Placement of Communicating Processes

on Multiprocessor Networks

Craig S. Steele

Computer Science
California Institute of Technology

5184:TR:85

Placement of Communicating Processes
on Multiprocessor Networks

by
Craig S. Steele

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

Computer Science Department
California Institute of Technology
Pasadena, CA 91125

Technical Report 5184:TR:85

April 1985

The research described in this report was sponsored by the Defense
Advanced Research Projects Agency, ARPA Order number 3771, and
monitored by the Office of Naval Research under contract number
N00014-79-C-0597

(©California Institute of Technology, 1985

Contents

1 Introduction 1
1.1 Motive e e e 1
1.2 Thegraphmodel it 1
1.3 Graphattributes 2
14 Thecostfunction 2
15 Thiswork e e 3
1.6 Other applications 3
1.7 Overviewof thisreport 4

2 Simulated annealing 5
2.1 Imtroduction i e e e 5
2.2 Improving iterative improvement 5

2.2.1 Avoidinglocalminima 6
2.3 Simulated annealing, 6
231 Thermalnoise 6
232 Acceptancefunction 6
233 Relevanceoftheory 7
2.4 Issuesin implementation 8
241 Costfunction L o o . 8
2.4.2 Annealingschedule L L. 8
25 Legalsolutions 9
2.6 Powerofthemethod 9

3 The graph mapping program 10

3.1 Inputspecification, 10
3.1.1 Physicalgraph 10
312 Logicalgraph, 11
3.1.3 Initial mapping of the logical to physical graph 11
314 Invalid placement _, 11

3.2 Major internal data structures L. 11
321 Physicalgraph o .. 12
322 Logicalgraph 12
3.2.3 Initial configuration 12
3.2.4 Physical graph shortest path and shortest distances 12

3.3 Physical graph distance calculation 12

3.4 Generation of new configurations 12

3.5 Calculation of the cost function, 13

3.6 Acceptancefunction o oL
3.7 Annealingschedule
3.7.1 Exponential temperaturedecay
3.7.2 Modifying exponential decay
373 Relaxationtime.
3.7.4 Estimation of high and low temperatures
3.8 An example of the complete annealingeycle
39 Memory doesn’tfreeze o o e
3.10 Estimation of energy term weights
3.10.1 Define a hierarchy of constraintsand goals.
3.10.2 Estimation of absolute weights
3.11 Performance v v v it e e e e e e e e e e e e e e e e
3.11.1 TIIE . . & o o ot et e
3112 Space v v e e e e e e e e e e e e e e e

Comparisons of physical graphs

4.1 Imtroduction. e e e e e e

4.2 Mappings of one processtoonenode,
4.2.1 Logical graphsused fortestcases
422 Physicalgraphs o oo e
423 Costfunctions ¢ i v i i it e
424 Comparison of mappingresults
4.2.5 Stability of results with linearcost

4.3 Mappings of four processestoonenode
4.3.1 Logical graphsused fortestcases
432 Physicalgraphs o e
433 Costfunction i i
4.3.4 Variation in relative memory utilization term weights
4.3.5 Comparison of mappingresults

4.4 Conclusion i e

Analysis of results

5.1 Imtroduction o v i i it e e e e e e e e e
5.2 The quality of resultant mappings
5.2.1 Estimating a lower bound for average distance
5.2.2 Improvement over a random mapping
5.3 Reproducibility ofresults
5.3.1 With identical parameters oL
5.3.2 With different parameters
5.4 Relative merits of physical interconnection schemes
5.4.1 Distance distribution of the physical graphs
5.4.2 Relative rankingofresults
5.5 Scalilng o e e e e e e e e e e
BB1 Space oo oo oo
552 THNE . . v v o i o et e e e e e e e e e e e e e e e e e
553 Quality e e

ii

6 Conclusions and future research 62

6.1

6.2

6.3

Conclusions v v i vt e e e e e e e e e e 62
6.1.1 Hard and soft constraints 62
6.1.2 Scalingtolargeproblems 62
6.1.3 Preferred physical interconnection graphs 63
Future work L e e 63
6.21 Parallelism, 64
6.2.2 Application of NET to a concurrenb programming enviroument . . . 64
6.23 Congestioncosts i it it e e 64
6.2.4 Explicit distinction of constraints 64
6.2.5 Individual energy term relaxation times 65
Acknowledgements e 65

iii

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13

5.1

5.2

5.3

54

5.5

5.6
5.7

Boltzmann acceptance function
‘Heat bath’ acceptance function

Acceptance probabilities for various decay ratios
Ratio of acceptance probabilities for various decay ratios
Binary 7-cube mapped onto binary 7-cube
Binary 7-cube mapped onto binary 7-cube
Binary 7-cube mapped onto binary 7-cube
Torus, n = 3, k = 8, mapped onto torus,n =3, k=5
Torus, n = 3, k = 8, mapped onto torus,n =3, k=5
Torus, n = 3, k = 8, mapped onto torus,n =3,k =5
Torus, n = 3, k = 8, mapped onto torus,n =3, k=5

...................

............

Inverse average distances for 1 — 1, E = Y distance? series
Inverse average distances for 1 — 1, E = Y distance® series
Inverse maximum distances for 1 — 1, E = Y distance?®
Inverse maximum distances for 1 — 1, E = Y distance® series
Distance distribution, 7-cube — ring
Distance distribution, 7-cube — ring
Distance distribution, E = Y distance>
Distance distribution, E = Y distance>
Regression of average distances for distance?, distance! cost functions . . .
Regression of maximum distances for distance?, distance! cost functions . .
Inverse average distances for 4 — 1 geries

series

Inverse maximum distancesfor4 — 1series
Distance distributions for 4 — 1series v

Improvement of average distances from random placement to ‘star’ lower
bound estimate, for 1 — 1, E = }_ distance?
Improvement of average distances from random placement to ‘star’ lower
bound estimate, for 1 — 1, E = Y distance®
Improvement of average distances from random placement to ‘star’ lower

bound estimate, for4 — 1series

Normalized differences in the average logical distance for 4 — 1 mappings,

for hard and soft constraints

Inverse normalized average distances for4 — 1 series
Inverse normalized average distances for 1 — 1, E = Y distance® series . . .
Inverse normalized average distances for 1 — 1, E = Y distance® series . . .

iv

SETieS e e .

Series

14
14
16
16
17
18
20
21
21

28
29
31
32
33
33
34
35
37
37
40
41
42

46
47
48
50
53

54
55

5.8 Inverse average distances for 1 — 1, |V| ~ 1024, E = 3 distance? series . .

5.9 Ratio of average distances for 1 — 1, |V| ~ 128 and 1024, E = }_ distance’

SEUAIES o e

5.10 Improvement of average distances from random placement to ‘star’ lower

bound estimate, for 1 — 1, |V'| ~ 1024, E = Y distance® series

5.11 Ratio of improvement of average distances from random placement to ‘star’
lower bound estimate, for 1 — 1, V| ~ 128 and 1024, E = Y distance®

LT Do & L= Y

5.12 Inverse normalized average distances for 1 — 1, |V | ~ 1024, E = 3 distance?

BETIES . . v v e

Chapter 1

Introduction

My mynd ben all binsy with myndy thinking. Thinking who wer going to do what
and how I myt put some thing to gether befor some 1 else done it.

Riddley Walker, Russell Hoban

1.1 Motive

For a single computation to be executed concurrently by a machine with multiple pro-
cessing nodes, the problem must be divided into parts, and those parts must be placed onto
the physical nodes. The first task is here referred to as logical partitioning; the second
as physical placement. In the model described here, the logical partitioning is assumed to
have been done by the programmer, who has separated the computation into a set of com-
municating processes [13]. These processes communicate by passing messages via logical
channels that may link any pair of processes, and are also defined by the programmer. If
the machine does not have a global communication system, such as shared memory or a
common bus, the assignment of logical processes to physical nodes will affect the pattern
and efficiency of communications.

The Caltech Cosmic Cube [13] is one such machine, composed of 64 small computers
using point-to-point communications channels of intentionally limited speed and appreciable
latency. The physical communications channels are arranged as the edges of a binary 6-
cube; internode messages may require as many as 5 forwarding operations by intermediate
nodes. For this or any other system without global communications hardware, it is desirable
to place communicating logical processes on physical nodes in close proximity to reduce the
cost of communications. The distance metric is defined by the communications structure.

In some cases, a natural assignment of processes to nodes may be evident. For example,
the Cosmic Cube is isomorphic to a 4x4x4 three dimensional torus, and three dimensional
problems with grid sizes which are multiples of 4 can be mapped readily. Irregular or
ill-sized problems may not have obvious good assignments.

This paper presents a method for generating a good placement for any process and node
structures, using the technique of simulated annealing [5].

1.2 The graph model

The logical partition of the problem may be represented as a graph. Each vertex of

this logical graph corresponds to a process; each edge represents a logical communication
channel. Similarly the physical machine may be represented by a physical graph with
vertices and edges representing processing nodes and physical communication channels,
respectively. To run a computation the processes must be loaded onto the physical machine,
requiring a mapping of the logical graph onto the physical graph.

1.3 Graph attributes

Each edge of the logical graph has an arbitrary weight, which is interpreted as the
amount of communication between the two processes that are its endpoints. In this work,
communication channels are assumed to be bidirectional, so the edges are undirected. Each
vertex has a size that may be taken to represent the amount of memory it requires, expressed
as a fraction of that available in a node.

Each edge of the physical graph represents the existence of a physical communication
channel with a weight for the cost of message transmittal. Each node is assumed to have the
same amount of memory. Both edges (communication channels) and vertices (processing
nodes) can be given maximum I/O capacities.

1.4 The cost function

The mapping method attempts to find an embedding of the logical graph in the physical
graph which minimizes the total cost function.
The cost function is the sum of four terms

cost = > distance®™ + cmemuta Y, memutil*2+
logscal channels nodes
Crodeio Z nodeio®® + Cchango Z chanio®
nodes physical channels

Where

Distance is the physical distance separating logically connected processes.

Memory utilization i8 3-,.sident processes MEMOTY size, the total amount of memory
occupied by processes on a node.

Node I/O cost i8 Y jocai routes f09ical channel weight, the total utilization of the
processing node I/O capacity.

Channel I/O cost i8 Y ;,.a1 routes {091cal channel weight, the total utilization of the
physical channel I/O capacity.

The summation Y, .41 rouses O the last two terms is over the logical channels which are
routed through that particular physical node or channel. The values of the coefficients ¢
and exponents k depend on the definition of the particular problem. The coefficient of the
distance term is implicitly 1; other terms are weighted relatively to it.

The first term is minimized by reducing the physical distances between communicating
processes; it is analogous to an attractive force between processes. The second term is a
repulsive force tending to prevent the nodes from becoming too full. The latter two terms
are routing congestion terms that penalize inequitable communications loading of nodes
and physical channels.

1.5 This work

Given a logical and a physical graph and parameters for a cost function, the program
NET finds mappings of logical to physical graphs which approach minimum communications
cost. The resultant mappings may be one-to-one (one process per node) or many-to-one
(multiple processes per node), depending on the size of the processes. It is assumed that
such static analysis of communications cost is adequate for many purposes. Computations
with message traffic deviating only slightly from the average or with synchronized bursts
of maximal communications activity are well modelled. Computations having significant
temporal dependency will require more sophisticated analysis for good node load balancing.

1.6 Other applications

Though this work is motivated by the process placement problem, many other problems
are readily transformed into equivalent graph embedding problems. With suitable interpre-
tations for the graph attributes and suitable parameters for the cost function, the graph
mapping program NET is widely applicable. These problems are in general NP-complete,
so perfect solutions cannot be expected [3].

Data partition A slight variation of the process placement problem is partitioning data
among processes to minimize interprocess communication, e.g., assignment of circuit ele-
ments to processes of a distributed logic simulator.

Logic partition Partitioning logic circuits between two packages to minimize interwiring
is solved by mapping the logic graph onto a two-node physical graph with a connection cost
exponent of zero.

Tnteger partition The integer partitioning problem is to divide a set of integers into two
subsets so as to minimize the difference in the sums of each subset. It can be modelled by
considering only the node utilization term of the cost function with a greater than linear
exponent.

Hamiltonian circuit The problem of finding a Hamiltonian circuit in an undirected
graph is the same as finding an optimal mapping of a ring of N vertices onto the given
graph of N vertices.

Travelling salesman problem The travelling salesman problem can be defined as find-
ing a minimal length mapping of an N-element ring onto a completely connected physical
graph. In this case the physical graph edge weights are considered to be the distances
between cities the salesman must visit.

Routing Restricting channel and node capacity to single logical connections allows solu-
tion of routing problems.

