SUPERMESH

Wen-King Su

Computer Science Department
California Institute of Technology

5125:TR:84

SUPERMESH

by

Wen-King Su

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

- May 1984

5125:TR:84
Computer Science
California Institute of Technology
Pasadena, CA 91125

The research described in this paper was sponsored by the
Defense Advanced Research Projects Agency, ARPA Order number 377"
and monitored by the Office of Naval Research under contract num
N00014-79-C-0597.

TABLE OF CONTENT

2.2 DATA EXCHANGE ...ccoviiiiiviiiiiitinirrrin sttt sseee s sanessssesae s s ssn e ne s sseneessesnessenes
2.3 THE CLOCK oottt e e s e s ss s sar st e e s s easbas e e smaneseee s nns

..

3.3.1 NUMBER SYSTEM AND CONVENTIONS +oeeoeoeoeooeoooeeoeeeoeeeoooeooooooe o
3.3.2 MULTIPLY ALGORITEM vvovveoeeeeoeeoeeeeoeeeeeoeeoeeeeeoeeeeeeoe oo

3.3.3 ADDITION ALGORITHM weoooooeoo oo
3.3.4 DIVISION ALGORITHM ovoooeoeooeeoeoeeeoeoeeoeeeeeoeeoeeeeoeoeeeooeooooo

3.4 COMMANDS .ttt s et e e s s see e nr e as e e e e e e e avaessnssntsssbaneseeeerensensansen

4 CONCLUSION

11
17
19
22
25
28
29
31
35
36
39

41

PREFACE AND ACKNOWLEDGMENT

To relieve the pressure on the readers and author (mostly the author), and to try to
capture a record of the design process, this paper is written using a deliberately
"unsophisticated” mode of presentation. A paper for publication, and with more

technical taste, will be written when appropriate.

To an unusual extent, this project is a joint effort with my advisor C.L. Seitz, to whom

I express my deepest thanks.

During the first part of this project we held many meetings. In these enormously
productive meetings we tried to forge into a single entity the many ideas we had,
triggering even more thoughts and ideas. By the time a final form emerged, each of us

found it impossible to distinguish the source of the ideas presented.

During the second part of this project, he would again patiently read over and

correct each draft of this paper, making its writing a valuable experience for me.

1. INTRODUCTION

Many applications one encounters in computing are difficult not because of their
complexity but because of their size. Applications such as computer simulations and
computer graphics typically require massive amounts of rather simple calculations.
Pressure for larger and faster machines increases; yet, present day computers are
already hard pressed to their limits. We must find new machine architectures or face a

dead end.

Of those applications that require computing power beyond our current ability, a
substantial fraction of them can be formulated as a large collection of smaller {asks
that run concurrently. The applications that divide into numerous small pieces are
most economically run on an an ensemble of many small computers, but for those that
divide into only a handful of large chunks, we can run them in a network of a few large
machines. No particular machine of this type will prevail over the others becausz the
economy of using any one of them is a delicate balance between what is needsd and
what is provided; a balance between flexibility and performance. Fine grain machines
generally have highezi performance because they contain many more processors than
comparably sized coarse grain counterparts; however, they are less flexible for they
have less memory to store programs, and in some extreme cases are totally dependent

on hard wired logic for their sequence of operations.

In light of the mounting demand for machines of ever increasing size and powsar, we
hope to learn how one constructs large machines of this type economically. In this
experiment we present the design of an arbitrarily extensible machins called
Supermesh, an SIMD machine whose cost / performance is pushed to the limi: and

whose architecture scales perfectly with advances in VLSI technology.

Although the SIMD machine is but one of the many types of machines tha® will
ultimately face the problem of size, its design exposes fundamental probleris of
synchronization and broadcast communication, and its study provides insights to how

=S8

other machines may solve their problems.

2. SYSTEM LEVEL

An SIMD machine is a collection of processors called nodes operating on data stored
locally in eabh node according to commands emitted by a control computer. These
nodes are interconnected in a regular network [Siegal 79] to communicate with each
other. Thus these individual nodes are nothing more than simple calculators fitted with
communication ports and some storage registers, and operated in parallel by the

control computer.

009282988

A simple example of SIMD machine

This type of machine belongs to the finer grain end of a taxonomy [Seitz 82] of
machines ranging from the single processor general purpose computers to simple

memories.

General purpose computer
Loose MIMD network

Tight MIMD network

SIMD network
Computational array
Logic-enhanced memories

Simple memories

Unlike the computational or systolic arrays as described in [Kung & Leigerson 0], the
sequence of its operation is not built in into the hardware; yet, unlike the MIMD
machines, the individual nodes are not full blown computers. By throwing away tha

program related functions found in MIMD machines, SIMD machines gain a spesd and

size advantage at the expense of flexibility. However, many applications fit nicely in an

SIMD environment, and some may require power achievable only with such a machine.

To get an overall picture of this machine, let us look first at the tie that holds it
together: how the control computer send commands through the machine. In a
simpler system with only a few nodes, the practical way is to directly connect all ncdes
to the central control computer. But, if we have thousands or even millions of nodes,
the machine will look like porcupine many times over. The maximum amount of power
that can be concentrated at the control computer to drive all these wires, and the
maximum number of nodes we can practically fit around the control computer, will
ultimately limit the machine size, while we insist that our design be arbitrarily

extensible.

MOVE

RRARIRRR S

Sending command across an arbitrarily long array of people

The only solution is first to have the control computer give the commands to a selzziz:

one or a few nodes, then have the commands amplified and pass from node to nz2dz
until every node in the system has received the commands. Thus the machine sh:::214
lock like a large nelwork of nodes with a single entry point where the command =233

and disperses.

