A 16-Bit LSI Digital Multiplier

Radney Tak Masumoto

Computer Science Department
California Institute of Technology

4204:TR:78

A 16 BIT LSI DIGITAL MULTIPLIER

by

Rodney Tak Masumoto

Technical Repart #4204
Department of Computer Science

California Institute of Technology

In partial fulfillment of the requirements for the Degree of
Electrical Engineer

Copyright California Institute of Technology 1978

- ii -

to my wife

- iii -
ACKNOWLEDGMENTS

The author expresses his grateful appreciation to Dr. Carver A.
Mead for his patient guidance and many contributions to this work.
Special acknowledgments also go to Dr. Ivan Sutherland, Dr. William
Heller, Dr. Amr Mohsen, Dr. Edmund Cheng, Mr. Vance Tyree, and Mr.
Vincent Wong for their contributions to the development of this
material. Many thanks are due to Barbara Lum for her aid in the
typing of this manuscript; and a continuing gratitude is expressed

to my parents for their constant patience and encouragement.

The work reported here was suported in part by the Qffice of
Naval Research. Financial assistance from the California Institute of
Technology in the form of several research and teaching assistantships
"is also gratefully acknowledged. Fabrication of the integrated circuit

was performed by Maruman Integrated Circuits, Inc.

- iv -

ABSTRACT

Multiplication in digital machines is offen done sequentially
by the processor's arithmetic logic unit. However, this method is
very time consuming due to the many sequential shifts and additions
required., Implementing this multiplication directly with hardware
increases speed, but at added cost. By implementing an interesting
multiplication algorithm on an LSI chip, it is possible to achieve
high performance with little added cost.

This paper describes a single chip LSI implementation of such
a hardware multiplier. This multiplier/accumulator chip performs a
fast multiplication of two 16 bit 2's complement words. It was
designed and implemented in silicon gate NMOS with depletion loads.
By using a multiple hit examination algorithm, the circuitry
requirements were significantly less than that of a standard hardware
multiplier. Also, by employing carry-save adders and carry lookahead
logic, multiplication delay times are competitive with bipolar
implementations, bu£ require one-fifth the power.

An on-chip accumulator allouws sutccessive pfoducts to be summed
without tying up the external data bus. Special completion sensing
logic allows the chip to be used in asynchronous timing applications.
The 16 bit by 16 bit multiplier chip measures 180 by 180 mils. All
circuits are modular, and chips of arbitrary wgrd size can be
generated by changing only two parameter valueg during the computer

aided mask layout generation process.

TABLE OF CONTENTS

Acknowledgments iii
Abstract iv
I. Introduction 1
II. The Combinatorial Multiplier 3
A. The Adder Array 3

B. Two's Complement Multiplication 6

III. The 16 Bit by 16 Bit Multiplier 11
IV. Design Description 19
A. The X-Register 190

B. The Y- Register and Decoder 21

C. The Combinatorial Array 28

D. The Accuﬁulator and Full Adder 43

E. The Qutput Register and Driver 53

F. Sign and dverflow Control 56

V. Conclusion 59
Appendix A ' 61

References 63

I. INTRODUCTION

The multiplication of two numbers is often one of the more time
consuming operations performed by modern computer CPU's. Recent advances
in integrated circuit technology have made possible the opportunity to
implement this function on a single LST chip. A 16 bit by 16 bit LSI
multiplier using bipolar technology has been fabricated by TRW {1]. To
date no such chip exists that uses MOS technology. Thus, an implementa-

tion using the MOS process was investigated.

Like any of the other LSI processes, MOS implementations have both
strong and weak points. As demonstrated by MOS memories and other MOS
LSI chips, it is possible to achieve high density and relatively low
power dissipation with this process. This is particularly true when dy-
namic circuits are used. Internal speeds of 3 to 5 ns per gate delay
are alsq common. It is only when signals go off-chip that the time de-
lays become significantly slower than with other processes such as bi-
polar. Also, circuit implementations of a given logic design tend to be
less complex in MOS than with other processes. In many cases, active
devices occupy a surprisingly small pcrccntagé of the total chip area.
Interconnections usually end up occupying much of the space. Finally,
the MOS process itself has not fully matured. An order of magnitude im-

provement in performance is still expected.

On the less desirable side, MOS circuits have a relatively high

-2

source drive impedance. This is most'noticeable by the long delay times
(40-50 ns) required to drive the relatively high capacitance external
loads. Even iﬁternal to the chip, long interconnect wiring can cause
appreciable signal delays. A 100 micron signal line presents a load
similar to that of a standard gate input. However, this problem can be
kept minimal through the use of designs that recognize this shortcoming.
Due to MOS's simple circuit structure, regularity in circuil design ana
layout can be achleved. Thus long signal paths can usually be kept to

a minimum. An additional benefit from eliminating long wires is that

chip area can be used more efficiently.

At the gate level, MOS pull-up signal response tends to be much
slower than pull-down delays. Through proper use of precharged dynamic
circuits, this blased speed characteristic can be used to advantage.

It is usually possible to pre-charge the heavily loaded signal lines to
a high state. Thus if any level transition must occur, the delay will
be that of the faster pull-down case. Nodes where pull-up transitions

must occur can be designed to have minimal loading.

IT. THE COMBINATORIAL MULTIPLIER

It will be assumed that the multiplication will involve a combin-
atorial process. Therefore no discussion of any pipeline methods will
be made. Our concern is with the general area of parallel multiplicatioun
methods. The basis from which this discussion will develop is the
straightforward combinatorial array. This array is simply the hardware
equivalent of the standard software multiply. This particular multiply
algorithm generates the product through a series of adds and shifts.
For the hardware case, all shifts are hardwired in. Thus the implemen-
tation reduces to an array of adders. For an n-bit multiplier and an
m-bit multiplicand, n w-bit adders are required. Each bit of the multi-
plier controls an adder. 1If the bit=1l, the multiplicand is added to
the partial product at that level. If the bit=0, no addition takes place
at that level. It is also assumed that the two numbers being multiplied
in this simple case are positive. If 2's complement numbers are used,

additional logic is usually added to handle negative values {2].

