REST
A Leaf Cell Design System

R. C. Mosteller

Computer Science Department
California Institute of Technology

4317:TR:81

CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

REST
A LEAF CELL DESIGN SYSTEM

by

R.C. Mosteller

Silicon Structures Project
Technical Report 4317

Submitted in Partial Fulfillment
of the Requirements for the Degree
of Master of Science
December 1981

This project was sponsored by the Silicon Structures Project.
Copyright © 1981 by California Institute of Technology.

Acknowledgements

The initial development of ideas presented herein came from the
meetings of the Geometry Group headed by Ivan Sutherland and
conversations with John Williams, The Geometry Group
participants were Ivan Sutherland, Ed McGrath, Don Oestreicher,
Eric Barton, Telle Whitney and myself. The group’s main intent
was to explore polygon geometry and desgin rules checking. 1
would like to express my thanks to all the participants for their

help in this project.

I would like to give thanks to John Gray for his patience,

assistance and inspiration for this project.

I would like to thank my advisor Jim Kajiya.

~ii-

Abstract
‘This thesis describes a leaf cell design system, REST, Richard's Editor
for Sticks. REST is intended to be used for the preparation of the lowest
level cells in an integrated circuit design. A stick notation is used in the
editing process. Given a structured design methodology any design task

can be separated into two parts: 1) leaf cell design and 2) compasition cell

design. This tool addresses the lirst of these tasks, although it may also
be 'USed for general manipulation of stick diagrams., A table driven
compaction algorithm is presented. This graph based algorithm uses a
weighted affinity factor to reduce total polysilicon and diffusion wire
length. A suite of utilities provide funétions such as file interface,
physical mapping, annotation, etc. consistent with a set of design rules.
The system has been implemented in Simula on a DEC 20 computer, and
works in conjunction with a limited functional diagramming system. -
The design rules, models and stick interpretation are table driven and can
be changed for various technologies. Currently REST is Abeing used for
NMOS technology.l A community of users have used the REST system to
prepare a nurﬂber of designs resulting in a substantial reduction of design
time. In addition, the system is currently being used at a major computer

manufacturer in conjunction with a VLSI design course.

~iii-

Table of Contents
1. INTRODUCTION

1.1 Structured Design
1.2 Methodology and Design Process Flow

2. OBJECTIVES IN LEAF CELL DESIGN

2.1 Preamble
2.2 Objectives

3. THE MODELS

3.1 General

3.2 Abstract Model
3.2.1 Wire Model
3.2.2 Transistors Model
3.2.3 Contacts Model
3.2.4 Cell Model

3.3 Internal Model

4. DISTRIBUTION OF TASKS

4.1 General
4.2 Stick Diagram Preparation
4.3 Stick Diagram Processing

5. SOFTWARE ARCHITECTURE
6. ALGORITHMS

6.1 Analyzing
6.2 Compaction
6.3 Expansion

7. RESULTS AND CONCLUSIONS

7.1 Example
7.2 Manual Vs Automatic
7.3 Conclusions

-jiv-

I. RE S T Users Guide 62

1.1 GENERAL 62
1.2 The Environment -- Hardware and Software 62
1.3 FEATURES ' ' 63
1.4 STICKS INTERPRETATION 66
1.5 FUNCTIONS . 67
1.6 AN EXAMPLE - GETTING STARTED 68

1.7 REST INPUT COMMANDS _ 74

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-8:
Figure 3-7:
Figure 3-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figurel-1:
Figurel-2:
Figure I-3:
Figure I-4:
Figure I-5:
Figure I-6:
Figure I-7:
Figure I-8:
Figure 1-9:

-y-

List of Figures
Moore's Law
Cell Model
Composition of Two Cells
Separated Hierarchy
Design System
Stick Drawing of a Shift Register
The Wire
Wire Model
Enhancement Transistor
Depletion Transistor
Pullup Transistor
Metal Contacts
Polysilicon to Diffusion Contacts
Abstract Models
Rest System Block Diagram
Hardware Organization
Simple Sketch Input
Interpreted Cell
Compacted Cell
Line Jogging
Affinity Factor
Loops
Expanded Cell
Software Blocks
Transistor Model Recognition
Compaction Graph
Branch Model
Design Rule Box Shadowing
Box Covering
Two Bus Register Cell
Recognized Two Bus Register Cell
Compacted Two Bus Register Cell
Several Compaction Two Bus Register Cell
Several Compaction with Jogs Two Bus Register Cell
Self Timed Adder Cell
Two Bus Register Cell
Picture of the Hardware
Initial Input for Box Editor
Intrepreted Sticks Drawing
Compacted Sticks Drawing
Sticks Models
- Sticks Input - from Box Editor
Sticks After Interpretation
Sticks Physical Representation
Compacted Sticks Physical Representation

OND QN =

Y
o]

29

54
56
57
58
63
641
65
65
66
69
70
71
T2

-Vi-

Figure I-10: Compacted Sticks
Figure I-11: Annotated Sticks Physical Representation

73
74

INTRODUCTION . PAGE 1

1. INTRODUCTION

We are now in a new revolution, the microelectronic revolution{Noyce 773. This
microelectronic revolution has provided the means to put 50,000 or more circuit
eleménts on a single chip. As each year goes by, semiconductor manufacturers are able
_ to put an ever increasing number of circuit elements on a single chip as shown by
Moore's law in figure 1-1. With the increase in circuit complexity of a VLSI chip, the
design time also increases at a rapid rate[Moore 79]. In order to cope with the larger

complexity and longer design time, a structured design methodology should be adopted.

-
16M S 1008 -
" w
g 2 P yd
i : P
Z i / ° e | P
(&] ! o yd
_oeuK L A S = e
(] o — "/’
¢ V E wl -~
_g 9K L P Py lg //
(] s -
& 255 G- e
Q. I / U ; /
E @«
S 2
6 L / =
O
1] L] - %:: 1 1]] L - J
1968 1965 197¢ 1975 1988 1985 § 1968 1965 1978 1975 1968 1985
Year & Year

*Moore’s Law”
Figure i1-1: Moore's Law

Structured integrated circuit design is similar to the structured design of
programs[Gray 80]. The design is partitioned into small manageable pieces called cells
which are similar to procedures in programming languages. Each cell is composed of

other cells or primitive elements which form a hierarchy of cells akin to the nesting of

procedures, The number of elementcin a cell is k

or minus two, corresponding to the average person's short term memory
limitation[Miller 56].

INTRODUCTION FAGE 2

In siructured programming i1 1s desirable to have no global variables and likewise in
structured design global wires are undesirable[Wulf 73]. A global wire is one thal
runs across several cells and is not part of their definition. That is, wires are not laid on
tap of cells, they must be part of the cell definition. Connection to the cells occur at
the perimeter of the cell. This structured approach promotes a regular structure with a
consistent wiring strategy. This design style for VLSI systems is presented in Mead and
Conway [MEAD 80].

- e
X vdd = 2 Veid)ﬂ
o Cell ™
X Gnd Gnd X

L Poris

Figure 1-2: Cell Model

There are varlous shapes for tiling a VLSI chip. Of these shapes there iz at least some
understanding of packing four sided polygons. A four sided polygon provides four
interfaces for connecting cells, The cell model used in this philosophy is a rectangle as
shown in figure 1-2. All geomelrical data is on the interior of the rectangle and
considered to be the property of the cell. The cell contains the structural and physical
data to realize the cell. The ports or connectors of the cell are the interface to the
outside world., Each port defines a position on the perimeter of the cell where a

connection i= to be accomplizshed, These ports protrude from the boundary of the cell
like fingers.

The spatial composition of two cells is performed by placing the cells side by side
where the ports of each cell correspond by layer and relative location. Thus, cells are
connected by abutment. However, there must be a one-to-one correspondence of ports

INTRODUCTION ‘ PAGE 2

In structured programming it is desirable to have no global variables and likewise in
structured design global wires are undesirable{Wuilf 73]. A global wire is one that
runs across several cells and is not part of their definition. That is, wires are not laid on
top of cells, they must be part of the cell definition. Connection to the cells occur at
the perimeter of the cell. This structured approach promotes a regular structure with a
consistent wiring strategy. This design style for VLSI systems is presented in Mead and
Conway [MEAD 80].

[S] I 3%]
cil Clk
E\ Vdd Vdd)f__l
ggx Data C e }] Data ¥}
E(6nd ond X|
\ltl \cllk
L———JA [-v-——-l

4
L— Ports

Figure 1-2: Cell Model

There are various shapes for tiling a VLSI chip. Of these shapes there is at least some
. understanding of packing four sided polygons. A four sided polygon provides four
interfaces for connecting cells. The cell model used in this philasaphy is a rectangle as
shown in figure 1-2. All geometrical data is on the interior of the rectangle and
considered to be the property of the cell. The cell contains the structural and physical
data to realize the cell. The ports or connectors of the cell are the interface to the
outside world. Each port defines a position on the perimeter of the cell where a
connection is to be accomplished. These ports protrude from the boundary of the cell

like fingers.

The spatial composition of two cells is performed by placing the cells side by side
where the ports of each cell correspond by layer and relative location. Thus, cells are

connected by abutment. However, there must be a one-to-one correspondence of ports

INTRODUCTION PAGE 3

on the abutment edge. This abutment ensures that there is no global wiring by only
allowing connections to be accomplished by abutment. The abutment of cells is applied
rigorously throughout the design of a chip.

When the connectors of two abuting cells do not line up properly the cells may
either be streiched or a new wiring cell may be inserted between the two cells as
shown in figure 1-3. A cell may be streiched along the X or Y axis independently at
any port as shown by Rowson[Rowson 80]. This abllity Yor a cell 1o stretch can be used

in the composition process. A wiring cell may be used in lien of stretching, where
desirable.

A o8
:;\ - Stretched
A b 1% B ..L

Uriqtnol' A

Figure 1-3: Composition of Twa Cells

In Figure 1-3 two cells are shown in the composition process. The choice of
whether to sireich or 1o route can either be directed fTom the user or decided by ihe

INTRODUCTION PAGE 3

on the abutment edge. This abutment ensures that there is no global wiring by only
allowing connections to be accomplished by abutment. The abutment of cells is applied

rigorously throughout ‘the design of a chip.

When the connectors of two abuting cells do not line up properly the cells may
either be stretched or a new wiring cell may be inserted between the two cells as
shown in figure 1-3. A cell may be stretched along the X or Y axis independently at
any port as shown by Rowson[Rowson 80]. This ability for a cell to stretch can be used

in the composition process. A wiring cell may be used in lieun of stretching, where

‘

desirable.
A A4
A3 A3
Q f2py A2 B
AL Al
AY O L .
NI Stretched
A E~
™ A3
H A2 f— A A2 B A4
Al f——w1u a1
O] Q AsS :_i a4
. —g] A3
!’Tg]ﬂa A2 B A p2 B
Al Pigm

Routed

Figure 1-3: Composition of Twao Cells

In Figure 1-3 two cells are shown in the composition process. The choice of

whether to stretch or to route can either be directed from the user or decided by the

INTRODUCTION FAGE 4

composition tool. An important point about the composition of two cells is that the

only necessary information to specify the composition is the sides of abutment[Rowson
80]. The interconnection relationship between the eells is defined with this minimal

amount of data. However, there must be a one-to-one mapping of the ports with the
two cells.

There will be topological problems for the designer to solve using this model. That is
the wiring strategy must be defined during the floor planning phase of the chip design.

Not as an after-thought., In general this model insures that the wiring strategy is
defined in the planning stages of the design,

1.1 Structured Design

Separated Hierarchy

Composltion Cells

RN

Leaf Cells

Figure 1-4: Separated Hierarchy

The cells of a structured design are partitioned into two types: 1) composition cells

and Z) leafl cells. A composition cell contains either other composition cells or leaf

INTRODUCTION ’ PAGE 4

composition tool. An important point about the composition of two cells is that the
.only necessary information to specify the composition is ihe sides of abutment{Rowson
80]. The interconnection relationship between the cells is defined with this minimal
amount of data. However, there must be a one-to-one mapping of the po‘rts with the

two cells,

There will be topological problems for the designer to solve using this model. That is
the wiring strategy must be defined during the floor planning phase of the chip design.

Not as an after-thought. In general this model insures that the wiring strategy is

defined in the planning stages of the design.

1.1 Structured Design
Separated Hierarchy

ComposrUQn'CeHs

L eaf Cells

Figure 1-4: Separated Hierarchy

The cells of a structured design are partitioned into two types: 1) composition cells

and 2) leaf cells. A composition cell contains either other composition cells or leaf

INTRODUCTION ‘ : . PAGE 5

cells, while a leaf cell contains only wiring and primitive circuit elements. This
: partitioning of cell types is called a separated hierarchy [Rowson 80]. A graphical
representation of a separated hierarchy is shown in figuré 1-4. Note that the leaf cells
are at the leaves of the tree while the combosition cells form the branches. Each cell,
‘being either a composition cell or a leaf cell, contains a small number of elements that
~are easily grasped by a designer. This is only true if the designer has done his
hpmeWork on his cell designs by keeping the number of elements within the cells
small. It then follows that a designer can comfortably work on a single cell in the
hierarchy of his chip.

Following the above principles a Separated hierarchy allows large designs to be
managed. That is, a designer need only consider his current cell, the cells' interface
ports and its interface to other cells which the cell instances1 and not all the cells in

the design. This also provides the ability to partition the design among many designers;

1.2 Methodology and Design Process Flow

It has been ‘shown by various people that transistors are cheap whereas wiring is
expensive[Sutherland 77, MEAD 80, Heller 79]. The rough size estimate of a VLSI chip
can be calculated from the wires only. Initial design considerations should include the
wiring strategy. This philosophy promotes regularity in design with consideration for
wiring strategy.

Any design process includes both the initial design of the system followed by design'
refinement. Each cell of the design may be redesigned several times before completion.
Consider floor planniﬁg. In the design process several different floor plans will be
devised before a f inal floor plan is reached. Each plan would probably be simulated on

a functional simulator and evaluated in terms of area.

The design philosophy and design tools should be amenable to changes in the design.

1An instance is a call or reference to a cell which is used in this cell.

'

INTRODUCTION : PAGE G

The costz of each change should be proportional to the degree of the change. An
example is a large chip composed of many leaf and composition cells. A change occurs
to a leaf cell which adds additional logic to the cell causing an increase in its size but
- does not increase either the number or the relationship of its ports. The update layout
ﬁroeess should only require an execution of the assembler without making changes to
the actual composition instructions. Although if a change was desired td the floor plan

the composition instructions would need to be changed.

