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Abstract

This dissertation consists of three parts. In the first part, the effect of the large

impact parameter near-elastic peak of collisional energy transfer for unimolecular

dissociation/bimolecular recombination reactions and deviation from equilibrium

case is studied. To this end the conventional single exponential model, a bi-

exponential model that fits the literature classical trajectory data better, a model

with a singularity at zero energy transfer, and the most realistic model, a model

with a near-singularity, are fitted to the trajectory data in the literature. A theory is

developed for the population distribution as a function of the energy E of a dissoci-

ating model, and used to calculate the three-body low pressure recombination rate

constant. In the second part, the electron transfer process in the single quantum

dot fluorescence blinking phenomenon is studied. The DCET (diffusion controlled

electron transfer) model has been modified to explain the exponential cutoff of the

power law time distribution of the bright state and the quadratic dependence of the

exponential tail on the excitation intensity. Based on ensemble measurements it is

proposed that an exponential tail for the dark state time distribution for long time

experiments exists for single trajectory experiments. In the last part, we develop

a general MLE (maximum likelihood estimation) method to analyze experimental

data with a potential distribution of power law form which can be extended to a

power law with an exponential tail and more generally, many other distribution

forms.
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Chapter 1

Collisional energy transfer in
recombination and dissociation
reactions, a Wiener-Hopf problem and
the effect of a near elastic peak

[This chapter appeared in the Journal of Chemical Physics 129, 214106 (2008).]
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1.1 Introduction

In the treatment of gas phase dissociation, unimolecular isomerization, and bi-

molecular recombination reactions, it has been recognized for many years that

”weak collisions” rather than ”strong collisions” play a major role in the activation

and deactivation of the vibrationally hot intermediate complexes in these reac-

tions [2–6]. Our interest in the subject was prompted by studies of ozone whose

formation and isotopic effects have been of much recent interest [7–23]. In general,

the formation of a molecule AB is described by

A + B→ AB∗, (1.1)

AB∗ +M→ AB +M, (1.2)

where M is a collision partner and AB∗ is a vibrationally excited intermediate. In

a weak collision assumption, unlike in a strong collision one, many collisions with

M are required to activate and deactivate a reactant molecule. When the collision

is ”weak”, the AB∗ may still have enough energy after the collision in reaction 2.2

to redissociate into A + B, instead of always being ”deactivated”, and so a set of

such equations with different energy is considered, leading to a master equation or

to a steady-state equation. The latter is then solved for the probability distribution

function for the vibrational energy in the energetic intermediate AB∗.

Information on the collisional energy transfer in reactions such as in Eq. (2.2) is

usually obtained from the pressure dependence of the reaction rate of the overall

reaction (2.1) - (2.2), using the solution of the collisional master or steady-state

equation to fit these experimental reaction rate versus pressure data [4, 6]. To

this end, a functional form for the collision energy transfer probability, denoted

here by Z(E′ ; E), is typically assumed and its parameters are calculated from the fit.

The functional forms used for this purpose are usually the exponential model intro-

duced by Rabinovitch, used in Subsec. (1.2.1), or a step-ladder in which the reactant

molecule gains or loses energy in collisions in discrete amounts, ”steps” [2,3,24,25].
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Luther and coworkers also introduced a stretched exponential model [26]. A bi-

exponential model was used by Brown and Miller [27] and modified by Hu and

Hase [28]. Complementing these studies have been ab initio or semi-empirical

calculations of the collisional energy transfer, frequently using classical mechanical

trajectories for the collisions [27–37]. Analytical treatments of vibrational energy

transfer have been given for particular cases [6, 35–39]. In particular, a detailed

discussion of the original master equation and of its steady-state approximation is

given by Penner and Forst [39], who expressed the solution in terms of hypergeo-

metric functions.

The Z(E′ ; E) is defined as the number of collisions per unit time with energy

transfer for the vibrationally excited intermediate, E→ (E′ ,E′ + dE′), per unit dE′ .

Then the number of collisions per unit time is
∫ ∞
−∞Z(E′ ; E)dE′ , which will be denoted

by Z(E). Z(E′ ; E) has units of sec−1 energy−1 when it is chosen to be the product

of the concentration of colliders and the bimolecular collision rate constant for the

transition E → E′ , per unit dE′ . Its theoretical calculation involves an integration

over impact parameters b, using 2πbdb as a weighting factor. Collisions with large b

contribute mainly to the energy transfer near E−E′ ≈ 0. When plotted versus E−E′

they yield an elastic-collision peak in the classical limit at E = E′ corresponding

to b = ∞. The larger the average value of the energy transfer per collision in

any reaction, the further the important energy transfer region is from the elastic

E − E′ = 0 peak. Examples of the tendency towards a singular behavior at E = E′

are seen in Refs. [1,27,40–42]. Ivanov and Schinke’s data [1] shown in Fig. 1.1(Fig.2

in Ref. [1]) are used later as an example. From a quantum mechanical view the

inelastic collisions have a lower bound for the energy transfer |E − E′ |, namely a

quantum of rotational or vibrational energy, depending upon the collision. So in

quantum mechanical calculations there is no such singularity, but instead there

is a near-elastic literature to avoid this peak [27–36].Then a single exponential,

step-ladder or bi-exponential model was usually adopted to fit the trajectory data.

For example, Brown and Miller [27] neglected the bin in which E′ − E ≈ 0 with a

bin size of around 30 cm−1 in a bi-exponential fit to the trajectory data. Hu and
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Hase [28] suggested that bmax should be identified as the value of b at which the

average energy transfer equals the inverse of the state density. In such a choice the

resulting collision cross section was considerably larger than the usually assumed

value, but within 5% of the experimental value [28].

The paper is organized as follows: the theory is described in Sec. 1.2 for the

different models. It is applied to a particular system in Sec. 1.3, the results discussed

in Sec. 1.4, with concluding remarks in Sec. 1.5.

1.2 Theory

1.2.1 General aspects

In using trajectories to calculate the transition rate Z(E′ ; E) a random sampling of

trajectories is performed over the vibrational and rotational coordinates and their

conjugate momenta of the vibrationally excited intermediate and over a Boltzmann-

weighted distribution of relative velocities of the collision partners [32–37]. The

calculations of energy transfer are typically made as a function of the internal energy

E of the energetic intermediate, its total angular momentum J [43], and occasionally

K, the projection of J along a specified principal axis of rotation, typically that with

the smallest moment of inertia. For notational simplicity we suppress the symbol

J in the following.

To obtain insight into the effect of the near-elastic peak at |E′ − E| = 0 in the

comparison between experimental data and trajectories, it is convenient to consider

the collisional steady-state/reaction equations, and obtain approximate analytical

solutions. Examples of other treatments are also available [39, 44–57].

We focus on the limiting low pressure rate constant k0. It is of particular interest,

partly because it describes the maximum effect of the collisions, and partly because

it is simpler to treat than the rate constant at higher pressures, where a solution of the

complete master equation would have been necessary. While simple theoretical

expressions for the distribution function of different (E, J) states of the reactants
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and for the energy transfer can also be obtained for the high-pressure limit of

k, k∞, they do not provide insight into the effect of energy transfer on k itself,

since k∞ is independent of Z(E′ ; E). The effect of the near-elastic peak should be

largest at low pressures, since the average energy of the reacting vibrationally

excited intermediate in a unimolecular reaction or a bimolecular recombination

is well-known to decrease when the pressure is decreased [58]. Accordingly the

vibrational energy of the typical molecule is closer to the energy dividing line

between stable and unstable intermediates, and so is closer to the near-elastic peak

when the pressure is decreased.

To treat the kinetics for the recombination of two species, A + B→ AB, one can

either proceed from the reactants (A+ B) or from the product (AB). If a tagged A is

followed in time in its progress to form AB, and if a tagged A in AB is followed in

time in its progress to form A + B, beginning with an equilibrium concentrations

of AB for the given A and B concentration, the sum of the tagged distribution

functions at any energy E is equal to the equilibrium distribution at that E. Thus, to

solve the problem one can either begin with a tagged A or a tagged AB. To simplify

the comparison with earlier work [45–49], we begin with AB and use the result to

calculate also the rate of recombination A + B→ AB.

We consider the reaction in the low pressure regime

M + AB(E)→M + AB∗(E
′
), (1.3)

AB∗(E
′
)→ A + B (if E

′
> 0), (1.4)

where E′ > 0 denotes the internal energies of any reacion intermediate AB∗ that can

dissociate into the separated reactants without a further collision. Energies E′ in

the reactants that are negative are insufficient for dissociation.

The scheme (2.8) - (2.9) is appropriate only for the low pressure limit of the

dissociation rate. At higher pressures an AB∗(E′) on a second collision can also

yield an AB∗ with a different E′ , where both E′s are greater than zero. At sufficiently

low pressures each AB∗(E′) formed in reaction (2.8) with ultimately dissociates into
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A + B before any further collision. For this case, the problem simplifies and a large

set of equations (the master equation) for AB∗(E′) is not needed for E′ > 0.

We denote the probability energy distribution function for AB by g(E) and write

k0 =

∫ ∞

E′=0

∫ 0

E=−∞
g(E)Z(E

′
,E)dE dE

′
. (1.5)

The equilibrium probability that AB has an energy in the range E,E+dE is geqdE,

where

geq(E) = ρ(E)e−E/kT/Q (1.6)

and ρ(E) denotes the density of quantum states of the molecule, Q is the partition

function of AB in the center-of-mass system of coordinates. When the energy is

measured relative to E = 0, the dissociation limit Q is also calculated relative to

that energy, and so contains a factor eD/kT , where D is the dissociation energy

of AB measured from the bottom of its potential well to the dissociation level.

When E becomes very negative in the steady-state problem, i.e., when E→ −D and

g(E)→ geq(E). This condition on g(E) serves as a boundary condition,

g(E)→ geq(E) E→ −D. (1.7)

After a short initial period g(E) relaxes towards a steady-state [6]. We use a

steady-state approximation here. The steady-state equation for g(E) is

0 =
∫ 0

−∞
Z(E,E

′
)g(E

′
)dE

′ − g(E)
∫ ∞

−∞
Z(E

′
,E)dE

′
(E 6 0). (1.8)

The latter can be rewritten as

g(E) =
∫ 0

−∞
Z(E,E

′
)g(E

′
)dE

′
/

∫ ∞

−∞
Z(E

′
,E)dE

′
(E 6 0). (1.9)

An analytical solution of this integral equation for a single exponential model for

the energy transfer was first given by Troe [6], who obtained it using a trial solution
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method. For the present article, we note instead that Eq. (1.9) is a homogeneous

Wiener-Hopf equation of the second kind and use the Wiener-Hopf method [59] to

obtain a solution.

We first study the single exponential and bi-exponential models with this

method. For the single exponential model, in terms of a deactivation constant

γ and of an activation constant γ′ , we have

Z(E
′
,E) = Z0e(E−E

′
)/γ, E

′
6 E, (1.10)

Z(E
′
,E) = Z0e(E

′−E)/γ
′
, E

′
> E, (1.11)

and for the bi-exponential model,

Z(E
′
,E) = Z0[e(E−E

′
)/γ + ce(E−E

′
)/d], E

′
6 E, (1.12)

Z(E
′
,E) = Z0[e(E

′−E)/γ
′
+ ce(E

′−E)/d
′
], E

′
> E, (1.13)

where Z0 is a constant and γ,γ′ and d,d′ are related by microscopic reversibility

(detailed balance).

The quantities Z(E′ ,E) and Z(E,E′) satisfy microscopic reversibility

ρ(E)Z(E,,E) = ρ(E
′
)Z(E,E

′
)e−(E

′−E)/kT. (1.14)

For practical purpose, we can typically treat the lower limit on E as E → −∞, a

minor approximation when D ≫ kT. Neglecting the effect of the change in ρ(E)

between E and E′ in the vicinity of E = 0, Eqs. (2.13) and (2.14) yield

1
γ′
=

1
γ
+

1
kT
. (1.15)

1
d′
=

1
d
+

1
kT
. (1.16)

The constants c and d are obtained later from fitting classical trajectory calculations
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data for vibrational energy transfer.

We have also examined a model with singularity at |E′ − E = 0 using another

method,

Z(E
′
,E) = Z0[1 + C(E − E

′
)−α]e(E−E

′
)/γ, E

′
6 E, (1.17)

Z(E
′
,E) = Z0[1 + C(E

′ − E)−α]e(E
′−E)/γ

′
, E

′
> E, (1.18)

γ and γ′ are the same as those of the single exponential model. C and α and are

obtained later from classical trajectory data.

1.2.2 Single exponential model

To compare with the earlier and insightful result in the literature by Troe [6],

we use the single exponential expression for the collisional energy transfer rate,

namely, Eqs. (2.13) and (2.14). The average ”up”-energy transfer, defined as the

average energy increase of the molecule for collisions that lead to an increase in

energy, is

< ∆E >up=

∫ ∞

E
(E
′ − E)Z(E,E

′
)dE

′
/

∫ ∞

E
Z(E

′
,E)dE

′
= γ

′
, (1.19)

Similarly the average ”down”-energy transfer is

< ∆E >down=

∫ E

−∞
(E
′ − E)Z(E,E

′
)dE

′
/

∫ E

−∞
Z(E

′
,E)dE

′
= −γ. (1.20)

These quantities, < ∆E >up and < ∆E >down are not observables in the usual reaction

rate experiments, and so can not be directly compared with experiment. In com-

putation the quantity < ∆E2 > is a more convenient parameter than < ∆E > [60,61].

Here in our discussion the average over impact parameter b and the other initial

variables is included in the definition of Z(E′ ,E) at the given E. The rate constant k

on the other hand, as a function of pressure and its limiting value at low pressure

k0, are the observables in these experiments. Nevertheless, since the values of the

moments are often calculated in the literature from classical trajectories or from
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approximate fits to those data, the values of these moments are often cited, and

are calculated here, bearing in mind that they are not directly observable and are

model-dependent.

To solve Eq. (1.9), we use a Wiener-Hopf procedure61 and, as in the standard

procedure, first extend the domain in Eqs. (2.17) and (1.9) from E 6 0 to E > 0 by

introducing the functions g−(E) and g+(E), g(E) = g−(E)+ g+(E), with the properties

g−(E) = g(E), E 6 0

= 0, E > 0, (1.21)

g+(E) = 0, E 6 0

= g(E), E > 0. (1.22)

Here, g(E) is the unknown function. From Eqs. (1.9), (1.21) and (1.22) we then

obtain for the entire E -range, −∞ < E < ∞,

g−(E) + g+(E) =
∫ ∞

−∞
Z(E,E

′
)g−(E

′
)dE

′
/

∫ ∞

−∞
Z(E

′
,E)dE

′
(−∞ < E < ∞). (1.23)

For E 6 0 this equation becomes

g−(E) =
∫ 0

−∞
Z(E,E

′
)g−(E

′
)dE

′
/

∫ ∞

−∞
Z(E

′
,E)dE

′
(−∞ < E 6 0). (1.24)

which coincides with Eq. (1.9) for E 6 0. For E > 0 we have

g+(E) =
∫ 0

−∞
Z(E,E

′
)g−(E

′
)dE

′
/

∫ ∞

−∞
Z(E

′
,E)dE

′
(−∞ < E 6 0). (1.25)

The idea behind the Wiener-Hopf method is to solve this pair of equations for

g−(E) and g+(E) and hence, from Eq. (1.21), for g(E). Because Z(E,E′) has one form

in Eqs. (2.13) and (2.14) when E′ > E and has a different form when E′ 6 E, there

are two terms for Z(E,E′). On taking the Fourier transform f̃ (z) =
∫ ∞
−∞e2πizE f (E)dE,
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z = u+ iv, where u and v are real, and using the convolution theorem we have from

Eqs. (2.13), (2.14) and (1.23),

g̃−(z) + g̃+(z) =
g̃−(z)
γ + γ′

(
1

1/γ + 2πiz
+

1
1/γ′ − 2πiz

). (1.26)

which can be rewritten as

2πiz(2πiz − 1/kT)g̃−(z)
1/γ + 2πiz

= (1/γ
′ − 2πiz)g̃+(z). (1.27)

The solution for the g̃−(z) in Eq. (1.27), obtained in Appendix A, is

g̃−(z) = Gs
1/γ + 2πiz

2πiz(2πiz − 1/kT)
, (1.28)

where Gs is a constant. The solution for g̃+(z) is not needed but is given for

completeness in Appendix A. The inverse transformation of Eq. (1.28) for g̃−(z)

yields

g−(E) =
∫ ∞+iv

−∞+iv
g̃−(z)e−2πizEdz = G

′
s(

kT
γ′

e−E/kT − kT
γ

), (1.29)

where G′
s is a constant to be determined. We have from Eq. (1.21) that g−(E) = g(E)

for E 6 0 and when E→ −∞, we have g(E)→ geq(E). Writing geq(E) as geq(0)e−E/kT,

a value is obtained for the constant G′
s, geq(0)γ′/kT, and hence

g(E) = geq(0)(e−E/kT − γ
′

γ
), (1.30)

which is the trial solution given by Troe [6]. Using it the analytical solution for the

low pressure ”three-body” recombination rate constant k0 can be obtained. From

Eqs. (2.10) and (1.30)

k0 = Z0geq(0)γγ
′
(1 − γ

′2

γ2 ) = Z0(γ + γ
′
)
γ
′2ρ(0)
kT

, (1.31)

where Q contains the factor exp(D/kT). In this model the number of collisions per
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unit time Z(E) = Z0(γ + γ′). So that

k0 = Z(0)
γ
′2ρ(0)
QkT

, (1.32)

which agrees with Troe’s result when we set FE = 1 in his Eq. (3.9a), so neglecting

the dependence of ρ(0) on E in his Eq. (3.14) [6].

