioluminescence to 

monitor neural activity (Naumann et al, 2010).   In contrast, the associative place-

conditioning paradigm described here does not require immobilization and may therefore 

enable associative conditioning of larval zebrafish. 

Furthermore, we have shown that sight of conspecifics may act as social reward 

for larval zebrafish, supporting associative learning. The zebrafish is a social species 

known to aggregate, and visual access of conspecifics has previously been described to 

have rewarding properties in other species of fish (Gerlai and Hogan, 1992), as well as in 

adult zebrafish (Al-Imari and Gerlai, 2007; Gomez-Laplaza and Gerlai, 2010; Sison and 

Gerlai, 2011).  One of the most commonly used conditioning paradigms in rodents is 

appetitive conditioning, in which a conditioned stimulus predicts timing or location of 

access to a food reward.  However, precise delivery of small amounts of food in a 

localized manner as required in most learning tasks is technically more difficult in water.  

Food may dissolve and diffuse in the water and if left unconsumed may decrease water 

quality and interfere with conditioning.  Thus, the demonstration that sight of 

conspecifics may be used as a practical way to reward zebrafish may enable development 

of other associative paradigms that, among other things, could be used to investigate 

sensory perception of larval zebrafish. 

Interestingly, even though the studied larvae are virtually clones, as a result of 

generations of inbreeding, they still exhibit a great deal of variability.  This variability 
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can be observed both in unconditioned light and social preference (Figure 4.3b), as well 

as in susceptibility of memory impairment to chemical stimulation with the NMDAR 

antagonist MK-801 (Figure 4.6f).  Although most larvae tend to prefer the light and 

incubation with MK-801 impairs memory formation in most individuals, there are always 

outliers even in such a genetically homogenous group.  In the future, it might be 

interesting to investigate regulation of gene methylation, expression and protein 

translation specifically in these outliers in order to identify genes and their proteins 

involved in mediating these divergent behaviors. 

 

As this paradigm is simple and does not involve restraining of larvae or food 

reward, we believe it can easily be serialized for high-throughput behavioral screens, 

pharmacological screens or proteomic approaches.  Furthermore, as the formation of the 

associative memory made here is protein synthesis-dependent, this paradigm may be 

ideally suited to be paired with FUNCAT and BONCAT techniques to visualize cells or 

neuronal circuits underlying memory formation, as well as to identify proteins 

differentially translated during memory formation. 

 

 

Methods 

Zebrafish stocks and husbandry 

 

Wild-type adult fish strains were kept at 28°C on a 14h light/10h dark cycle.  

Embryos were obtained from natural spawnings and were maintained in E3 embryo 
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medium (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4) (Nüsslein-Volhard 

and Dahm, 2002) at 28°C on a 14h light/10h dark cycle.  Larvae were not fed before the 

training period. 

 

Behavioral chambers 

 

The testing and training chambers were custom constructed from white plastic 

and transparent Plexiglas.  Both chambers were 12.5cm by 8.5cm and 1cm deep, divided 

into 14 individual channels by removable partitions, which were slanted at increasing 

angle from the middle outwards to prevent the creation of blind spots during video 

monitoring.  The bottom of the training and testing chamber was made of transparent 

Plexiglas, while the sides were made of white plastic.  The testing chamber was identical 

to the training chamber, except that it had completely opaque partitions made of single 

pieces of white plastic, while the training chamber had partitions that are half transparent 

Plexiglas and half opaque white plastic.  The behavioral chamber was custom constructed 

from white plastic, transparent Plexiglas and a semitransparent soft plastic.  It measured 

23cm in total height, while the enclosed compartment was 11cm by 16cm by 13cm. The 

bottom was made of Plexiglas covered with a thin layer of semitransparent soft plastic.  

The rest of the behavioral chamber was constructed of white plastic.  The front of the 

behavioral chamber had a sliding door and the top had a hole to allow visual access.  

Sketches of behavioral chambers can be found in Appendix B. 
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Behavioral Assay, video recording and behavioral analysis 

 

The testing chamber was filled with approximately 30ml of E3 embryo medium 

and 6-8dpf larval zebrafish that showed high exploratory behavior (swam across petri 

dish instead of remaining at the walls, swam near the surface indicating that swim 

bladders were fully inflated and avoided capture) were placed individually into the 12 

center channels.  The testing chamber was placed in the behavioral chamber.  To monitor 

light environment preference, the projector (Optoma Pico Pocket DLP Projector, model 

no. PK301) was controlled using Matlab (testFish.m, Appendix C) to illuminate the 

behavioral chamber, creating two different but equally sized light environments.  The 

dark environment was created by setting the projector to emit red, green, blue (RGB) 

values of 120, while the light environment was created by the projector emitting RGB 

values of 230.  The testing chamber was oriented such that the light and dark 

environments met at the midline of the testing chamber.  Larval zebrafish position was 

captured using a Phillips webcam (SPC 2050NC) every 10 seconds for a period of 15 

minutes (testFish.m, Appendix C).   

