A Versatile Ethernet Interface

Daniel S. Whelan

Computer Science Department
California Institute of Technology

4654: TR :81

CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

Technical Report #4654

A VERSATILE ETHERNET INTERFACE

by

Daniel S. Whelan

In Partial Fulfillment of the requirements for the

Degree of Master of Science

May, 1981

The research described in this report was sponsored by the Defense
Advanced Research Project Agency, ARPA Order number 3771, and monitored
by the Office of Naval Research under contract number NO0O014-79-C-0597.

Copyright, Califormia Institute of Technology 1981.

CHAPTER 1

CHAPTER 2

2 41 3 3 a8 a e 9 e
U wWwWLwWwWwWwWwwwwdh -~
s » a e o & @
uT W WN =

NN NMNNNNDNDNNNDNDNDNODDND
a2

CHAPTER

w

s 2 o 9 & @ 3
° & & o+ o
PN -

2

L]

a 3 3 & @
a 2 e °
N - w N =

°*
.

WWWLWWWLWWLWWWWLWWWWLWWWWWW
*

S o, bR OLOWLLWLWWOWND R
°

CHAPTER 4

4.1

REFERENCES .

APPENDIX A

APPENDIX B

APPENDIX C

L)
—

»
—

INTRODUCTION o o « o » o o o o &

ARCHITECTUAL ISSUES .+ & o« & o

Introduction - » « o ¢ o ¢ o o o«
A General Architecture . » o« « o
Communications Strategies . . .

Fixed Address Memory Mapped Buffers

Throughput And Cost Analysis
Processor Accessed FIFO Buffers
Variable Address Memory Mapped

Throughput And Cost Analysis
DMA And FIFO Combinations . .
Performance Comparisons . . .

Serialization And Synchronizaton
Conclusions .+ « ¢ o ¢ « o o o &

THE HARDWARE IMPLEMENTATION . .

Design Criteria « «» o o s ¢ o o
System Organization . + « « « &
Microprocessor Module
Microprocessor Circuitry . . .
EPROM Circuitry . « « + o o &
RAM Circuilfry =« o ¢ ¢ o o o &
UART Circuitry « « « o« o o & o«
Ethernet Support Devices . . .
Ethernet Output Module
Normal Packet Transmission . .
Collision Concensus Enforcement
DMA Failure =« o o 5 « o o o &
Ethernet Input Module . .+ « . «
Loopback Multiplexing .« . » .
Manchester Decoding Circuitry

Word Accumulation And Address Detection Circuitry

Manager State Machine . . « &
System Performance . + « « . .

A PROPOSAL FOR AN VLSI IMPLEMENTATION

.

.

®

.

.

L]

Buffers

.«

L]

Higher Level Protocol Considerations

e ® o & * @ * & o© s ® © @ e & o

CIRCUIT SCHEMATICS &+ ¢ o s s o &

MICROCODE DESCRIPTIONS

ETHERNET PROTOCOL DRIVERS . . .

]

*

.

28

28
29
29
31
38
39
39
40
41
42
44
44
48
48
49
49
50
52

55

55

64

66

78

95

CHAPTER 1

INTRODUCTION

In the later part of 1979, it appeared that the Ethernet
[Metcalf and Boggs, 1976] was one of the most viable local networks.
The presense of several Altos on campus suggested that we connect other
machines up to the Ethernet and provide the department with up to date
local networking capabilities. Since several types of machines were to
be connected to the Ethernet, it was decided to design one interface
with enough flexibility to interface all of these machines to the net.
This thesis describes the implementation of such an Ethernet interface

and the architectural issues that were at play.

Some general knowledge of what Ethernet is and how well it performs
as a local network should be useful to the reader. First, Ethernet can
be traced as an descendant of the Aloha net [Abramson, 1970] which was
an attempt at providing inexpensive local networking capabilities. The
Aloha network and the Ethernet took the attitude that bandwidth is

relatively inexpensive when compared with the cost of computer

interfaces and therefore the design of the network transport protocol
should try to minimize the cost of the computer interface. The result
was a very simple algorithm for gaining access to the transmission
channel. In the ALOHA nets case, transmitters transmitted packets when
they needed to. Of course the possibility of collisions between two or
more transmitters existed so the system required a transmitter to
receive a postive acknowledgement within a certain time window or else
the packet would have to be retransmitted. This simple technique worked
quite well. The theoretical maximum channel wutilization for such a

system worked out to be 18.67%.

Ethernet came about as some simple changes to the ALOHA
transmission strategy. First, transmitters don’t transmit whenever they
want to, they must first listen to the transmission channel and defer
transmission until the channel is quiet. Secondly, transmitters must
watch the transmission channel during packet transmission and if they
notice that they are colliding with someone else, they must jam the net
for some time so that every receiver notices that there was a collision
and then they must get off the channel. After a collision, the
transmitter may try retransmitting the packet and does so by tossing a
random number and weighting it by an estimate of the network load and
waiting that many clock ticks before trying to retransmit the packet.

These simple changes provide Ethernet with channel efficiencies above
90%.

Of more importance than theoretical channel efficiencies is
observed network performance. A performance study was performed on an
Ethernet at Xerox [Schoch and Hupp, 1979]. Their study showed that even
under high loads the network exhibited channel utilization above 97%.
Furthermore, 99.18%7 of the packets were transmitted without having to
defer. Less than a percent of the transmitted packets were delayed due
to deference while 0.03%7 of the transmission attempts resulted in
collisions. The statistics revealed by this paper were used to direct

the design of this interface. For example, since packets are rarely

-9 -

involved in collisions, the retransmission of packets is handled by

interrupt software and not by dedicated hardware as might have been the

case had collisions been frequent events.

CHAPTER 2

ARCHITECTUAL ISSUES

2.1 Introduction

This chapter discusses the major design issues that come into play
when building a general purpose Ethernet interface. A modular system
architecture is developed to help define the design problem. Overall
system performance is analyzed by comparing and contrasting plausible
intermodule communications strategies. Bit serialization and
synchronization are touched upon in an effort to understand what clock

speed requirements will have to be met.

2.2 A General Architecture

Architectures serve to describe a set of solutions to a particular
problem. The problem that we are dealing with is one of translating
data in an unspecified protocol into Ethernet data packets. We must
also be able to do the inverse translation. The solution to this
problem will be a black box that connects up to an Ethernet transceiver
on one side and allows the user to connect up any desired hardware
protocol module on the other side. While this ‘"unspecified" or
"undefined" protocol is not known to us, for implementation purposes, it
is reasonable for us to place an upper limit on its bandwidth. For the
purpose of our discussions, we will require that this system be able to
handle one megabyte/second burst transfer rates. This rate will

accommodate a wide range of existing protocols such as UNIBUS, Q-BUS and

HPIB to name a few.

Modularity is a useful design construct. It allows large problems
to be subdivided into smaller tasks. It appears to be a necessary
prerequisite for Thierarchical decomposition of the design task.
Fortunately, the network interfaces can be modularized very nicely. It
makes sense to speak of Ethernet transmission modules and Ethernet
receiver modules because the two tasks are fairly independent. Lets
also assume that the "undefined protocol" can be implemented as two
separate modules. If we can devise a way of hooking these four protocol
modules together in a meaningful manner we will have a solution to our
problem and thus a viable architecture. The definition of other modules

may be required in the process.

In general some sort of transformation will have to be performed
upon the data arriving via one protocol port before it can be
transmitted via the other. Unfortunately, we have no way of knowing
what kind of transformations will have to take place. Whatever these
transformations look 1like, they <can be decomposed into two

transformations, one that converts data in a first protocol into an

internal format and another that converts the internal format into the
end protocol. Transformations may be history or even future dependent
operations and thus necessitate the addition of buffer memory to our
system. Buffer memory is necessary anyway because of possible
transmission speed mismatches between the Ethernet protocol and the

"undefined" protocol.

So far, we have developed an architecture that is perfectly general
in nature. It consists of protocol modules, transformation modules and
memory and is shown in Figure 2.1. One can actually envision
implementing a pipelined system of this type if the transformations Tl
and T1’ were known. Unfortunately, these transformations are not known.
Building an implementation of Figure 2.1 for an unknown transformation
implies that the transformation modules must be programmable. Once we
accept this fact, we realize that an architecture 1like the omne

illustrated in Figure 2.2 is as general as the one in Figure 2.1.

This new architecture uses a microprocessor to provide the required

Programmable transformation capabilities. It also wuses the same
microprocessor as a system controller to coordinate the actions of the
other modules. Although a single microprocessor may be slower at
performing the transformations than four specialized hardware modules,
it doesn’t reduce the burst transfer performance. In both models the
burst rate is memory access limited at about six megabytes/second. This
organization may hinder the system throughput more than a pipelined
approach and will be studlied more In wmwore detail in the following

section.

A block diagram like Figure 2.2, indicates that the modules can be
described by a certain functional behavior. The 1lines between modules
denote intermodule communications. Therefore the operation of the
system as a whole depends on the implementation of communications

strategies as well as the implementation of the modules.

UNDEF INED ETHERNET
INPUT ouUTrPUT
T PUFFER MEMORY T2
PROTOCOL. . rPROTOCOL
MODUL K MODULE
UNDEF INKD ETHERNET
DUTPUT ITNPUT
T BUFFER MEMDRY T2
~ROTOCOL PrROTOCOL
MODULE MODULE
Tie UNDEF INED FORMAT —» INTERNAL FORMAT T2 INTERNAL FORMAT —= ETHERNET FORMAT
Ti"e INTERNAL FORMAT = UNDEF INED FORMAT TR ETHERNET FORMAT —= INTERNAL FORMAT

Figure 2. 1 Cererclized Architecsture

MICROPFPROCESSOR
PROTOCOL TRANGLATION

AND CONTROL

UNDEF INED ETHERNET
PROTOCOL SBSHARED MEMORY PROTOCOL.
MDDULE MODULE

FIGURE 2. 2: AN IMPLEMENTABLE ARCHITECTURE

2.3 Communications Strategies

Given the current architecture of Figure 2.2, there are several
ways to provide intermodule communications. Any particular technique
can be characterized by a cost in parts and dollars and also by the
maximum throughput that it allows the system to achieve. Higher
throughputs mean that the controller can get more done in a fixed amount
of time and therefore seem generally desirable but it may not mean
anything. For instance, if we could build an Ethernet interface that
could send packets back to back with zero dead time but we would be
deceiving ourselves because the nature of Ethernet is that a user tends
to be able to acheive an average share of the nets bandwidth and not
monopolize it. High throughput through the interface does however allow

higher peak throughputs than slower interfaces can acheive.

Several communications architectures for building Ethernet
interfaces will be analyzed on the basis of maximum achievable
throughput and implementation costs. Although these strategies will be
presented for Ethernet interfaces, the same methods can be used for
designing interfaces for other protocols. Generally the throughput

analysis holds for any protocol with appropiate parameter adjustments.

2.3.1 Fixed Address Memory Mapped Buffers

This strategy, illustrated in Figure 2.3 was originally presented
as the '"cheap and simple" approach to building Ethernet interfaces. The
interface looks like two fixed address memory mapped buffers plus some
memory mapped control and status registers. The packet to be sent is
either formatted in the transmission buffer or copied into it. After
the packet is in place, a few hardware registers are written to initiate
transmission of the packet. Since buffer memory is shared between the

processor and the Ethernet transmitter, it can not be used by the

-8 -

NOISITTIQ) =————e—p

vivg
LINVINLT

e

VIPYYD ——

YIASNEG §5I¥QAY GIFIXIA €T FIn9ID
b
S
2
b
3
? 3
<L:o>xq 4
a
a
/907 207QL0Ng
any
NOLNYZI)IVITS
g x>/
N§39 SSIIQY
nvy
o1
X0k
o>y (biOdY

sogt Wv(Q
wWaLshs

3ng 5332Q0V

W34ishs

processor during transmission period. The size of the buffer also
determines the maximum size packet that can be transmitted. When the
hardware has finished transmitting the packet, the processor is mnotified
of whether or not the transmission was successful and then is free to

once again use the transmission buffer.

Reception is similar in nature. The Ethernet receiver notifies the
processor when it has received a packet, which the processor then
accesses in the reception buffer memory. Normally, the processor will
remove the received packet from the reception buffer before notifying
the hardware that it can receive another packet. Because it takes a
considerable amount of time to remove the packet from the reception
buffer, the Ethernet node can not receive another packet during a
relatively large window following a packet reception. This dead period
may have an adverse affect on the throughput of an Ethernet system.
Most studies have determined Ethermnet performance based on the temporal
restraints imposed by the transmission protocol and have assumed that
when packets made it onto the net, they would be received. This

assumption may not hold when the receiver’s dead time is considered.

2.3.1.1 Throughput And Cost Analysis

The maximum achievable throughput for the former type of
communications stategy occurs when the packet is already assembled some
place else in the processor’s memory. In this case, a packet
transmission time is the time required to move the packet into the fixed
address buffer plus a constant overhead time for setting up registers

plus the actual transmission time. Thus throughput is:

- 10 -

Equation 2.1:

Throughput=
overhead + packet length*(transfer time + transmit time)
Where Throughput is in bits/second,
Overhead is in seconds,
Packet Length is in bits,

Transfer and Transmit Times are in seconds/bit

The implementation costs for this type of structure are primarily

due to address and data bus multiplexers required in order to map and

unmap the memory buffer in the processors address space. A typical
buffer might be arranged as 1K by 8 bits and would require ten address
lines, eight bi-directional data lines and two control lines be

multiplexed. A conservative estimate would require at least three
twenty pin packages to implement this multiplexing. The Ethernet
protocol module will also require some address generation circuitry
which could be provided with a ten bit address counter and a ten bit
comparator, probably another six packages. Add in several more packages
for control logic and we are talking about more than ten MSI packages
per buffer to implement this type of communications. This method was
described as '"cheap and simple", while it is simple, a TTL
implementation may not necessarily be cheap. Cheap was originally meant

to refer to an LSI implementation.