1.2.3 Bi-exponential model

In this model the average ”up”-energy transfer is given by

< ∆E >up=

∫ ∞

E
(E
′ − E)Z(E,E

′
)dE

′
/

∫ ∞

E
Z(E

′
,E)dE

′
= (γ

′2 + cd
′2)(γ

′
+ cd

′
), (1.33)

Similarly

< ∆E >down=

∫ E

−∞
(E
′ − E)Z(E,E

′
)dE

′
/

∫ E

−∞
Z(E

′
,E)dE

′
= −(γ2 + cd2)(γ + cd). (1.34)

For the bi-exponential model, following a procedure similar to that in Subsec. 1.2.2

for the single exponential model, we obtain

2πiz(2πiz − 1/kT)(2πiz − r4)g̃−(z)
(1/γ + 2πiz)(1/d + 2πiz)

=
(1/γ′ − 2πiz)(1/d′ − 2πiz)g̃+(z)

(2πiz − r3)
, (1.35)

where r3,4 = 1/2kT±
√

(1/2kT)2 + [(γ + γ′)/dd′ + (cd + cd′)/γγ′]/(γ + γ′ + cd + cd′), r3

is the positive square root one and r4 the negative one.

The solution for g̃−(z) in Eq. (1.35), obtained in Appendix B, is

g̃−(z) = Gbi
(1/γ + 2πiz)(1/d + 2πiz)

2πiz(2πiz − 1/kT)(2πiz − r4)
. (1.36)

Inversion yields (Appendix B)

g(E) = geq(0)(e−E/kT +
d′(1/d + r4) − γ′(1/γ + r4)

r4(γ − d)
+

(1/d + r4)(1/γ + r4)(γ′d − γd′)
r4(γ − d)

e−r4E,

(1.37)
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after evaluating the Gbi by noting that g(E) approaches geq(0)e−E/kT as E → −∞.

Using the relation in Eqs. (2.16) and (1.16), Eq. (1.37) can be simplified into

g(E) = geq(0)(e−E/kT − (1 − γ′r3)(1 − d′r3)
r4kT

(1 − e−r4E). (1.38)

When d = γ, r3 =
1
γ′

and r4 =
1
γ and so Eqs. (1.37) and (1.38) reduce to Eq. (1.30)

when d = γ. From these results k0 is given by

k0 = Z0geq(0)[γγ
′
+ cdd

′ − (γ
′2+ cd

′2+
γ
′

1/γ + r3
+

cd′

1/d + r3
)
(1 − γ′r3)(1 − d′r3)

r4kT
]. (1.39)

This equation reduces to Eq. (1.31) when d = γ.

From calculation using parameters from Sec. 1.3 it is seen that values of given

in Eq. (1.39) are about the same as those obtained by using given in Eq. (1.31).

1.2.4 Singularity model

The average ”up”-energy transfer and ”down”-energy transfer are given by

< ∆E >up =

∫ ∞

E
(E
′ − E)Z(E,E

′
)dE

′
/

∫ ∞

E
Z(E

′
,E)dE

′

= γ
′
[1 + Cγ

′α(1 − α)Γ(1 − α)]/[1 + Cγ
′αΓ(1 − α)], (1.40)

< ∆E >down =

∫ E

−∞
(E
′ − E)Z(E,E

′
)dE

′
/

∫ E

−∞
Z(E

′
,E)dE

′

= −γ[1 + Cγα(1 − α)Γ(1 − α)]/[1 + CγαΓ(1 − α)]. (1.41)

To use a perturbation method for this case, although a suitable branch-point

analysis might also be used, the g(E) given by Eq. (1.30) and Z(E′ ,E) given by

Eq. (1.18) are introduced into the right hand side of Eq. (1.9). A new g(E) is

obtained and this step is then iterated. After several iterations we find that g(E)

for E < −γ/100 ceases to be affected further. For −γ/100 < E 6 0, g(E) becomes

negligible because of continuity with g(E) = 0 for E > 0. Using this g(E) = 0 to
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calculate k0 we obtain a value close to the one obtained using g(E) from Eq. (1.30),

for g(E) can be used here. The expression for the rate constant k0 thus given by Eq.

(2.10) is then

k0 = Z0

∫ ∞

E′=0

∫ 0

E=−∞
geq(0)(e−E/kT − γ

′

γ
)[1 + C(E

′ − E)−α]e−(E
′−E)/γdE dE

′

= Z0geq(0)γγ
′
(1 − γ

′2

γ2 )

+ CZ0geq(0)
∫ ∞

E′=0

∫ 0

E=−∞
(e−E/kT − γ

′

γ
)e−(E

′−E)/γ(E
′ − E)−αdE dE

′
. (1.42)

1.2.5 Near-singularity model

For this model the same functions are adopted for Z(E′ ,E) as in the singularity

model. Because of the quantum limit we set a lower bound ε to the energy transfer

in the integral when calculating the energy transfer and rate constant. Eqs. (1.40)

and (1.41) then becomes

< ∆E >up =

∫ ∞

E+ε
(E
′ − E)Z(E,E

′
)dE

′
/

∫ ∞

E+ε
Z(E

′
,E)dE

′

=

∫ ∞
E+ε

(E′ − E)[1 + C(E − E′)−α]e(E−E
′
)/γdE′∫ ∞

E+ε
[1 + C(E − E′)−α]e(E−E′ )/γdE′

, (1.43)

< ∆E >down =

∫ E−ε

−∞
(E
′ − E)Z(E,E

′
)dE

′
/

∫ E−ε

−∞
Z(E

′
,E)dE

′

=

∫ E−ε
−∞ (E′ − E)[1 + C(E′ − E)−α]e(E

′−E)/γ
′
dE′∫ E−ε

−∞ [1 + C(E′ − E)−α]e(E′−E)/γ′dE′
. (1.44)
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and we also have

k0 = Z0(
∫ ∞

E′=ε

∫ 0

E=−∞
+

∫ ε

E′=0

∫ E
′−ε

E=−∞
)geq(0)(e−E/kT − γ

′

γ
)[1 + C(E

′ − E)−α]e−(E
′−E)/γdE dE

′

= Z0geq(0)[γγ
′
(1 − γ

′2

γ2 )e−ε/γ
′
− γγ′(kT +

εγ
′

γ2 )e−ε/γ
′
+ γkTe−ε/γ] +

C Z0geq(0)(
∫ ∞

E′=ε

∫ 0

E=−∞
+

∫ ε

E′=0

∫ E
′−ε

E=−∞
)(e−E/kT − γ

′

γ
)e−(E

′−E)/γ(E
′ − E)−αdE dE

′
. (1.45)

1.3 Application to Ar +O3

For the collisions of O3 with Ar we obtain from the trajectory data [1] the parame-

ters for different temperatures and calculate ∆Es and k0s for the single exponential

model, the bi-exponential model and the singularity model.

1.3.1 Comparison of single exponential and bi-exponential mod-

els

We determine γ, c and d from classical trajectory data, [1] and γ′ and d′ are

obtained from Eqs. (2.16) and (1.16). The results for the s and s for both models are

given in Table 1.1.

1.3.2 Comparison of single exponential and singularity models

We determine C and α from the classical trajectory data [1]. The average energy

transfer and rate constants calculated from it are given in Table 1.2.

1.3.3 Comparison of single exponential and near-singularity mod-

els

According to Ref. [1], collisional changes in K provide a major route for the

vibrational energy transfer. On that basis, a lower bound for the energy transfer is

the quantum cut-off for the rotational energy, (A−B) < 2K+1 >J, where A and B are
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the rotational constants and where K is the projection of the angular momentum

along the principal axis of rotation, as noted in Sec. 1.3.1. An average over J is

used since we averaged over J in the calculation of energy transfer. In Ref. [1],

A ∼ 3.5 cm−1 and B ∼ 0.4 cm−1. From these values the estimated lower bounds

are given in Table 1.3, namely 15 to 30 cm−1, depending on the temperature. The

resulting average energy transfer and rate constants are calculated and shown in

Table 1.3.

The cases T = 700 K and T = 1000 K are purely hypothetical since no experimen-

tal data are available for those conditions, only trajectory results [1] are available

for these temperatures.

1.4 Discussion

For Ar + O3, the |∆E| for the bi-exponential model is seen in Table 1.1 to be a

little smaller than that from the single exponential model by about 10%-20%. The

k0 for this bi-exponential model is about the same as that for the single exponential

model (Table 1.1). The |∆E| for the singularity model is seen in Table 1.2 to be

smaller than that from the single exponential model by 20%-40%. When we set a

lower bound in ∆E for the singularity model, i.e., the near-singularity model, and

calculate the average ”up” and ”down”-energy transfer, the results shown in Table

1.3 agree well with those from Ref. [1], as they should if this truncated singularity

model is a good description of the trajectory data. The k0 for the singularity and

near-singularity models is larger than that for the single exponential model by a

large factor, 25, at room temperature, as seen in Tables 1.2 and 1.3.

These results for k0 can be interpreted in terms of the extra contribution from

large b collisions for the bi-exponential, singularity and near-singularity models,

compared with the single exponential model. The single exponential model is

fitted to the low b data. For the comparison of singularity and near-singularity

models and the single exponential model the difference for ∆Eup/down is less than

that for the k0. This result can also be understood. k0 is seen from Eq. (2.10)
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to have a larger contribution from small |∆E| values to the integral than for the

single exponential model. In the case of |∆E|, the numerator in Eqs. (1.33), (1.34),

(1.40), (1.41), (1.43) and (1.44) is again enhanced by this enhanced Z(E,E′) but the

denominator is enhanced even more, since the former is weighted by the small ∆E.

In Refs. [12–14] the average ”down”-energy refers to the total internal energy

transfer instead of only vibrational energy transfer treated here. So that value

should be much larger than that if only vibrational energy transfer were consid-

ered. If we compare the total internal ”down”-energy transfer ∆Eint ↓ in Ivanov &

Schinke’s trajectory work [1] with the values in Gao & Marcus’s work [12–14] used

to fit experimental data, there is only a small difference in ∆Eint ↓.
The authors of Ref. [1] gave a different reason for choosing a cutoff of 3 cm−1

or 10 cm−1 for ∆Eint ↓, namely that the energy transfer averages gradually decrease

as the value for ∆Eint ↓ cutoff decreases and decrease particularly rapidly for the

cutoff below the ones they chose. It was suggested that bmax may be found by

weighting the average nenrgy transfer versus impact parameter by the differential

cross section [61].

Another result seen in Table 1.1 is that both γ and d (γ′ and d′) for the trajectory

data are proportional to kT, though are much smaller, and the ratios d/γ and d′/γ′

remain almost the same. The increase of d and d′ with temperature means that

small energy transfer behavior becomes less important at higher temperatures, as

expected. The typical system is further removed from the singularity or E′ −E = 0.

1.5 Concluding Remarks

Analytical solutions for the low pressure rate constant are given, using sev-

eral different approximations to the trajectory data, the single exponential, a bi-

exponential, a singularity and a near-singularity models. The near-singularity

model is the most realistic. The differences should be maximal in the low pressure

regime. Expressions are obtained for the limiting low pressure rate constant k0,∆Eup

and ∆Edown. The values of k0 from the bi-exponential are similar to those from the
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single exponential model. Those from the singularity and near-singularity models

are an order of magnitude larger than those from the single exponential model. The

origin of the difference is the large additional contribution of collisions with large

cross sections in the singularity and near-singularity models that is absent in the

single exponential model. The values from single exponential model for the ∆Es

are somewhat larger than those from the bi-exponential model, by about 10%-20%,

and larger than those from the singularity model by 20% - 40% but similar to those

from the near-singularity model. The physical origin of these differences lies in the

smaller contribution from the smaller cross-sections with large energy transfer in

the bi-exponential and singularity models, compared with that in the single expo-

nential model: While the numerator in Eqs. (1.33), (1.34), (1.40), (1.41), (1.43) and

(1.44) is enhanced by this enhanced Z(E,E′), the denominator is enhanced even

more, since the former is weighted by the small ∆E. For the near-singularity model

a big part of small energy transfer collision is removed. This cancels out the former

effect.
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Table 1.1: Example of correction of k0, ∆Eup and∆Edown: single exponential model(s)
and bi-exponential model(bi).

Parametersa k0bi
k0s

b ∆Eupbi

∆Eups

c
∆Edownbi
∆Edowns

c

γ=43 cm−1,c=1.70,d=3.70 cm−1,T=298K 1.04 0.86 0.88
γ=119 cm−1,c=3.27,d=7.16 cm−1,T=700K 1.00 0.82 0.84
γ=163 cm−1,c=3.49,d=8.57 cm−1,T=1000K 1.00 0.82 0.84

aValues of parameters were obtained using the trajectory results of O3/Ar colli-

sions from Ref. [1]. bk0s refers to the rate constant of the single exponential model

and k0bi refers to the one of the bi-exponential model. cA notation similar to that in

footnote b is used for ∆Eup and ∆Edown.
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Table 1.2: Example of correction of k0, ∆Eup and∆Edown: single exponential model(s)
and the singularity model.

Parametersa k0singu

k0s

b ∆Eupsingu

∆Eups

c ∆Edownsingu

∆Edowns

c

α=0.20a,γ=43 cm−1a,C=50a,T=298K 25.1 0.81 0.81
α=0.35a,γ=119 cm−1a,C=50a,T=700K 10.8 0.67 0.67
α=0.41a,γ=163 cm−1a,C=50a,T=1000K 7.6 0.63 0.63

aValues of parameters were obtained using the trajectory results of O3/Ar colli-

sions from Ref. [1]. bk0s refers to the rate constant of the single exponential model

and k0singu refers to the one of the singularity model . cA notation similar to that in

footnote b is used for ∆Eup and ∆Edown.
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Table 1.3: Example of cutoff effect for the near-singularity model.

Parametersa k0n−singu

k0s

b ∆Eupn−singu

∆Eups

c ∆Edownn−singu

∆Edowns

c

α=0.20a,γ=43 cm−1a,C=50a,T=298K 24.9 1.06 1.06
α=0.35a,γ=119 cm−1a,C=50a,T=700K 10.8 0.86 0.98
α=0.41a,γ=163 cm−1a,C=50a,T=1000K 7.6 1.04 1.04

aValues of parameters were obtained using the trajectory results of O3/Ar colli-

sions from Ref. [1]. bk0s refers to the rate constant of the single exponential model

and k0n−singu refers to the rate constant of the near- singularity model with a lower

bound. This lower bound is 15 cm−1 for T=298K, 25 cm−1 for T=700K and 30 cm−1

for T=1000K. cA notation similar to that in footnote b is used for ∆Eup and ∆Edown.
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Figure 1.1: Cross sections for internal (a) and vibrational (b) energy transfers as
functions of ∆Eint and ∆Ev for different temperatures [1].
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Chapter 2

Collisional energy transfer in
recombination and dissociation
reactions:deviation from equilibrium
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2.1 Introduction

It has been recognized for many years that ”weak” collisions instead of ”strong”

collisions play a major role in the activation and deactivation of the vibrationally

hot intermediate complexes in gas phase dissociation, unimolecular isomerizaion,

and bimolecular recombination reactions [2–6]. The study of ozone formation and

isotopic effects prompted our interest in this subject [7–15, 17–23].

2.2 Theory

2.2.1 General aspects

In general, the formation of a molecule AB is described by

A + B→ AB∗, (2.1)

AB∗ +M→ AB +M, (2.2)

where M is a collision partner and AB∗ is a vibrationally excited intermediate. In

a ”weak” collision assumption, unlike in a ”strong” collision one, many collisions

with an M are required to activate and deactivate a reactant molecule. When the

collision is ”weak”, the AB∗ may still have enough energy after the collision in

reaction (2.2) to redissociate into A + B, instead of always being ”deactivated”,

and so a set of such equations with different energy is considered, leading to

a master equation or to a steady-state equation. The latter is then solved for

the probability distribution function for the vibrational energy in the energetic

intermediate AB∗ [62].

Information on the collisional energy transfer in reactions such as in Eq. (2.2)

is usually obtained from the pressure dependence of the reation rate of the overall

reactions (2.1) and (2.2), using the solution of the collisional master or steady-

state equation to fit these experimental reaction rateversus pressure data. To this
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end, a functional form for the collision energy transfer probability, denoted here

by Z(E′ ; E), is typically assumed, and its parameters are calculated form the fit.