THE ADDER ARRAY

There are basically four array configurations that can be imple-
mented in MOS LSI [3]. They are shown in figure 2.1. For an adder
array, 1t does wnot matter in what order the sums and carries for a
weighted position are assimilated. Thus the direction in which they

propagate can be chosen. To avoid the wire routing problems of tree

LSB MSB LSB MSB

\ \ \ Y
> «—| SB—» NN
U' pa ‘U ‘N RNARNE
‘J' - VI N N
\4 <«MSB+=V | N[N
. T A
A, C.
LSB MSB LS8 MSB

> a—MSB—» P;EN D
ir{/ YN H ?J/
jJJ' y xXxéﬁ/ R
H'c—LSB—» 0005
vV vV Vv Vv VW vV V
B. D.

Figure 2.1 Adder array configurations.

structures, we are limited to passing carries and sums to adjacent cells.
The sums are thus restricted to run either from LSB levels to MSB levels
(figures A and C) or from MSB levels to LSB levels (figures B and D).

The carries must flow from LSB's towards MSB's. However, they can be
transmitted horizontally to cells in the same level (figures A and B),

or diagonally to cells in an adjacent level (figures C and D). Hori-

zontal carry transmission is used by full adders and diagonal carry

transmission is used by carry-save adders.

On the basis of timing considerations, configuration B is pre-
ferred over configuration A. In A, a glven cell must wait for both
carry and sum delays before it can function. In B, the carries and
sums propagate in a parallel fashion. Also final assimilation of the
carries and sums in configuration A may require a cumbersome wiring
topology. For similar reasons, configuration C is preferred over con-

figuration D.

If only magnitude additions are involved, both configurations B
and C are equivalent in terms of performance. However, when full 2's
complement additions are required, configuration B exhibits difficulties.
Straightforward additions of negative 2's complement numbers is not
possible with this arrangement. It would be necessary to perform magni-
tude additions, then calculate the sign separately [2]. Configuration
C does not exhibit this problem. Since carries propagate diagonally,
the MSB sign determination is deferredto later levels. When the final
carries are assimilated, an accurate MSB sign is then determined. This

configuration was used for the adder array.

TWO'S COMPLEMENT MULTIPLICATION

When multiplication is implemented with a combinatorial process,
Wallace [4] has indicated three areas where the processing performance
can be improved:

1) Accelerate the formation of the summands.

2) Accelerate the addition of the summands.

3) Reduce the number of summands.

When an adder array is used, the summand formation time is quite minimal
relative to the other delay factors. If other techniques such as RUMs
were used, this item might be of more concern. The summand addition
time is determined by the actual adder circuilt design and layout. This
area will be discussed in a later section. Reducing the number of sum-

mands, however, warrants further discussion.

Standard binary multiplication involves repeated additions and
one bit shifts. _This operation is simplified if multiple bit shifts
are allowed. If the ability to subtract as well as add is combined
with multiple shifts, a very powerful method of multiplication results.
This method is known as ternary multiplication [2]. It is so-named
because examination of the multiplier bits may require any one of three
decisions:

1) Add a multiplicand multiple and shift;

2} Subtract a multiplicand multiple and shift.

3) Shift without arithmetic.

In conventional software multiplication, the multiplier bits are

examined one at a time. If the digit is a '0', nothing is done. If

the digit is a '1', the multiplicand is added tn the partial product.
The multiplicand is shifted one bit relative to the partlal product,
then the next multiplier bit 1s examined. This process is continued
until all the multiplier bits have been examined. If, however, multiple
bit shifting is allowed and several multiplier bits can be examined at

one time, this process can be speeded up.

An obviocus advantage can be seen 1f the multiplier contains a
string of zeros. With this technique, one merely shifts the multipli-
cand the appropriate number of bits and examines the next non-zero mul-
tiplier digit. This is clearly faster than deciding whether or not to
add after each single bit shift. A less obvious advantage can be ex-
tended to a string of ones as well. For example, the decimal number
127 = 00111111} (binary 2's complement, LSB on the right). Straight-
forward multiplication would require seven additions and six shifts of

the multiplicand, 13 scparate opcrations. But notc that:

127 = 128 -~ 1 (decimal notation), or
001111111 = 27 - 20 (binary notation)
= 010000000 - 000000001
= 0;0000001

Thus the process reduces to two addition/subtractions and one seven bit
shift. The worst case occurs when the multiplier consists of a string

of alternating ones and zeros. An example would be:

+ 4+ +
01010101 = 01010101

~8-

For this case, the process is the same as straightforward multiplication.
In general, however, a multiplier word will consist of alternating strings
of ones or zeros. It would be interpreted as the following example
shows:
++ -+ 4+ -
0100111010000111 = 0101001010001001
A direct implementation of this algorithm into hardware would be
extremely complex. Variable shifts are not easily handled. If, how-
ever, the number of bits to be shifted is made constant, the shifting
logic can easily be fixed in the hardware. For the present implemen-
tation, a constant shift of two bits occurs between examinations of
multiplier bit sets. Each examination requires looking at the present
two multiplier bits (Yi & Yi+l) and the previous bit (Yi—l)’ Using the
algorithm just discussed, it is possible to derive the decoding logic

required. If Y = Yi = 000 or 111, then nothing is done. In

+171%4-1

this case it is assumed that this set is part of a string of zeros or

string of ones. The other cases are:

o
]

001 = 010 : at MSB end of a string; add mulrilplicand.

Y = 010 = 010 : single digit string; add multiplicand.

00 : at MSB end of a string; add 2x multiplicand.

]
Pt s

Y = 011

1]

Y = 100 100 : at LSE end of a string; subtract 2 x multiplicand.

-t -

Y = 101 110 = 010 : at LSB end of one string and at MSB end of

another string; subtract multiplicand.

Y = 110 = 010 : at LSB end of a string; subtract multiplicand.

These results are summarized in table 2.1. This special case of ternary
multiplication is oftenreferred to as the modified Booth's Algorithm.

A formal proof is given by Rubenfield [5].

