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ABSTRACT

This thesis describes a family of VLSI chips designed to link a number of
processors on a one-to-one basis. With these chips as communication system
building blocks, a complex multiprocessor system can be built.- Inter-
processor communication within the multiprocessor system is accomplished

by passing messages composed of data packets.

The resulting chip, called a Flrst-in-first-out Buffering Transceiver
(FIBT), provides a full duplex communication channel between any two
processors. FIFO queues are provided for buffering data on each
communication channel. FIBT accepts data packets from the host processor
via a paralilei data bus and serially sends them out to the destined processor.
FIBT handshakes with the processor by using asynchronous interrupt signals.

Linkage between any two FIBTs is accomplished by using only two wires.
Both data bits and handshaking signals are sent by these two lines. The FIBT
system is neither a synchrorious nor an asynchronous one; instead, it is an
"one-clock-diﬂerenf—phases" system. A clock signal sets up the frequency

reference; the start and stop bits set up the phase reference.

Finally, FIBT is implemented in nMOS technology. The design of the
circuit is discussed in detail. The design is generalized enough so that data
packets of various sizes can be handled. The layout of the chip is coded in an
integrated circuit descriptive language. Any member of the family of chips
can be obtained by changing three basic parameters. Techniques used in
verifying the circuit are shown, and several observations about VLSI design

are offered.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

I can still remember when in my youth I built a small six-transistor
radio. 1 used to wonder what kind of magic they put into those little metal
capsulés. Today, advances in semiconducter technology have added a new
dimension to the tricks of electronics and computer science. “Very Large
Scale Integration” is as much advanced over my transistor radioc as a modern
jet is over the Wright flyer. Computer scientists must discover new and
simpler ways to use this technology. The family of communication chips

discussed in this thesis is intended as one step toward these objectives.

One notable attempt at making digital systems design simpler was the
macromodule project [Clark 67]. The macromodules were a set of building
blocks for digital systems, such as register, arithmetic unit, random access
storage, and control unit. Each module was contained in a small box that
could be inserted into a rack. The system could be built by a person without
any experience .in digitz;l system design, with the assurance that if the parts
fit together, the system would function as cohﬁected. Moreover, the designer
did not have to be concerned about timing rules for the modules, because
the control in macromodules was self-timed. Timing rules were taken care of

“automatically™.

What are the macromodules for the 1880's ? Should they still be
registers and arithmetic units. No, the macromodules can be bigger and

. more complex. We should be able to connect computers together to form



super-computers.

The concept of multi-processing is very natural to VLSI. and many
multiprocessor systems have been suggested [Seitz 82]. These systems are
characterized by the replication of one kind of element, ranging in size from
a storage cell to an entire computer. This research is concerned only with
the ensemble of relatively large processors, the ensemble being referred to

as a "homogeneous machine” [Locanthi 80] [Lang 82].

A homogeneous machine has the structure shown in figure 1.1, in which
each processor hes its own storage, and can communicate by passing
messages with some or all of the other processors in the ensemble. There
arc several ways in which messages can be passed. Messages can be
broadcast on a contention network, such as the ethernet, or on a bus by the

sending processor to the entire system. The destined receiving processors

commum‘caTidn Sy;Tem
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\ / -
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fig. 1.1 Basic Model of a Homogeneous Machine



then pick up the messages. This approach is severely limited by traffic
congestion in large networks, unless a mechanism is provided for separating
the communication medium, filtering out local messages, and forwarding
non-local messages. Chips for this kind of flltering and forwarding
communication system have recently been investigated by Whiting [Whiting
82], and his work greatly influenced the work reported here.

Instead of this "one-to-many" linkage, processors can be linked on a
“one-to-one” basis. Each processor has one channel to communicate with
each of its neighboring processors. In order to send a message to a distant
processor, the sending processor first sends the message to its neighboring
processor, and the neighboring processor sends it to the next neighboring
processor. This process continues until the message is received by the
destination processor. This method calls for a routing algorithm for sending
messages in order to achieve high efficiency and to avoid deadlocks.
Moreover, there are the questions of network topology, required bit rates,
packet sizes, and buffering requirements. In answering these questions, we

have been guided largely by the simulations reported in [Lang 82].

The aim of this resear;:h is to develop the communication channel
needed to connect any two processors on a one-to-one basis within a
multiprocessor system. The requirements for this communication channel
are :

First, it must interface with the host processor via a parallel data bus.

Secondly, it provides serial data linkage between any two processors.

Thirdly, each channel must have a full duplex linkage.

Fourthly, there are data buffers for each communication channel.



The family of chips, referred here as Flrst-in-first-out Buffering

Transceivers (FIBTs), were developed to meet these requirements.

1.2, Outlines of the FIBT

The FIBT can be divided into five major functional blocks : 1) Processor-
interfacing circuit, 2) Transmitting buffer, 3) Receiving buffer, 4)
Transmitter, 5) Receiver. Figure 1.2 is both a block diagram and a basic floor
plan of the chip.

As mentioned before, in the multiprocessor system, inter-processor
communication is done by passing messages. A message is comprised of a
number of packets. Each packet has L words; each word has W bits. The
variables L & W will be used throughout this paper to designate the packet
size. The FIBT is designed to pass data in a complete data packet in order to
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fig. 1.2 Functional Blocks of the FIBT



reduce the ovérhead of handshaking. The FIBT is ready to accept a data
packet, either from the host processor or another FIBT, only if there is
enough room inside the FIBT to store a complete packet. Similarly, if the
FIBT has data ready for the processor, the data must be in a complete
packet. The host processor is expected to send out (or receive) a whole
packet of data to (from) the FIBT. Thus. if a processor has only a few words
(say X) of data to send, it must send out (L - X) words of unused data to
complete the packet. Hence, the word size of a packet is important. If we
choose a very large packet size, then when the processor wants to send out a
small message, much space will be wasted. If we choose a very small packet
size, much handshaking is needed. The choice of the packet size greatly

depends on the general communication pattern within the system.

Obviously. the FIFO buffer. the core of the FIBT. is also designed to
handle data packets. Let us see how it works. For the moment, let us assume
the length of a queue be longer than 2 * L. In fig. 1.3, data passes through the
FIFO from left to right. The length of both the leftmost section (section 1)
and the rightmost section (section 3) of the queue are L. If section 1 is all
empty, then the queue can send off an "empty"” signal, telling the external
world that there is enough room for a complete packet. Likewise, if section 3
is filled by a complete packet, then the queue can signal the external world
that there is a packet ready to be read. The remaining part of the queue

(section 2) simply provides extra buffering space.

In order to hold a complete packet, the minimum length of the queue
must be L. However, a minimum length of 2 * L is much more desirable. If the
length of the queue is no less than 2 * L, then the process of passing out a
packet does not interfere with the process of accepting a packet, and both
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fig. 1.3 Simplified Diagram of the FIFO
processes can run concurrently. If the queue is shorter than 2 * L, and if
there is already an existing packet inside the queue, then the external world
cannot push another packet of data into the queue unless the gqueue is
emnptied first.

The FIBT uses a parallel bus, a control bus. and an address bus to
communicate with the host processor. Between any two FIBTs, two serial
data lines are used for communication. .

When the FIBT is transmitting data, it takes in words of data from the
processor via the processor interfacing circuit, pushes the data into the
buffer, passes them to the transmitter, which then links up the data bits, and
drives them out serially.