The functional forms used for this purpose are usually the exponential model

introduced by Rabinovitch or a step ladder in which the reactant molecule gains

or loses energy in collisions in discrete amounts called ”steps” [2,3,24,25]. Hold et

al. also introduced a stretched exponential model [26]. A biexponential model was

used by Brown and Miller [27] and modified by Hu and Hase [28]. Complementing

these studies have bveen ab initio or semiempirical calculations of the collisional

energy transfer, frequently using classical mechanical trajectories for the collisions

[27–37]. Analytical treatments of vibrational energy transfer have been given for

particular cases [6, 35–37, 39]. In particular, a detailed discussion of the original

master equation and of its steady-state approximation is given by Penner and

Forst, [39] who expressed the solution in terms of hypergeometric functions. Here

we adopted the widely used exponential model.

In Chapter 1, we have focused on the limiting low pressure rate constant k0.

It is of particular interest partly because it describes the maximum effect of the

collisions and partly because it is simpler to treat than the rate constant at highter

pressures, where a solution of the complete master equation would have been

necessary. While simple theoretical expressions for the distribution function of

different (E, J) states of the reatants and for the energy transfer can also be obtained

for the high pressure limit of k, k∞, they do not provide insight into the effect of

energy transfer on k itself, since k∞ is independent of Z(E′ ,E).

To treat the kinetics for the recombination of two species A + B→ AB, one can

either proceed from the reactants (A+B) or the product (AB) [45,62]. Previously we

have considered the two cases equivalent, i.e., if a tagged A is followed in time in

its progress to form AB, and if a tagged A in AB is followed in time in its progress

to form A + B, beginning with an equilibrium concentrations of AB for the given

A and B concentration, the sum of the tagged distribution functions at any energy

E is equal to the equilibrium distribution at that E [62]. Here we try to find out

whether we can justify the assumption.
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2.2.2 Reaction scheme

Hereafter we denote by geq(E) the equilibrium probability energy distribution

function for AB, gr(E) the recombination and gd(E) the dissociation.

Consider gd(E) first,

dgd(E)
dt

= −kd(E)gd(E)h(E) −
∫ ∞

−∞
gd(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
gd(E

′
)Z(E,E

′
)dE

′
, (2.3)

where h(E) is a unit step function,

h(E) = 0 , E 6 0

1 , E > 0. (2.4)

And then gr(E),

dgr(E)
dt

= kr(E)h(E) − kd(E)g(r)(E)h(E) −
∫ ∞

−∞
gr(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
gr(E

′
)Z(E,E

′
)dE

′
,

(2.5)

where kr(E) is actually the recombination rate of the two species A and B, kr(E) =

k(E)[A][B].

Now consider the equilibrium situation,

dgeq(E)
dt

= kr(E)h(E)− kd(E)geq(E)h(E)−
∫ ∞

−∞
geq(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
geq(E

′
)Z(E,E

′
)dE

′
.

(2.6)

Comparing Eqs. (2.3-2.22) we can say that

geq(E) = gd(E) + gr(E), (2.7)

since the two sides satisfy the same equations.
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2.3 Low pressure limit

2.3.1 Dissociation

We consider the dissociation reaction in the low pressure regime

AB +M→ AB∗(E) +M, (2.8)

AB∗ → A + B (if E > 0), (2.9)

where E > 0 denotes the internal energies of any reacion intermediate AB∗ that can

dissociate into the separated reactants without a further collision. Energies E in the

reactants that are negative are insufficient for dissociation.

The scheme [Eqs. (2.8) and (2.9)] is appropriate only for the low pressure limit of

the dissociation rate. At higher pressures, an AB∗(E′) on a second collision can also

yield an AB∗ with a different E′ , where both E′s are greater than zero. At sufficiently

low pressure, each AB∗(E′) formed in reaction (2.8) with E > 0 ultimately dissociates

into A + B before any further collision. For this case, the problem simplifies and a

large set of equations (the master equation) for AB∗(E′) is not needed for E > 0.

The low pressure dissociation rate constant k0 is,

k0 =

∫ ∞

E′=0

∫ 0

E=−∞
gr(E)Z(E

′
,E)dE dE

′
. (2.10)

The equilibrium probability distribution for an AB that has an energy in the

range E,E+dE is geqdE, where

geq(E) = ρ(E)e−E/kT/Q (2.11)

andρ(E) denotes the density of quantum states of the molecule AB, Q is the partition

function of AB in the center-of-mass system of coordinates. When the energy is

measured relative to E = 0, the dissociation limit Q is also calculated relative to

that energy, and so contains a factor eD/kT , where D is the dissociation energy
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of AB measured from the bottom of its potential well to the dissociation level.

When E becomes very negative in the steady-state problem, i.e., when E→ −D and

g(E)→ geq(E). This condition on g(E) serves as a boundary condition,

g(E)→ geq(E) E→ −D. (2.12)

For the exponential model, in terms of a deactivation constant γ and of an

activation constant γ′ , we have

Z(E
′
,E) = Z0e(E−E

′
)/γ, E

′
6 E, (2.13)

Z(E
′
,E) = Z0e(E

′−E)/γ
′
, E

′
> E, (2.14)

where Z0 is a constant and γ,γ′are related by microscopic reversibility (detailed

balance).

The quantities Z(E′ ,E) and Z(E,E′) satisfy microscopic reversibility

ρ(E)Z(E,,E) = ρ(E
′
)Z(E,E

′
)e−(E

′−E)/kT. (2.15)

For practical purpose, we can typically treat the lower limit on E as E → −∞, a

minor approximation when D ≫ kT. Neglecting the effect of the change in ρ(E)

between E and E′ in the vicinity of E = 0, Eqs. (2.13) and (2.14) yield

1
γ′
=

1
γ
+

1
kT
. (2.16)

For the dissociation scheme, the master equation for E > 0 is

dgd(E)
dt

= −kd(E)gd(E) −
∫ 0

−∞
gd(E)Z(E

′
,E)dE

′
+

∫ 0

−∞
gd(E

′
)Z(E,E

′
)dE

′
. (2.17)

After a short initial period, g(E) relaxes toward a steady state. With the steady-state
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approximation and result for gd(E 6 0) in our last paper,

gd(E) =
(γ + γ′)γ′/kTZ0geq(0)e−E/γ

′

kd(E) + Z0γe−E/γ . (2.18)

2.3.2 Recombination

For the recombination case, the master equation for E > 0 is

dgr(E)
dt

= kr(E) − kd(E)g(r)(E) −
∫ 0

−∞
gr(E)Z(E

′
,E)dE

′
+

∫ 0

−∞
gr(E

′
)Z(E,E

′
)dE

′
. (2.19)

For equilibrium, the master equation for E > 0 is

dgeq(E)
dt

= kr(E) − kd(E)geq(E) −
∫ ∞

−∞
geq(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
geq(E

′
)Z(E,E

′
)dE

′
. (2.20)

Eq.(2.20)-Eq.(2.19),

dG(E)
dt

= −kd(E)G(E) −
∫ 0

−∞
G(E)Z(E

′
,E)dE

′
+

∫ 0

−∞
G(E

′
)Z(E,E

′
)dE

′
. (2.21)

where G(E) = geq(E) − gr(E).

2.3.3 Comparison

Eq.(2.17) and Eq.(2.21) have the same form. If for E 6 0,G(E) = gd(E), then

the same shall hold for E > 0. However as we have calculated in the last paper,

gd(E 6 0) = geq(0)(e−E/kT − γ′/γ). In order to satisfy geq(E 6 0) = gd(E) + gr(E) or

gd(E 6 0) = G(E), then gr(E) must be a constant geq(0)γ′/γ.

2.4 Discussion

Is this a reasonable distribution?

dgeq(E)
dt

= −
∫ ∞

−∞
geq(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
geq(E

′
)Z(E,E

′
)dE

′
. (2.22)
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dgd(E)
dt

= −
∫ ∞

−∞
gr(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
geq(E

′
)Z(E,E

′
)dE

′
. (2.23)

Eq.(2.22)-Eq.(2.23),

dG(E)
dt

= −
∫ ∞

−∞
G(E)Z(E

′
,E)dE

′
+

∫ ∞

−∞
G(E

′
)Z(E,E

′
)dE

′
. (2.24)

With steady-state approximation, we can get

G(E) = gd +

∫ ∞

0
gd(E

′
)Z(E,E

′
)dE

′
. (2.25)

So the dfference comes from that we have assumed earlier that at the low

pressure limit in the dissociation reaction scheme, any reaction intermediate AB∗

with E > 0 after one collision can dissociate into the separated reactants without a

second collision as shown in the second term on the right hand side of the following

master equation

dgd(E)
dt

= −
∫ ∞

−∞
gr(E)Z(E

′
,E)dE

′
+

∫ ∞

0
gd(E

′
)Z(E,E

′
)dE

′
. (2.26)

From our numerical result it is shown that the effect is around 10−2 or smaller. This

is fairly small. Since the difference in k0 is

∆k0 =

∫ ∞

E′=0

∫ 0

E=−∞
(G(E) − gr(E))Z(E

′
,E)dE dE

′
, (2.27)

it shall also be small compared with k0.

2.5 Concluding remarks

Here we have studied the deviation from the equilibrium distribution. In gen-

eral, the equilibrium distribution is the sum of the dissociation and recombination

distributions. In the low pressure scheme, the deviation comes from the fact that

no second collision happens before dissociation for the reactant with energy above
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dissociation limit. However, the result shows that the deviation is small.
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Chapter 3

Extension of the diffusion controlled
electron transfer theory for
intermittent fluorescence of quantum
dots, inclusion of biexciton and the
difference of `̀ on´́ and `̀ off´́ time
distributions
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3.1 Introduction

Single molecule spectroscopy is a powerful and sensitive technique that permits

investigation of spatially heterogeneous samples one at a time possible and reveals

phenomena masked by ensemble averaging. It has been widely used to study

the fluorescence of single quantum dots [63–77], single fluorophores in porous sili-

con [78], single polymer segments [79], light harvesting complexes [80], fluorescent

proteins [81,82], and single dye molecules on various surfaces [83–90]. An interest-

ing phenomenon of blinking or fluorescence intermittency in which abrupt transi-

tions between alternating episodes of absorption of light and fluorecence recycling

is followed by sustained periods of darkness where no light is emitted has been

observed in these experiemnts. Numerous experiments have been performed since

the first observation [63] on the fluorescence blinking of quantum dots [67–77] Sev-

eral models have been proposed to explain the phenomenon [91–98]. In the present

paper we include a role for biexciton, prompted by recent results at higher light in-

tensities by Klimov [99,100], Nesbitt [101], Bawendi [102,103] and Leone [104,105].

3.2 Theory

3.2.1 Diffusion-controlled electrom-transfer (DCET) model

The existence of an approximately ∼ −3/2 power law for the blinking sug-

gested that diffusion ( a spectral diffusion) was involved in the blinking [93, 106].

Subsequentially, to treat the intermittency phenomenon, a four-level DCET model

was proposed [97, 98, 107]. A DCET mechanism is assumed to govern the charge

transfer reactions between a bright (`̀ on´́ ) state |1⟩ of the quantum dot and a charge-

separated state |2⟩which appears dark due to a fast Auger relaxation process from

the excited state |3⟩ ( Figures 3.1 and 3.2) [108]. State |2⟩ is a long-lived state,

originally assumed to be a charge-separated state with a weak electronic coupling

between the hole in the core of a QD and a surface-trapped electron [97, 98]. More
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recently to allow for the formation of a trapped state by an assumed Auger pro-

cess, a resonance between 1Se − 1Pe transition and 1Sh-surface state transition it

was assumed to have an electron in the Se state of the QD and a hole in a surface

state [107], in particular [109] a Se− instead of Se2− in a dangling surface atom of

the CdSe QD. Here we adopt the latter as the definition of |2⟩. Under continuous

illumination, fast population recycling occurs between |1⟩ and |0⟩, the ground state,

due to population pumping and fluorescence decay. Assuming a nonadiabatic

electron transfer (ET) between |1⟩ and |2⟩, and an initial Boltzmann population at

the |0⟩ prior to the illuminaiton, the rate equation for the population density ρ j(Q, t)

for the jth state ( j = 0, 1, 2, 3) as shown in Figure 3.1 at reaction coordinate Q is

given by [97]
∂ρ0(Q, t)
∂t

= γ0ρ1(Q, t) −W1ρ0(Q, t), (3.1)

∂ρ1(Q, t)
∂t

= L1ρ1(Q, t)−ktδ(Q−Q,)[ρ1(Q, t)−ρ2(Q, t)]−γ0ρ1(Q, t)+W1ρ0(Q, t), (3.2)

∂ρ2(Q, t)
∂t

= γ2ρ3(Q, t) −W3ρ2(Q, t) − ktδ(Q −Q,)[ρ2(Q, t) − ρ1(Q, t)], (3.3)

where kt is the rate constant for the transition [107] between these electronic states

[110], Q, is the value of the reaction coordinates Q where the two electronic states

are in resonance and

∂ρ3(Q, t)
∂t

= L3ρ3(Q, t) − γ2ρ3(Q, t) +W3ρ2(Q, t), (3.4)

Here, L j is the diffusion operator

L j ≡ D j
∂
∂Q

[
∂
∂Q
+

1
kBT

∂
∂Q

U j(Q)], (3.5)

where τL, j is the diffusion correlation time constant, D j is the diffusion constant, W1

is the pumping rate and γ0 is the rate constant of the natural fluorescence decay.

When the QD is in state |0⟩ or |1⟩, the emitter is `̀ on´́ . while when it is in state |2⟩
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or |3⟩, the emitter is `̀ off´́ . So the `̀ on´́ population is ρ0+ρ1 and `̀ off´́ is ρ2+ρ3. In the

following we denote the total population density of `̀ on´́ by ρl and that of `̀ off´́ by

ρd. With W1 ≪ γ0 and at any time t ≫ 1/W1, a quasiequilibrium is established

between |0⟩ and |1⟩. There is a similar quasi-equilibrium between |2⟩ and |3⟩. Thus,

eqs 3.2 and 3.3 can be approximated by

∂ρl/d(Q, t)
∂t

= Ll/d,e f fρl/d(Q, t) − ktδ(Q −Q,)[ρk(Q, t) − ρd/l(Q, t)], (3.6)

where Ll/d,e f f = ζl/dL j,ζl ≡W1/(W1 + γ0) ∼W1/γ0,ζd ≡ 1.

Solving these coupled rate equations, one obtains the time-evolution of the

fluorescence decay. In the present paper, we focus on single quantum dots rather

than also including ensembles.

3.2.2 Single quantum dot behavior in the time regime much shorter

than the cut-off time

As indicated above the four-state model under steady-state approximation is

treated as an effective two-state model. In this two-state interpretation, a single

emitter is either in an `̀ on´́ or an `̀ off´́ state, and so can not be `̀ on´́ and `̀ off´́ at the

same time. When the quantum dot has stayed in the `̀ on´́ or `̀ off´́ state for a time

much shorter than the time of diffusing to the bottom of the `̀ on´́ or `̀ off´́ potential

energy well from the point where the two free energy curves cross, the effect of the

slope of the potential is not significant for the diffusion. In this case, the evolution

equations for single dot are

∂ρl(Q, t)
∂t

= D
∂2ρl(Q, t)
∂Q2 − δ(Q)k1ρl(Q, t), (3.7)

∂ρd(Q, t)
∂t

= D
∂2ρd(Q, t)
∂Q2 − δ(Q)k2ρd(Q, t), (3.8)
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There is a sink where the curves of `̀ on´́ and `̀ off´́ in Fugure 3.2 cross, since there the

two electronic states are in resonance and so `̀ on´́ to `̀ off´́ or `̀ off´́ to `̀ on´́ electronic

transitions can occur. We denote k1 is by `̀ on´́ to `̀ off´́ ET rate constant and k2

the `̀ off´́ to `̀ on´́ one at this intersection. In this purely two-state system, for the

transition at this crossing point k1 = k2. Thus hereafter we use kt instead of k1 and

k2.