2.3.2 Processor Accessed FIFO Buffers

Another organization has been proposed which turns out to be
identical in performance to the previous method. Instead of mapping
transmit and receive buffers into memory space, map transmit and receive
FIFOs into the memory space as illustrated in Figure 2.4 Thus to
transmit a packet you simply copy the packet into the FIFO. Since the

- 11 -

Odid LHSI1Y¥LS th't 320971

b}
S
NQISITIO) b 2
21997
vivq . NQLVEITYI3S sn9 vV
LINYZHLS WI.LSAS
t 1979103y
L
Yaiqovo T ILBVIIHLT o 3
7 fe)
¢
0414

processor is slow at doing memory transfers into the FIFO relative to
the network hardware’s capacity to withdraw from the FIFO, the FIFO will
have to be as long as the longest packet. With this assumption we see
that it takes the same time to transfer a packet as it did before. The
packet must first be transferred into the FIFO and there is also some
overhead associated with setting up the hardware to do the transmission.
Furthermore, the memory mapped fixed address buffers did allow the user
to assemble the packet in the transmission buffer if he chose to. A
FIFO scheme does not allow the packet to be assembled in the FIFO since
a protocol header will usually be prefixed to a packet during assembly
and will include a checksum over the data. Since the checksum is in the
first few words of the packet, it requires that the whole packet be

assembled elsewhere prior to being shoved into a FIFO.

2.3.3 Variable Address Memory Mapped Buffers

Figure 2.5 illustrates a third model for intermodule communications
that allows the receive and transmit buffers to reside at wvariable
addresses in the processor’s address space. In addition to a register
containing the length of the packet, this system requires a register
with an address pointer to the packet. This technique generally
requires what amounts to a DMA channel ¢to access words 1n the

pfOCGSSOI"S memory space.

There are at least two ways to build a DMA channel. An overly
simplistic approach would be to grab the processors bus for the duration
of the transfer (block DMA) whereas a more thoughtful way would be to
grab the bus whenever a memory cycle is needed (burst DMA). The main
difference is that with burst mode DMA, the processor can get bus cycles
in during the transfer period. With block DMA, the processor 1is dead

for the duration of the transfer period.

- 13 -

SYRdday $SIYUY IAVIIVA 57T FYa91o

R fo 8
B T wivQ
NG ISV QD —— JJS " 1vad %
1347
NOILWRIWIAB Y faf
IBNLG Qv 73N HD N " es3ud0¥
7L vYig Yeniv9?)
g
wawv> — layy3ania % :i

QDY

2.3.3.1 Throughput And Cost Analysis

Even with block DMA, variable address buffers offer a great
improvement over fixed address buffers. For instance, the time it takes
to transmit a packet with block DMA is some comstant time for setting up
registers plus the packet transmission time. A burst mode DMA allows
some of the constant overhead time to be processed in parallel with

packet transmission but some overhead is still additive.

If we use a block mode DMA transfer, the maximum achievable
throughput occurs when the packet is already assembled in memory. In
this case, the time it takes to send a packet is a constant overhead for
writing hardware registers plus the transmission time. Therefore the

throughput is:

Equation 2.2:

Throughput=

overhead time + (packet length * transmit time)

If we use a burst mode DMA transfer, the maximum achievable
throughput occurs under the same conditioms. Under these circumstances,
part of the transmission time can be parallel processed with the
transmission time. If the DMA channel still allows the processor to see
100% throughput on its system bus, the time it takes to transmit a

packet becomes:

Equation 2.3:
if (overhead time) < (packet length #* transmit time) then
Throughput = 1/(packet length * transmit time)
else Throughput = 1/(overhead time);

- 15 -

The implementation costs of both types of DMA channels are similar.
Multichannel DMA controller chips are available from semiconductor
manufacturers, These chips require a few peripheral components, usually
about six to eight packages of latches and buffers. While one could
build a block DMA controller out of discretes, it is not clear that
there would be any cost advantage to doing so. It is clear that the
parts count would be higher. This discrete controller would almost be
equivalent to the fixed address buffer multiplexing and memory access

hardware except that it would require a larger address space.

2.3.4 DMA And F1FO Combinations

The fourth approach, illustrated in Figure 2.6 is merely an
improvement upon the burst mode DMA method mentioned above. Typically a
DMA channel requires some overhead time during which it acquires control
of the processor’s bus. This time is typically about the same as the
time it takes to transfer a word. Therefore if a DMA channel is set up
to do burst transfers of single words, there is an 100% overhead
associated with each transfer. If a channel can be set up to do 16 word
block transfers instead, the overhead is reduced to 6.25%. We can build
hardware to work in this manner by having the DMA channel feed a FIFO.
When the FIFO reaches a low water mark, a request is made for enough
transfers to fill up the FIFO. This technique allows either more
processing cycles to happen in parallel with packet transmission or more

DMA channels to be simultaneously active on a single bus.

- 16 -

04rd B vvQ 1972 3A09I5

fa®
viyq

JouiNno? esrz| A

NQISrIIQ) il

2177 b3
NeUYEMIpi I S mneg.
TANLE 12NNV H) Ssaqay
3 Uy
v wd “170 ¥IND)

———— f———d
iaavd 13033013 sy

2.3.5 Performance Comparisons

We have discussed several different architectures and have
calculated their maximum achievable throughputs. Most of these
equations contain two free variables. The first is an explicit overhead
time which is an additive delay in the system. The second variable is
the packet length, which determines how long it takes to transmit a
packet as well as limiting the number of packets per second that can be
transmitted. Since our design introduces the overhead time it makes
sense to compare throughputs for a distribution of packets lengths that
corresponds with reality. Real experience at Xerox shows that about 80%

of the packets are 32 bytes long while about 20% of the packets are
about 544 bytes long [Schoch and Hupp, 1979].

Figure 2.7 is a plot of throughputs versus overhead time for three
architectures. One curve represents both the fixed address buffers of
Section 2.3.1 and the FIFO organization discussed in Section 2.3.2. The
two other curves represent the block and burst DMA techniques of
implementing the variable address buffers of Section 2.3.3. This Figure
shows that the block DMA is far better than the fixed address buffer
scheme for reasonable packet overheads. The burst mode DMA is even
better than block mode DMA but all three schemes converge when the
throughput becomes dominated by the packet overhead. When we consider a
uniform distribution of packet lengths, we notice that the DMA methods
gain far more than the fixed address method because much more of the

data is being transmitted in longer length packets.

Since DEC, Intel and XEROX have recently announced a joint venture
to produce a 10MHz Ethernet [DEC, Intel and XEROX, 1980], I thought that
it would be interesting to see how the three different methods faired as
the clock rate gets turned up. Figures 2.9 and Figures 2.10 show that
the rankings of the three techniques stay the same. The most notable
effect of the higher bit rate is that the fixed address buffer scheme

loses a great deal since its throughput, Equation 2.1, is more dependent

- 18 -

=2. SMBS

THROUGHFPUT,.

3B

48

iex

OBSERVED PACKET DISTRIBUTION

|

!

J
Varilablie Bufifer
L\ .

/ .
/ ‘ Palrallel vsonmmwwjm
//
/Ww/xwa Buiffe / /
N~
SN /
R /
/l //// /./
TN N N
/.(™ N
/ .
/fl /
N / -
N
ams [- ims L] L Aman xBEE [-t ﬂlﬂr
PACKET OVERHEAD, USEC.

FIGURE 2.7

=. SMBS

THROUGHPUWT,

UNIFORM PACKET DISTRIBUTION

Lmax ..l.l-/
~——
oax s /71
7// //
/ / Parallel Prpcessipg
e //
/ //
_ / Varipble Bufffelr | N\
// /
omx - 7
// /
_ mwxmml.wum.mmw //
_ //// // /
N
- N
_ ,/// <N
N
S\
T

PACKET OVERHEAD,

FIGURE 2.8

USEC.

iaoMBS

THROUGHPUT.

L mex

18X

OBSERVED PACKET DISTRIBUTION

N
/
//
N . ‘
//////// N~
/ .//
N N

/.’ N //

T —] }I’_

/_.IIIII_I /
._ !
am - ima ' ons nem iems o— manw
PACKET QVERHEAD. USEC.

FIGURE 2.9

ims|men

UNIFORM PACKET DISTRIBUTION

S
N

i1aMBS

THROUGHPUT,

N,
/ //
///7’[/

L) imm ans nu= ines ;aBma

PACKET OVERHEAD., USEC.

FIGURE 2.10

upon a transfer time that is dependent upon the processor’s speed than

it is upon the network’s bit rate.

DMA implemented variable address buffers also seem to cost less to
implement than the other techniques, not due to any inherent simplicity
in the DMA hardware but rather to the high degree of integration that

can be achieved using available controller chips.

2.4 Serialization And Synchronizaton

The Ethernet transmitter module’s main task is to serialize and
encode data. It must do a few other things such as prefixing the packet
with a start bit and tacking on a CRC at the end. It must also
interpret error conditions such as collisions and act accordingly. All
of these things are pretty straightforward. However, the serialization
and encoding process does set some system requirements as to clock
rates. Serialization usually necessitates a clock rate equal to the bit
rate. Performing the Manchester encoding on the data can be done with
with a bit rate clock and some combinatorial logic but this type of
implementation tends to be glitch promne. Glitchless encoding requires a
state machine clocked at least twice the bit since Manchester encoded

signals can have transitions at twice the bit rate.

The Ethernet receiver module’s main task is to decode serial data
and then parallelize it. There are two methods of decoding Manchester
encoded signals. One method is to generate the receiver’s clock from
the signal either using phase lock loop techniques or one-shot circuits.
The main disadvantage to this method is that implementations usually
require components to be trimmed or rather semsitive analog circuitry.

Digital sampling can be used to avoid both of these problems.

- 23 -

Unfortunately, sampling implies that the receiver must synchronize
the incoming data to the receivers internal clock. Since
synchronization introduces errors into the data [Molmar and Channey,
1973], it would be wise to design the synchronizer to reduce the
probability of such errors and it would be ideal if the decoder could be
designed to tolerate these errors. Tﬁe sampler will require a clock
that is some multiple of the bit rate. This multiple and the
propagation characteristics of the logic family will determine what bit

rates this type of decoder can be built for.

First, a little about Manchester encoding. If bits are encoded,
the resulting waveform can be thought of as a stream of bit cells. The
value of a bit cell is determined by the direction of the trailing edge
of the bit cell. If it is positive going, it is a ome and if negative
going, it is a zero. Encoding a one after a one or a zero after a zero
will\require the insertion of a setup transition in the middle of the
bit cell. Therefore to decode a bit, all one has to do is to look at
the direction of the trailing edge. In fact the following Pascal
program does just that. It synchs up on the first edge it sees and then
loops waiting for trailing edges. It differentiates trailing edges from
setup edges by keeping a count of the number of samples it is into the
bit cell. An edge is classified as a trailing edge if this count is
greater than the largest possible count that a setup edge could have.
This type of decoder also has the nice property that it reacquires bit
synch on every bit frame which means that the receivers clock need only

be stable over a bit cell instead of over an entire packete.

- 2% -

program ManchesterDecoder;
const.
LostBitSynch = 2*Bitrate;
SetupPeriod = ?;
var
time, direction : integer;
detected : boolean;

external procedure edge(var sign:integer; var found:boolean);

{ this procedure returns found = true if it detects an edge }
{ sign indicates the direction of the transition }
while true do
begin
Time:= O;
{ acquire bit synch }
repeat edge(direction,detected) until detected;
repeat
edge(direction,detected);
time:= timet+l;
if detected and (time > SetupPeriod) then
{ we have found a trailing edge. Bit = direction }
time:= 0
end;
until time > LostBitSynch;
{ we have loet bit eynch, lete acquire it again }
end;

end.

One can easily see how this algorithm can be implemented in
hardware. The only question is what the minimum sampling rate and
SetupPeriod are. The minimum sampling rate is determined by two
requirements. The first is that we be able to detect all edges. The

second is that we be able to differentiate between setup and trailing

- 25 -

edges. Sampling introduces a one sample time ambiguity in locating an
edge since the value of sampling on an edge must be though of as
returning an indeterminate wvalue. This introduction of temporal
ambiguity means that to detect a pulse, we need at least three samples
since the two samples on the edges are return indeterminate values.
Therefore, we need at least five samples to detect the presence of a
square wave and that reconstructed square wave may appear severely
distorted. Five samples means sampling at four times the bit rate since
the last sample of ome bit cell is the first sample of the next bit

cell. Therefore the requirement that we see all edges places a lower
limit on the sampling frequency at 4f where f is the bit frequency.

When we sample at a certain frequency, we are .dividing a bit cell
into a discrete number of sampling times. The setup and trailing edges
can be classified by the sampling times at which they occur. Because
sampling makes edges temporally ambiguous, setup and trailing edges are
characterized by a set of sampling times. To differentiate these edges,
these sets must be disjoint. Therefore if we sample at nf, there are
ntl sampling times per bit cell. Sampling introduces a +1 ambiguity
around the leading edge of the bit cell so it must introduce a +2
ambiguity around the setup and trailing edges. Then:

t(setup edge) = ((n+l)/2) + 2
t(trailing edge) = (nt+l) + 2
In order that t(setup edge) not overlap t(trailing edge),
((n+1)/2) + 2 < (n+l) - 2
=> (ntl)/2 <n - 3
=>ntl < 2n - 6
=>n < 2n ~7
=>n > 7

Requiring that the sampling frequency nf be greater than 7f.
necessitates that the sampling frequency be at least 8f. Therefore a
3MHz Ethernet must be sampled at 24MHz. While a 24MHz sampling rate is
certainly plausible for TTL receiver implementations, the 10MHz Ethernet

- 26 -

will require an 80MHz sampling rate which will most likely cause 10MHz
receivers to be of the phase lock loop type rather than digital

samplers.

2.5 Conclusions

In this chapter, several communication techniques were presented
and analyzed. Comparisions were made of the costs and throughputs of
these several approaches and will be used in the next chapter which
discusses the implementation. The previous study of the sampling rates
required to decode incoming data also playéd an important role in the
implementation of the interface and helped to point out how decoders
will have to be built for the 10MHz Ethernet that is now becoming the de

facto standard.

- 27 -

CHAPTER 3

THE HARDWARE IMPLEMENTATION

3.1 Design Criteria

The major design criteria for this system were (1) that it be
capable of translating data from some hardware protocol into the Xerox
PARC Ethernet protocol and vice versa, (2) that it be capable of sending
a packet to irself over the Ethernet and (3) that 1t not require
trimming of ©passive componments to meet the Ethernet timing

specifications.

The notion of the system as a general purpose translator has been
discussed before. The second design criteria, the loopback requirement,
is an useful tool for both system hardware testing and network software
testing. It allows the programmer to write software to communicate with
other machines and test it by having it communicate with his machine.
The third requirement is one that is intended to both decrease

production costs and decrease system failures.

- 28 -

3.2 System Organization

Chapter 2 presented a generalized system architecture. This system
was composed of four parts. One part was a shared memory array that was
accessed by a microprocessor, which acts as both a system controller and
a protocol translator. The two other modules were protocol modules that
also accessed the shared memory. It was also mentioned that the
Fthernet module subdivides nicely into an Ethernet input module and an
Ethernet output module. The undefined protocol is RS-232C and the
protocol module represents four high speed UARTs in this implementation.
The following discussion will concentrate on how these modules were
implemented and integrated into a system. The discussion will relie

heavily on the schematic drawings in Appendix A.