When the FIBT is receciving data bits from another FIBT, the receiver
accepts the data bits, links them up, pushes them into the FIFO, and passes
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them to the processor.

1.3 Ovemew
The following chapters describe in detail the underlying features of the
FIBT, and how the FIBTs were designed.

Chapter Two discusses how the FIBT interfaces the host processor. It
describes the parallel data bus, the control bus, the address bus, and the
internal registers of the FIBT. It explains how to program the processor to

send and receive data packets.

Chapter Three describes how two FIBTs communicate with each other. It
shows how each chip uses only two lines to pass the data bits and the
handshaking control character to another FIBT. Also, it explains how two
communicating FIBTs are synchronized by using a frequency reference and a
start & stop bit.

Chapter Four describes in detail how the FIBT is actually designed, laid
out, and verified. Several methodologies in designing VLSI systems are
discussed. Several layout techniques and design tools are also shown.

Appendix A shows how a parameterized leaf cell is coded in Earl — an
integrated circuit descriptive language. Different instances of the leaf cell

are composed together to form an address decoder.

Appendix B gives a sample run of the logic simulator MOSSIM. The run
shows how the processor writes data words into the FIBT, how the
transmitter sends off data bits, and how the receiver accepts incoming data

bits.



CHAPTER 2

Interfécing the Processor

On the processor interfacing side, the FIBT uses a parallel data bus, a
control bus, and an address bus to interface the host processor. This chapter
describes the underlying features of the interfacing circuit.

2.1. Data Format

The way data is formated in a data packet greatly effects the design of
the processor interfacing circuit. Thus, it is necessary for the reader to first
understand the data format of a packet.

As mentioned before, we have to be careful when choosing the packet
gize in order to obtain good performance in the communication system. A
study of the communication pattern of the homogeneous machine [Lang 82]
reveals that the mean message size is about 750 bits, with a standard
deviation of about 250 bits. Although the resulting FIBT of this research is
generalized enougﬁ to handle various packet sizes !; for the FIBT prototype.
we decided to let 258 bits be the standard packet size. Moreover, we use a
18-bit wide data bus, which means we let both L and W to be 16, and a
standard packet is 18 18-bit words. The format of a packet is summarized in
fig. 2.1.

Although the content of the packet is of no concern to the FIBT, the first

word of the packet is usually routing information of the packet. Hence, any
processor which has just received a packet can read the first word and

1 Refer to section 4.2
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fig. 2.1 Format of the Data Packet

investigate the routing information. The processor can then decide where to

store the packet, depending on whether the packet is for itself or not.

2.2. Control and Address Lincs

Like many other processor peripheral chips, the FIBT has the follow-

ing common control lines and address lines to interface with the proces-

sor :

Inputs :

~ Reset

Read / ~write
Chip select
Address line 0
Address line 1

(~Reset)
(R/~W)
(Cs)
(40)
(A1)

Outputs :

~ Buffer empty interrupt

~ Request next word

~ Message available interrupt

~ Next word available

(~BEI)
(~RNW)
(~MAI)
(~NWA)



Whenever the processor wants to reset the FIBT, the "~Reset” line
should be held low. In order to read (write) the FIBT, the processor should
put the valid address onto the address lines, set "R/~W" high (low), and then
set "CS” high.

There are two output control lines for the receiving side of the FIBT.
When a complete packet is available to be read, the "~ Message Available
Interrupt” line, if enabled 2, will be driven low. After a word of the packet is
read out, the interrupt line will return high. It will not go low again until
another packet is ready.

Whenever a word of data is available to be read, regardless of whether
the FIBT has received the complete packet, the “~ Next Word Available” line
will be driven low. The simplified circuit diagram is shown in fig. 2.2 . .

~
NWA < —& NWA

o processor
| | Receivm}
con.T\ra Yez‘
%ueu&
bit-1
hit-3
. ]

A

ved | ut-4 \

kit-5

fig. 2.2 Simplified Circuit Diagram of the Receiver Processor Interface
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fig. 2.3 Simplified Circuit

Similarly, there are two output control lines for the transmitting side of

the FIBT. When the transmitting buffer has enough room for one complete

message, the "~ Buffer Empty Interrupt” line, if enabled *, will be driven low.

Whenever the transmitting buffer has enough room for another word of data,
the "~ Request Nexﬁ Word" line will be driven low (fig. 2.3).

% Refer to the control register in section 2.3
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2.3. Internal Registers

There are several registers inside the FIBT, and their locations are

given in the following table.
Reg. name R/~W | A1 | AO
Receiving Buffer (RB) 1 0|0
First Word Reg (FWR) 1 01
Status Reg (SR) 1 1 (X
Transmitting Buffer (TB) | 0 0
Control Reg (CR) 0 X | 1

When the "~ Next Word Available” line goes low, the processor can read
the "Receiving Buffer” to obtain the data word. Data words will then be
shifted down the FIFO automatically. However, if the "~ Next Word Available"
line has not gone low, and the processor attempts to read the "Receiving
Buffer", it will not receive any valid data.

Similarly, only. after the "~ Request Next Word" line goes low should the
processor write a data iord into the "“Transmitting Buffer”. Otherwise, any
word written to the “Transmitting Buffer” will simply be lost.

' Reading the "First Word Register” is not quite the same as reading the
"Receiving Bufler". As the processor reads the "First Word Reg.". it will get
the first word from the receiving queue, but thereafter the queue will not
shift its data words. In other words, the data word is read, but it is not pulled
away from the queue. With this register, the processor can read the first
word of a received packet without "disturbing” the receiving queue.

-12-



The mapping of the Status Register is as follows :

Bit O0(LSB) Request Next Word (RNW)
1 Buffer Empty (BE)
2 Buffer Empty Interrupt (BED
3 Next Word Available (NWA)
4 Message Available Interrupt (MAI)
5 ~ Message Available (~MA)

On the receiving side of the FIBT, whenever there is a packet ready, the
"~ Message Available" status bit (bit 5) will be cleared. If the message
available interrupt is enabled, the "Message Available Interrupt” status bit
(bit 4) will be set too. After a word of the message is read out, the "MAI"
status bit will be cleared and the "~MA" status bit will be set. Also, whenever
a word of data is available, the "Next Word Available"” status bit (bit 3) will be

set. (fig. 2.2)

On the transmitting side of the FIBT, the "Buffer Empty" status bit (bit
1) will be set Whenéver the transmitting buffer has enough room for another
packet. The "Buffer Empty Interrupt" status bit (bit 2) will be set too, if the
interrupt has been enabled. Both the "BE" and the "BEI"” status bits can be
cleared by writing a word of data into the transmitting queue to partially flll
it up. Also, when the transmitting buffer is ready for ’cak.ing another word of
data, the "Request Next Word" status bit (bit 0) will be set (fig. 2.3) .

-13-



The mapping of the Control Register is as follows :

Bit O(LSB) Buffer Empty Interrupt Enable (BEIE)
1 Message Available Interrupt Enable (MAIE)

The “Buffer Empty Interrupt Enable” control bit (bit 0) is for enabling
the “~ Buffer Empty Interrupt” line and the "Buffer Empty Interrupt” status
bit. If a "1” has been written into this control bit, then whenever the
transmitting buffer is empty, the "~BEI" line will be driven low and the "BEI"
status bit will be set. However, if a "0" has been written into the control bit
instead, independent of the state of the transmitting buffer, the “~BEI" line
will always remain high and the "BEI" status bit will remain cleared (fig. 2.3) .