Using the Green function method to solve these equations, the solution is

ρl/d(Q, t) =
∫

dQ
′
ρl/d(Q, 0)Gl/d(Q,Q

′
; t, 0)−

∫
dQ

′
∫

dt
′
δ(Q

′
)ktρl/d(Q

′
, t
′
)Gl/d(Q,Q

′
; t, t

′
),

(3.9)

where the Green function is [111]

Gl/d(Q,Q
′
; t, t

′
) =

1√
4πD(t − t′)

e
− (Q−Q

′
)2

4D(t−t′ ) ≡ Gl/d(Q,Q
′
; t − t

′
), (3.10)

and the Laplace transform Gl/d(Q,Q′ ; t, t′) is given by

˜Gl/d(Q,Q
′
; s) =

∫ ∞

0
d(t − t

′
)e−stGl/d(Q,Q

′
; t − t

′
) ≈ 1√

4πD

1√
s + Γl/d

. (3.11)

The Laplace transform of eq 3.9 is

˜ρl/d(Q, s) = ˜Gl/d(Q, 0; s) − kt ˜ρl/d(0, s) ˜Gl/d(Q, 0; s), (3.12)

Thus, for the `̀ on´́ state, we have for Q = 0, the crossing point of the two free

energy curves,

ρ̃l(0, s) = G̃l(0, 0; s) − ktρ̃l(0, s)G̃l(0, 0; s), (3.13)

and so

ρ̃l(0, s) =
G̃l(0, 0; s)

1 + ktG̃l(0, 0; s)
, (3.14)
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From eqs 3.12 and 3.14, we obtain

ρ̃l(Q, s) =
G̃l(Q, 0; s)

1 + ktG̃l(0, 0; s)
. (3.15)

The distribution of the `̀ on´́ time Pl(t) is the rate of the loss for the total popu-

lation in the `̀ on´́ state, Pl(t) = − d
dt

∫ ∞
−∞dQρl(Q, t) and the Laplace transform of Pl(t)

is

P̃l(s) = −
∫ ∞

0
dte−st d

dt

∫
dQρl(Q, t) = 1−s

∫
dQ

G̃l(Q, 0; s)
1 + ktG̃l(0, 0; s)

= 1−s

∫ ∞
0

dte−st
∫

dQGl(Q, 0; t, 0)

1 + ktG̃l(0, 0; s)
,

(3.16)

Introducing eq 3.11 for G̃l(Q,Q
′ ; s), eq 3.11 into eq 3.16, we obtain

P̃l(s) =
1

1 +
√

s
k2

t /4D

. (3.17)

The inverse Laplace transform yields

Pl(t) =
1√
πtct

[1 −
√
πt
tc

e
t
tc erfc(

√
t
tc

)], (3.18)

where tc =
4D
k2

t
is the critical time in which the population has largely been depleted

near the sink (time to set up a steady-state) due to disappearance into the sink at

the crossing.

When t≪ tc,

Pl(t) ≈
1√
πtct
, (3.19)

and when t≫ tc,

Pl(t) ≈
√

tc√
4πt3
. (3.20)

There is a discontinuity in the approximate eqs 3.19 and 3.20 at tc, but not for the

exact eq 3.18. Results similar to eqs 3.18 - 3.20 are obtained for the `̀ off´́ state.

In this section, only single photon excitation was considered, thereby only

for low intensity laser excitation, since the probability of many photon excitation
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is small. In experiments with higher laser light intensity [101, 103, 105, 112] the

generation of multiexciton has been realized. No clear exponential cut-off has yet

been observed within the current single trajectory experimental time regime for the

`̀ off´́ state. Nesbitt and coworkers propose that the exponential cut-off of the power

law distribution for the `̀ on´́ state time is due to multiexciton generation [101,105].

However, for the `̀ off´́ state, because of the rapid Auger recombination from the

excited state to the ground state, there is little chance for multiexciton generation.

In the next section we modify the model so as to treat the increased light intensity

effect of biexciton generation.

3.3 Many photon absorption, biexciton generation and

the exponential tail of `̀ on´́ time distribution

3.3.1 Model with multi photon absorption and biexciton genera-

tion

With biexciton generation, a four-level system is insufficient to describe the

quantum dot fluorescence behavior. We now include the new species, a biexciton,

as shown in Figure 3.3. We consider the biexciton species as a new level |b⟩.
Equations 3.1, 3.2 and 3.4 will be modified with |b⟩,

∂ρ0(Q, t)
∂t

= γ0ρ1(Q, t) −W1ρ0(Q, t) −Wbρ0(Q, t), (3.21)

∂ρ1(Q, t)
∂t

= L1ρ1(Q, t)−ktδ(Q−Q,)[ρ1(Q, t)−ρ2(Q, t)]−γ0ρ1(Q, t)+W1ρ0(Q, t)+krρb(Q, t),

(3.22)

∂ρ2(Q, t)
∂t

= γ2ρ3(Q, t) −W3ρ2(Q, t) − ktδ(Q −Q,)[ρ2(Q, t) − ρ1(Q, t)], (3.23)
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∂ρ3(Q, t)
∂t

= L3ρ3(Q, t) − γ2ρ3(Q, t) +W3ρ2(Q, t) + kiρb(Q, t), (3.24)

∂ρb(Q, t)
∂t

= Lbρb(Q, t) − (kr + ki)ρ3(Q, t) +Wbρ0(Q, t), (3.25)

where Wb is the rate constant for biexciton formation, Lb is the diffusion operator

for the biexciton state, kr is the total recombination rate constant of the biexciton

state for reformation of the single exciton state radiatively and nonradiatively and

ki is an Auger ionization rate constant to form the `̀ off´́ state.

The probability of formation of biexciton is much smaller than that of single

exciton at the light intensities we discuss in this paper, i. e., Wb ≪ W1, so that

we can assume a steady-state approximation for ρ2,sufficiently small that we can

neglect the diffusion operator, Lb,e f f =
Wb

Wb+W1+γ0
Lb ≪ Lb. And we obtain a population

evolution equation similar to eq 3.6,

∂ρl/d(Q, t)
∂t

= Ll/d,e f fρl/d(Q, t)−ktδ(Q−Q,)[ρl/d(Q, t)−ρ3−k(Q, t)]−kl/d,bρl/d(Q, t), (3.26)

where Ll,e f f =
W1

Wb+W1+γ0
L1 ∼ W1

W1+γ0
L1, Ld,e f f =

W3
W3+γ2

L2, kl,b =
ki

kr+ki
Wb and kd,b = 0.

Thereby, the evolution equation for the single quantum dot `̀ on´́ state is modi-

fied to
∂ρl(Q, t)
∂t

= D
∂2ρl(Q, t)
∂Q2 − δ(Q)ktρl(Q, t) − kl,bρl(Q, t). (3.27)

while the `̀ off´́ one remains the same, since we assume that for the `̀ off´́ state,

the relaxation to the ground state |2⟩ after the light absorption is so fast that the

probability of multiexciton generation is extremely small (smaller by a factor of

103)..

The solution of eq 3.27 is the solution of the previous equation that had no

biexciton generation, multiplied by the term exp(−kl,bt),

Pl(t) =
1√
πtct

[1 −
√
πt
tc

e
t
tc erfc(

√
t
tc

)]exp(−kl,bt). (3.28)
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While the `̀ off´́ time distribution, during which the quantum dot is still wan-

dering around the sink, remains a power law form, the `̀ on´́ time distribution is

now a power law with an exponential tail. We shall in the following section derive

a result that the tail has a quadratic dependence on the excitation light intensity as

pointed out in experiments [101, 105] shown in Figures 3.4 and 3.5.

3.3.2 Quadratic dependence of the `̀ on´́ time distribution expo-

nential tail on the excitation light intensity

Both pulsed laser excitation and continuous wave (cw) laser excitation have been

used in QD fluorescence intermittence experiments [101]. We shall only derive the

biexciton generation probability for the pulsed laser excitation [101]. The derivation

for the cw laser will be very similar [101].

Compared with the fluorescence lifetime of QD, the laser pulse width τp is very

short while the interval ∆Ti between pulses is long. Therefore, we can neglect the

possibility of multi photon absorption from different pulses and only consider it

from the same pulse [113], i.e., the number of excitons per pulse. We denote this

quantity by Nx and calculate ⟨Nx⟩.
A photon absorption depends on the absorption cross section σ, the laser beam

area A and the number of photons entering in each pulse N [101, 103]. For a fixed

frequency laser source, N/A is proportional to the laser excitation power I. The

average exciton number of a QD for Gaussian beam excitation [101] is ⟨Nx⟩ = Nσln2
A

. If we assume the absorption of photons consists of independent events, then it

is Poisson distribution. The probability that n photons are absorbed per quantum

dot per pulse or the probability that n excitons are generated per pulse is

P(n) = e−⟨Nx⟩ ⟨Nx⟩n
n!

(3.29)
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Thus the probability of generating a biexciton is

P(2) = e−⟨Nx⟩ ⟨Nx⟩2
2

(3.30)

The excitation rate constant Wb is P(2) fp where fp is the laser pulse frequency,

i.e., the number of pulses per second. We now can write

Wb = e−⟨Nx⟩ ⟨Nx⟩2
2

fp (3.31)

Under low intensity excitation, ⟨Nx⟩ ≪ 1, eq 3.31 can be approximated as ⟨Nx⟩2
2 fp.

With the number of photons per pulse N = I
~ω fp

, Wb ∝ I2, where I is the excitation

intensity. If the kr and ki do not have I dependence, which is typically the case.

Since kl,b =
Wb

kr+ki
ki ≡ PionizationWb then kl,b will also be proportional to I2. Pionization is the

ionization efficiency [101]. Now we can see from eq 3.28 that the exponential tail

has an I2 dependence,

1/τ f all−o f f ≡ kl,b = PionizationWb ≈ Pionization
⟨Nx⟩2

2
fp ∝ I2. (3.32)

Thereby, in the modified DCET model, the exponential cut-off of the `̀ on´́ time

distribution has an I2 dependence.

3.4 Results and discussion

Fitting the `̀ on´́ data in Figure 3.4 with the distribution P1(t) = At−mexp(−t/τcut−o f f )

in which the exponential cut-off 1/τ f all−o f f ∝ I2 is shown in Figure 3.6. However,

the slope m is different from 3/2 nd the difference increases with the light intensity

increase. Fitting with slopes of exactly 3/2 is shown in Figure 3.7 and one can

clearly see the deviation of the short time data points from the fitting lines gets

larger at higher light intensity. The mechanism of this light intensity dependence

of the power law slope is not yet understood.

At low light intensity, we have Pionization ≈ 2
τ f all−o f f ⟨Nx⟩2 fp

. Following procedures in
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ref 101, we can approximately calculate the ionization probability Pionization. For a 5

MHz pulsed laser with excitation power 66 W/cm2, Pionization ∼ 10−5. As indicated

in ref 101, this value of ionization efficiency is in reasonable agreement with the

previous measurements [114–116]. According to Bawendi and coworkers [102] the

quantum yield of biexciton ηb is

ηb = kradi/(kradi + knonradi) ∼ 1 : 10, (3.33)

where kradi and knonradi are the radiative and nonradiative recombination rate con-

stants. The lifetime of biexciton is of the order of several hundred ps [103], thus the

radiative recombination rate constant kradi ∼ 109/s and the nonradiative recombina-

tion rate constant knonradi ∼ 1010/s. The nonradiative recombination rate constant for

biexciton is smaller than that of the dark exciton. However, if the nonradiative pro-

cesses of the two species are both Auger kind, then knonradi is supposed to be larger

than the dark exciton one [103]. Thus as proposed in ref 103, the two processes are

probably different. The total recombination rate constant kr+ki is∼ 1010/s. Since the

ionization rate constant ki = (kr + ki)Pionization, ki ∼ 106/s. Therefore, the nonradiative

ionization recombination is a slow process or a rare event compared with radiative

or other nonradiative recombination.

3.5 Conclusion

The DCET model has been modified so as to explain the exponential cut-off

of the power law time distribution of the `̀ on´́ state of the single quantum dot

fluorescence blinking process, the quadratic dependence of the exponential tail

on the excitation intensity, and the asymmetry between `̀ on´́ and `̀ off´́ states, the

former having an exponential tail in the observed time domain.



42

Figure 3.1 Schematic diagram for the DCET model.|0⟩ and |1⟩ are the ground

and excited `̀ on´́ states.The radiationless decay from the higher excited states to |1⟩
is much faster than fluorescence decay γ0 from |1⟩ to |0⟩, W1 is the photoexcitation

rate. The transition between |1⟩ and the ground `̀ off´́ state |2⟩ represents the Auger-

assisted resonace charge separation and recombination processes which involves

several electrons and holes. Decay from the excited `̀ off´́ state |3⟩ to |2⟩ caused

by a (radiationless) Auger processes (γ2) on ordinary sustrates, but can become

radiative on gold surface. |G⟩, |L∗⟩, |D⟩ and |D∗⟩ in ref 97 correspond to |0⟩, |1⟩, |2⟩
and |3⟩ here.

Figure 3.2 Diffusion on the parabolic potential surfaces |l⟩ and |d⟩ across a sink at

the energy-level crossing governs the intermittency phenomenon.(corresponding

to Figure 2 (b) from ref 97)

Figure 3.3 Schematic diagram for the modified DCET model with biexciton

generation. An biexciton state |b⟩ is formed from the ground state |0⟩ at rate Wb and

can recombine to form the single exciton state |1⟩ or get ionized to the `̀ off´́ states.

Figure 3.4 On-time (left panel) and off-time (right panel) probability distribu-

tions measured under pulsed laser conditions at λexc=434 nm and laser intensities

of 230 (red), 120 (blue), and 66 W/cm2 (green). The dolid lines are fits to the

data.(Figure 3 from ref 101)

Figure 3.5 Average falloff rate at λexc=434 nm determined from ∼ 40 QDs at each

power level, error bars determined from standard deviation of the mean. The inset

shows the same data plotted on a log-log scale, illustrating quadratic dependence

of the average falloff rate on laser power. Solid lines are fits to the data.(Figure 4

from ref 101)

Figure 3.6 On-time probability distributions measured under pulsed laser con-

ditions at λexc=434 nm and laser intensities of 230 (red), 120 (blue), and 66 W/cm2

(green). The solid lines are fits to the data with exponential cut-off 1/τ f all−o f f ∝ I2.

Figure 3.7 On-time probability distributions measured under pulsed laser con-

ditions at λexc=434 nm and laser intensities of 230 (red), 120 (blue), and 66 W/cm2

(green). The solid lines are fits to the data with exponential cut-off 1/τ f all−o f f ∝ I2.
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Chapter 4

Aging and nonergodicity
phenonmena in quantum dots
fluorescence process
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4.1 Background

With the realization of single-molecule spectroscopy and single-photon sources

[95,117–120], many single particle charateristics are also unveiled [66,68,69,71,72,

79,81, 121–130] that supplement the ensemble properties. Among these properties

the single semiconductor nanocrytals or quantum dots (QDs) fluorescence proper-

ties have attracted much attention because of their size-induced spetral tunability,

high quantum yield, and remarkable photostability at room temperature. In single

molecule level experiments, QDs, such as CdSe QDs, exhibit fluorescence intermit-

tency or so called ’blinking’ as a variety of other fluorescence systems which means

that the fluorescence intensity switches from bright (’on’) states to dark (’off’) states

under lumination [63, 68, 69, 71, 108, 131]. Surprisingly, distributions of on and off

times exhibit power law statistics. While the physical origin of the intermittency is

still in debate [68, 73, 104, 107, 128, 132], the statistical properties have been studied

indetail [71, 94, 96, 98, 133, 134].

The essence of this chapter is to show that although a ’cutoff’ has not yet been

observed for the ’off’ state in single molecule experiments, ensemble measurements

tell us that a ’cutoff’ of the ’off’ state does exist.

4.2 Time average correlation function and ensemble

average correlation function

Statistical behavior of single QD or single molecule is commonly characterized

by the intensity correlation functions [72, 94, 135]. Experiments on single QDs

show how the correlation function method yields dynamical information over

time scale from nanosecond to tens of seconds [135]. However, the process govens

the blinking might not be ergodic and then we can’t directly go from the time

average correlation function of single trajectory (ST) to ensemble average. For ST,

the time average correlation function of the fluorescence intensity I(t) [96] in the
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trajectory length T is defined as

CST(t,T) =

∫ T−t

0
I(t + t′)I(t′)dt′

T − t
. (4.1)

Nevertheless, if we generate many trajectories and obtain I(t)I(t+t′) for each tra-

jectory, weight and sum together, we get the ensemble average correlation function

if the number of trajectories N is large enough,

C(t, t
′
) = lim

N→∞

∑N
i=1 Ii(t + t′)Ii(t)

N
. (4.2)

It is usually written as C(t, t′ − t) = limN→∞
∑N

i=1 Ii(t
′
)Ii(t)

N in the literature. We have a

different notation. Hereafter we denote by t′ the commonly used t′ − t which is the

time difference.

If the process is ergodic, then we can simplely write down C(t, t′) = CST(t,T).

On the other hand, if the process is nonergodic the ensemble average will no longer

be equal to the time average. And CST(t,T) is not the same from one trajectory to

another even as T→∞. In the next two sections we will discuss the aging behavior

and ergodicity of the quantum dot fluorescence blinking process.

If the dots have sit in dark for a quite while, then they all go back to the bright

state [74]. The initial fluorescence intensity will be defined as unity. The ensemble

fluorescence intensity < I(t) > hence is, C(0, t).

