Incorporating Time in the

New World of Computing System

Hean Lee Poh

Computer Science Department
California Institute of Technology

5238:TR:87

Incorporating Time in the
New World of Computing System

Hean Lee Poh
Master’s Thesis

Computer Science Department
California Institute of Technology

5238:TR:87

(submitted July 30, 1986)

Acknowledgment

Special thanks to Bozena and Fred Thompson for their care, help and guidance, without

which this thesis would not have been realized.

I am also grateful to Charley Kahler for his friendship and advice and thankful to those
people in the New World System group and faculty and fellow students in the Caltech
Computer Science Department who have helped me in one way or another. In particular,
I would like to express my appreciation of help and friendship to John Ngai, Devendra
Kalra, Jin Luo and Peggy Li.

Last but not least, I would like to thank the National University of Singapore for the

continual support of my graduate studies.

Abstract

The New World of Computing System, referred to as the New World system, is a
total system for the structuring, manipulation and communication of information. Time
is a ubiquitous aspect of most databases. The aim of this thesis is to study the problems
associated with the implementation of time in the New World system. Time information
is not only stored in New World, they can be retrieved and processed to answer various
types of user queries. This is an additional feature as compared to most models of time
implementation in databases where the relationships between time intervals are not dealt
with. To start with, ways of representing time in the form of floating point number are
devised and discussed. Then the conversion of time information from its various user
accustomed forms to New World system internal form and back are explored. Finally,
the ambiguities and complexities involved in finding the intersection, subtraction, union
and extension of two different sequences of time intervals associated with an object in a
database are studied and algorithms for resolving these are presented . An explanation on
how the crunchers work with the addition of time information is also given. This includes
discussing about how quantifiers such as at least 2, how many etc. are handled in the New
World system. Case studies are also conducted to test out these routines. As conclusion,

the remaining problems associated with time implementation not covered in this thesis

work are discussed.

Contents

Acknowledgment
Abstract
1 Introduction
1.1 Time in database systems
1.2 Existing work
1.3 The New World of Computing System
1.4 Adding time to the New World System
2 Background about New World
2.1 General organization of New World processing
2.2 Syntax rules and semantic procedures
2.3 New World semantic utilities
3 The four sub-problems of implementing time in New World
3.1 General discussion
3.2 The unit of time
3.3 User representation of time vs. internal representation of time
4 Internal Representation of time
4.1 Time interval and its end points
4.2 Data structure of the time interval
4.3 Rounding error
4.4 Using depth of focus to deal with rounding errors
5 From outside to inside
5.1 Two examples of time syntax rules with semantic procedures
5.2 The coverage of New World time syntax
6 From inside to outside
6.1 What the time output should look like

6.2 The time_out procedure-the organization of a

© © 0 ~J I =3I O G Gt U1 N N =t =

DO B ke = e e e et
QO O Ut i B N O O

very messy routine
6.3 Examples of time output
7 Internal processing of timed records
7.1 How time is stored in timed data records
7.2 Time lists and timed records
7.3 Time list intersection, union, subtraction and extension
7.3.1 Recognition of Time Intervals
7.3.2 Time intersection
7.3.3 Time subtraction
7.3.4 Time union
7.3.5 Time extension
7.4 The crunchers and the Is_Proc
7.4.1 New World English Data Structure
7.4.2 The One Class Cruncher
7.4.2 The Is_Proc
8 Remaining problems
8.1 Extensions that can be made within the New World
environment
8.2 Extensions requiring more radical changes
8.3 Some alternative considerations relevant to the
implementation of time in database systems
References
Appendix A Time Syntax Rules
Appendix B Addition of timed data to record
and output from record
Appendix C Procedures for ‘time counting’

Appendix D Case study for one_class_cruncher

20
23
26
26
26
28
29
33
38
39
42
44
45
46
50
53

53
53

54
55
56

76
79
84

Incorporating Time in the
New World of Computing System

Hean Lee Poh
Master’s Thesis
California Institute of Technology

1. Introduction

1.1 Time in database systems

Time is an important part of information about the constantly changing real world.
Facts or data often refer to time. Time appears in financial accounts, movements of aircraft
or ships, scheduling of jobs in factories, publication of books, just to name a few. Due to
its importance in most information management applications, it deserves special attention.

This thesis discusses the methods for including time information in a particular database
system, namely the New World of Computing System (refer to herein as the New World
System). Section 2 gives a brief introduction to the New World System.It then investi-
gates the various problems encountered in incorporating time information in New World.

Finally, it discusses the remaining problems relating to time that are not covered in this
thesis but deserve further research.

1.2 Existing work

Researchers in different fields have been concerned with the role that time plays in
Information Processing. The designers of information systems are interested in keeping
track of past data. Researchers in Artificial Intelligence have worked on a more realistic
model of the real world representing not only snapshot knowledge but also knowledge
about histories etc, and among them are logicians working on ‘temporal logic’ to capture
the relationships of some statements with temporal reference, such as [1] [2]. The analysis
of tensed statements is another domain of interest relating to time that is currently being
pursued by the linguist [3] [4], and some computer scientists, in particular, Harper and
Charniak who work on the semantic representation of such temporal information as tense,
temporal adverbs and temporal connectives.[5] There is also an attempt [6] to relate works

1

in these two fields to one another, such as the exploration of the relationships between
a computational temporal representation by James Allen [1] and the theory of tense by
Norbert Hornstein [3]. A survey of work done in this area till 1982 is in [7]. However, most
researchers working on time in knowledge representation adopt a theoretical approach,
either working on problems related to temporal logic or proposing various ways of handling
and representing time information, but I have not seen any work that actually implements
time information processing capabilities in a system like New World, although a model
for including time in a database query system has been proposed by Hafner [8], and a
preliminary implementation to generate the examples of the model’s capabilities has been
done by her. However, the model does not indicate any capabilities with repect to the
handling of the relationships between time intervals (e.g. time intersection etc.) and their
significance in the handling of the duration of an object’s membership in a class and an
object being the attribute of another object.

1.3 The New World of Computing System*

The New World of Computing System, referred to as the New World System, is a total
system for the structuring, manipulation and communication of information.[9] The user
interface, or the language of communication between user and machine, is mainly a limited
dialect of English. However, efforts have also been made to include French and Italian in
the system, so that a user can work in a multi-language environment.[10] [11] In contrast
to expert systems, in which experts build the knowledge base and users make use of this
expert knowledge, New World guarantees user participation whereby users can create, test,
modify, extend and make use of his own knowledge base. The main application of New
World can be found in a research laboratory, business office or military department. It is a
system for the professionals who command an overview of the organisation of the knowledge
base and they can readily make changes by themselves. Besides, New World serves as a
window to the outside world in that access to foreign databases can be accomplished via
New World network system.[12]

1.4 Adding time to the New World system

Adding time to the New World System involves changing
(1) the New World English Syntax to include syntax rules that allow expressions of time
to be understood;
(2) the New World English semantics in ways that will incorporate time in the database
structures and carry out the processing of these data.

* The New World of Computing System was referred to previously in the literature as the ASK system,
A Simple Knowledgeable System.

The second of these implies that time must have some internal representation within
the New World database structures.

The result of incorporating time will allow the system to understand statement and
question with time. The remainder of this thesis concerns how this was accomplished.

With the implementation of time, a more realistic picture can be drawn while providing
answer to queries such as *How many employees of each company are there?. In this
case, for each company, the number of employees is enumerated with reference to the
time interval during which this particular number is valid, for instance, ’2 employees in
Company A from t1 to t2 and 8 employees in Company A from 2 to t®, for t1, t2, t3
being some points of time.

The following example explains the way time is handled in a query in New World:

How many employees of each company are there?

Company Employee from (date) to (date)
A John June 1, 1980 May 1, 19856
A Mary January 20, 1976 till now
B Tom February 15, 1983 March 1, 1986
c Susan April 15, 1984 till now
D Mike March 15, 1985 till now
D Helen April 1, 1983 April 30, 1986

The answer to the query based on the above data is given below:

A 0 ending January 20, 1976
1 starting January 20, 1976 to ending June 1, 1980
starting May 1, 1985
2 starting June 1, 1980 to ending May 1, 1985

B 0 ending February 15, 1983
starting March 1, 1986
1 starting February 15, 1983 to ending March 1, 1986

C O ending April 15, 1984
1 starting April 15, 1984

D O ending April 1, 1983
1 starting April 1, 1983 to ending March 15, 1985
starting April 30, 1986
2 starting March 15, 1985 to ending April 30, 1986

As can see from the above example, to say that Company A has two employees is
incomplete without the indication of time.

2. Background about New World

2.1 General organization of New World processing

The language processor of New World is a general rewrite rule-procedural semantics
processor. It is a well known fact that the syntax of any well defined language can be spec-
ified by a general rewrite rule grammar. Thus a language in New World is implemented
by declaring its syntax under any general rewrite rule grammar and defining its associated
semantic procedure for each syntax rule. The New World system is ‘sentence-driven’ and
its processing can be thought of as being organized around the following paradigm:

The system types a ">", indicating that it is ready for user input, and
waits for the user to respond.

The user enters a sentence---more generally any string ending in a return
key. (Such a string is often referred to as ‘sentence’ even when it does not
parse to a sentence in New World)

The system responds by processing the sentence, displaying the results
on the user's terminal, and cycles back to the first step.

So when a user enters a sentence, it is parsed. As a result of this parse, the relevant
semantic procedures associated with the rules, and perhaps procedures associated with
words in the sentence, are identified. Calls to these procedures and perhaps also the
utilities are compiled and executed in the processing of the sentence.

2.2 Syntax rules and semantic procedures

In response to a query, the New World System goes through two phases, the syntax
phase and the semantic phase, before an appropriate reply can be produced. During syntax
processing phase, or known simply as syntax time, the sentence is parsed according to a set
of grammar rules available in the system. This is done by matching the sentence structure
with the appropriate grammar rule called syntax rule. Every syntax rule is associated
with a semantic procedure which is basically a Pascal program. Therefore, after syntax
time the semantic procedure which is linked to the matching syntax rule is executed. This
phase is known as the semantic phase or semantic time.

The format for the syntax rule is as follows:

A rule is initiated by the word ‘RULE’ which is followed by a comment on the same line.
This comment appears on the screen of the computer when the system assimilates the

5

whole syntax. The following lines are composed of a left hand side and a right hand side
separated by a right arrow, as shown in an example below. Basically, the right hand side
gets rewritten into the left hand side’s format. Both sides can consist of two elements:
literals which are enclosed between double quotes and parts of speech which are enclosed
between a ‘less than’ and a ‘greater than’ sign. The part of speech may require certain
features to be set or reset. This is specified in a list placed after the name of the part of
speech and preceded by a colon. A plus or minus sign preceding the features indicates that
that feature has to be turned on or off before the part of speech can be considered as fitting
the rule. The last line starts with either a LEX, a SYN, a PRE or a POST, followed by a number
which enumerates the various syntax rules in a file. These four markers specify at what
time the rule should be applied. LEX means that the rule should be added in the lexicon.
SYN means the rule should be applied at syntax processing time. PRE or POST means that
it should be applied during semantic processing time before or after preprocessor is called.
After a SYN, PRE or POST comes the name of the semantic procedure that is associated
with the rule and is called as a result of the parsing of the part of speech /sentence.

An example of the syntax rule is given below:

RULE "June 3 of 1979" or "3rd of June of 1979"
<time:1-1it-td> => <time:+sdy-smo+td> " " <preposition:+of> " " <wyhole_number>
POST 307 con_datel

2.3 New World semantic utilities

The New World system provides many utilities that may be used by application pro-
grammers to extend New World to cover various applications domains. In this work on
time, the utilities that were involved were of two kinds:

(1) modifying the data base handling utilities to include time consideration. These
modifications will be discussed in section 7.4;

(2) the addition of utilities for handling time. The utility that has been added is called
‘timeuty.pas’ which contains the ¢ime_out routine to be discussed in section 6 and the

routines for handling time_intersection, time_subtraction, time_union and time_extension
which will be explained in section 7.3.

3. The four sub-problems of implementing time in New World

3.1 General discussion

In the implementation of time information in New World, four problems are focused
on. First, a way of storing the time information in the form of a floating number is devised
so that calculations such as the duration of a certain event based on these information can
be easily done. Therefore the New World internal representation of time is discussed here.
Very often time information provided by the user is incomplete, or inexact. For instance,
after Tuesday does not tell us when the event actually took place, Monday, Tuesday,
Wednesday or even after that. Furthermore, the interpretation differs from person to
person. [13] To capture this intrinsic ambiguity in time information , the concept of
‘endflag’ which will be discussed in 4.1 is introduced. Then there is the rounding error
problem associated with floating point representation. Using the depth of focus, an attempt
to deal with the rounding errors to a certain extent is explained in 4.4.

The second and third problems deal with the conversion of user input form of time
(from outside) into the New World internal form (to inside) and back. In section 5, the
time syntax rules that are used to parse the various time input phrase and the associ-
ated semantic procedure that actually does the conversion are discussed. Further, a brief
discussion on how the time output should look like and how this is done by the time_out

routine can be found in section 6. Examples will also be given to demonstrate the function
of this routine.

Finally, section 7 shows how time information can be stored in records and how these
timed records can be processed. This includes discussing about the intersection, union,
subtraction and extension of time information. An explanation on how the crunchers work
with the addition of time information in New World is included here. The crunchers that
will be discussed are one_class_cruncher, member_cruncher and boolean._cruncher.

3.2 The unit of time

Time has been incorporated into the basic structure of the New World record. It
indicates the duration* of membership of an object in a class or the duration of an object
being an attribute to another object. To facilitate the processing of time information, an
internal representation of time has been devised. It calls for a basic unit of time which
does not exist in natural language. Thus, time in New World is a real number measured

* By duration it means the validity period of membership to a class, and the duration needs not be finite,

it could start from the beginning of mankind or it could start from a definite point in the past and continue

up to today

in units of 1000 seconds from an origin which was set to be 0:00 hr J anuary 1, 1980. The
following example explains the definition of internal form of time in New World:

t = 64832.2 = 366%24%60%.06 (for 1980)
+365%24%60%.06 (for 1981)\cr
+ 10424*60%.06 (for the first 19 days of January 1982)
+ 12%¥60%.06 (for the first half of Jan 20, 1982)

The above is the internal form of noon of January 20, 1982.
3.3 User representation of time vs. internal representation of time

The user representation of time can appear in various forms such as ‘January 20, 1982’
or 1/20/82 which cannot easily be used for calculation of time interval unless it is con-
verted to some standard representation format, and preferably floating point numbers.
Hence, there is the internal representation of time as mentioned in 3.2. Since the internal
representation of time comes in the form of floating point number, and hence rather un-
friendly, it is converted back to the user representation form when the processing of time
information is completed and is due for output to the terminal.