This technique can, of couree, be applied to constant ghifte of

three bits or more. However, in such cases, one must have available

ziil zi Yi—l Operation

0 0 0] Add Zero

0 0 1 Add 1x multiplicand

0 1 0 Add 1x multiplicand

0 1 1 Add 2x multiplicand

1 0 0 Subtract 2x multiplicand
1 0 1 Subtract 1x multiplicand
1 1 0 Subtract 1x multiplicand

1 1 1 . Subtract zero

Table 2.1 The Modified Booth's Algorithm

~10-

pre-calculated numbers representing 3x the multiplicand, etc. Imn the
two bit shift case, 1lx and 2x the muliiplicand can be obtained simply

by shifting or not shifting the multiplicané. In a three bit shift
case, three bits of the multiplier plus the previous bit are examined.

A case such as Y = 0110 = IOIO = O;IO would require 3x the multiplicand
to be added to the partial product. At best this value would be pre-
calculated and stored external to the array. This would require extra
hardware. If the multiplier word has a large number of bits, this in-~
itial overhead might result in a net saving in hardware. However, each
adder in the array still would require input lines representing 3x the
multiplicand in addition to the multiplicand and partial product. These
extra interconnect lines, when coupled with a more complex décoding .
logic, adds significantly to the area occupied by each cell in the
array. Constant shifts of more bits increases this complexity. In the
case of a 16 bit multiplier, a fixed shift of two bits is a reasonable
compromise for an MOS implementation. Discrete hardware implementations
appear to support this conclusion as evidenced by the use of the modified

Booth's algorithm in IBM's floating point processor and in the Am 2505

2 by &4 multiplier chip. [5], [6].

~11-

THE 16 BIT BY 16 BIT MULTIPLIER

The chip described in this thesis was designed to multiply two
16 bit words and optionally to accumulate successive products. The re-
sult is a 32 bit word plus an overflow flag. As shown in figure 3.1,
the multiplier is composed of four functional sections. The timing
diagrams are illustrated in figure 3.2. Figure 3.2a shows a synchronous
timing case. Figure 3.2b shows the asynchronous timing case. The

timing for the synchronous case will be discussed first.

A multiplication cycle begins with the latching of the data input
registers. These registers are shown in figure 3.3. The 16 bit word
representing the multiplicand is stored in the X-register as shown in
figure 3.3a. Data are loaded into this register while the X-IN control
is high. This register holds the dara and amplifies them for driving
internal data lines. The Y-register holds tﬁe 16 bit multiplier word.
This register is shown in figure 3.3b. The Y-register section also
performs a preliminary decoding of the multiplier bits. It is here
that the modified Booth's Algorithm is applied to reduce the number of
adders required in the combinatorial array. Special drivers place these

signals onto the internal control lines.

A CLK/Precharge period then initializes the combinatorial array.
As shown in figure 3.4, the combinatorial array consists of an 8 cell

by 17 cell matrix. Each cell in the array is composed of a shifter/

-12-

X~IN —»
X-Register
Y—l? l CLK—™ & Pre-charge
w
o m
“m 93
@ () =
O] N
ST | ©
@ ;g
a Ny I Combinatorial
-0 —
5 = Array -
®5 uw
oo o
e c
£3 5
> 6
5 5
>
£
* 3
3
Qutput S .
Enable . Accumulator and Full Adder (MSB's) —
Done [
Detect
A Y
Output Register (MSB's) Le-overflow
OUprt_.
Enable

v

Figure 3.1 Block diagram of the 16 x 16 multiplier.

inverter and a carry-save adder. The shifter/inverter completes the
Booth's algorithm operation that was begun in the Y-register decoder.
When CLK and Precharge go high, they activate the decoder controls that

enter the shifter/inverter. These controls operate on the incoming

bata IN P WZzZzzzd T Wz WezZzz

X, Y=IN |]] I] I]

PC 1 1

CLK [| f |

DONE 2770 I 1 I
Out Latch E WZZ%ZV |2222222’22Z2222?f
Data -/

Out CLK []

Data Out s 7.

a. Synchronous timing

Data IN Y4 W34 WVizzzzz3 Vizzzz
X,Y-IN [1 [1

PC 1 1 [

CLK] 1 I 1
DONE Y7224 M I

8 gtio Latch 7 V7
Acc Data 4 4 |

b. Asynchronous timing

Figure 3.2 Multiplier timing.

~14-
X -dota

*IG.

X-iN
ctl
CLK. —~
16
X‘-data
a. X-register and driver
Y -data
{IG
Y-IN
ctl Y- Register
Y'-data %’IG
- Decoder
,#32
CLK PC ctl lines
Yi'_l—--—'- — ADD;

, Decoder (—» SUBj
Yi — Cell
: | Xj

Y;.H — > 2Xi

b. Y-register and decoder

Figure 3.3 Input registers,

-15-

Xi
%IG

A
I I7cells -
32
ctl
lines’+’ 8 cells a—— PC
Ci,Si
(LSB's) 24
|~
Y
39
Ci, Si
(MSB's)
- Xi Gy Siye
X3 4
ADDj —p
SUBj —p
|>(j — Array
2Xj — Cell
, *+— PC
Si‘———
Cl

Figure 3.4 The combinatorial array.

16~

multiplicand and send a modified value to a fast carry-save adder
section. While Precharge is high, the carry-save adder Is reset to an
initial state. Precharge is then set low. The CLK control soon follows
suit. This begins an asynchronous multiply period. At each adder
level, the modified multiplicand is added to an incoming partial pro-
duct. A new partial product is generated and output to the next adder
level. It should be noted that once Precharge is set low, the internal
array is isolated from the input registers. This implies that new input

data can be loaded into the input registers while the multiply process

s
i continuing.

The final product, still in carry-save form, 1s then passed to
the accumulator and full adder section which is shown in figure 3.5.
Both the accumulator and the full adder are initialized while Precharge
is high. When Precharge is set low, this section waits for the final
product from the combinatorial array. When the final product infor-
mation arrives, the accumulator adds it to the previous result. The
full adder then converts the accumulated sum into a 2's complement form
for output. Due to the unique design of this array, it 1s possible to
detect the completion of the multiply/accumulate operation. This com-
pletion condition is detected at the bit level and is used to latch the
assoclated output bit into its output register cell. By NORing the com-
pletion indicators together for all the output bits, a 'DONE' signal
for external use is also generated. As shown in the timing diagrams

of figure 3.2, "DONE' is set high when the data in the output register

are valid.

are shown in figure 3.6.

mulate cycle.