4.3 Aging

Aging means that the ensemble intensity correlation function C(t, t′) defined

above not only depends on the time difference t′ but also varies with t even at long

t, i.e., it is not a stationary process.
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4.3.1 ’On’ and ’off’ power law

If the ’on’ and ’off’ duration time distributions are both in power law form

P(t) = At−m, with the power exponent 1 < m < 2 we will get infinite average ’on’

and ’off’ times, τon and τo f f . With the assumption that the ’on’ and ’off’ processes

are symmetric, the power exponents for the two processes are the same. According

to Barkai [96], the correlation function at long t and t′ is

C(t, t
′
) = B − C

sinπ(m − 1)
π

β(
1

1 + t/t′
; 2 −m,m − 1) ≡ h(t/(t + t

′
)), (4.3)

where β(z; a, b) =
∫ z

0
xa−1(1 − x)b−1dx is the incomplte beta function.

Therefore the correlation function at long time limit is still varying with time t

which proves that the system is not reaching stationarity and there is aging. And

the ensemble fluorescence intensity < I(t) > will go to 0 as t → ∞. We will expect

that no matter how long the experimental time is or how many trajectories we

obtain, the sample size is not large enough to cover the whole mechanism.

4.3.2 Power law with exponential cutoff for ’on’ and power law

only for ’off’

The ’off’ duration time distribution is still in the power law form P(t) = At−m but

the ’on’ one is P(t) = At−mexp(−Γt). Then τon is finite while τo f f is still infinite.

The correlation function at long t and t′ is govened by the ’off’ process. As shown

in [96],

C(t, t
′
) =< I(t) >< I(t

′
) > τ2

on ∼ (tt
′
)m−2. (4.4)

This is an aging system, too. And the ensemble fluorescence intensity < I(t) >

will also go to 0 as t→∞.
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4.3.3 Power law with exponential cutoff for both ’on’ and ’off’

The τon and τo f f are both finite and it should be similar with the exponential

distribution ’on’ and ’off’ situation discussed in [94]. If the experimental time is

much longer than τon and τo f f , then at long t, the process becomes stationary

C(t, t
′
) = g(t

′
). (4.5)

At this steady state, the ensemble fluorescence intensity < I(t) > will be τon
τon+τo f f

.

4.4 Nonergodicity, break down of Khinchin’s theorem

of aging system

In the derivation of Khinchin’s theorem [136], one important assumption is that

the process is stationary and the system reaches a steady state, i.e.,C(t, t′) = g(t′).

If the correlation function is ’irreversible’, limt′→∞ C(t, t′) =< I >2, then the process

is ergodic. As shown by Barkai [134], if the process is not stationary intead the

system is aging, a stronger condition must be fulfilled to guarantee the ergodicity.

4.4.1 Ergodic theorem

Conceptually, ergodicity of a dynamical system is a certain irreducibility property.

We denote by (p, q) the state of the system under investigation which is a general

point in the phase space [137]. The dynamics is given by a one parameter flow

kt where t is the time. If an observable as a measurable function on state space

is I(p, q) then in time t it is I(kt(p, q)). (kt(p, q)) → (p, q) is a measure-preserving

transformation. A general measure-preserving transformation admits a canonical

decomposition into its ergodic components, each of which is ergodic. In the QD

blinking case kt stands for the blinking fluorescence process. And the time average

I(p, q, t) ≡ 1
t

∫ t

0
I(kt′ (p, q))dt

′
, (4.6)
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while the ensemble average

< I(t) >≡
∫

I(kt(p, q))µ(d(p, q)), (4.7)

where µ is a stationary ensemble measurement of the system. Since it is stationary,

the ensemble average is independent of time, thus < I(t) >=< I > [134].

The ergodic theorem states that if the infinite time limit exists for µ-almost every

state,

lim
t→∞

I(p, q, t) = I(p, q,∞) ≡ I(p, q), (4.8)

where the function I(p, q) is constant on ergodic components and meanwhile there

exists only one ergodic component, then

I(p, q) =< I >, (4.9)

for µ-almost every state. In other words, the long time limit average is equivalent

to the ensemble average of an observable.

4.4.2 Khinchin’s theorem and two-time correlation function C(t, t′)

Khinchin also established the connection between the ergodic theorem for the

obseivable I and its two-time correlation function C(t, t′) of wide interest in statisti-

cal physics [138–140] which is: an observable is ergodic if the associated two-time

correlation function is ’irreversible’

lim
t′→∞

C(t, t
′
) =< I >2, (4.10)

then the process is ergodic.
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4.4.3 Break down of Khinchin’s theorem

Barkai has proved that for nonstaionary systems, the irreversiblility is no longer

enough to imply ergodicity [134].

While for process in which < I(kt(p, q)) > converges to a constant < I(p, q) >=<

I > holds, < I(p, q)2 >=< I >2 quantifies ergodicity. As defined in Eq. (4.6),

< I(p, q, t)2 >=
1
t2

∫ t

0

∫ t

0
< I(kt1(p, q))I(kt2(p, q)) > dt1dt2 =

2
t2

∫ t

0

∫ t2

0
C(t1, t2−t1)dt1dt2.

(4.11)

For nonstationary process, even at long time limit t′ → ∞, C(t, t′) is still a

function of both times, and no longer only dependent on t′ . Such as in the first case

discussed above, C(t, t′) = h(t/(t + t′)),

< I(p, q, t)2 >=
2
t2

∫ t

0

∫ t

0
h(

t1

t2
)dt1dt2 =

∫ 1

0
h(x)dx. (4.12)

In order to get < I(p, q)2 >=< I >2, now
∫ 1

0
h(x)dx =< I >2 needs to be fulfilled.

However, irreversibility which is limt′→∞ h(t/(t + t′)) =< I >2 or limx→0 h(x) =< I >2

is different from the condition. Hereafter, the irreversiblity is not sufficient to

guarantee ergodicity in nonstationary processes and Khinchin’s theorem does not

hold. Instead, Eq. (4.11) needs to be fulfilled for ergodicity to happen.

4.5 QD fluorescence blinking process: steady state and

exponential cutoff of the ’off’ state distribution

Of the three cases discussed in the last section, the first two are aging processes

and don’t fulfill the stronger condition, hence are not ergodic. And in the ensemble

experiments at long times the dots will all be in dark state with an unity porbability.

From the single dot experimental results usually a power law with exponential

cutoff distribution is obtained for the ’on’ time and a power law distribution for

the ’off’ time which is the second case discussed above. Therefore in these single
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dot experiments, the blinking process is not ergodic and no steady state is reached.

So the time average correlation function from single trajectory is not equivalent to

the ensemble average.

Nevertheless, in ensemble experiments [74] a steady state is observed as shown

in Fig. 4.1. And the fluorescence intensity of the steady state is around 10% - 20%

of the initial value which means not all the dots end in the dark state. It can only

be the third case. Thus instead of a infinite average ’off’ time in this ensemble

experimental time regime a cutoff does exist for the ’off’ time.

If we expand the single dot experimental time window to a larger scale and do

the experiments for a certain times we should be able to observe a cutoff of the ’off’

state time power law distribution.

4.6 Break down of Wiener-Khinchin’s theorem in the

QD fluorescence blinking pocess

The Wiener-Khinchin’s theorem states that the power spectrum is equal to the

Fourier transform of the correlation function. However, this is also under the

condition that the process is stationary and a steady state is reached for the system.

For the current quantum dot system, the time average correlation function from

single trajecotry is not the same as the ensemble average correlation function.

4.7 Discussion and conclusion

Correlation functions are commonly adopted to probe the temporal evolution of a

system in experiments and can provide information on the influence of the current

value of an observable on the future. Thus information on the dynamics can also

be gained from the correlation functions. However, in aging and nonstationary

processes, the Khinchin’s theorem and Wiener-Khinchin’s theorem break down.

Extra care is needed to analyse the correlation function and power spectrum.
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For the QD fluorescence blinking process which attracts the author’s attention

to the aging problem, there is ensemble experiments evidence for the existence of

a steady state while in single dot experiments no clear cutoff of ’off’ time power

law distribution has yet been observed and in the last chapter we have ascribed

the cutoff of ’on’ to the multi exciton generation. It can be due to the relatively

short observation time of single quantum dot experiments. If the experiments

are performed in time long enough, a exponential truncation of the power law

distribution should show up due to the saturation time.
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Figure 4.1: (a) Normal fluorescence intensity time traces from two collections of
different (CdSe)ZnS(core) shell QD’s with core radii of 2.5 nm (black and gray). (b)
Plot of the analytical forma of fon(t) [Eq.(3)]. (c) Log-log plots of the experimental
intensity time traces in (a). The beginning and end points of the power-law decays
for the two plots are indicated by arrows pointing up for the beginning points and
pointing down for the end points, respectively. These points are obtained as the
intersections of the two slopes. These points experimentally determine τon and τo f f .
(d) Intensity time traces obtained from adding 5000 different time traces generated
using Monte Carlo simulations. The smooth solid lines are the experimental data
in (a) for comparison. (e) Log-log plots of the simulated intensity time traces
in (d) with plots in (c) overlayed. (f) Observed fluorescence intensity recovery
after an initial decay, as described in the text, obtained from a collection of 2.4nm
radius (CdSe)ZnS(core) shelll QD’s. The arrow indicates the imte when continuous
excitation was stopped.-FIG. 3. from [?]
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Chapter 5

Precautions using the maximum
likelihood method for power law
distributions with slopes close to
unity
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5.1 Motivation

Single-molecule spectroscopy (SMS) has been an important tool in physics,

chemistry and biology [95, 117–120]. It allows for photophysical measurements

of individual luminophores, revealing behavior undetectable in ensemble mea-

surements. With recent advances in technique [122], room temperature single-

emitter experiments have provided observations of a pronounced blinking be-

havior which is defined as the random switching on and off of the fluorescence

or luminescence intensity of a single emitter under continuous or pulsed excita-

tion [79, 81, 121, 123–125]. A well known and intensively studied example is quan-

tum dots blinking [66,68,69,71,72,126–130]. A unique feature of this blinking behav-

ior is that the distribution of `̀ on´́ and `̀ off´́ duration times is a power law with broad

range of decades duration intead of an exponential [66,69,79,81,121,126,141,142].

Although the power law phenomenon is less intensively studied in the blinking

of single dye molecules than of inorganic quantum dots, there are a few observa-

tions of power law behavior of organic dye molecules embedded in polymer or

on a glass or inorganic crystal surface [86, 141, 142], in contrast with the numerous

studies of quantum dots. However, due to the relatively low fluorescence efficiency

and tendency to bleach limited data sets can be collected from experiments with

the dyes. Recently, the maximum likelihood estimator (MLE) method has been

adopted to analyze these power-law distributed data especially for the limited

data sets [89, 143–146].

In a recent analysis of experimental results, the fitting obtained by MLE did not

pass through or near many data points [89]. After a study of the method, we are

able to understand the difficulty with the literature method and provide a solution.

5.2 Idea Behind MLE

We recall that MLE is a method of estimating the parameters of a statistical

model. Given a statistical model and a set of data (observation), MLE provides
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estimates of the model’s parameters [147]. Suppose one makes N independent and

identically distributed (iid) observations (measurements) x1, x2, ..., xN from a dis-

tribution with an unknown probability density function (pdf), f0(.). With certain

experience it is then conjectured that f0(.) belongs to a certain family of distribu-

tions, f0(.|θ), θ ∈ Θ. So f0(.) = f0(.|θ0) with θ0 as the unknown ’true value’ of the

parameters in this parameter model.

The problem of obtaining the parameter closest to the ’true value’ becomes

equivalent to selecting the value that produces a distribution that gives the greatest

probability (likelihood) for the observation.

5.3 MLE algorithm

For an iid sample the joint density function is

f (x1, x2, ..., xn |θ) = f (x1 |θ) f (x2 |θ) ... f (xN |θ) (5.1)

The above joint density function can also be taken as the likelihood when we

consider θ as the variable. x1, x2, ..., xN are the measurements in the following

discussion.

In the method of maximum likelihood, one finds a value of θ, θ0, that maxi-

mizes the likelihood. The likelihood is a multiplication and if we use a monotonic

transformation of it, a logarithm, then we will have a summation, log-likelihood,

which is easier to work with and maximize than the product form

l̂ =
N∑

i=1

ln f (xi |θ) (5.2)
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5.4 MLE for power law distribution

5.4.1 Method

We indicate the model values as X̂ in comparison with the experimental data X.

In a perylene bisimide dye molecule fluorescence blinking case, which prompted

our interest [89], the measurements are the `̀ on´́ or `̀ off´́ durations tis, correspond-

ing to the above xis. The pdf of power law distribution is

p̂(t) = A t−m (5.3)

The probability of an observation at ti is P̂(ti) ≡
∫ ti+∆ti

ti
p̂(t)dt. In experiments,

P(ti) =
nti∑

nti
and p(ti) ≡ P(ti)

∆ti
[89, 143–145]. ni is the number of observations obtained

in the time interval ∆ti around ti. There are several ways of choosing ∆ti. We adopt

the commonly used one ∆ti =
ti+1−ti−1

2 for 1 < i < N, and for ∆t1 and ∆tN we use the

experimental data points at the cited times. In the model we use the approximation

p̂(ti) ≃ P̂(ti)
∆ti

, A(m) = 1∑
t−m
i ∆ti

. We now have the model with parameter m,

p̂(t) =
1∑

t−m
i ∆ti

t−m (5.4)

The likelihood function in terms of the model parameter m is N!Πk
i=1 P̂(ti)ni/ni!.

We obtain an estimation of m closest to m0 by maximizing the log-likelihood func-

tion

l̂ = lnN! +
∑

[nilnP̂(ti) − lnni!] (5.5)

More generally, if the functional form is p(t|m) where we now denote by m the

collective parameters, m1, m2, ..., then for p̂(t) we would have instead of eq 5.4,

p̂(t) =
p(t|m)∑
p(ti|m)∆ti

. (5.6)
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5.4.2 Comparison with an earlier MLE method

In order to normalize the PDF and get an expression of A as a function of

m, we avoid the integration as in an earlier method [143]. Instead, we use the

summation of the probability of all measurements. Unlike the requirement for the

earlier method that m , 1, with the present method, even when the true value is

m = 1, one can still fit the experimental data very well and get a m0 close to m.

5.5 Results and discusstion

We next apply the method to the intermittent fluorescence data of the single

perylene bisimide dye molecules on Al2O3 system [148]. Processing the fluores-

cence data in the algorithm described by eqs 5.3-5.5, we have obtained a power law

distribution with slope around 1 for both off and on times, as in Figures 5.1 and 5.3.

These results agree well with the diffusion-based model of Chen and Marcus [149].

In the `̀ on´́ plot, the last two points deviate from the power law. One could

fit these with an exponential tail as shown in 5.3. However, the two points occur

where the error is large (small signal intensity) and should be given little or no

weight. More data in that region are needed. If we remove these two points, as

in 5.2, the fitting of a power law with the power exponent close to 1 is even better.

Since there are only two data points, one can not decide definitively whether

this occurrence is an exponential cutoff, bleaching of the dye molecule or other.

There is, however, another photo excited dye-on-surface result that does show an

exponential cut-off [90].

We next compare with an earlier method of implementing the MLE. In compar-

ison with the normalization method used above to obtain the function A(m), one

can compare with the method of approximation used earlier in the literature [143].

The observation data points are within a range between the experimental resolution

time tmin and the time window of the performed experiment tmax. So
∫ tmax

tmin
p̂(t)dt = 1,
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and under the condition that m0 , 1, A(m) = m−1
t1−m
min −t1−m

max
and we have

p̂(t) =
m − 1

t1−m
min − t1−m

max
t−m (5.7)

so that the integral of p̂(t) from tmin to tmax is unity. However, when m approaches

unity, p̂(t) approaches 0/0 and so is indeterminate.

Taking tmax ≫ tmin since the experimental time window spans several orders of

magnitude, and presuming m0 > 1, eq 5.7 becomes

p̂(t) �
m − 1
t1−m
min

t−m (5.8)

This method was adopted earlier to analyze the fluorescence of tetraphenoxy-

perylene diimide dye [144]. In that case, the diffusion process was a `̀ spectral

diffusion´́ , rather than a particle diffusion, and one observed a power exponent

m � 1.5 [97, 98, 107]. However, in the special case m0 � 1 which applies when

a particle diffusion is involved [89], the condition for the validity of eq 5.7 is no

longer satisfied, and we can’t retain the expression in eq 5.8. Indeed, eqs 5.7 and

5.8 did not give a close fit to the data ( Figures 5.1 and 5.3). For the single molecule

study of the electron injection from the dye onto a semiconductor surface, m � 1

is the theoretically expected value [149], and a treatment of this particular case is

particularly necessary.

In analyzing data with forms other than power law, e.g., power law with an

exponential tail, the normalization demonstrated above can also be applied.

5.6 Concluding remarks

We have given a general MLE method to analyze experimental data with a

distribution of a power law form that can be extended to a power law with an

exponential tail and more generally, many other distribution forms.
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Figure 5.1 `̀ Off´́ probability density for 25 molecules observed on sapphire

(0001),using original experimental data in ref 89 from Prof. Monti. The green

line is from the original MLE fitting with P = At−1.19 in ref 89 and the red line is

obtained from the present modified MLE fitting with P = At−0.91.