During test 1, in which we quantified unconditioned light environment preference, 

larval zebrafish position in the testing chamber was monitored for two 15-minute periods.  

In between these two periods the orientation of the light environments projected onto the 

behavioral chamber was rotated by 180˚, but the orientation of the testing chamber within 

the behavioral chamber remained constant.  For the experimental condition, the training 

chamber was filled with E3 embryo medium.  Larvae previously in the testing chamber 

were moved into the training chamber in the same order.  The training chamber was 
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placed into the behavioral chamber.  The same light environments as previously 

described were projected onto the behavioral chamber and the training chamber was 

oriented such that the social environment was placed over the dark environment.  The 

orientation of light environment and the training chamber were rotated by 180˚ every 45 

minutes.  Training consisted of four 45-minute periods, for a total of 3h.  Larval position 

was not monitored during training and light environment was controlled using Matlab 

(trainFish.m, Appendix C).  Control group larvae were gently suctioned out of the testing 

chamber after test 1, immediately returned to the same channel in the testing chamber and 

exposed to the same training light environment conditions as the experimental group.   

After training, larvae were individually placed in a 12 well plate containing 1.5ml 

E3 embryo medium per well.  The plate was marked to keep track of each individual 

larva and was incubated at 28˚C on a 14h light, 10h dark cycle for approximately 14h.  

Next, larvae were returned to the testing chamber in the same order as before to quantify 

light environment preference after conditioning. As previously described for test 1, test 2 

consisted of two 15-minute periods during which the light environments were projected 

onto the bottom of the behavioral chamber while the position of the larvae was monitored 

from above.  The orientation of the light environment with regard to the testing chamber 

was switched between the two periods, while the orientation of the testing chamber in the 

behavioral chamber remained constant.   

Each frame of larvae position taken during test 1 and test 2 was saved 

automatically and scored manually. Larvae detected in the light environment were scored 

as +1, while larvae detected in the dark environment were scored at -1.  If larvae position 

could not be identified, a score of 0 was recorded for that frame.  Scores for all 90 frames 
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(taken every 10 seconds for 15 minutes) were added and normalized to 100 to give final 

light environment preference scores.  Preference difference scores, as a measure of 

memory retention, were calculated by subtracting light environment preference scores for 

the first period of test 2 from the mean light environment preference score of test 1.  

Significance was calculated using the unpaired two-tailed t-test and all error bars 

represent standard error of the mean. 

Memory retention was investigated by prolonging the isolation periods between 

training and test 2.  As described before, larvae were placed individually in 12 well plates 

at 28˚C on a 14h light, 10h dark cycle for 24h-48h.  Unconditioned and conditioned light 

environment preference, as well as training, remained the same.   

 

Pharmacology 

 

 Larvae were incubated in each compound exclusively during the 3h training 

period. 1000X stock solutions were made by dissolving MK-801 (M107; Sigma-Aldrich), 

puromycin (P8833; Sigma-Aldrich) and cycloheximide (PS1002; Sigma-Aldrich) in 

100% DMSO (D2650; Sigma-Aldrich) and stored at -20˚C.  Stock solutions were 

dissolved in E3 embryo medium to final concentration.  This was used to fill the training 

chamber, into which larvae were placed, while making sure to transfer as little excess 

embryo medium from the testing chamber as possible.  After training, larvae were 

removed from the training chamber and washed twice in 1.5ml E3 embryo medium 

before being placed in a 12 well plate as described above. 
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Discussion 

 

Long-term memory formation has been shown to be protein synthesis-dependent.  Using 

both chemical manipulations of total protein synthesis via temporally and structurally 

targeted application of PSI and genetic manipulation of key proteins involved in 

translational control, researchers over the last half century have shown conclusively that 

new protein synthesis is required to implement the physical changes underlying memory 

formation (reviewed in Sweatt, 2009).  Although many proteins involved in the signaling 

cascades, structural changes and synaptic strengthening that result in long-term memory 

formation have been identified, hundreds more could play important roles that have yet to 

be discovered.  Currently available techniques to identify proteins synthesized in 

response to certain stimulations, such as SILAC, do not permit selective affinity 

purifications of newly synthesized proteins.  This means that sample complexity cannot 

be reduced before identification using tandem mass spectrometry, possibly preventing 

identification of proteins of low abundance.  It is precisely these proteins of low 

abundance that might be some of the most interesting signaling molecules involved in 

memory formation.   