4. Internal Representation of time

4.1 Time interval and its end points

Time interval is a representation given to a period of time between two points of time
which are called endpoints. These endpoints may or may not be bounded. Due to the
uncertainties associated with time information, in particular with the starting point and
ending point (here denoted as left endpoint and right endpoint respectively) of a time in-
terval, there is a need to introduce a flag to each of the endpoints of an interval to specify
whether the event actually takes effect from that particular point of time or it could have
happened much earlier or much later. The same consideration is given to the ending of a
time interval. This leads to three endflags:

For the left endpoints:

t
end_in >--- indicates that
t
end_at |--- indicates that
t
end_out <--- indicates that
For right endpoints:
t
end_in ---< indicates that
t
end_at ---| indicates that
t
end_out---> indicates that
Thus in the following example:
1 t2

the

the

the

the

the

the

associated

associated

associated

associated

associated

associated

event

event

event

event

event

event

started on or after time t

started at time %

started on or before time t

ended on or before time t

ended at time ¢

ended on or after time t

indicates that the associated event started at time t1 and was still in progress at time
t2 and

indicates that the associated event had definitely started by t1 and terminated by the
time t2.

The information on time endpoints and endflags are kept in a time list in New World
which will be discussed in section 7.2.
4.2 Data structure of the time interval

Because of other global assumption of New World, it is convenient to use one New
World field of 64 bits to hold the information about a time interval. For each end of
the interval, there are three possible endflags. Thus 2 bits are allocated for each of the
two endflags. The endpoint of a time interval is a real number. The representation we
have chosen is a floating point number whose mantissa is 23 binary digits plus sign. Its
characteristic is a binary integer between -63 and +63.

Since the unit of time is 1000 seconds, the smallest increment of time is 2~ x 1000
seconds , or approximately 1/1000 pico second. The largest time that can be represented
is roughly 2°° x 1000 seconds, which is in the region of over 30 trillion years.

These calculations show that the limitation imposed by the characteristic does not lead
to any practical difficulties. The same is not true for mantissa, whose limitation of 23 bits
may lead to roundoff errors.

4.3 Rounding error

As mentioned earlier, the limitation imposed by the mantissa requires somehow careful
analysis. Any positive time can be uniquely expressed as

t1 = my * 2°1 % 1000second

where ¢, is an integer and
1<m; <2

Suppose t1 is the time to be captured and it is precise to within 1 second, then t1 should
be less than 94 days. Since

tz = lsecond = mq * 2°2 % 1000second

where

1<my<2

10

Now since

Cqg = —-10

in order that

¢ —cq <23

so that all the 23 significant binary bits of the mantissa will be preserved , cl can only be
as large as 12. Therefore, 2 * 212 + 1000 gives us 8,192,000 seconds which is about 94 days.
Hence, the limitation imposed by the mantissa leads to roundoff error in the internal rep-
resentation of time. The following table gives conservative estimates of the time intervals
on either side of the origin of time in New World, i.e. New Year’s eve, 1980, within which
time the representation is precise to the given unit of time.

precise to within
microsecond 7 seconds
second 94 days
minute 8 years

hour 532 years

day 16000 years
year 4 million years

Considering the nature of applications wherevarious degrees of precision in time is
required, these seem quite adequate.

An alternative would have been to use fixed point rather than floating point for time.
Suppose the data structure is an integer which is represented by 29 bits plus a sign bit.
Hence, the smallest integer is —22° + 1 and the largest is 22° — 1. The following table gives
the span of time that can be represented given the different time units:

time unit span

microsecond 12.4 days

minute 2042 years

day 2.94 million years
year 1073.6 million years

If we were willing to have say 4 realizations of New World, one for each unit in the
above table, either fixed point of floating point would be quite satisfactory. It becomes a
matter of taste which to use.

11

4.4 Using depth of focus to deal with rounding errors

One way of reducing the effects of rounding errors is the specification of depth of focus
in time . From 4.3, it is clear that a time interval can be accurately reproduced at the
output if the focus is on day, month, year such as June 3, 1979 and the time interval
is of duration less than 16000 years. From the New World internal processing point of
view, a time t is simply a floating point number without any recognition of the degree of
significance (how precise) a certain date should be. Suppose the internal answer to the

query ‘When did John become an employee of ABC Inc? was 64832.2 (internal form of
1/20/82), the following three output forms are possible:

(1) January 20, 1982
(2) 1982
(3) 0:00:00.0 AM January 20, 1982

How accurate the answer in the output form has to be depends a great deal on the
context that the answer is meant for. Thus, a measure of its significance called the signif-
icance unit, or sig unit is attached to a time datum to specify its depth of focus. There
are five sig_units, namely sig_second, sig_minute, sig_day, sig_month, sig_year which refer
to accuracy up to second, minute, day, month, year respectively, for example:

output time with sig_unit
1970 sig_year

June 1, 1982 sig_day
12:56am, 3/6/83 sig_minute
10:25:34 sig_second

Three examples of the use of sig_units in records handling is given below:

(1)

low sig_unit high sig_unit
>class: employee -—- ---
>John was an employee in 1982. year year
>Mary was an employee after June 3, 1982. day year

>Who were employees?

John starting January 1, 1982 and ending January 1, 1983.
Mary from on or after June 3, 1982.

12

(2)
low sig_unit high sig unit
>class: animal -
>Dinosaur was an animal which lived year
from 226000000 BC to 65000000 BC.
>Fish was an animal which lived year
from 400000000 BC.

year

year

>There were what animals?

Dinosaur on or before 225 * 10**6 years to on or after 65 * 10*%6 years.
Fish from on or before 400 * 10**6 years.

(3)

low sig_unit high sig_unit
>class: data -

>Data A was collected starting 0.015231117 second second second
and ending 0.017237856 second
>Data B was collected starting 0.000987466 second second second

and ending 0.001254735 second

>What data were there?

A starting 15.23 milliseconds to ending 17.24 milliseconds
B starting 987.47 microseconds to ending 1.25 milliseconds

Due to the second input statement, the low sig_unit is modified to day and hence day
and month are given in the output in response to the queries.

13

5. From outside to inside

5.1 Two examples of time syntax rules with semantic procedures

Due to the consideration of leap year * , depth of focus of time, and floating point
evaluation, the task of conversion becomes quite complex. Therefore, algorithms are writ-
ten for converting time points or time intervals that appear in various forms and require
different treatment as such. It is impossible to enumerate and explain every syntax rule
and its associated semantic procedures, so two of them are chosen to be presented here.
They convert some of the commonest user representation forms of time, one of which deals
with a time point and the other a time interval:

1. RULE "June 3, 1979" or "3rd of June, 1979"

<time:1-1lit-td> => <time:+sdy-smo+td> <pct:+comma> <whole_number>
POST 307 con_datel

This syntax rule applies to time that is given in the above form, i.e. month, day
followed by year. It should be noted that the application of this rule occurs after the
application of another rule which deals with month and day only.

In semantic time, the semantic procedure con_datel is called. Con_datel picks up
the year and the internal value of month and day which is the result from the semantic
procedure associated with the abovemetioned syntax rule that deals with month and day
only. It then converts year to the internal form using a procedure called time_in in a utility
for handling time. Then it adds this internal value for year to the internal value for month
and day. If it is a leap year and the month is March or later then it adds a day (86.4 units)

to the total internal time. The time focus is set to sig_year for high and sig_day for low in
this case.

* A leap year occurs every fourth year, but only those centesimal years divisible by 400. In other words
1900 is not a leap year but 2000 is a leap year. Thus to determine whether a year is a leap year, the function

‘leapyear’ can be applied which returns a true if it is a leapyear i.e.:

if ((year mod 4)=0) and (((year mod 100)<>0) or ((year mod 400)=0))
then leapyear is set to true

else leapyear is set to false;

14

2. RULE "after" <time:-td>
<time:2+beg+prep> => <time:+lit+after> " " <time:-lit-td-prep>
POST 335 after_time

This syntax rule deals with a time interval that begins from a certain point of time
given in the various forms, one of which may be that presented in the rule above, and
continues into an indefinite time in the future. Such a time interval is always given in the
form of a time (date for instance) preceded by a preposition called ‘after’.

The associated semantic procedure is known as after time. The time immediately
following the preposition after is taken as the new left endpoint of an interval, and the
right endpoint is set to plus infinity, which means that after a certain date is equivalent to
having an interval which is not bounded at the right end. Also, the left endflag is end_in
which means that the starting time of this interval is uncertain, it may start on or after
that date. As for the right endflag, it is set to be end_out since infinity, be it plus or minus,
is always associated with an endflag of end_out.

5.2 The coverage of New World time syntax

The following groups of syntax rules are written for parsing time expressions in New
World:

(1) Lexical time rules

This is a set of lexical rules which adds the various time measuring units and time
adverbs into the lexicon. Below is a summary of time expressions and adverbs to be stored
in the lexicon:

— Time expression which measures or describes a certain period of time:
January-December, AM, PM, Monday-Sunday, BC ,AD, second/minute/day /week/ month/
year/century, Christmas/Thanksgiving and other festive seasons, Spring-Winter etc.

— Time adverb for pointing to a certain time point or interval:
this/last /next/later, beginning /starting/ending, before/on or before /after/ on or after,from since,to,
etc.

(2) Rules for time statements

This set of rules is associated with the respective semantic procedures to convert a
period of time or just a point of time to the internal representation form. The following
time expressions are captured in this set of rules:

15

date without year: June 3, 3rd of June

time: now, 10:25 pm etec.

date with year: June 8, 1982, June of 1970 etc.

day: today, yesterday, tomorrow

particular date/time: this/next/last day/week/month/year/decade /century

(3) Rules that allows the addition of a time or simply a preposition to a date and also
the specification of a particular point of time with respect to the present time. Examples
of these are 5:00 pm today, at 5 o’clock, in year 1976, 15 years from now

Similarly, a semantic procedure is associated with each rule. In the case of the addition
of a preposition, the preposition is simply ignored in the evaluation of the internal value.

(4) Rules that put prepositions on a point of time which makes it a time interval

The prepositions involved here are:
after or starting after time which makes it into an interval with a left endflag of end_in
beginning or starting in time which makes it into an interval with a left endflag of end_at
from or starting before time which makes it into an interval with a left endflag of end_out
before or ending before time which makes it into an interval with a right endflag of end_in
ending or ending in time which makes it into an interval with a right endflag of end_at
until or ending after t¥me which makes it into an interval with a right endflag of end_out

(5) Rules that deal with time intervals such as from time t1 to time t2, in n weeks,

after 3pm before 4jpm , between t1 and t2, last 2 days, the next 8 months, in the next 4
weeks etc.

In this case, the left and right endpoints are taken from each of the endpoints mentioned
during semantic time. The endflags are determined by the respective prepositions like after,
before, from etc and if these are not present, end_at is used.

(6) Finally, there are rules for parsing a question about time information into a sentence
and rules for parsing time at the beginning or end of a verb phrase into a verb phrase.

A list of the syntax rules is given in Appendix A.

5.3 The time conversion functions

It is worth taking a look at the various functions that actually do the conversions of
year, month and day independently:

16

(1) year_in

The function year_in converts the quantity of year to multiples of thousand seconds
with respect to the time origin at 0:00 1st January, 1980. Hence, adjustments for a year
B.C. have to be made in the sense that the year is added to 1980; and in the case of AD,
1980 is simply subtracted from the year. In addition, leapyear has to be taken into account
in the calculation of the internal value of year. The details about the adjustments due to
leapyear is given in the following program:

function year_in(year:integer;BC:boolean;var leap:boolean):real;
var yrdiff,qq,numleap:integer;
daytotal:real;
begin
if BC then year:=(year + 1980); (* year B.C. *)
if not BC then yrdiff:=year - 1980 else yrdiff:=year;
(* if BC is true, it means that we have a year B.C. *)
if (yrdiff>0) and not BC then qq:=(yrdiff+3) (*to include 1980 as a leapyear
in the next stepx)
else qq:=yrdiff;
(* to calculate the number of leapyears *)
if qq<0 then
numleap:=(qq div 4)-((qq-20) div 100)+((qq-20) div 400)
else numleap:=(qq div 4)-((qq-24) div 100)+((qq-24) div 400);
(* correction for the number of leap years: *)
Since 1900 and 2100 are the first centennial non-leapyear
before and after 1980 respectively; So we need a correction of qq-20 to
exclude 1900 in the counting of leap year. Similary, 2100 is not a
leapyear and hence we need a correction of qq-24 to exclude 2100 in
the counting of leapyear. For instance, year 2101 corresponds to a qq
of (2101-1980 +3) = 124 => 124-24 = 100 => 100 div 100 =1 and hence
the caluculated leapyear does not include 2100 in the counting.
(* having determined the number of leapyear, the rest is just trivial *)
daytotal:=((365.0 * yrdiff)+numleap) * 86.4; {86.4 = 24%60+.06}
if BC then daytotal:=-daytotal;
year_in:=daytotal;
leap:=leapyear(year);
end;

17

(2) month_in

The calculation of months is quite straight forward, except that care has to be taken
while converting 3/1/84 and 2/29/84. Since time is converted in stages just as time phrase
is being parsed. Therefore month_in is called to evaluate the month February which gives
us a value equivalent to 31 days of the year concerned. (In other words 31 days have elapsed
since the beginning of February) . Similary for the month March it gives us 31+28 days
of the year. Hence the internal representation for February 29, 1984 is the same as that of
March 1, 1984. Since March 1, 1984 has just passed a leapday, the time representation of
March 1, 1984 has to be adjusted by adding a day to it, causing its correct conversion to
be (31+29) * 24+ 60 + .06 time units.

function month_in(month:integer;leap:boolean):real;
var mo:real;
begin

case month of

0,1: {January} mo:= 0.0;

2: {February} mo:= 2678.4;
3: {March} mo:= 5097.6;
4: {April} mo:= 7776.0;
5: {May} mo:=10368.0;
6: {June} mo:=13046.4;
7: {July} mo:=15638.4;
8: {August} mo:=18316.8;
9: {September} mo:=20995.2;
10: {October} mo:=23587.2;
11: {November} mo:=26265.6;
12: {December} mo:=28857.6;

end(* case *);

if (leap and (month > 2)) then mo:=mo + 86.4; (* leap year and after Feb. *)
month_in:=mo;

end(* month_in *);

18

(83) day_in The function day_in simply returns the internal representation for the
number of days in that particular month ,but excluding the day concerned. In other
words, in the preceding example, when converting the number of days in February 29,
only 28 days are used in the calculation.

function day_in{day:integer) :real};

begin
if (day<0) then WRITELN(’ERROR: Input to function day_in < 0 °) else
day_in:=(day-1)+*86.4;

end(* day_in *);
(4) time_in

Time_ in sums up the result obtained in the preceding three functions to get the final
internal time. Also, it checks on the entry of illegal time information, like 61 sec. etc.

function time_in{year,month,day.hour,minute,second:integer;Bc:boolean):real};

var leap:boolean; ‘
yearin,monthin,dayin, temp:real;
begin
if ((year<0) or
(not ((month >= 1) and (month <= 12))) or
(not((day >= 1) and (day <= 31))) or
(not ((hour >= 0) and (hour <= 23))) or
(not ((minute >= 0) and (minute <= 60))) or
(not ((second >= 0) and (second <= 60)))) then temp:=0.000000
else
begin
yearin:=year_in(year,BC,leap);
monthin:=month_in(month, leap);
dayin:=day_in(day) ;
temp:=yearintmonthin+dayin+3.6+hour+0.06*minute+0.001%second;
end;
time_in:=temp;

end(* time_in *);

19

6. From inside to outside

6.1 What the time output should look like

Having discussed the methods of converting time expressions that come in various
forms into its internal forms, the next step would be conversion of the internal time back
to its output user form. The following table describes the output range designated for a
given input range. In other words, if the internal value falls within a certain range, the
output representation is precise to a certain time unit only.

tt is the internal time to be translated to the external string form.

input range output range
year 10%:7 AD < t¢ ¢ year: yy * 10%%6 years AD
year 100000 AD < tt < year 10#*7 AD : year: yy * 10000 years AD
year 10000 AD < tt < year 100000 AD : year: yy centuries AD
year 5200 < tt < 10000 yr : year: yyyy AD
year 2000 < tt < year 5200 : day: mm dd, year: yyyy
Jan. 1, 1981 < tt < year 2000 : hour: bh:mm, day: mm dd, year: yyyy
Jan. 1, 1979 < tt < Jan. 1, 1981 : hour: bh:mm, day: mm dd, year: yyyy
and seconds: ss.sss
year 1960 < tt < Jan. 1, 1979 : hour: hh:mm, day: mm dd, year: yyyy
year 1066 < tt < year 1960 : day: mm dd, year: yyyy
year 0 < tt < year 1066 : day: mm dd, year: yyyy AD
year 1200 BC < tt < year O : day: mm dd, year: yyyy BC
year 10000 BC < tt < year 1200 BC : year: yyyy BC
year 100000 BC < tt < year 10000 BC : year: yy * centuries BC
year 10**7 BC < tt < year 100000 BC : year: yy * 10000 years BC
tt < year 10#%7 BC : year: yy * 10%%6 years BC

6.2 The time_out procedure — the organization of a very messy routine

In New World, the plus and minus infinity are defined as 3.689338+10'° and —3.689338+101°
time units respectively. Hence, a natural step in converting the internal time to its output

form is to ensure that the internal time falls within this range. Next, the input range is
divided into two groups:

(1) tt falls either before 1200 BC or after 5200 AD;
(2) tt falls between 1200 BC and 5200 AD.

where tt is the input internal value.