In the old days when a node was something as large as a file cabinet, and a mazhias
is just an arbitrary pile of these cabinets cabled together, we really did not have many
restrictions on how they are interconnected; the machine will not get too clutterad up
if we apply just a few more spools of coaxial cable. For this VLSI machine, our ocptions

are limited by the shape of the chips on which many nodes would be built {fat).

| I 1 | ,I | l

Nodes connected in a two dimensional mesh
In all figures, command entry is at the upper left corner.

A regular two dimensional mesh is a good choice because most problems requiring this
machine map naturally ontc two dimensional manifolds. In such an network, each node
can communicate directly only to its immediate neighbors. Thus one might call this
architecture a "processing surface,” a name coined by A J Martin [Martin 81] to
describe an MIMD machine that could be made arbitrarily physically extensible by the

same approach as is described here.

1001101 1011111 1@{?11@ 1000161

O

Communication between neighbors should be serial

Furthermore, since the distance between neighbors is short, the links connscting

them will have a very high bandwidth. The high bandwidth of the links allows the use of
serial communication, saving extra carrier pins, chip area, and power used in driving

the links.

From these logical deductions, an SIMD machine of small node size can exploit
future technologies if it is configured as a flat sheet of mesh-connected ncdes driven
from one corner by a control computer, and have each node connected with serial links
only to their neighbors. The overall picture for this machine is now clear; however, we
also need to describe what the nodes do, and how they work. The node design will be

described in chapter 3.

In this chapter the network is analyzed and defined in detail. The distribution of
commands, the generation of clocks, and the exchange of data are the three major
areas. Since they are tightly intertwined it is very hard to present this subject in a
linear fashion; indeed the parts of this whole machine fit each other like the cors of &
Rubik’s cube, making it difficult to describe. Here, the work on the network levsl is
presented in a more or less chronological sequence. First, recognizing the difficuliies
in distribution clock signal through a very large machine, and knowing a number of
possible solutions, we decided to posipone its definition and instead to place a weak
assumption on the clock as the starting point. We assumed that the clock signal Qan be
generated and distributed throughout the system in a way that bounds the skew
between neighboring nodes but not necessarily across the array, the minimal condition
assuring reliable synchronous data exchange in SIMD machines. We then devized a
system of pipelined command distribution and data exchange based on this assurmtion
alone. However, later when we designed the mechanism for producing the clocl, we
realized that it has some stronger properties that permits an alternative to the orizinal
plan. This discussion may seem to take a circle, but only in this way can we clearly and

logically describe the evolution of these two equally workable plans.

2.1. COMMAND DISTRIBUTION

In a small SIMD machine, the control computer brings about concerted action in the
nodes by asserting its command at every part of the network at the same time.

Y

1 = == .

v - v

Example of command distribution. The command enters from top
left corner and is distributed through the grid. Actually

half of the path shown here are redundant. The paths are

shown running in both directions for symmetry and clarity.

For an arbitrarily extensible machine, sending command from the control computer
directly to every node of the network is impossible. As described earlier, in a large
machine, the command must be amplified and passed from node to node, and all these
actions take time. The control computer must allow enough time for the command to
propagate all the way to the very last node; thus an SIMD machine that depends on
concerted actions of its nodes must have a clock period proportional to its physical
dimension. Such an approach vic;lates our design principle that the machine be

arbitrarily extensible.

Pipelining is a solution to this kind of problem [Cohen 78]. In a pipelined system,
the command from the control computer advances only one amplification stage for
each clock cycle. Each amplification stage contains a set of one or more nodes

residing in the same equipotential [Seitz 80] region.

P 5
1>t - o

5 & 5

Each large box represent an equipotential region.

The commands sent out by the control computer will travel in wavefronts through out
the network, where only those stages along the same front are in step with each other.
Since cormmmands from control computer initiate and synchronize node functions, the
state of nodes will skew with the commands; nodes in one amplification stage in the
network lag the nodes in the stage behind them by one cycle, and lead the ones in front
of them by one cycle. Concerted action is no more; however, the control computer no
longer needs to wait for the command to be fully propagated. Thus, if a machine has N
amplification stages, it can potentially run N times faster with pipelining. However,
pipelining is not all good. If we need, at any moment, for the control computer to be
able to observe valid resulls in every node, the control computer must issue no-ops to
allow all previous commands to complete. However, this will not occur here because we
lock into the network only through its corner; in order to see the entire network, the
control computer must bring data from each node to this entry point. As long as the
node at the corner stays synchronized with the control computer, the control

computer will not see the skew.

2.2. DATA EXCHANGE

Now we consider how information is exchanged among the nodes. In SIMD machines
the command to send data is synonymous with the command to receive data. When the
control computer says 'give data X to your east neighbor," it is also saying "take data X

from your west neighbor.”

> - -—

Y

XMIT BIT § XMIT BIT § XMIT BIT S
RECV BIT S RECV BIT S | RECV BIT S ’

XMIT BIT & XMIT BIT S XMIT BIT §
RECV BIT 5 RECV BIT S RECV BIT S

I 1 FTd

Communication is simple in an unpipelined SIMD machine.

Doing transfer in a machine without pipelining is easy; in this example each node
simply uses an east-west running shift register as a port; write X into the register; then
shift its contents out in a west to east direction; and at the same time expect data
from its west neighbor to shift in simultaneously from the other end. If a word has n

bits, then each node does n shifts for each communication cycle.

However, things get more complicated with pipelining. Since commands must ripple
through the array, not all nodes can be in the same step as their neighbors. For those
that must communicate across the boundary, the data bits from nodes upstream would
arrive one clock too early and the data bits from nodes downstream would arrive one
clock too late. We can easily compensate for this skew by first adding one clccked

delay element to all data links in the un-pipelined array.