Similarly, the "Message Available Interrupt Enable” control bit (bit 1)
works the same to enable the "~ Message Available Interrupt" line and the

“Message Available Interrupt” status bit (g. 2.2) .

2.4. Procedure for Receiving Messages

Let us discuss how the F;IBT transfers a newly arrived message to the
processor. After the FIBT has received a complete packet from another FIBT,
the FIBT will clear the message available status bit (bit 5). If the interrupt is
enabled, then the "~ Message Available Interrupt” line will be driven low, and
the "Message Available Interrupt” status bit (bit 4) will be set. Thus, in order
to detect any newly arrived packet, the host processor can either poll the
"Message Available” status bit, or turn on the interrupt line and wait for the

interrupt.
After the processor detects a newly arrived packet, it can then read the

"First Word Register” (FWR) to find the destined address of the message. If

-14-



the processor decides to read out the message, the processor can repeatedly
read the "Receiving Buffer” L times to get the complete packet. After the
first word of the packet is read out, the "~MAI" line will return high, the "MAI"
and the "MA" status bit will be cleared. F"igure 2.4 shows the precedence of all
the signals mentioned above. Such a diagram is called the sequence diagram

and will be discussed in greater detail in section 4.3.1.

In reading the '"Receiving Buffer”, the processor must monitor the "~
Next Word Available” signal all the time. The FIBT will drive the "~ Next Word
Available” line low and set the “Next Word Available" status bit whenever a
word of data is ready to be read. After a word of data is read out, the FIBT
will drive the “~NWA" line high, clear the "NWA" status bit, and start shifting
in the next word for the processor to read. When the next word is ready, the

"~NWA" line will be driven low, and the "NWA" status bit will be set again.

TR lad \( .
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fig. 2.4 Reading the Receiving Buffer
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The "~NW.1‘\" signal is meant for synchronizing the FIBT with the host
processor. The host processor can be a micro-processor, or a Direct Memory
Access (DMA) controller. If the latter is used, the "~NWA” signal can be
routed to the "DMA request” input of the controller. After a word is read, the
"~NWA" signal will go low again in about 200ns (max.) 3 If the host processor
handles a word at a slower rate, a new word will always be available after the

previous word is read, and the "~NWA" signal can be left unused.

The processor must always follow the rule of handling data in the form of
a complete packet. Otherwise, the continuous running of the communication
system is jeopardized. The processor can jam the receiving queue if the
processor reads out a word of data when the whole message is not ready to
be read. For example, assume the FIBT has just received one word of data.
The "~NWA" line goes low while the "~MAI" line remains high If the processor
erroneously reads out this word of data from the FIBT, the L-word packet is
destroyed. The FIBT can never get a complete packet to fill up the receiving
queue, and the "~MAI" line will never go low again. The receiving queue is

jammed permanently, and the situation calls for a system reset.

2.5. Procedure for Sending Messages

When the processor has a packet to send, it should look at the "Buffer
Empty" status bit (bit 1) and determine if there is enough room in the FIBT
to hold one whole packet. If there is no room available, the processor can
turn on the "~Buffer Empty Interrupt"” line. Later, when FIBT has enough

room, it will interrupt the processor.

3 200ns is determined by SPICE simulation run. The period may vary on different fabrication
nuns.
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After the processor determines that the FIBT has enough room for a
message, the processor can start writing all L words of data to the
"Transmitting Buffer” (TB). After a word is written to the transmitting buffer,
the "~BEI" line will return high, the "BEI" and the "BE" status bit will be
cleared. (fig. 2.5)

Notice that after the words of data have been shifted down to another
end of the FIFO, there will be an "empty” buffer left behind, and the "~BEI"
line can go low again, sending an interrupt signal to the processor. The FIBT's
FIFO is sufliciently faster than a processor that at the exit of an interrupt
routine the processor will be interrupted again. In order to avoid this
undesirable interrupt, the processor node must have some logic units to

mask the interrupt while a data packet is being transferred and unmask the

interrupt after the transfer is done.
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fig. 2.5 Writing to the Transmitting Buffer
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Again, similar to the "~ Next Word Available” output line, the "~ Request
Next Word” line is used to synchronize the FIBT with the host processor.
During the time when the processor is writing a word into the FIBT, the
"~RNW" line goes high. After 200ns (max), when the FIBT is ready to receive
another word from the processor, the "~RNW" line will go low again.

-18-



CHAPTER 3

Communication between Two FIBTs

On the transmitter-receiver side, the FIBT uses two serial data lines to
transmit and receive data, and takes in a clock signal as a frequency
reference. This chapter discusses how two FIBTs communicate with each

other.

3.1. Data Format

Again, similar to the way messages are passed from the processor to the

FIBT, messages passed between FIBTs are handled in the form of a packet.

to communicate with the processor. The major difference is that data is
passed serially.

There are two kinds of message : data packet and control character.

At the beginnix;g of the data packet, there is a start bit, then a message
Lype bit, which is a "0" for the data packel. These are [ollowed by L*W bits ! of
data and the packet is terminated by a stop bit. (fig. 3.1)

The control character begins with a start bit, followed by a "1" for the
message type bit, and ends with a stop bit.

Notice that the data packet size for inter-FIBT communication does not
strictly have to be L*W. It can be a fraction of L*W. In effect, the FIBT divides

a data packet into smaller sub-packets. With this method, more start and
stop bits are needed, and the data transmission rate would be lowered

! For the prototype, it is 18 * 18 bits of data
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fig. 3.1 Format of the Data Packet and the Control Character
slightly. Obviously, it does not make much sense for the FIBT to pack data
packets into a larger data packet. The channel may be left idle though there
is a data packet ready to be transferred, and communication deadlock can

be created.

3.2. Control

Years ago, a similar transmitter-receiver was built. In this system, the
transmitter uses two lines to link with the receiver; in other words, each
transmitter-receiver uses four lines to link with another transmitter-
receiver. Two of these lines are data lines, and the other two are
acknowledge lines (fig. 3.2). After the receiver has received a packet from
the transmitter, it sends off an acknowledge signal back to the transmitter.
For a good sized packet, it is obvious that the acknowledge line does not work
very hard. The data lines must run at a frequency L*W times higher than the
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acknowledge lines.
One would think that a better system can be built by combining the
acknowledge lines with the data lines, and this is exactly the scheme that the

FIBT employs. Any two FIBTs are linked together by two data lines. All the
hand-shaking is done by sending control characters onto the data lines.

If the FIBT has a packet to send to another FIBT, it must first determine
whether the receiving FIBT has enough room to store one complete packet.
Let us suppose both FIBT-A and FIBT-B have just been reset, and all their
buffering queues are empty. Let us suppose FIBT-B has a data packet to send
to FIBT-A. B first sends off the start bit, which signals A to pick up the packet.
Then, B sends off the (L*W)-bit packet, and terminates the packet by a stop
bit. After A receives the whole packet, A will monitor its receiving queue to

see if there is enough room for another packet. When A sees an "empty”
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receiving queue, it will send an "empty” control character to B. This control
character signals B that A is ready to receive another data packet. On the
other hand, after B finishes sending a data packet, B is not allowed to begin
sending another packet, though it may have one to send. B must turn to
listen to A and wait for the "empty” control character. After B receives the
"empty" control character, it can then proceed to send another data packet.