20

In group 1, a function bigit is called to evaluate the corresponding output values, i.e.
the number of years. This is done by dividing tt by the internal value for 400 years which
is 12622780.8 units. This range is sub- divided into the following ranges:

(a) tt is greater than 107 AD;

(b) tt falls between 100000 AD and 107 AD;
(c) tt falls between 10000 AD and 100000 AD;
(d) tt falls between 5200 AD and 10000 AD.
(e) tt falls between 10000 BC and 1200 BC;
(f) tt falls between 100000 BC and 10000 BC;
(g) tt falls between 107 BC and 100000 BC;
(h) tt is less than 10" BC;

Based on the table given in Section 6.1, different formats for the output strings are
adopted for each of the subranges in the function bigtt.

Besides the output of a string for the number of years, a string indicating the endflags is
also concatenated to it. The following table gives the corresponding strings for describing
the various endflags when they are used as a left or right endflag:

For a finite time interval:
strings for

left endflag right endflag
end_at starting ending
end_in on or after on or before
end_out on or before on or after

For a interval that is bounded on the left only

left endflag string

end_at starting

end_in from on or after
end_out from on or before

21

For a interval that is bounded on the right only

right endflag string
end_at ending
end_in to on or before
end_out to on or after

In group 2, similar to group 1, the range for tt is further divided into the following
subranges:

(2) tt falls between 1/1/79 and 1/1/81;

(b) tt falls between 1/1/81 and year 2000;
(c) tt falls between year 1960 and 1/1/79;
(d) tt falls between year 2000 and 5200 AD;
(e) tt falls between year 1200 BC and 1960;

The internal time is converted into the appropriate output form by a procedure called
time_point_out which also takes care of the correction due to leap year. This involves
some tricky calculations since every 4 year is a leap year, but every 100 year is not a leap
year except when it is every 400 years. (refer to 5.1) The reason for having the different
subranges is that the accuracy in the output forms depends on the range that tt is in.(refer
to 6.1). For example in the first case where something close to 1980 is represented, it would
be natural to expect the output to be in seconds. Since in the process of converting to the
internal value and back, a truncation error is inevitable, therefore the output value has
to be adjusted by referring to the low sig_unit (Isu) associated with the time data. This
done by a procedure called round_time which adds one unit to the next higher unit if the
lower unit exceeds a certain threshold. In other words, the output value is rounded up
based on the Isu. For instance, if lsu is sig_month, then the value for month is increased
by one if the number of days in the output exceeds 17 days, or even if there are only 16
days, but the number of hours exceeds 12 or the month of output has only 30 days, the
value of month is also rounded up by one month. In case the month is February and it is
a non-leap year, the number of month is incresed by one if the output for days exceeds 15.

Similarly, the description for the endflags is also given by a string that is concatenated

to the final output time data. The same description for endflags is adopted as that given
above for group 1.

22

6.3 Examples of time output

Suppose, today’s date is September 3, 1985, and the time now is 5:00:00 am, and it is
a Tuesday. The following study is run to test the time output given a certain input form.
In other words, the input is converted to the internal form and by means of the time_out
routine the internal value is reconverted to a standard output form.

Applying rules for time statements [5.2 (2)]

>1201 BC?
starting 1201 BC to ending 1200 BC

>10000 AD?
starting 100 centuries AD to ending 100.01 centuries AD

>August 2, 100007
100.01 centuries AD
{round up}

>this Monday?
September 2, 1985

>last Sunday?
September 1, 1985

>next Sunday?
September 8, 1985

Applying rules for time statements with date and time and/or with preposition etc
[5.2 (3)]

>at 7:00:56 am on June 3, 19857
7:01 AM June 3, 1985

>at 5:00:00 tomorrow?
5:00 AM September 3, 1985

>at 5:00:23 am yesterday?
5:00 AM September 2, 1985

23

>12:00:12 pm today?
12:00 noon September 3, 1985

>12:00:12 am on June 3, 19857
12:00 AM June 3, 1985

>b o’clock today?
5:00 AM September 3, 1985

>16 years from now?
September 3, 2000

>3214 years from now?
September 3, 5199

>3216 years from now?
5200 AD

>4 years from 29/2/18967 {European representation}
March 1, 1900

>4 years from 3/1/18967 {American representation}
March 1, 1900

>4 years from 1/March/18967
March 1, 1900

>4 years from 29-February-18967?
March 1, 1900

>116 years from next month?
October 2100

Applying rules that deal with time intervals [5.2 (5)]
The left and right endflags are indicated to the right of the query within the braces.

24

>the next 2 days? {end_at, end_at}
starting September 4 and ending September 5, 1985

>from May 1, 1985 to October 1, 19887 {end_out, end_out}
on or before May 1, 1985 to on or after October 1, 1088

>after May 1, 1985 before October 1, 19887 {end_in, end_in}
on or after May 1, 1985 to on or before October 1, 1988

>between January 1, 1985 and February 1, 19857 {end_in, end_in}
on or after January 1, 1985 and on or before February 1, 1985

More examples about the output of the time interval can be obtained in Appendix B.

25

7. Internal processing of timed records

7.1 How time is stored in timed data records

The New World data record consists of one or more pages in a linked structure. The
first page is fixed and the page pointer to which is the name of the record. Each page in
the record has a header and a body. Each header contains such information as the page
pointers, record type, header size, field offset to last field used and n-tuple size for entries,
timed record flag etc., the details of which is contained in [10], Ch.8.

The body of a record page consists of entries. Each entry on a leaf page consists of
1+n+t fields. The first field contains two integers, of which the first integer is the number
1+n+t. The following n fields contain the n-tuple of data. The last t fields are time
information.

Thus time is incorporated as an extension to the data fields in the New World records.
A typical entry with time information has the following length in New World record:

length = flag_cum length of entry_field(1) + fields_per_record(n) + time_field(t)

7.2 Time lists and timed records
A time list is a list whose typical entry is:
t1[il~: (lrr,time_flags, t1[i+1], t1[i], t2[i])

where the real numbers t1[i] and t2[i] are considered end points of a time interval
t1[¢] < £2[¢). Further, the intervals in a time list are also ordered; t2[i] < t1[i + 1). Thus time
information is kept in terms of time intervals *. Information about the nature of the end
points of a time interval is retained in the time flags, which is an integer encoded by a
simple function called set_time_flag**

In records, the information identifying a time interval is packed into a single field***,
t1 and t2, the start and end times of the interval form a floating point number with 23

* Even the time point that has been discussed extensively in the previous sections is stored as an interval;

the length of the interval is, however, only one unit long
** set_time flag simply combines the two endflags by the following :set_time_flag = lef * 256 + ref * 64

where lef is the left endflag and ref the right endflag. For this purpose, end_at is defined as 0, end.in 1, and

end_out 2.
**% An New World field is always 8 bytes long but of variable type, e.g. real, pointer etc and it includes the

type time field

26

binary digit mantissa and 7 binary digit characteristic; the end point flags are each two
bits. Packing and unpacking is done by two little assembly language procedures, thus it is
implementation dependent, since the bit structure of the representation of the real number
is implementation dependent.

As an illustration, suppose the salary of Mary was $2000 from June 3, 1981 to May 1,
1984, when it was raised to $3000, and she has been drawing this salary since then. Let

t1 = June 3, 1981
t2 = May, 1 1984
too = the positive time infinity (i.e. indefinite time in the future)

tfl = left endflag associated with t1 (end_out)
tf2 = right endflag associated with t2 (end_at)
t£3 = left endflag associated with t2 (end_at)
tf4 = right endflag associated with too (end_out)

Note: end_out is always associated with infinity
[ti:t£j] : the real number combining the time ti with the time flag tfj.
Mary_rec is the page address of the record for Mary

Then the time list:

t1[1]1": (1lrr, tfix4 + t£2, t1[2], t1, t2)
t1[2]1": (lrr, t£3%4 + tf4, nil , t2, too)

corresponds to the entry for Mary in the salary attribute record:

| B:... Mary_rec 2000 [ti:tf1:t2:t£2]
| 4:... Mary_rec 3000 [t2:tf3:too:tf4]

Putting time into records involves not only the transformation of time in the various
external forms into the internal form but also the addition of these internal values into the
New World record. The function which performs this is known as add_to_record. If the
same entry already exists in the record, then the time already associated with this entry
has to be changed to include the new time. The following study illustrates the incorpora-
tion of time in New World records:

27

Suppose today’s date is July 17, 1986.

>class:employee
The new class employee has been added.

>individual:Jane Smith
The individual Jane Smith has been added.

>Jane Smith was an employee starting June 3, 1983.
Jane Smith has been added to the class employee.

First of all, June 3, 1983 and today’s date are converted to the internal form, namely
107913.6000 and 206377.3010 with the flag 128, since ‘was’ corresponds to a right endpoint
of today’s date and endflag of end_out. The system then searches in the record for II as
an entry. It adds II as a new entry to the class CC together with the time interval if the
entry was not in the class or it gets a time_union of the present time list and that of the
same entry which is already residing in the record.

>was Jane Smith an employee?
yes starting June 3, 1983 to ending July 17, 1986
no ending June 3, 1983

starting July 17, 1986

The processing of this sentence is done by is_proc and a function called eval_np_np
within #s_proc which is presented in 7.3.

Further examples of the addition of timed data to a record and subsequent question
about what data are available is demonstrated in the study of Appendix B. In this study,
how time information are returned as output from the internal values is also demonstrated.

7.3 Time list intersection, union, subtraction and extension

When two intervals have to be operated like two sets, such as intersection, union or
subtraction,etc., the problem seems trivial. However, if the various time flags involved are
considered the problem becomes more complex. In fact no definite answer can be provided
for such set operations on time intervals in some cases; and this is attributed to the fact
that there are inherently some ambiguities involved in the time flags such as end_out and
end_tn. This is due to the inadequacy of the underlying data representation of time in
terms of intervals and endpoint characteristics. More will be said about this in section 8.3.
An example for this is the intersection of the following two time intervals: Interval A exists

28

until on or before ¢; and interval B exists on or after ¢, where ta < t; There is no ezact
interval which is the intersection of these two intevals. However, such ambiguities do not
arise frequently, as time endflags existing in the database itself tend to be end_at in most
database applications. This problem is dealt with in the later part of this sub-section.

Another interesting problem is the recognition of the relative position of the endpoints
of time intervals. This is essential since the program has to determine under which category
such pair of intervals are to be operated. In other words, different results are obtained for
operations on different categories of intervals.

Finally, there is the problem of operating with more than one intervals in each time
list. In this case, for a start, the first two intervals are operated (intersected, subtracted,
etc) , and the remainder of which is operated with the subsequent interval of one of the
(appropriate) time list. This process continues till the last interval of one of the time lists.

The problem becomes more complex when two intervals are generated as a result of the
operation.

7.3.1 Recognition of Time Intervals

There are 13 possible cases in which two time intervals can be related to each other:
Case 1: la,b,a3

29

Case

Case

Case

Case

Case

Case

Case

Case

5: a,c2,a8
—| _— I
I I
6: la,c2,la3
——— I
|
7: ¢,la3
I |
8: ¢,a3
I | _—
[
9: la,c2
I - _—
e I
10: a,c2
—— | -
P I
11: ¢
I I
O I
12: a,la8
— -

30

Case 13: la,a3

Algorithm for recognition

Before any operations can be done on the intervals, the case in which the pair of
intervals can be classified has to be identified. The following notations are used as features
for identifying each of the cases:

Definition: An interval section is a section of an interval bounded by the end point
of another time interval.

la : lower (first) interval section without intersection (i.e. it is not common to both
intervals)

a : upper (first) interval section without intersection

la2: lower (second) interval section without intersection

a2 : upper (second) interval section without intersection

la3: lower (third) interval section without intersection

a3 : upper (third) interval section without intersection

b : no interval section and no intersection

c : (first) interval section with intersection

c2 : (second) interval section with intersection

(* t1, t2 are the two endpoints of the first time interval

t3, t4 are the two endpoints of the second time interval *)

(* ta, tb, tc, td are the values of t1 to t4 sorted in increasing order

i.e. from left to right on the time scale *)
pProcedure recognition(var clsno:integer;ta,tb,tc,td,t1,t2,t3,t4:real);

type idenfeat = (la,a,la2,a2,la3,a3,b,c,c2); {identification feature}
class = set of idenfeat; {classification}
var i:integer;

cls:class;

31

t:array [1..4] of real;

begin
cls:=[];
t[1] :=ta;
t[2] :=tb;
t[3] :=tc;
t[4] :=td;

(* i is a counter which keeps track of the numberi

from left to right on the time scale *)

for i := 1 to 3 do begin
if ((t[i]>=t1) and (t[i+1]<=t2)) and
((t[i]>=t3) and (t[i+1]<=t4)) then begin

(* feature c or c2 is set *)

if t[il<>t[i+1] then begin
if i=1 then
cls:=cls+[c]
else if (i=2) and not (c in cls) then
cls:=cls+[c2];
end
else if i=1 then begin
cls:=cls+[c];
end;
end

else if ((t[i]>=t1) and (t[i+1]<=t2)) then begin
(+ feature a or a2 or a3 is set =)
if i=1 then cls:=cls+[a]

else if i=2 then cls:=cls+[a2]

else cls:=cls+[a3];

32

ng of interval section

end
else if ((t[il>=t3) and (t[i+1]<=t4)) then begin

(+ feature la or la2 or la3 is set *)

if i=1 then cls:=cls+[la]

else if i=2 then cls:=cls+[la2]
else cls:=cls+[la3];

end

else begin
(* feature b is set %)

cls:=cls+[b];
end;
end; {do-loop}

(* classification features completed *)

Then each case is defined with a combination of such features,
and 13 distinct combinations are obtained. The order of case number is
important as the algorithm searches through the cases one by
one and some cases which are ‘subset’ of other cases are placed
behind those cases in the numbering order.
Example:

if (la in cls) and (b in cls) and (a3 in cls) then clsno:=1;

end; {recognition}

7.3.2 Time intersection

Time_intersection returns the intersection of the given time lists, i.e., if E1 is the event
associated with time listl and E2 with time_list2, then the returned time list expresses the
time when both E1 and E2 were in progress. For example:

33

>When were John and Bill in Boston?
John starting t1 and ending t3

Bill starting t2 and ending t4

>When were both John and Bill in Boston?
starting t2 and ending t3

time_listi: b |
time_list2: R |

output time_list: loeeenn.. I

This is how the function time_intersection is called
function time_intersection{time_listl,time_list?2: list_pointer;var:never:boolean

This function looks at all the intervals available in two time lists and intersect them
one by one . Suppose time_listl and time_list2 contain several time intervals, then these
intervals are retrieved one by one and from each list alternatively.