-

XMIT BIT 3
RECV BIT 2

ry

<

XMIT BIT 3
RECV BIT 2

Yo,

9

XMIT BIT 3
RECV BIT 2

==

<&

__ic:ﬂ;‘:“

XMIT BIT 3

o

XMIT BIT 3 XMIT BIT 3
RECV BIT 2 RECV BIT 2 RECV BIT 2

v FDI'FDJ v FDJ{DJ wf‘D'f

An unit of delay is inserted between all links.

Go| o
Gl G

Although only links on the boundary of equipotential regions are shown, links between
nodes inside the same region are similarly delayed. Now all data bits arrive one clock

late in all directions. In this array each communication cycle takes n+1 shifts to

complete.
XMIT BIT 5 XMIT BIT 4 XMIT BIT 3
RECV BIT 4 RECV BIT 3 RECV BIT @2

i
H>—

?MIT BIT &
RECV BIT 3
r_;‘[P@

SIMD machine with compensated data links.

=iy

[l

XMIT BIT 3
RECV BIT 2

PT e

XMIT BIT 2
RECV BIT 1

Pl

oo oo

ooy onf

Now when we add the pipelining on the command, we introduce one additicnal clock

delay across the equipotential boundaries. To counter that extra delay, we simply

remove the delay from the backward links that crosses the boundaries and add it to
the forward link. With this skewing in data, individual node sees the mesh, not as one
with a built in command skew, but as one that is same in all directions and exists in

exactly the same clock cycle as the node itself.

10

2.3. THE CLOCK

The data exchange and command distribution mechanism as described in the
previous sections represents one of the simplest of all communication techniques
available. However, it places some restrictions on the behavior of the clock. The
machine must guarantee that every pair of neighbors remain in step at all time. One
small drift will cause nodes to take in invalid data or command bits. Machines of larger
node sizes keep everything in synchronization by making one node wait for another;
waiting, however, is not an easy task for nodes in SIMD machines. These nodes do not
contain any programs, therefore, they cannot enter any waiting loops of their own.
Making sure the clock signals of neighboring nodes always stay in phase is the only

alternative.

This objective is not too difficult unless we need a machine arbitrarily extensible in
all dimensions. In a conventional computer, the system clock is just a signal; a bit
stronger perhaps, but nothing more then a signal to be distributed evenly throughout
the machine. In a larger machine, when driven from a single point, any signal will
eventually die out at the far end of the machine, like water pressure at the periphery
of a metropolitan water district. We have no practical way of massing enough power at
the driving point to propel an arbitrarily large machine. Buffering the signal along the
way is necessary but it introduces skew. The skew accurnulated along two different
routes can differ widely, and as a result, nodes controlled by the same signal will still
go out of step [Fisher & Kung 83].

Our most satisfactory solution is one in which the clock generator is a gigantic array

i
v:<
B
-
]

4
v
Y
4
\

'§|7

11

of coupled ring oscillators. In the remainder of this section I shall describe one
derivation of‘this clock system. It is not the original derivation; however, it is easier
for me to explain and understand. First, let us consider ring oscillators. A ring
oscillator is an amplifying negative feedback circuit usually drawn as a loop containing
an ideal inverter and the lumped delay d. Suitably initialized, this circuit will oscillate
with period of 2d. Shown here are two ring oscillators with a C-element spliced into
each loop. C-elements are simple asynchronous sequential machines whose outputs
goes to zero when all inputs are zero, goes to one when all inputs are one, and stay
unchanged under all other input conditions. In this first example, the C-elements have
no eflect on the oscillators. Later, these C-elements will serve synchronization

functions.

==

Let us treat the output of the C-elements as the output of the oscillators. OQur

objective is to lock the phase of these two oscillators. We can do this by enforcing an
ordering of transitions between the two clocks. By feeding the clock output of A into

the C-element of B, we force all clock transitions of B to follow that of A.

g * C:c_4>-tJ

-
A B

By feeding the inverter output of B into the C-element of A, we prevent A from making a

transition until B has caught up with its previous transition. At the same time we
ensured that both A and B will stay in the same state for time d. The sequence of

operation now is: A rise, B rise, d delay, A fall, B fall, d delay, A rise ...

12

i .
= L

Finally, by removing a redundant link, we arrive at the final form of the locked

oscillators.

d

- = s<}—@)

This pair of oscillators can easily extend to higher dimensions. To produce one

dimensional array, we append extra stages to the right.

a @40

IO

To produce two dimensional array, we extend in two directions. For simplicit;, as

b .

s

drawn, the delay elements are incorporated into the inverters.

13

This two dimensional mesh of oscillators can extend indefinitely, and will oscillate
with frequency determined by the longest delay element. Each oscillator will stay in
step with its neighbors, and their clocks will have a guaranteed minimum overlap
determined by their own d. Furthermore, since the oscillator in front leads the
oscillators behind it, the skew is consistently positive in the down and right direction.
The clock will appear like waves propagating from the upper left corner of the mesh
down toward the lower right. It will look like as if the clock is actually generated at one
corner and then distributed over the whole array like a series of expanding ripzles.
Unlike the typical driven array, however, the diagonally running crests and troughs of

the waves continue frocm one end to the other without breaks.