The sending of a control character is set to have a higher priority than
the sending of a data packet. In other words, A will send off the control
character as soon as the transmitting line is idle. There are two reasons for
this priority. Firstly, the control character is much shorter than the data
packet. Secondly, the sending of the control character will free the
communication channel in the other direction. Thus, the time that B must
wait is minimized. If a data packet is divided into sub-packets, then the
waiting time can be reduced further. In between transferring sub-packets,
which are smaller than a data packet, the transmitter will have the chance to

transfer a control character.

3.3. Synchronization

Synchronization is accomplished by the combination of a start bit, a
stop bit, and a clock signal. The system is not quite asynchronous; instead, it
is a hybrid of a synchronous and an asynchronous system. The whole
multiprocessor system takes the same clock signal to clock all the FIBTs, but
each FIBT may be working at a different phase. The clock is a frequency
reference to all FIBTs, and the start and stop bit gives the phase reference to
each FIBT. In this "one-clock-different-phases” system, the clock skew
problem does not exist. There can be a time lead or time lag between any two

FIBTs, and they can still communicate reliably with each other. Moreover,
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the number of bits of data that can be placed between the start and stop bit
is theoretically infinite. Also, the one clock system has the advantage of
simplifying the problem of clocking different parts of the system with
different clocks 2 . The combination of all these features makes the hybrid
system an attractive system to be tested.

In order to mark the phase correctly, the internal clock rate of the
FIBT is three times the data transmission rate. Every data bit is sampled
three times, and a bit is always latched at the second sample. In fig. 3.3, the
period of a data bit is divided up into three equal parts. Two extreme cases
are given to mark the time when the data bit will be latched. We see that
only the middle part of a data bit will be latched. Thus, if the set up time of a
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flg. 3.3 Sampling Input Data Bits

% Actually, different FIBTs can be clocked separstely with different clock signals with a
?emcjﬁcd tolerance. If the data packet is divided into sub-packets, the tolerance can even be
er.
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data bit is shorter than a third of the period time, data will be latche:i
correctly. Of course, each data bit can be sampled at a higher rate in order
to allow for longer set up time. However, gince there is an upper bound on
the internal clock rate, a higher sample rate would mean a low data
transmission rate. As a compromise, the finite state machines of the FIBT

are designed to run at 8 MHz, and the data transmission rate is 2 MBPS.

For a synchronous system. a receiver in this case, to synchronize with
an free-running input signal, synchronization failure is doomed to happen
[Seitz 80]. The designer can only work on lowering the probability that the
failure will happen. The smaller the probability is, the more reliable the
system functions.

A clocked storage element, called a synchronizer, is used to synchronize
the input signal with the system clock (fig. 8.4). Bach synchronizer is a
bistable element which helps to restore the logic level from a signal close to
the switching level.

Sla'nchrmous clock sigﬂal
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fig. 3.4 Synchronizer
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- The probability of a system failure on each synchronization event can be

given in the following equation:
f*tee-pP*d®n
Where “f" is the frequency of transition of the input signal. Variable "t", a
parameter of the synchronizer, is the sample time period in which a
transition of the input signal would cause a system failure. The rightmost
term describes the metastable decay of the synchronizer. After a bistable
unit goes into a metastable condition, the probability that it will remain in
the metastable state after a time period of "d" is e P * 9, Variable “p” is the
rate of the Poisson decay process, and it depends on the circuit
characteristics. For a synchronizer with “n" stages of bistable unit, the
probability is simply e’ P *4°2,
Experimental results show that "t” is about T/10, where .T is about 0.2ns

for 4-micron technology 3. Thus, "t" is about 20 picoseconds.

We can assume "p” to be 1/((1+r) T) for a ratio logic of r. Because the
bistable unit is made up of an inverter with r=8 and an inverter with r=4, the
worst case of “p” is 1/9T or 1}1.8ns.

For each data packet, after the start bit is well synchronized, the whole

packet i synchronized 4. In other words. there is only one transition in a
packet that can cause a failure. Since the data transmission rate is 2MBPS

and there are 1616 bits in a.packet, the frequency of transition, "f", is 1/256

*27*10°

37T ijg the scaled time unit used in Head’s lJambda model
4 Refer to the receiver FSH in section 4.3.4
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For a sym.:hronizer running with a two phase 8MHz clock, the time left
for a bistable element to exit from the metastable state is only 80ns (half the
period time) . In ordex; to provide extra margin for preset time, 60ns is used
for "d".

Thus the probability of a failure for each synchronization event of a two
stage synchronizer ("n" = 2) is :

(17256 *+ 2 * 10%) * (20 * 10713) + " 1/18°60°2

~ 1.7*10%

Since synchronization event is running at 8MHz, the failure rate per second
is (1.7 * 10%) * (8 * 10°) or 1 * 10®. This means that an average of one

failure will occur in about 3 * 10?! years.
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CHAFTER 4

Implementation

The FIBT has been implemented in nMOS technology. In this chapter,
two main design concepts are discussed. Then, the circuit design, the actual

layout, and the verification are shown.

4.1. Modular Design

The FIBT can be divided into 5 major modules : 1) processor interfacing
circuit, 2) transmitting FIFO, 3) receiving FIFO, 4) transmitter, 5) receiver
(fg. 1.3).

Similar to structured programming, in VLSI design there are many
obvious reasons for the modular design. Modular design helps to control
complexity, simplify verification, minimize organizational overhead. In turn,
this approach shortens design times a.nd saves manpower [Mead B(C]
[Buchanan 80] [Moore 79] . After the outputs, the inputs, and the process of
each module are defined, ;aach module can be independently designed,
verified, laid out, simulated, fabricated, and tested. If every module works,
the chance for the whole system to work is much higher. However, since this
is not a totally self-timed system, there may be timing problems when the
modules are connected. Thxs must be taken into consideration when the

modules are defined.

4.2. Parameterized Design

*VLSI technology is oriented to replication, and all the parts of a chip
are made in parallel.” [Seitz 82] The major building blocks of the FIBT are



made by repeating some basic building blocks for a specific number of times.
The root definition of the FIBT is parameterized by three important
parameters : queue length (QL), packet length (L), and packet width (W). Any
perticular FIBT can be generated from the root definition by specifying the
three parameters.

The ability to parameterize the design is a very powerful tool in VLSI
design. Parameterized VLSl design is very similar to parameterized
programming. Alternative chips can be obtained by changing the parameters
of the root definition. "One can even say that the relationship with so_l’tware is

not by analogy but by equality.” [Buchanan 80]

4.3. The Circuit Design
Although the design is based on the nMOS transistor level, it can be

generalized easily. Most of the building blocks are fairly straightforward, and
the reader should be able to understand them.

4.3.1. FIFO Buffer

There are two generally a;':cepted ways of building a FIFO buffer. There is
the randem access memory based FIFO, which uses a big RAM together with
two pointers pointing at the last read and the last write locations [Whiting
B82]. Or, there is the shift register based asynchronous FIFO buffer [Cohen 77]

[Clark & Seitz 77] [Galvin & Kohn 78] [Sutherland 76].

A rough comparison between Whiting's RAM based FIFO and the FIBT's
shift register based FIFO was made. The major differences lie in the size and
the speed of the FIFO.