Figure 5.2 `̀ On´́ probability density for 51 molecules observed on sapphire

(0001), using original experimental data in ref 89 from Prof. Monti. The green

line is from the original MLE fitting with P = At−1.27 in ref 89, the red line is ob-

tained from the present modified MLE fitting with P = At−1.11 power law and the

blue ine is with P = At−0.84exp(−t/900), where t is in seconds.

Figure 5.3 The same data as in Fig. 5.2 but without the 2 data points with the

longest `̀ on´́ time, using original experimental data in ref 89 from Prof. Monti. The

green line is from the original MLE fitting with P = At−1.28 in ref 89 and the red line

is obtained from the present modified MLE fitting with P = At−0.97.
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Chapter 6

Summary
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In the first chapter, The effect of the large impact parameter near-elastic peak

of collisional energy transfer for unimolecular dissociation/bimolecular recombina-

tion reactions is studied. To this end the conventional single exponential model, a

bi-exponential model that fits the literature classical trajectory data better, a model

with a singularity at zero energy transfer, and the most realistic model, a model

with a near-singularity, are fitted to classical trajectory data on collisional energy

transfer in the literature. The results are then applied to see the effect on the re-

combination rate constant of O +O2→O3. The typical effect of the energy transfer

on the recombination rate constant is maximal at low pressures and this region is

the one studied here. The distribution function for the limiting dissociation rate

constant k0 at low pressures is shown to obey a Wiener-Hopf integral equation and

is solved analytically for the first two models above and perturbatively for the other

two. For the single exponential model this method yields the trial solution of Troe.

The results are applied to the dissociation of O3 in the presence of argon, for which

classical mechanical trajectory data are available. The k0s for various models are

calculated and compared, the value for the near-singularity model being about 10

times larger than that for the first two models. This trend reflects the contribution

to the cross-section from collisions with larger impact parameter. In the present

study of the near-singularity model it is found that k0 is not sensitive to reasonable

values for the lower bound of the energy transfer. Energy transfer values < ∆E >s

are also calculated and compared, and can be similarly understood. However,

unlike the k0 values they are sensitive to the lower bound of the energy transfer,

and so any comparison of a classical trajectory analysis for< ∆E >s with the kinetic

experimental data needs particular care.

In the second chapter, the hypothesis in the first chapter in the reaction A+B


AB if a tagged A is followed in time in its progress to form AB, and if a tagged A in

AB is followed in time in its progress to form A + B, beginning with an equilibrium

concentrations of AB for the given A and B concentration, the sum of the tagged

distribution functions at any energy E is equal to the equilibrium distribution at

that E is tested. It is proved that the hypothesis is correct in general. At low
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pressure scheme due to a certain assumption there is a minor deviation.

In the third chapter, the electron transfer process in the single quantum dot

fluorescence blinking phenomenon is studied. Modification of the DCET model

has been made to explain the exponential cutoff of the power law time distribution

of the bright state and the quadratic dependence of the exponential tail on the

excitation intensity.

In the fourth chapter, the non-stationary property of the quantum dots fluores-

cence process is discussed and a cutoff of the power law dark state time distribution

in the long time run is proposed for single trajectory experiments.

In the fifth chapter, a general MLE method to analyze experimental data with

a potential distribution of power law form which can be extended to a power

law with an exponential tail and more generally, many other distribution forms is

demonstrated.
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Appendix A

Appendix A: Solution a Wiener-Hopf
equation of the second kind for the
single exponential model

We first note that |g̃−(z)| = |
∫ ∞
−∞e2πizEg−(E)dE |, and g̃−(z) is a function of z alone.

Also, |g̃−(z)| = |
∫ 0

−∞e2πiuEg−(E)e−2πvEg−(E)dE |6
∫ ∞
−∞e−2πvEg−(E) | dE. If we can find a

solution for g̃−(z) such that |g−(E)| <M1e2πv−E, as E→ −∞, where v− > 0 and hence

tends to zero as E→ −∞, then we have

|g̃−(z)| < M1e−2πvEe2πv−E = M1
1

2π(v− − v)
(A.1)

Thereby, in the part of the lower half plane where Imz = v < v−, |g̃−(z)| has no

singularity. So g̃−(z) is an analytic function in the half of the plane for which

Imz < v−.

Next we consider g̃+(z):

|g̃+(z)| = |
∫ ∞

−∞
e2πizEg+(E)dE |= |

∫ ∞

0
e2πizEg+(E)dE | (A.2)

since |g+(z) = 0| for E < 0. For E > 0 it follows from Eq. (1.25) that

|g̃+(z)| = |
∫ ∞

0
e2πizE[

∫ 0

−∞
Z(E,E

′
)g−(E

′
)dE

′
]dE | /

∫ ∞

−∞
Z(E

′
,E)dE

′
. (A.3)
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We note that g̃+(z) is a function of z alone, and also from Eqs. (2.13) and (A.3)

|g̃+(z)| = |
∫ ∞

0
e2πiuEe−2πvE[

∫ 0

−∞
g−(E

′
)

1
γ + γ′

e−(E−E
′
)/γ
′
dE

′
]dE |

>
∫ ∞

0
e−2πvE | [

∫ 0

−∞
g−(E

′
)

1
γ + γ′

e−(E−E
′
)/γ
′
dE

′
] | dE. (A.4)

If we can find a solution |g−(E′)| < M1e2πv−E
′

where E′ < 0, then since v− > 0 we

have v− > − 1
2πγ′ and then

|g̃+(z)| >
∫ ∞

0
e−2πvE | [

∫ 0

−∞
g−(E

′
)

1
γ + γ′

e−(E−E
′
)/γ
′
dE

′
] | dE

=
1

γ + γ′
1

2πv + 1/γ′
|
∫ 0

−∞
g−(E

′
)eE

′
/γ
′
dE

′ |

<
M1

γ + γ′
1

2πv + 1/γ′
1

2πv− + 1/γ′
. (A.5)

Thereby, |g̃+(z)| → 0 as Imz = v → ∞, and we see that g̃+(z) has no singularity

in the upper half plane for which Imz > − 1
2πγ′ , and so is analytic in that upper

half plane. The right hand side of Eq. (1.27) is therefore analytic in the upper half

plane, Imz > − 1
2πγ′ . We had seen earlier in this Appendix that g̃−(z) is analytic in

the lower half plane, Imz < v−. From the derivation on the left hand side of Eq.

(1.27), we need for analyticity of this side of the equation, Imz < − 1
2πkT . Thereby,

we require that the left hand side of Eq. (1.27) is analytic in the lower half plane

where Imz < − 1
2πkT . Since v− > 0 > − 1

2πγ′ we now see that both sides of Eq. (1.27)

are analytic in the strip − 1
2πγ′ < Imz < − 1

2πkT . Since the analytic continuation is

unique, there exists an entire function F in the complex plane which coincides with

the right hand side of Eq. (1.27) in upper half plane Imz > − 1
2πγ′ and coincides with

the left hand side of Eq. (1.27) in the lower half plane Imz < Min(− 1
2πkT , v−). Since

g̃+(z) goes to 0 no slower than exponentially as |z| → ∞, then the entire function F

is bounded at infinity. One concludes that F is constant, which we denote by Gs,

and so obtain

g̃−(z) = Gs
1/γ + 2πiz

2πiz(2πiz − 1/kT)
, (A.6)
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g̃+(z) = Gs
1

1/γ′ − 2πiz
. (A.7)
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Appendix B

Appendix B: Solution of a
Wiener-Hopf equation of the second
kind for the bi-exponential model

Following similar procedure in Appendix A, we can now solve Eq. (1.35). As

in Appendix A, |g̃−(z)| = |
∫ ∞
−∞e2πizEg−(E)dE |, and g̃−(z) is a function of z alone.

Also, |g̃−(z)| = |
∫ 0

−∞e2πiuEg−(E)e−2πvEg−(E)dE |6
∫ ∞
−∞e−2πvEg−(E) | dE. If we can find a

solution for g̃−(z) such that |g−(E)| <M1e2πv−E, as E→ −∞, where v− > 0 and hence

tends to zero as E→ −∞, then we have

|g̃−(z)| < M1e−2πvEe2πv−E = M1
1

2π(v− − v)
(B.1)

Thereby, |g̃−(z)| has no singularity in the part of the lower half plane where Imz =

v < v−. So g̃−(z) is analytic in the half of the z-plane for which Imz < v−.

Next we consider g̃+(z):

|g̃+(z)| = |
∫ ∞

−∞
e2πizEg+(E)dE |= |

∫ ∞

0
e2πizEg+(E)dE | (B.2)

since |g+(z) = 0| for E < 0. For E > 0 it follows from Eq. (1.25) that

|g̃+(z)| = |
∫ ∞

0
e2πizE[

∫ 0

−∞
Z(E,E

′
)g−(E

′
)dE

′
]dE | /

∫ ∞

−∞
Z(E

′
,E)dE

′
. (B.3)
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We note that g̃+(z) is a function of z alone, and also from Eq. (B.3)

| g̃+(z)|

= |
∫ ∞

0
e2πiuEe−2πvE[

∫ 0

−∞
g−(E

′
)

1
γ + γ′ + cd + cd′

(e−(E−E
′
)/γ
′
+ ce−(E−E

′
)/d
′
)dE

′
]dE |

>
∫ ∞

0
e−2πvE | [

∫ 0

−∞
g−(E

′
)

1
γ + γ′ + cd + cd′

(e−(E−E
′
)/γ
′
+ ce−(E−E

′
)/d
′
)dE

′
] | dE. (B.4)

If, as stated above, we can find a solution |g−(E′)| <M1e2πv−E
′

where E′ < 0, then

| g̃+(z)|

>
∫ ∞

0
e−2πvE | [

∫ 0

−∞
g−(E

′
)

1
γ + γ′ + cd + cd′

(e−(E−E
′
)/γ
′
+ ce−(E−E

′
)/d
′
)dE

′
] | dE

=
1

γ + γ′ + cd + cd′
| 1

2πv + 1/γ′

∫ 0

−∞
g−(E

′
)eE

′
/γ
′
dE

′

+
c

2πv + 1/d′

∫ 0

−∞
g−(E

′
)eE

′
/d
′
dE

′ |

<
M1

γ + γ′ + cd + cd′
(

1
2πv + 1/γ′

1
2πv− + 1/γ′

+
c

2πv + 1/d′
1

2πv− + 1/d′
). (B.5)

Thereby, |g̃+(z)| → 0 as Imz = v → ∞, and g̃+(z) has no singularity in the upper

half plane for which Imz > − 1
2πγ′ > −

1
2πd′ and since v− > 0 > − 1

2πγ′ > −
1

2πd′ , it

is analytic in that upper half plane. The right hand side of Eq. (1.9) is therefore

analytic in the upper half plane for which this condition is fulfilled and where Imz >

Max(− 1
2πγ′ ,−

r3
2π), where r3 = 1/2kT+

√
(1/2kT)2 + [(γ + γ′)/dd′ + (cd + cd′)/γγ′]/(γ + γ′ + cd + cd′).We

had seen earlier in this Appendix that g̃−(z) is analytic in the lower half plane,

Imz < v−. From the derivation on the left hand side of Eq. (1.9), we need for

analyticity of this side of the equation, Imz < − 1
2πkT . Thereby, we require that the

left hand side of Eq. (1.9) is analytic in the lower half plane where Imz < − 1
2πkT .

Since v− > 0 > − 1
2πγ′ we now see that both sides of Eq. (1.9) are analytic in the strip

Max(− 1
2πγ′ ,−

r3
2π) < Imz < − 1

2πkT . Since the analytic continuation is unique, there

exists an entire function F in the complex plane which coincides with the right

hand side of Eq. (1.9) in upper half plane Imz > Max(− 1
2πγ′ ,−

r3
2π ) and coincides
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with the left hand side of Eq. (1.9) in the lower half plane Imz < − 1
2πkT . Since g̃+(z)

goes to 0 no slower than exponentially as |z| → ∞, then the entire function F should

be bounded at infinity. One concludes that F is constant, which we denote by Gbi,

and so obtain

g̃−(z) = Gbi
(1/γ + 2πiz)(1/d + 2πiz)

2πiz(2πiz − 1/kT)(2πiz − r4)
. (B.6)
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Appendix C

Appendix C: On collisional energy
transfer in recombination and
dissociation reactions: A
Wiener-Hopf problem and the effect
of a near elastic peak
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The effect of the large impact parameter near-elastic peak of collisional energy transfer for

unimolecular dissociation/bimolecular recombination reactions is studied. To this end, the

conventional single exponential model, a biexponential model that fits the literature classical

trajectory data better, a model with a singularity at zero energy transfer, and the most realistic model,

a model with a near-singularity, are fitted to the trajectory data in the literature. The typical effect

of the energy transfer on the recombination rate constant is maximal at low pressures and this region

is the one studied here. The distribution function for the limiting dissociation rate constant k0 at low

pressures is shown to obey a Wiener–Hopf integral equation and is solved analytically for the first

two models and perturbatively for the other two. For the single exponential model, this method

yields the trial solution of Troe. The results are applied to the dissociation of O3 in the presence of

argon, for which classical mechanical trajectory data are available. The k0’s for various models are

calculated and compared, the value for the near-singularity model being about ten times larger than

that for the first two models. This trend reflects the contribution to the cross section from collisions

with larger impact parameter. In the present study of the near-singularity model, it is found that k0
is not sensitive to reasonable values for the lower bound. Energy transfer values kDEl’s are also

calculated and compared and can be similarly understood. However, unlike the k0 values, they are

sensitive to the lower bound, and so any comparison of a classical trajectory analysis for kDEl’s with

the kinetic experimental data needs particular care. © 2008 American Institute of Physics.

fDOI: 10.1063/1.3026605g

I. INTRODUCTION

In the treatment of gas phase dissociation, unimolecular

isomerization, and bimolecular recombination reactions, it

has been recognized for many years that “weak collisions”

rather than “strong collisions” play a major role in the acti-

vation and deactivation of the vibrationally hot intermediate

complexes in these reactions.
1–5
Our interest in the subject

was prompted by studies of ozone whose formation and iso-

topic effects have been of much recent interest.
6–22

In gen-

eral, the formation of a molecule AB is described by

A + B À ABp, s1d

ABp +M → AB +M , s2d

where M is a collision partner and ABp is a vibrationally

excited intermediate. In a weak collision assumption, unlike

in a strong collision one, many collisions with M are re-

quired to activate and deactivate a reactant molecule. When

the collision is “weak,” the ABp may still have enough en-

ergy after the collision in reaction s2d to redissociate into

A+B, instead of always being “deactivated,” and so a set of

such equations with different energy is considered, leading to

a master equation or to a steady-state equation. The latter is

then solved for the probability distribution function for the

vibrational energy in the energetic intermediate ABp.

Information on the collisional energy transfer in reac-

tions such as in Eq. s2d is usually obtained from the pressure

dependence of the reaction rate of the overall reactions s1d

and s2d, using the solution of the collisional master or steady-

state equation to fit these experimental reaction rate versus

pressure data.
3,5
To this end, a functional form for the colli-

sion energy transfer probability, denoted here by ZsE8 ,Ed, is

typically assumed, and its parameters are calculated from the

fit. The functional forms used for this purpose are usually

the exponential model introduced by Rabinovitch, used in

Sec. II A, or a step ladder in which the reactant molecule

gains or loses energy in collisions in discrete amounts called

“steps.”
1,2,23,24

Hold et al.
25
also introduced a stretched ex-

ponential model. A biexponential model was used by Brown

and Miller
26
and modified by Hu and Hase.

27
Complement-

ing these studies have been ab initio or semiempirical calcu-

lations of the collisional energy transfer, frequently using

classical mechanical trajectories for the collisions.
26–36

Ana-

lytical treatments of vibrational energy transfer have been

given for particular cases.
5,34–38

In particular, a detailed dis-

cussion of the original master equation and of its steady-state

approximation is given by Penner and Forst,
38
who ex-

pressed the solution in terms of hypergeometric functions.

The ZsE8 ,Ed is defined as the number of collisions per

unit time with energy transfer for the vibrationally excited

intermediate E→ sE8 ,E8+dE8d per unit dE8. ZsE8 ,Ed has

units of s−1 energy−1 when it is chosen to be the product ofad
Electronic mail: ram@caltech.edu.
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the concentration of colliders and the bimolecular collision

rate constant for the transition E→E8 per dE8. Its theoretical

calculation involves an integration over impact parameters b,

using 2pbdb as a weighting factor. Collisions with large b

contribute mainly to the energy transfer near E8−E<0.

When plotted versus E8−E, they yield an elastic-collision

peak in the classical limit at E=E8 corresponding to b=`.

The larger the average value of the energy transfer per col-

lision in any reaction, the further the important energy trans-

fer region is from the elastic E8−E=0 peak. Examples of the

tendency toward a singular behavior at E8=E are seen in

Refs. 39–43. The data of Ivanov and Schinke
40
shown in Fig.