1.7 Overview of this report

e Chapter 2 describes the general optimization technique of simulated annealing.

e Chapter 3 describes the program NET, which implements a simulated annealing tech-
nique for graph embedding problems.

e Chapter 4 describes a comparative study of various medium-scale physical intercon-
nection structures for multinode machines.

e Chapter 5 provides additional analysis of the comparative study, including derivation
of a lower bound for the typical interprocess distance, and a discussion of a compar-
ative study with physical graphs scaled to larger size.

e Chapter 6 reviews the results and proposes future research topics.

Chapter 2

Simulated annealing

2.1 Introduction

Many optimization problems of interest to computer scientists are NP-complete; that
is, all methods for finding the ‘best’ solutions require calculations which are exponential in
the size of the problem. For instance, the problem of finding the best one-to-one mapping
of n processes to n nodes by exhaustive search will require all n! possible configurations ta
be examined. This ‘combinatorial explosion’ of the number of possible states makes finding
exact solutions for many large problems impossible. However, for practical purposes good
approximations to the optimal solutions may suffice. The technique employed in this report,
simulated annealing, is a method for finding such approximations.

[Simulated annealing is] a general framework for optimization which uses
computer simulation methods from condensed matter physics and an equivalence
(which can be made rigorous) between the many undetermined parameters of
the system being optimized and the particles in an imaginary physical system.

(6]

2.2 Improving iterative improvement

Simulated annealing is a variation of the heuristic strategy of iterative improvement.
Iterative improvement requires :

e a concise representation of the system of interest.

e a scalar objective function (e.g. cost or energy) that reduces the objectives of the op-
timization process to a single number and quantifies the trade-offs between conflicting
objectives.

e a procedure for generating trial rearrangements of the system [6].

From an initial configuration, successive improvements are made by examining the cost
of trial rearrangements and accepting those with lower cost. The process will continue to
reduce the system cost until all of the trial configurations subject to examination are of
higher cost. Iterative improvement will find a solution which is minimal within the search
space of the rearrangement procedure. The search process will become ‘stuck’ at this local
minimum, unable to reach other, possibly better, solutions.

2.2.1 Avoiding local minima

The problem of failure to locate global minima may be addressed by generating several
solutions from randomly selected starting points. Alternatively, upon detection of a local
minimum, a new point, near the current state but outside the local search region, may be
chosen for further iterative search.

2.3 Simulated annealing

Simulated annealing adds the concept of a simulated ‘temperature’ to iterative improve-
ment.

2.3.1 Thermal noise

Iterative improvement will always accept a new configuration of lower cost and reject
more costly states. Simulated annealing escapes from local minima by sometimes accepting
higher cost rearrangements, with a probability determined by the incremental cost and the
simulated ‘temperature’.

This temperature is simply a control parameter in the same units as the cost
function. The simulated annealing process consists of first ‘melting’ the system
being optimized at a high effective temperature, then lowering the temperature
by slow stages until the system ‘freezes’ and no further changes occur. At each
temperature, the simulation must proceed long enough for the system to reach a
steady state. The sequence of temperatures and the number of rearrangements

. attempted to reach equilibrium at each temperature can be considered an
annealing schedule. [5]

If the initial temperature is high enough, and the cooling slow enough, the global minimum
of the system will be reached.

Iterative improvement is equivalent to simulated annealing with the temperature T = 0.
The physical analogy is ‘quenching’, extracting energy from a hot system as quickly as possi-
ble. Alternatively, simulated annealing is a probabilistically directed iterative improvement
scheme.

2.3.2 Acceptance function

The probability of accepting a trial configuration differing by energy AE from the
present state is denoted P(AE). Two probability functions from statistical mechanics are
common in simulated annealing. Kirkpatrick [5] used the Boltzmann probability factor,

P(AE) = min(1,e7%7)

used by Metropolis et al. [9] for early molecular modelling simulations, shown in Fig. 2.1.
This function accepts all changes of AE < 0 with P(AE) = 1. The ‘heat bath’ function

1
P(AE)= —5
1+e%r
shown in Fig. 2.2, is claimed (on theoretical grounds) to have faster convergence to equilib-
rium [4]. It is assumed that the Boltzmann constant k equals 1 in order to avoid inconve-
niently large temperature scales.

Boltzmann Heat Bath

Figure 2.1: Boltzmann acceptance Figure 2.2: ‘Heat bath’ acceptance
function function

In my simulations I found no discernible difference between the two functions in either
the speed or quality of results. The heat bath function was preferred because it accepts
only 50 % of trial configurations of the same energy as the current configuration, which is
somewhat more efficient and convenient in the simulation program.

Some quite unphysical acceptance functions (e.g., linear) have been evaluated with only
minor differences reported [10]. Possibly even these differences can be attributed to effec-
tively different annealing schedules.

2.3.3 Relevance of theory

The simulated systems differ significantly from physical systems in at least two ways.
Simulations perform sequential rather than simultaneous evaluation of trial states and the
types of possible rearrangements are relatively limited. Secondly, the number of elements is
typically hundreds or thousands, tens of orders of magnitude smaller than the real systems
modelled by statistical mechanics. Each state change can cause a significant disturbance
of the entire system energy. In particular, the number of states near a global minimum
(‘ground states’) is relatively small by thermodynamic standards and there are just a few
distinct possible transition energies. These near minimal energy states are those of interest
during optimization. Since the simulation is quite ‘noisy’, the exact form of the acceptance
function is probably not critical. It may change the energy distribution of states at higher
temperature, but almost any continuous function of the right general behavior could produce
the desired low temperature result with the proper annealing schedule.

Stochastic formulation

An alternative to the thermodynamic formulation of the optimization problem is the
stochastic or Markov formulation [7]. For a given temperature, a matrix of transition prob-
abilities between states can be constructed, based on calculation of their energies. Since
calculation of eigenvectors of matrices of n! size is an intractable problem, this complemen-
tary approach is only of theoretical interest. The interesting problems of interest are of a
middling size; too large for combinatorial search or Markov modelling; marginally small for
statistical mechanics to be absolutely appropriate. The physical analogies are helpful for
the development of intuition.

2.4 Issues in implementation

2.4.1 Cost function

Successful applications of simulated annealing are characterized by rapid evaluation
of great numbers (thousands to millions) of possible configurations. For efficiency the cost
function should be simple and additive so that small rearrangements in configuration require
only local recalculation.

Terms with large relative weights will be better minimized. Terms intended as con-
straints must dominate in order to avoid degenerate solutions. For example, if processes
are allowed to migrate without effective restriction, all processes will be put on one node
to minimize communication distances. Both higher relative weighting of terms and larger
exponents may be necessary to avoid such problems.

It is important to note that it is not the total energy contribution from energy compo-
nents which determines correct weights, but the variation of those contributions during the

simulation. A large energy term which never changes will have no effect on the acceptance
probability P(AE).

2.4.2 Annealing schedule

The quality of the solution is critically dependent on the choice of starting temperature
and cooling rates. The prescription [5] is to start from a very hot system, then cool by stages,
continuing the simulation at each temperature until equilibrium is reached, then reduce the
temperature by some factor. Determining equilibrium is quite difficult in practice, since
it presumes knowledge of the system energy that corresponds to the current temperature.
Reaching equilibrium at T = O corresponds to the problem of finding a global minimum.

Cooling too fast will result in inferior solutions; cooling too slowly wastes time. Most
experimenters have produced annealing schedules either interactively or by specification of
an exponential decay rate. More elaborate methods are possible; mine are discussed in
section 3.7.

Phase transition

Not all temperature changes will result in significant change in energy. The rate of

change of the syastem energy E with respect to the temperature T is
d(E(T))
C(T)= —+—""
() dT b

by analogy, the specific heat. Temperatures with high specific heat correspond to phase
transitions of the system. Simple, ‘crystalline’ systems may have only one phase transition,
corresponding to ‘freezing’, (e.g. Figure 3.4 discussed in section 3.7.2). More complex
systems may have a series of phase transitions at different temperatures.

Phase hierarchies

At a given temperature the only significant trial configurations are those for which
AE = T [14]. Moves resulting in larger positive changes are unlikely to be accepted; those
resulting in larger negative changes will probably have already been found and accepted at
previous higher temperatures. New states of smaller magnitude are unlikely to persist.

Phase transitions occur when many trial states have AE ~ T. If appropriate parameters
for the cost function are selected, a temperature hierarchy for goals and constraints may be
created. For example, if we wish to place 4 processes on each node, we may first reach a
transition where all 6-process states are excluded, followed by the elimination of 5-process
states as the temperature is lowered. (Note that a nonlinear function is required if AFE is
to differ for these two cases.) If a cost term has a phase transition at a temperature much
higher than another of conflicting impetus, it is a constraint. If two terms have comparable
characteristic temperatures, they are jointly minimized. The temperature scale creates a
hierarchy of importance, since higher temperature phases are encountered first.

The cost of such flexibility is potential inefficiency. Some classes of trial moves may
produce energy changes appropriate to only some temperature ranges. Many problems are
best addressed by separate sequential optimizations rather than simultaneous optimization
of several terms. An example is hierarchic logic partitioning [5]. First circuits are partitioned
into packages, minimizing the number of interpackage wires; then the packages are place
on circuit boards so as to minimize wiring length. In principle both optimizations could be
done together, but the efficiency of the sequential division of the problem is much greater.

2.5 Legal solutions

The legality of the resultant configuration can be motivated by high penalties in the
cost function, or guaranteed by the configuration generator, (‘hard’ or ‘soft’ constraints,
respectively). Cost penalties are more flexible, but may require careful parameterization to
produce legal results in tightly constrained or very asymmetric systems.

2.6 Power of the method

Kirkpatrick [6] and Johnson [10] have compared simulated annealing with other available
heuristics for several NP-complete problems. In general, simulated annealing produces
results of quality comparable to or better than the best previously known heuristic methods,
but at greater computational cost. The generality of the method is dependent on the
specialization of the trial configuration generator.

The graph embedding model of Chapter 1 allows a broad range of problems to be
addressed. With a fixed move set and an automatic annealing schedule, simulated annealing
is an excellent tool for comparative studies.

Chapter 3
The graph mapping program

NET is a program for finding good embeddings of a logical into a physical graph. It was
inspired by the bipartite logic partitioning work done by Kirkpatrick [5]. The initial version
of the program required special subroutines for each physical interconnection graph; later
it was generalized to accept adjacency list representations of graphs. Though the program
can be applied to a variety of problems, the terminology of process placement is used here.

The basic input to the program is three (optionally four) files that define the :

e Physical graph.

e Logical graph.

¢ Initial mapping of the logical into the physical graph.

e (Optional) precalculated shortest path distances of the physical graph.

Additional parameters specify the cost function and annealing schedule. The output is one
or more mappings of the logical to physical graph and various summary statistics.

3.1 Input specification

Process and node numbers are assumed to be small integers, starting from 0, to allow
compact arrays to be used as roots for dynamic data structures. Because both graphs must.
be undirected, the files must list directed edge connections in both directions for correct
operation. Duplication of either logical or physical channels may produce suboptimal results
for congestion calculations. Most data are checked for plausible values when read.

3.1.1 Physical graph

The physical graph file, which describes the physical communication channels among
the nodes, has four components:

e Node number of one end (origin) of a physical communication channel.
e Node number of the other end (destination).

e The cost of the channel. Often this is set to 1, but could vary, e.g. it would represent
distance in a travelling salesman problem.

10

e The channel capacity (in the same units as logical channel weight, below).

Physical graphs may be disconnected; if so, a warning will be issued during the calculation
of shortest paths. Calculation of the cost function may cause a floating point overflow if
logically connected processes are placed in disconnected parts of a physical graph.

3.1.2 Logical graph

The logical graph, which describes the logical communication channels among the pro-
cesses, has three components:

e Process number of one end (origin) of a channel.
e Process number of the other end (destination).

e The weight of the channel, i.e. the volume of message traffic per unit time.

3.1.3 Initial mapping of the logical to physical graph
The initial mapping has three components:

e Process number.
¢ Node number on which the process is initially placed.

e Process memory size, expressed as a fraction of the (uniform) node memory size.

If the memory size is negative, the process is considered fixed and will not be moved.

If the initial placement is not close to a legal, properly constrained configuration, the
estimation of parameters for the annealing schedule will take longer due to extension of the
quenching phase. The quality of the final mapping is essentially independent of the initial
mapping since the system is heated to randomness. Uniform distribution of processes has
proven adequate.

3.1.4 Invalid placement

For comparative studies it is convenient to tolerate ‘illegal’ initial mappings. In each
study the same initial mapping file is used for all combinations of logical and physical
graphs. Logical graphs are not tailored to fit the various sizes of physical graphs. The
initial mapping may therefore place processes on nodes which do not exist in the smaller
physical graphs. For example, a binary 7-cube logical graph may be placed onto a binary
7-cube with an initial one-to-one identity mapping with no difficulty, since both have 128
vertices. If the same logical graph and mapping files are used with a binary tree of height
6 (127 vertices) as the physical graph, the highest-numbered process will be located on
a nonexistent node. For the comparative study the expedient solution is just to remove
(after a warning) logical graph vertices that are mapped to nonexistent physical vertices.
Obviously, this Procrustean treatment is inappropriate for an actual computation where all
processes are indispensable.