~17-

Ci S;j
33# ¢33
» Accumulator '« PC
P & 6
Full Adder .« PC
334 33
Ay Pi Dy
| A; S c; Si
Ci-i ™y ¥ § R
Acc. Full '
Cell CPj_j—* %Cﬁf' —CP;
Ci sj Pi D

A; = Accumulated Data
P, = Product; D; = "Done" Signal

Figure 3.5 Accumulator and full adder.

The final section contains the output register and drivers, which

The cutput register stores the final result

both for output at a later time and for use on the next multiply/accu-

When the final result is to be sent off-chip, the OUTCLK

ouT_,
CLK

{33

OUT,

Figure 3.6 Output register and driver.

control is set high. This control causes the tri-state output drivers
to deposit the output data onto external data lines. When OUTCLK is
set low, the output drivers return to a high impedance, inactive state.
An overflow flag is §et whenever an overflow out of the accumulator

occurs.,

The timing for the asynchronous case of figure 3.2b is similar
to that of the synchronous case except for the following condition. If
new data has been loaded into the input registers by the time the 'DONE'
signal is set high, a new multiply cycle can be initiated immediately.
Thus the 'DONE' signal can be used to activate the CLK and Precharge

signals, which would asynchronously start a new multiply cycle.

-19-

IV. DESIGN DESCRIPTION

X-REGISTER

The X-register holds the 16 bit multiplicand word. Information
is input while the X-IN control is high. A NOR gate equivalent circuit
is shown in figure 4.1. Also included is a buffer which drives the in-
ternal data lines. The MOS circuit for this register 1is shown in figure
4.2. During the X-IN high time, input dataare loaded into the register.
This information must be steblc before X-IN goes low. While the X-In
control 1s low, the register outputs are connected back to their inputs.
Data may be held in this state indefinitely.

Since the multiplicand data lines running into the combinatorial
array are quite long, a special push-pull driver is included in this
register. It is driven by the CLK signal. Between multiplies, both

CLK and X are low. When new data are input, a condition is set up that

Figure 4.1 X-register NOR gate equivalent circuit.

~20-

" i

1

X-IN

X-1INoO——¢—]
cti

Figure 4,2 X-register MOS circuit.

either keeps X low or charges node 'A' to a high state. When the
multiply cycle is initiated, CLK goes high. If node 'A' is low, the
associated pull up transistor is off, and X remains low. If node 'A’
is high, the pull up is 'on' and X rises as CLK goes high. A bootstrap
effect causes node 'A' to become isolated so that sufficient drive can
be provided to allow X to rise to the CLK high level. Since the driver
is push-pull, the pull up can be a high current device. This allows

the X lines to be set with minimal time delays.

—21-

THE Y-REGISTER and DECODER

The Y-register performs the input latching of the 16 bit multiplier
word. In addition, through multiple bit examination, preliminary de-
coding of the multiplier word is performed. Special drivers place the

decoded signals onto the internal control lines.

The Y-register section is similar to the X-register. Data are in-
put during the Y-IN control high time. They are held in a static state
during the Y-TN Jow time. The NOR gate equivalent circuit is shown in

figure 4.3 and the MOS circuit is shown in figure 4.4.

The decoder implements part of the modified Booth's Algorithm
that was discussed earlier. Each cell examines three bits of the
multiplier (with one bit overlap between cells) and generates commands

based on the truth table of table 4.1. The logic equations are as

Yi —®
| Y

h
=

<|

Figure 4.3 Y-register NOR gate equivalent circuit,

Table 4.1 Decoder Truth Table

—= Y
Y-CLK §
3
p—Y
Yin E
S .
Y-CLK
Figure 4.4 Y-register MOS circuit.
Vi1 Yy Y1 ADD Ix 2%
¢} 0 0 1 0 0 Add Zero
0 0 1 1 1 0 Add 1x
0 1 0 1 1 0 Add 1x
0 1 1 1 0 1 Add 2x
1 0 0 0 0 1 Subtract 2x
1 0 1 0 1 0 Subtract 1x
1 1 0 0 1 0 Subtract 1x
1 1 1 0 0 0 Subtract O

-23-

follows:

ADD = Yi+l = add

SUB = Yi+1 = gubtract

1x =~ Yi()§3r1 = add or subtract the multiplicand

2x = (Yi@Yi—l) (Yi+l®Yi) = add or subtract twice the multi-

plicand

The logic circult for the decoder is shown in figure 4.5, and the NOKR
gate equivalent is in figure 4.6. The logic equations were carefully
selected to allow implementation with a minimum number of devices. The
inverters with a 'B' in them are special drivers that are similar to

those in the X-register. They are necessary because of the heavy drive

Y4 o— [B>0— ADD
\q o—¢

pen I Bo—s1x

Figure 4.5 Decoder logic circuit.

-2l

Yi+| —¢ = ADD

{@c = SUB

<

i+l <

{@&
- O
i [‘ ff’f

o ———-) >o__ 3 o 1X
Yi-1 Dc ctl
Figure 4.6 Decoder NOR gate equivalent circuit.

requirements of the control lines. The MOS circuit of the Y-register
as was shown in figure 4.4 reveals that both data and data bar are avail-
able. This means that a very compact implementation of the decoder

circuit can be achieved by making use of switching circuits.

Switching circuits represent omne of our ocldest forms of logic.
They originated in the days of relay logic. As,shown in figure 4.7a,
two wires and two switches can perform the equivalent of an exclusive OR
or an exclusive NOR function. A NOR gate equivalent circuit is shown

in figure 4.7b. 1If both A and B are active, or if both are not active,

—25_

a. Switching circuit

>

—) >
_' 'j)c»——»(:meas
5 —1 >

OR gate equivalent circuit

b

A

_é"_l
Bj::}—scmea
T

A
c. MOS circuit

Figure 4.7 Exclusive-OR circuits.