'_I‘here are therefore two major divisions in a computer aided design system
consistent with this design philosophy: a leaf cell design system, and a ‘composition tool
for constructing the VLSI chip from leaf cells and composition cells. This thesis in part
describes an example of the former, REST. This view of a design system yields figure
1-5. This system is a simple design system with the interfaces between parts being A
standard text files. These text files provide the intermediate form between the various
pieces of the system. With this system, it is not necessary nor desirable to have an

exotic data base system. What is reqguired is a flexible file system.

The essential task in leaf cell design is to capture both the topology and the layout
for each cell. This is best accomplished by a sticks notation devised by Williams
[Williams 77] and described in Mead and Conway [MEAD 80]. The REST system
provides the means to process the stick notation and tranﬁform this notation to an

abstract stick representation, compact the representation, and transform to a layout.

The interface from REST to the other parts of the system is through a simple disk
file using a standard form called the Sticks Standard[Trimberger 80]. This standard
provides a clean intefface between the REST system and any composition tool. The
testing of the leaf cells is done through a circuit simulator. This simulator accepts the

' Sticks Standard.

The task of assembling the chip is performed by a composition tool. The input to the

composition tool is both the leaf cells from REST and composition cells which define.

2The cost being the amount of designer effect plus the computer time to a lesser
degree,

INTRODUCTION PAGE 7
Circult
REST Simulator

Leaf Cells 8 @ 8 Sticks Standard

N

! |
Ej @ 8 Composltion
Compostion Cells TOO]
| Functional
Simulator

'
Design @CIF [Semse

Figure 1-5: Design System

the spatial positioning, structure and behavioral data of the design. The description of
the composition is best acmmplished in a textual manner with a composition language
such as in the SPAM Language[Segal 80]. The main point here is that the spatial
positioning, structural and behavioral data is captured through a textual language in a

simple manner at one place in the design description.

The textual description of composition in SPAM def ines the abutting relationship in
a hierarchical manner. The description states which sides of each individual cell abut,

The actual interconnection of the port is specified indirectly by a one-to-one mapping

INTRODUCTION : ‘ | PAGE 7
Circutt

REST Simulator
Leaf Cells @ 8 8 Sticks Standard
\£ N

8 8 8 Composition
Compostion Cells TOO‘
Funct onal
Stmulator

0N
Design @CIF [Docuefts CPED

Figure 1-5: Design System

the spatial positioning, structure and behavioral data of the design. The description of
the composition is best accomplished in a textual manner with a composition language
such as in the SPAM Language[Segal 80]. The main point here is that the spatial
positioning, structural and behavioral data is captured through a textual language in a

simple manner at one place in the design description.

The textual description of composition in SPAM defines the abutting relationship in
a hierarchical manner. The description states which sides of each individual cell abut.

The actual interconnection of the port is specified indirectly by a one-to-one mapping

INTRODUCTION : PAGE 8

along the side of abutment. The advantage of this is that it is not necessary to specify
each individual connection, but only just the abuting edges. A description of a
complete chip in SPAM takes very little code. In addition, changes in the design can

readily be accbmplished with little pain. ‘

The actual composition or tiling of the VLSI chip is perfofmed by aligning the
pitcheé of the cells or by adding wiring cells. Alignment is performed by stretching a
cell to fit its environment. The stretching is performed by the composition tool since
detailed knowledge of the geometry is not necessary in the stret;hing process.
Compaction could also be used in the alignment process by adding constraints to the

- leaf cells and using REST to process the cell.

The geometry created in this manner would not need to be design rule checked,
although design rule checking would be necessary for programv verification. The
reason for this is that leaf cells are maintained error-free by the nature of the design

process. The composition process only stretches or adds correct routing cells. This

system and design philosophy follows the principle of correctness by construction.

The functional debugging of a design would be accomplished with a system like the
SPAM system[Segal 80]. In the SPAM system the composition cells also contain the
behavioral description in addition to spatial positioning information and st_ructural
data. SPAM has a multi-valued functional simulator capable of simulating at any level

of the hierarchy.

The output of the composition tool is a design description in text format known as
the Caltech Intermediate Form (CIF) [MEAD 80, Sproull 79]. It is also possible to"
request various plots and some additional documentation. CIF can be processed by

various silicon foundry tools to produce mask geometry.

OBJECTIVES IN LEAF CELL DESIGN FAGE 9

2. OBJECTIVES IN LEAF CELL DESIGN

2.1 Preamble

Leal cell design involves capturing both the topology and layout. This can be
accomplished by using a sticks notation devised by Williams[William= 77]. A stick
diagram is a stylized symbolic layout. This type of notation is between a circuit
diagram and an actual layout. It contains all the information in a circuit diagram and
relative physical structure of a layout. An example of a shift register cell is shown in

figure 2-1. Thin colored lines or wires are used to represent interconnection among
various components and ports. Each color represents a wiring mask level.

This view of a one-to-one mapping of stick colors to mask levels is the case for the
simple problem as in NMOS. For the complex problem there may be a one-to-many
mapping as in the case of CMOS.

Clkin
Vdd T ~ £ Vdd
}
4
In ==ny Dut
Gnd - Gnd
— &
Cleout

Shift Haqlster

Figure 2-1: Stick Drawing of a Shift Register

In figure 2-1 the blue wire represenis metal, the red wire represenis polyszilicon,

OBJECTIVES IN LEAF CELL DESIGN ' PAGE 9

2. OBJECTIVES IN LEAF CELL DESIGN

2.1 Preamble _

Leaf cell design involves capturing both the topology and layout. This can be
accomplished by using a sticks notation devised by Williams[Williams 77]. A stick
diagram is a stylized symbolic layout. This type of notation is between a circuit
diagram and an actual .layout. It contains all the information in a circuit diagram and
relative physical structure of a layout. An example of a shift register cell is shown in

figure 2-1. Thin colored lines or wires are used to represent interconnection among

various components and ports. Each color represents a wiring mask level.

This view of a one-to-one mapping of stick colors to mask levels is the case for the
simple problem as in NMOS. For the complex problem there may be a one-to-many

mapping as in the case of CMOS.

Clkn

)

Vdd 1 Ydd

.
t
o

1
L

1 Gnd

od

[H

Gnd

s

fon]

et

Clkout
Shift Reg!ster

Figure 2-1: Stick Drawing of a Shift Register

In figure 2-1 the blue wire represents metal, the red wire represents polysilicon,

OBJECTIVES IN LEAF CELL DESIGN ‘ PAGE 10

and the green wire represents diffusion. The important point about the sticks drawing
is that the various layers are represented by colored lines. These colors provide an
easily distinguishable view of mask layer without resorting to dashed lines or other

methods. It is important to have the means to use colors in the sticks notation.

‘A designer he_ed ohly worry about the circuit description and the topology of a cell
in the sticks drawing. The actual physical placement of the wires and components will
be effected by the sticks processor, The designer just sketches his circuit on a
graphical device. The distances between lines in the sketch is arbitrary. The order of
the lines is important. The sticks processor eliminates the tedium of design rules with

sophisticated spacing algorithms.

A designer'speclrxes transistors, contacts and connectors symbolically. For example,
an NMOS enhancement transistor is specified by a red line crossing a green. A contact is
spocified by a gray box over the colored lines for the type of contact. Only a minimal

aniount of data is needed to create a component.

Various people have developed methods for translating a symbolic representation to
mask layout. Williams[Wliliams 80], Dunlop[Dunlop 79], and Hsueh[Hsueh 80] all
use graph based methods for the purpose of compaction. These systems process full
chips at all levels of the hierarchy, one level at a time. The stick drawing system is
used for all cells in the hierarchy. At the higher level cells the system is used to solve
the wiring problem. Buses and multi-conductors must be connected as individuals.

This is an inappropriate use of sticks.

An interesting problem is automatic jog insertion. A jog is placed in a straight wire
so that the wirc is allowed to wrap around a piece of geometry. Jogs cost area. There
are two bends in a jog wire which take up additional area. When jogs are used it is
possible that the cell would be larger than one without jogs. In addition, introducing

Jogs in a symmetrical cell could destroy the symmetry and increase the size of the cell.

Although Hsueh uses macrocells for components ln ithe drawing process their role is
not clearly defined. The stretching of cells to fit an environment is done graphically
by the users after compaction. This could be a laborious process if the cells were

numerous or the chip was large. Each instance of an individual generic cell would

OBJECTIVES IN LEAF CELL DESIGN PAGE 11

need to be stretched to its environment. This human interaction would be
prohibitively expensive. In addition, if changes are accomplished to the chip the
instances would’ also require human interaction. Changes to the chip should not
require additional stretching to each instance. This is the responsibility of the

composition tool.

Buchanan [Buchanan 80] pointed out that it is often desirable for the designer to
have intimate control over some cells in the design. Most stick systems do not allow
this type of control,' and if they did it would require' bypassing the geometry
tranéformation routines. Buchanan states that the main problem with symbolic layout
systems is "to provide the designer with sufficient flexibility without compromising

the virtue of the design method".

2.2 Objectives

In a structured design styie any design requires the generation of a small number of
leaf cells, designed with more than a single constraint in mind. This tool is aimed at
this class of cells. There are other design styles where cells are designed 0’nce and used
in various chip design such as memories, output pads, input p?d, and tristate pads.
" These cells are generally hand laid out with extreme care, desi_gn rule checked

extensively and physically tested.

The editing process of the stick drawing‘should have few commands which are
powerful and easy to learn. A VLSI designer who is familiar with graphics should need
a only few minutes.of instruction to start designing cells in REST. It should not be
necessary for the designer to spend hours poring over extensive manuals but only a
short time reading a simple users guide. Therefore the graphic editor should be a

simple drawing system.

In any interactive environment and especially in graphics the response should not
exceed approximately 20 seconds. This is because the attention of the designer would
be taken from accomplishing the design to waiting for the system to respond.

Therefore a fast response is necessary.

The compaction routines should have a response time not greater then a couple of

OBJECTIVES IN LEAF CELL DESIGN . PAGE 12

minutes, In addition there should be no hidden actions, that is the routines should do

exactly what the user Wouid expect.

THE MODELS . ‘ PAGE 13

3. THE MODELS

3.1 General
The models in a system directly relate to their usability and extensibility. REST uses
two types of models. The first are the abstractions for the sticks, layout, and design

rules. The second are REST's internal models.

The REST system follows the principle of isomorphism. The relationship between
the various abstract models and the internal representation is isomorphic. This allows
fast switching from stick editing to algorithm manipulation. The abstract stick
representation is also isomorphic to the physical representation. This provides a

consistent transformation from sticks representation to physical representation.

The abstract models in REST are currently set up for NMOS. The models are
essentially table driven so that they can be changed for various processes. There are
two parts to the tables. The first are a set of classes that define the primitive elements.
The elements for NMOS are general contacts, buried contacts, butting contacts,
enhancement and depletion transistors, and pullup devices. The second is the tables of
valid wire layer, wire wides, affinity weights, and layer separations. For minor
processes variations the second table may be modified. To change to another

technology both sets of tables would need modification.

REST supports both butting and buried contact. The choice between the two is user
control. REST allows switching from butting to buried on an existing cell where the

design constraints are managed by REST.

The specific definition of the NMOS models used in REST are in "NMOS Sticks
Standard Components'[Kahle 81]. The unit of measure used throughout REST and this
document is lambda based on the Mead and Conway design rules [MEAD 80]. This unit

allows the cells to be scaled for various process lines.

3.2 Abstract Model
There are four types of abstract models. The first is the stick model which the

" designer uses to sketch his circuit. The second is the displayed stick representation.

THE MODELS : PAGE 14

The third is the physical model for the final layout and proof plots. Each model is

isomorphic to one another. The fourth is the design rules model for insuring a

violation-free cell.

Each model is composed of either boxes or lines. These elements are restricted to
being orthogonal., This restriction simplifies the compaction processes. Although this.

is a limitation it is not severe.

The input stick model is the representation that the user presents to the program to
create a component. These models are sketched. The designer need only give a rough
approximation of the model. The program will apply a pattern recognition routine to

perceive the component.

The design rule model represents pseudo geometry that will be used in the
compaction process. The pieces of the model consist of boxes that represent various
mask layers or combinations of layers. Each box represents a fundamental design rule,

They ‘can easily be changed for various process lines. There is a table that records the

set of minimum clearances for each box type.

In addition to representing a layer, the design rules box contains a unique identifier
that specifies the net for the box. This is used in the compaction process ta define the

application of a specific rule.

The models are shown in their normal orientation. They can be rotated in 90 degree

increments 1o point north, south, east, and west,

| 3.2.1 Wire Model
The basic building block in REST is the wire. A wire represents a connection
between two components on a single layer. The wires' width is the default if left
unspecified by the user. Buchanan[Buchanan 80] has shown two alternative methods
for physical realization of a wire shown in figure 3-1. The first implementation as
shown is the curtailed wire which is expanded on both sides of the wires path:3 by

3l"ath is a set of points(x,y) that define a start point, intermediate points, and an end
point. '

THE MODELS ' ' ' PAGE 15

one-half its width and not over its endpoints. The second, the inflated wiie is inflated
from its path by omne-half its wire width. This wire is the stahdard Caltech
Intermediate Form(CIF)[MEAD 80, Sproull 79]. Problems with both types have been
shown. The curtailed wire leaves holes at the endpoints as shown while the inflated
wire overlaps at a tee connection. This overlap does not occur on standard width wires.
The problem occurs only for wires with none standard width, that is, wide wires. In

general either solution will cause problems.

N
VAN

—_— <

Widih Extenslion

Figure 3~2: Wire Model

' The physical realization for a wire in REST is shown in figure 3-2. The wire is
inflated pérpendicular to its paith by the wire width. The ends are extended by the
wire extension, The éxtension for wires 15 the default standard width. The problems
caused by the two prior realization will not occur with this definition. Since the wire
is only extended by it's standard width, the overlap on‘the tee connection will not

pccur.

The advantage of this model is that the path can be used for the definition of the
wire with proper connection to other wires via the intersections of the end-points of
the two paths defining the wires without worrying about wire widths. This

definition will produce proper wires that. will hold with design rules and with bloats

THE MODELS PAGE 16

X

X

Curtatled | Inflated

e | X

Curtalled Inflated

Figure 3-1: The Wire

and shri‘nks4.

4Bloats and shrinks are geometric transformations that are applied to the layout or
ad justment to process variations.

THE MODELS PAGE 17

3.2.2 Transistors Model

The transistors are created by crossing two different colors. For the enhancement
transislor the colors are red and green which represent polysilicon and diffusion
respectively. Im figure 3-3 the four models are shown. The enhancement transistor
has a length and width associated with it. The length and width control the channel
size. The models control the default sizes. The defaults sizes may be defined by the
user, The normal defaults for the enhancement transistor is a length of two and a
width of two. There are four connection poinis to the enhancement transistor labeled

gl. g2 for polysilicon and source and drain for diffusion. These locations are in

reference to the center point and extend with the length and width.