3.2 Major internal data structures

The main internal structures correspond to the four input files. The graph structures
are contained in dynamically allocated Pascal records.

11

3.2.1 Physical graph

Physical node (vertex) records contain memory and node 1/O utilization values. Physical
communication channels (edges) of the physical graph are stored as an adjacency list. Three
lists contain associated processes (logical vertices) which are in one of three states:

e Resident on the node, unaffected by the trial configuration.
o Resident on the node, moved elsewhere in the trial configuration.

e Not resident on the node, but moved there by the trial move.

3.2.2 Logical graph

The process record contains two adjacency lists recording logical communication chan-
nels (edges) that begin and end at that process. The latter list of ‘backpointing’ references

is required for efficient calculation of congestion costs and would also be useful if NET were
modified to allow directed logical edges.

3.2.3 Initial configuration

The initial configuration is copied to an internal file to be used for reinitialization if
more than one solution is requested. The current placement is contained in the physical
node record array.

3.2.4 Physical graph shortest path and shortest distances

A fixed-size array holds the matrix of minimum distances from all physical nodes to
each other. For congestion calculations, it is additionally necessary to retain sufficient
information to construct the actual shortest paths. Therefore, another array contains heads
of lists of the next vertices in the (usually multiple) shortest paths.

3.3 Physical graph distance calculation

The distance and path matrices are generated by a version of Dijkstra’s all-points short-
est paths algorithm (1] of O(| Ephysicat| [Vphysicat] 108 [Vphysicai|) time complexity, (E : edges,
V : vertices). This method is superior to the simpler Floyd O(|[Vpaysica|®) algorithm [1]
for large sparsely connected graphs, where |Eppysicat| = average degree X |Vpnysicall <
|Vphysicat|*. If both node I/O and channel I/O utilization energy coefficients are zero, the
physical paths for each logical connection are not generated.

The actual path selected by a logical channel is recorded in a list based in the channel
record. As in other data structures affected by new configuration trials, both old and new
configurations are maintained.

3.4 Generation of new configurations
The generation of a new configuration proceeds in several steps. Each process is se-

quentially selected to be part of a trial move. A randomly selected process residing on
a randomly selected neighbor of the current node is chosen. An exchange of the pair of

12

processes is evaluated. If the exchange is rejected, a move of one process to the adjacent
node is attempted; if that move also is rejected, the complementary move is tried.
If the memory utilization cost coefficient is zero, only exchanges are made. In this case

the initial mapping must place legal numbers of processes (of equal size) on nodes, since
those numbers will remain constant.

3.6 Calculation of the cost function

All energy calculations are done incrementally, recomputing only the components af-
fected by the most recently accepted move, except during initialization and statistics gath-
ering.

The restriction of input to undirected graphs allows the logical distance cost term to be
calculated more efficiently by doubling the computcd unidircctional AE.

3.6 Acceptance function

Both the Boltzmann and ‘heat bath’ acceptance functions have been used, with mini-
mally different results. As mentioned in section 2.3.2, a large comparative study found no
evident difference between the two functions in convergence rates or result quality. The
Boltzmann function has a significant disadvantage because all moves with AE = 0 are ac-
cepted. Because of the sequential generation of alternative moves mentioned above, if every
exchange move attempted is accepted, the asymmetric moves will never be considered. Very
symmetric states will be erroneously stable. Therefore, the ‘heat bath’ acceptance function
was preferred and used for all results presented here.

3.7 Annealing schedule

The automatic generation of a suitable annealing temperature schedule is essential for
convenience and comparability of results. Various program options may be selected; the
most automated choices are described.

3.7.1 Exponential temperature decay

The basic annealing schedule is produced by starting at a high randomizing temperature
and repeatedly lowering the temperature by some ratio (usually .9) resniting in exponential
decay. Each new temperature step will alter the probability of acceptance of a given AE
by a small amount.

Figure 3.1 shows the ‘heat bath’ acceptance function for a fixed AE with 7' shown for
various decay ratios. As the temperature decreases, the curve approaches a step function.
The ‘physical’ implication is that as the temperature drops, simulated annealing increasingly
resembles iterative improvement; accepting all moves which decrease energy and rejecting
all which increase energy. Figure 3.2 shows the relative change in acceptance probabilities
for a given AE due to a temperature reduction by the indicated ratio. This plot is obtained
by dividing the 7' curves of Figure 3.1 by the 7' = T base curve. An examination of
the two figures shows that the difference in effect between the two commonly employed
ratios of .9 and .95 is quite modest. Only for very unfavorable moves (AT.I2 > 0) is the

13

Heat Bath acceptance functions
T' = 8T, 9T, 95T, 1.0T

1.0

0.8

0.6

P

0.4

0.2

0.0

-6 -4 -2 0 2 4 6
AE
Tr
Figure 3.1: Acceptance probabilities for various decay ratios
P(F7) | P(57)

12

1.0

08 r

Pl
F 06

04 -

0.2

00 il 1 L 1 | | 1

-6 -4 -2 0 2 4 6

AE
T

Figure 3.2: Ratio of acceptance probabilities for various decay ratios

14

relative probability (Figure 3.2) significantly different, but these moves are very unlikely to
be accepted, as shown in Figure 3.1.

Since the change in probability is so small, the process is not highly sensitive to direct
effects of the choice of the exponential decay ratio. However, if the annealing schedule is
simply an exponential decay with fixed length time steps, the decay ratio will indirectly con-
trol the effective duration of the annealing process by changing the number of temperature
steps.

og (i)

number of temperature steps = ——5°—

log(7
Changing the decay ratio from .9 to .95 will more than double the number of temperature
steps and the total annealing time. If the number of trials at each temperature step is
insufficient to allow a good approximation of equilibrium to be reached, a change in the
ratio can have dramatic effects. The somewhat mystical air improperly associated with the
choice of decay ratios should be attributed to the inherently difficult problem of determining
the number of trials required at each temperature step, to be discussed in section 3.7.3.

3.7.2 Modifying exponential decay

As suggested by Kirkpatrick [5], the ‘specitic heat’ can suggest where slower cooling
might be helpful. Determination of the discrete analog of the ‘specific heat’ requires finding
the equilibrium energy of two consecutive temperatures, which makes circular the question
of determining the minimum time step needed to approach equilibrium. A practical varia-
tion of this idea is to remain at the same temperature as long as the energy is falling at a
significant rate.

NET accepts two parameters to control this adaptive extension of the basic time interval.
One is the minimum improvement in the energy. The other is the net rate of the number of
positive and negative moves accepted, a hedge against a few disastrously large bad moves
forcing a temperature change. The former parameter is usually set close to zero, so that
any improvement will delay the temperature decrease. It predominantly affects the higher
temperature schedule. The latter parameter must be significantly larger than zero to avoid
‘hanging’ at a near-equilibrium point. Its greatest effect is in extending the process at
‘near-frozen’ temperatures. This is useful if one is searching hard for perfect solutions.
In practice both statistics are highly correlated. Both numbers are scaled to reflect the
size of the problem and the acceptance rate of trial configurations. Large values for these
parameters force pure exponential decay.

At this point it is instructive to consider a particularly good example of the adaptive
annealing schedule, drawn from the one process per node comparative study of section 4.2,
mapping a binary 7-cube (|[V| = 128) onto a binary 7-cube.

Figure 3.3 shows the evolution of the system from a perfect (identity) initial mapping
(marked by X) to a highly disordered hot state (marked as Ey), then the slow cooling
back to a perfectly ordered ‘frozen’ system, (Er). The RMS (root mean square) logical
distance (see section 4.2.3) is the typical distance between communicating processes, i.e.,
for vertices in the logical graph connected by an edge, what is the physical distance between
the physical nodes the processes are mapped onto? A perfect mapping gives an average
value of 1.

The approximate specific heat is shown in Figure 3.4. This is an ‘averaged derivative’ of
the energy (closely related to the RMS distance) shown in Figure 3.3. Notice the prominent

15

L E LR e
N

2500

2000

1500

1000

500

-500

RMS logical connection distance versus temperature

Exg

EpF

1 H 1 I

10 50 100 500 1000

Temperature

Figure 3.3: Binary 7-cube mapped onto binary 7-cube

Specific heat C versus T

MA A

! { 1 !

10 50 100 500 1000

Temperature

Figure 3.4: Binary 7-cube mapped onto binary 7-cube

16

Number of configurations tested at each temperature

120000

100000

80000 |

60000

40000

N O et = (D =

20000

T

0 Lk 1 I ! !
10 50 100 500 1000

Temperature

Figure 3.5: Binary 7-cube mapped onto binary 7-cube

phase transition at T = 15, the ‘melting point’, which is seen as the vertical drop in
Figure 3.3 and as the spike of Figure 3.4. When the energy is rapidly falling at T = 15, the
improvement causes the basic evaluation period of 12288 trials to be extended 7 times, as
seen in Figure 3.5.

3.7.3 Relaxation time

For the statistics which determine the adjustment to the basic annealing schedule to
be meaningful, the interval between evaluations must be adequately long. Traditionally,
a certain number of trials is attempted for each movable entity; this number is adjusted
experimentally. For NET, an input parameter specifies the number of iterations per process
to define a minimum time period for further estimates.

Tt is assumed that the system has a characteristic ‘relaxation time’ which will allow it to
settle close to equilibrium after a temperature change. There is no reason to believe that this
time is constant across all temperatures; nevertheless a Jower bound can be experimentally
estimated.

The system is ‘shocked’ from a very cool, ‘quenched’ state. A very high temperature is
estimated (section 3.7.4) and the system is simulated until a rough equilibration is found,
as indicated by the appearance of both an increase and a decrease in system energy. This
rather crude criterion tends to confound the mobility of the system and its level of noise,
but is generally adequate.

17

Root mean distance, memory utilization versus temperature

4 F M

DH e

m

(o]

L r

D 3 y

i

s _ u

b, | i5 t

a i

n 1

c i

e 1 L :

-1 t

1

o

0 t 1 1 1 I n
0.1 1 10 100 1000 10000

Temperature

Figure 3.6: Torus, n = 3, k = 8, mapped onto torus,n =3,k = 5

3.7.4 Estimation of high and low temperatures

The system is randomized by heating at a temperature sufficiently high to cause accep-
tance of a given fraction of evaluated configurations. For the heat bath acceptance function
the acceptance rate will asymptotically approach 50% in a noiseless system as temperature
is increased.

One technique is to heat the system with an exponentially increasing temperature until
the desired acceptance rate is achieved. Alternatively, the insight [14] that 7 should ap-
proximate AE suggests that we may more quickly estimate the temperature required by
estimating AFE. We survey the nearby volume of configuration space by consideriug the A E
which would result from moves possible from the initial state. The standard deviation of a
large number of adjacent configurations is computed, then the inverse acceptance function is
applied to yield an estitnate for the necessary ‘hot’ temperature. This method is necessarily
approximate, since the initial region of configuration space does not necessarily resemble
the hot system. However, errors in prediction of the hot temperature are not troublesome
since it can be reestimated and tested after the system has ‘equilibrated’ at the predicted
temperature.

3.8 An example of the complete annealing cycle
It is useful to examine an example with two energy components (from section 4.3).

Figure 3.6 shows the history of finding a mapping of an 8x8x8 torus onto a 5x5x5 torus.
This figure is comparable to Figure 3.3 with an additional energy component shown, the

18

memory utilization term. Consider the upper curve which represents the evolution of the
distance term.

Initialization and quenching

The initial mapping (D) is poor, with a large typical logical distance. The system is
quenched by annealing at T = 0, (plotted on the logarithmic X axis as .25 for convenience),
dropping quickly to a local minimum at Dq.

Estimation of the equilibration period

To estimate the number of cycles required to bring the system into approximate equi-
librium, the quenched system is run at the high temperature estimated from the initial
mapping. The dashed horizontal line to the right of Dy records the instantaneous change
in temperature. The next, vertical, segment indicates the rapid increase in the energy of the
system in the next basic time interval as it responds to this thermal shock. The estimate
of the desired high temperature, (such that the average acceptance probability is .48), is
revised three times as the line snakes to the upper right. Finally, at T = 1963 the revised
value for T is close to the current value, and the equilibration phase is concluded. The

length of this phase is the minimum length of future temperature steps, the equilibration
period.

Heating

As a further check on our high temperature estimate, the system is run for at least
one period to confirm that the acceptance rate exceeds the required value. If not, the
temperature is increased exponentially (by the inverse of the decay ratio) until the rate is
adequate. In this example one period suffices, barely visible as a short vertical bar by the
Dy inscription. The randomized system’s RMS distance is close to the average distance of
this physical graph, 3.6, (see section 5.4.1).