The following are the outputs of computer simulations of the two different methods
of distributing clocks. Once again the corner is on the upper left. It is also the point
where ripples of clock originate. On the left is a simulation generated with the
oscillator method we have discussed, and on the right with the conventional amplifler
method. Each character position represents a clock element in the clock array.
Where there is an '@', the clock is high; where there is a space, the clock is low. A '¥
means the clock has just made a transition from low to high, and a '+’ means transition
in the other direction. The delays of the amplifiers were picked with a random number
generator, and the same distribution of delay is used for both simulations. Due to the

limited space available, the spread of the delay values is greatly exaggerated to show

14

what can happen in a very large array.

|+ +EEQ +4+30 %% H TR FEKKK FAXXR++CECREE)
1EEEX ++4+0QQ%x% H Vot X@E 4 X XX+CEEREX !
y @K +++QQ2@%xx H Vb @ X@++Q@ X++ GRAOKX!
) etk +++@FAXK + ! 1+ @++ERAA+ XY ERAXXNKK)
HE 2 +@RAX%XX ++) '@ ++ERAEA+T QA@XXX |
VoK ++Q@RE%X +4+@. @ +QEERAA +QAAA%XxX :
' ++QRERAxx +++0@: VEH+HARKRK GREAXAK H
! ++ERARAxX ++@Qee! 1@+ XA ERX A % H
\ +tERAEE%XX ++QQQQQ! VA @kKERE K@K X :
T +EAEANKX ++@3300QQ; QA% E K kKK XK H
L4+ +@RAXRX +4+QQ300@x%x ! 1 RQE@ X +200KK 4 K + !
1 GEEEXX +++@3QF@%%XX | I %@Q + X + Y
' @EExRxX ++QQ@@xxx | L @ER @ @ ++)
' @REX ++G0RAEAXXXX | "} @+ x ++@+)
1 @E%X +@EEEAXXX ' Pokxd + G+ % +Q@@+!
T @%x +@ERAXY % + HEE 2 £ 3 +@@ +% ++Q@+!
PRE +@EQ@%xx +e i+t @ T+ +%@ + ++QEEE;
I RE ++RAA%*% ++Q; 1+ Q@ @+++%@ + +REEXE!
)% ++@EE%x ++Q@Q; 4+ G+A+4+O%E @ +QPEXXEA!
3 ++@ERFEx ++e@e; g@ R+@@+Q@ Xx+% @EEAX%A !
locked oscillator array regular amplifier array

As we can see from the simulation, in the first case, the neighbors of any element
are either in the same clock cycle, or about to enter the same clock cycle, or have just
left the same clock cycle as the element itself. In the second case, however, the waves

are completely broken up.

This nice wave-like behavior of the clock network, due to a consistent direction of
skew, enables a different form of command distribution, as we shall see later. But first,
let us see how this clock might be used in data transfer. In a typical MOS two-phase
synchronous system, we only need to assure that data latched out on phase 2 cloclk on
one node will be reliably latched in on the following phase 1 of its neighbor. But first of

all, we need a two phase clock.

PHe

T — D

e L s S [B |

PHL

This figure depicts a gate implementation of 4 clock stages in a linear array. The cross

15

coupled nor-gates and the two and-gates in each stage represent the C-element. The
two and-gates each receive a complement of two signals, one is the output from the
stage before and the other from the stage after. Since cross coupled nor-gates
generate non-overlapping complementary outputs, its outputs can be tapped directly
for the two clock phases needed. Further, since complementary outputs are available
at the nor-gates, inverters are not needed; however the delay elements are duplicated,
one to delay each complement of the output.

'1_r->’——|_r-‘>— OFF CHIP

- - -
PH2R PHES PH1B

J PH1 PHE PHL ﬁ rHE PHL PHR

=
B ‘l PH1 PHE W’Hl PHE PH1 PHE

S ——

ke N

Now, with the clocks generated as above, when sending data in same direction as the
clock waves, resynchronize the data with phase 2 of the receiving node. The phase 2
clock will not pick up wrong data by accident because of the guaranteed sequence of

transitions indicated by circles joined with line segments.

~<__— OFF CHIP —<}_+

PH1A PHaB

| PH1 PH® PHE PHE PHL PHE

—te

PH1 PHR PH1 + PHE PHL PHE

he 3

Data transfer in the other direction requires no resynchronization at all. Valid data

=
=

transfer is again guaranteed by a fixed sequence of transitions. In either cases, data

has 2d time to jump from node to node.

16

2.4. THE ALTERNATIVE

As we have seen, in the previous pipelined command distribution, one full clock
cycle is allowed for carrying the command from one equipotential region to another,
carried in a wavy fashion across the network by clock which themselves are wavy. We

allowed one full clock cycle in data transfer.

—i PH2 PHL

= PH2 PHL

|
{lSkéw t-cyce

|
L

However the command, like the clock, is an external signal, it should only have a
skew comparable to that of t-skew. Nothing more can be said of the relationship if the
clock circuit is built with a different circuit technology. Otherwise, the skew of the
command may be much less then that of the clock, allowing it to hop from stage to
stage not in one t-cyc, but in one t-skew. If this is the case, all we need is a simple pass
gate to move the commands along the wavefronts of the clock, like ocean waves carry
surfers gliding ashore in one swift stroke. The pipelining is not needed, and the

elaborate mechanism used to cancel the effect of pipelining is not needed, either.

Ml ™ Raakll el ™

L F aF

Tt > I g™

T
= L 7

Surf board instruction distribution

However, depending on the choice of technology, the latter method may have a lower

performance because the device on which we build logic may not be the ideal device for

17

a clock driver. Yet, where our technology leads, we cannot tell, but whereever it leads,

these are two equally workable plans.

18

3. NODE LEVEL

As described in the previous section, the nodes in this SIMD machine communicate
serially due to the small size of the nodes, the closeness of neighbors, and the promise
of future technology to package many more nodes onto a single chip. Serial
communication also helps make the nodes small by allowing the use of serial
arithmetic; if commands from the control computer arrive slowly, there is no sense
making the nodes lightning fast. Serial communication and serial arithmetic
complement each other; one either has to make the nodes large and fast and parallel
and suffer all the ills of Illiac IV, or make the nodes small and serial. However, as it
turns out, the arithmetic cannot be entirely serial, just enough to match the speed of

communication.