J.

RE—— __E_. .

Stick Inpul Stick Plot
o
-
Dratn b4 1 X =1

é ol lx Klﬁz Comeclion Faml

— | Hidih

Phystcal Destgn Rules Model

Enhancement Transistor

Figure 3-3: Enhancement Transistor

THE MODELS PAGE 17

3.2.2 Transistors Model

The transistors are created by crossing two different colors. For the enhancement
transistor the colors are red and green which represent polysilicon and diffusion
respectively, In figure 3-3 the four models are shown. The enhancement transistor
has a length and width associated with it, The length and width control the channel
size. The models control the default sizes. The defaults sizes may be defined by the
user. The normal defaults for the enhancement transistor is a length of two and a
width of two. There are four connection points to the enhancement transistor labeled

£1, g2 for polysilicon and source and drain for diffusion. These locations are in

reference to the center point and extend with the length and width.

T

— 1 |

Stick Input Sttck Plot

™ X Denotes I

Drain P

2 Gli B% Xl . Connaction Foml | I]

Seurea X I

-_—> < Hrdth

\Y

Phystcal . Design Rules Model

Enhancement Transistor

Figure 3-3: Enhancement Transistor

THE MODELS FAGE 18

The design rules model for the enhancement transistor has two diffusion boxes
above and below the gate as shown in figure 3-3. Each diffusion box is cnnnectp:fl to
the appropriate net. The polysilicon is a single box where the length is the defined
length for the model and the width is the defined width plus the two lambda overlaps

on either side of the device. There is a center box of type gate which represenis the
active area,

r
' —tr i
| -
Sitck Input Sitck Plot
[
_i
— — .E._l X Danotes
Souros il
— *— Hrdih
"‘_-‘H
Physteal ' Dnllgn Rules Model

Depletion Traonsistor

Figure 3-4: Nleplation Tranzistor

The representation for the depletion transistor is the same as the enhancement

except for the addition of the implant. The depletion transistor is shown in figure 3-4.

The pullup or resistive type device is shown in figure 3-5. The pullup device is
created by placing a red line upon a green with a contact box at one end, and a yellow

THE MODELS . PAGE 18

The design rules mbdel for the enhancement transistorlhas two diffusion boxes
ab‘ové and belbw the ga{e as shown in figure 3-3. Each diffusion box is connectéd to
the appropriate net. The polysilicon is a single box where the length is the defined
length for the model and the width is the defined width plus the two lambda overlaps

‘on either side of the device, There is a center box of type gate which represents the

active area.

R
—

| — 0

~ Strck Input Sttok Plot
(RN

i

Sratn < X Denotes | -

é 61 |>< *ea Connection Point l l

Sourac S

T Length L
—> € Hdth
_.«V\
- Physteal ' Design Rules Model

Depletion Transistor

Figure 3-4: Depletion Transistor

The representation for the depletion transistor is the same as the enhancement

except for the addition of the implant. The depletion transistor is shown in figure 3-4.

The pullup or resistive type device is shown in ‘ﬁgnre 3-5. The pullup device is

created by placing a red line upon a green with a contact box at one end, and a yellow

THE MODELS FPAGE 19

bl
1
b |

Strek Imput Stick Plot

I

Physteal Design Fules Model
Fipgure 3-5: Pullup Transistor

box intersecting the red and green lines. The pullup device has a length and width
associated with it. Az with the prior transisiors the user may alter the defaults, The
normal defaults are a length of 8 and a width of 2. This default corresponds to a
normal inverter with a ratio of 4 to 1. There are four connection points to the pullup
device label dsource and drain for diffusion, psource for polysilicon, and msource for

metal. These locations are in reference to the center point and extend with the length
and width,

The design rules model consists of five boxes: two diffusion boxes (one at the bottom

and the other at the top), a gate box which is the active area, a polysilicon box, and a
metal box,

3.2.3 Contacts Model
The contacts are shown in figures 3-6 and 3-7. The stick model for the contacts are
the same. That is, two colored lines covered by a box. The polysilicon/metal contact

THE MODELS PAGE 19

[
i

Stick Input Stick Plot
=
Oron %' __L
x Denotes -
Prowacs Cennoaiton Point) U
Msource ias .
Disurce j: LLangih
— F-———mdth
Phystcal Design Rules Model

Figure 3-5: Pullup Transistor

box intersecting the red and green lines. The pullup device has a length and width
assocliated with it., As with the priur transistors ithe user may alter the defaults. The
normal defaults are a length of 8 and a width of 2. This default corresponds to a
normal inverter with a ratio of 4 to 1. There are four connection points to the pullup

device label dsource and drain for diffusion, psource for polysilicon, and msource for

metal. These locations are in reference to the center point and extend with the length
and width.

The design rules model consists of five boxes: two diffusion boxes (one at the bottom
apd the other at the top), a gate box which is the active area, a polysilicon box, and a

metal box.

3.2.3 Contacts Model
The contacts are shown in figures 3-6 and 3-7. The stick model for the contacts are

the same. That is, two coloxed lines covered by a box. The polysilicon/metal contact

THE MODELS PAGE 20

and the diffusion/metal contact are essentially the same. The width and length define
the size of the contact, The cut area Is maintained constant. For larger widths and
lengih, the cut Is kept constant size and replicated modulo the length and width., The

connection point is the center of the contact.

Stiek Input Stick Plot
Lengith
—{g] < f
— | hatn
Physical Design Rule

Polystiicon/Metal Contact

Stick Input Strek Plot
’«- ™
Langth
»'.—_:ig| :t_E — =
| |—piratn
Physical Dnu'l'qn Rula

Dif fuston/Metal Contact

Figure 3-6: Metal Contacts

THE MODELS ' PAGE 20

and the diffusion/metal contact are essentially the same. The width and length define
the size of the contact. The cut area is maintained constant. For larger widths and
length, the cut is kept constant size and replicated modulo the length and width. The
connection point is the center of the contact.

Stick Input Stick Plot
C VA v\
Length
. :—E $ Ty
f Jf [-
—| |—wath .
Phystcal : Design Rule

Polystlicon/Metal Contact

—

Stick Input Stick Plot

A A
Length
3] :_L__- 1 I
= 1= atn
Phystoal . Dastgn Rule

Diffuston/Metal Contact

Figure 3-6: Metal Contaéts

THE MODELS FAGE 21

Stick Input Stick Plot
vl
-1 B4l
X Denctes
Ll mraw
e [Commection point
—> e Hth
S
Fhystcal Destgn Rule
Butting Contact
Strek Input Stick Plot
A
X Denotes]
}(Connsatlon pomi LIE
—>
Wi‘—“m
Physical Destgn Rule

Buried Contact
Figure 3-7: Polysilicon to Diffusion Contacts

The butting contact is shown in figure 3-7. The butting only has a width associated
with it. The connection points are labeled m for metal, p for polysilicon, and d for

diffusion.

THE MODELS PAGE 21

Sttek Input ' Sttck Plot
™4
Pl P
\ >< Denotes
M a s
G T/ Connectton pomnt
—> [Hidth
Phystcal Design Rule

Butting Contact

-

Sttek Input Stick Plot

24

>< Denotes » %
Connection point : @ !

—> «—Hidth

eV

Physical Design Rule

Burted Contact
Figure 3-7: Polysilicon to Diffusion Contacts

The butting contact is shown in figure 3-7. The butting only has a width associated

with it, The connection points are labeled m for metal, p for polysilicon, and d for

diffusion.

THE MODELS PAGE 22

3.2.1 Cell Model

The cell is modeled as rectangle with the ports as fingers extending outside of the
ractang]eﬁ. The dimension of the rectangie called the abuting box is defined so that
two cells can be aligned on the edges of the boxes without a design rules error,
provided the ports are compatible. This spacing is maintained by the compactor.

3.3 Internal Model

The internal models are the data representation for the abstract models. The most
basic type is the joint as shown in figure 3-8. A joint s a location with a color. The
Joint represents a point on the path of a wire. The data attributes of a point are the
coordinate x.,y, the color, the name, and four pointers. The pointers refer to the top,
bottom, left and right segments. All but one of the points of a joint may be nil.

Top
B R L el
foclor, width)
Botlom
Dram

Joint

©
.1 of

O

Source .

Enhancement Troneistor

Figure 3-8: Abstract Models

A segment is a fragment of a wire where a bend may oceur. Each segment carries its

ssee figure 1-2 in section 1 page 2 for a graphic representation of the cell model.

"THE MODELS PAGE 22

3.2.4 Cell Model .

The cell is modeléd as rectangle with the ports as fingers extending outside of the
rectangles. The dimension of the rectangle called the abuting box is defined so that
two cells can be aligned on the edges of the boxes without a design rules error,

provided the ports are compatible. This spacing is maintained by the compactor.

3.3 Internal Model

The internal models are the data representation for the abStract models. The maost
basic type is the joint as shown in figure 3-8. A joint is a location with a color. The
Joint represents a point on the path of a wire. The data attributes of a point are the
coordinate x,y, the color, the name, and four pointers. The pointers refer to the top,

bottom, left and right segments. All but one of the points of a joint may be nil.

Top
Left v——é——» Right Jomtl Segment Jomth

Ccolor, widlh)
Bottom
Goyscolorname)
JOInt . Dratn
©
&1 @ {J)| ez
—
Source
Enhancement Transistor
Figure 3-8: Abstract Models
A cmcterromusd o o Fanctremrmerd 8 o warlen wash nem o 1..“..:. s vwr v Tarnh smtrmant coawrdos $¢~
£h O\.—blllc‘ll A U'll%lll‘lli WA O FVALG YYAIT.AL U WU AlWR JIIHJ Ve AR, AdCAN» A A Dbbnlll‘—‘l‘ Wl A AT T & Vver

5Se&' figure 1-2 in section 1 page 2 for a graphic representation of the cell model.

THE MODELS S | | PAGE 23

color and width., A segment has two end pointers jointl and jointh which refer to the

terminals of the segment. The jointl always has the lowest coordinate of the two joint
references. There are no coordinates associated with the segment. This allows

movement of a joint with the attached segments in a easy fashion.

‘A wire is modeled as a set of joints and seéménts. Each segment of the wire carries
the width of the wire. Two wires of the same color intersect at a common joint. One
way to view the relation of segments and joints is a lattice. This lattice is varied for

processing in a computational environment.

A component is modeled as a data object with attributes that are a set of joints, a
name, and parameters., An example of an enhancement transistor is shown.in figure
3-8. The transistor has four references g1, g2, source, and drain. These pointers refer
to all the possible connection points of the device. The enhancement transistor also
carries a length and width. Displacing any component also moves all referenced joihts

and in turn moves all attached segments.

Each component is an object with a data part and code part. The data consists of the
various pointers and component parameters. The code parts contain the routines to
generate the various abstract model types on demand. During the cdmpaction PIOCESS a

request would be effected for the design rule model.

The joints, segments, components, and ports are stored internally as a set of ordered

lists. These lists are easily manipulated for various processes.

DISTRIBUTION OF TASKS FPAGE 24

4. DISTRIBUTION OF TASKS

4.1 General
The topological, structural and geometric data for leaf cells is captured by the REST

system. The input is a simple colored sketch of linws and boxes TEPresenting a circuit,
This colored sketch is digested by the REST process to produce a compacted sticks
representation. Thess two functions lead to a natural partitioning of tasks into twa
‘parts: 1) The line and box diagramming system that run in a local color graphics station
and Z) the main program that does the major processing. This system is shown in
figure 4-1. At the present time, REST permits only orthogonal line drawings.

Box
Eclitor

REST

AN

90 5

Stick's Stondord

Figure 4-1: Rest System Block Diagram

The advantages of separating the graphical editing function from the main program
is twofold. First, graphic editing requires fast computer response in order for the

DISTRIBUTION OF TASKS PAGE 24

4. DISTRIBUTION OF TASKS

4.1 General
The topological, structural and geometric data for leaf cells is captured by the REST

system. The input is a simple colored sketch of lines and boxes representing a circuit.
" This colored sketch is digested by the REST process to produce a compacted sticks
representation- These two functions lead to a natural partitioning of tasks into two
parts: 1) The line and box diagramming system that run in a local color graphics station
and 2) the main program that does the major processing. ‘This system is shown in

figure 4-1. At the present time, REST permits only orthogonal line drawings.

Box

Edrtor
/N ’

RES

\

AN)
900
Stick’s Standard

Figure 4-1: Rest System Block Diagram

- The advahtages of separating the graphical editing function from the main program

'is twofold. First, graphic editing requires fast computer response in order for the

DISTRIBUTION OF TASKS - PAGE 25

designer to achieve true interactive drawing capabilities. This fast response is
‘ accomplished by using a dedicated local processor for the graphic editing. Second,
shany different graphic work stations with their own local editors may be used. REST
can ciln_'ently interface two graphic work stations, which are : 1) the Charles terminal -

and 2) the DEC GIGIL. This partitioning is consistent with the objectives.

The diagramming system known as the box editor runs in a color graphics display
station called ,fhe Charles graphic station[Burke 80, Minter 80]. This station is
composed of a video monitor, a DEC LSI-11 processor, a frame buffer, a DEC VT&2
ltenuiual, an(i a Hewlett Packard four pen color plotter. There are 4 bils per pixel on

_the color monitor which are memory mapped into the address space of the LSI 11, This
work station is linked to a host computer via a data communication line'at 9600 baud..
The graphical entry is via a three button mouse. This system is shown in the hardware

organization f igure 4-2.

The principles in the diagram system is to limit its scope to simple commands that
can be easily learned in a few minutes and to allow the user to just sketch his stick
drawing without worrying about design rules or constructing an exact drawing.. The
geometry shapes are limited to lines and boxes and the commands are limited to create,

move and delete,

DISTRIBUTION OF TASKS

DC 2
Host

Computgr System'

4

PAGE 26

LSI-11 —>(Prlotter)

Color

Displuy

[Terminal

Charles Terminal

000

Xerox
Mouse

Keyset

BEERE

Hardware Orgon!zo{kﬂ\

Figure 4-2: Hardware Organization

DISTRIBRUITION OF TASKS PAGE 27

4.2 Stick Diagram Preparation

The commands to the box editor were kept simple and small in number to pravide a
good human interface. The box editor has three commands which map directly to the
mouse buttons, and two modes. The commands are: 1) line/box add, 2) line/box delete
and 3) line/box move. The modes are line and box. Color selection, mode selection, and
termination are accomplished via a menu as shown in figure 4-3. This provides an

easily remembered set of commands and a reasonable human interface.