3.3 Microprocessor Module

It is convenient to think of the shared memory as being owned by
the processor. The processor uses it for both program and data memory.
When the processor wishes to allow the Ethernet protocol hardware to
access its data memory, it enables operation of a DMA chanmel which
works in a single transfer burst mode. This implementation fits the
models used in Chapter 2 for variable address data buffers. Wwhile we
are using a burst mode DMA channel, that does not mean that the system
falls on the burst mode plots of Figures 2.7-2.10. If the transfers
take all of the bandwidth of the data bus, the processor will not get
any concurrent cycles and thus will be modeled by the block mode DMA

curves which are less efficient than the burst mode DMA models.

The amount of bandwidth that the Ethernet protocol requires is
determined by the width of the data bus and the speed of the DMA
controller and memory. For example, with an eight bit wide data bus, a

3MHz Ethernet requires a data transfer rate of 375,000 bytes/second but

- 929 —

running in loopback mode where it must receive and transmit at the same
time, it requires 750,000 bytes/second. While many DMA controllers can
handle this rate, there isn’t much bandwidth left for the processor.
Widening the data bus to sixteen bits brings us back down to 375,000
transfers/second worst case, whereas it is only a factor of two, its
affect can be more proncunced on a pipelined processor with a memory
fetch unit, A factor of two can mean that the processor doesn’t notice
the presence of the DMA transfers since its pipe is filled faster than
it can withdraw. This is a more ideal case since it puts us on the
burst mode DMA curve of Figures 2.7-2.10. After all if we are going to

pay for burst DMA hardware, we should try to take full advantage of it.

This rationale necessitated providing a sixteen bit wide memoYy
bus. While a sixteen bit wide memory system could be built for an eight
bit microprocessor, the availability of the sixteen bit Intel 8086
microprocessor suggested that the processor also have a sixteen bit
word. The advantages to using an 8086 over an eight bit microprocessor
are that it has a pipelined memory prefetch unit and has a relatively
high throughput. The 8086 is a controller type processor., It doesn’t
have the regularity or addressing power of some other sixteen bit
microprocessor but had the advantage of being available and relatively

fast.

This section will address the implementation of the microprocessor
and memory modules as well as the serial communications module and the
bulk of the DMA controller logic. Detailed schematics for these
sections are labeled Sheets 1~8 in Appendix A. A good way to describe
microprocessor system design is to start by presenting the view a
programmer might have of the system and work down to the logic

implementation.

Memory maps tend to describe microprocessor systems sufficiently
for programmers to be able to write code for them. While they may need

to look at specifications for peripheral chips before writing code, the

- 30 -

memory map 1s usually detailed enough that once the programmer
understands the peripherals, he camn go on without asking many other
questions about the implementation. The memory map for this system can
be found in Figure 3.1. It shows that memory space has been divided
into eight 8K byte pages. Three of these pages are mapped oﬁto ROM.
Another two pages have been assigned to RAM. One page is used for
accessing the four UARTs and another is used for Ethernet registers, the

DMA controller, the two interrupt controllers and a programmable timer
chip.

3.3.1 Microprocessor Circuitry

Since Multibus compatibility and multiprocessor organizations were
not required of the system, the 8086 has been configured in its minimum
mode. This configuration, illustrated on Sheet #1, does not require an
additional bus controller chip as does the maximum mode. An 8284 clock
generator chip is used to generate system clock, reset and ready
signals. Three eight bit tri-state latches, are used to latch addresses
off of the processors AD<0:15>, A<16:19> and -BHE lines. When selected
the outputs of these latches drive the system address bus A<00:19>,-BHE.
The address latches normally drive the system address bus but can be

tri—-stated by the DMA controller when it 1is performing bus accesses.

System addressing deserves more discussion. While the 8086 has a
twenty bit word address, it can read or write eight bit bytes also. It
does this by either asserting ~BHE (byte high enable) to select the high
byte bank or -AO to select the low byte bank. So, the 8086 actually has
twenty-one address lines. This byte addressing requires that the
address page select signals be generated for each byte bank. Two three
to eight decoders are used to generate the address page select signals.
These decoders are enabled when the processor is performing a memory

cycle and the appropiate byte bank is selected or when the DMA

- 31 -

Figure 3-1: Address Alocation in the 8086 Microprocessor,

! |
| ETHERNET, I
| DMA & INT I
! I
| I

I I
I I
| UNUSED \
I !
I I

| [
] |
! RAM I
[|
| |

l !
I !
| RAM |
| I
| I

[I
I I
I ROM I
I |
| I

Version 2

UART Register Definitions:

UART Channel 0:

Rececive llolding Register Address: AOO0 Read Only

Write Holding Register | Address: A000 Write Only
Status Register Address: A002 Read Only

SYN1/SYN2/DLE Registers Address: A002 Write Only
Modé Registers 1/2 Address: A004

Command Register Address: A006

UART Channel 1:

Receive Huoldiny Reyister Address: N008 Read Only
.Write Holding Register Address: A008 Write Only
Status Register Address: AOOA Read Only
SYN1/SYN2/DLE Registers Address: AOOA Write Only
Mode Registers 1/2 Address: A0OC

Command Register Address: AOOE

UART Channel 2:

Receive Holding Register Address: A010 Read Only

Write Holding Register Address: A010 Write Only
Status Register Address: A012 Read Ontly
SYN1/SYN2/DLE Registers Address: A012 Write Only
Mode Registers 1/2 Address: A014

Command Register Address: A016

UART Channel 3:

Receive Holding Register Address: A018 Read Only
Write Holding Register Address: A018 Write Only
Status Register] Address: AO1A Read Only
SYN1/SYN2/DLE Registers Address: AOD1A Write Only
Mode Registers 1/2 Address: A01C

Command Reqister Address: AO1E

Register Definitions:

" Ethernet Control Register: Address: C000 Write Only

bit7 bité bitd bit4 bit3 bit2 bitl bit0

T reset: This bit resets and disables the transmitter when cleared.

T start: This bit activates the transmitter when it is enabled.
Transmission starts when the encternet transmit delay counter
is zero and there is no carrier present on the ether.

R reset: This bttt resets and disables the receiver when cleared.

R start: This bit starts the ethernet receiver. It must be cleared
inoirder to restart the receiver again.

Loophack: This bit puts the ethernet interface into loopback mode where
packets are not put on the cther but internally routed back to the
receiver.

Promiscuous: This bit turns off packet address recognition enabling
the receiver to eavesdrop on the ether.

Ethernet Status Register: Address: C000 Read Only

| unused |R DMAERR|CRC ERR |FRAMING | R done |T DMAERR|collide | T done |
| | | I I I | ! !

L et Form - Fommm - L it i Fommmm - R ke L +
bit7 bité bits bhit4d bit3 bit2 bit1 bit0
T done: This bit is set when packet transmission is terminated.

Collide: This bit is set when a collision caused the termination
of a packet transmission.

‘T DMAERR: This bit is set when a DMA error caused the termination
of a packet transmission.

R done: This bit is set when packet reception terminates.

Framing: This bit is set if there was a framing error on packet
reccption.

CRC ERR: This bit is set if there was a CRC error on packet reception.

R DMAERR: This bit is set if packet reception was terminated because
' of a DMA error.

DMA OUTPUT REGISTER: Address: C020 Write Only

This 16 bit wide register is used to write the ethernet packet
address word inorder to prime the DMA channel.

SWITCH REGISTER: Address: C040 Read Only

This eight bit register contains the settings of the address selection
switches.

Address Register: Address: C0G0 Write Only

This eight bit register should contain this Ethernet interface's
address. The contents of this register is used for address recognition
on incoming packets.

Timer Registers:

Counter 0O

Counter 1

Counter 3

Control Register

Interrupt Controller 0:

IRR, ISR or Interrupting Level
IMR
OCW2, OCW3 or ICW1

oCvi, ICW2, ICW3, ICW4

Interrupt Controlier 1:

DHA

IRR, ISR or Interrupting Level
IMR
OCW2, OCW3 or ICWI

OCW1, ICW2, ICW3, ICW4

Controller:

Channel 0 Address Register
Channel 0 Terminal Count Register
Channcl 1 Address Register
Channel 1 Terminal Count Register

Channel 2 Addrcss Register

Address:
Address:
Address:

Address:

Address:
Address:
Address:

Address:

Address:
Address:
Address:

Address:

Address:
Address:
Address:
Address:

Address:

c080

co82

co84

Cc086

COAQ

COA2

COAO

COA2

coco

cocz

caco

coce

COEO

COE2

COE4

COE®

COES8

Write Only

Read Only
Read Only
Write Only

Write Only

Read Only
Read Only
Write Only

Write Only

Channel 2 Terminal Counl Reyisler Address: COEA

Channel 3 Address Register Address: COEC
Channel 3 Terminal Count Register Address: COEE
Mode Set Register Address: COF0 Write Only
Status Register Address: COFO0 Read Only

Note: The Address and Terminal Count registers are sixteen bits wide
internally but only eight bits wide at the pins. To write or read them,
the first access is the least signilicant byte and the second access is
the most significant byte. To assure that code actually accesses the
registers in this order it is necessary to disable interrupts during these
operations.

controller has asserted ADSTB.

The processors data bus ADK00:15> is bi~directionally buffered to
form the system data bus D<0:15>, These buffers are enabled by the
processor signal ~DEN and the direction 1is selected by DT/-R. The
processor’s —RD and -WR lines are buffered to provide system -READ and
-WRITE signals. An inverted clock processor clock signal, ~CLK, is also
provided. Since the processor floats some of its control lines when it
grants another device the system bus, several lines have 22K pullups on

them to bring them to a high state. The i8086 also requires that its
hold input be synchronized. A D flip~-flop performs this function.

Since the D input, HRQ, is derived from the system clock by the DMA

controller chip, it is always stable during clock transitioms.

3.3.2 EPROM Circuitry

The memory map shows what looks like three pages of ROM. However
there are only two physical banks of ROM that total 8K bytes not 24K as
could be inferred from the memory map. Where the memory map indicates
ROM IMAGE, it means that ROM is mapped onto multiple pages or subpages.
For example, the primary ROM consists of two 2716s as in Sheet #2.
These 2K by 8 EPROM chips are selected when either of the page selects
for the Oth page or the 7th page are asserted low. This selection
scheme has the affect of making the same ROM chips appear to be in two
places, at the bottom of memory, at addresses OH-~1FFFH and at the top of
memory at addresses EOOOH-FFFFH. Also because the chips are 2K byte
devices, Al2 is not used to select them. Another two images now appear
so that the physical ROM is mapped into OH-OFFFH, 1000H-1FFFH,
EOOOH-EFFFH and FOOOH-FFFFH. Secondary ROM, Sheet #3 is mapped in a
similar way but only onto 2000H-2FFFH and 3000H-3FFFH.

- 38 -

There are some reasons for this mapping. Mapping 2K byte ROMS into
4K byte banks was done so that when 2732s became available, the 2716s
could be replaced with a minimal amount of work. The strange mapping of
the primary ROM into both bottom and top pages resulted from the
architecture of the 8086. The processor expects interrupt dispatch
tables to be in the bottom page while it expects its reset vector to be
in the top page. This mapping maps both interrupt vectors and the

system reset vector into the primary ROM.

3.3.3 RAM Circuitry

Two pages of RAM are allocated in the memory map. These are
illustrated in Sheets #4 and #5. A page of RAM is implemented with
sixteen 214ls, which are 4K by 1 static RAMs. Each page consists of a
high and a low bank which is selected by the appropiate bank select
signal. The processors -~WRITE signal is used to indicate the type of

operation to be performed.

3.3.4 UART Circuitry

Four UARTs are provided for communications with computers and
terminals. These UARTs, Signetics 2651s, are capable of transmitting
and receiving data at 19.2K baud in asynchronous mode. Baud rates are
software selectable. In addition the chip has two interrupt lines, one
that indicates when a character has been received and another that
indicates when the transmitter pipe is empty. The chip can also be

software configured to communicate in several synchronous modes.

- 139 -

Sheet #7 illustrates the UARTs and associated hardware. Each UART
is selected by the output of a 74LS138 which decodes address lines
A<{3:5>. It 1is enabled by -LOWUARTSEL and disabled by HLDA, which
ensures that the UARTs are not inadvertently selected during DMA cycles.
All of the interrupt condition outputs are open drain and must be pulled
up and inverted before being applied to the eight interrupt lines on the
8059. This chip is an interrupt controller that generates vectored
interrupt requests to the i8086. It is operating as a slave to the

master 8059 interrupt controller detailed on Sheet #8.

3.3.5 Ethernet Support Devices

Sheet #6 illustrates the bulk of this circuitry. A 74LS138 is used
to decode ethernet bank addresses. The least significant output,
~ENETCSRSEL is gated with -WRITE to select the Ethernet Control Register
and it is also gated with ~READ to select the Ethernet Status Register.
The control register is implemented with a 74LS273 and the status
register with a 74LS244. Another decoder output, ~SWITCHSEL, is used to
enable the switch register. The switch register provides the programmer
with an octal dipswitch that he may use for initializing the nodes net
address, Still another decoder output, -TIMERSEL, is used to enable an
8253-5 which 1is a triple sixteen bit interval timer. This chip 1is
configured so that Channel O is used as a clock prescaler and its output
is used as clocks to Channels 1 and 2. Channel 1 is used by the
Ethernet transmission hardware. It 1is necessary that the output,

ETIMER, be asserted before packet transmission can proceed. The Channel
2 output, TIMER, is wused to generate clock interrupts to the

microprocessor.

Sheet #8 illustrates the DMA countroller and the main interrupt
controller. The DMA controller was finessed into working on a sixteen

bit data bus. As a result, it can only transfer integral words. Also,

- 40 -

the transfer start addresses that are written into the DMA channel
address registers must be shifted right one bit so that they are word
addresses. The DMA controller works by strobing part of the address
into an eight bit register and forcing another eight bits of address
onto the bus itself. The 8086 has five other address lines,
A<00,17~-19>,-BHE, that must also be taken care of. A tri-state buffer
serves to force these lines to zero during the DMA transfer. This DMA
controller does memory to I/0 transfers in one bus read or write cycle
unlike some other controllers that require two cycles. Since it takes
the controller as long to acquire the bus from the processor as it does
to do the transfer, the controller has been designed keep the bus if it

has another transfer request pending.