The controller of the RAM based FIFO has about the same number of
logic gates as in the controller of the shift register based FIFO. However, the
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former takes more wiring connection than the latter does. As Sutherland
and Mead pointed out [Mead & Sutherland 77]: wiring has become relatively
expensive in terms of layout area. The final layout of the RAM based FIFO
controller takes up approximately twice the area that the shift register
based FIFO controller does. However, the storage unit of the RAM based FIFO
can be smaller than the storage unit of the shift register based FIFO ! . Thus,

for a FIFO with a lot of storage units, the RAM based FIFO is probably smaller.
For a 32*16-bit FIFO, the two‘layouts take about the same area.

In the shift register based FIFO, each data bit is passed by a series of
drivers — the shift registers’ drivers. The series of drivers, each acting like a
repeater, can drive the data bit very quickly down a long FIFO ? . Also, these
drivers are part of the shift registers, and they come almost at no cost. In
the RAM based FIFO, extra drivers are needed to transfer data between the
storage unit and the external world. In order to build strong drivers for long
data lines, a number of drivers are cascaded together, and they t:.ake up
space! If area is a problem, then smaller drivers can be used, but the FIFO

will be slower.

The shift regiéter based FIFO is chosen for the FIBT. Each FIBT carries
two FIFOs of length QL words and width W bits ® . The actual circuit is given in
fig. 4.1 and 4.2 . The controlling unit of the FIFO employs mainly two Muller-C
elements to do the handshaling. The circuit is not totally speed independent.
In each stage, the data must be valid at the output lines before the request

line to the next stage is raised. In order to achieve this sequence constraint,

! This is especially true for dynamic RAM umit, such as the three transistor dynamic RAM
umnit.

® Actually, in the shift register based FIFO, the speed limiting factor probably lies in the
::xtu'oner. rather than the shift registers. Thus, the designer shouid concentrate on designing a

controller.

3 For the prototype, QL = 32, W = 16.

-29-



vd o >
re%ues'tn’.
reftucs'[- ] p— '

(R 1) veset W):
|
load. \ref’reszx ’
—— [
I
|
|
D . ! a——
. f—_LS S D‘, L5 \ U T
b . s/ o .
JO v r - r " Ssﬂ
" I
. : l
) ‘ i
: |
D e cnmmmnd '
'
o< }7 |
N !
Di- e
—L>‘—r L ll> S ! ML
B ( ;
'——VDD teset : (__V»
ack-| A2 o.ckéz
(A1) L (A
. !
Vb 4

|
]
fig. 4.1 Basic Cell of the FIFO

-30-



pa

TBE' | TMA
(1; processe ) : (.fc 'fmnsm.‘ffcr)
m1er:°nce .
| g— H —
] gf I C. l __,(( l
1 vy vy iy vdy v Rz Ar{re A2 7 Rz A2'[Rz Av
W bils > 2
¢ ‘ ¥ s %
e L werdy ———> — L words —————mro3
& &L
A Words [
i
RBE
(5 veceiver)
. 55 [ 3; ‘!
T > \'1.2 v'dla \‘da. Ydsé
Whis| <« — ——
| {€ A > ¢ ﬁ
y — # > 2| mark
-(-
(W‘H)ch e P so s . . s/

22

s B Wy 1]

Sl
# Qf T L L .
~pPMA ; F (*t
(233

To pv ocessor)

interface

fig. 4.2 Design of the FIFO

-31-



an extra pass gate is added into the controlling unit to introduce the

necessary delay time.

The circuit is verified by the use of sequence diagrams (fig. 4.3). Arrows
in the diagram show the precedence relationship among the different logic
signals. Concurrent activities occur when a number of arrows fork off from
the same root transition. A dotted arrow means that the precedence must be
enforced by the external environment, and not by the circuit itself. An arrow
with a little circle shows an assumed precedence. Usually, the designer
knows that such an assumption holds in the timing domain. The
understanding of the sequence diagrams requires some intuition. With some
patience, the reader should be able to see that the circuit works as it is
intended. The sequence diagram is helpful in designing speed independent
circuits. Other methods have been suggested, such as the use of Petri nets

S e N

. g\L el ;\\,{__
) (}3«

X ! g‘)( L’/XJ |

b X | X

fig. 4.3 Verification of the FIFO
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[Seitz 70], and the use of ternary logic simulation [Bryant 80]. However,
there is no easy way to simulate this kind of circuit using today's simulators
[Whiting 82] . Further research in this area is needed.

4.3.2. Processor Interface

The processor interfacing circuit for the transmitting side of the FIBT is
very similar to the one for the receiving side of the FIBT (fig. 4.4). Each of
them uses a Muller-C element to handshake with the FIFO, and the remaining
logic elements build up the status register and the control register.

4.3.3. Transmitter

The major building blocks of the transmitter are : a parallel-in-serial-out
(PISO) shift register, a multiplexer, two latches, two counters, and a PLA (fig.
4.5). The PISO shift register is for shifting out the data bits serially. The
multiplexer picks the correct data word that should be loaded into the shift
register. Latch 1 stores the flag which decides whether a control character
should be sent off. Latch 2 stores the flag which grants the permission to
send off a data packet. One of the two counters is the bit counter which
keeps track of which bit is béing sent off. The other counter keeps track of
which word is being sent off. The PLA builds up the transmitter's finite state
machine (FSM). The logic states of the FSM is given in fig. 4.6. There are two
major paths in the FSM : one is for sending out a control character, and the
other is for sending out a data packet. Notice how a data bit is transferred

for every three clock cycles. The construction of the FSM is shown in fig. 4.7.

In this part of the circuit. most of the logic has been incorporated into
the PLA, and the amount of random logic elements has been minimized. The

idea is to keep the design simple, regular, and structural. Once the PLA has
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been tested to be working correctly, the designer can have more confidence

in the logic design of the transmitter.

4.3.4. Receiver

The receiver is similar to the transmitter. The major building blocks of
the transmitter are : a serial-in-parallel-out (STPO) shift register, two
counters, and a PLA (fig. 4.85. The SIPO shift register is for shifting in the
data bits serially, and loading them into the FIFO. The two counters are the

bit counter and the word counter.

Again, the main portion of the logic is included in the receiver's FSM.
There are two major paths in the FSM (fig. 4.9). One is for receiving a control
character, and the other is for receiving a data packet. State B is for
monitoring the receiving queue to determine if there is enough room for a
complete data packet. If so, a signal is sent to the transmitter's latch 1 to
initial the sending of an "empty” control character. Also, whenever an
“emnpty” control character has been received from another FIBT, a signal is
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sent to the transmitter’'s latch 2 to grant the permission to send off a data

packet.

4.4. The Layout

The prototype FIBT, which carries two 16*32-bit FIFOs, has about 11,000
transistors. The chief design tool used to lay out the chip is Earl [Kingsley
B2] — an integrated circuit design language developed at Caltech. The
designer first describes each leaf cell independently, then composes the leaf
cells together to form the whole structure. The designer can constrain each
leal cell in a way ‘that it can be stretched to fit with other leaf cells. The
ability to stretch a cell turns out to be very helpful in designing wu'mg cells,
The designer need not worry where each wire should exactly go; Earl routes
it correctly for you. Also, most of the wiring cells can be scaled as the whole
FIBT is scaled by parameters.