2
SNAP
-
T LINE
- GRID
ch
1 i |
—— QUIT
1) m L 26
=
ch & = %]
)
B
5 53 L
7]

Figure 4-3: Simple Sketch Input

A sample input sketch for REST is shown in figure 4-3. The important
characteristic of the sketch is that it is a rough drawing. There is no need for the
designer to be neat in the sketch since the REST processor will recognize connection
poinis as any two similarly colored lines which are in close proximity, transistors as
red lines crossing green, and contacts as gray boxes over colored lines. A designer
generally would sketch out his sticks drawing on the Charles terminal as if he were
doing his stick drawing on paper. However, the lines are easier to erase on the screen
than they are on paper. Blue lines are recognized as metal, red lines are recognized as
polysilicon, and green lines are recognized as diffusion. The meaning of the colors are

DISTRIBUTION OF TASKS ' _ PAGE 27

4.2 Stick Diagram Preparation

The 'commands to the box editor were kept simple and small in number to provide a
good human interface. The box editor has three commands which map directly to the
mouse buttons, and two modes. The commands are: 1) line/box add, 2) line/box delete
and 3) line/box move. The modes are line and box. Color selection, mode selection, and
termination are accomplished via a menu as shown in figure 4-3. This provides an

easily remembered set of commands and a reasonable human interface.

2
SNAP
I
T LINE
1. ' GRID
' i
B3 ____Jil i : QUIT
I & v L L wee
| 'y .
p f =
I'J"'I 13
P NN

Figure 4-3: Simple Sketch Input

A sample input sketch for REST is shown in figure 4-3. The important
characteristic of the sketch is that it is a rough drawing. . There is no need for the
designer to be neat in the sketch since the REST processor will recognize connection
points as any two similarly colored lines which are in close proxiniily, transistors as
réd lines crossing green, and contacts as gray boxes over colored lines. A designer
generally would sketch out his sticks drawing oﬁ the Charles tarminal as if he were
doing his stick drawing on paper. However, the lines are easier to erase on the screen
than they are on paper. Blue lines are recognized as metal, red lines are recognized as

polysilicon, and green lines are recognized as diffusion. The meaning of the colors are

DISTRIBUTION OF TASKS » » , PAGE 28

K

consistent with Mead and Conway [MEAD 80]. Internally, these colors are derived from

a table so the meaning may be changed easily for color preference or for different

technologies.

4.3 Stick Diagram Processing .

The interprétation of the sticks drawing is done by the main program of REST which
runs on the host computer. The line drawing interpreter analyzes the crude line
drawing for connections between lines, simple devices, connection points, and
contacts. In figure 4-3, an enhancement device is recognized as red crossing green, a
depletion device is recognized as red crossing green with a yellow box on top and a
pullup is recognized as a red line on top of a green with a grey box at one end of the red
and a ycllow box in closc proximity. Contacts are recognized as grey bozxes over lines.
The device ratios and line widths are taken from a user defined table. In addition, the
line drawing interpreter correlates the newly interpreted drawing with the previous
one, if it exists, This operation is done so that old component names, device ratios, and

line widths can be transferred to the new sticks representation for the cell.

The drawing is surrounded by a bounding rectangle called the bounding box. This
box defines the scope of the cell. Any line in the drawing that crosses this boundary
will be considered a connection point for the cell. Any line or box ocutside of this
region will be discarded. The size of the box 1s determined by the elements of the cell.
The user has the option to increase the size by various controls. The user can only

decrease the bounding box by a compaction process.

The recognition of the sketch in figure 4-3 is shown in figure 4-4. This stick cel] is
shown in the standard sticks diagram form that REST generaies. In fact, this drawing
was plotted with the attached Hewlett Packard 722 1A plotter. In the drawing, lines
that were close and of like colors were snapped together. Lines that overlapped were
trimmed off. The drawing shows transistors fleshed out as boxes with stylized lines

representing the wires. The sizes of the transistors are proportional to their ratios.

The interpreted cell in figure 4-4 is shown compacted in physical form in figure"
4-5. Since the sticks representations are isomorphic, it could just as easily have been

shown in sticks form. The figure is shown to scale in relation to the uncompacted cell.

DISTRIBUTION OF TASKS PAGE 29

Figure 4-4: Interpreted Cell

DISTRIBUTION OF TASKS PAGE 29

I-J

Figure 4-4: Interpreted Cell

DISTRIBUTION OF TASKS PFAGE 30

AN NN

K

=

f/

7
R NN
ZNZRZ
T
Z) i o
Z NN
ZZZ7Z = ZRZ

Frrt

AN iy

by

Figure 4-5: Compacted Cell

Compaction in REST is accomplished by compression in the vertical axis followed by
compression in the horizontal axis. This order can be user controlled. REST allows a
line to jog in either direction at wire intersection points. Topological features are
allowed to cross provided they are not constrained by design rules. Constraints defined
by the users are also allowed, REST employs a table driven compaction algorithm using

a table that can easily be changed for various design rules, Currently REST uses the
design rules in Mead and Conway [MEAD 80],

A point that is notwellknownis that of line jogs. In a few compactors lines that arc
connected and jog are not allowed to cross but only merge[Williams B0]. This is shown
in figure 4-6. In A the line only merges while in B the line is allowed to cross. The
reason that lines are only allowed to merge is in the compactor proper which will be
discussed in a later section. REST allows lines to cross as in B,

Unlike other graph compaction methods, REST contains a weighted affinity factor in

DISTRIBUTION OF TASKS PAGE 30

BN
SN AN NN\ N
i A a A B
Z PAZIRZ
2R §
czzzZlZ N> Z
N ey e e e ST I
\%&\\\\\\N - SRS ;/‘\e Feis = SRy AR

Figure 4-5: Compacted Cell

Comp_action in REST is accomplished by compression in the vertical axis followed by
compression in the horizontal axis. This order can be uger controlled. REST allows a
line to jog in either direction at wire intersection points. Topological features are
allowed to cross provided they are not constrained by design rules. Constraints defined
by the users are also allowed. REST employs a table driven compaction algorithm using
a table that can easily be changed for various design rules. Cur_rently REST uses the
design rules in Mead and Conway [MEAD 80].

A point that is notwellknoWnié_that of line jogs. In a few compactors lines that are
connected and jog are not allowed to cross but only merge[Williams 80]. This is shown
in figure 4-6. In A the line only merges while in B the line is allowed to cross. The
reason that lines are only allowed to merge is in the compactor proper which will be

‘discussed in a later section. REST allows lines to cross as in B.

Unlike other graph compaction methods, REST contains a weighted affinity factor in

DISTRIBUTION OF TASKS FPAGE 31

41— = —jr:
B —

Figure 4-6: Line Jogging

Figure 4-7: AlTinity Factor

each branch. This factor is the amount of attractiveness between the two attached
nodes. This factor is best explained by an example as shown in figure 4-7. The
example cell has a metal wire running through the cell with a second metal line
orthogonal to it and a diffusion strap crossing under the first metal wire, If com pacted
without an affinity factor, the diffusion strap will be elongated toward the edge of
compacted cell. That is, the contact that connects the metal wires to the diffusion strap
wrill fall to the edge when it ls compacied or in some programs it would be centered
between the first metal wire and edge of the cell. In REST, the elongation of the
diffusion strap would not occur due to the use of the affinity factor. The diffusinn

wire would be kept as short as design rules permit. The branch for the diffusion strap

DISTRIBUTION OF TASKS » V PAGE 31

X
— sk = ——
w— A
—X = —X

R ’—

Figure 4-6: Line Jogging

kN R <._“.:~..‘<..',._th

]
oSN S R S ABS ONSY LN R RSN
4

%

©
"

Without Affinity With Affinity

Figure 4-7: Affinity Factor

each branch. This factor is the amount of attractiveness between the two attached
nodes. This factor is best explained by an example as shown in figure 4-7. The
example cell has a metal wire -running through the cell with a second metal line
orthogonal to it and a diffusion strap crossing under the first metal Wire. If compacted
without an affinity factor, the diffusion strap will be elongated toward the edge of
compacted cell. That is, the contact that connects the metal wires to the diffusion strap ,
will fall to the edge when it is compacted or in some programs it would be centered

between the first metal wire and edge of the cell. In REST, the elongation of the

wire would be kept as short as design rules permit. The branch for the diff usion strap

DISTRIBUTION OF TASKS _ v PAGE 32

would have a higher affinity than the metal line from the contact to the edge. The
affinity in REST is table driven based on line type and line width. That is, the
ﬁolysilicon and diffusion lines have greater affinity than metal. This factor can be
altered based on design rules. The affinity factor controls the trade off in line length

between the metal, diffusion and polysilicon wires.

T
T

7/

Figure 4-8: Loops

Loops in wires will be removed in REST in the compaction process as a direct result

of the affinity factor. A loop is shown in figure 4-8.

The designer has complete control over the compaction process. The compactor only
compresses the cell. Topological changes of related objects are not performed. Rotation
of elements and jog insertion are effected by the designer. The designer can designate

the direction of compaction, insert jog points, and add constraints.

Generally after the linitial compaction the cell is not as small as it could be. This is
because the compactor does not consider overall scope. This is the responsibility of the
designer, who does it best. A designer would generally design his cell . and then
perform several compaction and edit sessions. The initial set of compaction sessions
will produce a reasonable amount of reduction. Further reduction of the cell will
require much more additional time for only a little decrease in size. It has been found

that after several editings and compactions the cell is at a reasonable density.

The user has several ways to control the compaction. First the designer can direct

the axis of compaétion and second direct the side which to compress. It has been found

DISTRIBUTION OF TASKS _ PAGE 33

that just by expanding the cell and trying the two alternatives, the cell can be

considerably reduced.

Another way the user can improve the compactness of his cell is by introducing jog
points. A jog point is a position on a wire where the wire is allowed to bend. This

allows unused space to be filled. Jog points cost area and should be used with caution.

The designer can impose constraints on a cell. The constraint is in a general form of:

componenti+value (= component2 {=componenti+value. REST provides an easy means

to set the constraints. Please see the users guide for specifics. Constraints allow
tailoring a cell for a specific environment. An example would be setting all the ports

on the left equal to the ports on the right. This allows the example cell to be easily
siepped across in a row.

When additions or changes to a cell are to be effected, the designer has several modes
of expansion that can be employed. The cell can be expanded in general along either of
the two axis. This general expansion separates each group by an additional amount
specified by the designer. The abutment box can be stretched or pulled out at the left,
right, top, or bottom. This stretching will also lengthen any wires that are attached to
ports on the side that is stretched. In addition the designer can identify a point arbund
which expansion will take place as shown in figure 4-9, The amount of expansion is
defined by the user. This point type expansion is very helpful for cells that have been

compressed and when additional logic needs to be added.

SOFTWARE ARCHITECTURE PAGE 34

EN

AU

VX

Expanston Point
Figure 4-9: Expanded Cell

SOFTWARE ARCHITECTURE PAGE 34

\
NE
AN
B e
4 /
1 .~
NEN
v 1B
: ;
o

Expanston Polnt
Figure 4-9: Expanded Cell

SOFTWARE ARCHITECTURE PAGE 356

5. SOFTWARE ARCHITECTURE

REST 1is implemented in the SIMULA programming language. SIMULA is an object
oriented language based on ALGOLGO [Birtwistle 73]. An object is a block capable of
containing data and-code. The object is the fundamental data structure mechanism in
SIMULA. The objeci is the data structure mechanism that REST uses for the models
previously desc‘ribed. The following discussion will be comprehensible with some
familiarity of SIMULA. '

A block diagram of REST is shown in figure 5-1, The bottom boxes contain the
SIMULA base. This is the library of general routines that REST uses. The second major
box is the standard data routines and the graphic package consisting of things, views
and display. The third group is the REST modules consisting of }L‘ﬂ the data
structures, stuck which is the line drawing 1nterpréter and graphic interface, compac
the compactor and file interfaces, parts the utilities and command parser and REST

which is the shell for the program.

The module things contains several primitive data structures that are used

throughout REST. They include point, vector and rectangles. A vector is a object that is

a set of things which is capable of sorting itself, All objects in REST are subclassed by

an object thing so that references can be used in vectors.

The SSP graphic package is shown in a box: Display, and Views[Wipfli 78]. The

graphic package contains an object called device that can be created for the Charles
terminal or the hp plottei‘, The ohject device is defined in the disp]ayAmndule. In
module views there is an object window which defines the viewport on the specific
device. A users rectangle is supplied to the window to define the users viewport, and a

virtual rectangle is supplied to the window to define its position on the device.

The module UVEC contains the data structure definitions and the design rules tables.
The first set of objects in uvec are the lines and boxes for the line drawing interpreter.

The next set of objects are the joints, contacts. connectors.transistors. and segments.

The design rules are initialized in a table at the end of this module. The models or

design rules can easily be changed in uvec.

The module STRUCK contains the line drawing interpreter, graphic interfaces, and

SOFTWARE ARCHITECTURE

REST

REST

}

Parts
l .

Compac

|

Struck

|

Uvec

l

Duﬁﬂqy
'l

Views

l

'Hﬂngs'

le;er

|

SIMULA

Figure 5-1: Software Blocks

PAGE 36

SOFTWARE ARCHITECTU RE PAGE 37

base object for the stick cell. The procedure processlines is ’t'he line drawing
interpreter. At the base of this procedure various internal procedures are called to
correspongd 1o the description in the algorithm section. These procedures are easily
modifiable for other device or colored line recognition. At the base 61” module stuck are

the plot procedures.

The module COMPAC contains the compaction and expansion routines. The object

boxo defines the boxes used in the compaction algorithm. The features and Branches

are also defined here. The procedure that effects the compaction is called packfeatures.

This procedures calls definesfeatures for defining the features,and definebranches for

defining the branches. The graph solving is accomplished by the procedure itself. The"
reading in of a stick file is accomplished by procedure getfile and write to disk by
-sendtofile. There are various other procedures for trimming, absorbing, constraint

checking and data structure clean-up.

The module PARTS contains the command processor and utilities. The utilities

consist of procedures: printstatus, setlinewidth, cutsegment, setcursor and

cursorconstraint. There is an additional set of routines in the command processor for

setting device lengths and width, constraints, and general parameters. The command
processes is a standard parser with a feature that allows keywords to be a subset of

their full name.

The module REST is the shell for the whole program. The main reason for the shell

is that the main program can be loaded into the DEC 20 high core segment area.