—26~—

then C is not active. Since switches are easy to implement with MOS,
an equivalent circuit shown in figure 4.7c can perform the XOR or XNOR

functions. When applied to the decoder circuit, the schematic of figure

4.8 is arrived at.

The MOS circult for the control line drivers is shown in figure
4.9. They are the same as the X-register drivers. Thelr operation is

the same as described in the X-register section.

-27-

Y, © 1 B » ADD
Yi 4] © J_ B = SUB
Y; © T

I B | X
i—1 |

Yi-1 ©

Figure 4.8 Decoder MOS circuit.
CLK/PC

‘ ®
[lb ==

]
— e —-Ctl

IN O—

1

ol

Figure 4.9 Decoder drivers.

-28-

THE COMBINATORTIAL ARRAY

The combinatorial cell consists of two baslic sections. Besides
the carry-save adder section, thils cell also includes a section to

shift or invert the incoming multiplicand bit.

The Shifting Array and Complementer.

The shifter/inverter section must interpret the controls from
the decoder as shown in table 4.2. The logic circuit is given in figure
4.10 and a NOR gate equivalent is shown in figure 4.11. TFor 2's com-
plement operation, the LSB of each adder row 1s attached to Yi+ . Thus

1

Cin = Yi+l = INVERT. Whenever a subtraction is required, Cin = Yi+l =1

and ADD = 0. As a result, 1x or 2x the multiplicand is inverted and "1"

is added to the LSB position. This operation is the equivalent of a

ADD 2x 1x ‘ X
0 0 ¢ 1 Subtract zero
0 0 1 X

n
0 1 0 Xn—l
0 1 1 not allowed
1 0 0 0 add zero
1 0 1 X

n
1 1 0 Xn-l
1 1 1 not allowed

Table 4.2 Shifter/inverter truth table

Figure 4.10 Shifter/inverter logic circuit,

ADD j ’\/

Xn ~
X ctl :D°"

Figure 4.11 Shifter/inverter NOR gate equivalent circuit.

two's complement subtraction. When lx = 2 x = 0, zero 1s to be added or
subtracted. If ADD = 1, X = 0 as required. If SUB =1, X = 1. But Cin
will also equal "1". Thus the carry-in, when added to X will zero the

effective input. As a side effect, it will also cause an overflow of

the MSB. However, this implementation ignores such overflows.

-30-

Since this circuit also uses an XNOR, the switching circuit pre-
viously discussed can be used. Also, the decoder implementation assures
that two of the eight states of t&blé 4.2 will never occur. Making use
of all this information results in the MOS circuit shown in figure 4.12.
The two AND gates and the NOR gate shown in figure 4.10 are combined in-
to a more compact NAND-NOR circuit. The extra buffering to generate X
and X bar are requlred because they are needed 1in the sum and carry cir-
cuits. The 1lx and 2x lines are activated by the CLK signal. The ADD
and SUB lines are activated by the PC signal. It is assumed that the
decoder states are set hefore CLK and PC go high. When PC goes low,

ADD and SUB also go low to isolate the cells from the input latches.
Thus new X and Y data can then be loaded while the multiply cycle is
finishing. Between multiplies, the 1x, 2x, ADD, and SUB lines are low.

Thus the circuit dissipates minimal power during non-use.

ADD Iié X
L

Xn-10— oXp 'suBo
2X o—]] }—o IX
ctl ‘ cti

!

SuB

Figure 4.12 Shifter/inverter MOS circuit.

-31-

THE CARRY-SAVE ADDER

Carry-save adders are sometimes referred to as half-adders. The
truth table for a carry-save adder, which is shown in Table 4.3, is
identical to that for a full adder. The difference between the two is
in the intercircuit connections. A full adder propagates carries through
adjacent cells within a single adder level. A carry-save adder deters
the carry propagation to the next adder level. Thus there is no carry
assimilation delay time. Each cell of the adder operates independently
of the others. Carries and sums are generated 1n parallel and are func-
tions only of the three input bits. Of course a conservation of compu-
tation law still holds. These intermediate carry-save values must even-

tually be converted back to standard form with the use of a full adder.

Si X Ci So Co
0 0 0 0 0
0 0 1 1 0
0 1 0. 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 4.3 Carry-Save Adder Truth Table

~32-

The logic circuit for a standard adder cell is presented in figure
4.13. The NUR gate equivalent circuit is given in figure 4.14. The
equivalent MOS circuit is given in figure 4.15. Note that the carry-in
to carry-out path involves two inverter delays. A similar situation
exists for the sum—in to sum-out path. This type of circuit is repre-

sentative of a ripple carry type of adder.

Ripple-carry adders are the simplest in terms of functional opera-
tion. An example 1s shown in figure 4.16a. Each cell or bit position
pre-processes the two addend input bits, then waits for the carry-in from
the adjacent LSB cell. A carry-in signal initiates final sum generation
processing for that cell. It also causes a carry-out to be generated for
use by the next MSB cell. If we let tC equal the single cell carry delay

and let n equal the number of adder bits (cells), then the total addition

Figure 4.13 Carry-save adder logic circuit.

-33-

>

Figure 4.14 Carry-save adder NOR gate equivalent circuit.

time is: t = n*tC + t , where tS accounts for the pre and post processing
s

delays. Thus for a ripple-carry adder, the time delay increases linearly

with the number of bits.

—34—

P

Figure 4.15 Carry~save adder direct MOS circuit implementation.

Manchester type adders encompass those that include carry generate
logic along with carry propagation. An example is shown in figure 4.16b.
In some literature they are refered to as switched ripple-carry adders.
This description goes back to theilr original implementation in the old
relay logic techmology. 1Imn that technology, switches were opened or
closed depending on whether the carry signals were being generated,
killed, or propagated. In the propagation mode, carries essentially

propagated through a series of closed switches. A very fast carry

propagation time resulted.

ap bo a; b | ap by,

ap bo ap b an by
v v v v Y
Gen Gen [Gen
Prop Prop Prop
T 1
| : :
Co ; ol It oi_C?_ eee ; OT

' ' Y

SO S| Sn

b. Manchester type adders

Figure 4.16 Adder types.