Cooling

The bulk of the plot is the cooling phase, shown as the noisy curve from Dy to the
diamond near Dp. During this phase the energy is assumed to be a quasi-equilibrium value
for the temperature. There is a marked phase transition just above T = 10, also shown by
a jump in specific heat in Figure 3.7. This phase transition is less sharply defined than that
of Figures 3.3 and 3.4 since the logical and physical graphs are not isomorphic.

Freezing and termination

A low temperature is estimated from the initial mapping, and marked on the curves with
the diamond symbol. When the annealing schedule reaches this temperature (reestimated
as necessary), it is assumed that the system is near the final configuration, and termination
due to energy stagnation becomes possible. If the energy does not show a decrease in several
consecutive equilibration periods it is assumed that the system is frozen, and the annealing
process is done. This conclusion is marked as Dp.

The significantly lower value of the curve at Dp relative to Dg is an indication of
the improvement possible through simulated annealing as contrasted to simple iterative
improvement.

19

Specific heat C, memory utilization term Cjps versus T

2500
2000 | C(T)=4ETN) C=Cp+Cum
1500 |
c 1000
500 |
0 C ° oo °o°,, LAY vAyMuMWA.ﬁ._ j
Cum .
-500 1] 1 1
0.1 1 10 100 1000 10000

Temperature

Figure 3.7: Torus, n = 3, k = 8, mapped onto torus,n =3,k =5

Memory utilization energy

The lower curve of Figure 3.6 represents the memory utilization energy term. It is
intended to prevent the number of processes assigned to a node from exceeding the memory
available, in this case no more than four of the equally sized processes. (Alternatively, if
the logical graph vertex weight is considered as runtime, the term represents a penalty for
load imbalance.)

The curve is marked much as the distance term curve. The corresponding scale is on
the right axis of the plot. M marks the initial mapping, which is a uniform distribution of
four processes per node. Since the memory utilization is already minimized, the quenched
value Mg (not marked) is the same as the initial value Mj.

After the quenching phase, the coefficient of the memory term is reestimated, in this
case increasing by a~ 40%, (see section 3.10). The line to the right of M slants upward,
indicating a discontinuity in the memory utilization energy due to the new coefficient, and
to the right, due to the temperature increase at the start of the equilibration phase. No
changes in the system configuration are made, only in parameter values.

The equilibration and heating phases (leading up to Mp) are quite similar to the D
line. In the cooling phase (from My to MF), the inverted triangle identifies the point at
which the memory utilization energy first reached its minimum value.

Temporal evolution

Figure 3.8 shows the temporal development of the same mapping as the previous two
plots. In this linear plot, the total energy (E) is seen to be the sum of the distance (D) and

20

<=0 3m

Total, distance, and memory energies versus time

160000
140000 -

120000 \H
100000 -
80000
60000
40000

20000

Trial iterations (x 10°)

Figure 3.8: Torus, n = 3, k = 8, mapped onto torus,n =3,k =5

Initial detail of total, distance, and memory energies versus time
160000

140000
120000
100000 r
80000
60000
40000
20000

0 20 40 60 80 100 120

Trial iterations (x 10%)

Figure 3.9: Torus, n = 3, k = 8, mapped onto torus,n = 3,k =5

21

memory utilization (M) terms. Essentially the first half of the process (before the inverted
triangle) was devoted to minimizing the memory utilization component, while the second
half served to reduce the distance component.

Figure 3.9 is an expanded detail of the start of Figure 3.8. The quenching phase lies
between Ey and Eg. The increase in the memory utilization coefficient is visible as the small
dashed vertical segment just above the Mg point where the M term jumps discontinuously.
The number of iterations between Eq and Ep is the equilibration phase, which becomes the
unit time step (28000 iterations/step instead of the previous 4000 iterations/step) thereafter.
The heating phase ig the single period between Eg and Eg. The cooling phase comprises
most of Figure 3.8.

3.9 Memory doesn’t freeze

The memory utilization term does not have a phase transition. This reflects the fact that
the most likely state is always a uniform distribution, though high temperature broadens
the variation about that state. Alternatively, it may be observed that the ‘legal’ number
of processes per node is dependent on the average statistics of the system rather than the
detailed behavior of neighboring nodes. A dramatic collective phenomenon is unlikely with
such weakly coupled elements.

Figure 3.7 shows the components of the specific heat due to both the distance and
memory utilization terms, Cp and Cjs respectively drawn as lines and small diamonds.
The memory utilization term displays no peak to suggest a phase transition.

3.10 Estimation of energy term weights

Different energy components represent different, usually conflicting minimization goals
for the system being optimized. Incorrect weighting of the different terms can cause ineffi-
cient annealing schedules, unmet constraints, and poor optimization results. The following
method simplifies the weight selection process.

3.10.1 Define a hierarchy of constraints and goals

It is necessary to determine the relative importance of the conflicting goals to be op-
timized. For example, the multiple process per node study of section 4.3 requires that no
more than 4 of the processes be assigned to a single node to avoid overutilization of avail-
able memory. This is made a ‘soft’ constraint by assigning a sufficiently large value to the
coefficient of the memory utilization term. The relative weightings of the terms produce a
hierarchy of importance. Terms of relatively greater weight are minimized at higher tem-
perature, earlier in the cooling schedule. After the temperature has dropped further, the
goal or constraint embodied in that term is effectively ‘frozen’ in a local minimum, and
unlikely to change at lower temperatures.

Consider Figure 3.6. The memory utilization component has a relative weight of 3
compared to the distance term. The memory term is minimized at T = 11.2, at the
inverted triangular mark. The distance term is essentially minimized at T' = 2.6, the start
of the freezing phase, marked by the diamond. The ratio of the two temperatures is 4.3,
reasonably close to the specified relative weight 3.

22

Such simultanecus solution of conflicting goals is relatively expensive. As the system
is cooled the acceptance rate will drop as more classes of moves are effectively prohibited
by satisfied constraints. A fixed set of moves will result in a low average acceptance rate.
An adaptive configuration generator might improve this situation by not trying types of
moves expected to have low probability of acceptance at given temperatures. The additional
complexity is unlikely to be worthwhile except at very cool temperatures.

3.10.2 Estimation of absolute weights

The total values of the energy terms do not affect the annealing process, only the changes
in the terms. The basic problem is to roughly balance the typical delta values of the energy
components, e.g., if

AE = AD+ AM

then the goal is to find a ememutis coefficient (section 1.4) so that

AD =~ AM

The actual coefficient is the product of the relative weight given by the user and the absolutc
coefficient estimated by the program to yield parity.

The absolute coefficients are estimated by sampling the local configuration space, con-
figurations differing from the current configuration by only one move, to determine typical
delta energy values. The absolute coefficients are estimated to give all energy terms delta
values comparable to that of the distance term.

A first estimate is made at the initial mapping; a second after quenching. The primary
purpose of the quenching phase is to force all initial configurations into a rough equilibrium
to allow good estimation of the typical delta values of energy components.

This method gives excellent results in most cases; some are more recalcitrant, (see
section 4.3.4).

3.11 Performance

The space requirements for NET are quite readily calculated. The evaluation rate of
trial configurations is somewhat more complicated, but is not extremely variable. The total
run time cannot be predicted without detailed knowledge of the mapping problem, but a
lower bound can be easily calculated after NET estimates high and low temperatures for the
problem, by calculating the number of temperature steps using the formula of section 3.7.1.

3.11.1 Time

The simple move set allows efficient calculations. For the graphs of sections 4.2 and 4.3
the generation and evaluation of a new configuration takes 3 - 4 milliseconds, corresponding
to 15000 - 18000 moves per CPU-minute on a VAX-11/750.

The major procedures of the main iterative loop are relatively balanced in computation
costs. For a test using both distance and memory utilization terms, with about a 40%
acceptance rate, the following approximate profile was measured.

23

Approximate CPU time consumed

Procedure Purpose CPU fraction
calcconnectionenergy | calculate distance energy term 24%
calcmemutilenergy calculate memory utilization term 16%
newconfig generate trial configuration 24%
newchosen acceptance decision 15%
acceptnewconf accept new configuration 10%
rejectnewconf reject new configuration 11%
100%

Some of the procedures perform linear searches of lists, so performance decreases with
increasing average graph degree and number of resident processes. These costs become
dominant when these lists grow to hundreds of elements each, e.g., 512 processes per node.
Substituting sequential for random selection in more places could mitigate this linear in-
crease; more fundamental changes to the data structures would compromise the program’s
applicability for large sparse graphs.

Congestion terms

Congestion calculations require dynamic generation of new paths and calculation of the
costs incurred at each physical channel and/or node along the path. When the system is in
a disordered state (the typical case), the path length is comparable to the average length
of the physical graph. For graphs examined in section 4.3, enabling the congestion terms
increases the per-move evaluation time by approximately an order of magnitude.

3.11.2 Space

NET is limited by the O(|Vpnysical|®>) array(s) used for the shortest distance (and
optionally, path generation arrays). Because the new configuration loop runs sequentially
through the processes rather than the nodes, the locality of access is poor and virtual
memory paging is inefficient. The largest physical graphs that have been used contain 1024
vertices.

For a particular physical graph, if an analytic formula exists, the distance calculation
can be done procedurally at increased time cost. Generality and speed are traded off against
space.

For congestion calculations the path space used is O(| Eiogicat| |average path length|)
with a fairly large coefficient due to the pointers used for dynamic lists. For dense graphs,
path storage requirements can be significant.

24

Chapter 4

Comparisons of physical graphs

All cases are unique, and very similar to others.

T.S. Eliot

4.1 Introduction

In this chapter the methods described in the previous chapter are applied in two com-
parative studies. In each, a set of logical graphs and a set of physical graphs are selected,
representing ‘typical’ computations and possible machine architectures, respectively. For
each combination, the NET program produces an embedding of the logical into the phys-
ical graph. The resultant mappings set upper bounds on the best possible (least-costly)
mappings and provide a basis for comparison of machine structures.

The first study (‘I — 1°) allows at most one process per physical node; the second
(‘4 — 1’) at most four processes per node. For the 1 — 1 study, process exchange is the
only allowed move; thus the constraint of one process per node is enforced by a restricted
configuration generator, a ‘hard’ limit. The second study enforces the four process limit
by a memory utilization penalty term, a ‘soft’ limit. The relative weight of the two energy
terms is estimated, with minimal interactive input, by the method of section 3.10. Neither
study considers channel or node I/O utilization.

The logical graphs for the two studies contains about 128 and 512 vertices, respectively.
The physical graphs contain about 128 nodes in both cases. The exact sizes of the graphs
are determined by their ‘natural’ sizes, e.g., 127 vertices for a binary tree of height 6.

This chapter explains the details of the two experiments and presents the results with
some interpretation. More analysis is found in the next chapter.

4.2 Mappings of onc process to one node

Ten logical graphs and ten physical graphs of about 128 vertices each constitute the test
sets. Input parameters to NET are identical for each mapping; actual values such as high
and low temperatures and the number of iterations in the basic interval are determined
automatically.

Since the energy function has only one term, (distance, see section 4.2.3), the quench-
ing phase required for estimation of relative weights of energy terms is omitted from the
annealing schedule (see section 3.10.2).

25

4.2.1 Logical graphs used for test cases

Ten logical graphs are used as ‘typical’ test problems. Most logical graphs have unitary
edge weights. Weighted trees have edge weights increasing with height (defined as distance
to leaves). The weight of an edge to the parent vertex is the sum of the weights of edges to
child vertices. For example, in the weighted binary tree, the edge weights are 2***9** (with
the height of edges to leaves defined as zero). Weighting the tree produces problems of
interpretation (discussed below), but is probably more representative of the root congestion
likely to be seen in real problems.

Toroidal meshes (tori) are defined by specifying the number of dimensions, n, and the
number of distinct coordinates in each dimension, k [12]. The graphs are cyclic in each
dimension, i.e., for a given dimension the vertex at coordinate 0 communicates with the
vertices at coordinates 1 and k — 1. The degree (number of edges per vertex) of the graph
is 2n. The binary n-cube is a degenerate k = 2 torus with redundant edges suppressed so
that the degree is n rather than 2n.

Physical graphs with less than 128 nodes cause proportionate reduction in the size of

logical graphs due to ‘illegal’ initial mappings of processes to nonexistent physical nodcs,
as discussed in section 3.1.4. This expedient avoids the difficulty of tailoring logical graphs
to physical graphs of varied size, but produces some perturbation of the quality of results.
Toroids will have cycles broken by the removal of vertices from the logical graph. In par-
ticular, mappings of one-dimensional toroids (rings) can suffer appreciably from the loss of
the cycle.
The logical graphs used in the single-process per node study are:

A tree (bush) of height 1, with 120 children. |V| = 121.

A 10-tree of height 2. |V| = 111.

A weighted 10-tree of height 2. [V| = 111.

A binary tree of height 6. |V| = 127.

A weighted binary tree of height 6. [V| = 127.

A binary 7-cube. |V| = 128.

A randomly-connected graph with degree uniformly distributed between 1 and
8. |[V|=128.