PRRAL.L EL AU [N

L_SERIM™
L N __'l @ o Iﬂh =1V)
OTHER STUFF OTHER STUFF

«— N - — N —

Use of serial arithmetic reduces node size

By using serial arithmetic, we achieve an order of magnitude complexity reduction
in area of the AU (Arithmetic Unit). This reduction is secondary, however. The primary
reduction in node size is accomplished by factoring controls out of the nodes.
Conventional processors are largely occupied with program related circuits. A typical
computer instruction may require the processor to fetch the instruction stored at
location pointed by a program counter, update the program counter, compute operand

addresses, read the operands, operate on the operands, and then store the result back

19

to memory. All this involves a lot of circuitry and registers, yet if this type of

processor is used for building SIMD machines, every step except the AU operations will

be exactly duplicated in every node. This duplication in circuit and the associated

duplication in program storage is a great waste of chip area and power in applications

that can be formulated instead for SIMD machines.

PROGRAM
CONTROL

. 8a }
C_roRYs]

& H &R/
C_Pokts 1| |C—FoRts
RAM RAN
Ao] 13]
C_FoRkTs] C_EoRTS]
RAM RAM

We can build more processors in the same chip area by
removing program and program related functions.

A more reasonable thing to do, as has been done in all other SIMD machines, is to

extract as much of the duplicated control cut of the nodes as possible and pul them

into the control computer. Every complicated operation is digested once and only in

the control computer. Further, since there is nothing in the nodes having to do with

programs, there is no need for storing them either; therefore the amount of RAM in

each node can be trimmed to that minimum required for data storage.

After much cutting and trimming, the node element is cleanly divided into three

independent units:

1. The Register Store

2. The Communication Ports

3. The Arithmetic Unit

Each of these three units has their elementary command streams coming from the
control computer. These command streams are the only way by which these three
units are tied together - even the synchronization mechanism has been taken out of

the nodes.

{ _nu ly [/ AU 1?
L/ AU —LA——: AU J,é_._;

¢ . | a—
L

REGISTERS REGISTERS

&zzﬁ_ | e P?on?? g

The interfacing of these three units are simple; the AU simply writes and reads results
and operands to and from fixed registers inside the register store, and the
communication ports simply appear as a set of fixed registers also in the register
store. It is the responsibility of the register store to see that the right data appear in
the right register when needed by the other two units, and it does so under the
command of the control computer. The simplicity can best be realized by looking at
the commands sent to each unit: the AU needs only the commands for add, subtract,
and multiply; the register store needs only two addresses for moving data words
around in the register bank; the communication ports need no command, it is
conflgured as a continuously flowing stream. Controls for these three units are very
simple, especially for the communication ports and the register store. The register

store is the center of the node, yet it is the simplest and thus should be described first.

21

3.1. THE REGISTER STORE

The register store unit contains two sets of registers and a very simple controller.
The larger set of registers contains the data registers, which is primarily composed of
an array of dynamic memory cells used for data storage. The smaller set of the
registers contains the special registers used to tie the rest of the node together.
Among the special registers, 3 of them are associated with the AU and 4 of them with
the communication ports. The 3 special registers associated with the AU are dual port
registers connecting the register store and the AU; while the 4 special registers for the
communication ports are the ports themselves. More special registers may be
required if more parts are added to the node; some applications such as computer

graphics may employ units that perform other functions.

The operation of the register store is simple; in serving the AU, the controller
transfers the operands from designated data registers to AU's operand registers before
every AU cycle, and the controller transfers the result from result register back to
some designated data register after every AU cycles. Other function units are similarly
treated. Thus, the register store needs only two addresses and a direction flag to

operate.

Let us now look closer at the register store controller itself. All it does in every

cycle is to take in two addresses from the control computer and do a transfer between

FUNCTLIONAL '
UNETS
SPECIAL

COMMAND——» CONTROLLER ' i

REG

H
)
-

ERsS

Picture showing how register store relate to other elements.

the selected data registers and the selected special register. When the control
computer asks it to do a data transfer, it does a data transfer without regard for what
such a move may be for. It may be used to refresh a particular data register; it may be
used to take a result from the AU; it may be used to write a word into a particular
communication port; it may even be used to mess up the node by creating conflicting
writes into a dual port register; but what ever it does, it is the control computer’s
business. It is the control computer’'s task to generate each elementary move
command from complicated instructions, and send them out at the right moments
relative to the commands for other parts of the node so that right data appear at the
right place at the right time - a complicated task that would otherwise have to be

duplicated in every processing node.

Since the functions of the controllers are few and simple, the commands for the
register store are also simple; they are made of only two addresses, a direction flag
and a start signal. All the controller has to do is to shift in the command serizlly,
interpret the direction flag, and do a data transfer when the start signal is detected.
Unfortunately, since the length of this command depends only on the length of the
addresses needed to select the registers, and since the command is to be transmitted
serially, the time it take to transmit a command will not scale with the word length.

However, we can always increase the bandwidth by using more wires to carry the

\slsi|s|s|o|o|o[o[o[o[r/w]s T AR T}—-1

0211100

T SPECEAL DAY A
REGISTERS REGISTERS -
ADDRESS ADDRESS =
=—1
(sisis|s} 52
EREIEFRg %

0221300

EIEILRYS lsrnnﬂ———é

Example of breaking long cormmand into several streams.

23

commend. The number of wires needed would equal the number of bits the command
contains divided by the number of available clock cycles between each command. As
the word length becomes larger, the number of clock cycles allocated for each register
command also increase; therefore at sufficiently large word length, multiple wires may

not be needed.