ALGORITHMS PAGE 38

6. ALGORITHMS

6.1 Analyzing

The analysis process digests the lines and boxes from the box editor. This function is
to pattern recognize wire intersections, contacts, transistors and ports. This is the
function of the line drawing interpreter. The raw input data from the box editor is an
unordered set of colored lines and colored boxes. REST writes this data to a disk file so
that recovery can be possible. The unordered set is partitioned into two sets: LINES and
BOXES. The names used herein are merely for notation and clarity. The names may not
correspond to the identifiers in the program. The algorithms in REST are set oriented

and do operations on ordered sets of lists.

Each member of the LINES and BOXES is checked' for proper color and checked to see
if it is outside of the bounding box. Appropriate error messages are given for members
that are in error and the members in error are deleted from the sets. The LINES and
BOXES are now ordered by the lowest color,then by X, and by Y. The algorithm used
for the sort is the quicksort[Sedgewick 77].

The first major process is to analyze the set of lines. Dui‘ing this process the joints
‘and segments are created f fom the set of LINES. A line element has attributes of calor,
low X, Y, high X, Y and two terminal joint references. That is
L(Color, LOW(X,Y),HIGH(X,Y),J1,J2). A simplified program follows.

The following progr»am steps through each member of ﬂxe'LlNES and compares it to a
window set, ACTIVEBODY. The temporary set contains lines that are i>n a moving
window that traverses up the cell. Lines in the temporary set that are below the
testing member are culled. Lines in the temporary set that intersect with like colors

lines are merged if parallel or split at the point of intersection.

ALGORITHMS

create list ACTIVEBODY
For each member m of the LINES do

begin

For each member n in ACTIVEBODY do

begin

if n.high.y is less then m.low.y then
begin
if n.low is nil then n.low := create joint
if n.high is nil then n.high := create joint
create segment _
add n.low,n high to created segment
add to SEGMENTS, INSTANCES
delete n from ACTIVEBODY
end else
if n intersects m and they have like colors then
begin
if n parallel m then
begin
merge and create appropriate joints,
add joints tom,n
end else
begin
put into lines k,l if necessary
add k,] pieces to ACTIVEBODY,
create appropriate joints
end
end

append m to ACTIVEBODY

end
end

delete LINES
For each member n in ACTIVEBODY do

begin

create joints, segments add to SEGMENTS, INSTANCES

delete n from ACTIVEBODY

end

sort INSTANCES, SEGMENTS

PAGE 39

The result of this process is the creation of a proper set of joints and segments from

the raw input colored lines. These are stored in ordered sets, INSTANCES for the joints

and SEGMENTS for the segments. These newly created segments are set to the default
width for their specific layer. The sets INSTANCES and SEGMENTS are now sorted. The
set of LINES is then discarded. ‘

The next step is to process the contacts., This is done similar to the lines by creating

a temporary set for holding the boxes, and a set for the intermediate segments. The

following simplified program shows the algorithm.

ALGORITHMS . PAGE 40

create list BOXLIST, SEGLIST, SEGS
SEGS :- ordered copy of SEGMENTS
For each member b of the BOXES do
begin . ,
while s:~head(SEGS) low.y <= b.high.y do
add to s SEGLIST delete s from SEGS
For each member c in BOXLIST do
begin
if c.high.y less b.low.y then
begin .
if c.contact then append to instances
" delete ¢ from BOXLIST
énd else -
if bintersects c then merge
end
For each member s in SEGLIST do
begin
-1f s.high.y less b.low.y then
delete s from SEGLIST

else -
if sintersects b then
begin :
split s if necessary add split(s) to SEGLIST,SEGMENTS
b.contact:=create contact
insert joints in b.contact
end
append b to BOXLIST
end)
For each member ¢ in BOXLIST do
begin

if c.contact then append to instances
delete c from BOXLIST
end

The box analyzing algorithm similar to the line algorithm has a moving widow that
traverses up the cell. The routine steps through the list of ordered BOXES processing
one box at a tiine. The stepping box is M in the routine, The routine compares box M
to the boxes and the segments ixi this window. Segments that intersect boxes are split
into two with an intervening joint. The joint of intersection is added to the box. Any
segment or box that is below box M is deleted from the window. This process creates

the contact components and adds them to the set of INSTANCES.

The nexi process is to find all the transistors. This is accomplished by using a
moving window as above comparing the red segments to the green segments. The
choice of color is table driven and can easily be changed for various models. The
recognition of resistive type devices is also effected here by looking fdr a red line

colinear with a green with a contact at one end. In the following program the creation

ALGORITHMS

PAGE 41

of a specific transistor is accomplished by routine, create-transistor. The recognized

transistors are then added to the set of INSTANCES.

set to the default value for their specific type.

create list POLYLIST, DIFFUSIONLIST
SEGS :~ ordered copy of SEGMENTS

For each member s of the SEGMENTS do
begin

end

For each member k in POLYLIST do
begin -
if s.high.y less k.low.y then
delete K from POLYLIST
end _
For each member k in DIFFUSIONLIST do
begin
if s.high.y less k.low.y then
delete K from DIFFUSIONLIST
end
if s.color is polysilicon then
begin
For each member k in DIFFUSIONLIST do
if s.intersects(k) then
begin
l:=create-transistor(s,k)
if not 1l is nil then add 1 to instances
end
end else
if s.color is diffusion then
begin
For each member k in POLYLIST do
if kK.intersects(s) then
begin
l:=create-transistor(k,s)
if not 1 is nil then add 1 to instances
end
end

‘The newly created transistors are

The process of tfahsistor recognition could easily be enhanced to accept various

other forms. The required change would be to modify routine create-transistor. This

routine is small and easily extended. For example, a transistor with a path could be

;ecogﬂized. It would require model adaptation for path type transistors. An example of

a path transistor is shown in figure 6-1,

To be able to recognize other combinations of layers for transistors would require no

changes to the recognizer routine. It would require changes to the tables. This would

“be used for other MOS logic family. For instance CMOS has two transistor types which

use two different diffusions.

ALGORITHMS ' PAGE 42

Sticks Physical

Figure 6-1: Transistor Model Recognition

The connectors are now determined from joints that are coincidence with the edge

of the cell. These are stored in their appropriate connector side set: LEFT, BIGHT, TOF
or BOTTOM,

The final process is to correlate the newly created segments, and instances with the
current cell if it exisis, This iz done in a similar process as above with a moving
window. No sorts are required for this process since the old and new data are in sorted
order. For each new segment that has a earresponding old segment, the wire width is
copied 1o the new segment. The data for each corresponding instance is also copicd,

This includes length, widths for transistors and contacts, and instance names. The
constraints are also upﬂéled to reflect the new data.

The computation complexity of this process is order n log n. This figure comes from
the computational time to sort the lists. A quicksort algorithm is used in this

process|[Sedgewick 77]. The number of items in the window list at any one time is
about ten.

ALGORITHMS ' PAGE 42

Sticks Physlcq]

Figure 6-1: Transistor Model Recognition

The connectors are now determined from joints that are coincidence with the edge

of the cell. These are stored in their appropriate connector side set: LEFT, RIGHT, TOP
or BOTTOM. '

The final process is to correlate the newly created segments, and instances with the
current cell if it exists. This is done in a similar process as above with a moving
window. No sorts are required for this process since the old and new data are in sorted
order. For each new segment that has a corresponding old segment, the wire width is
~ copied to the new segment. The data for each corresponding instance is also copied.
This includes length, widths for transistors and contacts, and instance names. The

constraints are also up_déted to reflect the new data.

The computation complexity of this process is order n log n. this figure comes from
the computational time to sort the lists. A quicksort algorithm is used in this -
" process[Sedgewick 77]. The number of items in the window list at any one time is

about ten.

ALGORITHMS PAGE 43

6.2 Compaction

A graph based compaction algorithm is used in REST. A pictorial representation of
the graph for a shift register cell is shown in figure 6-2. This example is for vertical
compaction. Each node in the graph represents a feature. A feature is a set of primitive
elemants that moves as a unit. Node 1 and 7 in figure 6-2 represent the bottom and iop
edge of the cell. Node Z is the metal wire with an attached connector, Each additional
node represents a feature in the graph. The node number in the graph has a
corresponding number in the sticks representation next to the nodes feature. The

determination of the feature is a simple mapping from REST internal sticks data
structure,

GRAPH <2 => STICKS

Vertical Compaction

—1

Figure 6-2: Compaction Graph

ALGORITHMS

PAGE 43
6.2 Compaction

A graph based compaction algorithm is used in REST. A pictorial representation of
the graph for a shift‘vregister cell is shown in figure 6-2. This example is for vertical
compaction. Each node in the graph represents a feature. A feature .1s a set of primitive
elements ,that moves as a unit., Node 1 énd 7 in figure 6-2 represent the bottom and top

edge of the cell. Node 2 is the metal wire with an attached connector. Each additional
'nod'e represents a feature in the graph.

The node number in the graph has a
corresponding number in the sticks representation next to the nodes feature. The

determination of the feature is a simple mapping from REST internal sticks data
structure, '

GRAPH << — STICKS

Vertical Compaction

f |
[a]
\sl 7
' 6
; —
L]) i
! {
i i i
Lo y
: i 3
i 1 H
H H &
! i
' g] S 1]
4 1&]l : __;
i N e | ||
: 3+ Y
Y 1
‘ iz . f1
l il
-

Figure 6-2: Compactioh Graph

ALGORITHMS PAGE 44

Consider the feature as tuple F(val,base,BK,E,BX, left,right) where VAL is the new
location for the feature, BASE is the current location, {BK} is the set of all branches
that apply to this feature, {E} is the features set of elements, that is segments and -

instances, and {BX} is the set of design rule models boxes. The LEFT and RIGHT values

are the extreme end points for the feature. For vertical compaction theses points are x

values while for horizontal compaction they are y values.

TO Graph Definition
\

<— BRANCH (w;hw.a
ftop.ffrom,cflag)

From

Node(val.base.
{BK},{E},_{BX}.le‘Ft,rlght)

Figure 6-3: Branch Model

The branches of the graph represent the design rules between any two features and
the affinity factor. Figure 6-3 shows the relationship for a branch. A branch is a
directed arc in the compaction graph. Each branch contains the minimum separation

between its two nodes.

Consider the branch as a tuple B(w,hw,aftop,ffromp,cflag). The elements of th

®

‘branch are w for the minimum separation of the two adjoining feature nodes pointed

to by, ftop the feature-to-pointer and ffromp the feature-from-pointer. The value hw

is the maximum separation of the two features. The value a is the affinity factor. The

cflag denotes this branch was defined from a user constraint. The cflag is used to detect

ALGORITHMS PAGE 45

user defined loops in the graph so that error messages to the user will be meaningful.

The generation of the features comes naturally from the REST data structure. This is
accomplished by collecting all joints and components with paths that have common

left and right pointeis. The following program illustrates the algorithm.

TEMPINST:-copy INSTANCES
create list FEATURES
while C:~head(TEMPLIST) do
begin
create new feature F
if c is component then
begin
delete c from templist
appendctoF
for each joint jof cdo

begin :
append jtoF
delete j from TEMPLIST
traceleft(j,F);traceright(j,F)
end
end else
begin

appendctoF
delete c from TEMPLIST
traceleft(c qualification joint,F);
traceright(c qualification joint,F)
end
create new feature F
end

The above algorithm essentially visits each component, joint, and segment once.
Each individua'l feature is constructed from tracing all joints and segments through the
left and right pointer with procedure trace. This algorithm is for vertical compaction.

For horizontal compaction the t_o'g and bottom pointers of the joints would be followed.

‘ After this process the base value for each feature is set to the value of the lowest

element. In addition the left and right values are also set. The set of boxes {BX} will

be defined at a later point in time.

The most cbmputétional demanding of all the compaction process is determining the
branches. That is specificing the minimum separation distances from each feature to
every other feature. The ac‘tual minimum separation for each layer pair is the design
rules tables. In general this would require each design rule box of each feature to be

compared to every other feature., However with the left and right values it is only

ALGORITHMS PAGE 46

necessary to compare the design rule boxes of the features when the left and right
values intersect within a fuzz value. Even with this optimization the time could be
large. This is because the sum total of all the design rule boxes of the features that do
intersect is large.

Feaature 4 Feature 4
e
Feature 3 [autura 3
Feature 2 Feature 2
Feature 1 Feature |
A B

Figure 6-4: Design Rule Box Shadowing

To solve this problem REST employs a shadowing technique. This process cuts down
the amount of necessary ge-umeti'y that needs to be compared. An example is shown in
figure 6-4 with metal boxes that need to be compared. Feature 1 in part A is to be
compared to features 2,3 and 4. In A feature 1 only needs to be compared to feature 2
because feature 1 is completely shadowed by 2. That reduces the comparison for this
example from 3 to 1. However in part B Feature 1 is not covered by feature 2 nor
feature 3 so that three comparisons are necessary.

REST uses the method of reducing the design rules boxes by the amount of coverage,

If a design rules box is completely covered it is deleted, If the box is partially covered

ALGORITHMS ' 'PAGE 46

necessary to compare the design rule boxes of the features when the left and right
values intersect within a fuzz value. Even with this optimization the time could l;e
large. This is because the sum total of all the design rule boxes of the features that do

intersect is large.

Feature Y " Feature 4
Feature 3 | : Feoature 3
Feature 2 | feature 2
Feature 1 ' feature 1
A ‘ , B

Figure 6~4: Design Rule Box Shadowing

To solve this problem REST employs a shadowing technigque. This process cuts down
the amount of necessaryvgeomet.ry that needs to be compared. An example is shown in
figure 6-4 with metal boxes that need to be compared. Feature 1 in part A is to be
compa‘réd to features 2,3 and 4. In A feature 1 only needs to be compared to feature 2
because feature 1 is completely shadowed by 2. That reduces the comparison for this
example from 3 to 1. 'However in part B Feature 1 is not covered by feature 2 nor

feature 3 so that three comparisons are necessary.

REST uses the method of reducing the design rules boxes by the amount of coverage.

If a design rules box is completely covered it is deleted. If the box is partially covered

ALGORITHMS _ FAGE 47

B

Figure 6-5: Box Covering

al one end it is reduced by the amount of coverage. If it is covered in the middle it is
split, This is shown in figure 8-5,

In addition to reducing the design rule boxes the left and right values of the featurs

are also deflated, This decreases the scope of additional comparison for the feature as an
entity.

The design rules box is a tuple{color,netnum,left,right,low,high). The left and right
are the limits for the box as in tl.'m feature. The low and high are the orthogonal limits
used in the determination of the branch w value. The netnum is a unigue number for
all geometry that is connected. That is if two blue boxes were connected through a
Path of segments they would have the same number. If two design rules boxes are
connected they will not be compared.