Hereby the procedure time_intersec_int is called to process two intervals at a time and
output the remainder time_list. In other words, after every intersection, it is necessary
to check if there is any remaining interval section to the right of the intersection interval,
which can be intersected with a subsequent interval in the ‘counterpart’ timelist - this
interval is called a remainder timelist tl. If there is none, then two fresh time intervals are
retrieved for further intersection. If there is, then the next step would be to determine
whether the remainder time list tl comes from timelist 1 or timelist 2. If t] comes from
timelist 1 then it is intersected with the subsequent interval of timelist 2, and vice versa.

This is how time_intersec_int is called:
time_intersec_int(t11,t12,t13,t14,t1,t15,bol);

Hereby only tl1,t12 (the two intervals to be intersected) and t13,t14 (the following
two intervals) contain relevant data when the following procedure is called. The other
parameters are used for returning data only.

On return from the procedure, tl1 is the resulting intersection interval and probably
t12 too, i.e. if there is an additional interval preceding the ’main’ interval; t13 (timelist 1)

34

and tl4 (timelist 2) remain unchanged and tl15 contains the interval following the ’main’
interval if there is such an additional interval; tl contains the remaining segment. Then the
result is appended to the intersection list. If there is no more time interval in one of the
timelists and the remainder timelist does not originate from this timelist, the intersection
is done. Below is a brief description of time_intersec_int:

time_intersec_int

First, the four endpoints together with their respective flags are sorted in ascending
order of time. The sorted sequence is needed for recognition procedure which returns the
case number of these two intervals. Subsequently, time_intersec_proc is called.

time_intersec_proc(clsno,t1,t2,t3,t4,lefl,ref1,lef2,ref2,secondl, second2) ;

It normally returns the intersection interval at t1,t2 and lefl,refl. In cases where there
are additional second intervals, say p-interval, it returns t3,lef2 and/or t4,ref2 as well,
depending on whether these intervals occur before or after the ‘main’ interval. Hereby
t1,t2,t3,t4 are real and NOT list pointers. On return from time_intersec_proc, the remain-
ing timelist is computed. Here the next intervals have a role to play in determining tl
and even to the extent that the intersection interval just has been found for the first two
intervals needs to be adjusted. For example:

t11 t12

t12 t22 t21°
t12:end_in
t22:end_out
t21’ :end_out
all other end_point flags are assumed to be end_at

It is clear that the intersection of the first two intervals is the interval between t11:end_at
and t12:end_in. But t21’ being end_out can begin much earlier than t12 which means that
the interval (t22,t12) is a uncertainty interval. So the intersection should be adjusted
to tll:end_at,t22:p;whereas the remainder is also t22:p,t12:p, where p is an uncertainty
endflag called ‘possibly’.

Now if there is no intersection, hence no output, remainder is the right interval i.e. the
rightmost interval on the time scale.

tn is the left time endpoint of the next time interval to be considered. Depending on

whether the last time interval section belongs to timelist 1 (upper) or timelist 2 (lower),

35

the respective (opposite) next time interval should be chosen: e.g.

t[4] t3n t[4] tin

Suppose the rightmost endpoint of the intersection interval is ti with endflag efi, ti is
compared with tn to see if there is any overlap, if there is then the necessary adjustment
is made to the intersection timelist to accomodate the remainder timelist. Below is a brief
description of time_intersec_proc:

time_intersec_proc
It gets the respective algorithms for calculating intersection: the intervals for intersec-
tion will be:

The first interval will be tt1(or t1) with endflag lel and tt2 (or t2) with endflag rel
and the second interval will be tt3 (or t3) with endflag le2 and tt4 (or t4) with endflag re2.

The procedure returns the 'main’ intersection interval at tt1,lel and tt2,rel

Secl returns a true only if there is a second interval preceding the ’main’ intersection
interval and it outputs the left endpoint of this second interval at tt3 and le2.

Sec2 returns a true only if there is a second interval following the ’main’ intersection
interval and it outputs the right endpoint of this second interval at tt4 and re2.

The example shown below demonstrates how two intervals are intersected in time_intersec_proc.

Example: Case 1

1: begin

if (lel<>end_out) and (re2<>end_out) then begin
tt1:=0.0;
t£2:=0.0;
end

else begin
{left enpoint of the intersection interval}
if (lel=end_out) then begin

36

if le2=end_out then begin
ttl:=minus_infinity;
lel:=p;
end
else begin {le2<>end_out}
tt1:=tt3;
lel:=p;
end;
end
else begin {lei<>end_out and clearly re2=end_out}
{tt1:=tt1}
lel:=p;
end;
{right}
if (re2=end_out) then begin
if (rel=end out) then begin
t12:=plus_infinity;
rel:=p;
end
else if (rel<>end_out) then begin
{tt2:=tt2}
rel:=p;
end
end
else begin {if re2<>end_out and clearly lel=end_out}

tt2:=tt4;
rel:=p;
end;

end;

secl:=false; {there is no need to set tt3,tt4 to O since they would
not be used back in time_intersec_int if sec is false}
sec2:=false;
end;{case 1}

37

7.3.3 Time subtraction

Time subtraction returns the relative compliment of the given time lists, i.e., if E1 is
the event associated with time list1 and E2 with time list2, then the returned time list
expresses the time when E1 was in progress but E2 was not in progress. For example:

>When was John or Bill in Boston?
John starting t1 and ending t3
Bill starting t2 and ending t4
>When was John but not Bill in Boston?
starting t1 and ending t2

time_listil: P |
time_list2: b |

output time_list: |........ I

The way two time lists are being processed are quite similar to that of time_intersection.
Since time_list1 and time_list2 contain several time_intervals get these intervals out one by
one and from each list alternatively.

Then the procedure time subtract_int is called to process two intervals at a time and
output the remaining segment. It returns the subtraction interval(s) in tl1 (and perhaps
also t12) and also the appropriate remainder interval for use in the next intersection.

Again ,similarly, time_subtract_int calls time_subtract_proc which produces the sub-
traction interval based on the case identified.
procedure time_subtract_proc{(clno:integer;var tt1,562,543,tt4:real;
var lel,rel,le2,re2:integer;var secl,sec2:boolean)}:
In this case, the intervals for subtraction are:
first interval: tt1(or t1) with endflag lel and tt2 (or t2) with endflag rel
second interval: tt3 (or t3) with endflag le2 and tt4 (or t4) with endflag re2
Similarly, the procedure returns the ’main’ intersection interval at ttl,lel and tt2,rel

Secl returns a true if there is a second interval preceding the ’main’ intersection interval
and it outputs the left endpoint of this second interval at tt3 and le2

Sec2 returns a true if there is a second interval following the *main’ subtraction interval
and it outputs the right endpoint of this second interval at tt4 and re2

38

Again, using case 1, the following program illustrates how subtraction is done by
time_subtract_ proc:

Example: Case 1

1: begin

secl:=false;

sec2:=false;

templ:=tti;

temp2:=tt2;

if (re2<>end_out) and (lel=end_out) then begin
secl:=true;
tt1:=minus_infinity;
tt2:=t%3;
lel:=p;
rel:=p;
tt3:=tt4;
tt4:=temp2;
le2:=p;
re2:=p;
end

else if (re2=end_out) then begin
lel:=p;
rel:=p;
end;

end;
7.3.4 Time union

Time union returns the union of the given time lists, i.e., if E1 is the event associated
with time list1 and E2 with time_list2, then the returned time list expresses the time when
either E1 or E2 or both were in progress. For example:

39

>When was John or Bill in Boston?

John starting t1 and ending t3

Bill starting t2 and ending t4

>When was either John or Bill in Boston?
starting t1 and ending t4

time_list1: |
time_list2: b |

output time_list: |....................... |

Time list1 and time list2 contain several time_intervals. These intervals are retrieved
one by one in the order of time irrespective of which timelist it belongs to; this is different
from the preceding two operations.

If the result of the time_union contains two intervals i.e. without continuity, then the
old tl1 is stored away in the union time list and the second (i.e. right) interval of the two
intervals is used for further union with other intervals in the time lists. If however, the
result from time union is still a single continuous interval then this interval is used again
for input into time_union _int for further union with other intervals in the time _lists.

It is interesting to note that even if one of the timelists is depleted, the time_union
process should carry on till the time intervals in the other time list is depleted.

This is how the procedure time_union_int is called to process two intervals at a time.
time_union_int(t11,t12,t13,t14,bol);
Hereby t11,t12 (the two to be ‘unioned’) and t13,t14 (the following two intervals) contain
relevant data when the following procedure is called.

On return from the procedure, tl1 is the resulting union interval and probably t12 too
;13 (timelist 1) and t14 (timelist 2) remain unchanged.

The result from time_union_int is appended to time_union_list as long as there is no
continuity in it (i.e. tI2 contains something).

It is worth mentioning that there is always a union and there is no remainder in the
case of time_union_int. As usual, Case 1 of time_union_proc is chosen to demonstrate how

40

the union of two intervals are formed:

procedure time_union_proc(clno:integer;var tt1,462,143,tt4:real;

var 1e1,re1,1e2,re2:integer;var bol:boolean);

1: begin
{similar to case 2}
{qgB
WRITELN('This is case 1 ');
{QQE}
bol:=false;
templ:=tt1;
temp2:=tt2;
ltemp:=leil;
rtemp:=rel;
if (re2<>end_out) and (lel<>end_out) then begin
bol:=true; {no continuity}
tt1:=tt3;
tt2:=tt4;
lel:=le2;
rel:=re2;
tt3:=templ;
tt4:=temp2;
le2:=1temp;
re2:=rtemp;
end
else begin {(re2=end_out) or (lei=end_out)}
tt1:=tt3;
tt2:=t82;
lel:=p;
rel:=p;
end;

end; {case 1}

41

7.3.5 Time extension

Time listl is the normal time list associated with an event. On the other hand,
time list2 is the list of the only relevant times. The desired output time list is the mod-
ification of time list1 relative to time_list2 as all time. For example, if E1 is the event

associated with time list1, then the returned time list expresses the time when E1 was in
progress relative to time_list2:

>When was John in Boston?
starting t1 and ending t3
starting t4 and ending t5
starting t6 and ending t8
starting t9 and ending t10
>When was John in Boston in 19827
ending t3
starting t4 and ending t5
starting t6

-too t1 t2 t3 t4 t6 t6 t7 t8 9 %10 +too
time_listi: [oonn... | [...1 leen... | [...1]

1982 oo |

output time_list: *............ L *

In time extension, the endpoint flags of the intervals from time_list2 are not considered.

First, the leftmost and rightmost endpoints of time_list2 are determined by getting the
left endpoint of the first interval on time_list2 and the right endpoint of the last interval
on time list2, say t21 and t22. Then time extension on each of the intervals in time_list1 is
performed with the constructed interval (t21,t22) and the result of which is stored in tl3.
The following part of program demonstrates how time_extension is done with (t21,t22):

(* tinpl: timelistl with endpoints [t11,t12]
tinp2: timelist2 *)
(* tt1 : left endpoint of extension interval

tt2 : right endpoint of extension interval %)

t13:=nil; {set initial value of t13 to nil}

42

vhile (tinp1<>nil) do begin
t11:=tinp1~.£f2.r; {get the two endpoints from an interval on timelisti}
t12:=tinp1~.£3.r;
fetch time_flag(tinpl~.flag,lefl,ref1); {decode the flag to obtain the
endflags associated with t11, t12}
if (£12<t21) then tinpl:=tinpi-~.f1.1 {the interval not yet relevant}
else if (t11>t22) then goto 10 {the interval no longer relevant}
else begin
{determining the left endpoint of the extemsion interval}
if (t11<=t21) then begin
ttl:=minus_infinity;
lef :=end_out;
end
else if (t11>t21) then begin
tt1:=t11;
lef:=lefl;
end;
{determining the right endpoint of the extension intervall}
if (t12<t22) then begin
t62:=t12;
ref:=refl;
end
else if (t12>=t22) then begin
tt2:=plus_infinity;
ref :=end_out;
end;
{Then the result of the above is stored away one by one in t13, according to
the sequence of the intervals in timelisti}
{Next we get the next interval of t1l1 and repeat the whole process until the
interval in timelistl is no longer relevant.}
end; { end of vhile loop}

Secondly, having completed the construction of t13, the procedure starts constructing
tl4 which is basically time_list2 except that the leftmost and rightmost endpoints are to
be changed to minus and plus infinity respectively.

Finally, the result is obtained by intersecting t13 and t14.

Example:

43

t1t

t12 I [I R !

t13

t14 (I I I

result

7.4 The crunchers and the Is_Proc

After getting the time information into record and retrieving from it, the next inter-
esting question would be the manipulation and coordination of these time information in
conjunction with the processing of records. This occurs in the processing of noun phrases
and verb phrases. In the case of noun phrases, a distinct feature of New World English
is the handling of quantifiers which rely on the various procedures of one_class_cruncher
for evaluating quantified expressions such as ‘at least two ships’, ‘how many boys’. Hereby

the time period during which the objects fall into the domain of the quantification is
considered.

Another class of problems involves the verb phrases. Is_proc handles a simple ques-
tion such as Is John a student?.* The addition of time provides the mechanism of New
World English with more dynamism, in the sense that in real world John would not be
a student forever. Hence the various procedures in is_proc have been modified to include
the processing of time information. Therefore, a statement such as John is a student is
not always true; it is true starting from ¢, and ending at t;, where ¢, and ¢, are two time
points derived from the time information stored in the database.