A torus, n = 3, k = 5, i.e. 5x5x5 three-dimensional toroidal mesh. |V'| = 125.
A torus, n = 2, k = 11, i.e. 11x11 two-dimensional toroidal mesh. [V| = 121.
A torus, n = 1, k = 128, i.e. aring. |V| = 128.

4.2.2 Physical graphs
The physical graphs used in this study are :
A binary T-cube. [V| = 128.
A torus,n = 3,k = 5. [V| =125.

An shuffle-exchange graph augmented by a ring, derived from the NYU Ultra-
computer project [11]. |V| = 128.

A torus,n = 2,k =11. [V|=121.

26

A shuffle-exchange graph. |[V| = 128.

A cyclic Sneptree[8], a binary tree of height 6, augmented with additional chan-
nels from leaves to all other nodes. This network has two distinct Hamiltonian
circuits. Node degree < 4. |V| = 127.

An 11-tree of height 2. |V| = 133.

A 3-tree of height 4. |[V| = 121.

A binary tree of height 6. |V| = 127.

A torus,n = 1, k = 128, i.e. aring. [V| = 128.

All edges are of unit weight. The average and maximum distances of these graphs are given
in section 5.4.1.

4.2.3 Cost functions

Two variant studies were done for these logical and physical graphs, one using a squared
cost function, the other a linear cost function. The cost function here is the sum of distance
terms only

cost = Z distance®!
logical channels

where distance is the physical distance separating logically connected processes, and k; =

2 or 1 respectively. At each basic time interval, the NET program calculates a normalized
root mean statistic for each energy term E;. For the distance term this is

k Elayﬁ'cal channels distance
|Logical channels|

For graphs with unit edge costs, this is the RMS logical distance for the squared cost
function, and the true average logical distance for the linear cost function. The plots of the
previous chapter display RMS distances. In addition, final statistics from each run include
a true average for each energy component. This statistic is used in all following comparative
figures.

4.2.4 Comparison of mapping results

In the following figures, each statistic represents a single mapping for each possible
combination of logical and physical graphs. The 10x10 tables are split across pages into
two 10x5 parts because of size.

Average logical distance for squared cost

Figures 4.1 and 4.2 represent the average logical distance for the mappings, i.e., the
average physical distance between logically adjacent vertices. The actual statistic shown
is the reciprocal of the average distance, so that ‘bigger is better’. The area of the circle
is proportionate to the inscribed number. 1 is a lower bound (not necessarily achievable)
for the average distance, and therefore an upper bound for the inverse average distance
displayed. This bound is met for mappings of 7-cube — 7-cube and ring — ring. Self-
mappings of trees and the two and three dimensional tori fail to reach perfect mappings.
Section 5.2.1 introduces a tighter lower bound for the average distance.

27

—_—0 0 =< Y

NI T ™

1/Average logical distance

Binary 7-cube

1

BENONCIOIONCNCNORONO,

Torus, n=3, k=5

Ultracomputer -

Torus, n=2, k=11 |-

Shuffle-exchange |-

Sneptree, h=6 |-

Tree, h=2, d=11

Tree, h=4, d=3 |-

Binary tree, h=6 |-

Ring. k=128 L

eNCRCIONOIOI0I0I0I0.
. B 696666990
ReJoJolel00 0000
-CNCNCNOIOI00000

Tree Tree Weighted Tree Weighted
h=1 h=2 tree h=6 tree
d=120 d=10 h=2 d=2 h=6
d=10 d=2
Logical test graphs

Figure 4.1: Inverse average distances for 1 — 1, E = Y distance?® series

28

—_—)) =t T D

NIV L ~

1/Average logical distance

Binary 7-cube -

Torus, n=3, k=5 -

Ultracomputer -

Torus, n=2, k=11

Shuffle-exchange -

Sneptree, h=6

Tree, h=2, d=11 |-

Tree, h=4, d=3

Binary tree. h=6 |-

CHCNGNOROIOIOIOIOI0
21016J01610/0/0/0.0.0

Ring, k=128 -

—@99666°ee©
-aﬁﬁaeeeeee
-@996966990

?inatr)y Random TOl’léS Toruzs Riﬂ%
-cube n= n= n=
15d<8 45 =11 k=128

Logical test graphs

Figure 4.2: Inverse average distances for 1 — 1, E = ¥ distance?® series

29

The logical and physical graph axes are labelled in the order listed above. In the tree
labels, d is the maximum number of descendents, e.g. d = 3 for a 3-tree. Physical graphs
are ordered in decreasing overall quality of result.

It is important to note that for weighted trees the average logical distance statistic
differs qualitatively from the actual cost function being minimized. For the cases presented
here, mappings onto trees and the ring differ significantly for the weighted and unweighted
binary trees. The distances of the heavily weighted edges near the root are minimized well,
while the unit weight edges to leaves may have relatively poor mappings without large cost.
For this reason the results of weighted and unweighted trees are not directly comparable.

Maximum logical distance for squared cost

Figures 4.3 and 4.4 similarly display the maximum physical distance for logically con-
nected processes. This measure could be significant if, for example, the computation were
synchronized so that worst-case communications latency controlled the overall iterative cy-
cle speed.

Distribution of logical distances

The average and maximum logical distances are convenient summaries of mapping qual-
ity. Much more information is contained in the distributions of distance in the mappings,
i.e. what percentage of logical connections is of physical distance 0,1,2,..., etc..

Figure 4.5 is the distribution of distances for the mapping of a binary 7-cube onto a ring.
Only the points marked with an inscribed circle are data points; other values are zero. The
RMS and average distances are marked. This is an unusual distribution, reflecting a highly
symmetric optimal mapping. Distances which are powers of two from 1 to 16 have 14.3%
of the logical connections, distance 32 has 28.6%, other distances no connections. Four
subcubes (5-cubes) of the 7-cube have been mapped uniformly around the 128-element
ring. Each distance indicates the embedding of a higher dimensional cube in the ring;
number of connections doubles at distance 32 because the four subcubes have closed the
cycle.

A different presentation of the same data is Figure 4.6, a star plot with radii proportional
in length to the percentage at each distance. Adjacent radii are joined by a peripheral line;
since most values of this particular distribution are zero, only the line joining the ends of
the distance radii 1 and 2 is distinct.

This and other, less singular, radial plots for all the mappings are shown in Figures 4.7
and 4.8. For clarity, only distances between O and 12 are shown in these figures; only
the ring has a possible distance in excess of 12 (maximum distance 64). The embedding
of a T-cube onto a 7-cube, (in the upper left corner), shows a perfect mapping, with all
logical connections at distance 1. Several of the mappings onto trees or the ring show bi-
or multi-modal distributions, (see section 4.3.5).

Even without close study, the eye can discern patterns based on shape of the radial
plots. For example, examination of the rightmost column of Figure 4.8 might lead one
to hypothesize (correctly) that a perfect embedding of the ring (a Hamiltonian circuit)
cxists for all physical graphs except the shuffle-exchange graph and trees. The failure to
obtain perfect mappings for the cyclic graphs is in part attributable to the severing of the
128-element ring in smaller physical graphs, as noted in section 4.2.1.

30

—_ -

ATV =M

1/Maximum logical distance

Binary 7-cube

Torus, n=3, k=5 |

Ultracomputer -

Torus, n=2, k=11

Shuffle-exchange |-

Sneptree, h=6 |-

Tree, h=2, d=11

Tree, h=4, d=3 -

Binary tree, h—6 |-

Ring. k=128 L

00O ® @GOG
R NoNeIOXCX6ICI0I0I0

L @ 69600900
e © 96900960

IRNCIOIOCRcR-NoReXE

Tree Tree Weighted Tree Weighted
h=1 h=2 tree h=6 tree
d=120 d=10 h=2 d=2 h=6
d=10 d=2
Logical test graphs

Figure 4.3: Inverse maximum distances for 1 —+ 1, E = Y distance

31

2

series

-— () = TP

OITTO @

1/Maximum logical distance

Binary 7-cube

® ®

®
@ ® © ® ® ® ® ©®
® ® 0 6 66 6 &G

Torus, n=3, k=5 + 3 0.5
Ultracomputer - @ 3

Torus, n=2, k=11 |-

®© ® ® @

Shuffle-exchange |-

®
®

Sneptree, h=6 |-

® ©
® ®©

Tree, h=2, d=11
Tree, h=4, d=3 | 0D
Binary tree, h=6 o O @
Ring, k=128 L o ® '8

~@@®6®9966©

| { |
Binary Random Torus Torus

7-cube n=3 n=2
1<d<8 75 11 k=128

S 20
s
0Q

Logical test graphs

2

Figure 4.4: Inverse maximum distances for 1 — 1, E = }_ distance® series

32

MO IOO=0T

100

80

60

40

20

Percentage of logical connections at each distance

1 1 1 1 | I

5 10 15 20 25 30 35

Distance

Figure 4.5: Distance distribution, 7-cube — ring

Distribution of logical distances

16

32

Figure 4.6: Distance distribution, 7-cube — ring

33

—_— O - TP

VITTO -

Distribution of logical distances

Binary 7-cube @ p ﬂ / /
Torus, n=3, k=5 @ ﬁ % / /
Ultracomputer |- % ﬂ y / /

0 = &

Torus, n=2, k=11 |- &

0O £ £

Shuffle-exchange - S

N 7
¢ v \
A\

Tree, h=2, d=11 - /
Tree, h=4, d=3 [\

£
Z
Sneptree b | N
[
v

L2 <
Binary tree, h=6 |~ 9 = " &
Ring, k=128 L . @ ¢ < g

| I | 1]

Tree Tree Weighted Tree Weighted
h=1 h=2 tree h=6 tree
d=120 d=10 h=2 d=2 h=6
d=10 d=2
Logical test graphs

Figure 4.7: Distance distribution, E = ¥ distance?

34

—v =<

QhTVN

Distribution of logical distances

Binary 7-cube - / % ﬂ ﬁ
Torus, n=3, k=5 [p p ﬂ p
¢ 2 U

Ultracomputer |-

p
Torus, n=2, k=11 @ @ ﬂ ﬂ
&

Shuffle-exchange

®
A\
©

Sneptree, h=6 [v

<
(
<
N

Tree, h=2, d=11 |-

Tree. h=4,d=3 | & P N/ Y/

Binary tree, h=6 ¥ & * -2

Ring, k=128 L) v ¥ 4

L | | |

L W T W W W

7l;’»inat;y Random Toruss Torlés Ring
-cube n== n= n=1
1<d<8 |5 k=11 k=128

Logical test graphs

Figure 4.8: Distance distribution, E = _ distance?

35

4.2.5 Stability of results with linear cost

This variant 1 — 1 experiment has the same sets of graphs and parameters except
that the exponent for the distance term is 1. The change in the energy function causes
remarkably little difference in the resultant average logical distances. Figure 4.9 shows a
comparison of all the results obtained with both values of exponents. A diamond is drawn
for each combination of logical and physical graph, with the value obtained with k; = 2 as
the x-coordinate, and the value for k; = 1 as the y-coordinate. If the results are identical for
both exponents, the diamond will be on the # = y line. The least squares regression of y on
x line, (slope = .99) overlaps the z = y line, (slope = 1). There is no significant trend in the
average; of the 100 points drawn only a handful are far from the identity line. Comparing
the linear to the squared cost results, we find the average is smaller in 40 instances, greater
in 49, and equal (to four digits) in 11.

The plot of the maximum distances (Figure 4.10) shows much more striking behavior.
The maximum distance for the linear case is smaller than that of the squared case in 0
instances, greater in 57, and equal in 43. The least squares regression (upper line) indicates
33% increased maximum distance with the linear cost function. This result is consistent with
the intuition that larger exponents will cause severe penalization of the longest connections.

The overall similarity of results in the two variant experiments illustrates that the simu-
lated annealing method used is robust and not excessively sensitive to variation in the exact
shape of the energy function.

The squared distance cost function was chosen for the 4 — 1 study of the next section
because of its success in reducing the maximum distances without significant increase in
the average distance.

4.3 Mappings of four processes to one node

This (‘4 — 1°) study limits the number of processes per node to no more than four by
using a memory utilization penalty. Node memory capacity is a constraint which must be
absolutely satisfied. Reduction of the physical distance of logical channels is a desired goal.
This study demonstrates the ability of the NET program to find solutions to problems with
a two-level hierarchy of a constraint and a goal.

Fewer logical and physical graphs are used in this than in the 1 — 1 studies. Four logical
graphs and seven physical graphs of about 512 and 128 vertices respectively constitute the
test sets.

The parameters controlling the annealing schedule are identical to those for the 1 — 1
except for one trivial change : the minimum number of trials per process per temperature
step is a factor of four smaller since the number of processes is quadrupled. Two additional
parameters define the memory utilization energy term. The exponent is constant (4) for all
mappings. The ‘relative memory weight’ requires adjustment from the initial value in 9 of
the 28 cases. All other parameters are unchanged.