/\,
I | |

[ALPHA ALPHA COTTON [A TN
SEED SEED cCRT
gl -~ e -

: :g ‘a‘t:ﬁ APPLE |su~P'Co'ws"R
- - SEED SEED

Shifting data within a bunch of RAM cells and registers is all this unit does; however,

A

e}

the real complexity lies hidden behind an addressing mechanism that makes
everything seem simple and uniform. This uniform addressing mechanism not only
makes the design of the controller simple, it also makes adding more functions to the
node easy. Like our highway system, first we lay out the roads then a city grow around
it, feeding on goods shipped through the highway. Furthermore, we do not care what is
being shipped over them as long as they are carried on something that has wheels and

rolls.

3.2. THE DATA CHANNEL

If nodes are cities, then their communication ports are the train stations and the
links among them are the railroads. Actually, these ports are more like continuously

rolling conveyor belts made of continuously shifting registers.

Nodes in this machine are connected in a 2 dimensional mesh; therefore each node
has 4 neighbors and 4 communication ports, each for one neighboring node. These
ports are named "north"”, "south”, "east”, "west" according to the orientation of their
associated neighbors; the north port transmits data to to the north, the east port

transmit data to the east, etc.

—]

£
2

v

a
r 4

~

)
A d

) 4

]
&

&
T

r
r 4

a

L
<

A
g

g
""E__f;__'.___!--f
=
w
1L

Picture showing how ports are connected in 2-D mesh

I} Tl

Besides sending data in a certain direction, these ports also receive data from the
opposing directions; as the north port shifts its contents out northward, it also shifts
data in from the south. Indeed, all the registers in the same row or column in the same
direction are chained head to tail to form a giant shift register spanning the width or
length of the array (and thus the conveyor belt).

All the node has to do in transmitting data is to put data onto the conveyor belt and

pick data up some specific time later. This is conveniently done by the data move

operations of the register store; writing a word into the special register corresponding
to a port puts the word onto the giant shift register, and reading a word from a special
register reads the current state of the shift register. For example, if there are 64 bits

in each shift register, and a word is written into the east port, then if east port is read

64 clock cycles later.

NODE l NODE NODE

—bbb- n- n-- -
PORT PORT PORT

Picture showing how ports of same group are chained

The word read would be the word written by the node one location to the west; if the
port is read 258 clock cycles later, the word read would be the word written by the
node 4 locations to the west. Of course the communication port cycle does not have to
be 64 clock periods; recall the one extra clock delay between each pair of neighbors as
imposed by command pipelining. In general, whatever the length of communication
cycle is, when a word is written into a communication port, it would be transported k

nodes away in k communication cycles.

However, if the contents of the ports were not read at the right moment, the word
obtained would be a snapshot of some data in transit, yet there is no circuit in the
nodes to guard against such action. The responsibility for synchronization is placzd on
the control computer; it has to emit commands for data moves to the register storz so

that data will be read out of the ports at the right moment after it was written.

Another problem that appeared in designing this machine is the boundary problem.
All square meshes of finite size have boundaries, and nodes on the boundaries have
fewer than 4 neighbors; nodes on the edge have 3 and nodes on the corners have only 2.
Where does a node on the north edge send north port data to, and where does it south

port take data from?

26

Tl

—l L=

, TL
L

— L=

Ll A
el e) e
e T T

Picture showing confused boundary nodes

AR

This is a question to be answered at a later time. In this example the north port can
simply be tied back to the south port forming closed loops. These dangling
communication lines may also be terminated into some mass storage devices. The
specific connection on the boundary will not be decided at this time because the

specific configuration would probably be application dependent.

33 'I'IEMGPDDI’!'ARI'HEEI‘ICUNIT(AU)

The essential structure of this machine is determined by the register store and the
communication ports. The definition of the structural architecture ends here.
However, to be useful, 'something has to be done with the data being shoved around
among the nodes. Since applications requiring this type of machine usually involve
large amounts of number crunching using numbers of bewildering magnitude, floating
point arithmetic is the most obviously useful form of operation. Other units may be
added as required. The AU, like all other units, is self contained and independent; it
can be grafted clean off a node and the rest of the node will still function properly

because it only writes and reads three special registers in the register store unit.

ON Mﬁn—j
c:co ™ PTURTOELR DATA AU

ARG A e
—{ ARG B __ jJ&—
CRESUL T Je—

REGISTER
STORE

Figure showing how AU interact with other elements.

The functions of the AU are also simple; it responds to commands for floating point
add, floating point subtract, floating point multiply, and the generation of an initial
value for a subroutine that calculates the reciprocal of a number. Floating point
subtract is identical to add with the sign of one of the numbers complemented, and will
be described without distinction under the section "Addition Algorithm". Floating point
multiply is described under "Multiply Algorithm". As for divide, it is implemented by an
iterative algorithm described under 'Division Algorithm'. However, before getting into

the algorithms that operate on numbers, let us look at the number being operated on.

3.3.1. NUNBER SYSTEM AND CONVENTIONS USED IN ARITHMETIC

First of all, and as usual, there is a mantissa, a mantissa sign, and an exponent. The
mantissa and the sign form a sign & magnitude number; the exponent however, is a
two's complement number. An excess something representation of the exponent offers
only a cosmetic eflect of having zero represented as all zeros in all bit positions, and is
identical to two's complement representation with the most significant bit of the

exponent inverted.

MANTISSA S| | EXPONENT
SIGN MAGNITUDE TWO'S COMPLEMENT

The mantissa represents a fraction less then one, and a normalized mantissa has a 1 in

the most significant bit. The exponent represents the number of times the mantissa is

to be shifted to the left to obtain the fixed point representation of the same number.

All this sounds typical enough; however, in many representations, efforts are made
to include numbers that cannot be normalized; here they are considered too small and
are simply set to zero. If numbers of that small a magnitude are badly needed, then a
simple one bit extension of the exponent will more than solve the problem. Also in
some other forms of floating point representation, notably the IEEE floating point
standard, the most significant bit of the mantissa is implied; but similarly, a one bit
extension in the mantissa will achieve the same accuracy without the trouble of the
implied bit. For machines with a very long word an extra bit is a small price for

avoiding time consuming operations.