* Initially, New World includes only the verbs ‘to be’ and ‘fo have’; further ‘to have’ is transforma-

tionally reduced to ‘40 be’. Other verbs are added by paraphrase.[9] Hence only #s_proc needed to be
considered.

44

7.4.1 New World English Data Structure

There is a difference between permanent and temporary data structure. By permanent
data structure we mean those data that contain data on a relatively permanent basis, in
that these data do not vanish after each application. On the other hand, temporary data
structure exists only during sentence processing. Chapter 9.1 & 9.4 of [10] gives a detailed
description of these two types of data structures. A brief summary on each of these data
structures is included here:

The four principal data structures of an New World English data base are classes,objects,
attributes and relations (COAR structures). Objects are the fundamental entities of the
database which can be grouped into classes. Attributes and relations both associate ob-
jects with other objects. The difference between them is that attritutes are single-valued or
is there is only one attribute to any object. For instance, in ‘the age of a boy’ the attribute
of the object boy is age. Relations are multi-valued. An object can have more than one
relations. A good example for this is ‘the destinations of the Alamo’, with destination
being the relation and the Alamo the object.

There are five types of New World English data base records, namely object records,
class records, attribute records, relation records and labeled classes. The labeled classes
are data structures that arise during sentence processing. The principal function of labeled
classes in New World English processing is to provide a uniform internal data structure. It
makes possible the inclusion of ‘labels’ and its use is closely linked to the way New World
English handles quantifiers. By quantifiers we mean such words as ‘all’ and ‘some’. New
World English recognises 12 quantifiers among them at least n, at most n, exactly n, how
many and what, each etc. (Ch.9.4.1 Quantifiers,[10]).

Labeled class records are a simple extension of class, attributes and relations. Each
‘column’ in a labeled class is ‘labeled’ with a type of quantifier. For example, the labeled
class corresponding to the phrase ‘Capital of some countries’ is:

Capital of country

some
USA Washington D.C.
USSR Moscow

Mexico Mexico City

45

A labeled class record has essentially the same structure as a class or attribute record.
If all New World record elements are considered as being a n-ary array, then for n=1 it
reduces to a class record and n=2 a attribute or relation record. Further, n can be divided
into two parts,

n=mn; +ng

For the application here, set

n2=1

which refers to the last column or the members of the class. All members are of dimension
one, in other words, there is no class of vectors here. Therefore, all n, elements are the
labels of this member of the class. Time is included in the creation of labeled class since
occasionally the membership of a certain element in a labeled class has validity period.
Example: ‘mayor of some city’

Mayor of City

label:some

Los Angeles Bradley

Chicago Washington (ta/t2) (ts/ta)
New York Cory (ts/ts)

where (t;/t;) is a time interval.

In the above example no time interval was given for Bradley being a mayor of Los
Angeles. In this case, he is assumed to be always the mayor of Los Angeles. There are
two time intervals given for the mayor of Chicago which is reasonable since a mayor can
be elected for two non-consecutive terms.

7.4.2 The One Class Cruncher

There are three crunchers which are collectively referred to as the one_class_cruncher:

(1) the one class cruncher
(2) the member cruncher
(3) the boolean cruncher

One Class Cruncher

In the case of one_class_cruncher, the first labeled field of a labeled class is crunched
out. The first labeled field corresponds to the field which is just before the last field.
The field that is to be crunched out is supposed to be unquantified or quantified in the

46

following way: how_many, at_least_n, at_most_n, exactly_n, all_but_n or coord. A detailed
explanation is given in chapter 9 of [10]. An example given for this is ‘Teacher of at least
two classes in each department’ with the following record:

each at least 2

Math calculus Jones
Math geometry Smith
Math algebra Smith
English Ell Newton
English El2 Whitney
English Literature Newton
Science Physics Jackson

which is crunched into
Math Smith

English Newton

In other words, the column with the various courses is crunched out,. Basically, a
procedure called converse_record switches the last two columns and then by comparing the
first nn-1 fields (for nn see the explanation in the beginning of this section), it is possible to
determine whether the current entry is still in the same subelass. By continually counting
the number of such entries while still in the same subclass, it provides the answer to the
various quantifiers mentioned. For instance, the first nn-1 fields are built into the output
record if the number of such entries exceeds or equals to n for the case of at_least_n. Due
to the inclusion of time, it is necessary to keep track of how many such entries are available
in the same subclass during what time interval while comparing the entries. This is done
by a procedure called while_gen_timed which will be elaborated below. Another procedure
called last_case_timed answers the question connected to the quantifiers such as at least n
by ‘walking’ down the timed count list tc produced by while_gen_timed and outputting the
appropriate time lists at the end of each subclass.

while_gen_timed

The while_gen_timed procedure takes as parameter a new time list tlnew which is to
be ‘time_counted’ by intersecting tlnew with the existing accumulated time count list te. tc
is a time list which has in its flag the number of entries and its third field pointing to the
a time list which is the time interval. In other words, during this time interval, there are
this many entries in the record.

47

te: (1, flag, L1, nil, L 2)
L1: (1, flag-1, L 3, nil, L 4)
L n: (11, 0, nil, nil, L n+2)
L 2,L 4, .. L n+2 are the time intervals associated with the flag, which is reduced by
one, each time we down the list.

tc is thus constantly being updated from the result of intersection with tinew: while
‘walking’ down the list of tc, the intersection interval of the current time interval* and tl-
new is pointed by the third field of a time list which is placed on top of tc and consequently
tc gets built up. The remainder from tlnew is then used to intersect with the subsequent
time list of tc with a lower count of entries(flag), so that this count would be incremented
accordingly. The remainder from the current time interval remains in the same time list.
This is later combined with the newly created time list resulting from subsequent inter-
section between tlnew and tc. This is done by the editing part of the procedure. The code
for the procedure is given in Appendix C.

last_case_timed

Last_case_timed produces output based on the newly created tc and the given quantifier.
It ‘walks’ down the time list tc and creates tltrue and adds the time list to tirue by means
of time_union, if the flag satisfies the number given by the quantifier. Similarly it creates
or updates tlfalse if it doesn’t satisfy the quantifier. After going through the list tc, it then
outputs the two time lists onto a record. In the case of how_many, it simply outputs the
flag and the associated time list onto a record.

A case study for one_class_cruncher can be found in appendix D.

Member Cruncher

The member cruncher crunches off the member field (as opposed to label field) of the
record which is quantified by at_least_n, at_most_n, ezactly_n, all_but_n, how_many or coord.
If the situation represented by the quantifier is satisfied by some entries of the record, then
those entries that fail to satisfy the quantifier are crunched off if a boolean tf is true; on
the other hand, if tf is false, then those entries that satisfy the quantifier are crunched off.
If the last label field or the field before last field is quantified by each then the member
field is replaced by a truth value. If it is quantified by how_many then it is replaced by
a number. Otherwise the member field is crunched off entirely; only label fields of those
entries which satisfy the quantifier are written onto the output record.

* The interval which corresponds to the current list pointed downward from tc

48

Using the same database as before, the function of member cruncher is illustrated
here. In this case, the question is Does every teacher have at least two classes which is
transformed into ‘There are at least 2 classes of each teacher?’.

label member
each at least 2
Jones calculus
Smith geometry
Smith algebra
Newton Ell
Whitney El2
Newton Literature
Jackson Physics
which is crunched into

Smith

Newton

The details of the member cruncher can be found in chapter 9 of [10]. The handling
of time is similar to that of one_class_cruncher where while_gen_timed is used to build up
the ‘time count’ list tc and the last_case_timed is used to check what time lists in tc satisfy
the quantifiers. However, in the case of member_cruncher, the differentiation between
labeled class and unlabeled class is made. Since there is no subclass in the case of unlabeled
class, tc is built only once and last_case timed is called at the end, whereas in the case of
labeled class the labels are compared to determine the subclass and while. gen_timed and

last_case_timed are called for each subclass. Clearly, output follows each call of these two
procedures/functions.

A case study for both member cruncher labeled class and ulabeled class can be found
in Appendix D.

Boolean_Cruncher

Boolean cruncher is similar to member cruncher in the sense that the member field
is crunched off entirely, only the label fields whose member field has a truth value are
preserved. In other words, the member field in this case is assumed to be quantified by
truth_value, and the last label field or the field before last should not be quantified by
each. The truth_value can be of the type true, false or some. If the member field has a
truth value of ¢rue then the associated time is stored in #lt by means of time_union with
the old #t and if the truth value is false then in tIf and if the truth value is some then
in tls. After going through each entry in the record, tltrue is formed before output. This

49

time list should represent the time during which the statement is true for all entries, i.e.
none of the entries has a member field that is false for this give period. Therefore, it is
necessary to subtract the time_union of tIf and tls from tlt to obtain tltrue. The resulting
tlitrue is put away in a record if t; is true. (The use of t; is the same as that in member
cruncher). The time interval tlfalse during which member field is false for all entries can
be found using the same technique as tltrue, though the output of tlfalse is done only if ¢,
is false. Finally,tlsome is the intersection of tit and tif ‘time united’ with tls and the output
of which is independent of ¢;.

In the case of labeled class, only tlt is obtained by forming time_union for each entry
of the same subclass whose member field has a truth value of true. Nothing is done
about false or some. At the end of each subclass, the resulting ¢t is put away in a record
together with the label fields, i.e. nn-1 fields which are typical of that subclass. Notice
that while_gen_time and last_case_timed are not called in boolean cruncher.

All the above procedures/functions can be found in utyocc.pas, a semantic procedure
for handling one_class_cruncher in New World.

7.4.3 The Is Proc

Is_proc is one of thee central procedures of New World. It deals with verb phrases and
is discussed in details in chapter 9.14 of [10]. Is_proc can be subdivided into six cases:

(1) Is there <noun_phrase>?
Example: How many ships are there?
2) <noun_phrase> is <noun_phrase>?
Example: What ships have length greater than 200 feet?
(3) How <adjective> is <noun_phrase>?
Example: How old is each employee?
(4) <noun_phrase> is <adjective:+comp> than <noun _phrase>?
Example: The salary of employees is greater than the salary of John?
(5) Wh- is <noun_phrase>?
Example: What is the destination of each ship?
(6) (free variable) is <noun phrase>?

This occurs when a case noun relevant to a defined verb is missing in a particular use
of that verb; i.e. the agent is missing.

Examples: What ship carries each eargo type to each port?
What cargo type is carried to each port?

Any of the above six forms can be negative. For instance, a question such as ‘What

50

cities are not capitals?’ is allowed.

Is_proc starts by determining whether the clause is positive or negative. It then deter-
mines which of the six cases is applicable and in the process, identifies the agent and the
object. Consider the simplest case: <NP> is <NP>. It is simple in the sense that neither
the subject noun phrase nor the object noun phrase is labeled. Only the subject noun
phrase can be quantified by what, each, how many or coord. The more complicated cases,
where the subject and object noun phrases can be quantified, like ‘What destination of
each ship is home port of at least 2 ships?’, are handled by the two_class_cruncher.

It should be noted that the application programmer can introduce new object type at
this point, so that it will process the new object types under this case of <NP> is <NP>.
Two such object types are the numbers and non-numbers. The subprocedure that handles
the non-number objects is known as eval_ np_np and that of the number objects eval_nu_nu.

eval np_np

Typical example: ‘Are As Bs?’,‘What As are Bs?’,‘How many As are Bs?’

If either or both the noun phrase records are empty, a diagnostic message is issued. So
only cases where there are two non-empty records are considered. However, if both records
are not quantified , the output is a boolean value. In the case where the quantifier of A is
what ,each or coord then the output is a simple class (without label) and if the quantifier
is how many the output is a real number.

The comparison of the two clases is explained in chapter 9.14 of [2]. and will not
be elaborated here. Basically, it moves down the A record if the object(entry) in A is
less than the object in B; and down the B record otherwise,, till all entries are finished.
It is interesting to know how time is handle here. If either of the record contains time
information, then the whole processing should include time. First, the case where both
records are not quantified is considered. If two entries in subject and object record are
equal then tltrue is formed by the intersection of the two time lists from each record. Also,
forming the time subtraction of the object time list from the subject time list leads to a
time interval tifalse. This indicates the time interval during which there is an entry in the
subject record but no entry in the object record. Besides, tifalse is also formed by simply
taking the time list from the subject record and forming ‘time_union’ with the old tifalse
when the two entries are not equal and the subject entry is less than the object entry. This
is reasonable since all entries are sorted, and therefore this subject entry will not find a
matching entry in the object record. Next the case where subject record is quantified by
what, each or coord is considered. In this case, only when the two entries are matching
that a time intersection of the two time list is performed and at the same time put away

51

in an output record together with the member field of the subject entry. Finally, there is a
quantifier of how_many where while_gen_timed is called to ‘time count’ the intersection time
list if the two entries are matching. At the end of the record comparison, last_case_timed
is applied to count the number of entries in each time interval. For negative clause, the
process is similar though non-matching entries are now of interest.

A case study for eval.np np can be found in Appendix D.

eval nu_nu

In this case, two number classes are considered. It could be that one of them is a real
number but not both, since if both of them are real numbers and not classes, no time is
processed. If both records are classes, then each entry in the subject record is compared
with each entry in the object record. Clearly, if either of the record is not a class, then
each entry of the record is compared with the real number only, which can be either a
subject or an object.

Next, a case where both subject and object are classes is discussed. While ‘walking’
down the subject record, if it determines that the subject is an unknown number, then the
associated subject time list forms tlunkn. If the corresponding object entry is an unknown
number * then the associated object time list forms tluk. If none of the above cases appears,
it gets the intersection of subject and object time list to form titrue if the two numbers
satify the relation between them. Similarly tifalse is formed if the relation is not satisfied.

If either the subject or the object is a real number but not both, then it ‘walks’ down
the record that is a class. Suppose the subject is a class, and the object is a real number,
tlunkn is formed if the subject entry is unknown.If the subject entry number matches the
object number, then tltrue is formed; If they do not match tlifalse is formed. In both cases,
the only class can be a labeled class, and the result is sent to output at the end of each
subclass. This is done by calling put_away_time which outputs a truth value together with
the labels and the associated time list. If we subtract tifalse from titrue we get a time list
that is to go with the truth value true; and if we subtract tltrue from tifalse, we get a time
list which is associated with false; and finally if we intersect tlrue and tifalse we get a time
list that is to go with som . These three cases presume that tlunkn is never set. However,
if tlunkn is set we get a truth value of unk.

A study which covers eval nu.nu, boolean_cruncher and one_class_cruncher can be
found in Appendix D.

* In New World, a specific number, namely —10~37 ig specified as the ‘unknown number’. All the arith-
metic procedures know about it; thus 3 + unknown = —10~37 and cos(unknown) = —10~37,

52

8. Remaining problems

8.1 Extensions that can be made within the New World environment

Each data record has two significance units (sig_units) associated with it. The sig_units
are set on the basis of the input data and they are used for output of data. In New World,
these sig_units are declared as global variables and can be modified as the application in
an New World environment proceeds. Thus, it would be desirable to store the sig_units
which are particular to the input data in the records. This can be done by storing the low
and high sig units in its record header_extension. The addition of new time data to the
record may modify the low sig_units downward but not up ,and the high sig_units upward
but not down.