To reduce the amount of core memory REST uses, the design rules boxes are created
on demand. That iz in the comparison process if a features boxes have not been created

they will be constructed at that time. Since the showing method reduces the number

of boxes during comparing process and boxes are only created on demand there is only a

ALGORITHMS . PAGE 47

L]

B

Figure 6-5: Box Covering

_ at one end it is reduced by the amount of coverage. If it is covered in the middle it is

split. This is shown in figure 6-5.

In addition to reducing the design rule boxes the left and right values of the feature
are also deflated. This decreases the scope of additional compaﬂson for the feature as an

entity.

The design rules box is a tuple(color,netnum,left,right,low,high). The left and right
are the limits for the box as in tpe feature. The low and high are the orthogonal limits
used in the determination of the branch w value. The netnum is a unique number for
all geometry that is connected. That is if two blue boxes were cbnnected through a
path of segments they would have the same number. If two design rules boxes are

connected they will not be compared.

To reduce the amount of core memory REST uses, the design rules boxes are created
on demand. That 1s in the comparison process if a features boxes have not been created
they will be constructed at that time. Since the showing method reduces the number

of boxes during comparing process and boxes are only created on demand there is only a

" ALGORITHMS : PAGE 48

small number of boxes in core relative to the total number of boxes.

The order of the boxes in the box set BX in the feature is sorted from left to right to
further reduce the comparison time. This is effected by having a moving window pass

along the two features being compared.

This deletion and reduction of boxes is effected after each complete comparison of

- two features. This is so that a box is not reduced prematurely. A simplified program
follows.
for each member F of features do
for each follow member F1 features and F1.BX.Cardinal >0 do
if Fintersects F1 then
begin
wi=compareboxes(F1.BX,F2.BX);
append new branch(w) to F1.BK
append new branch(w) to F2.BK
reduce boxes of F1

reduce left,right of F1
end;

The comparison routine in the above program accomplishes the moving window and
marks the boxes to be deleted. Also the routine splits the boxes. Generally it does not

take but a few comparisons of features to stop the comparison process of a single

feature.

The ability to allow features to cross that are connected limits the @ime at which
reduction can occur. The reason for this is that if two features are connected and
reduction occuis, any boxes above the second feature are not added to the lower
features branches. What this means is that if a feature connected to one above crossed
it, there would be no branches for features above and this feature would undoubtedly
" short to the features above. Therefore reduction does not occur for those colored boxes

that are in common.

The actual value for the separation is retrieved from a table of design rules. This

contains the minimum separation for sots of layaers or sometimaes n

table is easily changed.

After the branches are constructed the affinity and user constraints are added.

Directly connected features will have their related branches updated with the affinity

'ALGORITHMS . ' PAGE 49

factor for the ty'pé of connection and width of connection. For two features to be
directly connected there must be a single segment that connects them both. The value.
for the arfinity like design rules is taken from a table. The current used values are: 1

for metal and 3 for diffusion and polysilicon. The larger values increase the

.attractivenéss of the two features. If two features are directly connected but do not
"have a design rule a branch, one will added with a nil w value and the appropriate

affinity.

The user constraints are added as branches with cflag set that it is a user constraint.

This flag is used in the graph solving phase when 1dops are detected.

The next process is to solve the constructed graph. This is effected by a depth first
method marking each node in the process so that loops can easily be detected. If a loop
occurs the depth process stops and retreats, deleting and giving a warning on the

appropriate user constraint. The graph is then cleared and resolved.

At this point the cell is at its minimum size in the gréph. There will be several
features that can move within limits. The next process is to adjust the features for
affinity. This is accomplished by examining each for an attractiveness toward another
feature. If this occurs the feature will move as close as possible to the other feature.

The two features will then be merged. After which the process repeats.

The final step in the compaction process is to ad just the locations of each element in

the fe_atures. After this is completed the graph is deleted.

This completes the compaction process. This algorithm is order(n) exclusive of the '
sort time due to the shadowing and other techniques. It could be further reduced by
using the method of Bentley[Bentley 80a, Bentley 80b]. This involves using buckets

for the features and boxes and only comparing data in common buckets.

6.3 Expansion _

There are three types of cell expansion in REST. The first is the bounding box
expansion. The second i§ the general expansion, that is separation of each feature by
some user def inedv amount. Third is the expansion around a point that is to open an area

for addition logic. These cell expansions are used mainly to add room to place more

ALGORITHMS PAGE 50

logic in the cell.

The boﬁnding box expansion is the simplest of the three. The user specifies the side
and amdunt of expansion to REST. REST in turn moves the appropriate side by the user
specified amount. In addition to moving the bounding box the ports on the side to be
expanded are also moved. Since the location of the segments is determined from the

Joints and, in this case they are ports, the attached segments are properly ad justed.

The general expansion uses the graphs that are described in the compaction process
-in section 6.2 page 43. The feature definition routine and graph solver are used for this
process. The features are constructed as previously described. The branches are
constructed by intersection of left and right features. The w value is set from the

distance between the two features plus the user defined expansion value.

The nodes in the graph are initialized to their current location. The graph is then
solved as described before. The effect of this is to separate the features from each other

by the amount the user specifies.

The expansion around a point is the most elaborate expa.nsion and used greatly by
the designer. The designer marks a position with the cursor and gives a value for
expansion, and the direction: left, right, top, bottom, X, or Y. This process uses the
compaction graph previously described in section 6.2 page 43. The features and
branches are constructed as previously described. The graph is initialized to its current

position. This sets the feature to its current position.

An initial feature is then fouild depending on the direction specified. For example,
if the direction was left, the initial feature would pe set to the first feature on the left
of the mark point that covers the point with its left and right values. The feature is
then moved out by the user defined value and the graph is solved from the initial

feature. The graph is then cleaned up as described before.

RESULTS AND CONCLUSIONS FAGE 51

7. RESULTS AND CONCLUSIONS

7.1 Example

- An initial sample input from a designer is shown in figure 7-1. This is a one bit twao
bus register cell in NMOS, There is a clock line for the refresh cycle. The first ithing lw
notice in this sample is that it is a crude sketch of the desired circuit. The contact ar
black boxes are irregularly shaped. The lines overshoot and come close to other lines in
the sketch. The orange or implant covers the pullups irregularity.

2
SNAP
£ LINE
GRID
N e
= o uE =
n— &1
4 =z QUIT
=] tr L EE‘
=

mil
ey

1t

£
EEEEE

Figure 7-1: Two Bus Register Cell

RESULTS AND CONCLUSIONS 7 PAGE 61

7. RESULTS AND CONCLUSIONS

7.1 Example
- An initial sample input from a designer is shown in figure 7-1. This is a one bit two

bus register cell in NMOS. There is a clock line for the refresh cycle. The first thing to
notice in this sample is that it is a crude sketch of the desired circuit. The contact or
black boxes are irregularly shaped. The lines overshoot and come close to other lines in

the sketch. The orange or implant covers the pullups irregularity.

2
SNAP
- LINE
” GRID
e Ht——6
il - 53 QUIT
= H L 26
3
Y T+
v il
— m
L—-l R
ok

Figure 7-1: Two Bus Register Cell

RESULTS AND CONCLUSIONS FAGE 52

In the sketch the interfave signals are drawn 50 that they extend beyond the call box
shown in black. This box is the boundary of the cell, Any line that extends outside
will be construed as a port. In the initial sketch the blues or metal on the left and right

are the power and data bus while the red or polysilicon lines from the top to the bottom
are the control lines,

The intent for this cell is that it would be replicated in a design for the word size
and number of words. This imposes requirements on the cell that the ports on each side
be at the same relative location as the opposite port,

The recognized stick and physical drawing is shown in figure 7-2. The first thing
to notice is that the transistors and contact have been recognized. The lines that
overrun or Just came close to other lines were recﬁgnized as connected, After
recognition, the lines were snapped to be orthogonal. The snapping was reguired

hecause of the various points at which a line may enter a component,

AR |
. .
mmnn]

— . - gt RO« BT,

LI ITLLL

b AR g
: .
R N AR & AW
= -
Sticks Physleaal

Figure 7-2: Recognized Two Bus Register Cell

RESULTS AND CONCLUSIONS PAGE 52

In the sketch the interface signals are drawn so that they extend beyond the cell box
shown in black. This box is the boundary of the cell, Any line that extends outside
will be construed as a port. In the initial sketch the blues or metal on the left and right

are the power and data bus while the red or polysilicon lines from the top to the bottom

are the coh‘trol lines.

The intent for this cell is that it would be replicated in a design for the word size
and number of words. This imposes requirements on the cell that the ports on each side

be at the same relative location as the opposite port.

The recognized stick and physical drawing is shown in figure 7-2. The first thing
to notice is that the transistors and contact have been recognized. The lines that
overrun or just camé close to other lines were recbgnized as connected. After
‘recognition, the lines were snapped to be orthogonal. The snapping was required

because of the various points at which a line may enter a component,

‘ 5 - :
’ ’ s

AN RN SASSEESHTARYN
’ s s

P WA AN
! ’ g
y :
] r
=) »
g ¥ 4 /" y

d&\\\\\'\\ AN AANNNNEANANNY

k [% AP
’ ’ 5 18
’) ¥
¥ ¥ |4 4
1 ¥ ¥ .

: : : oyl
: 4 |4 =

bE Y : 4
S = - @
3 ANAY NN ANANANANY
A L4 ‘ |4 A

4 WANR AN LN RSOOSR

—~—t - ¥

Sticks Physical

Figure 7-2: Recognized Two Bus Register Cell

RESULTS AND CONCLUSIONS PAGE 53

The drawing also shows the recognized connection points called poris. The ports are

on the perimeter of the cell. They are shown with a black box token marker in the
drawing 7-2.

The cell has not been spaced to design rules as yet, This can be seen by examining
the physical picture in figure 7-2. Notice the closeness of the contact boxes. The

spacing to design rules is accomplished in the compaction phase,

.
l = NN NN 2 NNNNNN
NN NN 22 NN

X
LY
)

LELRRARA)
R

LY

o
s
X

NN

4

AL LR LR LAY
AR AL AR RN Y

LLRLRRNY
ALY

’_/;3
“

<N

L
.
LY

DN - QRN NN 5 NN

Intttal Compoetion
Two Bus H-g'llhr Call

Figure 7-3: Compacted Two Bus Register Cell

The first compaction is shown in figure 7-3 to scale with f igure 7-2. This cell is
now design rules correct. The cell is the smallest it could be. Several iterations will be’

"RESULTS AND CONCLUSIONS PAGE 53

The drawing also shows the recognized connection points called ports. The ports are
on the perimeter of the cell. They are shown with a black box token marker in the

drawing 7-2.

The cell has not been spaced to design rules as yet., This can be seen by examining
the physical picture in figure 7-2. Notice the closeness of the contact boxes. The

spacing to design rules is accomplished in the compaction phase.

i
TN AN AN NN (NN NN \\'\E

] % A % L1
NN SN HEAN NN
L~ v ” ; (, ;
JUE F Sl e
g é % ’@ﬁ
] H =] [#47
NN R NN AN NS % NNNNEN AN\
%) o / vB% i
¢ L1 » <1 [
SN D
JUE b HE LE
JUE B 8 1E
4 12 » -1 Ry
Hlp BV 2 Ui
N SR SN TN
» v » %
%\\\\ NN NS AN NN NN < NN
1 —

Inttial Compaction

Two Bus Register Cell.

Figure 7-3: Compacted Two Bus Register Cell

The first compaction is shown in figure 7-3 to scale with figure 7-2. This cell is

now design rules correct. The cell is the smallest it could be. Several iterations will be’

RESULTS AND CONCLUSIONS FAGE 54

required 1o enhance the area size.

This cell will not function properly in a circuit since the device ratios are incorrect,
The changing of the ratios is a simple command in REST. I requires a statement to REST
to change the length or width or both, and place the cursor over the desired device 1o
be changed. In addition the cell will need the power lines widened to carry the power
for several cells. This is because the cell will be used in an array and the power bus
wrill be shared among many cells.

The size of the initial compacted cell is 69 by 59 lambda,

e —
& |

: ﬁﬂ. \"'J :.ﬁ{:‘ _g |
15 I I orour
NN NNR
K/',;

N
ANAN

| 7z .
| LA =z
| "f::é Sy % é
| Z ZW- Z
< .
I e
7 z ' '

NNz

'l
T
o]
RN
G

" LY "‘

UNERNARNANNANAY

FENNEAN ' R
A T g

AN

Figure 7-4: Several Compaction Two Bus Register Cell

RESULTS AND CONCLUSIONS

required to enhance the area size.

This cell will not function properly in a circuit since the device ratios are inc_orrect.
The changing of the ratios is a simple command in REST. It requires a statement to REST
to change the length or width or both, and place the cursor over the desired device to
be changed. In addition the cell will need the power lines widened to carry the power

for several cells. This is because the cell will be used in an array and the power bus

will be shared among many cells.

The size of the initial compacted cell is 69 by 59 lambda.

PAGE 54

Qf—‘é} RN &
o ¥ "8\ gS &K
e / |
. o~ N . \ \ N
IR \\\\m\\\\/ NNNENN\\
Z ?l Z B2 Z Z
SN, B i\\\ \\\\XQ/, INNANEANN\e g
ZRERZ Z : R
% ’f\“/i (7. 444M§\§?\\% Z
Chviz iz =2k~ Z
N Y?\i’;\/ \Q;» ; Zm é ——— DOUT
AR RN = ,\\ NN
OBl DD 0l
i . 2 ” o
T 7 . .
ZRINZ Z Z Z
ZRERZ = Z Z
B ‘N
g b g B
ERRERERSN \\ N NS
= A/ % ’ .
] - % =
NN Z \\:” § RREN 2 OO £ TN
S x\é\%\ Mt
ol § 7z aia 2

Figure 7-4: Several Compaction Two Bus Register Cell

RESULTS AND CONCLUSIONS : PAGE 55

The cell is shown in figure 7-4. with the device ratios ch’anged properly. The
power lines widths were also extended from 3 ;o 4 lambda. Annotation was added to
the ports. Annotation is easily added. This is done by giving the cursor command 1o set
the names. Then the cursor is placed over the desired component, joint or ports with a

press of the button. A name is now entered textually from the terminal.

So far in the design of this cell approximately ten minutes were spent. This cell
could be compacted more by adding jogs and some topological changes. In any design of
a cell it would be required to effect several passes through the compactor and editor to

achieve a reasonable cell area.

Now if we are fo add jogs the ports would be free to float away where they wished.
The reason they do not now is that the ports on opposite sides are on the same wire. A
constraint will be needed to hold the ports on opposite sides at the same location. This
is easily accomplished-by the cursor constraint command. This is acéomplished by
glving the cursor constraint. command with a horizontal or vertical constraint and the
relation operator. In this case the equal operator will be used to constrain the ports on

opposite sides to be at the same relative location.