Furthermore, the role of the hippocampus, which is thought to be homologous to 

the dorsal lateral telencephalon in teleosts, in memory formation has been well 

demonstrated using both surgical and chemical lesions in vivo.  However, which specific 

cells participate in long-term coding of a discrete memory and how many show changes 

in protein synthesis is not known.  Using genetically encoded fluorescent proteins, such 

as GFP, the translation and localization of specific candidate proteins can be visualized.  
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Unfortunately, these techniques rely on overexpression of the target gene, which along 

with the size of the fluorescent protein tag may alter protein function and localization.  

Furthermore, these techniques will always depend on a priori candidate selection and 

may therefore severely hinder, if not altogether prevent, the unbiased identifications of 

effector proteins underlying long-term memory formation.   

Here, we have described the development of novel tools for the visualization of 

cells underlying protein synthesis-dependent memory formation in intact animals, as well 

as the purification and identification of effector proteins that are regulated in this process.  

First, we have demonstrated that the bioorthogonal metabolic labeling techniques 

BONCAT and FUNCAT, originally developed in vitro, can be applied to the larval 

zebrafish to quantify, purify and visualize newly synthesized proteins in vivo.  We show 

that incubation with the noncanonical amino acid AHA does not affect simple behaviors 

but leads to incorporation and labeling of newly synthesized proteins specifically in a 

time- and concentration-dependent manner.  These newly synthesized proteins can be 

tagged in a click chemistry reaction with either a biotin-alkyne to permit quantification 

using immunoblots and affinity purification (BONCAT) or a fluorescent-alkyne to enable 

visualization (FUNCAT) in whole-mount larval zebrafish. These approaches are not 

candidate based and, due to the small size of the azide moiety, introduction of AHA is 

unlikely to interfere with endogenous function and localization of tagged proteins.  Using 

these techniques as adapted to the larval zebrafish, we have demonstrated that chemical 

stimulation with the proconvulsant GABA antagonist PTZ increases protein synthesis. 

Next, we genetically restricted these metabolic labeling techniques to specific cell 

populations via selective expression of a mutant aminoacyl-tRNA synthetase (MetRS) in 
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larval zebrafish.  Previous work by Tirrell and coworkers has provided evidence that 

introduction of specific residue mutations of the E. coli MetRS catalytic cleft allows the 

mutant enzyme to charge the larger noncanonical amino acid ANL.  The MetRS catalytic 

binding pocket residues are highly conserved between E. coli and Danio rerio and we 

have demonstrated here that introduction of the mutations characterized in E. coli enables 

zebrafish MetRS to charge ANL both in vitro and in vivo.  Only COS7 cells that were 

expressing the zebrafish L13G-MetRS in the absence of a PSI incorporated ANL.  Both 

transient and stable expression of the L13G-MetRS in the larval zebrafish nervous system 

allowed for cell-specific visualization of newly synthesized proteins. Restriction of 

metabolic labeling techniques in vivo opens new avenues to study the proteome of 

specific neuronal populations by biochemical and imaging assays.  

Finally, we developed a protein synthesis-dependent place-conditioning paradigm 

for 6-8dpf larval zebrafish.  By pairing a social reward, visual access to a group of 

conspecifics, with a specific light environment, we were able to train larvae to prefer the 

light environment associated with the reward.  Learned light preference underwent rapid 

extinction under conditions in which the association was not reinforced, but remained 

stable for up to 36h after training.  Exposure to the PSI puromycin and cycloheximide 

during the 3h training period completely abolished and severely inhibited memory 

formation, respectively.  Furthermore, incubation with the NMDAR-antagonist MK-801 

also impaired memory formation. This protein synthesis-dependent place-conditioning 

paradigm is achieved in freely moving animals and does not rely on food reward, which 

is difficult to administer and remove in an aquatic environment, and could easily be 

serialized for high-throughput screening. 
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Future directions 

 

Chemical screening 

 

Adult zebrafish lay clutches of hundreds of eggs; the larvae are small, transparent and 

easily absorb chemicals present in their environment.  These characteristics, among 

others, have recently made the larval zebrafish a prominent model organism for small 

molecule chemical screening.  Large libraries can quickly be screened for both 

developmental and behavioral phenotypes and have been successfully used to identify 

chemicals that influence the photomotor response (Kokel et al., 2010; Kokel and 

Peterson, 2011), sleep and arousal (Rihel et al., 2010; Rihel, Prober and Schier, 2010) and 

short-term habituation (Wolman et al., 2011). 