1 are used later as an example. From a quantum mechanical

view, the inelastic collisions have a lower bound for the en-

ergy transfer uE−E8u, namely, a quantum of rotational or vi-

brational energy, depending upon the collision. So in quan-

tum mechanical calculations, there is no such singularity, but

instead there is a near-elastic peak. Therefore, a lower bound

should be imposed. A maximum impact parameter bmax such

that no trajectories lead to sizable energy transfer for

b.bmax has usually been imposed in the literature to avoid

this peak.
26–35

Then a single exponential, step-ladder or biex-

ponential model was usually adopted to fit the trajectory

data. For example, Brown and Miller
26
neglected the bin in

which E8−E<0 with a bin size of around 30 cm−1 in a

biexponential fit to the trajectory data. Hu and Hase
27
sug-

gested that bmax should be identified as the value of b at

which the average energy transfer equals the inverse of the

state density. In such a choice, the resulting collision cross

section was considerably larger than the usually assumed

value, but within 5% of the experimental value.
27

The paper is organized as follows. The theory is de-

scribed in Sec. II for the different models. It is applied to a

particular system in Sec. III. The results are discussed in Sec.

IV, with concluding remarks in Sec. V.

II. THEORY

A. General aspects

In using trajectories to calculate the transition rate

ZsE8 ,Ed, a random sampling of trajectories is performed

over the vibrational and rotational coordinates and their con-

jugate momenta of the vibrationally excited intermediate and

over a Boltzmann-weighted distribution of relative velocities

of the collision partners.
31–36

The calculations of energy

transfer are typically made as a function of the internal en-

ergy E of the energetic intermediate, its total angular mo-

mentum J,
44
and occasionally K, the projection of J along a

specified principal axis of rotation, typically that with the

smallest moment of inertia. For notational simplicity, we

suppress the symbol J in the following.

To obtain insight into the effect of the near-elastic peak

at uE8−Eu=0 in the comparison between experimental data

and trajectories, it is convenient to consider the collisional

steady-state/reaction equations, and obtain approximate ana-

lytical solutions. Examples of other treatments are also

available.
45–59

We focus on the limiting low pressure rate constant k0. It

is of particular interest partly because it describes the maxi-

mum effect of the collisions and partly because it is simpler

to treat than the rate constant at higher pressures, where a

solution of the complete master equation would have been

necessary. While simple theoretical expressions for the dis-

tribution function of different sE ,Jd states of the reactants

and for the energy transfer can also be obtained for the high-

pressure limit of k, k`, they do not provide insight into the

effect of energy transfer on k itself, since k` is independent

of ZsE8 ,Ed. The effect of the near-elastic peak should be

largest at low pressures, since the average energy of the re-

acting vibrationally excited intermediate in a unimolecular

reaction or a bimolecular recombination is well known to

decrease when the pressure is decreased.
60
Accordingly, the

vibrational energy of the typical molecule is closer to the

energy dividing line between stable and unstable intermedi-

ates and so is closer to the near-elastic peak when the pres-

sure is decreased.

To treat the kinetics for the recombination of two species

A+B→AB, one can either proceed from the reactants

sA+Bd or from the product sABd. If a tagged A is followed in

time in its progress to form AB, and if a tagged A in AB is

followed in time in its progress to form A+B, beginning with

an equilibrium concentrations of AB for the given A and B

concentration, the sum of the tagged distribution functions at

any energy E is equal to the equilibrium distribution at that

E. Thus, to solve the problem, one can either begin with a

tagged A or a tagged AB. To simplify the comparison with

earlier work,
46–50

we begin with AB and use the result to

calculate also the rate of recombination A+B→AB.

FIG. 1. Cross sections for internal sad and vibrational sbd energy transfers as
functions of DEint and DE

v
for different temperatures sRef. 40d.
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We consider the reaction in the low pressure regime

M + ABsEd
→

ZsE8,Ed

←

ZsE,E8d

M + ABpsE8d , s3d

ABpsE8d → A + B sif E8 $ 0d , s4d

where E8$0 denotes the internal energies of any reaction

intermediate ABp that can dissociate into the separated reac-

tants without a further collision. Energies E8 in the reactant

that are negative are insufficient for dissociation.

The scheme fEqs. s3d and s4dg is appropriate only for the
low pressure limit of the dissociation rate. At higher pres-

sures, an ABpsE8d on a second collision can also yield an ABp

with a different E8, where both E’s are greater than zero. At

sufficiently low pressures, each ABpsE8d formed in reaction

s3d with E8$0 ultimately dissociates into A+B before any

further collision. For this case, the problem simplifies and a

large set of equations sthe master equationd for ABpsE8d is
not needed for E8.0.

We denote the probability energy distribution function

for AB by gsEd and write

k0 = E
E8=0

` E
E=−`

0

gsEdZsE8,EddE8dE . s5d

The equilibrium probability that AB has an energy in the

range E, E+dE is geqsEddE, where

geqsEd = rsEdexps− E/kTd/Q s6ad

and rsEd denotes the density of quantum states of the mol-

ecule, Q is the partition function of AB in the center-of-mass

system of coordinates. When the energy is measured relative

to E=0, the dissociation limit Q is also calculated relative to

that energy, and so contains a factor expsD /kTd, where D is

the dissociation energy of AB measured from the bottom

of its potential well to the dissociation level. When E be-

comes very negative in the steady-state problem, i.e., when

E→−D and gsEd→geqsEd. This condition on gsEd serves as
a boundary condition,

gsEd → geqsEd E → − D . s6bd

After a short initial period, gsEd relaxes toward a steady
state.

5
We use a steady-state approximation here. The steady-

state equation for gsEd is

0 = E
−`

0

ZsE,E8dgsE8ddE8 − gsEdE
−`

`

ZsE8,EddE8 E # 0.

s7ad

The latter can be rewritten as

gsEd = E
−`

0

ZsE,E8dgsE8ddE8YE
−`

`

ZsE8,EddE8, E # 0.

s7bd

An analytical solution of this integral equation for a single

exponential model for the energy transfer was first given by

Troe,
5
who obtained it using a trial solution method. For the

present article, we note instead that Eq. s7bd is a homoge-

neous Wiener–Hopf equation of the second kind and use the

Wiener–Hopf method
61
to obtain a solution.

We first study the single exponential and biexponential

models with this method. For the single exponential model,

in terms of a deactivation constant g and of an activation

constant g8, we have

ZsE8,Ed = Z0 exps− sE − E8d/gd, E8 # E , s8ad

ZsE8,Ed = Z0 exps− sE8 − Ed/g8d, E8 $ E , s8bd

and for the biexponential model,

ZsE8,Ed = Z0fexps− sE − E8d/gd

+ c exps− sE − E8d/ddg, E8 # E , s9ad

ZsE8,Ed = Z0fexps− sE8 − Ed/g8d

+ c exps− sE8 − Ed/d8dg, E8 $ E , s9bd

where Z0 is a constant and g ,g8 and d ,d8 are related by

microscopic reversibility sdetailed balanced.
The quantities ZsE8 ,Ed and ZsE ,E8d satisfy microscopic

reversibility

rsEdZsE8,Ed = rsE8dZsE,E8dexps− sE8 − Ed/kTd . s10d

For practical purposes, we can typically treat the lower limit

on E as E→−`, a minor approximation when D@kT. Ne-

glecting the effect of the change in rsEd between E and E8 in

the vicinity of E=0, Eqs. s8ad, s8bd, s9ad, s9bd, and s10d,
yield

1

g8
=
1

g
+

1

kT
, s11ad

1

d8
=
1

d
+

1

kT
. s11bd

The constants c and d are obtained later from fitting classical

trajectory calculations data for vibrational energy transfer.

We have also examined a model with singularity at

E8−E=0 using another method,

ZsE8,Ed = Zf1 + CsE − E8d−agexps− sE − E8d/gd, E8 # E ,

s12ad

ZsE8,Ed = Zf1 + CsE8 − Ed−agexps− sE8 − Ed/g8d, E8 $ E ,

s12bd

where g and g8 are the same as those of the single exponen-

tial model. C and a and are obtained later from classical

trajectory data.

B. Single exponential model

To compare with the earlier and insightful result in lit-

erature by Troe,
5
we use the single exponential expression

for the collisional energy transfer rate, namely, Eqs. s8ad and
s8bd. The average “up-energy” transfer, defined as the aver-

age energy increase in the molecule for collisions that lead to

an increase in energy, is
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kDElup = E
E

`

sE8 − EdZsE8,EddE8YE
E

`

ZsE8,EddE8

= g8, E8 $ E . s13ad

Similarly the average “down”-energy transfer is

kDEldown = E
−`

E

sE8 − EdZsE8,EddE8YE
−`

E

ZsE8,EddE8

= − g, E8 # E . s13bd

These quantities kDElup and kDEldown are not observ-

ables in the usual reaction rate experiments and so cannot be

directly compared with experiment. In computation, the

quantity kDE2l is a more convenient parameter than

kDEl.62,63 Here in our discussion, the average over impact

parameter b and the other initial variables is included in the

definition of ZsE8 ,Ed at the given E. The rate constant k on

the other hand, as a function of pressure and its limiting

value at low pressure k0, are the observables in these experi-

ments. Nevertheless, since the values of the moments are

often calculated in the literature from classical trajectories or

from approximate fits to those data, the values of these mo-

ments are often cited, and are calculated here, bearing in

mind that they are not directly observable and are model

dependent.

To solve Eq. s7bd, we use a Wiener–Hopf procedure
61

and, as in the standard procedure, first extend the domain in

Eqs. s7ad and s7bd from E#0 to E.0 by introducing the

functions g−sEd and g+sEd, gsEd=g−sEd+g+sEd, with the

properties

g−sEd = gsEd , E # 0,

=0, E . 0,
s14ad

g+sEd = 0, E # 0,

=gsEd , E . 0.
s14bd

Here, gsEd is the unknown function. From Eqs. s7bd and

s14d, we then obtain for the entire E-range, −`,E,`,

g−sEd + g+sEd

= E
−`

`

g−sE8dZsE,E8ddE8YE
−`

`

ZsE8,EddE8,

− ` , E , ` . s15ad

For E#0, this equation becomes

g−sEd = E
−`

0

g−sE8dZsE,E8ddE8YE
−`

`

ZsE8,EddE8,

− ` , E # 0, s15bd

which coincides with Eq. s7bd for E#0. For E.0, we have

g+sEd = E
−`

0

g−sE8dZsE,E8ddE8YE
−`

`

ZsE8,EddE8,

s15cd
0 , E , ` .

The idea behind the Wiener–Hopf method is to solve this

pair of equations for g+sEd and g−sEd and hence, from Eq.

s14d, for gsEd. Because ZsE ,E8d has one form in Eq. s8d
when E8$E and has a different form when E8#E, there are

two terms for ZsE ,E8d. On taking the Fourier transform

f̃szd=e−`
` e2pizEfsEddE, z=u+ iv, where u and v are real, and

using the convolution theorem, we have from Eqs. s8d and
s15ad,

g̃−szd + g̃+szd =
g̃−szd

g + g8
S 1

1/g + 2piz
+

1

1/g8 − 2piz
D , s16d

which can be rewritten as

2pizs2piz − 1/kTdg̃−szd

1/g + 2piz
=

s1/g8 − 2pizdg̃+szd

sg + g8d
. s17d

The solution for the g̃−szd in Eq. s17d obtained in Appendix A
is

g̃−szd = Gs

s1/g + 2pizd

2pizs2piz − 1/kTd
, s18d

where Gs is a constant. The solution for g̃+szd is not needed
but is given for completeness in Appendix A. The inverse

transformation of Eq. s18d for g̃−szd yields

g−sEd = E
−`+iv

`+iv

g̃−szde−2pizEdz = Gs8S kT

g8
e−E/kt −

kT

g
D , s19d

where Gs8 is a constant to be determined. We have from Eq.

s14ad that g−sEd=gsEd for E#0 and when E→−`, we have

gsEd→geqsEd. Writing geqsEd as geqs0des−E/kTd, a value is ob-

tained for the constant Gs8, Gs8=geqs0dg8 /kT, and hence

gsEd = geqs0dSe−E/kT −
g8

g
D , s20d

which is the trial solution given by Troe.
5
Using it, the ana-

lytical solution for the low pressure “three-body” recombina-

tion rate constant k0 can be obtained. From Eqs. s5d and s20d,

k0 = Z0geqs0dgg8S1 − g8
2

g2 D = Z0sg + g8d
g8

2rs0d

QkT
, s21d

where Q contains the factor expsD /ktd. This result agrees
with the trial solution of Troe.

5

C. Biexponential model

In this model, the average up-energy transfer is given

by

kDElup = E
E8=E

`

sE8 − EdZsE8,EddE8YE
E8=E

`

ZsE8,EddE8 = sg8
2 + cd8

2d/sg8 + cd8d . s22ad
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Similarly

kDEldown = E
E8=−`

E

sE8 − EdZsE8,EddE8YE
E8=−`

E

ZsE8,EddE8 = − sg2 + cd2d/sg + cdd . s22bd

For the biexponential model, following a procedure similar to that in Sec. II B for the single exponential model, we obtain

2pizs2piz − 1/kTds2piz − r4dg̃−szd

s1/g + 2pizds1/d + 2pizd
= −

s1/g8 − 2pizds1/d8 − 2pizdg̃+szd

2piz − r3
, s23d

where

r3 = 1/2kT 6 Îs1/2kTd2 + fsg + g8d/dd8 + scd + cd8d/gg8g/sg + g8 + cd + cd8d

and

r4 = 1/2kT − Îs1/2kTd2 + fsg + g8d/dd8 + scd + cd8d/gg8g/sg + g8 + cd + cd8d

.

The solution for g̃−szd in Eq. s23d, obtained in Appendix B, is

g̃−szd = Gbi

s1/g + 2pizds1/d + 2pizd

2pizs2piz − 1/kTds2piz − r4d
. s24d

Inversion yields

gsEd = geqs0dFeE/kT +
g8d8

gd

1/kt − r4

r4
−

s1/g + r4ds1/d + r4dg8d8

r4kt
e−r4EG . s25d

This equation reduces to Eq. s19d when d=g.
From these results, k0 is given by

k0 = Z0Fgg8 + cdd8 +
sg8

2 + cd2dg8d8r3

gdr4
− S 1

g
+ r4DS1

d
+ r4Dg8d8

r4
S g8

1/g + r3
+

cd8

1/d + r3
DGgeqs0d . s26d

This equation reduces to Eq. s20d when d=g.

D. Singularity model

The average up-energy transfer and down-energy transfer are given by

kDElup = E
E8=E

`

sE8 − EdZsE8,EddE8YE
E8=E

`

ZsE8,EddE8 = g8f1 + Csg8d−as1 − adGs1 − adg/f1 + Csg8d−aGs1 − adg , s27ad

kDEldown = E
E8=−`

E

sE8 − EdZsE8,EddE8YE
E8=−`

E

ZsE8,EddE8 = − gf1 + Csgd−as1 − adGs1 − adg/f1 + Csgd−aGs1 − adg .

s27bd

To use a perturbation method for this case, although a suitable branch-point analysis might also be used, the gsEd given by
Eq. s20d and ZsE8 ,Ed given by Eq. s12d are introduced into the right hand side of Eq. s7bd. A new gsEd is obtained, and this
step is then iterated. After several iterations, we find that gsEd for E,−g /100 ceases to be affected further. For −g /100

,E#0, gsEd becomes negligible because of continuity with gsEd=0 for E.0. Using this gsEd to calculate k0, we obtain a

value close to the one obtained using gsEd from Eq. s20d, for gsEd can be used here. The expression for the rate constant k0
thus given by Eq. s5d is then

k0 = Z0E
E8=0

` E
E=−`

0

geqs0dSe−E/kT −
g8

g
De−sE8−Ed/g8s1 + CsE8 − Ed−addE8dE = Z0geqs0dg8gS1 − g8

2

g2 D
+ CZ0geqs0dE

E8=0

` E
E=−`

0 Se−E/kT −
g8

g
De−sE8−Ed/g8sE8 − Ed−adE8dE . s28d
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E. Near-singularity model

For this model, the same functions are adopted for ZsE8 ,Ed as in the singularity model. Because of the quantum limit, we

set a lower bound « to the energy transfer in the integral when calculating the energy transfer and rate constant. Equation s27d
then becomes

kDElup = E
E8=E+«

`

sE8 − EdZsE8,EddE8YE
E8=E+«

`

ZsE8,EddE8

=

E
E8=E+«

`

sE8 − Edf1 + CsE8 − Ed−agexps− sE8 − Ed/g8ddE8

E
E8=E+«

`

f1 + CsE8 − Ed−agexps− sE8 − Ed/g8ddE8

, s29ad

kDEldown = E
E8=−`

E−«

sE8 − EdZsE8,EddE8YE
E8=−`

E−«

ZsE8,EddE8

=

E
E8=E+«

`

sE8 − Edf1 + CsE − E8d−agexps− sE − E8d/gddE8

E
E8=E+«

`

f1 + CsE − E8d−agexps− sE − E8d/gddE8

, s29bd

and we also have

k0 = Z0SE
E8=«

` E
E=−`

0

+ E
E8=0

« E
E=−`

E8−« Dgeqs0dSe−E/kT −
g8

g
De−sE8−Ed/g8s1 + CsE8 − Ed−addE8dE

= Zgeqs0dFg8gS1 − g8
2

g2 De−«/g8 − gg8SkT +
«g8

g2 De−«/g8 + gkTe−«/gG + CZgeqs0dSE
E8=«

` E
E=−`

0

+ E
E8=0

« E
E=−`

E8−« D
3Se−E/kT −

g8

g
De−sE8−Ed/g8sE8 − Ed−adE8dE . s30d

III. APPLICATION TO Ar+O3

For the collisions of O3 with Ar, we obtain, from the

trajectory data,
40

the parameters for different temperatures

and calculate kDEl and k0 for the single exponential model,

the biexponential model, and the singularity model.