The code of an example leaf cell, "deco”, is given in appendix A, and the
cell is drawn in fig. 4.10. "Deco” is a parameterized cell capable of
generating any one of the gates which build up the address decoder. The
final decoder is drawn in fig. 4.11.

From the simple example of the decoder, the reader can conceive how
powerful a parameterized cell can be. In fact, not only the leaf cells are

parameterized, the whole FIBT layout is parameterized.

Three layouts have been done for the FIBT. The first layout is a non-
parameterized FIBT which carries two 16*32-bit FIFOs (QL = 32, L = 16, W =
18), and the layout’s size is about 4,800 micron * 4,600 micron (fig. 4.12). In
trying to understand the layout, the reader may find the floor plan given in
fig. 4.13 helpful. The second layout is a parameterized FIBT with the same
FIFO size, and it is about 5,000 micron * 5,100 micron large (fig. 4.14). The
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fig. 4.14 Parameterized FIBT with 16*32-bit FIFOs
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third layout ts; done by changing the parameters of the second layout to
generate a new FIBT with two B8*10-bit FIFOs (QL = 10, L = 4, W = 8), and the
size is 3,200 micron * 3,400 micron (fig. 4.15). The first layout took about
three man-months to do, and the second one took an additional man-month.

In contrast, the third one only took about one man-hour. With a little extra
work, a whole family of FIBTs can be generated 4.

By comparing the three different layouts, we can easily see that more
silicon area is traded for a more generalized layout. For instance, in the
parameterized layout, all the data tri-state pads are laid on one side of the
chip. Also, the wiring cell next to the tri-state pads gives a channel for each
data line. Whereas in the non-parameterized layout, the chip is tailored to
give a particular FIBT. The tri-state pads are wrapped around the chip, and
the wiring cell gives a channel to every two data lines.

In additional to parameterization, another concept used in laying out
cells is the idea of "included bus”. "Buses run through rather than around
the functional blocks.” [Rowson 80]. The idea is best illustrated by looking at
some of the wires around the decoder (fig. 4.18). The data bus runs through
the decoder, and goes to thé. pass gates which control what data should be
given to the output drivers. The output drivers then drive the data to the
output pads. Also, there are control buses which run "underneath”" the
output drivers. The idea is to put transistors on the top of data buses, and

not to bring buses to transistors.

4 The present Ear] code has several limitations on the parameters. All parameters must be
cvengn.egm.QLmustbenoleuthmz‘L. L must be greater than 4. And W must be greater
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4.5. Verification

VLSI design has brought out design problems that ha\_re never appeared
before in man’s history. Today, VLSI designers must rely on a new set of
computer aided design tools. Among all these design tools, geometrical
design rule checkers and simulators are probably the most important ones.

4.5.1. Geometrical Design Rule Checking
A complete geometrical design rule checking program is not available at
Caltech at the time of this research. Fortunately, the hierarchical design

organizes the checking by eye to a systematic process [Rowson 80].

A limited design rule checking program is used to check the llayout..
;\Iter running Earl, a complete "Caltech Intermediate Form" (CIF) file [Mead
& Conway 80] is generated. The CIF file is then extracted [Hedges 82] to
generate a network flle for simulation run. In extracting the CIF flle, limited
diagnostics are done on the CIF file. Layout errors, such as shorted power
lines, implant layer errors, incomplete one contact transistor, and multiple

pullups, can be detected.

452 Smulation.

There are several kinds of simulator which simulate circuits on different
levels of abstraction. On the low level side, there is the circuit simulator,
such as SPICE [Nagel 75], which models the electrical behavior of every
semiconductor device. On a higher level, there is the switch-level simulator,
such as MOSSIM [Bryant B2], which keeps track of all the 1's and 0's in the
system. Besides these, there is the functional block simulator ° which
gimulates the circuit on the functional block level. Among all these

5 At the time when this research is done, a functional block simulator called “Register
Transfer Simulator” is under construction at Caltech.
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simulators, there is the tradeoff between how accurately the simulators
model the circuits and how fast they can run. For the critical sections where
timing can be a problem, the circuit simulators should be used. Switch-level
simulators are good for detecting logic design errors. And functional block
simulators are good for designing the overall architecture.

In simulating the FIBT circuit, a bottom-up approach is used. A small
part of the circuit is extracted for an accurate simulation run. The behavior
of this part of the circuit is abstracted for a higher level simulation run,
which runs faster and simulates a larger part of the circuit. This approach
proves to be rather satisfactory, though how one should abstract the result
of a simulation run and put that into a higher level simulation run is still a

research topic.

In terms of timing, the FIFO bufler is the most critical section in the
FIBT. Thus, SPICE is used to determine the behavior of the FIFO buffer (fig.
4.17). In designing the FIFO, a sequence diagram is used to verify the design.
However, there is an assumption : the data lines become valid before the
econtrol lines do. In order to guarantee that the assumption holds, a certain
amount of delay should be mt;'oduced to the control signal path. The amount
of delay is controlled by the size of the extra pass gate shown in fig. 4.1. The
greater the resistance the pass gate has, the more delay the control signal
path contains. SPICE helps to assure that the delay is enough to make the
assumption hold. '

Also, SPICE helps to estimate the response time of the FIFO. From fig.
4.17, we see that after request-1 has been raised, it takes about BOns before
request-2 is raised, and this is the time taken to propagate the request signal

down a stage of the FIFO. Also, acknowledge-1 returns to low in about 130ns
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fig. 4.17 Sample Run of SPICE
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after request-1 is raised, and this is how long the FIFO takes to handle an
input data word.

Although the SPICE program models the MOS devices rather accurately,
the final simulation run may produce substantial errors, depending upon how
accurately the electrical parameters and the transistors' sizes are specified.
The electrical parameters used are drawn from the MOSIS service [MOSIS]
that helped to fabricate these chips. The transistors' sizes are obtained by
extracting the CIF flle produced by Earl. Another program is used to convert
the extraction output flle into a SPICE input file. The extraction program has
a big limitation in deciding the transistors’ sizes® . For a crooked transistor.
like the one shown in flg. 4.18, only the length and width of the square
covered by the transistor, and the area covered by the transistor itself are

obtained. Owing to this limitation, the resistance and the strength of such a

d&'“ms-’m.

ra‘»a silicon-

[— Tv'M\iisTof
arca.

€« lcnjﬂv _—

fig. 4.18 Crooked Transistor

8 A more accurate extraction program is not available at the time of this research.
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transistor cannot be modelled correctly. Thus, the final results of these

simulation runs have to be interpreted carefuily.