Both the metabolic labeling techniques and the place-conditioning paradigm 

developed in this study could be combined with high-throughput chemical screening.  As 

we demonstrated, stimulating larval zebrafish with chemical compounds such as the 

GABA antagonist PTZ can alter protein synthesis, which can be detected using 

BONCAT and FUNCAT techniques.  In the future, pairing chemical screening with AHA 

incubation could be used to identify compounds that alter protein synthesis, as well as 

elucidate in which specific organs or cell types of the larval zebrafish these effects are 

most prominent.  Furthermore, incubation with PSI cycloheximide and puromycin, as 

well as the NMDAR-antagonist MK-801, impaired memory formation of the place-

conditioning paradigm described here, showing that learning is protein-synthesis and 

partially NMDAR-dependent. Small molecule screening could be paired with the high-
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throughput associative conditioning paradigm developed in this study to identify 

chemicals that disrupt or enhance memory formation. 

 

Proteomics 

  

The BONCAT technique enables affinity purification specifically of those proteins that 

were newly synthesized during the noncanonical amino acid incubation window from 

total protein samples.  Affinity purification thereby allows for the identification of 

specific proteins in the pool of newly synthesized proteins using western blotting, but has 

a main advantage in that it reduces sample complexity in order to permit identification of 

less abundant proteins using tandem mass spectrometry.  Using BONCAT in HEK293 

cells, Dieterich and colleagues were able to identify 195 proteins that were newly 

synthesized during the 2h AHA incubation period (Dieterich et al., 2006).  Establishing 

affinity purification and tandem mass spectrometry protocols that allow for the 

identification of newly synthesized proteins from whole larval zebrafish, as well as from 

specifically labeled cell populations using genetically restricted BONCAT techniques, is 

an immediate future goal. 

 In preliminary experiments using a 72h AHA incubation, we were able to affinity 

purify and identify over 540 proteins from 7dpf larval zebrafish (Appendix D).  Briefly, 

4dpf larval zebrafish were incubated in E3 embryo medium supplemented with 4mM 

AHA for 72h before being anesthetized on ice, homogenized and reacted to the biotin-

alkyne tag as described in Chapter II.  Labeled proteins were affinity purified using 

NeutrAvidin beads followed by on-bead digestion with trypsin and submitted to a liquid-
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chromatography-coupled tandem mass spectrometric analysis for protein identification 

(Dionex nanoRSLC and ThermoScientific Orbitrap Elite). This resulted in the detection 

of both soluble and membrane proteins associated with a variety of different cellular 

functions and subcellular localizations (Figure 5.1), indicating that AHA incorporation is 

generally unbiased in larval zebrafish.  In the future, we will aim to replicate these 

findings, as well as optimize the protocols to enable identification of newly synthesized 

proteins from specific cell populations. 

 

Live labeling 

 

Currently, BONCAT and FUNCAT techniques depend on covalent linking of alkyne and 

azide groups via a selective Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition.  As the 

copper catalyst necessary for this reaction is toxic, live labeling of protein synthesis using 

‘click chemistry’ is not possible.  Recently, the Bertozzi group described a strain-

promoted [3+2] cycloaddition between cyclooctynes and azides that proceeds under 

physiological conditions without the need for a catalyst and is not toxic in vivo (Agard, 

Prescher and Bertozzi, 2004; Baskin et al., 2007; Dieterich et al., 2010). Unfortunately, 

these fluorescent difluorinated cyclooctyne (DIFO) tags are not cell membrane permeable 

and therefore not suitable for live imaging of cytoplasmic proteins in vivo.   
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Figure 5.1. Physical mapping of preliminary proteomic data 
 
Gene ontology categorization of newly synthesized proteins identified by tandem MS 
after 72h AHA incubation and affinity purification into (a) biological process, (b) cellular 
compartment and (c) molecular function. 
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However, progress towards live labeling of cytoplasmic proteins is being made.  

Beatty and coworkers are currently developing a set of cyclooctyne tags coupled to small, 

cell membrane-permeable fluorphores such as coumarin and BODIPY and have shown 

first results that these tags may enable cytoplasmic protein labeling in live mammalian 

cell lines (Beatty et al., 2010, Beatty et al., 2011).  Development of such cell membrane-

permeable tags will permit live imaging of newly synthesized proteins in cells and 

possibly whole organisms, thereby opening new avenues for investigating dynamic 

metabolic responses in complex systems to both chemical and possibly even behavioral 

stimuli.  