Thus, use of MOS devices as switches opens up other approaches to

the adder circult design. If switching logic is applied to adders, a

-36—

modified truth table can be used (Table 4.4). For sum generation, the
parity between X and Cin can be determined. If it is assumed that both
Sin and Sin bar are available, this parity condition can be used to con-
trol a group of switches. Figure 4.17 shows the NOR gate equivalent
circuit for such an implementation. Figure 4.18 shows the MOS circuit
equivalent. Although the logic circuit appears rather complex, the actual
implementation is quite simple. Note that the S to SOut path now in-

in

volves only a one tranemicelon gate delay.

The carry generation logic for a Manchester type adder is shown in

Table 4.5. The parity between X and Sin can be used to switch between
either a propagate state or a kill/generate state. If it is assumed

that bouth Cin and Cin bar are availlable, a switching scheme similar to

that for sum generation can be used. Figure 4.19 shows the NOR gate
equivalent circuit and figure 4.20 presents the MOS circuit equivalent.

As with sum generation, the C to COut path 1nvolves only a one trans-

in

mission gate delay.

X Ci S0 S0
0 0 Si Si
0 1 Si Si
1 0 Si Si
1 1 Si Si

Table 4.4 Modified Sum Truth Table

-37-

|

OoP

AA_L (!%;B

ol
-
t?

Figure 4.17 Modified SUM, NOR gate equivalent circuit.

For the specific case of a carry-save adder, both the carry gener-
ation delay and the sum generation delay have equal importance. Since
both sum and carry propagate in parallel through an adder array, the
time response for both paths shoculd be equally optimized. There is
nothing to be gained from optimizing either path at the expense of the

other. Keeping this in mind, the combined logic circuit of figure 4.21

~38=

Figure 4.18 Modified SUM, MOS circuit.

S X P K G C T
1 (o] (8]
0 0 0 1 0 0 1
0 1 1 0 0 c, c,
1 0 1 0 0 o T
i i

1 1 o 0 1 1 0

Table 4.5 Modifiled carry truth table

-39-

214

) >
) >

n x|

y »—-—-><>—°r‘3—4Do_
) Do

ol

X
Figure 4,19 Modified CARRY, NOR gate equivalent circuit.

results. This circuit deviates somewhat from the NOR gate equiva-

lent circult of figure 4.22. At the front end, both an exclusive-

OR and an exclusive-NOR of the X and Cin lines are taken in parallel

o
H
'
X
n
il
Y
<§7

_L EP oP

in = =
X

Figure 4,20 Modified CARRY, MOS circuit,

to save time. Note that both data and data bar are carried on pre-
charged lines. The final S0 and C0 can thus be generated with only a
group of pass gates. Because of the exclusive-OR/NOR circuits used, the
carries between cells are always level restored. The sums that propa-
gate between stages are also level restored. Since the lines are pre-

charged, voltage swings to ground only occur. Thus no active pull-up

is required.

When the multiplier is idle, all the precharged lines discharge

towards zero, causing all inverter outputs to rise towards a high state.

Thus this circuit dissipates minimal power during non-use.

L

« & PPRHRHRNE
C 1 p%?idty P F
T H AR o
C; o 1 %J*
g S E NS
! "—4}+ +So
¢ H.l »Co
X 3 1F
L-{
= ﬂ%pg\‘iefnv g g %
= o
T T i ﬁftrﬁ
X |x
; s
Si— L

Figure 4.21

Carry-save adder, MOS circuit.

—42—

=P

@

Sl‘ \ 4
{>c EP

_ @
Si

|

I

. @
X
X

Figure 4.22

Carry-save adder, NOR gate equivalent circuit.

~43-

THE ACCUMULATOR AND FULL ADDER

The accumulator uses the same cell as the combinatorial array.
The only difference is that the multiplicand word 1s mot used as the
X input. Instead, the previous output dataare used as the X input to
the carry-save adder. Sums and carries out of the accumulator then go

to the full adder for final processing.

The full adder is logically similar to the carry-save adder. The
only difference lles in the circuit layout Implementation. As previous-—
ly indicated, full adders are defined to be adders which input two addend
words and generate a complete or full sum as an output. Any Internally
generated carries are accounted for in the sum. The delay time for sum
generation 1s dominated by the carry assimilation delay time. A NOR

gate equivalent circuit of a full adder is shown in figure 4.23.

The discussion involving carry-save adders also applies to MOS im-
plementations of full adders. Figure 4.24 shows the MOS circuit imple-
mentation of the full adder that results. When compared with the carry-
save adder of figure 4.21, it can be noted that the carry-in lines are
set up for fast propagation. However, the carry lines do mot have any
level restoration between cells. Although represented as switches, MOS
pass gates have a non-negligible seriés resistance whenr turned on. This
causes cascaded carry stages to look like an RC ladder network. If n
equals the number of stages, the time delay through this network is

roughly proportional to n2. Delays through a serles of conventional

—4l—

Prop

[= S

Figure 4.23 Full adder NOR gate equivalent circuit.

inverters is proportional to n. Thus there is ‘an upper limit to the
number of stages that can be cascaded before the delay time can be im-

proved by inserting a restoring logic stage. For this MOS implementa-

tion, the magic number 1s approximately four [7].

o . L4 Carry
: hon:
odd parity B HHHT =
= fl._ #l_. = r-—-]J+
c— HE
¢] »Co
L]+
T—qu So
L_|+
H g
| +
even parity N
A § 4 SO
- T
S S PC
c— ! Gil o =
Ei
—PC

COMPL SET

Figure 4.24 Full adder MOS circuit.

:E»DONE

46—

A further examination of figure 4.24 shows that the exclusive OR
logic is implemented differently. The S and C lines in from the carry-
save adders are both precharged. This means that they will never reach
a high enough '1l' state voltage level that can drive a pass gate. Thus

a more conventional level restoring XOR circuit is used.

Initially, when PC goes high, S, Sbar, C, and C bar are set high.
Thus both "odd parity" and "even parity" are set low. This allows the
Ci’ Ci bar, Co’ Co bar, So’ and So bar nodes also to be precharged high.
So initially the propagate, generate, and kill controls are off. At
the appropriate time, only one set of controls will become active. Any

timing race conditions are thus prevented.