The interrupt controller, an 82594, generates vectored interrupts
to the 8086. It has three primary interrupt inputs which are DONEINT,
which is the Ethernet receiver interrupt signal, OUTEND, which is the
Ethernet transmitter interrupt and TIMER which is the programmable timer
interrupt. Another input is programmed as a slave and is connected to

the other 8259A which handles the UART interrupts.

3.4 Ethernet Output Module

This hardware, which is responsible for the transmission of a data
packet, is detailed on Sheets #9 and #10. The Ethernet protocol
requires that it do a few things. First it must show "deference." This
means that the transmitter must wait for the "carrier" to go away.
Secondly, it must tack a start bit onto the front of the packet and a
CRC~16 word to the end of the packet. Finally, the protocol requires
"collision consensus enforcement" which means that when a collision is
detected the transmitter must jam (pull down) on the "ether" for a

period of time greater than a bit transmission period.

- 4] -

There are three ways to stop transmission of a packet. Two of
these are valid error conditions. The first is a collision and has
already been described. The second error condition is a DMA channel

failure that does not provide the next data word when it is needed. The
third is an abort from the CPU.

The output hardware is used in the following manner. When the
background program wishes to send a packet, it will write the first word
which contains the destination and source addresses into the DMAOUT
port. It will then set up the Channel-0 DMA address register with a
pointer to the first word of the message and then put the length of the
message in the transfer count register. It will set the transmit bit in
the ethernet control register (enetcr) enabling the hardware which will
defer before sending. Upon completiom, it will generate an interrupt.
The interrupt routine will check the ethernet status register (enetsr)
and if it was a error free transmission, it will convey that to the
background program through a message buffer. If there was a collision,
it will use the Xerox retransmission control algorithm
[Metcalf and Boggs, 1976] to schedule retransmission of the packet. In
the case of a DMA error it may retransmit or return an error condition

to the background program. Typical interrupt routines can be found in

Appendix C.

3.4.1 Normal Packet Transmission

Figure 3.2 illustrates the shortest normal packet transmission.
The packet is three words long; the first word is the Ethernet address
header word, the second word is a data word and the final word is the
CRC word. Packet tramsmission is initiated by (1) writing the Ethernet
address header word into the dma output register, (2) writing a timeout
value into Channel 2 of the timer chip and (3) by setting both the

transmitter reset and start bits in the EnetCR.

- 42 -

The transmitter must first wait for the timer to decrement to zero
and must then defer by waiting for the carrier to be absent before
proceeding. When these conditions exist, the signal EoutProceed is
asserted which causes OutGO to be asserted two clock ticks later. OutGO
is used to start up a micro-programmed sequencer which is responsible
for requesting DMA transfers, serializing data and Manchester encoding
the data for transmission. When this sequencer starts up, a 4-1
multiplexer has been forcing its output, EmuxData, high and it remains
forced high for one clock tick after which it is logically connected to
the output of the data shift register. Since EmuxData is the serial
stream of bits to be encoded for transmission and used for calculating
the CRC, forcing this signal high inserts the start bit into the data

slreame.

When the sequencer is encoding the start bit, it asserts =-srload
which causes the Ethernet address header word to be loaded into a shift
register. This word 1is subsequently shifted out, encoded and
transmitted. After the sequencer asserts -srload, it asserts DMArq for
a clock cycle causing a transfer request to be issued to the DMA
controller. The DMA controller has 15 clock cycles to complete the
transfer before the next assertion of -srload. In this scenario, the
DMA controller does so and the data word is latched in the DMA output
register by DMAoutStb then loaded into the shift register ‘and encoded
and transmitted. When the data word was latched 1nto the DMA output
register, the DMA controllers terminal count signal was also latched.
Since the DMA channel was programmed only to transfer one word, that
signal was asserted during the transfer and can be seen in the assertion
of the signal LastWord when the data word is loaded into the shift

register.,

The next occurrence of -srload causes the CRC word to be routed
through the multiplexer and transmitted. The following occurrence of
—srload delayed by one clock cycle generates the signal OutEnd which

disables the sequencer and generates an interrupt to the processor.

- 43 -

OutEnd is also used to report the status of the tramsmitter via the

Enetsr as the transmitter done bit.

3.4.2 Collision Concensus Enforcement

When the transmitter detects a collision on the Ethernet during
packet transmission, it must jam the net for more than a bit time and
then get off the net., Figure 3.3 illustrates how the transmitter
handles collisions. In this implementation, a negative going transition
on the transceivers signal NetCollision is used to set a flip-flop and
produce a signal ~collision which is asynchronous with respect to the
system clock. This signal is synchronized by sampling it with a shift
register. The first tap on the shift register is used to produce a
signal -Jam which causes the sequencer to produce a low omn XDat. The
fourth tap is used to abort packet transmission three clock cycles after
the jam condition was asserted. Abort conditions halt the transmitter
by presetting the flip-flop that generates the OutEnd signal causing an
interrupt to be generated and when the status register is polled, the

collision bit will be seen as set.

3.4.3 DMA Failure

The system is designed such that two DMA transfers can occur within
a word transmission time. If the DMA channel were to fail, the
transmitter would retransmit the previous word and could send a
correctly formatted packet which in actuality contained flawed data.
For this reason, it is important to detect DMA channel errors and react
appropiately. Figure 3.4 illustrates how the transmitter reacts under

these circumstances.

- 44 -

*3SBT 9yl ST pIOM 9[-]Y) Syl pue SMOII0F pIOM BIEBp 9Y] °I9pBOY SSaippe 9yl
ST Pol3jTWSueIl pIOM 3SITF oYL ‘1oxoed yYiBusy wnuTuTw ® JO UOTSSTWSUeI} 3oyded Jewxoy :z'¢ oand1g

UL UL LAY UL LA U AR ==

%ngf ‘|~|ﬁ4 ||~: mpmcm
AR

LS

gla
:‘ ﬁﬁ peoag-
ﬂ ﬁ~||‘ ﬁﬂ q3SINOVNG

03deq-

ﬁl obag

wep-

puging

pugIng

LSOWTY
034D

PIOMISBT

11931818
ﬁ 82103

091nQ

*ouTy
11q ®© zm:u zo8uol xo0F ySTy poedxoy oq 03 TeuSTS eieQX oyl Bursneo pajadsse ST eu3TS
wep- oyl ‘pei1d9el1sp ST UOTST[IOD € USYM °UOTIST[IOD 03 anp PIIIOQE UOTSSTUSUBIY I9YOBJ ‘¢°¢ 2andtg

I 0
i | L ™

TAMTAUUUUUTANTUUUUTI =

ﬁlna : \uﬁﬁ: pROTIS-
ﬁa ﬁa ﬁa q3S1N0VKa

oYoed-

ﬂln obxa

uer-

pugang

pugInQgisouty

03u0

pIoM3ISeT

ﬁl 11§1I81590104

ﬁ 053n0

ZHA S

*2XNTTBF TPUUBYD VW(O3 ONp pelloqe UOTSSTWSURI] 19)dBd

Il

0

1

I

1

[l

P g aandtd

il

Ui

I
[

Nl

Il

I

Il

l::'él_:

—H

e3EqX
BlRqd

ATDLS

peoTis-
q3S3IN0OVHG
0Xoeq-

obag

wep-

pugang
pugIngisouTy
034D
pIop3se]
1193281599104
091nQ

ZHA S

A DMA channel failure can be characterized by the request, Drq0,
still being asserted within two clock cycles of DMAREQO being asserted.
Again, since Drq0 is asynchronous with respect to the system clock, a
shift register is used to synchronize it. The signal at the second tap
is currently ORed with -DMAREQO to produce an abort signal which is
latched and appears as the transmitter DMA error bit in the status
register. This abort signal shuts down the transmitter in a similar
manner ag¢ with collisions but as the timing diagram illustrates, the

Ether is not jammed.

3.5 Ethernet Input Module

The Ethernet receiver hardware is naturally divided into several

sections. First, data coming off the net must be decoded. When the

first word of a packet has been collected, its destination address must
be qualified. If the node wishes to receive that packet, data must be
transferred into the memory while a CRC is being calculated. After the
packet has been collected, the hardware must report whether there were
any error conditions. The receiver hardware 1is illustrated in

Sheet #11.

3.5.1 Loopback Multiplexing

Ethernet received data is piped into a loopback multiplexer, U91,
before making its way to the decoding circuitry. This multiplexer will
either connect the output of the transmitter, XDAT, to the receiveg or
connect NETDATAIN to the receiver. Simultaneously, it will connect the

transceiver data input to VCC or XDAT, respectively.

- 48 =

3.5.2 Manchester Decoding Circuitry

Received, post-loopback multiplexer data is Manchester encoded and
must be decoded to provide several signals. The CARRIER signal is
asserted true while there is data on the net. DECODED DATA is the value
of the bit cell when DECODED CLOCK is asserted. —CLEAR COUNTER is used
to clear a four bit counter, U96, which is used to count the number of
decoded bits that have been accumulated. It is cleared such that the

start bit is not counted.

The decoder works by sampling the received data at eight times the
bit frequency and looking at triplets of samples at four times the bit
frequency. The data is sampled by an octal shift register using the
last three taps for the triplet. Using the last three taps gives the
sampler five clock cycles to settle, which means that the probability

that any signal in the triplet is in a metastable state is very small.

Since the triplets are latched by U95 at four times the bit
frequency the state machine formed by the prom U87 and the latch U88
sees triplets that overlap by one sample. The coding of the decoder is
similar in concept to that in Chapter 2 except that it is not as

straight forward. The coding is described in Appendix B.

3.5.3 Word Accumulatiom And Address Detectiom Circuitry

The DECODED DATA output of the decoder is used as an input to a
sixteen bit shift register in which the data word accumulates. Data is
clocked into the shift register one-half a clock cycle after it appears
on the DECODED DATA line. It is also clocked into a CRC generator,
Ul00, at the same time and the clock is used to increment a four bit
counter, U96, which is used to count the number of bits in the shift

register, It is cleared by the decoder state machine such that the

- 49 -

start bit is not counted. Its ripple carry output is delayed one~half
clock cycle and used to latch the shift register data into the DMA Input
Register, U52-53.

Address Detection is done by comparing the first received data byte
with the contents of the Address Register, U43. This comparison is done

with two four-bit comparators, U97-98. Two four—input NOR gates and an

AND gate are used to detect when the destination address is zero. The
resulting signals, MY ADDRESS, and BROADCAST are NORed with the
PROMISCUOUS signal from the control register to generate a -goodpacket

signal which is sampled by another state machine.

3.5.4 Manager State Machine

Another PROM and latch, U89 and U90, form a state machine which
manages the receivers interaction with the DMA channel and the
processor. It initializes the CRC generator, requests DMA cycles,
detects DMA errors, generates an interrupt indicating the receiver needs
attention and holds error status by disabling the clock to the CRC

generator and the bit counter.

Figure 3.5 illustrates this small state machine. It can be
initialized to State 0 by asserting start low and then high. It will
remain in State O as long as there is no carrier. When carrier is
asserted and start is not, it will enter State 1 where it will remain
for the complete packet tranemieseion, that is until carrier is asserted

low. State 1 is used to prevent the reception of a packet that has

already been partially received when the start bit is set by the

processor.

- 50 ~

BMHDpYY FAVLS FIIVAVY L S8 Jen9Ir4d

«
° x3vmQ - YLl

D2 I D

1Y

SuviS

WIVVINQ- NIND

NJYy ¥ - 1N JOVIS-ZRIDEYD

S ‘ Lu943

13VLS JwVLs dyvwis

ero—— ———in SlIND

| Vi3
JFULS - Y2thrvI —

(=

If start is asserted when carrier is asserted, the machine will
enter State 2. It will stay in State 2 until all sixteen bits have been
accumulated in the shift register. When this has occured, Rippled will
be asserted. If GoodPacketAddress 1is asserted simultaneously, the
machine will progress to State 3 where it will wait until Rippled goes
low before progressing to State 4. It will remain in State 4 until the
next word is accumulated in the shift register and Rippled is once again
asserted. From here it will enter either States 5 or 6. State 6 is
entered upon detecting a DMA channel failure which is indicated by the
presense of ~dmaack when rippled is asserted. Otherwise, if dmaack is
asserted, it will enter State 5, and stay there until Ripled is asserted
low or carrier is asserted low in which case packet transmission is

complete and the machine enters State 7.

States 6 and 7 are terminal states. Both generate interrupts to
the processor and can be 1left only through processor intervention.

State 7 is entered in the case of non—-dma-error termination.

3.6 System Performance

The implementation appears to meet all three of its design
objectives. It has been programmed and shown to be capable of receiving
data on its serial ports and encoding that data in Ethernet packets and
transmitting that data on the net. Likewise it is capable of receiving
Ethernet packets from the net, decoding the data from the packets and

transmitting that data onto the serial port.

It is also capable of transmitting packets to itself. Figure 3.6
illustrates that a relatively small amount of the data bus bandwidth is
required during the loopback packet transmission-reception, suggesting
that the processor is getting quite a few instruction cycles during

packet transmission and reception and thus the system can be modelled by

- 52 —

‘uotieiado yoeqdool Juranp o124d L1np %05 A1orewrxoxdde soAToydoe WelsSAS OYL 030N

'sng eiep wWelsAs oyl yo 1ox3uod dn usATS sey 10SS000Xd Syj USYM S9IBITPUT YITUM
o3poTMoudy PIOH S.NdD oY1 (9) pue (o8poTMOuddE YW(JIOATSDAX Joursyig)- (§) “asenbax
VWG I9ATeD9x jouxayiyg (y) © (oSpeImoudor VWQ Xs3llTusuexal jeuxeyig)- (¢) ‘asenbsx vwa
I9313TUSUBI] Jourayly (z) ‘eiep 3oursyly polatusuexl ([) oxe woijoq o3 doy woxF srrudtg

‘uotjerado yoeqdoor Sutanp yipImpueq sng BiBQ :9°¢ oInSTg

7
I_ ()
| | | J—

_IS
AL oo~

the favorable parallel burst mode DMA throughput curve in Figure 2.7.

Since the system makes use of a digital Manchester decoder, no
trimming of passive components is required as would be the case with a

more traditional omne-shot based decoder. This design should increase

the MTBF for the decoder section. The MIBF should reflect component
failure rates and not be dominated by passive component drift as would

be the case in one-shot decoders.

- 54 -

CHAPTER 4

A PROPOSAL FOR AN VLSI IMPLEMENTATION

4.1 Higher Level Protocol Comsiderations

When one looks into network software, it becomes apparent that the
performance of the network interface can be inconsequential when
compared with the performance of the several layers of software protocol
modules through which a packet must traverse. One can take the attitude
that nothing the interface can do can improve the performance of these
software protocol modules, however, the natural evolution of the network
interface is towards a front end processor which must implement these

soflware protocols, and a great deal may be gained by so dolng.