4.3.1 Logical graphs used for test cases

Four graphs of types used in the 1 — 1 logical set are used as test problems :
A weighted binary tree of height 8. |V| = 511.

36

Average distance regression

Regressed slope = 0.99

1 5 10

Squared cost

50

Figure 4.9: Regression of average distances for distance?, distance! cost functions

50
L
i
n
€ 10
a
r
c 3
o
s
t
1
100
50
L
i
n
e
a
r 10
c
o 5B
s
t
1

Maximum distance regression

Regressed slope = 1.33

i 5 10 50

Squared cost

100

Figure 4.10: Regression of maximum distances for distance?, distance! cost functions

37

A randomly connected graph with degree uniformly distributed between 1 and
8. [V|=512.

A torus, n = 3, k = 8, i.e. 8x8x8 three-dimensional toroidal mesh. |V| = 512.

A torus, n = 2, k = 22, i.e. 22x22 two-dimensional toroidal mesh. |V| = 484.

All processes are assigned a vertex weight (‘memory size’) of .25 node units, restricting
‘legal’ solutions to at most four processes per node.

4.3.2 Physical graphs

The physical graphs are a subset of the 1 — 1 studies, all non-binary trees being removed.

4.3.3 Cost function

The cost function is the sum of two terms

cost = Z distance? + cpemutil Z memutil?

logical channele nodes

where memutil (memory utilization) is 3, .sident processes MeMOry size, the total amount of
memory occupied by processes assigned to a node.

This energy function enforces a limit of four processes per node by a nonlinear penalty
for overutilization of node memory. The distance exponent of 2 is chosen because the 1 —
1 studies demonstrated that this value reduced many maximum distances with minor effect
of the average values. The memory utilization exponent of 4 is chosen to be larger than the
distance exponent to reduce the tendency toward degenerate collapse of the system.

The same purpose could be accomplished by starting from a legal initial mapping and
employing only process exchange moves, as in the 1 — 1 study, obviating the necessity of a
memory utilization energy term. (Indeed, this is done in section 5.3.2.) For logical graphs
with equal process sizes, it is easy to find a legal initial mapping, and process exchanges

conserve that legality. The more general method of this study is required if process sizes
differ.

4.3.4 Variation in relative memory utilization term weights

The relative weight of the memory utilization and distance energy terms is controlled
by an input parameter as described in section 3.10. The initial value for all mappings was
chosen arbitrarily as 3. This value sufficed for 19 of the 28 possible mappings, including all
cases for toroidal graphs.

Physical graphs lacking translational symmetry tend to have unequally utilized channels.
End nodes of preferred physical channels will tend to attract above average numbers of
processes, as decreased distance costs will offset increased memory utilization costs. This
problem can be remedied by increasing the relative memory weight, repeatedly if necessary.

The Ultracomputer and shuffle-exchange networks each have one case requiring an in-
crease of the initial value. The Sneptree and binary tree require such adjustments in 7 of 8
cases, presumably reflecting congestion near the root bottleneck.

Since the difficulty stems from the asymmetry of the physical graph, it is likely that
this adjustment can be estimated automatically by determining the variation in channel

38

utilization over all shortest paths. Alternatively, this problem can be dealt with directly
(but slowly) by using channel congestion costs to penalize overutilized routes.

Of course, in this study with just two energy terms legal solutions can be obtained
by choosing a uniform relative weight greater or equal to the greatest case. However, an
excessively large weight for an energy term will unnecessarily raise the peak temperature
and slow the solution cycle.

4.3.5 Comparison of mapping results

In the following displays, the statistics represent a single mapping for each possible
combination of logical and physical graphs.

Average logical distance for 4 — 1 study

Figure 4.11 represents the average logical distance for the mappings. Unlike the 1 — 1
study the average distance does not have an obvious lower bound of 1. A lower bound will
be developed in section 5.2.1 and compared to these actual results in section 5.2.2. For the
moment, consider the mapping of the n=2, k=22 torus into the n=2, k=11 torus. The best
possible embedding would yield an average distance of .5 for an (inverse) display statistic
of 2. The actual average distance is .89, giving a displayed statistic of 1.1.

Maximum logical distance for 4 — 1 study

Figure 4.12 displays the maximum physical distance for logically connected processes.

Distribution of logical distances

Star plots of distance distributions for all the mappings are shown in Figure 4.13 As in
the 1 — 1 display, the distance scale extends counterclockwise from 0 to 12. Since up to
four processes may reside in a single node, distances of O are possible. For the embedding
of the n=2, k=22 torus into the n=2, k=11 torus, a perfect mapping would have half the
connections at distance O, half at distance 1. In fact, only 23% of the connections are at
distance 0, with 66% at distance 1, 10% at distance 2, and the (invisible) remainder at
distances 3 and 4.

As in the previous study, the weighted tree — tree mapping is bimodal.

Why trees are bad

Since NET driven by a localized, nonhierarchic cost function, trees are especially trou-
blesome. Each tree vertex is distinguished from its neighbors by its distances from the root
and leaves. Correct mappings of similar trees require global knowledge, i.e., information
about the position of the root. It would be easy to improve the program’s performance on
these special cases, since NET does extensive analysis of graph vertex degree to estimate
the ‘star’ lower bound for the average distance, (section 5.2.1). This information could be
used to generate initial mappings by a matching of vertex degrees, as is commonly done to
test for graph isomorphism [2].

Trees are self-similar. If a particular section of a mapped logical graph is moved vertically
on a similar physical tree graph the local energy will be unchanged, unless the section
touches the root or leaf nodes. This self-similarity can induce large local minima in the

39

P
h
y
s
i
Cc
a
|

NoT T =M

1/Average logical distance

woran () () ()
©I0I0
(D@ &0
OIoIoI0
OICKOIO,

) @ @ ()

Torus, n=3, k=5

Ultracomputer

T

Torus, n=2, k=11

Shuffle-exchange

Sneptree, h=6

T

Binary tree, h=6

| |] |

Weighted Random Torugs Toruzs
tree n= n=
h=8 1Sd<8 g -9

Logical test graphs

Figure 4.11: Inverse average distances for 4 — 1 series

40

—_—) =0T

NI TL =M

1/Maximum logical distance

Binary 7-cube |

Torus, n=3, k=5 [

Ultracomputer |

Torus, n=2, k=11

®
®
@

Shuffle-exchange |-

®
®
®

Sneptree, h=6 [

®
®
®

Binary tree, h=6

®

BERCHONOROIONO
®
®
®)

| |]

Weighted Random Toruss Toruzs
tree n= n=
h=g 15458 g =2

Logical test graphs

Figure 4.12: Inverse maximum distances for 4 — 1 series

41

—_ =Ty

NSV =00

Distribution of logical distances

e | D L
e | & C & =
sieeane | 2 @ O &

Sneptree, h=6 |- ﬂ @ @ %

Binary tree, h=6 ' « % %’ &@

| 1 i |

Weighted Random Torlés Torus
tree n= n=
h=g 1S94<8 g k=22

Logical test graphs

Figure 4.13: Distance distributions for 4 — 1 series

42

energy function. As an example, consider two identical trees mapped onto each other.
If the logical root is placed one level beneath the physical graph root, a relatively good
mapping is obtained. All vertices of the tree are perfectly mapped onto one subtree except
for the leaves which are forced onto the other subtree. Moving individual logical vertices
in any direction will give an equal or higher cost. Without extremely slow cooling, the
simulated annealing process will be caught in such a local minimum. This sort of result
is likely when the logical graph is weighted more heavily at the root. Evidence for this is
seen in a bimodal distance distribution; most logical connections are fairly short, but leaf
nodes have strikingly longer connections. A multimodal distance distribution can indicate
low suitability of the method for a problem.

Not all mappings involving trees will produce exceptionally poor results, only those
where the logical and physical graphs are similar.

4.4 Conclusion

The two mapping studies demonstrate the robustness of this simulated annealing tech-
nique for graph embedding. These comparisons are unbiased by manual intervention, and
valid comparisons may be made using these data.

Some of the resultant mappings can clearly be bettered by hand. On the other hand,
these studies are done with idealized graphs; many real problems can be expected to be less
orderly and less amenable to human analysis.

43

Chapter 5

Analysis of results

... @ point whereon little rivers of tabular statements periodically flowed into the
howling ocean of tabular statements, which no diver ever got to any depth in and
came up ganc.

Charles Dickens

5.1 Introduction

Some of the questions naturally raised by the studies of the last chapter are addressed in
this chapter, i.e. ‘how good are the results?’, ‘how reproducible and stable are the results?’,
‘which physical interconnect is best?’, and ‘can large problems be attacked with NET?’

5.2 The quality of resultant mappings

How good are NET’s results? The mappings construct upper bounds for average logical
distance. It is desirable to be able to estimate a lower bound without extensive computation.

5.2.1 Estimating a lower bound for average distance

An easily computed estimator should use only local graph information, such as vertex
degrees. NET computes a star lower bound for the average logical distance by consider-
ing only the degree of the logical graph vertices while using somewhat more connectivity
information from the physical graph.

Each vertex of the logical graph is considered to be the center of a ball with its logical
neighbors as the ball’s surface. The ball contains the central vertex and its n neighbors
(where n is the vertex degree) for a total volume of n + 1 vertices. Since only radial
connections from the central vertex to its neighbors are accounted, this logical subgraph is
a star.

In a mapping, the average logical distance is defined as the sum over all logical vertices
of the physical distances of edges to logical neighbors. We can see that this is equivalent to
the sum of radial distances over all logical stars. (Recall that these ‘logical distances’ are
the physical length of the logical edges for a given embedding.) Indeed, NET computes the
distance energy term in this process-oriented manner, using adjacency lists of neighbors.

44

The problem of finding a lower bound may be rephrased as ‘what is the smallest ball in
the physical graph containing n + 1 logical vertices?’ Consider the one-process-to-one-node
mapping of a two-dimensional torus into a ring. The torus has degree 4, so the relevant
logical ball contains a vertex and its 4 neighbors, 5 vertices total. Since each physical vertex
is here assumed to contain only one logical vertex, we must find the smallest ring subset
containing 5 vertices. For each physical vertex we must find the 4 nearest neighbors. This
can be done by scanning the distance table. For the ring, the smallest physical ball will be
the central vertex and two vertices on each side. Two of the logical star’s four edges will
be mapped to adjacent physical vertices; two will be to vertices at physical distance 2. The
average logical distance of the star is then (1 + 1+ 2 + 2)/4 = 1.5. This is a lower bound
since this physical ball is the smallest possible.

Both physical and logical graphs may be irregular. For irregular physical graphs, NET
computes minimal balls for all vertices and uses the smallest-radius ball to ensure that
the estimate is a valid lower bound. The treatment of irregular logical graphs is more
complicated. Consider one of the logical test graphs, a 120-ary tree of height 1 (a star).
Each edge is attached to one vertex of degree 120 and another of degree 1. The strongest
lower bound will be found if the edge is assumed to be part of the logical ball containing
121 vertices rather than one of 2 vertices. Therefore each edge is assigned an edge degree
equal to the maximum of its endpoints. For example, in binary trees all edges will be of
degree 3.

The average distances for balls of size n+ 1 are weighted by the overall number of edges
of degree n, to give the star lower bound for average logical distance.

The tightness of the star bound depends on the graphs involved. For the height 1 trees,
the star estimate is, of course, an exact bound. One-to-one mappings of logical graphs of
degree lower than the target physical graph will always yield an estimate of 1. Many-to-one
mappings tend to have looser bounds than one-to-one cases, since for logical graphs of small
degree most of the ball vertices may fit on one node. For example, consider the mapping
of the n=2, k=22 torus onto the n=2, k=11 torus, discussed in section 4.3.5. The best
possible embedding would yield an average distance of .5; the star lower bound is .25.

The minimum radius of the highest degree ball is a lower bound for the maximum logical
distance.

5.2.2 Improvement over a random mapping

The physical graph average distance is the average length of all possible paths between
vertices in the physical graph (including a zero-length path to self). The physical graph
average is a ‘probabilistic’ upper bound on the average logical distance of a mapping, since
it is the approximate value of a random placement of processes. One measure of the quality
of NET’s computed mapping is how far the mapping’s average distance has moved from the
random upper bound toward the star lower bound :

average — star lower bound
physical graph average — star lower bound

improvement from randomness =1 —

A value of 1 indicates both a tight lower bound and an optimal mapping; 0 a mapping
no better than random. This statistic can be expected to remain fairly stable as problems
are scaled, and is insensitive to small variation in the tightness of the star lower bound.
If the ‘star’ estimate of lower bound is not tight, the degree of improvement will be un-

45

Improvement of average from randomness

Binary 7-cube -

Torus, n=3, k=5

Ultracomputer

P

h

y

$ Torus, n=2. k=11

i

c

a

| Shuffle-exchange -

g

; Sneptree, h=6 |

p

h

® Tree, h=2,d=11 |-
Tree, h=4, d=3 |-

Binary tree, h=6 ~

Ring, k=128 L

[=2]

10000000000
(O ®®@OEEEEE)
HOJI0J0Re10100/01010

- (DEE©EEEEEE)
JOI0-RX000000

Tree Tree Weighted Tree Weighted
h=1 h=2 tree h=6 tree
d=120 d=10 h=2 d=2 h=6
d=10 d=2
Logical test graphs

Figure 5.1: Improvement of average distances from random placement to ‘star’ lower bound
estimate, for 1 — 1, E = Y distance?® series

Improvement of average from randomness

Binary 7-cube -

Torus, n=3, k=5 |-

Ultracomputer |-

P

h

y

? Torus, n=2, k=11

c

a

I Shuffle-exchange

g

; Sneptree, h=6 |-

P

h

S Tree h=2, d=11
Tree, h=4, d=3

OO ®OOOE)

Binary tree, h=6

(=]
[=2]

Ring, k=128 .