At the present time, no distinction is made between duration and single occurence.
Thus from ‘John was in London from June 1, 1968 to October 20, 1969’ , one cannot
tell, except from context, whether he was there throughout the interval or at some single
time within the interval. The two end point flags occupy 4 bits but only 9 combinations
out of the 2¢* = 16 combinations are used. Thus a duration flag could also be included,
distinguishing between the above two possiblities. The syntax for time could then be
extended into words such as ‘throughout’ etc., thus considerably increasing the breath of
time information recorded in the data which are available for use in applications.

These two extensions, although entailing considerable changes in relevant semantic
procedures, could be made without basic changes in data structures.

8.2 Extensions requiring more radical changes

In this version of the implementation of time in New World, no information about
the frequency of a certain object belonging to a class or an entity being the attribute of
an object can be provided by the system. Queries such as ‘How frequently was John in
London? and ‘How often was coal the cargo of Maru? would not be processed by the
present system. Such extension to the system requires the implementation of the flag
for distinguishing between ‘throughout the interval or ‘certain time point in the past’ as
mentioned in 8.1. Also, extra facilities must be provided for storing such information
as ‘Five times last year’, in other words, additional capability of storing the numerical
frequency 5.

Another extension worth considering is the handling of connectives such as ‘when’ and
‘while’. For example, ‘John was in London when Mary arrived there’ does not provide any

information about when exactly Mary was in London. Therefore the system has to be
modified to include such ‘relative’ information.

53

Finally, it would be desirable to make some distinctions between the various tenses
in English, and in particular, the handling of past tense and present perfect tense. For
example, ‘John was in London starting June 8, 1967 and ‘John has been in London since
June 3, 1967 should carry different meanings since for the latter, it would be safer to
assume that John is still in London to this date. Besides, the present system does not deal
with the time information carried by sentences like ‘John has visited London’. However,
this entails further research into the English tenses and its associated semantics.

8.3 Some alternative considerations relevant to the implementation of time
in data base systems

Some alternative considerations with respect to the implementation of time information
in database can be found in [1] and [2]. In [1], James Allen introduced an interval-based
temporal logic to tackle the problem of imprecision of scale and uncertainty in representing
time intervals. In [2], Siegfried Giinther introduced the notion of ordered 6-tuples repre-
senting the 6 temporal relations between the starting and ending points of two intervals.
For example, the temporal relation between the starting points of these two intervals is
captured as one of the elements of the 6-tuples, and it can assume the value of ‘greater
than’, ‘less than’, ‘greater than or equal to’, ‘less than or equal to’ or ‘unknown’. A time
network could be thus established to handle the problems with respect to the manipulation
of time lists discussed in 7.3. Further, due to the fact that temporal statements in natural
languag are often vague and fuzzy, it would be interesting to explore the possiblities of
using fuzzy set theory to handle the uncertainty encountered in representing time infor-
mation [14] [15]. For example, it would be possible to handle such ambiguous information
as ‘Mary arrived in London in around the 1970’s’ using fuzzy set theory.

54

References

[1] Allen,J.F., Maintaining Knowledge about Temporal Intervals”, CACM Vol 26, No.11,
Nov 1983.

[2] Giinther, S., ”Zur Reprisentation Temporaler Beziehungen in SRL”, KIT-Report 21, Tech-
nische Universitidt Berlin, Sep 1984.

[3] Hornstein, Norbert, ” Towards a Theory of Tense”, Linguistic Inquiry Vol 8 No 3 Summer
1977. p.521-557

[4] McCawley, J.D., ” Tense and Time Reference in English” » in C.J.Fillmore and D.T.Langendoen,
eds., Studies in Linguistic Semantics Holt, Rinehart and Winston, New York.

[5] Harper M.P., Charniak E., ” Time and Tense in English”, Proceeding of the 24th meeting
of ACL, 1986.

[6] Yip,K.M., ” Tense, Aspect and the Cognitive Representation of Time” ,Proc. of IJCAI 85,
806-814.

[7] Bolour,A., Anderson,T.L., Dekeyser,L.J., Wong, H.K.T., ” The Role of Time in Informa-
tion Processing, A Survey”, SIGMOD, April 1982.

[8] Hafner,C., ”Semantics of Temporal Queries and Temporal Data”, Proceeding of the 23rd
meeting of ACL, 1985.
The Role of Time in Information Processing, A Survey”, SIGMOD, April 1982.

[9] Thompson,B.H. and Thompson F.B., ”Introducing ASK, A Simple Knowledgeable Sys-
tem”, in Proceedings, Conf. on Applied Natural Language Processing, 1983, pp 17-24.
[10] Thompson,B.H. and Thompson F.B., ”ASK, A Simple Knowledgeable System”, a major

documentation of the system, to be published by Springer Verlag.

[11] Sanouillet,R., ” ASK French-A French Natural Language Syntax”, MS Thesis, 1984, Cal-
tech.

[12] Thompson,B.H. and Thompson F.B., ” ASK as Window to the World”, in Proceeding IEEE
Int’l Conf. on Systems, Man & Cybernetics, 1984.

[13] Poh, H.L., ”The Understanding of Time”, Term Paper, Psycholinguistics,Caltech, June,
1986.

[14] Schmucker, K.J., ” Fuzzy sets, Natural Language Computations, and Risk Analysis”, pub-
lished by Computer Science Press, 1984.

[15] Sheng R.L., A Linguistic Approach to Temporal Information Analysis”, Ph.D. Thesis,
Computer Science Div., Dept. of EE & CS, University of California, Berkeley.

55

Appendix A

Time Syntax Rules

(1) Lexical Time Rules

RULE January
<time:+lit+byr+td+smo>
LEX 1

RULE February
<time:+lit+byr+td+smo>
LEX 2

RULE March
<time:+lit+byr+td+smo>
LEX 3

RULE April
<time:+lit+byr+td+smo>
LEX 4

RULE May
<time:+lit+byr+td+smo>
LEX &

RULE June
<time:+lit+byr+td+smo>

LEX 6

RULE July

"January"

"February"

"March"

"April"

I|May "

L June "

56

Il
v

<time:+lit+byr+td+smo>
LEX 7

n July "

RULE August
<time:+lit+byr+td+smo>
LEX 8

U}
v

"August"

RULE September
<time:+lit+byr+td+smo>
LEX 9

il
v

RULE October
<time:+lit+byr+td+smo>
LEX 10

1l
\"

"October"

RULE November
<time:+lit+byr+td+smo> => "November"
LEX 11

RULE December
<time:+lit+byr+td+smo> => "December"
LEX 12

RULE Jan
<time:+lit+byr+td+smo+abr> => "Jan"
LEX 1

RULE Feb
<time:+lit+byr+td+smo+abr> => "Feb"
LEX 2

RULE Mar
<time:+lit+byr+td+smo+abr> => "Mar"

LEX 3

RULE Apr

"September"

57

<time:+lit+byr+td+smo+abr>
LEX 4

RULE June
<time:+lit+byr+td+smo+abr>
LEX 6

RULE Jul
<time:+lit+byr+td+smo+abr>
LEX 7

RULE Aug
<time:+lit+byr+td+smo+abr>
LEX 8

RULE Sep
<time:+lit+byr+td+smo+abr>
LEX 9

RULE Sept
<time:+lit+byr+td+smo+abr>
LEX 9

RULE Oct
<time:+lit+byr+td+smo+abr>
LEX 10

RULE Nov
<time:+lit+byr+td+smo+abr>
LEX 11

RULE Dec
<time:+lit+byr+td+smo+abr>

LEX 12

RULE Jan.

Il
v

"Apr "

" Jun"

" Jul "

”® Aug "

llsep"

" Sept "

"Oct"

" Nov"

"DeC "

58

<time:1-abr> => <time:+lit+byr+td+smo+abr> " "
PRE 1 no_opl

RULE AM
<time:+lit+ampm+td>
LEX O

"
v

" AM"

RULE am
<time:+lit+ampm+td>
LEX O

1l
v

" anm "

RULE PM
<time:+lit+ampm+td>
LEX 1

1l
v

L PM "

RULE pm
<time:+lit+ampm+td>
LEX 1

1
v

" pm "

RULE Sunday
<time:+lit+day+td>
LEX O

1l
v

" Sunday "

RULE Monday
<time:+lit+day+td>
LEX 1

il
v

"Monday"

RULE Tuesday
<time:+lit+day+td>
LEX 2

H
v

"Tuesday"

RULE Wednesday
<time:+lit+day+td>
LEX 3

U
v

"Wednesday"

RULE Thursday

59

<time:+lit+day+td> => "Thursday"
LEX 4

RULE Friday
<time:+lit+day+td> => "Friday"
LEX &

RULE Saturday
<time:+lit+day+td> => "Saturday"
LEX 6

RULE day
<time:+lit+ut+sdy+dy+td> => "day"
LEX O

RULE week
<time:+lit+ut+sdy+td>
LEX 1

I
v

"We ek "

RULE month
<time:+lit+ut+smo+td>
LEX 2

U
v

"month"

RULE year
<time:+lit+ut+syr+td>
LEX 3

It
v

"year "

RULE "minute"
<time:+lit+ut+smn+td> => "minute"
LEX 4

RULE "hour"
<time:+lit+ut+smn+td> => "hour"

LEX 5

RULE "second"

60

<time:+lit+ut+sse+td>
LEX 6

RULE "centuries"
<time:+lit+syr+ut+td>
LEX 7

RULE "century"
<time:+lit+syr+ut+td>
LEX 7

RULE "decade"
<time:+lit+syr+ut+td>
LEX 8

RULE o’clock
<time:+lit+oclock+td>

LEX O

RULE BC

il
v

"second"

"centuries"

"century"

"decade"

"o’clock"

<time:+lit+bcad+td> => "BC"

LEX 1

RULE AD

<time:+lit+bcad> => WAD"®

LEX O

RULE "today"

<time:+lit+sdy> => "today"

LEX 1

RULE "tomorrow"

<time:+lit+sdy> => "tomorrow"

LEX 2

RULE "yesterday"
<time:+lit+sdy> => "yesterday"
LEX 3

RULE "now"
<time:+sse+lit> => "now"
LEX O

RULE '"noon"
<time:+lit+td+minute> => "noon"
LEX O

RULE "tonight"
<time:+lit+tongt> => "tonight"
LEX O

RULE "morning"
<time:+lit+morn+td> => "morning"
LEX 4

RULE "night"
<time:+lit+ut+td> => "night"
LEX O

RULE "afternoon"
<time:+lit+ut+afn+td> => "afternoon"
LEX b

RULE "evening"
<time:+lit+ut+even+td> => "evening"
LEX 6

RULE "Eve"
<time:+lit+eve> => "Eye"
LEX O

62

RULE "Christmas"
<time:+lit+sea> => "Christmas"
LEX 4

RULE "New year"
<time:+lit+sea> => "New Year"
LEX b

RULE "Thanks Giving"
<time:+lit+sea> => "Thanksgiving"
LEX 6

RULE "Easter"
<time:+lit+sea>
LEX 7

it
\'4

"Easter"

RULE "Spring"
<time:+lit+sea> => "gpring"
LEX O

RULE "Summer"
<time:+lit+sea> => "gummer"
LEX 1

RULE "fall"
<time:+lit+sea> => "fall"
LEX 2

RULE "Autumn"
<time:+lit+sea> => "autumn"
LEX 2

RULE "Winter"
<time:+lit+sea> => "winter"
LEX 3

63

RULE seasons
<time:+sdy> => <time:+lit+sea>
PRE 349 season_proc

RULE "this"
<time:+lit+period+this> => "this"
LEX 1

RULE "last"
<time:+lit+period> => "last"
LEX 2

RULE "next"
<time:+lit+period> => "next"
LEX 3

RULE "later"
<time:+lit+lat> => "later"
LEX O

RULE "beginning"
<time:+lit+eb+beg> => "beginning"
LEX 1

RULE "starting"
<time:+lit+eb+beg> => "starting"
LEX 1

RULE "ending"
<time:+lit+eb+end> => "ending"
LEX 2

RULE "terminating"
<time:+lit+eb+end> => "terminating"
LEX 2

64

RULE beg/end at/in/on
<time:+lit+eb+end> => <time:+lit+eb> " " <time:+lit+prep+aio-interval>
PRE 1 no_opi

RULE "before"
<time:+lit+prep+before> => "before"
LEX 1

RULE on or before
<time:+lit+prep> => <time:+lit+prep+aio> " or " <time:+lit+before>
LEX 1

RULE "after"
<time:+lit+prep+after> => "after"
LEX 2

RULE on or after
<time:+lit+prep> => <time:+lit+prep+aio> " or " <time:+lit+after>
LEX 2

RULE "from"
<time:+lit+prep+from> => "from"
LEX 3

RULE "since"
<time:+lit+prep+from> => "gince"
LEX 3

RULE "to"
<time:+lit+prep+to> => "to"
LEX 4

RULE "up to"

<time:+lit+prep+to> => "up to"
LEX 4

65

RULE "until"
<time:+lit+prep+until> => "until"
LEX &

RULE "¢ill"
<time:+lit+prep+till> => "till"
LEX &

RULE "at"
<time:+lit+preptaio> => "at"
LEX 6

RULE "in"
<time:+lit+prep+aio> => "ip"
LEX 7

RULE "on"
<time:+lit+prep+aio> => "on"
LEX 8

(2) Rules for Time Statements

RULE "June 3"
<time:1-lit-smo+sdy-byr> => <time:+td+smo+lit+byr> " " <yhole_number>
POST 304 con_mdayi

RULE "3rd of June"
<time:2-lit-smo+sdy-byr> => <ordinal> " of " <time:+td+smo+lit+byr>
POST 305 con_mday2

RULE 10:25
<time:+smn+td> => <whole_number> ":" <whole_number>
POST 309 con_timel

RULE 10:25 PM
<time:+smn+td+ampm> => <time:+smn+td-prep-ampm> " " <time:+lit+ampm>

66

POST 310 con_time?2

RULE 10:25:50

<time:+td+sse> => <whole_number> ":" <whole_number> ":" <whole_number>
POST 314 con_secl

RULE 10:25:50 PM
<time:l+ampm> => <time:+td+sse-prep-ampm> " " <time:+lit+ampm>
POST 315 con_sec2

RULE five o’clock
<time:+td+smn> => <whole_number> " " <time:+lit+oclock>
POST 316 con_hourl

RULE "now"
<time:1-1it> => <time:+sse+lit>
PRE 341 con_now

RULE "today/yesterday/tommorrow"
<time:1-lit-td> => <time:+lit+sdy>
PRE 340 con_day0

RULE "June 1979" but not "June 3 1979" or "3rd of June 1979"
<time:1-1lit-td> => <time:+smo+td+byr-sdy> " " <whole_number>
POST 339 con_monthi