In additional to the circuit simulator, MOSSIM, a switch-level simulator,
is used to simulate the FIBT. A sample simulation run is shown in appendix
B. Again, the CIF flle is extracted, and a program is used to convert the
extraction output flle into the MOSSIM input flle. Because sizes of transistors
are not medelled accurately, some transistors are edited to give a set of
more accurate parameters to MOSSIM. In running MOSSIM, unit time delay is
assumed for each transistor. Although this does not represent the true
picture, there is no other easy way to simulate the complete circuit. If
ternary simulation is used, the unclocked feedback circuit in the FIFO
controller will kill the simulation [Bryant B0]. Again, this is the problem of
simulating a self-timed circuit. Nevertheless, MOSSIM is used with great

success, and it helps to find a number of design and layout errors.
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APPENDIX A

Earl Code for the Decoder

/* noi (no. of inputs) : 1-3 */

/* gatel-3 (gate position) : 0 =nogate; 1 =al;2=al;3=cs; 4 =rw */
/* outp (output position) : 0=go south; 1=al; 2=a0; 3=cs; 4=rw */

cell deco(noi.gatel,gate2,gate3,outp);

/* external ports declaration */

if outp=0 then south group out; fl;
west group gnd, a0, al, cs, rw, vdd;
east ;= west;

/* internal ports declaration */
ports x1, x2, x3, x4, x5;
if outp<>0 then ports out; fi;

/* setting constraint on the ports */

constr

if outp=0 then xcon west }>7l x1 ]>14{ x2 [>11]| x3 [>12] out [>2] east;
Xcon X1 >7| x4 |>| X3 |>7| x5;
else xcon west [>3| x4 |>10| x3 |[>7| x5 |>2| east; fi;

ycon south |>| gnd [>5+8| a0 [>7[al [>7| cs [>7] rw [>17] vdd
|>| north;

geom
all ;= x4.xffal.y:
al2:= x4.x#al.y;
al3 := x4.xfcs.y;
al4 .= x4.X§rw.y;
a2l := x4.x#al.y;
az2 := x4.x#a0.y;
a23 := x4.xffcs.y;
824 1= x4.x§rw.y:
a3l = x5.xfal.y:
adR := x5.x#al.y;
a33 := x5.x#cs.y;
a34 := x5.xfrw.y,
b = dm x3.x#gnd.y;
dm x3.x#north.y+11;
x1.xfgnd.y;
X2.x#end.y:
tal. 6 wire gnd;
if outp=0 then 4 wire ail;
4 wire a0;
4 wire cs;
4 wire rw,; f1;

II |I |l
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poly

if outp=1 then 4 wire a31, east.x§®.y:

4 wire a21, west.xf@.y;

4 wire a0;

4 wire cs;

4 wire rw; fi;
if outp=2 then 4 wire a32, east.x#@.y;

4 wire a22, west.x#@.y;

4 wire al;

4 wire cs;

4 wire rw; i;
if outp=3 then 4 wire a33, east.x#@.y.

4 wire a23, west.x#@.y;

4 wire al;

4 wire af);

4 wire rw; fi;
if outp=4 then 4 wire a34, east.x#@.y;

4 wire a24, west.x#@.y;

4 wire al,

4 wire a0;

4 wire cs; fl;
box x3.x-4ffrw.y+6, x3.x+4#@.y+8;
if gatel=1 then pm all; wire all, x1.x-5§@.y.
if gate1=2 then pm alZ2; wire al2, x1.x-5f@.y
if gate1=3 then pm al3; wire al3, x1.x-5§@.y
if gatel=4 then pm al4; wire al4, x1.x-5§@.y:

a
i
ﬁ.
fi
a

if gate2=1 then pm a21; wire a21, x1.x-5§8.y;
if gate2=2 then pm al2; wire a22, x2.x+5#@.y, f;
if gate2=3 then pm aZ3; wire a23, x2.X+5#@.y; 1,
if gate2=4 then pm al4; wire a24, x2.x+5§@.y. fl,

if gatel3=1 then prm a31; wire a1, x3.x-54@.y; fi
if gate3=2 then pm a32; wire a32, x3.x-5#@.y; fi;
if gate3=3 then pm a33; wire a33, x3.x-54@.y. fi;
if gate3=4 then pm a34; wire a34, x3.x-5#8.y; fi,

if outp=0 then wire x3.x#rw.y+7, out.x#@.y, ®.x#south.y; fi;

if outp=1 then pm a21;

wire x3.x#rw.y+7, a2l .x#®@.y, a21; 1;
if outp=2 then pm a22;

wire x3.x#rw.y+7, a22.x#@.y, a22; fi;
if outp=3 then pm a23;

wire x3.xf#rw.y+7, a23.x#@.y, al3; fi;
if outp=4 then pm a24;

wire x3.xf#rw.y+7, a24.x#@.y, a24; fi;

4 wire b, c,
8 wire b, @.xf#rw.y+4,
if noi=3 then wire x3.x#rw.y+4, x1.x#@.y;
B wire x1.x#rw.y+4, @.x#gnd.y; dm d;
B wire x2.x#rw.y+4, ®.x#gnd.y. dm e; fi;
if noi=2 then wire x2.x#rw.y+4, x3.x#8@.y. '
B wire x2.xfrw.y+4, @.xffgnd.y; dme; fi;
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buriedbox x3.x-4#frw.y+4, x3.Xx+4#0.y+5;
implant box x3.x-3.5#rw.y+4.5, x3.x+3.5§c.y-1;
end; .

/* define all the gates needed */
wr3 horiz deco(3,2,3.4.0);
rd3 horiz deco(3,1,3.4.0);

read horiz deco(z 3, .0);
alinv horiz deco(1, 0.0.1.1;.
alinv horiz deco(1,0,0,2,2);
esinv horiz deco{1,0,0,3,3);

rwinv horiz deco(1,0,0.4,4):

/* final composition to make a decoder */
decoder horiz rd3, alinv, rd3, read, rwinv, wr3, alinv, wr3, csinv;
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APPENDIX B

Sample MOSSIM Run
>
>comment declaration of some identifiers
>

>clock phil.in:0100 phi2.in:0001

>comment datal & data?2 are tri-state data pads
>comment due to some technical problems, bit-13 is not there
>vector datal O.tri 1.tri 2.tri 3.tri 4.tri 5.tri 6.tri 7.tri
>vector data2 8.tri 9.tri 10.tri 11.tri 12.tri 14.tri 15.tri
>comment inter is the output interrupt signals
>vector inter rnw.out the.out nwa.out _nede?71
>comment addr is the control lines & address lines
>vector addr res.in a0.in al.in rw.in

>

>vector ticon tfreq tfack tfill

>vector ricon rfreq rfack rimty

>vector tpcon tpreq tpack tpmty

>vector rpcon rpreq rpack rprow

>

>comment tpladd shows the state of the TxFSM

>vector tpladd tplaB tpla7 tpla6 tplaS

Scomment tplaout : Txshift LCC LD2 LD1

>vector tplaout tplal tpla2 tpla3 tpla4

>comment tplain : MR CR reset =15B =17B =0W =15W
>vector tplain tpla9 tplal0 tplalil tplaliR tplal3 tplal4 tplals
>

>comment rpladd shows the state of the RxFFSM
>vector rpladd rpla8 rpla7 rpla6 rplad

>comment rplaout : Rxshift load OKsend sendCC clrC
>vector rplaout rplal rpla? rpla3 rpla4 rpla42
>comment rplain : RxD mty reset =16W =16B
>vector rplain rpla9 rplai0 rplall rplai2 rplal3

>

>comment shiftl & shift? is the transmitter PISO

>vector shiftl dout.out 0.shil 1.shil 2.shil 3.shil 4.shil 5.shil 8.shil
7.shil B.shil

>vector6shil§1t2 9.shil 10.shil 11.shil 12.shil 13.shil 14.shil 15.shil
16.shil

>comment shift3 & shift4 is the receiver SIPO

>vector ghift3 17.shi? 18.shi? 19.shi2 20.shi2 21.ghi2 22.shi2
R3.shiR 24.shi2

>vector shift4 25.shi2 28.shi2 27.shi2 28.shi2 29.shi2 30.shi2
31.shi? 32.shi? din.in