NOICJER-10I0I00010

ROI010X610]10010/0/0
ROI0I010100000.0
- OOEOOEOEEEEE)

Binary Random Torus Toruzs Ring
7-cube n=3 = n=1
1<d<8 |75 k=11 k=128

Logical test graphs

Figure 5.2: Improvement of average distances from random placement to ‘star’ lower bound
estimate, for 1 — 1, E = Y distance?® series

47

Improvement of average from randomness

Binary 7-cube

Torus, n=3, k=5

P TN
|y' Ultracomputer |- 0.8 Q.e) @ 0.8
s

i

C

a .

I Torus, n=2, k=11 ~

g

r

a

ﬁ Shuffle-exchange |- .
s

Sneptree, h=6

OO0
OJOIOI0),

l | 1 J

Binary tree, h=6

Weighted Random Tonés Toruzs
tree n= n=
h=8 1548 |8 =2

Logical test graphs

Figure 5.3: Improvement of average distances from random placement to ‘star’ lower bound
estimate, for 4 — 1 series

48

derestimated, never overstated. The other end of the interval, the physical graph average
distance, is exact.

Figures 5.1 and 5.2 show the improvement of the average logical distance from a random
placement for the 1 — 1 study. For the 120-ary tree logical graph all mappings find the
(exact) lower bound. For physical graphs which are trees the lower bound is generally not
tight, since the problem of accommodating logical graph cycles is neglected by the star
estimate. In particular, the 11-ary tree of height 2 has a star lower bound of one for for all
logical graphs except the 120-ary tree; the low indicated improvement is in part due to the
loose lower bound. As noted previously, the use of an unweighted average logical distance is
somewhat misleading for weighted logical graphs, since the strongly weighted connections
near the root are preferentially optimized to the detriment of other connections. Figure 5.3
shows the improvement for the 4 — 1 study of the last chapter.

The three figures show that NET produces good mappings for most cases, though results
for physical tree graphs are by and large mediocre.

5.3 IReproducibility of results

The reproducibility of NET results can be assessed in two ways.

5.3.1 With identical parameters

With identical input (but a different random number sequence), the quality of the results
varies by only a few percent unless the annealing is grossly misparameterized. For example,
four different mappings of the random graph of size 512 onto an Ultracomputer graph give
identical maximum logical distances and only .9% standard deviation of the average even
though runtimes differ by as much as 30%.

5.3.2 With different parameters
Linear and quadratic distance cost exponents

Section 4.2.5 examined the effect of changing the distance cost term exponent from 1 to

2, finding that the latter results in a reduction in maximum logical distances, as one might
expect. Average values are only slightly changed.

4 — 1 mappings with soft and hard constraints

The 4 — 1 study of section 4.3 uses a memory utilization penalty to enforce a ‘soft’
constraint of at most 4 processes per physical node. Since the processes in this study are
of equal size, an initial legal mapping is easy to produce. Therefore the constraint can be
enforced, without the necessity of considering a memory utilization term, by starting from
an initial legal configuration and using only process exchanges as allowed moves. This hard
constraint method is demonstrated in the following 4 — 1 study, with all parameters except
memory utilization costs the same as the previous (soft constraint) study.

Figure 5.4 compares average logical distances of the two studies. The table shows the
fractional improvement of the hard constraint versus the soft constraint result. Negative
values indicate the soft constraint result is better; for example the mapping of the weighted
tree onto the 7-cube is 20% better using a memory utilization cost term. The hard-constraint

49

Normalized difference of average distance

Binary 7-cube - -0.2 0 -0.01 -0.11
Torus, n=3, k=5 - 0.03 0.01 -0.07 -0.02
P
‘; Ultracomputer |- 008 003 006 006
S
i
C
a
I Torus, n=2, k=11 F 0.32 0.04 0.13 -0.04
g
r
a
g Shuffle-exchange |- -0.01 0 0.04 0.08
S
Sneptree, h=6 ~ 0.57 0.08 0.06 0.17
Binary tree, h=6 - 0.21 0.05 0.26 0.19

Weighted Random Torus Torus
tree n=3 n=2
h=g 1S4<8 T8 1o

Logical test graphs

Figure 5.4: Normalized differences in the average logical distance for 4 — 1 mappings, for
hard and soft constraints

50

exchange-only method produced results 7.2% better on the average, with a relatively large
14.5% standard deviation.

Surprisingly, the soft constraint study used only 17% more total CPU time, despite
having a much slower move set. The run time for a mapping is largely determined by
the estimated relaxation time of the system. However NET looks only for approximate
equilibrium of the aggregate energy, which is dominated by the memory utilization term for
the soft constraint case. Memory utilization can vary more rapidly than the distance term;
therefore the estimate of system relaxation time tends to be less than the true relaxation
time of the distance energy term. This effect is most pronounced in relatively poorly
connected, low degree physical graphs. For example, the mapping of the weighted tree onto
the two-dimensional torus has an estimated equilibration time 4 times greater for the case
of the hard constraint, resulting in evaluation of almost 3 times as many configurations and
32% improvement in average logical distance, seen in Figure 5.4. The problem could be
ameliorated by considering each cost function term individually to avoid ignoring slowly
relaxing terms in favor of quickly equilibrating terms of greater weight.

The error in relaxation time estimation is significant for mappings which tend to induce
excessive concentration of processes in nodes. Mappings where both logical and physical
graphs are homogeneous have smallest error and show only minor variation in Figure 5.4.
Inhomogeneous logical graphs tend to produce strongly bound ‘clumps’ of processes, but
not at any special physical location. Inhomogeneous physical graphs tend to overload some
special nodes. When both conditions are true, as in the case of the weighted tree mapped
onto the Sneptree, the error is significant.

Though the causes of the variation seen in this comparative table are of technical interest,
in general the differences are not large and are fairly predictable.

5.4 Relative merits of physical interconnection schemes

Which physical graphs are better? The scale of the problem is significant. The medium-
sized physical graphs of the previous chapter did not evidence dramatic difference in the
quality of mappings except for trees. The average physical distances of these graphs are
comparable.

5.4.1 Distance distribution of the physical graphs

The ranking of physical graphs by quality of (previous) results agrees with the relative
average physical distance for graphs of approximately 128 nodes. However, scaling the
graphs to larger sizes changes the order of average physical distances as characteristic scaling
laws come to dominate.

51

Physical graph distances

Physical V] =~ 128 |V | =~ 1024
graph Avg. Max. | Avg. Max.
Binary n-cube 3.5 7 5.0 10
Torus, n = 3 36 6 7.5 15
Ultracomputer 4.3 9 7.3 13
Torus, n = 2 5.5 10| 16.0 32
Shuffle-exchange 5.5 13 9.0 19
Sneptree 6.1 12 | 116 18
Binary tree 8.3 12 | 141 18

The graphs in the table are those used in the previous 4 — 1 studies and the scaling study
to be presented in section 5.5.3.

A minor curiousity is seen in the scaling of the three-dimensional torus and the binary n-
cube. Both are members of the family of toroidal networks defined as k-coordinate periodic
n-dimensional cubes [12], having a maximal shortest path between nodes of |k/2|n. It is
interesting to note that a torus of odd k has the same maximum distance as a k — 1 torus.
(Tori with k even have two maximal shortest paths in each dimension, tori with &k odd
only one.) Thus the k = 2, n = 6 torus (binary 6-cube) has the same maximum distance
as the k = 4, n = 3 torus (4x4x4 three-dimensional cube) to which it is isomorphic. An
approximated doubling of the size of both produces a binary 7-cube with maximum distance
of 7 on the one hand, and a 5x5x5 three-dimensional torus of maximum distance 6 on the
other. This one-time advantage is seen in the above table; however all larger n = 3 tori
compare unfavorably to the binary n-cube.

5.4.2 Relative ranking of results

Figure 5.5 shows the now familiar results of the previous chapter’s 4 — 1 study, with
each result normalized by the best result for that logical graph on any physical graph, i.e.
by columns. A value of 1 indicates that the physical graph is as good as any other for
that particular test graph, a value of .5 that the average logical distance for that physical
graph is twice that of the best physical graph. We see that the physical graphs are listed
in descending approximate overall rank. For this scale (|V'| ~ 128) and logical test set, it is
fair to infer (for example) that the three-dimensional torus is twice as good as the Sneptree,
and quite comparable to the 7-cube. Figures 5.6 and 5.7 show the similarly normalized
distances for the 1 — 1 study of section 4.2.

As the size of the physical graph is scaled, we would expect graphs with logarithmic
growth in distances to surpass those with square or cube root characteristics, as indicated
by the above table. However, trees cannot be expected to improve for the cyclic logical
graphs. Section 5.5.3 examines the effects of scaling on these comparisons.

5.5 Scaling

Does this approach to graph embedding using simulated annealing scale well to larger
problems?

52

- O —-<TY

»TT A =0

1/Normalized average logical distance

Binary 7-cube -

N

@) G ()

L | | |

Weighted Random Torus Torus
tree n=3 n=2
h=8 15958 g =2

Ultracomputer

Torus, n=2, k=11

Shuffle-exchange

T

Sneptree, h=6

[

Binary tree, h=6

Logical test graphs

Figure 5.5: Inverse normalized average distances for 4 — 1 series

53

— A= v

NnTTE M

1/Normalized average logical distance

Binary 7-cube -

Torus, n=3, k=5 |

Ultracomputer -

Torus, n=2, k=11 ~

Shuffle-exchange -

Sneptree, h=6 -

Tree, h=2, d=11

Tree, h=4, d=3

Binary tree, h=6 |-

Ring, k=128 L

e OO
NeNeXoI0I01010/000
@ 0000006@@

NeJoJo1e100/0000.
N-N-N-NI0I000 00

Tree Tree Weighted Tree Weighted
h=1 h=2 tree h=6 tree
d=120 d=10 h=2 d=2 h=6
d=10 d=2
Logical test graphs

Figure 5.6: Inverse normalized average distances for 1 — 1, F = 3 distance

54

2

series

—_—) <D

[P - B RN -]

1/Normalized average logical distance

Binary 7-cube -

Torus, n=3, k=5 -

Ultracomputer -

Torus, n=2, k=11 |-

Shuffle-exchange |-

Sneptree, h=6 [

Tree, h=2, d=11 |-

Tree, h=4, d=3 [

Binary tree, h=6 [

Ring, k—128 L

0 0®®®®00O0%)
EE-NCEOIOIOI0I00 00
: 96909906@@
W-NoI0I0I0I0I0 000
- OOEEHEEEEE)

Binary Random Tonés Toru25 Ring
7T-cube n= n= n=
1<d<8 5 k=11 k=128

Logical test graphs

Figure 5.7: Inverse normalized average distances for 1 — 1, E = Y distance

55

2

series

5.5.1 Space

As discussed in section 3.11.2, the current implementation limits the size of the physical
graph to approximately 2000 vertices due to the size of the physical graph distance table.

5.5.2 Time

With fixed parameters, NET’s runtime grows less than linearly for the range (|V| ~
128, 1024) of systems studied. The factor of 8 size increase produces only a factor of 5.2
increase in runtime. The runtime is determined by the high and low estimated temperatures
and the approximate relaxation time. The temperature scale is defined by local interac-
tions, (single move energies), which become relatively constant for a fixed topology as ‘edge
effects’ diminish. The coarsely estimated relaxation time seems to follow the typical system
distance, which grows sublinearly except for rings. (The bias in relaxation time estimation
discussed in section 5.3.2 does not apply here since only one energy term is used.)

5.5.3 Quality

Increasing problem size with fixed NET parameters yields an increase in average dis-
tances, as might be expected given the disproportionately small increase in runtime. To
assess the degree of deterioration a large one-process-per-node study was done. Graph sizes
approximate 1024 vertices, and are suitably scaled versions of graph types of the 4 — 1
studies.