Most software protocols deal with adding or removing packet headers
and trailers. So the process of sending a packet of data can be thought
of an encapsulation process [Schoch et al, 1980] that takes a high level
protocol packet and passes it down to a lower level protocol module

where it is again encapsulated. Since encapsulation may happen many

- 55 =

times before a packet is handed to the hardware for transmission, it is

apparent that overall system performance depends heavily on the

computer’s ability to move data about and allocate buffer memory space.

Poor protocol module implementations may pass a formatted packet in
a buffer to the next lower protocol module which may then request that a
larger buffer be allocated and then copy the packet into that buffer.
This technique results in allocating a lot of memory and moving data
very often. An alternative and much improved technique allocates a
memory buffer once and does not move the data. This is achieved by
allocating a large buffer and by placing the initial data in the proper
part of this buffer. While this technique has good performance, it has
several drawbacks. Since a maximum size buffer must be allocated and
the data must be properly placed, higher level protocol modules must
have a substantial knowledge about what lower level protocol modules the
packet will travel through and what they do to the packet. This
knowledge of the lower level protocols goes against the rationale for
using layered protocols, that is to isolate one functional level of work

from another. In other words, it is just not clean.

A redesign of the network interface can improve overall performance
by not requiring data to be copied. If each protocol module requests a
memory buffer for headers and trailers and links them to the data buffer
through a link field in the memory buffer, the hardware can be passed a
pointer to the packet header and it can follow the 1links while
transmitting the packet. Such an implementation, as illustrated in
Figure 4.1, is clean since the higher level protocols no longer require
any knowledge about the workings of the lower level protocols.

This 1linked 1list architecturex may be less efficient than the
maximum size buffer technique since each protocol module may have to
request that buffers be allocated for headers and trailers. However,
the affect of more memory allocator calls may be less profound than

before for two reasons. First, since higher level protocols tend to

- 56 -

SH84308 18T PayuI] it ' | eunbry

[o] viva |

I®MI[Mool pnom

o* [*f oanbrq jo erduoxa 9Y| *3SI 8yy
§° pus 84y 41 g jo jueuwbes Ixeu eyy

30 SS8-ppL 8y} ST MU Beyy pup prety
PIPP B4t 40 Yibuel eyy st yybue euayy

Hur] [e3sg | yybueT

@M1 sMoo] jueuwbeg vy

UOTRo0[ly Jeying ezig WAWIXBW B 7° f mLDmE

*UO Os TC(-T

UQUD .H Lm_UDmI N LWTUQI

*urobo 41 seqp[nsdbooue HOTUM

1xeu mrj. OJ. Tmmmﬁﬂ_ 8s7 mewnaﬁ m.r.:r -m

UJ._UD .n Lm_UUmI

" BYPP 84y 04 Jeppey
o} mmXCmL& 4otym 8[npouw M00040L&

Xeu ey} o4 pessod s7 dsyyng ay| 7

UJ.DD

TPUS B84y} JupBU 3T O4UT UB3ATIM ST B1D(]
" P8YDOO[[L ST Juejing ©ZIS WNWTXDW VvV * T

deal with connections that are relatively long lived, an intelligent
protocol implementation can build header and trailer templates that are
kept for the duration of the connection. These templates need will need
to be modified just slightly for each packet transmission. Thus the
memory for the templates need only be allocated once per connection and
not once per packet transmission. Secondly, using a linked 1list
architecture makes the memory allocator easier to write and more
efficient. Since arbitrary amounts of buffer memory can be built up
from linking discontiguous memory segments together, the allocator only
has to deal with fixed length memory segments and doesn’t have to worry
about compaction since the linking makes the segments appear contiguous.
Fufthermore, by using small segments, the allocator can make more

efficient use of memory since most headers, trailers and data will fit

in small segments.

The 1linked 1list architecture requires building a fancier DMA
chanuel than was employed in the current implementation. When given a
pointer to a linked list, the DMA channel should be able to either read
data from it or write data into it. Reading from the linked list
proceeds until the channel finds a null link which signifies the end of
the linked 1list. Writing into a linked list operates similarly to
reading. The channel must have a pointer to the linked 1list, each
segment of which contains a length field, a data field and a next link
field. The channel simply deposits data in the data field until it has
filled it up, as indicated by the length field. The next write causes
the channel to follow the link to the next segment and deposit the data
in its data field. If for some reason, the channel finds a null link
field, it must abort the write operation and report a buffer overiiow
condition. Such a DMA channel along with Ethernet receiver and
transmitter modules, similar to the ones implemented din the current
interface can be built using todays integrated circuit technologies

(VLSI).

- 58 -

With time, one can expect the higher level protocol modules to be
implemented in hardware rather than software in order to increase system
performance. A hardware implementation of a typical layered protocol
system lends itself to being a pipelined interconnection of protocol

chips and shared memories.

To illustrate how higher level protocols might be realized with
pipelined hardware modules, lets look at several of the Department of
Defense Standard Protocols. First, from a users view, is a protocol
called Transmission Control Protocol (TCP) [TCP, 1980] which can be used
to establish connections and carry on reliable communications with
another host. TCP uses a protocol called Internet Protocol (IP) [IP,
1980] to send datagrams to another host somewhere on an internetwork.
IP in turn uses the transport level protocols to send the datagram on

some network, for example an Ethernet or the ARPAnet.

An implementation of the transmitter functions of these protocols
might look like Figure 4.2, The user composes data in the Buffer Memory
and passes control information to the TCP Module. This control
information contains at least a pointer to the data in the Buffer Memory
and probably other data pertaining to the TCP services being used. The
TCP Module uses the control information to compose a TCP header block in
its local store, the TCP Header Memory. While the TCP Module may need
to inspect the data packet to compose its header, the user never needs
to see the TCP header., Because of this, the Buffer Memory is mapped
into the TCP Modules address space but the TCP Header Memory is not
mapped into the user’s memory space. After the TCP module has formatted
the TCP header, it passes control information down to the IP Module
which builds an IP header in its local store, the IP Header Memory, and
likewise, it maps both the Buffer Memory and the TCP Header Memory into
its address space. Of course, as each protocol module builds a header
block, that header is linked to the data portion of the packet. At the
end, a pointer to this linked list is passed to the Ethernet Transmitter

Module which gains access to the net and transmits the packet by

-~ 50 -

SINES STRAUY IR § $A70a0W DAL edd 1RNTT WIHITH 120k AN 09Il

o 4
23w _ _
1anaaned ~ v
¥aavas 41 234934 4T H, H%
d3dvan 49l 23qV3H ao1 ¥Aqv3u dant .sh‘ s“w.
¥3zdad ¥3431a09 833409 333409
& ~ ~ ~ ~ 4 ~ A
23T 13wd3L3 13437 4T “A037 7L RN KUYV IS
B SRR L Fsiox
13n33H13 +2f§ng
4203 3AV3Y 43oWavi 33AV3YH
aT 421
3InA0W
37009
xNaleyd W
2
L3aNJIINT 7L

following the linked 1list. In order to chase the linked list, the
Ethernet Transmitter Module must have all of the header memories as well

as the Buffer Memory mapped into its memory space.

It is important to note that by using a structure like Figure 4.2,
the user looses no flexibility in the type of packets that he can send.
The user can format any style packet in his Buffer Memory and pass
appropiate control information to any of the protocol modules to affect

any desired protocol.

Packet transmission is only half of the problem. A protocol like
TCP deals with reliable communications which means that packet
receptions are acknowledged by sending a packet back to the transmitting
protocol module. This means that the acknowledgement packet must get
back to the TCP Module that transmitted the original packet. Figure 4.2
does not illustrate the packet reception data and control pathways.
During packet transmission, the datagram was fragmented into data
sections and headers which were chained together in a linked list. This
provided both improved efficiency and data security. On the receiver
side, it is hard to take incoming data and fragment it into header and
data blocks since these protocols use variable length headers. However,
the incoming data can be stored in a linked list buffer without regard
to the header/data boundaries. This Tresults in an efficient
implementation because a fixed sized segment memory allocator can be
used and while a maximum sized buffer must be originally allocated,
unused segments in the list can be returned to the memory allocator

after the packet has been received.

Upon reception of a packet, receiver control flows very much like
it did in the transmitter except that everything is reversed.
Figure 4.3 illustrates the whole transmitter/receiver. As is shown,
control information about a packet reception is passed to the IP
Receiver Module if the Ethernet receiver determines the packet is an IP

format packet., Otherwise, the packet is handed to the user to decode.

- 6l -

YALLINSHYIL /a3 (ARNEBAND 1E2h Yo T4

B SNl Azowaw
JYNUIHLI 232440
LNy AL
win A3ag5H Wwan p3adyiy
TLiwvisSNg AL
ad
AN
471
23n273Y
43
F0\3RY dBonav
LINY3AHIA *¥3d3a9
2nanay

If IP is handed the packet, it decodes the packet and if it determines
that the next higher protocol is TCP, it passes the appropiate control
information to the TCP Module which determines what to do with the

packet.,

Such an hardware implementation of higher 1level protocols is
relatively straightforward and many things can be done to improve it.
The pipe can be widened in places by adding, for cxample, three IP
module instead of one. Overall memory system bandwidth requirements can
be decreased by adopting certain conventions such as carrying checksums

around with the data in order to keep protocol modules from ever having

to look into memories that are non-local. Finally, other architectures

are well suited to this type of problem. For example, an architecture
that pipes data as well as control could be very effective. Such an
architecture would decode received data on the fly and thus would be

able to easily separate headers from data.

In conclusion, much has been learned from implementing an Ethernet
interface, but to be honest, more has been learned from programming it.
No longer do I Dbelieve that the hardware protocol 1s of much
consequence, having realized what performance degradations higher level
protocols introduce. I feel, as I have tried to express 1in this
chapter, that VLSI implementations have the ability to both provide more
intelligent data structures and increase the performance of higher level
protocols drastically. Either of which will have a noticeable effect on

overall system performance.

- H3 -

REFERENCES

[Abramson, 1970]
N. Abramson, "The ALOHA system—Another alternative for computer
communications," in 1970 Fall Joint Comput. Conf., AFIPS Conf.

Proc., vol. 37. Montvale, NJ: AFIPS Press, 1970, pp. 281-285.

[Chaney and Molnar, 1973]
T.J. Chaney and C.E. Molnar, "Anomalous behavior of synchronizer
and arbiter circuits," IEEE Trans. Elec. Comput., EC-22, April 1973,
pp. 421-422.

[DEC, Intel and XEROX, 1980]
Digital Equipment Corporation, Intel Corporation and Xerox
Corporation, "The Ethernet, A Local Area Network, Data Link Layer

and Physical Layer Specifications," Version 1.0, September 30, 1980.

[1P, 1980]
"DOD Standard Internet Protocol," Editied by Jon Postel,

January 1980.

[Metcalfe and Boggs, 1976]
R.M. Metcalfe and D.R. Boggs, "Ethernet: Distributed packet

switching for local computer networks," CACM, vol. 19 no. 7,

July 1976.

[Shoch and Hupp, 1979]
J.F. Shoch and J.A. Hupp, "Performance of an Ethernet Local

Network —— A Preliminary Report," Local Area Communications

Network Symposium, Mitre and NBS, May 1979.

- 64 -

[Shoch et al, 1980]
J.F. Shoch, D. Cohen and E.A. Taft, '"Mutual Encapsulation of
Internetwork Protocols," Trends and Applications: Computer

Network Protocols, IEEE/NBS, May 1980.

[TCcP, 1980]
"DOD Standard Transmission Control Protocol," Edited by Jon

Postel, January 1980.

- 65 -

APPENDIX A

CIRCUIT SCHEMATICS

- 66 -~

RS FT 0 W3 Q, A NOILAIEDS3G 00| A36

YIGAON_DeMvEa R)

SZLL6 VINHOLINY) ‘YNIAYSYd

v ADOTONHOZAL 40 JLNLILSNI VINHOLMYD
1 Ul a3wdany u m-—l —
FETRPI My JONIIOS HILNAWOD
1335 W58 x5 30
_
MR e PT PO T T ‘|\\..h,.;iu T T I I T T T e e mm
™ vinr- T i : e S T T e e e e PPk ——— J
= T g - Q...I.I:L s
= iinir — v\|r -
q) Biram — - — T J
anr
o s - i P
Y= —
"o
PLS3 LTS
7]
s e i ———————————— [— -
v
3 [F =y i
] w0 H——
Mﬂ SAtvine LI”
I R g 5
C e
n. 9
C o S
F—
——
=
TrESME -
[T ™
fi—) X1} v yam .
(1 ~— ks L W
g M
K — hBZEY [
— 5 =
- o B 0 7 T
— nl]_L T _,._-:ﬂqﬁ s 1
PR G — ri—) :
... 3 C k)
_ X (S |
ot Ti.

b
S [N : W
lwlwﬂ.z terine i
At [.
I ,

(TN

)| | A= MOULeI$I 1ivd
KW Deaswiad
TR AL g Spyery
N nu QN
*‘L.‘.#W - M
el WEILAS u—j:ﬁgs
AN N

FONIIOS o

S2LL6 VINHOLITYD ‘YN3QVSvd
ADOTONHO3L 40 3LNLILLSNI VINHOLIMYD
31NANOD

i

a
B T3 € B

wo g

i 1. &n l—
i 1
B -
romem s BN bl Bl ot K e
E=1F N Eaa o o
_.. 1]
il "
gH—=
2 §[E
Jof ey
whH—i-
LU0 R I
o e s
K £ Al 5|5
T T L I ——-
iy

o .

5]
&

SZLL6 VINHOLITVYO ‘'YN3QVswd

ADOIONHO3L 40 J1NLILSNI VINHOAITYD

FONZUOS HALNINOD
e ————

—————— ——
n 1 a
—F “ "
s i 10ty Ta w- | oty ETE T CAmS 174
sy BEECE s T vIs- -
7.4'.” " vebr L) el i £ e = G |
st iy ;] 0 «U.ull. B TA\B oy
T L C—— i b g
e R
sE0 G pPETTT) (AL IY g
P—— Ll —
[ELTTE 4 I s o LTS S S
o fr—i— P T
tY EL R “- A s g
Wt 40 e — — o

A TaRSEAR

o

XL}

’ . ¥
=

[T

I

r
-

i

f.:
g8
-

F Z
q

T

3 - H

I

A

@ 11 sem

[T

I

1552333255%2

LT

§ rl 3
3 sl
33 : 3
oy 0
!_;L% Ll L

| B !