>

>comment monitor some of the signals



>

>watch /4 inter addr cs.in datal data?
>watch /4 tpcon rpeon tfcon rfcon

>

>watch /4 tpladd tplain tplacut
>watch /4 shift1 shift2

>

>watch /4 rpladd rplain rplacut
>watch /4 shift3 shift4

>

>comment define some useful constants
>

>const reset 0000

>const rb 1001

>const fwr 1101

>const sr 1011

>const tb 1000

>const cr 1100

>
>comment increase the simulation step limit
>limit step:200

>
>comment start the simulation
>
>comment reset the FIBT
>set addr:reset cs.in:0 din.in:1
>cyce

1.4] inter:0X11 addr:0000 cs.in:0 datal:X00XXXXX tpcon:000 rpcon:000
tfcon:001 rfcon:000 tpladd:0000 tplain:001XXXX tplacut:0000
shift 1: DOOOOCOOX shift 2: 000000 rpladd: 0000 rplain:111XX
rplaout:00000 shift3:XX00C00X shift4: 0000001 data2: 20000
>comment write to the control register to enable interrupt lines
>set addr:cr /2 es.in:1 /3 es.in:0
>lor datal:11XXXXXX
>cye . :
2.4| inter:0011 addr:1100 cs.in:0 datai:11XXXXXX tpcon:000 rpcon:000
tfcon:001 rfcon:000 tpladd:0000 tplain:000XXXX tplaout:C000
shift 1: 12000000 shift2:X0000XXXX rpladd: 0000 rplain:110XX
rplaout:00000 shift3: 00000 shift 4:X0CXXXXX1 data2: 200000
>comment write a data word to the transmitting buffer
>set addr:tb /2 cs.in:1 /3 es.in:0
>for data1:11110000 data2:1100100
>eye

3.4] inter:0011 addr:1000 cs.in:0 data1:11110000 tpcon:000 rpcon:000
tTfeon:101 ricon:000 tpladd: 0000 tplain:D0UXXXX tplaout:0000
shift 1: 120000000 shift2:X00000(XX rpladd:0000 rplain:110XX
rplaout:00000 shift3:X000000X shift 4:X00XXX1 datal:1100100
>comment force the transmitting buffer message available true
>comment notice that the transmitter is activated
>for tffill:0
>cyce

4.4 inter:0011 addr:1000 cs.in:0 data1:11110000 tpcon:000 rpcon:000

| tfcon:010 rfcon:000 tpladd:0101 tplain:0000010 tplaout:0001
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shift1:0011110000 shift2:11001X00 rpladd:0000 rplain:110XX
rplaout:00000 shift3:X000XXX shift4:00000XX! data2:1100100
>comment force a start bit on the serial data input line & activate
>comment the receiver
>for din.in:0
>cye
5.4| inter:0011 addr:1000 c¢s.in:0 data1:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:000 tpladd:0110 tplain:0000010 tplaocut:0000
shift1:0011110000 shift2:11001X00 rpladd:0001 rplain:010XX
r%laout:DODOO shift3:X20000XX shift4:X200XXXXX0 data2:1100100
>eye
8.4| inter:0011 addr:1000 c¢s.in:0 datal:11110000 tpcon:0C0 rpeon:000
tfcon:000 rfcon:000 tpladd:0111 tplain:0000010 tplacut:0000
shift1:0011110000 shift2:11001X00 rpladd:0010 rplain:010XX
rplaocut:00000 shift3: 2000000 shift4:200000X(X0 data2:1100100
7.4| inter:0011 addr:1000 cs.in:0 data1:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:C00 tpladd: 1000 tplain:0000010 tplaout:1000
ghift1:0111100001 shift2:1001X001 rpladd:0011 rplain:010XX
rplaout:00000 shift 3:X0000XXXX shift4: 00XXXXX0 data2:1100100
>comment set the message type bit 0, i.e. a data packet
>cye 3

Bil inter:0011 addr:1000 cs.in:0 datal:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:000 tpladd:0110 tplain:0000010 tplaout:0000
shift1:0111100001 shift2:1001X001 rpladd:0100 rplain:010XX
rplaout: 00000 shift3:X000C0CKX shift4: 20000000 data2:1100100
9.4| inter:0011 addr:1000 cs.in:0 data1:11110000 tpcon:00C rpcon:000
tfcon:000 rfcon:000 tpladd:0111 tplain:0000010 tplaout:0000
shift1:0111100001 shift2:1001X001 rpladd:0101 rplain:01000
rplaout:00001 shift3:XXCCOOX shift4: X0XXXXX0 data2:1100100
10.4| inter:0011 addr:1000 cs.in:0 datal:11110000 tpcon:000 rpcon:000
tfeon:000 rfcon:000 tpladd: 1000 tplain:0000010 tplaout:1000
shift1:1111000011 shift2:001X0011 rpladd:0110 rplain:01000
rplaout:00000 shift 3:2000XXXX shift4: 20000000 datal:1100100
>comment let the 1st data bit be O
>cyc 3 :

11.4] inter:0011 addr:1000 ¢s.in:0 datal:11110000 tpeon: 000 rpeon: 000
tfcon:000 rfcon:000 tpladd:0110 tplain:0000010 tplacut:0000
shift1:1111000011 shift2:001X0011 rpladd:0111 rplain:01000
rplacut:00000 shift3:XX000XKXX shift 4: XXXXXXXX0 data2:1100100
12.4| inter:0011 addr:1000 cs.in:0 data1:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:000 tpladd:0111 tplain:0000010 tplaout:0000
shift1:1111000011 shift2:001X0011 rpladd:0101 rplain:01000
rplaout: 10000 shift 3:X00XXXXX shift4:X00000(XX0 data2:1100100
13.4| inter:0011 addr: 1000 cs.in:0 datal:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:000 tpladd:1000 tplain:0000010 tplacut:1000
shift1:1110000110 shift2:01X00111 rpladd:0110 rplain:01000

Y eud ANANN L iELO =il A . VVVVVUYVIN J_1_ M 41NN 0N
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>comment let the 2nd data bit be 1
>for din.in:1 o
>cye 3
14.4] inter:0011 addr:1000 cs.in:0 datal:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:000 tpladd:0110 tplain:0000010 tplacut:0000
shift1:1110000110 shift2:01X00111 rpladd:0111 rplain:11000
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| rplaocut:00000 shift3:X00000X shift4:X000X(XX11 datal:1100100
15.4| inter:0011 addr:1000 cs.in:0 datal:11110000 tpcon:000 rpcon:000
tfcon:000 rfcon:000 tpladd:0111 tplain:0000010 tplacut:0000
shift1:1110000110 shift2:01X00111 rpladd:0101 rplain:11000
rplaout: 10000 shift3:X000XXXXX shift4:X000XXXX11 data2:1100100
16.4] inter:0011 addr;1000 cs.in:0 datal:11110000 tpcon:000 rpcon:000
tfcon: 000 rfcon:000 tpladd: 1000 tplain:0000010 tplaout:1000
shift1:1100001100 shift2:1X001111 rpladd:0110 rplain:11000
rplaout:00000 shift3:X2C000XX shift4:XXXXXXX101 data2:1100100

>
>comment end of sample run
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