SELF-TIMED LOGIC

The time response of many systems tends to be limited by the worst
case time delay. When operated in a synchronous environment, adder
speeds are limited by the slowest sum generation delay fime. However,‘
in many asynchronous timing applications, it may be desirable not to
be limited in this manner. It would be useful to know when the additiomn
operation is finished so that the next operating step can immediately

be performed.

Completion sensing can be implemented for the sum-out or the carry
line to indicate completion of the operation. For an asynchronous

application, this self-timing feature allows a new operation to be

47—

started as soon as the old one is finished. On the average, this type
of operation 1s much faster than the synchronous system, which must
operate at a speed limited by the worst case delay time. Self-timed
logic is not without its drawbacks, however. Both data and its com-
plement are usually required throughout the circuit to allow for com-
pletion detection. Also, a means must be provided to allow resetting
the logic to a known state. Completion is then detected by noting when
cither data or its complement change. In the present implementation

this capability is already present.

The additional logic attached to the sum—out lines of figure 4.24
provides the sum completion sensing. The timing process is shown in
figure 4.25. During the precharge time, both So and S0 bar are initially
set to "0". Since precharge is high, COMPL is forced low and SET is
forced high. The DONE line is also released. This DONE line is ORed
with all the other ad@er sum output sensors. After precharge goes low,
elither S0 or S0 bar will eventually go high. This will cause COMPL to
go high and SET to go low, indicating that the operation for that bit
position has been completed. When this state is reached by all the
cells, DONE is allowed to rise, thus indicating that the multiply oper-

ation i1s completed.

—-48-

PpC |]
So A A
So T g o777
cCoMPL | | l
SET __ | |
DONE ~ | [floating

Figure 4.25 Multiplication completion timing.

CARRY—SKIP/CARRY LOOK AHEAD LOGIC

A wlde varlely of techniques for speeding up adders are based on
the carry-skip idea [8]. These schemes date back to Babbage's anti-
cipated carry device. At the cost of additiomal circuits, it is pos-
sible to detect a state when a contiguous group of adder stages will
merely be propagating the carries within that group. An alternate
path can then be set up to allow the carry-in to skip over that section
and to go directly to the next group. A trade off between circult
complexity added and speed improvement gained determines the optimal
group size. It 1is .0f course assumed that an alternate path exists

that is significantly faster than the existing one.

~49-

Figure 4.26 shows a NOR gate equivalent circuit for carry lookahead.
When a full propagate state (four stages in this case) is detected, a
signal 1s generated to activate a bypass route. 1In figure 4.27a this
1s accomplished by turning on a bypass MOS switch. The approach of
figure 4.27b uses an AND-OR circuit to access either the lookahead sig-
nal or the normal carry line. In the present implementation, there
exists a need both to buffer the carry signal and to propagate both

signal polarities. Since the lookahead linee are relatively high

Prop

Figure 4.26 Carry lookahead NOR gate equivalent circuit.

_ _ d_ -
F}—it\lF’z-l Fg—lkia—lj

o. Bypass MOS switch

b. AND-OR switching

Figure 4.27 Carry lookahead MOS circuits.,

-51-

capacitance, they would cause the MOS bypass switch method to exhibit

a rather slow signal response. Thus the ORing approach is preferred.

Since only one full adder is used, a precharged carry lookahead
arrangement can also be cmployed. The requirement that any node change
state at most once is not violated. The extra space used can be justi-
fied by the speed gains. Setting up a dual rall scheme helps even more.
Figure 4.28 shows the full lookahead scheme. Co is the carry entering
the chain. C4 is the chain output. After precharge, PROP is high,

keeping the lookahead line inactive. If a lookahead conditlon develoups,

the lookahead line is given control of the C4' lines.

-52-

o P
cho :Ej] i " E]L c,
- - +

Prop _
¢——» to C chain

+ + + +
Pcﬁrﬁzc—:ﬁzc—:ﬁ_‘ JLJ FpPC

13 ‘ rJ

= T T T 7 |

Py P, Py Py

Figure 4.28 Carry lookahead MOS circuit for C_.

(the E; chain is identical)

~53

OUTPUT REGISTER AND DRIVER

The NOR gate equivalent circuit for the output register and driver
_is shown 1in figure 4.29. The accumulated product is gated to the out-
put register during the 'DONE' low period. At the same timé, the accu-
mulator register saves the previous output value for use during the
present cycle. When the'DONE' line goes high, the data become locked
into the output registér. They remain there until the beginning of the
next multiply cycle when PC goes high again. Meanwhile, this new out-
put value is gated into the accumulator register for use during the
next cycle. The output driver remains in a tri-state, high impedance
mode until the OUTCLK line goes high. During the OUTCLK high period,

the output dataare driven onto the external data lines.

The MOS circuilt implementation is shown in figure 4.30. It should
be néted that the use of node 'A' as a dynamic storage node allows the
accumulator register.to be implemented with only one inverter and a
transmission dévice. Also, in order to save power and still provide
strong output drive, the OUTCLK data enabling uses a bootstrap principlg
to drive the output. An implication of this technique is that the out-
put data are of dynamic quality. They will eventually lose their drive
capability if OUTCLK is left in a static high state. However, in most
applications the output 1s enabled for only one cycle period to read
the data, then disabled again. This dynamic cycling of OUTCLK would

make this driver appear no different from other types, while dissipat-

ing much less power.

-5~

Data
Q
DONE ——F—¢
Q
a. Output register
Q
ACC
DONE
Q

b. Accumulator register

Q [B>o- {?c - OUT

c. Output driver

Figure 4.29 NOR gate equivalent circuits for the output register
- and driver.

—55-

D
SUMO———_—1— °
+ ey =y
Le 4
—
DONE
4
ACC =—— 4
= (:) J +
ouT
.|.. + CLK
l P — +
__4 .
DB l:
1»—{ -______{
N Foqour T ouT
CLK
— s gy B
— — EI_,

— w—
-

Figure 4.30 Output register and driver, MOS circuit.