Similarly, truncation is chosen over rounding. Rounding has an advantage over
truncation because rounding gives an unbiased error, thus the error accumulated is on
average smaller because consecutive errors tend to cancel. However, rounding is slow;
it causes a delay equal to that of a parallel add. Truncation turns out to be not so bad
.. an alternative. Indeed, by extending the mantissa one more bit, we can have the same
average and worst case error as with rounding. This slightly unorthodox yet very clean
and simple system turned out to be the inevitable choice when the conditions central

to the designing of this machine are considered.

ROUNDING TRUNCARTION
Accumulated error in rounding (left) and truncation (right).

3.3.2. MULTIPLY ALGORITHM

The heart of every floating point multiply mechanism is an integer multiplier. Made
of an array of adders, the parallel multiplier is the simplest of all multipliers. However
it is inefficient because it does a multiply in O(n) time while using up O(n*n) area; each
adder in the multiplier is active 1/n of the time. Furthermore, with an area complexity
of n*n, the size of the multiplier circuit may soon get out of hand as the demand on

word size grows.

LA]
X B3kzBiR

{ Ta~B1 |}

[TA~82 |}
[a<83 } J
| AB]

Idealized parallel multiplier

L]

MU L ARRAY

Idealized array representation of multiply process

One way to reduce multiplier area is to pipeline the multiply array. As seen in the

array representation of multiply, only those elements on the advancing fronts are

31

active, and the front advances only one position for every adder delay. Thus, instead of
having many elements sitting idle, fewer elements may be used by moving and

recycling them alone the active fronts.

This is one form of carry save multiply; it is not the form we used however. Since
not all adders are involved at all time, performance improvements are still possible.
Indeed, this form of carry save multiplier rnultiplies in 2*n*tsum time at maximum
clock speed (tsum is time need for an adder to generate the sum output) while a
parallel multiplier can do it in n*(tsum + tcarry) time. A parallel multiplier would be
faster because tcarry < tsum. The form of carry save muiltiplier used hers can
perform a muitiply in the same n*(tsum + tcarry) time as in parallel multiplier. It can
best be explained using a new number system. Let us look first at the conventional
shift & add multiplier.

Idealized word serial shift & add multiplier.

In this multiplier, a parallel adder is used to add up the multiply array one row at a
time. However each add takes n*carry time, and each multiply takes n*(n*tcarry +
tsum) time. Though it has an area complexity of n, it has has an unacceptable time
complexity of n*n. It is slow because binary addition require full carry propagation.
However, if we were to use a different number system, addition may not be that time

consuming, for instance, the word pair number system.

In such a system, each number is made of two words. Its value is equivalent to that
of a normal binary number if the sum of the two words making up the word pair is

equal to that binary number. This is a non-unique number representation; we can

32

subtract a number from one word and then add it to the other and then have a new
representation of the same number. Interestingly, suppose we add the two words bit-
wise and store the sum of the k-th bits at the same location in one word, and the carry
at the next higher location of another word, we would get the same number back in a
different representation. In it, the CARRY that is normally propagated by adding into
the next bit position is SAVED, thus a full carry propagation is avoided.

NORMAL ARITHMETIC HORD PAIR ARITHMETIC
ABDEND [|

O0LD WORD (]

NEW WORD (-

Addition in binary (left) and word pair {right) number system.

In this system, adding a ordinary binary number to a word pair takes tsum time
instead of n*tcarry. All we have to do is to add all three numbers bit position by bit
position. At location k, the sum of all three bits goes to make the bit at location k of
one of the result words, while the carry of the three bits goes to make the bit at

location k+1 of the other word.

——

Idealized carry save multiplier.

Using this numbering system, and using a carry save adder instead of parallel adder
to accumulate the numbers in the multiplier array, it takes only n*tsum time to do
multiply if clocked at maximum frequency. However, at the end, in the accurnulator
the result is represented in the form of a word pair. Converting it to binary with a
parallel add takes an additional n*tcarry time. The total time of n*(tsum+tcarry) is
the same as parallel multiplier. Thus carry save multiplier has both an area
complexity and a time complexity of n. Using this multiplier, the multiply mechanism

can be described:

1 cycle: load operands.

m cycle: carry save addition.

k cycle: parallel add to get binary product.
1 cycle: adjust mantissa and exponent.

1 cycle: save result.

Where m is the length of mantissa and k is the number of cycles needed to do a parallel
add. The sign and exponent operation can occur concurrently with this sequence.
Mantissa adjustment takes only one cycle because all numbers are assumed to be

normalized and the worst that can happen is (0.1){0.1) = 0.01.

3.3.3. ADDITION ALGORITHM

The word pair numbering system as presented in the previous section has its
shortcoming, however. If a machine is to use such representation entirely, it would
take twice as much memory to store the data. Furthermore, magnitude comparison is
difficult; the numbers have to be converted to binary format first. Thus such
representation is best used inside high speed AUs as unsigned accumulators while the

rest of the machine use normal binary numbers.

The add operation is rather typical. Ordinary floating point adders require a pre-
adjustment and post-adjustment of m cycles each, m being the length of the mantissa.
Adding the time to do parallel add and a few small steps makes addition almost twice
as long as multiply. Unlike the multiply, the bulk of its time is taken up in the less
demanding mantissa adjustment, which can easily be trimmed to matech the speed of
multiply. A simple way is to use shifters that can shift by two locations in one cycle.

With this the add timing becomes:

1 cycle load operand.

1 eycle compare exponents.

1 cycle adjust by 1 for if difference is odd.
m/2 cycle adjust by 2 for the rest of difference.

k cycle parallel add or subtract.
m/2 cycle adjust by 2 until one of the highest

two bits is one.
1 cycle adjust by 1if msbis 0.
1 cycle store result.