COMPUTER SCIENCE

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

Hnumnm

nnmnum

mmum

il HHHH

| £
L]

cr 13 Ty
NR———

o

COMPUTER SCIENCE

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125
I

Lo

e e
tiine 37 0 W XD ke MOLLAINDE 30 34v0| A3Y

N

s DG I aeva — SZLHLE VINHO4NYD ‘YNIAVYSYd
g L oo ADOTONHOAL 40 ILNLILSNI VINHO4MVYD
....... R — JON3I0S HILNIWOD
Fet oY NEikAs TP 3 o
C i
(S ey

I

[aaxanacmed
)
t
N
’__
i
|
0
A
O

! -
qlT'

Bz
v d
.-

ot

......

O v o — ool SZLLG YINHOINVD ‘YNIAYSYd
P N ADOTONHO3L 40 ILNLILSNI VINHOAMYD
- N e x 2ONI1DS HILNGNOD

(3

i

I

il 11 © wohaeian ...ﬂ AL e A K Vivd Abw

N : = S2L16 VINHOAMV?) ‘YNIaVsYd

g [iml—emmEEe——— = ADOTONHO3L 40 ILNLLLSNI VINHOAMYD

P — ION3I0S HILNWOD

Tl
18, whin O e, 31

"
P e ~
. o=
o
add -
a
T 1 I “
ﬂvﬂj:. b
N] S anemioy
oY Rim e
22— T i
v "
_— 1. Liaul
S e IR
M LT
> B
e
N T p T . . T . i : 1 :

e T e — 52146 VINHOAMTVD 'YNIAVSYd |
PR g s ADOTONHOIAL 40 ILNLILSNI VINHOAMYD

3ON3I0S HILNAWOD

[ied

%0
via
’ Hve oL
CIATT3
vivey
o ——
< >
nU..th. N 0
(e—, T T i
nnnnn I} n »
340 3 + J|'\
o
bd]
tta 1 Jlt\nu
€ L]] et
ry . W
S
I T
H mx:.trm e T Cl
> . : o 7
. A
- a0 Sevn v = T L
COomr™ ma [Tom en o
C o D—— N
SIS deves | 13 9 + o Ho-am tenant

s

134

or

W)

NOLLAIHOS30

Loty

SOOI,

e

LN W]
! G 0

SZLL6 VINHOALMYD ‘'YNIavsSvd

ADOIONHOAL 40 JLNLILSNI VINHOANYD

ION3IDS HALNAWOD

Swomasv

r’ll

edane -

T

g0 4

o

RITAY.

. 38D

.
-
3 ¥
C BT L | e LR §
IBAY VAL S TP o8n wa
woo |° A rorra LR
~ hrrrg .}

N
IAI'IAU Jitiovwa

PRI

SL3ns 3 0

YA DG

1

NOILLIIHO63Q

SZHLE VINHOZMYD ‘YN3QVSYd

IIMRIIY
demwani3
uun

ADOTONHOIL 40 JLNLILSNI VINHOAMVYD

4EmyEnL3
[

3ON3IOS HILNdWOD

APPENDIX B

MICROCODE DESCRIPTIONS

This Simula program emulates the manchester encoding portion of the
Ethernet transmitter. The array rom contains the prom microcode and is
inicialized by the procedure init. The program reads data frowm a file called
emul.dat and displays the resulting encoded output on the terminal. It creates
two files. One is called eout.txt and contains a textual representation of the
microcode. The other is called eout.rom and contains the Intel format code file
for the prom programmer.

- 78 -

! This is <dan.thesisDeout.sim;
BEGIN
EXTERNAL INTEGER PROCEDURE land, lnot, lor, lshift, lxor;
REF(Outfile) ouf;
REF(Infile) inf;
INTEGER i, j,k,data,xdat,count,srpos,srdata;
INTEGER ARRAY rom [0:255];
TEXT Line;
INTEGER PROCEDURE ones(len);
INTEGER len;
BEGIN
INTEGER result, i;
FOR i:= 1 STEP 1 UNTIL len DO result:= 2result+l;
ones:= result
END of procedure ones;
INTEGER PROCEDURE extract(i,start,len);
INTEGER i,start,len;
extract:= land(lshift(i,~start),ones(len));
INTEGER PROCEDURE set(i,start,len,j);
INTEGER i, start, len, j;
BEGIN
i:= land(i,lnot(lshift(ones(len),start)));
set:= lor(i,lshift(land(j,ones(len)),start))
END of procedure set;
PROCEDURE init;

BEGIN
INTEGER 1i;
FOR i:= 128 STEP 1 UNTIL 128+63 DO
BEGIN

count:= extract(i,1,5);
IF i>127 THEN
rom[i]:= set(rom[i],0,1,1lxor(extract(i,0,1),extract(i,1,1)));
rom[i]:= set(rom[i],1,5,count+l);
srom[i]:+= set(rom[i],6,1,1);
IF extract(i,1,5)=0 THEN rom[i]:= set(rom[i],6,1,0);
IF extract(i,l,5)=1 THEN rom[i]:= set(rom[i],7,1,1);
END;
END of procedure init;
! Ok lets emulate the sequencer;
PROCEDURE loadsr;
BEGIN
data:= inf.Inint;
srpos:=15; srdata:= extract(data,srpos,l) END;
PROCEDURE clocksr;
IF srpos > 0 THEN
BEGIN
Srpos:= srpos-—l;
srdata:= extract(data,srpos,l);
END of procedure clocksr;
init;
BEGIN
INTEGER latch,address;
BOOLEAN crnext;
inf:— NEW Iufile("emul.dalL');
inf.Open(Blanks(80));
srpos:= 15;
srdata:=1;

latch:= 03

- 79 -

we

address:= 03
i:= 03
WHILE NOT inf.Lastitem DO
BEGIN
IF crnext THEN Cutimage;
address:= set(address,1,5,Entier(latch/2)); ! get feedback terms;
address:= set(address,0,1,srdata); ! get data term;
address:= set(address,7,1,1); ! set go bit;
! address:= set(address,1,1,0); ! Is the xdat feedback term needed?

latch:= rom[address]; ! get the next word;

IF extract(latch,l,1)=1 THEN clocksr;

IF extract(latch,6,1)=0 THEN loadsr;

IF extract(latch,1,5)=2 THEN crnext:=TRUE
ELSE crnext:=FALSE;

OQutint (extract(latch,0,1),1); !print data;

IF Mod(i,2)=1 THEN Outtext(" ");

IF extract(latch,/,1)=1 THEN Outtext(" DMA ");

is= i+1;
END;
Outimage;
END;
inf.Close;

ouf:-NEW Outfile("eout.txt"):
ouf.Open(Blanks(80));
Line:~ Blanks(80);
FOR i:=1 STEP 1 UNTIL 63 DO Line.Putchar(’=");
FOR i:= O STEP 32 UNTIL 255 DO
BEGIN
ouf.Outchar(Char(12));
ouf.Outimage;
ouf,Outtext ("<GO><bit6><{Cnt><Xclk><Data>");
ouf.Outtext (" || <DMA>|<LSR>|<Cnt>|<Xclk>|<Xdat>");
ouf,Qutimage;
FOR j:= 0 STEP 1 UNTIL 31 DO
BEGIN
ouf.Outtext(Line);
ouf.Outint (extract(i+j,7,1),3);
ouf.Outint(extract(i+j,6,1),6);
ouf.Outint (extract(i+j,2,4),5);
ouf.Outint(extract(i+j,1,1),6);
ouf .Outint (extract(i+j,0,1),6);

ouf.Outtext (" [|I");
ouf .Outint (extract(rom[i+3i},7,1),4);
ouf.Outtext(" [|");
ouf.Outint (extract(rom[i+j],6,1),3);
ouf.Outtext(" |");
ouf.Outint(extract(rom[i+jl,2,4),3);
ouf.Outtext(" |");
ouf.Outint (extract(rom[i+jl,1,1),4);
ouf.Outtext(" |");
ouf.Outint (extract (rom[i+j],0,1),4);
ouf.Outtext (" |");
ouf.Outimage;
END;
END;
ouf.Close;

ouf:~ NEW Outfile("eout.rom");

- 80 -

ouf.Open(Blanks(80));
FOR i:= O STEP 8 UNTIL 255 DO
BEGIN

FOR j:=0 STEP 1 UNTIL 7 DO

BEGIN ouf.Outint(rom[i+j],5); ouf.Outtext(".,") END;

ouf.Outimage;
END;
ouf.Close;
END of program;

-~ 81 ~

The second program simulates the entire Ethernet receiver. It contains
a Class PROM which provides the prom’s memory and a few usefull procedures for
printing and dumping code files. The two prom’'s in this circuitry, the
Manchester Decoder and the Manager prom are superclasses of class PROM. Each of
these superclasses initializes the prom‘s memory. These initialization
procedures are the algorithmic microcode descriptions. When the program
is run, it prompts the user for several input words from the Ethernet. It turms
these numbers into a serial bit stream which drives the simulator. The
simulator displays the value of certain signals on the users terminal on a per
clock tick basis. It also generates code files for the two proms.

- 82 ~

! This is <dan.augat>ncwein.sim
BEGIN
EXTERNAL INTEGER PROCEDURE land, lnot, lor, lshift, lxor;
external text procedure frontstrip, upcase;
external procedure outintel;
INTEGER PROCEDURE ones(len);
INTEGER 1len;
BEGIN
INTEGER result, i
FOR i:= 1 STEP 1 UNTIL len DO result:= 2result+l;
ones:= result
END of procedure ones;
INTEGER PROCEDURE extract(i,start,len);
INTEGER i,start,len;
extract:= land(lshift(i,-start),ones(len));
INTEGER PROCEDURE set(i,start,len,j);
INTEGER i, start, lenm, j;
BEGIN
i:= land(i,lnot(lshift(ones(len),start)));
set:= lor(i,lshift(land(j,ones(len)),start))
END of procedure set;
CLASS dataj
BEGIN
INTECER d;
END of class data;
! This class emulates a 741s164 serial in parallel out eight bit shift
register;
CLASS shiftregister(din);
REF(data) din;
BEGIN
REF(data) ARRAY d[0:7];
REF(data) dout;
PROCEDURE clock;
BEGIN
INTEGER i3
FOR i:= 7 STEP -1 UNTIL 1 DO d[i].d:= d[i~-1].d;
d{0].d:= din.d
END of procedure clock;
PROCEDURE print;
BEGIN
INTEGER 1i;
FOR i:=0 STEP 1 UNTIL 7 DO outint(d[i].d,2)
END of procedure print;
! init code;
INTEGER 1i;
FOR i:= O STEP 1 UNTIL 7 DO d[i]:- NEW data;
dout:— NEW data;
dout:~ d[7];
END of class shiftregister;
! This class emulates a 741s174 hex flip flop;
CLASS hexflipflop(d0,d1,d2,d3,d4,d5);
REF(data) d0,d1,d2,d3,d4,d5;
BEGIN
REF(data) q0,ql,q2,93,94,q5;
PROCEDURE clock;
BEGIN
q0.d:=d0.d;
ql.d:=dl.d;

q2.d:=d2.d;
q3.d:=d3.d;
qb.d:=db.d;
q5.d:=d5.d
END of procedure clock;
PROCEDURE print;
BEGIN
outint(q0.d,2)
outint(ql.d,2)
outint(q2.d,2);
outint(q3.d,2);
outint(q4.d,2);
outint(q5.4,2)
END of procedure print;
! init code;
qO0:— NEW data;
ql:— NEW data;
q2:— NEW data;
q3:— NEW data;
q4:- NEW data;
q5:~ NEW data;
END of class hexflipflop;
CLASS ff(d);
REF(data) d;
BEGIN
REF(data) q;
PROCEDURE clock;
q.d:=d.d;
! init code;
q:— NEW data;
END of class ff;
CLASS prom; ! superclass of all 74s471 proms;
BEGIN
REF(data) a0,al,a2,a3,a4,a5,a6,a7;
REF(data) d40,d1,d2,d3,d4,d5,d6,d7;
INTEGER ARRAY daf0:255];
PROCEDURE propagate;
BEGIN
INTEGER address,dataword;
address:= set(address,0,1,a0.d);

o
2
.
b

address:= set(address,l,l,al.d);
address:= set(address,2,1,a2.d);
address:= set(address,3,1,a3.d);

address:= set(address,4,1l,a4.d);
address:= set(address,5,1,a5.d);
address: set(address,G,l,a67d);
address:= set(address,7,1,a7.d);
dataword:= da[address];

d0.d:= extract(dataword,0,1);

o

dl.d:= extract(dataword,l,1);
d2.d:= extract(dataword,2,1);
d3.d:= extract(dataword,3,1);
d4.d:= extract(dataword,4,1);
d5.d:= extract(dataword,5,1);
d6.d:= extract(dataword,6,1);

d7.d:= extract(dataword,7,1)
END of procedure propagate;
procedure emit(f);

- 84 -

ref(ontfile) f;
outintel(f,da,255);
! init code;
dO:~ NEW data;
dl:- NEW data;
d2:- NEW data;
d3:- NEW data;
d4:~ NEW data;
d5:~ NEW data;
d6:~ NEW data;
d7:- NEW datag
END of class prom;
prom CLASS decoder;
BEGIN
PROCEDURE 1ist(f);
REF(outfile) f;
BEGIN
INTEGER 1i;
f.outtext("<carrier> | <sample> | <count> ||");
f.outtext("<carrier> | <data> | <clock> | <?> | <count>");
f.outimage;
f.outtext (" ")s
f.outtext(" "y ;
f.outimage;
FOR i:=0 STEP 1 UNTIL 255 DO
BEGIN
f.outint(extract(i,7,1),9);
f.outint(extract(i,4,3),11);
f.outint(extract(i,0,4),10);
f.outint(extract(da(i],7,1),12);
f.outint(extract(dal[i],6,1),9);
f.outint(extract(dal[i],5,1),10);
f.outint(extract(dali],4,1),6);
f.outint(extract(dal[i],0,4),10);
f.outimage
END;
END of procedure list;
! init code;
BEGIN
INTEGER address;
BOOLEAN PROCEDURE carrier;
carrier:= IF extract(address,7,1)=1 THEN TRUE ELSE FALSE;
INTEGER PROCEDURE sample;
sample:= extract(address,4,3);
INTEGER PROCEDURE count;
count:= extract(address,0,4);
PROCEDURE scarrier;
daladdress]:= set(da[address],7,1,1);
PROCEDURE clearcounter;
daladdress]:= set(da[address],;4,1,0);
PROCEDURE sevent(i);
INTEGER 1i;
BEGIN
IF i=1 THEN da[address]l:= set(da[address],6,1,1);
daladdress]:= set(da[address],5,1,1);
END of sevent;
PROCEDURE scount(i);
INTEGER i;

- 85 ~

daladdress]:= set(daladdress],0,4,i);
FOR address:= 0 STEP 1 UNTIL 255 DO

BEGIN

da[address]:= set(da[address],4,1,1); !