~56—
SIGN AND OVERFLOW CONTROL

For a 2's complement multiplicand of n-bits, n+l carry-save adder
cells are used for each level 1un the array. The n+l cell, whlch
is called the ENDCELL, performs the sign calculation. Whereas standard
sign generation for multiplication is performed through an examination
of the signs of the two input words, using the modified Booth's
Algorithm and carry-save adders allows this to be generated as part of

the normal adder array process.

As discussed earlier, the algorithm assigns a negative weighting
to the decoded multiplier word whenever the beginning of a string of 1l's
is encountered. A positive correction 1s applied only if the end of
a 1's string is encountered. For the case of a negative two's com-
plement number, this positive correction mever occurs once the sign
information 1s encountered. Thus the multiplier word sign is accounted
for. The partial products formed from the multiplicand word can be
maintained in correct form, provided an overflow never occurs into the
sign position. Since intermediate results are maintained in carry-
save form, an overflow into the sign position never occurs. The carry-
save adders keep defering the sign bit calculations to later levels.
Thus, by allowing for the 2x shift option at each level, merely adding
a 17th cell to keep track of the sign positionzis all that is needed.
The sum and carry out of the final ENDCELL in the array can then be

combined in the full adder to generate the sign bit for the product.

—57-

The ENDCELL is functionally similar to the carry-save adder cell,
The primary difference lies in the I/0 interface. In the shifter sec-
tion, only X15 is input. No shifting 1s necessary since we are dealing
with the MSB which is the same in elther case. The invert option is
retained, however. In the carry-save adder sectilon, the Si and Ci from
the previous ENDCELL serve as the inputs. The So generated 1s sent to
the last three cells of the next adder level. The Co 1s sent to the

last two cells of the next level. This arrangement is illustrated in

figure 4.31.

~58-

X5

B LC"
Q7
|'NES|'
l'EC
> O
S T Amv)
<
———— nu|L (&) o O
I..I.IY:N._MS !@Sl’.
o
L g L. &) > S
» (O o > (&) v
>
Duc P QO - O
= v - wn ' 1) st
by @ @
o Q O b
® » -) uk o Q) ofe

Xi5

Array termination.

Figure 4.31

-59-

CONCLUSION

Recent advances in integrated circuit technology have made it
possible to implement increasingly complex functions om a single chip.
Improvements have reached a point where a fully parallel 16 bit by
16 bit multiplication function can be placed onto a single LSI chip.
The design of such a multiplier has jﬁst been discussed. Unlike exist-
ing LSI multipliers, this design was implemented in n-channel silicon
gate MOS with depletion loads. It used the modified Booth's algorithm

to improve performance.

The functional design was implemented with circuits that were
carefully selected to match the MOS process. Circuit designs that are
unique to MOS were used to allow multiplication speeds that were
comparable to hipnlar equivalents while keeping chip power dissipation
well below one watt. Fast asynchronous operation is also possible
through the use of special completion sensing logic. All the cells in
the circuit design are modular. When MOS scaling and process improve-
ments make it possible, a 32 bit by 32 bit multiplier can easily be
generated by merely changing only two variables in the chip design
language. The 16 x 16 multiplier chip is shown in figure 5.1.

Preliminary test data on the chip are provided in Appendix A.

-60-

W13L 3

Q@

o

p- -

ol Bl el R { e -w?mi ":fn =]

'
4]

; m

The 16 bit by 16 bit LSI multiplier/accumulator chip.

™

{
{

b {

é

b

|

%
i

|
{

x|

(&

A

Figure 5.1

—61-

APPENDIX A

A preliminary performance test of the 16 bit multiplier/accumula-
tor chip has been performed. Figure 1 shows a timing diagram of se-
lected teét points. The test conditions included a nominal supply
voltage (VD) of 5 volts. The minimum multiply clock pulse width (tpw)
was 75 nsec. Typical switching charaéteristics were as follows:

multiply delay to accumulator output, tac = 200 nsec.

multiply delay to full adder output, tfc = 410 nsec.

multiply delay to output register,.tOC = 460 nsec.

'"DONE' detect time, tdc = 470 nsec.

OUTCLK to data out, t, = 40 nsec.

multiply and accumulate cycle, t. = 535 nsec.

Chip power dissipation with OUTCLK = 0 volts was as follows:

p

210 mW @ t_ = 0.5 psec.

il
]

200 oW @ t. 1 upsec.

190 mWw @ tC = 10 psec.

il

100 mW (standby, PC = CLK = 0 volts)

—-62-

Data in ’A |£fﬁ£2£ff£fﬁffi |£££C£Z
X-IN, Y-18 __| | [

3 t

Acc. data 2/ /7] tac—{ . | [
Full adder j
L
L

-5 - -

data ; ; ; /l "“""tfc——’r
)

Out register

et T T At ——]

"DONE * 2L ‘ﬂ————tdc —)

OUTCLK I l

Data out High impedance T T High impedance

Figure 1, Timing diagram.

63—

REFERENCES

1.

G. W. McIver, R. W. Miller, and T. G. O'Shaughnessy, "A monolithic
16 x 16 digital multiplier,'" in 1974 Int, Solid-State Circuits
Conf., Dig. Tech. Papers, pp. 54-55.

I. Flores, The Logic of Computer Arithmetic. Englewood Cliffs,
N. .I.: Prentice-Hall, TInc., 1963. 493p.

1. E. Sutherland, internal document.

C. S. Wallace, "A suggestion for a fast multiplier,” IRE Trams,
Elect. Comput., vol. EC-13, pp. 14-17, Feb. 1964.

L. P. Rubinfield, "A proof of the modified Bouth's algoritbm for
multiplication,” IEEE Trans. Comput., vol. C-24, pp. 1014-15,
Oct. 1975.

R. C. Ghest, Application Note: A 2's Complement Digital Multiplier
~ the AM2505. Sunnyvale, California: Advanced Micro Devices, Inc.,
1971, 1lp.

C. A. Mead and L. A. Conway, Introduction to LSI Systems.
(unpublished).

M. Lehman and N. Burla, "Skip techniques for high-speed carry
propagation in binary arithmetic units," IRE Trans. Elect. Comput.,
vol. EC-10, pp. 691-98, Dec. 1961.