Figure 5.8 shows the inverse of the average logical distances, which are slightly worse
than comparable values of the smaller 1 — 1 study. For comparison purposes, the ratio of
the average distance found in each study is shown is Figure 5.9, where a value less than 1
indicates that the smaller study has a better result. Overall, increasing the graph size by a
factor of 8 results in a 43% increase in the average logical distance.

Absolutely, the result quality suffers; relative to the average distance of the physical
graph (Figure 5.10) it is nearly constant. Figure 5.11 shows the ratio, for the large and
small study, of the improvement of the average logical distance from a random placement to
the estimated lower bound. Overall, this improvement statistic dropped by only 4% from
the smaller to the larger study.

In general, the larger scale hurts the relative ranking of the tree-based physical graphs,
while improving the n-cube’s status. (The 10-cube is of course more richly connected than a
T-cube.) Figure 5.12 shows the normalized averages which indicate the relative quality of the
mappings. The two and three dimensional toroids still compare well with the Ultracomputer
and shuffle-exchange graphs; the logarithmic advantage has not materialized for the logical
graphs of this test set.

56

1/Average logical distance

P

9 Ultracomputer |- @ @
S ——r
i

c

a

l

OXNOIO)

Binary tree, h=9 -

Binary 10-cube

Torus, n=3, k=10

Torus, n=2, k=32

Shuffle-exchange

wITT L M

Sneptree, h=9

L |] |

Weighted Random Tonés Toruzs
tree n—= n=
h=9 1Sd<8 o4y =32

Logical test graphs

Figure 5.8: Inverse average distances for 1 — 1, |[V| & 1024, E = Y distance® series

57

Ratio of average distances

DOOE
HEO®

1

Binary n-cube

Torus, n=3

P

9 Ultracomputer .
s

i

C

a

I Torus, n=2 -

g

r

a

: Shuffle-exchange
s

Sneptree -
Binary tree - @ @ @ @

| | i |

Weighted Random Torus Torus
tl’ee 1 S d S 8 n=3 n=2

Logical test graphs

Figure 5.9: Ratio of average distances for 1 — 1, |V| ~ 128 and 1024, E =) distance®
studies

58

Improvement of average from randomness

Q000
0000

Binary 10-cube

Torus, n=3, k=10

i

p — —
9 Ultracomputer ~ @) <0.8> <O.S>
s _ — _

i

c

a

| Torus, n=2, k=32

g

r

a

E Shuffle-exchange [.

s

Sneptree, h=9

() @ ()
() @ (o) ()

Weighted Random Torus Toruzs
tree n=3 n=
h=0 15958 \T4p k=32

Binary tree, h=9

Logical test graphs

Figure 5.10: Improvement of average distances from random placement to ‘star’ lower bound
estimate, for 1 — 1, |V| ~ 1024, E = Y} distance? series

59

Ratio of improvement of average

0000

Binary n-cube

-
Torus' n=3 | @.@@

P Pl —— TN

9 Ultracomputer - 1 0.8 1.1 1

S — —

i

c

a

I Torus, n=2 |-

g

r

a

E Shuffle-exchange

s

Sneptree |- @@

Binary tree -

Sl00

1 | i |

Weighted Random Torus Torus
tree 4 <d<8 n=3 n=2

Logical test graphs

Figure 5.11: Ratio of improvement of average distances from random placement to ‘star’
lower bound estimate, for 1 — 1, |V| a 128 and 1024, E = Y distance? studies

60

1/Normalized average logical distance

Binary 10-cube m.
Torus, n=3, k=10 - . .@.

p —_— —
9 Ultracomputer |- Q.s) @
s

i

C

a

I Torus, n=2, k=32 -

g

r

a

E Shuffle-exchange
s

Sneptree, h=9

Binary tree, h=9 o

Weighted Random Torus Toruzs
tree n=3 n=
h=0 15958 140 k=32

Logical test graphs

Figure 5.12: Inverse normalized average distances for 1 — 1, [V| x 1024, E = " distance?
series

61

Chapter 6

Conclusions and future research

Mankind always sets itself only such problems as it can solve ...

Karl Marx

6.1 Conclusions

The program NET is an effective tool for producing reasonably good solutions for graph
embedding problems whose exact solution is intractable. For example, averaged over all
cases of the largest-scale study (|V| & 1024), NET achieves 72% of the estimated possible
reduction of the average logical distance from random placement.

Good results are obtained for a wide variety of logical and physical graphs. However,
poor results are obtained in mapping of trees to similar (and self-similar) trees, due to
locally optimal mappings of subtrees. This can be expected of any optimization scheme
that does not use global information.

6.1.1 Hard and soft constraints

The method given for constructing a hierarchy of constraints and goals for graph embed-
ding problems allows quite varied applications. Constraints can be implemented effectively
both by cost function penalties (soft constraints), and restriction of the configurations gen-
erated (hard constraints). Both methods work well for homogeneous logical and physical
graphs. Inhomogeneous graphs occasionally require alteration of the relative weight of cost
terms when soft constraints are employed. Possible program improvements to address this
inconvenience are suggested in section 6.2.4.

6.1.2 Scaling to large problems

The introduction of the ‘star’ lower bound estimate helps to demonstrate that the
method scales reasonably well to larger, more difficult problems. Result quality is fairly
constant relative to problem difficulty. In particular, scaling the one-process-per-node study
by a factor of 8 results in only a 4% reduction in the improvement of the average logical
distance from random placement to the estimated lower bound. In absolute terms, this in-
crease in graph size produces only a 43% increase in average logical distance, with program
runtime increased by a factor of 5.

62

In the present implementation, memory requirements restrict the practical problem size
to physical graphs of about 2000 nodes. Logical graphs may be much larger.

6.1.3 Preferred physical interconnection graphs

As judged by the average distance for logical communications paths, the overall quality
of n-cube, toroidal mesh, and shuffle-exchange type graphs is surprisingly close for the test
problems considered. Even for the most difficult problem (random graph) at the largest
scale ([V'| = 1024, section 5.5.3) the average logical distance differs only by a factor of 2.8
from the worst (two-dimensional torus) to the best physical graph (10-cube).

Increasing the physical graph degree beyond that of typical logical graphs may not be
cost-effective, as the following table shows. For all physical graphs, the average logical
distances are normalized by the the best result for any physical graph (as discussed in
section 5.4.2) to indicate relative performance (as previously shown in figures 5.6, 5.7, and
5.12). An average of the normalized results for the four logical graphs of the [V| ~ 1024, 1 —
1 study are shown.

Physical graphs of higher degree are more difficult and costly to wire. A reasonable
figure of merit for overall attractiveness of a physical interconnection graph is the product
of typical degree (maximum number of physical channels per node) and the average of
normalized average logical distances.

Wiring-cost degree-distance product

Physical Typical | Normalized

graph degree distance Product
Binary n-cube 10 1.07 10.7
Torus,n = 3 6 1.21 7.3
Ultracomputer 4 1.49 5.9
Torus, n = 2 4 1.86 7.4
Shuffle-exchange 3 2.03 6.1
Sneptree 4 3.52 14.1
Binary tree 3 4.72 14.2

For this relatively low dimension logical test set, the richness of 10-cube connections is
excessive. The 10-cube and binary tree are comparable in the overall figure of merit, but
at opposite ends of the spectrum of cost and performance. The inhomogeneous connection
patterns of the Ultracomputer and shuffle-exchange graphs induce uneven communications
path loading, unlike the toroidal meshes, a factor not considered here.

6.2 Future work

Brazil is the country of the future, and the future never arrives.

Brazilian folk saying

63

6.2.1 Parallelism

The current NET program is demanding of both memory space and CPU time. A
multiple-process concurrent reformulation is an attractive goal. Process memory size could
be reduced to fit small processor nodes by replacing the physical graph distance look-up
table by graph-specific procedures.

Even if the processes fit, there may be a subtle tradeoff between interprocess commu-
nication costs and the convergence rate of the algorithm. The use of greater than linear
distance cost functions is advantageous in reducing maximum distances. However, for a
concurrent implementation to maintain a completely consistent data base of process posi-
tions limits the possible concurrency. It would be highly desirable for the formulation to
tolerate error in the position of physically remote processes. This is highly unlikely with a
quadratic or even linear distance energy term. For this reason, it is desirable to conduct
experiments with sublinear exponents to determine the impact of this ‘decoupling of distant
regions’ on convergence rates.

6.2.2 Application of NET to a concurrent programming environment
Logical channel labels

Many concurrent programming models are conceptually presented as a regular graph of
similar (if not identical) processes. Labelling the logical edges would allow the programmer
to use port names for logical communication channels, with an operating system service
provided to translate the logical name into the physical address of the corresponding process.
Directed edges are naturally required for this purpose, since the east port of one process
may be the west port of another.

Creation of a placement utility

An interface program for NET which generates process loading commands for the Cal-
tech Cube would be useful. The long runtimes of the program in the comparison studies
(averaging 4.4 VAX-11/750 CPU-hours for the 1024 vertex 1 — 1 study) are due to con-
servative parametric choices intended to apply the method beyond any critical point of
diminishing return. Shorter runtimes will yield adequate results for many purposes; long

runtimes are justifiable for some long-running applications. For common logical structures,
standard mappings can be produced and looked up.

6.2.3 Congestion costs

The previous comparative physical graph studies should be redone with node and chan-
nel I/O congestion costs calculated. Imbalances in utilization could be important when
trying to assess the merit of shuffle-exchange type graphs relative to homogeneous tori.

It would be interesting to evaluate NET’s performance when applied to some traditional
routing problems, which should be possible with a cost function that includes congestion
terms.

6.2.4 Explicit distinction of constraints

Though it is esthetically appealing to treat goals and constraints equivalently in the cost
function, some cases require adjustment of NET parameters to enforce the constraint. If

64

constraints were explicitly identified, the program could alter its initialization procedures to
ease the problem by using extremal rather than ‘typical’ values to estimate relative energy
term coefficients.

It might also be advantageous to automatically iterate the annealing process, with new
energy coefficients, until the constraint is satisfied. It would be possible to check this when
the relevant energy term ‘freezes’, rather than at the completion of a complete annealing
cycle. This iterative procedure may be necessary for completely automatic functioning
even if extremal energy terms are used in the coefficient estimation. NET cannot necessarily
predict the values needed to satisfy the constraint since the initial mappings of heterogeneous
logical and physical graphs may not have a conjunction of ‘problem areas’.

6.2.5 Individual energy term relaxation times

As discussed in section 5.3.2, the estimate of system relaxation time should be computed
on a term-by-term basis. A related improvement would allow alteration of the basic time
interval as individual energy terms are ‘frozen’.

6.3 Acknowledgements
Them as counts counts moren them as dont count.

Riddley Walker, Russell Hoban

I'would like to thank Scott Kirkpatrick for originating the technique of simulated anneal-
ing. Special thanks are due my present advisor, Charles Seitz, for his patient encouragement
and textual ‘whichhunting’, and to John Platt, Ricky Mosteller, Sven Mattisson, Bill Dally,
and Roberto Suaya for their helpful conversations and suggestions. Alain Martin deserves
credit for developing the graph mapping paradigm. V. A. Teague steered the verbiage to-
ward present tense. Bill Athas looked at all my volumes of graphs; another superhuman
task was performed by Hamlet, without whose ponderous aid none of this would have been
possible.

65

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms, Addison-Wesley, Reading, MA, 1983,

[2] N. Deo, Graph Theory with Applications to Engineering and Com-
puter Science, p. 311, Prentice-Hall, Englewood Cliffs, 1974.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, San Francisco,
1979.

[4] S. Geman, D. Geman, “Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images”, presented at the Workshop
on Statistical Physics in Engineering and Biology, IBM Watson Re-
search Center, April 26-27, 1984.

[5] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, “Optimization by
Simulated Annealing”, Science, Vol. 220, No. 4598, 13 May 1983.

[6] S. Kirkpatrick, “Optimization by Simulated Annealing: Quantitative
Studies”, unpublished IBM report, 1983.

[7] M. Lundy and A. Mees,“Convergence of the annealing algorithm”,
Workshop ...

[8] A. J. Martin & J. L. A. van de Snepscheut, “Networks of Machines
for Distributed Recursive Computations”, Caltech Computer Science
Dept. Technical Report 5147, July 1984.

[9] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J.
Chem. Phys. 21, p. 1087, 1953

[10] D.J. Johnson, “Optimization by simulated annealing: An experimen-
tal cvaluation”, Workshop ...

[11] J. T. Schwartz, “Ultracomputers”, ACM Trans. Programming Lan-
guages & Systems, Vol. 2, No. 4, pp. 484-521, October 1980.

[12] C. L. Seitz, “Concurrent VLSI Architectures”, IEEE Transactions on
Computers, Vol. C-33, No. 12, December 1984.

[13] C. L. Seitz, “The Cosmic Cube”, Communications of the ACM, Vol.
28, No. 1, January 1985.

66

[14] S. R. White, “Concepts of scale in simulated annealing”, IEEE Int.
Conf. on Computer Design : VLSI in Computers, p. 646, 1984.

67