The size of the second compacted cell is 70 by 60 lammbda, which is an increase from

the original compaction of 1 by 1 lambda. This increase is due to the added device sizes.

Figure 7-6 shows the cell after several additional compactions with designer jog
insertion. The addition time spent is about five minutes. This time is for a designer that
is familiar with REST.

Several jogs were added in the cell by the designer. This decreased the size of the cell
by employing unused space. In addition constraints were added to align the ports on

opposite sides of the cell.

The size of the several compactions cell is 60 by 54 lambda which is a decrease from

51

the vriginal coumpaciion of abou

PR S L
utl ouU peircelit.

An exam#le of cell that is very large in scope for a leéf ‘cell is shoWn in figure 7-6,
This cell is a one bit self timed adder cell that uses ternary signaling. The top ports and

bottom ports have been constrained to be equal-'so that the leaf cells may be stacked to

RESULTS AND CONCLUSIONS PAGE 56

any size sell timed adder desired.

% TOUT

A\

NNNNAN

-
N = SEER
».\ \\\\%ﬁx
Z ZRZ
Z ;,._;;g
N\ ZRZ
Zl= ZlZ
Zl= =
ZRZ Z
B Z
] [¥]
NEN
1| Z

Figure 7-5: Several Compaction with Jogs Two Bus Beogister Cell

PAGE 56

RESULTS AND CONCLUSIONS

' any size self timed adder desired.

~
7 7 |
. +
AN //////é/x///x\m\\ AAARSRANRNRAR: ,
/ i R <R ».A\ AN : i
\\\ | w “ ; SRR ua%\%\\ O A A .,‘J.W\\ e, A
,\\ RS 2,//\% NN 55 ///,.////////,2\\\ AN Ik
LN NS A4 7
R N\ X NoENRY 7
a/m 7
& k AANAMANA \\\“ _ \m
A, ANDARARVSS AN
w, RN
N AN AN ARARNINNS AN, 3
ARNAN7AAARANRENRRRRAY: AN
‘"
07
‘A \ /'

Figure 7-5: Several Compaction with Jogs Two Bus Register Cell

RESULTS AND CONCLUSIONS _FAGE 57

~ 5w
-

Figure 7-6: Self Timed Adder Cell

7.2 Manual Vs Automatic

The following figure 7-7 shows the two bit register cell as dezigned before
compared to a hand layout version. The differences in the cells are that the hand
layout cell allows 45 degree lines, path transistors and polygon transistors. It is not

surprising that the hand layout i5 smaller.

The =ize of the of the manual layout is 54 by 53 lambda while the sticks is 60 by 54
lambda. The sticks cell is about 10 percent bigger than the manual cell. This is noi

RESULTS AND CONCLUSIONS

' PAGE 57
- gg!) o,
P i o ¢ o % - —
7 &8 N
N N
N AT 7N A
N Y N = 7 7
N
_ A
d , W N
N -f N
e N
?.v’x’ «
X 0N
- N
R ‘hnk - i NN N
» N o : s
= S s S

F

o

gure 7-6: Self Timed Adder Cell

7.2 Manual Vs Automatic

The following figure 7-7 shows the two bit register cell as designed before
compared to a hand layout version. The differences in the cells are that the hand

layout cell allows 45 degree lines, path transistors and polygon transistors. It is not
surprising that the hand layout is smaller.

The size of the of the manual layout is 54 by 53 lambda while the sticks is 60 by 54
lambda. The sticks cell is about 10 percent bigger than the manual cell. This is not

RESULTS AND CONCLUSIONS FAGE 58

N

A
i

-~

=] 'm m

A
VAN

> _
R 3

NNRERY

o

Hend Layout
Strcks

Flgure 7-7: Two Bus Register Cell

surprising due 1o the flexibility of the hand layout. The hand layout design time was
greater than that of the sticks and it required a large number of iterations. In addition
the sticks cell can easily be changed, That is, the circuil can be changed, the ratios of
devices can be changed or the wire width can be changed in a short time. Also the
' sticks cells is design rules correct by virtue of the spacing routines while the hand
layout may not be. The hand layout would require several iterations through a design
rules checker to determine the errors and through an additional digitize phase,

This example contains universal features found in most cells design with the

' RESULTS AND CONCLUSIONS PAGE 58

»
;1\\ [- »3%
NN AN = N NN Y
T H 2 B b] K LG
7 3 / z X > B
i H * %
% N % v
ﬁmg K, J&\ﬁ 3 E i > g ”
zaalZzmmlZ Iz == 12 Ri7 NN AN SEEANNN
™ “y ™ o L\
PN N | SNe R
P E G LH G b g s B E
% NCRERS =
2 # /L. :; E ;E g/?; 2
Ziizaz o bk N _
NN " \\rv % y sAZR5 & v &
ke b ANNEN :
<3 W, », Y 3 \ N\
N N e RN g b g

Hand Layout
Sticks

Figure 7-7: Two Bus Register Cell

surprising due to the flexibility of the hand layout. The hand layout design time was
greater than that of the sticks and it required a large number of iterations. In addition
the sticvks cell can easily Le changed., Thalt is, the circuit can be changed, the ratios of
devices can be changed or the wire width can be changed in a short time. Also the
* sticks cells is design rules correct by virtue of the spacing routines while the hand
layout may not be. The hand layout would require several iterations through a design

rules checker to determine the errors and through an additional digitize phase.

This example contains universal features found in most cells design with the

RESULTS AND CONCLUSIONS : PAGE 59

philosophy as described in section 1 page 2. Typical cells designed with this type of
philosophy have data, control and power busing structure. In addition there is some
internal logic. This cell contains two data buses, three power buses, three control

buses, pull-up and pull-down transistors that are typical of a regular leaf cell.

_Therefore this is a reasonahle cell for a comparison.

7.3 Conclusions

VLSI leaf cells can easily be designed with REST in far less time than hand laid out
cells. In contrast to hand laid out cells REST cells are design rules error free. The size
of a REST cell is about 10 percent bigger that a hand laid out cell. This is not much of a
penalty considering the benefits.

The REST design cell wins in conveniences and speed of task during the cell update
process. With the hand laid out cell the tedium of digitizing and design rules checking
are required for each iteriation of the cell update. Using REST we need only to edit the

cell.

It has been shown that wire model6 used in REST simplifies the connection of wires

of different widths both in sticks and as a final output to CIF. This model has reduced
a complex wire problem of non-standard width to dealing with wires as paths and
width.

The affinity factor7 can reduce the total polysilicon and diffusion wire length as a
tra.de of metal wire length on some cells. The affinity factor also shortens wires in
general by moving floating features to the most attracting feature based on the
intervening connection. By changing the Weighting8 of the affinity factors other

trade-offs may be defined.

6See section 3.2.1 page 14 for a description of the wire model.

7Seelsection 4.3 page 30 for a description of the affinity factor. Also see section 6.2
page 43 for a description of the algorithms.

8The affinity factor weighting is defined in the rules tables.

RESULTS AND CONCLUSIONS PAGE 60

The compaction algorithms presented herein and used in REST is linear with time
due to several techniques presented in section 6.2 page 6.2. These methods do not limit
the ability of the compaction process, giving the users a quick response necessary in an

interactive environment.

REST is qurrently being used on several chip designs at Caltech. Several leaf cells for
a-graphics project chip have been designed using REST. There are several students
using REST on this project with very satisfactory results. An additiénal project is an
ethernet chip, also using REST. REST has provided a reduction of design time in these

projects. REST has been used extensively at Caltech with greatl success.

Future investigation in Sticks will be centered on three tasks. First, allowing
non-orthogonal lines with curved wires. Second, investigation of compaction in the
2-dimensional plane. Third ,exploring typing on ports and components with a trend
toward automatic definition of power widths, transistors_ parameters, and other
proper{y alteration. In addition to explorations in sticks, composition tools will be
investigated. Both graphically and textual user specifications will be explored. Future
work in sticks and composition will be consistent with the general design philosophy

presented in this thesis.

RESULTS AND CONCLUSIONS . PAGE 61

CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

Silicon Structures Project

REST
Users Guide
by

R.C. Mosteller

R E S T Users Guide PAGE 62

I. RE ST Users Guide

1.1 GENERAL '

Richards editor for Sticks (REST) is a leaf cell design system for the creation, editing
and compaction of NMOS stick diagra"ms. REST only deals with leaf cells that contain
primitive elements: transistors, contacts and connectors. A leaf cell is one that contains
primitive elements and does not contain instances to other cells. It is intended that the
leaf cells created by REST will be used as primitivé building blocks in various Silicon

Compilers: like Bristle Blocks[Johnannsen 79], and chib assembliers SPAM [Segal 80].

The REST system uses the Box Editor that runs in the Charles graphic station as the
front end for editing. The stick sketches while REST proper digests" the stick sketch,

does compaction, utility plotting and leaf cell data management.

REST processes sticks sketches that are orthogonal. The iransistor models that REST
uses are the same as in Mead and Conway [MEAD 80]. Non-orthogonal lines are not
allowed in REST, nor are other device models. Although this is a restriction, it is not

severe. For general digital chips about 80 percent of the primitive cell could be

designed in REST.

" 1.2 The Environment -- Hardware and Software

Rest is partitioned into two programs - the Box Editor which runs in the LSI-11 that
is part of the Charles graphic station, and the main sticks processor which runs in the’
DEC-20. The graphic interface is provided by the Charles graphic station which
consists of a raster scén display, HP plotter, and a Xerox mouse. See figuré I-1. The
Charles terminal, box editor and interfaces are described in the Charles Terminal Care
Package[Minter 80, Burke 80]. The box editor provides the primitive editing functions
f ?r the sticks sketch. The command input to the Box Editor is provided by the attached

Xerox mouse.

The second program, REST proper, which runs on the DEC20, does the major part of
the processing. REST is written in SIMULA and it uses the general SSP graphic
software package [Wipfli 78].

R E S T Users Guide PAGE 63

Dec 20
Host

Eomputr‘ Syst@m

.

Lsi-11 F—=>(Potter)

N
Keyset

Kl|K||K|K||K

Color
Display

Charles Terminal

Terminal

Hardware Orgonlzo{kww

Figure I-1: Picture of the Hardware

1.3 FEATURES

The editing function is centralized in the Charles Graphic Station for optimum
performance where it is needed. This separation of stick editing and processing also
allows various other input media for the sticks sketch. After each graphic editing

function a récovery file is written to disk so that if there is a system failure recovery
is possible.

The sticks sketch which comes from the Box Editor may be very crude. It is not

necessary to be exact in drawing line interconnections, transistors or contacts. REST

RE ST Users Guide FAGE 64

will snap lines to ad jacent lines of like color, and recognize Eenerally slopplly designed
transistors. See figure I-2 for a sample inputl to the box editor. Notice that in the
figure the sketch is very erude. The cells that are drawn are shift register cells similiar
to the examples in Mead and Conway[MEAD B0].

2

SNAP

0] i LINE

GRID

QuIT

o L 8¢
=

: - £ 2

=)

B2

= = A

]

Figure I-2: Initial Input for Box Editor

The edited sticks sketch is isomorphic to the sticks internal representation. This
allows editing after compaction to further reduce the size of the coll. The intrepreted
sticks drawing is shown in figure 1-3. The figure shows both the sticks drawing and
the physical representation. The compacted sticks drawing is shown in figure 1-4. The
figure shews both the sticks drawing and the physical representation. In general use,
one creates an initial cell, compacts it, then follows with an edit session and repeated

compaction until an acceptable degree of compaction is achieved.

REST is oriented toward amplifying what the man can do and what the computer can

do best. That is, the man defines the topological sticks sketch while the program

R E ST Users Guide ' PAGE 64

will snap lines to ad jacent lines of like color, and recognize generally sloppily designed
transistors. See figure I-2 for a sample input to the box editor. Notice that in the
figure the sketch is very crude. The cells that are drawn are shift register cells similiar

to the examples in Mead and Conway[MEAD 80].

2
SNAP
[s LINE
GRID
i QUIT
[j L 26
01 B
| W—
1
= 1

Figure I-2: Initial Input for Box Editor

The edited sticks sketch is isomorphic to the sticks internal representation. This
allows editing after cbmpaction to further reduce the size of the cell. The intrepreted
sticks drawing is shown in tigure 1-3, '}‘he figure shows both the sticks drawing and
the physical representation. The compacted sticks drawing is shown in T igure I-4. The
figure shows both the sticks drawing and the physical representation. In general use,
one creates an initial cell, compacts it, then follows with an edit session and repeated

compaction until an acceptable degree of compaction is achieved.

REST is oriented toward amplifying what the man can do and what the computer can

do best. That is, the man defines the topological Sticks sketch while the program

REST Users Guide

PAGE 65

T

EERRRRRY

- -
o L

am
"

CTTATLTEITRELRRRRRRREEY

5
\
N
»
1
-
N
\
3
)
&

BAERIRIERLA AV AARAATAREER LA RN

-

EREAERRERRY Y
o
e e L T

e

AERERRWT

Strcks F’hsfco/

Figure I-3: Intrepreted Sticks Drawing

= r= o —EI:

= a8 1 -+
O
ume i W=t B 2
8 i 5 NN\

Sticks Physical

Figure I-4: Compacted Sticks Drawing

compresses the sticks diagram to minimum size, REST does not make topological
changes.

REST interfaces a generalized sticks representation file called “The Sticks Standard”

RE S T Users Guide

PAGE 65

A

TNNANNANY SANNNN

A A

Sticks Ph;slco/

Figure I-3: Intrepreted Sticks Drawing

=

Ll
]

IVIARARRAN

M

v
rH

o

o BN NS
Sticks - Physical

Figure I-4: Compacted Sticks Drawing

compresses the sticks diagram to minimum size. REST does not make topological
changes.

REST interfaces a generalized sticks representation file called "The Sticks Standard"

BRESTUsers Guide FAGE G5

which can be read in by various Silicon Compilers for chip assembly|[Trimberger 80].
This file could also be used for porting designs,

1.4 STICKS INTERPRETATION

The input to REST from the box editor consists of Eﬂlﬂrﬁfl lines and hnxes, Theose
lines and boxes are interpreted by REST as transistors, contacts, and connectors, All
lines and boxes sent to REST must be orthogonal, others will be thrown away with
appropriate error messages, There are three major colors: RED, GREEN, and BLUE, These
colors are interpreted as polysilicon, diffusion, and metal respectively. Thao
subordinate colors are YELLOW which denotes an implanted transistor, and GREY
which denotes a contact. See figure 1-5 for a drawing of the models both in sticks and

rhysical. The modeling of stick devices and the colors used In REST are consistent with
Mead and Conway[MEAD 80].