IF NOT carrier THEN
BEGIN

IF (sample=0 OR

set counter bit;

sample=7) THEN scount(0) ! idle;

ELSE IF (sample=l OR sample=3) THEN

BEGIN ! start of packet;
scarrier;
clearcounter;
if sample=1 then scount(0) else scount(l);
sevent(1)
END
ELSE scarrier; ! collision;
END
ELSE BEGIN ! carrier;
I¥ ((sample=1 UR sample=6) AND (count=0 OR count=1))
OR ((sample=3 OR sample=4) AND (count=1 OR count=2)) THEN
BEGIN ! collison;
scarrier;
scount (count+2)
END; :
IF (sample=1 OR sample=6)
AND (count>=2 AND count<=3) THEN ! setup;
BEGIN scarrier; scount(count+2) END;
IF (sample=3 OR sample=4)
AND (count>=3 AND count<=5) THEN ! setup;
BEGIN scarrier; scount(count+2) END;
IF sample=1 AND (count>=4 AND count<=9) THEN ! 1 data;
BEGIN scarrier; sevent(l); scount(0) END;
IF sample=3 AND (count>=6 AND count<=10) THEN ! 1 data;
BEGIN scarrier; sevent(l); scount(l) END;
IF sample=4 AND (count>=6 AND count<=10) THEN ! O data;
BEGIN scarrier; sevent(0); scount(0) END;
IF sample=6 AND (count>=4 AND count<=9) THEN ! O data;
BEGIN scarrier; sevent(0);scount(l) END;
IF (sample=l OR sample=6) AND (count>=10 AND count<=15) THEN
BEGIN scarrier; scount(0) END; ! collision;
IF (sample=3 OR sample=4) AND (count>=11 AND count<=15) THEN
BEGIN scarrler; scount(l) END;
IF (sample=2 OR sample=5) AND (count<=15) THEN ! collision;
BEGIN scarrier; scount(count+2) END;
TF (sample=0 OR sample=7) AND (count<=9) THEN ! active;
BEGIN scarrier; scount(count+2) END;
IF (sample=7) AND (count>=12 AND count<=15) THEN ! jam;
BEGIN scarrier; scount(0) END;
IF sample=0 AND (count>=12 AND count<=15) THEN ! end of
packet;
BEGIN scount(0) END;
END;
END;

END;

END of prom class decoder;
CLASS octalff(d0,dl,d2,d3,d4,d5,d6,d7);
REF(data) d0,d1,d2,d3,d4,d5,d6,d7;

BEGIN

REF(data) q0,q1,92,93,q4,95,496,97;

- 86 -~

PROCEDURE clock:
BEGIN

gq6.d:=d6.
q7.d:=d7.d
END of procedure clock;
PROCEDURE print;
BEGIN
outint(q0.d,2);
outint(ql.d,2);
outint(q2.d,;2);
outint(q3.d,2);
outint(q4.d,2);
outint(q5.d,2);
outint(g6.d,2);
outint(q7.d,2)
END of procedure print;
! init code;
qQ0:- NEW data;
gql:— NEW data;
q2:- NEW data;
q3:~ NEW data;
q4:— NEW data;
g5:— NEW data;
gb:—~ NEW data;
q7:—- NEW daLa;
END of class octalff;
CLASS counter;
BEGIN
INTEGER count;
REF(data) ripple;
PROCEDURE clear;
count:= 0;
PROCEDURE clock;
begin
IF count=15 THEN ripple.d:=1;
count:= mod{count+1,16);
end;
! init code;
ripple:— NEW data;
END of class counter;
prom CLASS manager;
BEGIN
PROCEDURE 1ist(f);
REF(outfile) f;
BEGIN
INTEGER 1i;
f.outtext ("<st>|<car)>|<dma>|<cntl6>|<state>||");
f.outtext ("<Sint>|<Dint>[<load>|<inhb>|<{dmaerr>|<{stated');
f.outimage;
f.outtext (" ")
f.outtext (" ")s
f.outimage;

- 87 -

FOR i:=0 STEP 1 UNTIL 127 DO
BEGIN
f.outint(extract(i,6,1),3);
f.outint(extract(i,5,1),5);
f.outint(extract(i,4,1),5);
f.outint(extract(i,3,1),7);
f.outint(extract(i,0,3),8);
f.outint(extract(dalil],7,1),8);
f.outint(extract(da[il,6,1),6);
f.outint(extract(dalil,5,1),7);
f.outint(extract(dalil,4,1),7);
f.outint(extract(dalil,3,1),9);
f.outint(extract(dal[il,0,3),8);
f.outimage;
END;
END of procedure list;
! This prom is used in the 2nd microsequencer. It controlls interrupt
generation, loading of the data from the shift registers into the port
and requesting a DMA transfer, reseting the CRC checker chip and reporting
DMA channel errors when the previous transfer was not complete when the
next one was demanded.
>
! init code;
BEGIN
INTEGER address;
! output definitions:

~done interrupt request: bit 7
done interrupt request: bit 6
dma request: bit 5
zerostate bit 4

dma error: bit 3
state feedback terms: bits 0-2

if we don’t have a normal end flag bit in the status register then

we must generate two types of interrupts. One is a first byte received
interrupt and the other is an end of packet interrupt,

Address Definitions:

goodpacketaddress A7
eneter[?] "start": A6
carrier: A5
dmaack: Ab
count=16: A3
state: AO-A2

boolean procedure mine;

mine:= if extract(address,7,1)=0 then false else true;
BOOLEAN PROCEDURE start;

start:= IF extract(address,6,1)=0 THEN FALSE ELSE TRUE;
BOOLEAN PROCEDURE carrier;

carrier:= IF extract(address,5,1)=0 THEN FALSE ELSE TRUE;
BOOLEAN PROCEDURE dmaack;

dmaack:= IF extract(address,4,1)=0 THEN FALSE ELSE TRUE;
BOOLEAN PROCEDURE cntl6;

entlé:= IF extract(address,3,1)=1 THEN TRUE ELSE FALSE;
INTEGER PROCEDURE ctate;

state:= extract(address,0,3);

PROCEDURE doneint; ! set doneint and clear -doneint;
daladdress]:= set(da[address],6,2,1);

PROCEDURE loadport;

- 88 -

da[address]:= set(da[address],5,1,1);
PROCEDURE zerostate;

da[address]:= set(da[address],4,1,1);
PROCEDURE dmaerror;

da[address]:= set(da[address],3,1,1);
PROCEDURE nextstate(i);

INTEGER 1

da{address]:= set(dal[address],0,3,1);
FOR address:=0 STEP 1 UNTIL 255 DO

begin
daladdress]:= set(dal[address],7,1,1); ! complement doneint;
! State O: 5
! to state 1 on carrier and not start M
! to state 2 on carrier and start 3
! otherwise to state 0 H
IF state=0 THEN
BEGIN
zerostate;
IF carrier THEN
BEGIN
IF NOT start THEN nextstate(l) ELSE nextstate(2)
END
ELSE nextstate(0)
END
ELSE IF state=1 THEN
! State 1: H

! to state O on not carrier else to state 1 3
BEGIN
IF NOT carrier THEN nextstate(0) ELSE nextstate(l);

END

ELSE IF state=2 THEN

! State 2: H
! to state 0 on not start H
f to state 0 on not carrier H
! to state 3 on cntlé and carrier 3
! to state 2 on not cntlb 3

BEGIN
IF NOT start THEN nextstate(0)
ELSE IF NOT carrier THEN nextstate(0)
ELSE IF cntl6é THEN nextstate(3)

ELSE nextstate(2)

END

ELSE IF state=3 THEN

! State 3: ;
! to state 0 on not start 3
! to state 0 on not carrier 5
! to state 3 on cntlb 3
! to state 1 on not cntl6 and not mine 3
! to state 5 on not cntl6 and mine 5
! else to state 3 3
BEGIN

IF NOT start THEN nextstate(0)

FLSE IF NOT carrier THEN nextstate(0)
else if centl6 then nextstatc(3)

ELSE if mine then nextstate(5)

else nextstate(l)

END
ELSE IF state=4 THEN

- 89 —

State /4 H

!

! to state O on not start 3
! to state 7 on not carrier H
! to state 5 on cntl6é and dmaack ;
! to state 6 on cntl6 and not dmaack H
! ELSE TO state 4 ;
BEGIN

IF NOT start THEN nextstate(0)
ELSE IF NOT carrier THEN nextstate(7)
ELSE IF cntl6 AND dmaack THEN nextstate(5)
ELSE IF cntlé AND NOT dmaack THEN nextstate(5)
ELSE nextstate(4)
END
ELSE IF state=5 THEN
! State 5: 5
! to state 0 on not start 3
! to state 7 on not carrier
! to state 5 on cntlé
! ELSE TO state 4
1

Ve ue W3 W

! LOAD PORT
BEGIN
IF NOT start THEN nextstate(0)
ELSE IF NOT carrier THEN nextstate(7)
elge if cntlé then nextstate(5)
ELSE nextstate(4);
loadport
END
ELSE IF state=6 THEN
! State 6:
! to state O on not start
! ELSE TO stLate 6
! DMAERROR and DONEINT
BEGIN
IF NOT start THEN nextstate((0) ELSE nextstate(6);
dmaerror;
doneint
END
ELSE IF state=7 THEN
! State 7: H
! to state 0 on not start H
! ELSE TO state 7 H
! DONEINT ;
BEGIN
IF NOT start THEN nextstate(0) ELSE nextstate(7);
doneint;
END;
end;
END of init code;
END of prom class manager;
CLASS enetdecoder(din);
REF(data) din;
BEGIN
REF(decoder) p;
REF(octalff) ucreg,mreg;
REF(shiftregister) sr,sr0O,srl;
REF (hexflipflop) inreg;
REF(ff) f£O0;
REF(counter) c;

ve Wi We we

- 90 ~

REF(manager) m;
BOOLEAN even;
PROCEDURE clock;
IF even THEN

BEGIN
mreg.clock; ! latch 2nd rom data;
m.propagate;
ucreg.clock; ! latch rom data into ucreg;
inreg.clock; ! latch input data intc inreg;
p.propagate; ! let rom code propagate;
sre.clocks ! shift data ing

even := FALSE;
IF ucreg.q4.d=0 THEN c.clear;
END
ELSE BEGIN
IF c.ripple.d=1 THEN c.ripple.d:=0;
ff0.clock; ! clock £f0 on ~10mhz;
IF ££f0.q.d=1 THEN
BEGIN
c.clock;
srl.clock;
sr0.clock
END;
sr.clock;
IF ucreg.q4.d=0 THEN c.clear;
even:= TRUE
END;
PROCEDURE print;
BEGIN
outtext ("enetin:"); outint(din.d,2);
outtext (" sample:');
outint(p.a6.d,2); outint(p.a5.d,2); outint(p.a4.d,2);
outtext (" carrier:"); outint(ucreg.d7.d,2);
outtext (" data:"); outint(ucreg.d6.d,2);
outtext (" clock:"); outint(ucreg.d5.d,2);
outimage;
END of procedure print;
! init code;
even := TRUE;
sr:— NEW shiftregister(din);
inreg:- NEW hexflipflop(sr.d[7],sr.d[6],sr.d[5],
sr.d[4],sr.d[3],sr.d[2]);
p:— NEW decoder;
ucreg:~ NEW octalff(p.d0,p.dl,p.d2,p.d3,p.d4,p.d5,p.d6,p.d7);
p.a0:~ ucreg.q0;
p.al:— ucreg.ql;
p.a2:— ucreg.q2;
p.a3:— ucreg.q3; ! count feedback terms;
p.abd:- inreg.q2;
p.a5:- inreg.ql;
p.ab:— inreg.qO0; ! input sample terms;
p.aZ:— ucreg.q7; ! carrier feeedback term;
ff0:- NEW ff(ucreg.q5); ! delay clk by 1/2 clock;
sr0:— NEW shiftregister(ucreg.q6); ! hook data up to sr;
srl:— NEW shiftregister(sr0.d[7]); ! link them together;
c:— NEW counter;
m:— NEW manager;
mreg:~ NEW octalff(m.d0,m.dl,m.d2,m.d3,m.d4,m.d5,m.d6,m.d7);

-9l -

m.a0:~ mreg.q0;

m.al:~ mreg.ql;

me.a2s— mreg.q2; ! connect up state terms;
m.a3:~ c.ripple;

m.a4:~ NEW data;

m.ab.d:=1;

m.a5:— ucreg.q’; ! carrier term;
m.a6:— NEW data;
m.ab.d:=1;

m.a’/:— NEW data;
END of class enetdecoder;
PROCEDURE make74472(f,rom);
REF(outfile) f;
INTEGER ARRAY rom;
BEGIN
INTEGER ARRAY newrom[0:511];
integer 1i;
INTEGER PROCEDURE convadd(i);
INTEGER 1i;
BEGIN
INTEGER j;
j:= set(j,0,5,extract(i,0,5));
je= set(j,6,3,extract(i,5,3));
convadd:= j
END of procedure convadd;
FOR i:=0 STEP 1 UNTIL 255 DO newrom[convadd(i)]}:= rom[i];
outintel(f,newrom,511)
END of procedure make74472;
! test program;
REF (enetdecoder) dec;
REF(data) d;
REF(outfile) ouf;
INTEGER number;
TEXT idat,car,odat,clk,dclk,cnt,clrent,st;
text sint,dint,load,inh,dma,t;
character char;
PROCEDURE make(i);
INTEGER i

BEGIN
INTEGER j;
d.d:=1i;
FOR j:=1 STEP 1 UNTIL 4 DO
BEGIN

dec.clock;

IF i=0 THEN idat.putchar(’0’) ELSE idat.putchar(’l’);

IF dec.ucreg.q7.d=1 THEN car.putchar(’1’) ELSE car.putchar(’ ’);
IF dec.ucreg.q6.d=1 THEN odat.putchar(’1’) ELSE odat.putchar(’0’);
IF dec.ucreg.q5.d=1 THEN clk.putchar(’1l’) ELSE clk.putchar(” “);
IF dec,ff0.q.d=1 THEN dclk.putchar(’1’) ELSE dclk.putchar(’);
IF dec.ucreg.q4.d=1 THEN clrent.putchar(’1’)