RULE "80 BC or 1900 AD"
<time:+byr+bcad-td> => <whole_number> " " <time:+lit+bcad>
POST 338 con_bcad

RULE "June of 1970"
<time:1-1lit-td> => <time:+td+byr> " of " <whole_number>

POST 306 con_myear

RULE "June 3 of 1979" or "3rd of June of 1979"
<time:1-1lit-td> => <time:+sdy—smo+td§/" " <preposition:+of> " "

67

<whole_number>
POST 307 con_datel

RULE "June 3, 1979" or "3rd of June, 1979"
<time:1-1it-td> => <time:+sdy-smo+td> <pct:+comma> <whole_number>
POST 307 con_datel

RULE "3-June-1980"
<time:+sdy-td> => <whole_number> "-" <time:+td+smo+lit> "-" <whole_number>
POST 308 con_date3

RULE "3/June/1980"
<time:+sdy-td> => <whole_number> "/" <time:+td+smo+lit> "/" <whole_number>
POST 308 con_date3

RULE "3 June 1980"
<time:+sdy-td> => <whole_number> " " <time:+td+smo+lit> " " <whole_number>
POST 308 con_date3

RULE "mm/dd/yy" if mm>12 then mm=>dd and dd=>mm i.e. dd/mm/yy (European)
<time:+sdy> => <whole_number> "/" <whole_number> "/" <whole_number>
POST 311 con_date4

RULE "this/next/last <month_name>"
<time:-td+smo> => <time:+lit+period> " " <time:+lit+smo-ut-num>
POST 312 con_month2

RULE "this/next/last year/day/month/week/decade/century"
<time:2-1it-td-ut> => <time:+lit+period> " " <time:+lit+ut>
POST 313 con_time_unitil

RULE "this/next/last <weekday>"

<time:+sdy+byr-td-prep> => <time:+lit+period> " " <time:+lit+day>
POST 317 con_wkdayl

68

RULE "<weekday> last/next/last week"
<time:+byr-td+sdy-prep> => <time:+lit+day> " " <time:+lit+period>

" " <time:+lit+ut+sdy-dy>
POST 318 con_wkday2

(3) Rules for time statements with time/date and/or prepositions at a par-
ticular time point

RULE "in" 1985
<time:+syr+interval> => "in " <whole_number>
PRE 348 in_year

RULE "year" 1985
<time:+syr+num> => <time:+lit+syr-num> " " <wyhole_number>
PRE 2 no_op2

RULE "the " year 1985
<time:+syr> => "the " <time:+syr+num>
PRE 1 no_opl

RULE "in " year 19856
<time:+syr+interval> => "in " <time:+syr+num>
POST 348 in_year

RULE "in the " year 1985
<time:+syr+interval> => "in the " <time:+syr+num>
POST 348 in_year

RULE "on" <date>
<time:1-lit+interval> => "on " <time:-td+sdy-prep-int-num>
POST 319 on_datel

RULE "at" <time:+smn>

<time:l+at> => "at " <time:+td+smn-int-num-prep-1lit>
POST 320 at_mini ’“

69

RULE "at" <time:+sse>
<time:1+at> => "at " <time:+td+sse-int-num-prep-lit>
POST 321 at_seci

RULE "at" <time:+smn or +sse> "on" <date>
<time:1-1lit-td> => <time:+at> " on " <time:-td-prep+sdy>
POST 322 at_on_time_date

RULE <time: +sse> on <date>
<time:1-1lit-td> => <time:+td+sse-prep> " on " <time:-td-prep+sdy>
POST 323 sec_on_date

RULE <time:+smn> on <date>
<time:1-1it-td> => <time:+td+smn-prep-int-num> " on " <time:-td-prep+sdy>
POST 324 min_on_date

RULE "5:00 (PM) today/yesterday/tomorrow"
<time:1-lit-td+ytt> => <time:+smn+td-prep> " * <time:+lit+sdy>
POST 325 min_datel

RULE "5:00:23 (PM) today/yesterday/tomorrow"
<time:1-td-1lit+ytt> => <time:+sse+td-prep> " " <time:+lit+sdy>
POST 326 sec_datel

RULE "at 5:00:00 today/tomorrow/yesterday"
<time:1-td+at-1it> => "at " <time:+sse-td-prep+ytt>
POST 1 no_opil

RULE "at 5:00 today/tomorrow/yesterday"
<time:1-td+at-1lit> => "at " <time:+smn-td-prep+ytt>

POST 1 no_opi

RULE n days/weeks/... from a given time
<time:2-lit-td+int+num> => <whole_number> " " <time:+lit+ut> " from "

70

<time:-td-num-int-1lit>
POST 331 n_unit_from_time

(4) Rules that put prepositions on a time point

*%% >--- end_in

RULE "after" <time:-td>
<time:2+begt+prep> => <time:+lit+after> " " <time:-lit-td-prep>
POST 335 after_time

RULE starting after <time:-td> _

<time:2-lit+beg+prep> => <time:+lit+eb+beg> " " <time:+lit+after> " "
<time:-lit-td-prep>

POST 335 after_time

*%%x |--- end_at

RULE beginning <time>
<time:2+beg+prep> => <time:+lit+eb+beg> " " <time:-td-eb-lit-beg-end-interval>
POST 350 endpoint_proc

RULE starting "in" 1085
<time:1-lit-eb+syr> => <time:+lit+eb+beg> " in " <whole_number>
PRE 3563 ending_in_year

**% <--- end_out

RULE from <time>
<time:2+beg+prep> => <time:+lit+from> " " <time:-td-eb-1lit>
POST 327 from_time

RULE starting before <time>
<time:2-1lit+beg+prep> => <time:+lit+eb+beg> " " <time:+lit+before> " "
<time:-lit-td-prep>

71

POST 327 from_time
¥*%% -~--< end_in

RULE "before" <time>
<time:2+end+prep> => <time:+lit+before> " "
POST 334 before_time

RULE ending before <time:-td>
<time:2-lit+end+prep> => <time:+lit+eb+end>

<time:-lit-td-prep>
POST 334 before_time

k%% ---| end_at

RULE ending <time>

<time:2+end+prep> => <time:+lit+eb+end> " "
POST 350 endpoint_proc

RULE ending "in" 1985

<time:1-lit-eb+syr> => <time:+lit+eb+end> "
PRE 353 ending_in_year

%% ---> end_out

RULE until <time>

<time:2+end+prep+tu> => <time:+lit+until> "

POST 328 until_time

RULE till <time>

<time:-lit-td-prep>

"on <time:+lit+before> " v

<time:-td-eb-lit-beg-end-interval>

in " <whole_number>

" <time:-td-eb-1lit>

<time:2+end+prep+tu> => <time:+lit+till> " " <time:-td-eb-1lit>

POST 328 until_time

RULE to <time>

<time:2+end+prep+tu> => <time:+lit+to> " " <time:-td-eb-1lit>

POST 328 until_time

72

RULE ending after <time>

<time:2-lit+end+prep> => <time:+lit+eb+end> " " <time:+lit+after> " "
<time:-lit-td-prep>

POST 328 until_time

(5) Rules that deal with time intervals

RULE "last/this/next" n "days/week/month/century/decade" e.g. next 2 months
<time:3-lit-td+num> => <time:+lit+period> " " <yhole_number> " " <time:+lit+ut>
POST 329 fix_n_time_unit

RULE "the" last/next n days/weeks/months/etc e.g. the last 3 months
<time:3-lit+num-td> => "the " <time:+lit+period-this> " " <whole_number>

U <time:+lit+ut>
POST 329 fix_n_time_unit

RULE in "the" last/next n days/weeks/etc.

<time:3-lit+num+prep+int> => "in the " <time:+lit+period-this> "
<whole_number> " " <time:+lit+ut>

POST 329 fix _n_time_unit

RULE <time:+beg> and <time:+end-tu>
<time:+interval> => <time:-td+beg> " and " <time:-td+end-tu>
POST 330 from_time_to_time

RULE <time:+beg> to/until <time:+end-tu>
<time:+interval> => <time:-td+beg> " " <time:-td+end+tu>
POST 330 from_time_to_time

RULE in n "day/week/.." (* same as bewteen now and n day/week/..+now *)
<time:2-lit+num+prep+int> => "in " <whole_number> " " <time:+lit+ut>
POST 332 in_n_unit

RULE "n days/weeks/years/..." later
<time:2-lit-td-ut+num> => <whole_number> " " <time:+lit+ut> " " <time:+lit+lat>

73

POST 333 n_unit_later

RULE "after <time> before <time>" eg. after five o’clock before 5:30 pm
<time:+int+prep> => <time:+after> " " <time:+before>
POST 336 after_time_before_time

(6) Rules for processing sentence

RULE sentence => time?
<left_delimiter> <sentence> =>

<left_delimiter> <time:-td-1it> <pct:+question_mark>
POST 301 time_answer_proc

RULE put time at end of verb phrase

<verb_phrase:1+fti> =>.<verb_phrase:-fti> " " <time:-td-1lit>
* e.g., "[The Tokyo Maru carried coall in May 1982"

SYN 302 time_case_proc

RULE put time at beginning of verb phrase

<verb_phrase:1+fti> => <time:-td-lit+prep> <pct:+comma> <verb_phrase:-fti>
* e.g., "beginning in June 1985, [the Tokyo Maru carried coal] "

* "Before May 1978, did the Tokyo Maru carry coal?"

SYN 302 time_case_proc

RULE time modification of noun phrase
<noun_phrase:2+time> => <time:-td-prep-lit> " " <noun_phrase:-pof>
POST 303 time_noun_proc

(7) Miscellaneous rules

RULE Singular nouns to plural
<time:1> => <time:+lit+ut> "g"
SYN 337 sin_to_plu

RULE in "June 1979"
<time:1+prep> => "in " <time:-td-prep+smo-lit-num>
POST 1 no_opil

74

RULE beginning and ending

<time:1-lit-td+prep> => "between " <time:-td-eb-prep> " and " <time:-td-eb-prep>
POST 354 between_time

75

Appendix B

Addition of timed data to record and output from record

>class:student
The new class student has been added.
>individual:Bailey,Bain,Baird,Baker,Bakus,Baldwin,Balen
The following new individuals have been added:
Bailey Bain Baird Baker Bakus Baldwin Balen
>individual:Ball,Bancroft,Banister,Barbosa,Barber,Banks
The following new individuals have been added:
Ball Bancroft Banister Barbosa Barber Banks

>Bailey is a student.

Bailey has been added to the class student.
>Baker is a student before May 1, 1985,

Baker has been added to the class student.

>Baird is a student ending May 1, 1985.

Baird has been added to the class student.

>Bain is a student until May 1, 1985.

Bain has been added to the class student.

>Balen is a student after May 1, 1985.

Balen has been added to the class student.

>Baldwin is a student beginning May 1, 1985.

Baldwin has been added to the class student.

>Bakus is a student from May 1, 1985.

Bakus has been added to the class student.
>Banister is a student before October 1, 1988.
Banister has been added to the class student.
>Bancroft is a student ending October 1, 1988.
Bancroft has been added to the class student.

>Ball is a student until October 1, 1988,

Ball has been added to the class student.

>Banks is a student after October 1, 1088.

76

Banks has been added to the class student.
>Barber is a student beginning October 1, 1988.
Barber has been added to the class student.
>Barbosa is a student from October 1, 1988.
Barbosa has been added to the class student.
>
>individual:Beckwith,Beeson,Behn,Behrens,Beisel,Bell,Belino,Beman,Bender
The following new individuals have been added:

Beckwith Beeson Behn Behrens Beisel Bell Belino Beman Bender
>Beckwith is a student from May 1, 1985 until October 1, 19088.
Beckwith has been added to the class student.
>Beeson is a student from May 1, 1985 to before October 1, 1988.
Beeson has been added to the class student.
>Behn is a student from May i, 1985 and ending October 1, 1988.
Behn has been added to the class student.
>Behrens is a student after May 1, 1985 until October 1, 1988.
Behrens has been added to the class student.
>Beisel is a student after May 1, 1985 to before October 1, 1988.
Beisel has been added to the class student.
>Bell is a student after May 1, 1985 and ending October 1, 1088.
Bell has been added to the class student.
>Belino is a student starting May 1, 1985 until October 1, 1988.
Belino has been added to the class student.
>Beman is a student starting May 1, 1985 to before October 1, 1988.
Beman has been added to the class student.
>Bender is a student starting May 1, 1985 and ending October 1, 1988,
Bender has been added to the class student.
>what is a student?
There are 22 lines in your answer.
>Which lines do you want? End of file time.stu2.

>all

Balen from on or after May 1, 1985
Baldwin starting May 1, 1985

Bakus from on or before May 1, 1985
Baker to on or before May 1, 1985
Baird ending May 1, 1985

77

Bain
Bailey
Banks
Barber
Barbosa
Banister
Bancroft
Ball
Bender
Beman
Belino
Bell
Beisel
Behrens
Behn
Beeson
Beckwith

Note:

end_at:
end_in:

to on or after May 1, 1985

from on or after October 1, 1988

starting October 1, 1088

from on or before October 1, 1988

to on or before October 1, 1088

ending October 1, 1988

to on or after October 1, 1988

starting May 1, 1985 to ending October 1, 1988
starting May 1, 1985 to on or before October 1, 1988
starting May 1, 1985 to on or after October 1, 1088

on
on
on
on
on
on

or
or
or
or
or
or

after May 1, 1985 to ending October 1, 1988

after May 1, 1985 to on or before October 1, 1988
after May 1, 1985 to on or after October 1, 1988
before May 1, 1985 to ending October 1, 1988
before May 1, 1985 to on or before October 1, 1988
before May 1, 1985 to on or after October 1, 1988

starting, ending
on or after, to on or before
end_out: on or before, to on or after

78

Appendix C

Procedures for ‘Time Counting’

procedure while_gen_timed{(tlnew:list_pointer;
var tc:list_pointer)};
var tcc,tccc,tlold,tl,temp:list_pointer;
still,never:boolean;
begin
{QQB
WRITELN(® at top of generate record loop, tc:’);
LIST_LIST(tc);

{QQE}
tcc:=tc;
still:=true;
while (tcc <> nil) and still do begin
tlold:=tcc~.£3.1;
{QgB

WRITELN('WHILE_GEN_TIMED: top of while tcc <> nil loop, tcc:’);
{QQE}
tl:=time_intersection(tlold,tlnew,never);
if not never then begin
temp:=new_list (111, (tcc”.flag + 1));
temp~.f1.1:=tc;
temp~.£f2.1:=nil;
temp™.£3.1:=t1;
tc:=temp;
end;
tl:=time_subtraction(tlold,tlnew,never); <{tlold - tlnew}