[

P e

i

AR,

— e | sl

tll
Q

Sticks Physlcal

Figure I-5: S5ticks Models

R E S T Users Guide _ PAGE 66

- which can be read in by various Silicon Compilers for chip assembly[Trimberger 80].
This file could also be used for porting designs.

1.4 STICKS INTERPRETATION

The input to REST from the box editor consists of co]oreq lines and boxes. These
lines and boxes are interpreted by REST as transistors, contacts, and connectors. All
lines and boxes sent to REST must be orthbgonal, others will be thrown away with
appropriate error messages. There are three major colors: RED, GREEN, and BLUE. These
colors are interpreted as polysilicon, diffusion, and metal respectively. The
subordinate colors are YELLOW which denotes an implanted transistor, and GREY
which denot‘es a contact. See figure I-5 for a drawing of the models both in sticks and
'physlcal. The modeling of stick devices and the colors used in REST are consistent with
Mead and Conway[MEAD 80].

z‘b\-—-u—-mm

&
gy
bhi:
]

LA x\x%m\xw

PURUEURIO. | |

\
\ A e e e) A |

A
kS

A
N

1

Sticks Physlcd/

) Figure I-56: Sticks Models

RE S T Users Guide ' PAGE 67

A RED line crossing a GREEN line is interpreted as an enhancement mode transistor.
The RED li_ne need only touch the GREEN line to create a transistor. The length and
width of a newly created enhancement transistor are taken from the defaults which

may be set by the user.

A RED line crossing a GREEN line with a YELLOW box or a YELLOW line on top of the
“intersection is interpreted as a depletion mode transistor. As with the enhancement
‘transistor, the length and width for newly created depletion transistors are taken from

the defaults.

A RED line colinear with a GREEN line with a YELLOW box or a YELLOW line on top
of the intersection is interpreted as a pullup type model, provided that thére is a
contact on one end of the RED line. The RED line must be shorter than the GREEN. As in
the case of the enhancement transistor, the length and width for a newly created

pullup type model are taken from the defaults,

General Contacts can be created by placing a contact box on top of ihe lines that are
- to be connected. Normal contacts are created for BLUE to RED or BLUE to GREEN. A
butting contact is created for RED and GREEN. Butting contacts have the property that
the RED and GREEN lines may not cross. If this occurs an appropriat'e error message
with be given and one of the connecting lines will be discpnnected from the butting
contact. The line that is disconnected from the butting contact is chosen based on what

is connected to its other end. An end with nothing attached wi.ll be the first choice.

1.5 FUNCTIONS
BRest is partitioned into five major functions: line drawing interpreter, spacing,

expansion, cell management, and utilities,

The line drawing interpreter processes the crude sticks sketch coming f rom the Box
Editor. Lines of the same color or layer that are in close proximity are recognized as
connected. Enhancement transistors are recognized as RED crossing GREEN lines. It is
not necessary that they cross, but they must be perpendicular. Depletion transistors are
recognized when an enhancement transistor is partially covered by a YELLOW'box line.

Pullup transistors are recognized as a RED line colinear to GREEN with YELLOW_on top

RE S T Users Guide ' , 'PAGE 68

and a contact box at one end of the RED line. Connection points are defined by lines
close to or crossing the bounding box. In addition, after the stick sketch is interpreted,
it is comparéd to the prior diagram to transfer annotation, line widths and device

ratios.

The spacing function can be used to space the stick diagram to Mead and Conway
design rules. This function can be used at any time. The spacing or compaction can be
directed to compact along the vertical or horizontal axis. In addition spacing to the left,
right, top, or bottom can be performed. If after compaction it is necessary to add extra
logic in the cell, it can be expanded to allow rocom for this logic. The minimum
bounding box can be stretched or pulled out at the left, right, top, or bottom. This

stretching will also lengthen any attached wires.

REST has commands for reading or writing a sticks diagram file [Trimberger 80]. Ih
addition, a file can be read in that contains lines and boxes. This method of input is
provided so that other methods of supplying the crude stick sketch can be used. REST
also writes a recovery file in the same format so that if there is a problem after

running the box editor a recovery can be done.

REST has a set of utilities for plotting in various formats on the Hewett-Packard

plotter, and on the Charles terminal.

1.6 AN EXAMPLE - GETTING STARTED

The executable file for REST can be found on {(SSPLIB>REST.EXE. REST requires the
help file <SSPLIB>REST.HLP.

The first step is to execute REST by typing in REST to the DEC20. REST will respond
with an appropriate greeting. Before editing, a new cell must be created. This is done
by typing in new foo where foo is the name of new cell. To edit the newly created
éell, type in edit, REST will respond by starting the box editor. You can then design
your cell as in figure I-8 which is the raw input from the box editor. The commands to
the box editor are summarized in the command section under edit and in the manual
[BURKE 80]. Please note in the figure that the drawing is very crude. It is not

‘necessary to be precise in your sketches.

REST Users Guide FAGE 69

LINE

L]
X
—y
|w]

1
m}

- o
=
~

—
lllll'ﬁ

a

H

Figure I-G: - Sticks Input - lrom Bux Editor

When the cell is in the desired form, terminate the box editor by using the guit
command. REST will then interpret your drawing as in figure I-7. Notice that REST

snaps the lines together in an orthogonal manner. There are two commands for
cleaning the sticks drawing, FiTst 15 absorb which combines connected lines, and

second trim which will trim off lines that overhang. REST will automatically trim off
lines that overhang a little,

Figure 1-8 shows the sticks drawing fleshed sut. At this time it has nol been
ad justed for design rules. By using the command pack the drawing will be compressed
to design rules as in figure I-9. Packing can be performed in either of two directions -
parallel to the X-axis or Y-axis - or both. Figure I-9 shows the cell compacted to
design rules in physical form while figure I- 10 shows it in stick form.,

Device ratios can be changed by using the cursor commands with the set command or

the set command with the device name, Figure I-11 shows the cell in physical layout

RE S T Users Guide : . PAGE 69

2
SNAP
& LINE
GRID
i 4
1 a B i QuIT
T L g6
[1
([fH—
2]
i il
| o
i
| S |

Figure I-6: - Sticks Input - from Box Editor

When the cell is in the desired form, terminate the box editor by using the quit
command. REST will then interpret your drawing as in figure I-7. Notice that REST
snaps the lines together in an orthogonal manner. There are two commands for
cleaning the sticks drawing. First is absorb which combines connected lines, and
second trim which will trim off lines that overhang. REST will automatically trim off

lines that overhang a little.

'Figure I-8 shows the sticks drawing fleshed out. At this time it has not been
ad justed for design rules. By using the command pack the drawing will be compressed
to design rules as in figure [-9. Packing can be performed in either of two directions ~
parallel to the X-axis or Y-axis - or both. Figure I-9 shows the cell compacted to

design rules in physical form while figure I-10 shows it in stick form.

Device ratios can be changed by using the cursor commands with the set command or

the set command with the device name. Figure I-11 shows the cell in physical layout

RE ST Users Guide PAGE 70O

|

1 :

Figure I-7: Sticks After Interpretation

RE S T Users Guide PAGE 70

5]

.
ar

Figure I-7: Sticks After Interpretation

R ES T Users Guide FAGE 71

AR |
CRRERY |

ORI = MO L RO,

14
Y
LAY

ORI T Dy

LA RN

A%

] P

LR

o

ML R RRAR R

Y
13N

AN

Figure I-8: Sticks Physical Representation

with appropriate name changes with annotation,

The put and get command can be used to save your created cells for later use by BEST
or other programs that use the sticks standard.

RE S T Users Guide . PAGE 71

Ny eny |
\KXYW
sxvwu

\\\\\‘\"(\\\\ NN N
’ 5 5
ANNNNNN AN
¥ [£ .
¥ ¥
g 1 ; NS \\\&g
¥ [5
¥) ? % » f
NN AN N AR
5) 5 E 2R %
¥ NN ¥ 4 P
= b H 14 F 4
5 E E A x ol % /',’3
Vi e s y g U
¥ : ¥ E ¥ :]
ARNNLANNNN DRURNRRNRRN " N
5 : v ::
b, NN AN B\
¥t -

Figure I-8: Sticks Physical Representation

with appropriate name changes with annotation.

The put and get command can be used to save your created cells for later use by REST

or other programs that use the sticks standard.

REST Users Guide

PAGE 72

AN

E o

DN

N

N\

DN

NN

Figure 1-9: Compacted Sticks Physical Representation

REST UsersGuide = .) PAGE 72

A A B FI TN W
NN '

A\
A\
A
o\
\\\

AT TNNEN

e,

Zd e

CALATATAARIA
LRARARARARARASY

ARRRRARARARANA

T T
;«2‘ SNZNZ ,9_/ :
% | e

ULAELUNATERRARARAAR

Z/ B\

== i N
TR
53N W

AN s NN AN NN
AN I 0 0 1 Y e WY

2

AN+ AANARARNANARRARARARARAN

NN

AN

iy

Figure 1-9: Compécted Sticks Physical Representation

REST Usera Guide FAGE T3

R 84— & &
iE g il
iz S 3 :
Bl
il 1 - i
= =1 : -+ &l
- [1 il
g :I: £
B =]
|
i -
=
E-—H : e
e £ il
it i & & £

Figure I-10: Compacted Sticks

REST Users Guide “ PAGE 73

1

n
1

%

T

=l

[

M
Ll
sl
—

S g

- . i | a—
H 1]
]
i
-
12 I 1 :} H]
1 {
Sy -
ol il Iy
l;_n &1 3l
£ £ i £ 5

Figure I-10: Compacted Sticks

BEST Users Guide

PAGE 74
5
> > {‘-f‘-
TOUT
=
EN
-
Z
27
N N T
X K\\\: L
7 :’_.; ?
S ZRN/
Z %
N Z 7z
2V
. ZRZ
N \ oot

Several Compoctlons. and Constrainis

Figure I-11: Annotated Sticks Physical Representation

I.7 REST INPUT COMMANDS

The commands to REST are described here in a syntactical graph notation. Choices or
branches are always followed down while loops are always followed up and back. The
number between the symbols /n\ is the maximum number of times the path may be
taken. If an asterisk appears between the slashes the path must be taken at least once,

In the example below, the possibilities would be A BRANCH » BRANCH ANOTHER

REST Users Guide : | PAGE 74

S
& g@ &

|

-

N N R AN : N N ' DTOUT
AN I NN
B \i/‘(\l\\\ 3 X ‘b\‘t 5% , BERNN USo
p ‘A ity g 2)
g = : / — f)w,‘:‘\ 3 g
g R /é{ 7 ok g
ZiardlZ = 22 B
N ‘\\:f% ot R <EK N AN <
SR N N e N N e
e 0 ZZI R NeN- e
o]\ 11y
Zhzdzlz - D
f’g ////2 % \ \? s 3 Usa
B Zi 8 Z :
AT A N2 NN ZaUT
AN SN N\

Several Compactions. and Constraints

‘ Figuré I-11: Annotated Sticks Physical Representation

L7 REST INPUT COMMANDS _

The commands to REST are described here in a syntactical graph notation. Choices or
branches are always followed down while loops are always followed up and back. The
number between the symbols /n\ is the maximum number of times the path may be
taken. If an asterisk appears between the slashes the path must be taken at least once.

In the example below, the possibilities would be A BRANCH , BRANCH ANOTHER

R E S T Users Guide i PAGE 75

BRANCH, etc. The end of the path is always terminated by a |. Keywords are spelled

out in capital letters and references to other productions are between the symbols < >.

Tmmmmmmemnne ANOTHER = e e e
=== /Bi\ = oo mmm oo es BRANCH oo |
l——m A ——=|

The following are the commands for REST listed alphabetically. REST accepts one
command per input line and does not allow the command to span more than one line.
The keywords in the command may be abreviated as long as they are unique among the

other commands. All units in REST are in lambda except where explicitly stated.

ABSORB This, command causes all connected lines that are not a part of a
component (a component is a transistor ,contact, or connector) along -a
colinear p_ath to be merged into one segment. The X and Y part allow
selective absorbsion of segment in the horizontal (X axis) or the

vertical(Y axis).

—————————— ABSORB -T--—-_--_—_-_—_____—__T_I
o D et T |
i I
______ Y e
BURIED This command sets the buried option. When set all butting contacts of the

current cell will be changed to buried contacts. Any new poly to green

contacts will be of the buried type.

---------- 2072 {2 R —

CONSTRAINT
This command allows inquiry and modification to the current cell
constraints. A constraint defines proximity rules for compohent or
connector, or segment intersection point. The X or Y defines the axis to
which the rule is to apply. If no constraint is supplied the current

constraints are listed on the terminal. The delete allows deletion of

R E S T Users Gunide PAGE 76

CURSOR

constraints. The integer refers to the index value of the constraints after

they have been listed.

= CONSTRAINT oo oo |
I — i
S u
i-— v! ~——-<CONSTRAINT STM>-—- i
[I — [
l——DELETE — 5 ------ <INTEGER» -t
CONSTRAINT STM
-T-<1NTEGER>———-~—----——T-T = -smmseme- <INTEGER>—--——-T—1
AA<NAHE>A—iﬁ~— R : > : ~—f—<NAME>—T———————————T—
—--<INTEGER>--- —_— < - ~—<INTEGER>--

The CONSTRAINT STM provides the rule. First éi{her an integer or a
component name and an optional integer will be supplied to provide the

left hand part of a constraint inequality. Second a relation is supplied

- followed by an integer or-a name and optional integer. REST does all

necessary rule checking.

This command allows inquiry and modification to the current cell using
the Charles Graphic Station. The mouse buttons are numbered from right
to left. Button one or the first button is used for inquiry. Button two is

used to exit the cursor mode. Button three is used to cause action

depending on the type of request. A DISPLAY command must have been

done prior to the cursor command.

R E ST Users Guide

~--CURSOR

I
§777 CUTLINES oo oo

|
J-CONSTRAINT —oYormmm oo = -

PAGE 77

I
~==<NAME DPTION>====-m [

t

——Y-- 1<INTEGER>1 l— < --
!
-LINEWIDTH -- POLY ————- <INTEGER> ~—=——=~-
%—- HETAL———i
| -DIFFUSION-1

A general cursor request with no options will allow inquiry only.

The first button is used for ihquiry while the second will quit.

EXPAND

SET

This option will cause expansion around the point selected
by the third button. The amount of expansion is defined by
the integer in Lambda units while the direction is defined
by X, Y, TOP, BOTTOM, RIGHT, or LEFT. '

This option is the same as the set option in the SET command,
how