ELSE clrent.putchar(’07);

cnt.sub(ent.pos,l).putint(dec.c.count);

cnt.setpos(cnt.pos+l);

st.sub(st.pos,1l).putint(
dec.mreg.q0.d+(2dec.mreg.ql.d)+(4dec.mreg.q2.d));
st.setpos(st.pos+l);

if dec.mreg.q7.d=1 then sint.putchar(’l’) else sint.putchar(’ ’);
if dec.mreg.q6.d=1 then dint.putchar(’1’) else dint.putchar(’ *);

- 92 -~

if dec.mreg.q5.d=1 then load.putchar(’l’) else load.putchar(’ ‘);
if dec.mreg.q4.d=1 then inh.putchar(’l’) else inh.putchar(’ “);
if dec.mreg.q3.d=1 then dma.putchar(’l’) else dma.putchar(’ *);
END;
END of procedure make;
d:— NEW data;
dec:—~ NEW enetdecoder(d);
! ouf:- NEW outfile("enetin.rom2");
! ouf.open(blanks(80));
! dec.m.list(ouf);
! ouf.close;
t:— sysin.image;
outtext ("Do you want new prom code files: (No) ");
breakoutimage;
inimage;
t:— upcase(frontstrip(t).sub(l,1));
if t = "Y" then
begin
ouf:— new outfile('"decoder.pll");
ouf.open(blanks(80));
outtext("Making decoder.pll'); outimage;
! dec.p.emit(ouf);
make74472(ouf,dec.p.da);
ouf.close;
ouf:— new outfile("manage.pll");
ouf.open(blanks(80));
outtext ("Making manage.pll"); outimage;
! dec.m.emit(ouf);
make74472(ouf,dec.m.da);
ouf.close;
end;
image:— blanks(80);
WHILE TRUE DO
BEGIN
INTEGER i, §;
idat:— blanks(560);
car:~ blanks(560);
odat:- blanks(560);
clk:— blanks(560);
dclk:~ blanks(560);
clrent:— blanks(560);
cnt:— blanks(560);
sint:~ blanks(560);
dint:—- blanks(560);
load:~- blanks(560);
inh:- blanks(560);
dma:~ blanks(560):
st:— blanks(560);
make(1l);
inimage;
for j:=1 step 1l until 3 do
begin
outtext("input a number> "); breakoutimage;
number:= inint;
FOR i:=0 STEP 1 UNTIL 15 DO
BEGIN
IF extract(number,i,1)=0 THEN make(l) ELSE make(0);
make(extract (number,i,1));

- 93 -

END;

END;
end;

make (0); make(0); make(0); make(0); make(0); make(0);

outimage;
for j:=0 step 1 until 7 do
begin
integer k;
k:= (70j)+];

if idat.sub(k,1) NE " " then

begin

outtext ("in data: "); breakoutimage;
outimage;

outtext('carrier: "); breakoutimage;
outimage;

outtext('outdata: "); breakoutimage;
outimage;

outtext('clock: "); breakoutimage;
outimage;

outtext("srclock: "); breakoutimage;
outimage;

outtext(''clrent: "); breakoutimage;
outimage;

outtext ("counter: "); breakoutimage;
outimage;

outtext("state: "); breakoutimage;
outtext("-doneint:"); breakoutimage;
outtext("done int:"); breakoutimage;
outtext (" dma:"); breakoutimage;
outtext ("zerostat:"); breakoutimage;
outtext ("dmaerror:"); breakoutimage;
outtext ("shift registers:");
dec.srO.print; dec.srl.print;
outimage;

outimage;

end;

end;

END of program;

- 94 -

outtext(idat.sub(k,70));
outtext(car.sub(k,70));

outtext (odat.sub(k,70));

outtext (clk.sub(k,70));
outtext(dclk.sub(k,70));

outtext (clrent.sub(k,70));

outtext (ent.sub(k,70));
outtext(st.sub(k,70)); outimage;
outtext(sint.sub(k,70)); outimage;
outtext (dint.sub(k,70)); outimage;
outtext(load.sub(k,70)); outimage;

outtext (inh.sub(k,70)); outimage;
outtext (dma.sub(k,70)); outimage;

.
3
»
3
5
.
2
°
2
.
>

.
2

.
b

trials:
paddr:
plen:
tgood:
terrs:
ecrsav:
dmasav:
rgood:
rerrs:
raddr:
rlen:

we we Ve

ws wa

ENPROC.ASM

APPENDIX C

ETHERNET PROTOCOL DRIVERS

This code implements the Ethernet input and output processes,

name
title
list
nlist

dseg
dsw
dsw
dsw
dsw
dsw
ds
ds
dsw
dsw
dsw
dsw

Queues:

queue
queue

ejec
cseg
extrn
extrn
extrn
extrn
extrn
public

EOUT and EIN, TINT is the transmitter interrupt processes while RINT is
the receiver interrupt process.

enproc
‘definitions’

b,e

m

1 ; storage word for counting transmissions
1 ; storage word for holding packets address
1 ;5 storage word for holding packets length
1 ; number of good packet transmissions

1 ; number of bad packet transmissions

1 ; byte for saving copy of enetesr

1 ; byte for saving copy of dmacsr

1 ;s number of good packet receptions

1 + number of bad packet receptions

1 ; storage word for receiver packet address
1 ; storage word for receiver packet length
eoutiq, 16 s queue for sending ethernet packets
einoq,16 ; queue for receiving ethernet packets

twait,tsucc,tfail,rwait,rsucc,eoflag,erflag
enetsr,enetcr,dmacsr,dmach0,dmachl ,ocwla,ocw2a,dmareg
tod,ter,tcl ,nett,netr

readq,writeq,initq

alloc,dalloc,ialloc,ttOin,ttOout
eoproc,eout,ein,einit,up,userpr

- 95 -

-
3
.
3

W we ws

EINIT

This procedure initializes the ethernet harware, dma channel and
some save locations before turning on the interrupts.

einit: mov

e

W ua ue we

' mov
call

mov
call

mov
mov
call
movb
movb
movb
movb
mov
mov
movb
ret

ejec

EOUT

ax, 16

bp, eoutiq
initq

bp, einoq
initq

ax, 2

bp, userp
initq
enetcr, O
ecrsav, 0
dmacsr, O
dmasav, 0O
tgood, 0
terrs, O
ocwla, 78H

3

I

initialize the queues

turn on timer and tint interrupts

This is the Ethernet Transmitter Process. It reads a two word
message from its input buffer, formatted as <buffer—pointer,return-—
queue-pointer>. It transmitts the packet and returns a message formatted
as <status~word,buffer-pointer> to the calling process via return—queue.

eout: mov

G we wa

we we we

mov
call

pop
transmit the

mov
add
mov
mov

dec

mowv
movb
mov

int
suspend

return status

pop
push
movb
push
mov
call

jmp

ax, 2

bp, eoutiq
readq

bx

packet

ax, bx

ax, [bx+2]
paddr,ax

ax, [bx+4]

ax

plen,ax
eoflag, twait
trials, O

21H

nett

and packet pointer

bp

bx
al,coflag
ax

ax, 2
writeq
eout

we Ve we we

Wr W2 Ve W V3 we W Ul e W

e we WE we W ua

the message length is 2

bp points to eout input queue
read 2 words from the queue
get the buffer address in bx

put buffer address in ax

ax:= buffer address + data offset
tell interrupt process where 1t 1s
ax:= length of packet

ax:= length of packet -1

tell dinterrupt process how long it is
set eoflag to twait

set trials to O

activate the transmit interrupt

wait for eoflag ne twait

to sender

get senders queue address in bp
push address of buffer

get status byte in al

push status

get message length in ax

write the message

- 96 —

v

VI we e Ve We we we

®
.
=]

Ve Wr We Ul ws Ve We Wwe

v we we e

v we we

ws we ve

e

int

ejec

EIN

Ethernet Input Process
EIN grabs a buffer, lets the interrupt process know where it is then
fakes an unsuccessful interrupt to initialize the dma channel and ethernet
input hardware.

: call
mov
mov
add
mov
mov
mov
int
suspend
push
mov
mov
call
jmp
ejec

TINT

alloc

[bp+21, 6
ax,bp

ax, 6
raddr,ax
rlen, (32-8)/2
erflag, rwait
20H

netr

bp

ax, 1

bp, einoq
writeq

ein

WP W W we Me WE We We Ve Ve U ue Le

get a buffer in ram

data starts with the 4th word

get buffer address in ax

make it the address of data

tell the interrupt process about it
tell the interrupt process the length
set flag byte

fake a receiver interrupt

wait for a packet reception

push address of buffer

length of message to be sent

point bp to output queue

write message

This is the Ethernet Transmission Interrupt Routine. It is invoked
by the hardware when the transmitter has finished either with or without
error. In either case, the T Done bit in the ENETCR will be set. If it is
invoked by a software interrupt, this bit will not be set. A packet is
transmitted by generating a software interrupt after intializing PADDR to
the address of the packet, PLEN to the length-2 of the packet and TRIALS
to 2(16-n)-1 where n is the number of transmissions to be attempted.

The code writes a tsucc to ETFLAG upon successful completion or tfail
on failure., A SUSPEND ETRANS will return either value in AL.

push
push
_push

ax
bx
dx

3

save registers

Get the Ethernet Status byte and reset the transmitter

movb
movb
andb
movb
movb

Was the transmission sucessful?

testb
jz
testb
jnz
movb
inc
jmp

ah,enetsr
al,ecrsav
al, OFCH
enetcr,al
ecrsav,al

ah, 1

first

ah, 6

terror
eoflag, tsucc
tgood

tout

ME we WP Be we

Ve we us e we Ve B

get the status

get a copy of the ethernet control byte
clear the T start and T reset bits
actually do it now!

update ecrsav

Is the T done bit set?

If it isn’t, then this is the first try.
Are either of the error bits set?
Handle error condition if so.

signal that transmission was successful
update stats

get out

- 97 -

»
3
-
3
»
b
.

3

Handle packet retransmissions.

Note that the initial transmiseion is

handled as a retransmission. This implys an interpacket transmission
interval of at least 1 count grain, about 30 usec.

increment count of transmit errors

set carry flag

shift a 1 into the low bit

toss a number if we didn’t shift into C
otherwise fail on 1l7th attempt

with the Binary Exponential Backoff

get low time-of-day word (Random?)
weight it

increment it before putting in counter
set up timer channel 1
write low byte (eritical
write high byte (critical

region)
region)

get dma control word copy
reset bit O

disable dma channel O

get address of packet in bx
get first word of packet in
prime the dma register

get address of packet in dx
get address of dma channel registers

dx

make this the word address of the packet
and point to the second word

write packet address to dma channel
get packet length

clear direction bits

set direction to memory to port

write count

set enable channel 0 bit

enable DMA channel O

update dmasav

get control byte

set transmiter enable and go bits
do it! N

save copy of ethernet control byte

restore state
acknowledge interrupt to chip
and return

terror: inc terrs H

first: stc H
rcl trials,l 5
jnb toss 3
movb eoflag, tfail 3
Jjmp tout

5 Toss a random number and weight it

3

toss: mov ax,tod H
and ax,trials H
inc ax 5
movb ter, 70H 3
movb tcl,al 3
movb tcl,ah H

b

;5 Setup DMA channel and start transmission

b
movb al,dmasav 5
andhb al, OFEH :
movb dmacsr,al 5
mov bx,paddr H
mov dx, [bx] ;
mov dmareg,dx ;
mov dx, bx H
mov bx, dmachO 3
shr dx,1 5
inc dx ;
movb [bx],d1
movb [bx],dh ;
mov dx,plen 5
andb dh, 3FH ;
orb dh, 40H 5
movb [bx+2],d1
movb [bx+2],dh 5
orb al, 1 5
movb dmacsr,al 3
movb dmasav,al H
movb al,ecrsav H
orb al, 3 H
movb enetcr,al H
movb ecrsav,al 3

3

;3 Get out of here

bl

tout: pop dx
pop bx
pop ax 5
movb ocw2a, 20H :
iret H
ejec

5

H RINT

; This is the Ethernet receiver

interrupt routine.

- 98 -

rint:

Ve we we

we ws v

“e was ws

r

newbuf:

M owe we ws

push
push
push

Get

movb
movb
andb
movb
movb
movb
andb
movb
movb

Was

testb
j=z
testb
jnz
movb
inc
movb
movb
andb
mov
sub
mov
mov

Jmp
Reception was

inc
mov
mov
shr
movb
movb
mov
andb
orb
movb
movb
orb
movb
movb
orb
movb
movb

err:

Get

pop
pop

ax
bx

dx

the ethernet status byte and

ah,enetsr
al,ecrsav
al, OF3H

enetcr,al
ecrsav,al
al,dmasav
al, OFDH

dmacsr,al
dmasav,al

packet reception error free?

°

H

save state

reset the receiver and dma channel

Ve Ws W W Ue Ve W ws e

get the ethernet status byte

get a copy of the enetcr

clear the R reset and R start bits
write it to the enetcer

update the copy

get the dmacsr copy

clear channel 1 enable bit

do it

update copy of dmacsr

ah, 8 ;s is the receiver done bit set

newbuf ; if not, we have a new buffer

ah, 70H 3 are any of the error bits on?

rerr s if so go handle errors

erflag, rsucc ;5 otherwise signal successful completion
rgood ;s update stats

bl,dmachl+2 ; get low tc byte out of dma channel
bh,dmachl+2 ; get high tc byte out of dma channel
bh, 3FH 3 clear the direction bits

ax,rlen ; get rlen in ax

ax,bx ;5 get number of words transferred in ax
bx,raddr ; get pointer to buffer in bx

[bx~2],ax ; write length into buffer

rout ; get out

in error - Try again

rerrs ; update stats

bx, dmachl ; get address of dma channel 1 registers
dx,raddr ; get address of buffer

dx,1 ; make it a word address

[bx],dl

[bx],dh ;s write buffer address to dma controller
dx,rlen ; get the buffer length

dh, 3FH 3 clear direction bits

dh, 80H ; set direction to port to memory
[bx+2],d1

[bx+21,dh ; write termination count to the controller
dmasav, 2 ; set dma channel 1 enable bit in copy
al,dmasav 5 get copy of dmacsr

dmacsr,al ; write it to the channel

ecrsav, OCH ; set T enable and start bits in copy
al,ecrsav ; get the copy

enetcr,al 5 write it to the ethernet control register

out of here

dx
bx

- 99 -

pop
mov
iret

ax
ocw2a, 20H

.
3
»
3
.
3

restore state
acknowledge the interrupt controller

return

- 100 -