79

if not never then tcc”.£3.1:=t1
else tcc”.flag:=-1;
tlnew:=time_subtraction(tlnew,tlold,never):
{tlnew - tlold}
if not never then tcc:=tcc~.f1.1
else still:=false;
end; {while (tcc <> nil) and still}
{add what remains}
if tlnew <> nil then begin
temp:=new_list(11l1,1);
temp”.f1.1:=tc;
temp”.f2.1:=nil;
temp”.f3.1:=tlnew;

tc:=temp;
end;
{edit the list}
{QQB
WRITELN('WHILE_GEN_TIMED: t1 before editing’);
{QQE}
while tc”.flag = -1 do tc:=tc~.f1.1;
tecec:=tc;
while tcc <> nil do begin
tece:=tcc;
while (tccc™.f1.1 <> nil) do begin
if tccc”.f1.1".flag = -1 then
tcee™ . f1.1l:=tcce™.£f1.1".f1.1
else if tececc”.f1.17.flag = tcc”.flag then begin
tcc‘.f3.1:=time_union(tcc‘.f3.1.tccc‘.f1.1“.f3.1);
tcee™ . f1.1:=tcce”.£f1.1".f1.1;
end
else tccc:=tccc™.f1.1;
end;
tcec:=tecc™.f1.1;
end; {tcc <> nil}
{qqB

WRITELN('WHILE_GEN_TIMED: end');

80

WRITELN('tc:");
LIST_LIST(tc);
{QQE}
end; {while_gen_timed}

function last_case_timed{(tc:list_pointer;qq:quant_type;qn.nn:integer;
entry:n_tuple; last:boolean; var geno:list_pointer) :page_pointer};
var tcc,tltrue,tlfalse,genn:list_pointer;
never_true,never_false:boolean;
begin
never_true:=true;
never_false:=true;

tce:i=tc;
while tc <> nil do begin
case qq of

at_least_n : if tc".flag >= qn then begin
if never_true then begin
tltrue:=tc~.£3.1;
never_true:=false;
end
else tltrue:=time_union(tltrue,tc~.£3.1);
end
else if never_false then begin
tlfalse:=tc~.£3.1;
never_false:=false;
end
else tlfalse:=time_union(tlfalse,tc”.£3.1);
exactly.n : if tc”.flag = qn then begin
if never_true then begin
tltrue:=tc~.£3.1;
never_true:=false;
end
else tltrue:=time_union(tltrue,tc”.£3.1);
end
else if never_false then begin
tlfalse:=tc"~.£3.1;

81

never_false:=false;
end
else tlfalse:=time_union(tlfalse,tc”.£3.1);
at_most_n : if tc”.flag <= qn then begin

if never_true then begin
tltrue:=tc~.£3.1;
never_true:=false;
end

else tltrue:=time_union(tltrue,tc~.£3.1):
end

else if never_false then begin
tlfalse:=tc".£3.1;
never_false:=false;
end
else tlfalse:=time_union(tlfalse,tc”.£3.1);
how_many : begin end;
end; {case}
tci=tc™.f1.1;
end; {while loop}
if qq = how_many then begin
{qqB
WRITELN('qq=how_many’);
{QQE}
tc:=tcc;
while tc <> nil do begin
entry”[nn].r:=tc".flag;
build_sorted_record(geno,0,entry,tc”.£3.1);
tci=tc”.£1.1;
end;
end
else begin
if not never_true then begin
entry”[nn].b:=[trul;
build_sorted_record(geno,0,entry,tltrue);
end;
if not never_false then begin

82

entry~[nn].b:=[];
build_sorted_record(geno,0,entry,tlfalse);
end;
end;
if last then last_case_timed:=finish_new_record(geno)
else last_case_timed:=nil_page_pointer;
end; {last_case_timed}

83

Appendix D

Case study for one_class_cruncher

>class:CC

The new class CC has been added.

>individual:II,I1,I12,JJ3,J1,J2,J3,KK,K1,LL,L1,L2
The following new individuals have been added:

>relation:AA

The new individual relation AA has

>II
IT
>AA
I1
>AA
I2
>AA
I1
>AA
I2
>AA
J3
>AA
K1
>AA
I1
>AA
L2

» JJ, KK and LL are CCs.

JJ KK LL have been added to

of II is Il starting October
was added as AA of II.
of II is I2 starting October
was added as AA of II.
of JJ is Il starting October
was added as AA of JJ.
of JJ is I2 starting October
was added as AA of JJ.
of JJ is J3 starting October
was added as AA of JJ.
of KK is K1 starting October
was added as AA of KK.
of LL is Il starting October
was added as AA of LL.
of LL is L2 starting October
was added as AA of LL.

1,

IT I1 I2 JJ J1 J2 J3 KK Ki LL L1 L2

been added.

the class CCs.
1988 and ending October

1087.
1986 and ending October

1985.

1988 and ending October

1989.
1985 and ending October

1986 and ending October

84

1990.

1989.

1990.

1087.

1991.

>Who is AA of each CC?

to
to

to

to

to

ending October
ending October

ending October
ending October

ending October

ending October 1, 1991

ending October 1, 1990

ending October 1, 1990

ending October 1, 1987

cc AA

LL L2 starting October 1, 1986
I1 starting October 1, 1985

KK K1 starting October 1, 1989

JJ J3 starting October 1, 1988
I2 starting October 1, 1985
I1 starting October 1, 1986

II I2 starting October 1, 1087
I1 starting October 1, 1088

>Who is AA of some CC?

L2 starting October 1, 1986 to

K1 starting October 1, 1989

J3 starting October 1, 1988 to

I2 starting October 1, 1985

I1 starting October 1, 1985 to

>Who is AA of at least 2 CCs?

I2 starting October 1, 1987

I1 starting October 1, 1986 to
starting October 1, 1988 to

>Who is AA of how many CCs?
There are 19 lines in your answer.
>Which lines do you want?

ending October 1, 1989

85

1,
1,

1,

1,

1,

1991
1987

1990

1989

1990

AA
L2
L2

K1
K1
J3
J3

I2

I2

I2

I1

I1

I1

>all

of CCs
1
0

O = O =

= O = N

starting October 1, 1986
ending October 1, 1986

starting October 1, 1991
starting October 1, 1989
ending October 1, 1089

starting October 1, 1988
ending October 1, 1988

starting October 1, 1990
starting October 1, 1987
starting October 1, 1985
ending October 1, 1985

starting October 1, 1985
starting October 1, 1987
starting October 1, 1989
starting October 1, 1986
starting October 1, 1988
ending October 1, 1985

starting October 1, 1990

86

to

to

to

to
to
to
to
to

ending

ending

ending

ending
ending
ending
ending
ending

October 1,

October

October

October
October
October
October
October

s e b

1991

1990

1987

1986
1088
1990
1087
1989

Case study for member_cruncher unlabeled_class

>class:CC

The new class CC has been added.
>individual:KK,JJ,II

The following new individuals have been added:

KK JJ 1II

>KK is a CC starting October 1, 1988 and ending October 1, 1990.
KK has been added to the class CC.
>JJ is a CC starting October 1, 1987.

JJ has been added to the class CC.
>II is a CC starting October 1, 1986 and ending October 1, 1989.
II has been added to the class CC.
>What CC are there?

IT starting 12:00 AM, October 1, 1986 to ending 12:00 AM, October 1, 1989
JJ starting 12:00 AM, October 1, 1987
KK starting 12:00 AM, October 1, 1988 to ending 12:00 AM, October 1, 1990

>There are at least 2 CC?

yes starting 12:00 AM, October 1, 1987 to ending 12:00 AM, October 1, 1990
no ending 12:00 AM, October 1, 1987
starting 12:00 AM, October 1, 1990

>There are at most 2 CC?

yes ending 12:00 AM, October 1, 1988
starting 12:00 AM, October 1, 1989
no starting 12:00 AM, October 1, 1988 to ending 12:00 AM, October 1, 1989

>There are how many CCs?

3 starting 12:00 AM, October 1, 1988 to ending 12:00 AM, October 1, 1989
2 starting 12:00 AM, October 1, 1987 to ending 12:00 AM, October 1, 1988

starting 12:00 AM, October 1, 1989 to ending 12:00 AM, October 1, 1990
1 starting 12:00 AM, October 1, 1986 to ending 12:00 AM, October 1, 1987

87

starting 12:00 AM, October 1, 1990
0 ending 12:00 AM, October 1, 1986

Case study for member_cruncher labeled_class

>class:CC
The new class CC has been added.
>individual:II,I1,I12,JJ,J1,J2,J3,KK,K1,LL,L1,L2
The following new individuals have been added:
IT I1 I2 JJ J1 J2 J3 KK K1 LL L1 L2
>relation:AA
The new individual relation AA has been added.
>II, JJ, KK and LL are CC.
IT JJ KK LL have been added to the class CC.
>AA of II is I1 starting October 1, 1988 and ending October 1, 1990.
I1 was added as AA of II.
>AA of II is I2 starting October 1, 1987.
I2 was added as AA of II.
>AA of JJ is J1 starting October 1, 1986 and ending October 1, 1989.
J1 was added as AA of JJ.
>AA of JJ is J2 starting October 1, 1985.
J2 was added as AA of JJ.
>AA of JJ is J3 starting October 1, 1988 and ending October 1, 1990.
J3 was added as AA of JJ.
>AA of KK is K1 starting October 1, 1989.
K1 was added as AA of KK.
>AA of LL is L1 starting October 1, 1985 and ending October 1, 1987.
L1 was added as AA of LL.
>AA of LL is L2 starting October 1, 1986 and ending October 1, 1991.
L2 was added as AA of LL.
>There are what AA of each CC?

cC AA

LL L2 starting October 1, 1986 to ending October 1, 1991
L1 starting October 1, 1985 to ending October 1, 1987

KK K1 starting October 1, 1989

JJ J3 starting October 1, 1988 to ending October 1, 1990

88

J2 starting October 1, 1985

J1 starting October 1, 1086

II I2 starting October 1, 1987
1, 19088

Il starting October
>There are at least 2 AA of each CC?

LL yes starting October 1, 1986
no ending October 1, 1986

starting October 1, 1987

JJ yes starting October 1, 1986
no ending October 1, 1986

starting October 1, 1990

IT yes starting October 1, 1088
no ending October 1, 1988

starting October 1, 1990

>There are how many AAs of each CC?
There are 18 lines in your answer.
>Which lines do you want?

>all
LL 1 starting October 1, 1985
starting October 1, 1987
LL 2 starting October 1, 1986
LL 0 ending October 1, 1985
starting October 1, 1991
KK 1 starting October 1, 1989
KK 0 ending October 1, 1989
JJ 3 starting October 1, 1988
JJ 2 starting October 1, 1986
starting October 1, 1989
JJ 1 starting October 1, 1985
starting October 1, 1990
JJ 0 ending October 1, 1985

II 2 starting October i, 1988
II 1 starting October 1, 1987
starting October 1, 1990

89

to

to

to

to

to

to
to
to

to
to
to
to

to
to

ending

ending

ending

ending

ending

ending
ending
ending

ending
ending
ending
ending

ending
ending

October

October

October

October

October

October 1,
October 1,
October 1

October
October
October
October

October 1
October 1

1989

1990

1987

1990

1990

1986
1991
1987

1989
1988
1990
1986

1990
1988

II

ending October 1, 1987

90

>class:CC,DD
The following new classes have been added:

CC DD

>individual:II,JJ,KK,LL
The following new individuals have been added:

>I1
II
>II
II
>JJ
JJ
>JJ
JJ
>KK
KK
>LL
LL

II JJ KK LL

is a CC starting October 1,
has been added to the class
is a DD starting October 1,
has been added to the class
is a CC starting October 1,
has been added to the class
is a DD starting October 1,
has been added to the class
is a CC starting October 1,
has been added to the class
is a DD starting October 1,
has been added to the class

>What DD is a CC?

JJ
II

Case study for eval np_np

1988 and ending October 1, 1990.

CcC.

1987.

DD.
1986
CC.

1988.

DD.
1985
CC.
1987
DD.

starting October 1, 1988 to
starting October 1, 1988 to

>What DD is not a CC?

LL
JJ
II

starting October 1, 1987 to
starting October 1, 1989
starting October 1, 1987 to
starting October 1, 1990

>how many DDs are CCs?

starting October 1, 1989 to
starting October 1, 1988 to

and ending October

and ending October

and ending October

ending October 1,
ending October 1,

ending October 1,

ending October 1,

ending October 1,
ending October 1,

91

1, 1989.

1, 1989.

1, 1988.

1989
1990

1988

1988

1990
1989

0 ending October 1, 1988
starting October 1, 1990

>DDs are CCs?

yes starting October 1, 1988 to ending October 1, 1990
no starting October 1, 1987 to ending October 1, 1988
starting October 1, 1990

92

Case study: eval nu_nu, boolean_cruncher and onee_class_cruncher

>class:employee

The new class employee has been added.
>individual:John,Mary,Bob,Betty

The following new individuals have been added:

John Mary Bob Betty

>number attribute:salary

Please enter the two adjectives associated

with salary (similar to "large" and "small" as
associated with "size"); the maximizing adjective
(e.g. "large") before the minimizing

adjective (e.g. "small"):high,low

The adjectives high and low have been

added associated with salary.

The new number attribute salary has been added.
>John,Mary,Bob and Betty are employees.

John Mary Bob Betty

have been added to the class employees.

>John’s salary is 2000 starting October 1, 1988 and ending October 1, 1990.
2000 was added as salary of John.
>John’s salary is 3000 starting October 1, 1990.
2000 has been replaced by 3000 as salary of John.
>Mary’s salary is 2100 starting October 1, 1986 to May 1, 1988.
2100 was added as salary of Mary's.
>Mary’s salary is 3500 starting May 1, 1988.

2100 has been replaced by 3500 as salary of Mary’s.
>Bob’s salary is 2800 starting January 1, 1986.

2800 was added as salary of Bob.
>Betty’s salary is 3000 starting May 1, 1986.

3000 was added as salary of Betty.
>Is John’s salary greater than 25007

yes starting October 1, 1990
no starting October 1, 1988 to ending October 1, 1990

>salary of employees is greater than 25007
yes starting January 1, 1986

93

no

starting October 1, 1986 to ending May 1, 1988
starting October 1, 1988 to ending October 1, 1990

>salary of what employee is greater than 25007

Betty
Bob
Mary
John

starting May 1, 1986
starting January 1, 19086
starting May 1, 1988
starting October 1, 1990

>salary of how many employees is greater than 25007

4

O N = W

starting October 1, 1990

starting May 1, 1988 to ending October 1, 1990
starting January 1 to ending May 1, 1986
starting May 1, 1986 to ending May 1, 1988
ending January 1, 1986

>salary of at least 2 employees is greater than 25007

yes
no

>2500 is
yes
no

>2500 is
Betty
Bob
Mary
John

starting May 1, 1986
ending May 1, 1986

less than the salary of employees?

starting January 1, 1986

starting October 1, 1986 to ending May 1, 1988
starting October 1, 1988 to ending October 1, 1990

less than the salary of what employee?
starting May 1, 1986

starting January 1, 1986

starting May 1, 1988

starting October 1, 1990

94

>25600 is less than the salary of how many employees?
starting October 1, 1990
starting May 1, 1988 to ending October 1, 1990
starting January 1 to ending May 1, 1986
starting May 1, 1986 to ending May 1, 1988
ending January 1, 1986

O N = W b

>2500 is less than the salary of at least 2 employees?
yes starting May 1, 1986
no ending May 1, 1986

95