8.3.4. DIVISION ALGORITHM

Of the four elementary operations on numbers, integer or floating point, division is
the most troublesome not only because of the possibility of dividing by zero, but also
because of the complexity in the operation itself. Division is complicated because it
must produce one quotient digit at a time, and each digit takes a full carry

propagation.

OUHHTHO

Typical parallel divider

However, divisions are so rare that the use of specialized dividers in most machines
cannot be justified, certainly not in a SIMD machine where every piece of circuit is

duplicated thousands of times through out the system.
Replacing the divider with a successive approximation algorithm using only add,

subtract, and multiply is an attractive approach. One suitable and popular algorithm is

the Newton’s method of successive approximation.

NEWTON'S METHOD:
To find x such that f(x) =0
1) Xo := guess an initial value
2) Xo := Xo - £(X0)/F'(Xo)
3) repeat 2

All we need is a nice function that crosses zero at the target value and an initial guess
close enough to the target value for the iterations to converge. In addition, to be
useful in an SIMD machine, we need a way to generate a good initial guess that
guarantees convergence in a limited number of iterations. And, to be useful at all, the

resulting iteration step should involve only functions that we know how to compute.

Division will be simpler if we break it down into an inverse operation and a multiply
operation. Now suppose we are given A and want to find 1/A, we need a function f(x)
such that the function depends on A and has 1/A as its root. Many such functions exist
but not all of them are good because some yield iteration steps that themselves
require divisions. Of all that qualify, the function f(x) = A - 1/x is a good choice. It
yields this simple iteration step: Xnew = Xold(2-A*Xold).

NEWTON'S METHOD FOR FINDING INVERSE OF A:
f(X)=A-1/X
£(X) = 1/(X*X)
1) Xo := (1/1.5) * 2~(1 - exponent of A)
2) Xo := Xo2 - A*Xo)
3) repeat 2

Newton's method roughly doubles the number of significant digits for each iteration.
Taking advantage of that, many computers that use Newton's method for division use a
short lookup table to obtain an initial guess that is accurate to four or five digits,
trading ofl chip area with the first few less productive iterations. In this machine,
however, a lookup table for every node is not feasible; instead, a good guess with
approximately one digit significance can be generated with a special AU command.

Assume we need to find the inverse of a non-zero number, since every non-zero number

37

is normalized, the mantissa is somewhere between 0.5 and 1.

Therefore, given a number M * 2-E a good initial guess would be 1/(0.75 * 2~E) or
(1/1.5)*2~(1-E). To generate this number, we can simply replace the mantissa with the
bit pattern corresponding to 1/1.5 and the exponent with (1 - exponent). Tests show
with this initial guess, 8 iterations are enough for full precision in a 64 bit floating point
system. Indeed, it takes about log(n) iterations for a word length of n, and it works for
all numbers except zero and those numbers that cause overflow or underflow. Zero can
be detected during generation of initial guess, while overflow and underflow can occur

during the subsequent iteration steps.

Y N4
£
=2
3 x
2 Y = 1/X l//‘,
T Y =08.5-an
&
3
1 Y=1-1/X
| X
e]
T 222 x
2 4

Left: inverse of 3/41is4/3
Right: two sample runs using Newton's Method

3.4. COMMANDS

At this point, we have gone through the bulk of what we know about this machine.
Conspicuously missing, however, is the description of the control of the node, which is
also a specification of the control cornputer. As stated before, the control computer
must emit commands at the right moments relative to each other to bring about

meaningful use of this SIMD machine.

For instance, if each node in the machine is to add a number, located two nodes

away, to another number stored locally, each node must do the following things:

A data move to put the word into the proper port;

A data move to fill one of the AU registers;

Two port transfers to carry the word two nodes away;

A data move to read the received word;

A data move to put this word into the other AU register;
An AU operation to calculate the sum;

And finally a data move to store the result.

All this may take place in the sequence as in the figure on the following page. The

upper half of the figure represents the operation within each of the three units.

The first row
is for the AU, occupied by the box labeled "AU o'

The second row
is for the register unit, marked by boxes labeled with "Pw", "Pr", "Aw", and "Ar"
representing write and read, to and from the port and AU respectively.

The third row
is for the communication ports, occupied by the boxes labeled "P o".

The lower half represent the instruction being transmitted. The first row is for the AU

and the second is for the register.

39

‘ AU
Pu] RwlP rifw . A r]

Peo L Po

Since the control computer has absolute control over the sequence of operation,

very high degree of parallelism can be achieved. Following is a typical segment in the

operation of the machine.

AU o AU o AU Ay
Pu) AelfwiAr] RuPrifviAr] Pyl Eo wiAwiAr] e]
Po Po | Po]

Po
r [AU T | AU T |
IRIRI] [RIRIRIRL RIRIRI]

4. CONCLUSION

During the past several months, 1 have been working with a team from the VLSI
Design Laboratory class to develop a complete design and layout for a supermesh node.
Although not yet complete, it appears that such a node is readily designed in about
2500 by 1800 or 4M square lambda, and will operate at a 20MHz clock rate in 3um nMOS
technology. Taking my advisor’s very conservative metric of $5 per million square
lambda, a node would cost $20, packaged and powered (in system price). With a 4usec
B84 bit floating point operation time, one sees that such a system does indeed reach an
extreme point in cost/performance, that is about $80 per megaflop. This number
might be compared with about $140,000/megaflop ($7 million / 50 megaflop) for the
Cray-1S. Although the comparison is admittedly not fair, the Supermesh delivers
megaflops at a price about 2000 times less than that of Cray.

Though the Supermesh project is far from complete, it is my deepest wish that what
we discovered during the past year would spark further research into this and other
related fields for the benefits of all mankind.

41