A. Comparison of single exponential
and biexponential models

We determine g, c, and d from classical trajectory

data,
40

and g8 and d8 are obtained from Eq. s11d. The
results for the kDEl and k0 for both models are given in

Table I.

B. Comparison of single exponential
and singularity models

We determine C and a from the classical trajectory

data.
40
The average energy transfer and rate constants calcu-

lated from it are given in Table II.

C. Comparison of single exponential
and near-singularity models

According to Ref. 40, collisional changes in K provide a

major route for the vibrational energy transfer. On that basis,

a lower bound for the energy transfer is the quantum cutoff

for the rotational energy sA−Bdk2K+1lJ, where A and B are

the rotational constants and K is the projection of the angular

momentum along the principal axis of rotation, as noted in

Sec. III A. An average over J is used since we averaged over

J in the calculation of energy transfer. In Ref. 40,

A,3.5 cm−1 and B,0.4 cm−1. From these values, the esti-

mated lower bounds are given in Table III, namely from

15 to 30 cm−1, depending on the temperature. The resulting

average energy transfer and rate constants are calculated and

shown in Table III.

The cases T=700 K and T=1000 K are purely hypo-

thetical since no experimental data are available for those

conditions, only trajectory results
40

are available for these

temperatures.
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IV. DISCUSSION

For Ar+O3, the ukDElu for the biexponential model is

seen in Table I to be a little smaller than that from the single

exponential model by about 10%–20%. The k0 for this biex-

ponential model is about the same as that for the single ex-

ponential model sTable Id. The ukDElu for the singularity

model is seen in Table II to be smaller than that from the

single exponential model by 20%–40%. When we set a

lower bound in DE for the singularity model, i.e., the near-

singularity model, and calculate the average up- and down-

energy transfer, the results shown in Table III agree well with

those from Ref. 40, as they should if this truncated singular-

ity model is a good description of the trajectory data. The k0

for the singularity and near-singularity models is larger than

that for the single exponential model by a large factor, 25, at

room temperature, as seen in Tables II and III.

These results for k0 can be interpreted in terms of the

extra contribution from large b collisions for the biexponen-

tial, singularity, and near-singularity models, compared with

the single exponential model. The single exponential model

is fitted to the low b data. For the comparison of singularity

and near-singularity models and the single exponential

model, the difference for kDElup/down is less than that for the

k0. This result can also be understood. k0 is seen from Eq. s5d
to have a larger contribution from small uDEu values to the

integral than for the single exponential model. In the case of

ukDElu, the numerator in Eqs. s22d, s27d, and s29d is again
enhanced by this enhanced ZsE ,E8d but the denominator is
enhanced even more, since the former is weighted by the

small DE.

In Refs. 11–13, the average down-energy refers to the

total internal energy transfer instead of only vibrational en-

ergy transfer treated here. So that value should be much

larger than that if only vibrational energy transfer were con-

sidered. If we compare the total internal down-energy trans-

fer kDEint↓l in Ivanov and Schinke’s trajectory work
40
with

the values in Gao and Marcus’ work
11–13

used to fit experi-

mental data, there is only a small difference in kDEint↓l.
The authors of Ref. 40 gave a different reason for choos-

ing a cutoff of 3 or 10 cm−1 for uDEintu, namely that the

energy transfer averages gradually decrease as the value for

uDEintu cutoff decreases and decrease particularly rapidly for
the cutoff below the ones they chose. It was suggested that

bmax may be found by weighting the average nenrgy transfer

versus impact parameter by the differential cross section.
63

Another result seen in Table I is that both g and d

sg8 and d8d for the trajectory data are proportional to kT,

though are much smaller, and the ratios d /g and d8 /g8

remain almost the same. The increase in d and d8 with tem-

perature means that small energy transfer behavior becomes

less important at higher temperatures, as expected. The

typical system is further removed from the singularity or

E8−E=0.

V. CONCLUDING REMARKS

Analytical solutions for the low pressure rate constant

are given, using several different approximations to the tra-

jectory data, the single exponential, a biexponential, a singu-

larity, and a near-singularity models. The near-singularity

model is the most realistic. The differences should be maxi-

mal in the low pressure regime. Expressions are obtained for

the limiting low pressure rate constant k0, kDElup, and

kDEldown. The values of k0 from the biexponential are similar

to those from the single exponential model. Those from the

singularity and near-singularity models are an order of mag-

nitude larger than those from the single exponential model.

The origin of the difference is the large additional contribu-

tion of collisions with large cross sections in the singularity

TABLE I. Example of correction of k0, kDElup, and kDEldown. Single exponential model ssd and biexponential
model sbid.

Parameters
k0bi

k0s

a kDElupbi

kDElups

b kDEldownbi

kDEldowns

b

g=43 cm−1 c
, c=1.70

c
, d=3.70 cm−1 c

, T=298 K 1.02 0.86 0.88

g=119 cm−1 c
, c=3.27

c
, d=7.16 cm−1 c

, T=700 K 1.01 0.82 0.84

g=163 cm−1 c
, c=3.49

c
, d=8.57 cm−1 c

, T=1000 K 1.01 0.83 0.85

a
k0s refers to the rate constant of the single exponential model and k0bi refers to the one of the biexponential

model.
b
A notation similar to that in footnote b is used for kDElup and kDEldown.
c
Values of parameters were obtained using the trajectory results of O3 /Ar collisions from Ref. 40.

TABLE II. Example of correction of k0, kDElup, and kDEldown. Single exponential model and the singularity

model.

Parameters
k0singu

k0s

a kDElupsingu

kDElups

b kDEldownsingu

kDEldowns

b

a=0.20 c
, g=43 cm−1 c

, C=50
c
, T=298 K 25.1 0.81 0.81

a=0.35 c
, g=119 cm−1 c

, C=50
c
, T=700 K 10.8 0.67 0.67

a=0.41 c
, g=163 cm−1 c

, C=50
c
, T=1000 K 7.6 0.63 0.63

a
k0singu refers to the rate constant of the singularity model and k0s refers to the single exponential model.
b
A notation similar to that in footnote b is used for kDElup and kDEldown.
c
Values of parameters were obtained using the trajectory results of O3 /Ar collisions from Ref. 40.
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and near-singularity models that is absent in the single expo-

nential model. The values from single exponential model for

the kDEl are somewhat larger than those from the biexpo-

nential model by about 10%–20% and larger than those from

the singularity model by 20%–40% but similar to those from

the near-singularity model. The physical origin of these dif-

ferences lies in the smaller contribution from the smaller

cross sections with large energy transfer in the biexponential

and singularity models, compared with that in the single ex-

ponential model. While the numerator in Eqs. s22d, s27d, and
s29d is enhanced by this enhanced ZsE ,E8d, the denominator
is enhanced even more, since the former is weighted by the

small DE. For the near-singularity model, a big part of small

energy transfer collision is removed. This cancels out the

former effect.
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APPENDIX A: SOLUTION OF EQ. „7b…
AS A WIENER–HOPF EQUATION

OF THE SECOND KIND FOR THE SINGLE

EXPONENTIAL MODEL

We first note that ug̃−szdu= ue−`
` e2pizEg−sEddEu and

g̃−szd is a function of z alone. Also, ug̃−szdu
= ue−`

0 e2piuEe−2pnEg−sEddEu#e−`
0 e−2pnEug−sEdudE. If we can

find a solution for g̃−szd such that ug−sEdu,M1e
2pv−E, as

E→−`, where n−.0 and hence tends to zero as E→−`,

then we have

ug̃−szdu , E
−`

0

e−2pnEM1e
2pn−EdE = M1

1

2psn− − nd
. sA1d

Thereby, in the part of the lower half plane where

Im z=v,v−, ug̃−szdu has no singularity. So g̃−szd is an ana-

lytic function in the half of the z-plane for which Im z,v−.

Next we consider g̃+szd,

ug̃+szdu = uE
−`

`

e2pizEg+sEddEu = uE
0

`

e2pizEg+sEddEu , sA2d

since g+sEd=0 for E,0. For E.0 it follows from Eq. s14cd
that

ug̃+szdu = uE
0

`

e2pizE

3FE
−`

0

g−sE8dZsE,E8ddE8GdEuYE
−`

`

ZsE8,EddE8.

sA3d

We note that g̃+szd is a function of z alone, and also from

Eqs. s8ad and sA3d,

ug̃+szdu = UE
0

`

e2piuEe−2pnEFE
−`

0

g−sE8d
1

g + g8
e−E−E8/g8dE8G

3dEU # E
0

`

e−2pnEUE
−`

0

g−sE8d
1

g + g8

3e−E−E8/g8dE8UdE . sA4d

If we can find a solution ug−sE8du,M1e
2pv−E8, where E8,0,

then since n−.0 we have n−.−
1

2pg8
and then

ug̃+szdu # E
0

`

e−2pnEUE
−`

0

g−sE8d
1

g + g8
e−E−E8/g8dE8UdE

=
1

g + g8

1

2pn + 1/g8
uE

−`

0

g−sE8deE8/g8dE8u

,
M1

g + g8

1

2pn + 1/g8

1

2pn− + 1/g8
. sA5d

Thereby, ug̃+szdu→0 as Im z=n→`, and we see that

g̃+szd has no singularity in the upper half plane for which

Im z.−s1 /2pg8d, and so is analytic in that upper half plane.
The right-hand side of Eq. s17d is therefore analytic in the

upper half plane, Im z.−s1 /2pg8d. We had seen earlier in

Appendix A that g̃−szd is analytic in the lower half plane

Im z,v−. From the derivation on the left-hand side of Eq.

s17d, we need for analyticity of this side of the equation,

Im z,−1 /2pkT. Thereby, we require that the left-hand

side of Eq. s17d is analytic in the lower half plane where

Im z,−s1 /2pkTd. Since v−.0.−s1 /2pg8d we now see

TABLE III. Example of cutoff effect for the near-singularity model.

Parameters
k0n-singu

k0s

a kDElupn-singu

kDElups

b kDEldownn-singu

kDEldowns

b

a=0.20 c
, g=43 cm−1 c

, C=50
c
, T=298 K 24.9 1.06 1.06

a=0.35 c
, g=119 cm−1 c

, C=50
c
, T=700 K 10.8 0.86 0.98

a=0.41 c
, g=163 cm−1 c

, C=50
c
, T=1000 K 7.6 1.04 1.04

a
k0s refers to the rate constant of the single exponential model and k0n-singu refers to the rate constant of the

near-singularity model with a lower bound. This lower bound is 15 cm−1 for T=298 K, 25 cm−1 for T

=700 K, and 30 cm−1 for T=1000 K.
b
A notation similar to that in footnote b is used for kDElup and kDEldown.
c
Values of parameters were obtained using the trajectory results of O3 /Ar collisions from Ref. 40.
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that both sides of Eq. s17d are analytic in the strip

−s1 /2pg8d, Im z,−s1 /2pkTd. Since the analytic continua-
tion is unique, there exists an entire function F in the com-

plex plane which coincides with the right-hand side of Eq.

s17d in upper half plane Im z.−s1 /2pg8d and coincides

with the left-hand side of Eq. s17d in the lower half plane

Im z,Mins−s1 /2pkTd ,v−d. Since g̃+szd goes to zero, no

slower than exponentially as uzu→`, then the entire function

F is bounded at infinity. One concludes that F is constant,

which we denote by Gs, and so obtain

g̃−szd = Gs

s1/g + 2pizd

2pizs2piz − 1/kTd
, sA6d

g̃+szd = Gs

g + g8

1/g8 − 2piz
. sA7d

APPENDIX B: SOLUTION OF EQ. „7b…
AS A WIENER–HOPF EQUATION OF THE SECOND

KIND FOR THE BIEXPONENTIAL MODEL

Following similar procedure in Appendix A, we

can now solve Eq. s23d. As in Appendix A, ug̃−szdu

= ue−`
` e2pizEg−sEddEu, and g̃−szd is a function of z alone. Also,

ug̃−szdu= ue−`
0 e2piuEe−2pnEg−sEddEu#e−`

0 e−2pnEug−sEdudE. If

we can find a solution for g̃−szd such that ug−sEdu
,M1e

2pv−E, as E→−`, where n−.0 and hence tends to

zero as E→−`. Then we have

ug̃−szdu , E
−`

0

e−2pnEM1e
2pn−EdE = M1

1

2psn− − nd
. sB1d

Thereby, ug̃−szdu has no singularity in the part of the lower

half plane where Im z=v,v−. So g̃−szd is analytic in the half
of the z-plane for which Im z,v−.

Next we consider g̃+szd,

ug̃+szdu = UE
−`

`

e2pizEg+sEddEU = UE
0

`

e2pizEg+sEddEU .
sB2d

Since g+sEd=0 for E,0, for E.0 it follows from Eq. s14cd
that

ug̃+szdu = UE
0

`

e2pizEFE
−`

0

g−sE8dZsE,E8ddE8GdEYE
−`

`

ZsE8,EddE8U . sB3d

We note that g̃+szd is a function of z alone, and also from Eq. s9ad

ug̃+szdu = UE
0

`

e2piuEe−2pnEFE
−`

0

g−sE8d
1

g + g8 + cd + cd8
se−E−E8/g8 + ce−E−E8/d8ddE8GdEU

# E
0

`

e−2pnEUE
−`

0

g−sE8d
1

g + g8 + cd + cd8
se−E−E8/g8 + ce−E−E8/d8ddE8UdE . sB4d

If, as stated above, we can find a solution ug−sE8du,M1e
2pv−E8, where E8,0, then

ug̃+szdu # E
0

`

e−2pnEUE
−`

0

g−sE8d
1

g + g8 + cd + cd8
se−E−E8/g8 + ce−E−E8/d8ddE8UdE

=
1

g + g8 + cd + cd8
U 1

2pn + 1/g8
E
−`

0

g−sE8deE8/g8dE8 +
1

2pn + 1/d8
E
−`

0

g−sE8deE8/d8dE8U
,

M1

g + g8 + cd + cd8
S 1

2pn + 1/g8

1

2pn− + 1/g8
+

1

2pn + 1/d8

1

2pn− + 1/d8
D . sB5d

Thereby, ug̃+szdu→0 as Im z=n→`, and g̃+szd has no singularity in the upper half plane for which Im z.−s1 /2pg8d
.−s1 /2pd8d and since n−.0.−s1 /2pg8d.−s1 /2pd8d, it is analytic in that upper half plane. The right-hand side of Eq. s23d
is therefore analytic in the upper half plane for which this condition is fulfilled and where

Im z . maxs− s1/2pg8d,s− r3/2pdd ,

where

r3 = 1/2kT + Îs1/2kTd2 + fsg + g8d/dd8 + scd + cd8d/gg8g/sg + g8 + cd + cd8d .
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We had seen earlier in Appendix B that g̃−szd is analytic in
the lower half plane Im z,v−. From the derivation on the

left-hand side of Eq. s23d, we need for analyticity of this side
of the equation Im z,−1 /2pkT. Thereby, we require that

the left-hand side of Eq. s23d is analytic in the lower half

plane where Im z,−s1 /2pkTd. Since v−.0.−s1 /2pg8d,
we now see that both sides of Eq. s23d are analytic in the

strip maxs−s1 /2pg8d , s−r3 /2pdd, Im z,−s1 /2pkTd. Since
the analytic continuation is unique, there exists an entire

function F in the complex plane which coincides with

the right-hand side of Eq. s23d in upper half plane

Im z.maxs−s1 /2pg8d , s−r3 /2pdd and coincides with the

left-hand side of Eq. s23d in the lower half plane

Im z,−s1 /2pkTd. Since g̃+szd goes to zero no slower than

exponentially as uzu→`, then the entire function F should be

bounded at infinity. One concludes that F is constant, which

we denote by Gbi, and so obtain

g̃−szd = Gbi

s1/g + 2pizds1/d + 2pizd

2pizs2piz − 1/kTds2piz − r4d
. sB6d
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