 

Visualizing memory formation 

 

The ultimate aim of this study was to develop tools that would enable the visualization of 

neuronal circuits involved in memory formation, as well as the characterization of these 

newly synthesized proteins.  Although long-term memory formation has been proven to 

depend on protein synthesis, there is still an ongoing debate as to whether this means that 

memory formation will induce increases in protein synthesis in specific neurons or at 

specific synapses involved, or whether memory formation simply causes altered protein 

synthesis. Studies using 35S-methionine labeling after serotonin stimulation of Aplysia 

sensory neurons have shown that this chemical stimulation initiates a pronounced change 

in total protein synthesis rate (Barzilai et al., 1989).  Furthermore, genetic manipulations 

that cause disruption of translation inhibition, resulting in an increased protein synthesis 

rate, concurrently caused increased L-LTP formation (Kelleher et al., 2004).  Both of 
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these studies provide evidence that increased protein synthesis is necessary for long-term 

memory formation.   

However, Klann and Sweatt propose an alternative model by which a transient 

memory triggers limited translation initiation and synthesis of new proteins, but is 

subsequently stabilized and perpetuated by a positive feedback mechanism requiring only 

ongoing constitutive protein synthesis (Klann and Sweatt, 2008).  In this refinement of 

the “synaptic tagging and capture” model, only a very small number of proteins would 

need to show increased synthesis rates to initiate memory formation, while the functional 

changes associated with memory formation may be instantiated by localized recruitment 

of constitutively synthesized proteins.  FUNCAT can be used to visualize global changes 

in the rate of protein synthesis during specific time windows, but cannot be used to 

visualize altered levels of protein synthesis of specific proteins.  Therefore, pairing 

FUNCAT techniques with the larval zebrafish place-conditioning paradigm developed in 

this study may enable us to distinguish between these two hypotheses and determine 

whether memory formation relies on increased or altered rates of protein synthesis.  If 

indeed increased protein synthesis is visualized during memory formation, the location of 

this increase in fluorescence will identify cells and circuits involved in memory 

formation. 

Furthermore, identifying the proteins that are translated during long-term memory 

formation may be possible by pairing the place-conditioning paradigm with BONCAT to 

label, affinity purify and then analyze the newly synthesized proteins using tandem mass 

spectrometry.  By comparing the proteomes of larvae that showed learning of the 

association and those that were exposed only to the control conditions or those that did 
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not show changed light preference when exposed to the training protocol, we may be able 

to identify specific effector proteins that show altered translation with memory formation.  

These most likely will include proteins involved in signaling cascades regulating LTP, 

such as CaMKII and PKMζ, as well as proteins involved in structural change and 

synaptic strengthening, such as cadherins and AMPA receptors. Hopefully, such 

experiments will confirm known effector proteins and will identify as-yet-unknown 

proteins underlying memory formation. 

Two further points should be considered.  For one, depending on the time window 

of AHA incubation, different populations of proteins will likely be tagged as a result of 

specific synthesis and degradation rates.  During prolonged incubation periods proteins of 

short half-life may be both synthesized and degraded, thereby preventing their affinity 

purification and identification.  Arc, for example, has been shown to be synthesized and 

degraded within 30 minutes of memory induction.  Incubation periods of 12h may 

therefore not be able to capture low abundant proteins with short life-spans, even though 

these may be of most interest in elucidating the signaling cascades underlying memory 

formation. Whether AHA diffusion rates into deep tissue, such as the nervous system, 

will be fast enough to allow for precise capture of different waves of translation will have 

to be determined experimentally. Secondly, mass spectrometry analysis may enable the 

identification of post-translational modifications of effector proteins, such as 

phosphorylation of signaling molecules and glycosylation of membrane proteins, thereby 

providing us with an even more complete picture of molecular changes occurring during 

long-term memory formation. 
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In conclusion, the tools developed in this study may be used to investigate a 

number of different scientific questions, including what small molecules effect memory 

formation and regulate protein synthesis rates in zebrafish.  New developments, such as 

the generation of small fluorescent tags may enable live intracellular labeling while 

proteins are being synthesized, and the optimization of affinity purification and mass 

spectrometry analysis, will permit us to identify these newly synthesized larval zebrafish 

proteins.  Finally, these techniques will be paired in order to investigate changes in 

translation with memory formation, potentially enabling identification of neuronal 

circuits and specific proteins involved in long-term memory formation. 
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