Sequential Threshold Circuits

John C. Platt.

. Computer Science Department
- California Institute of Technology

5197:TR:85

Sequential Threshold Circuits

by

John C. Platt

In Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Computer Science Department
Technical Report Number 5197:TR:85
California Institute of Technology

Pasadena, California

1985

This work supported by an NSF Fellowship and by the System Development Foundation.

(©1985 John C. Platt

Acknowledgements

I would like to thank my advisors, Carver Mead and John Hopfield, for the very useful
advice and guidance provided during the development of this thesis.

Also, I would like to thank Dick Lyon, Al Barr, and Jim Kajiya for their suggestions
and comments about the thesis.

Table of Contents

Introduction e 1
Historical Perspective e 1
Possible Applications e 1

Threshold elements e e 2
Discrete Implementation 3
VLSI Implementation 4

Sequencing Theory e e 8
Constraints L . .. e e e e e e e e e 8
Ring Oscillator e 10
Race Prevention e 11
VLSI Race Prevention i it e e i e e e 12
Experimental Results. 14

Analog Petri Nets e 19
Examples of Petri Nets e 19
Safe Marking e e 21
Inhibitor ATcs e e 22
Analog Petri Nets e 23

An Analog Asynchronous Sequential Machine 24
Conflict inthe Petri Net i 27
Special Cases e e e 30
Discrete Circuit Experimental Results. 35
Numerical Simulations of a VLSI AASM 40

Conclusions e e 46
Future Work e e e e 47

Bibliography e 48

Appendix A: The Relationship to Hopfield’s Model 49

Appendix B: The Experimental Discrete Circuits 51

Appendix C: VLSI Simulation. 54

1 Introduction

In this thesis, a technique for synthesizing sequential circuits from threshold elements
is described.

The historical roots and possible future applications of the technique are presented in
this chapter. Simple ways of building threshold elements are described in chapter 2. How
to connect these elements to form sequential circuits is described in chapter 3. Chapter 4
explains analog Petri nets, a way of describing analog asynchronous behaviour. Chapter
5 show how to convert an analog Petri net to a threshold circuit. Chapter 6 presents
conclusions and possible future work.

1.1 Historical Perspective

The synthetic technique described in this paper arose out of three other ideas: J.J.
Hopfield’s content addressable memory, Petri net modeling of self-timed circuits, and the
idea of analog decision elements such as flip-flops.

The active elements that the technique uses are the same as Hopfield’s associative
memory [Hopfield 84]. Hopfield’s neurons are threshold elements, each connected symmet-
rically to each other, with all of the elements evolving at once. However, in this thesis, the
interconnection used is asymmetric, which gives behaviours that depend continuously on
time and input. The intuition of state space is still helpful. The idea of using threshold
elements to simulate “neural” behaviour has a long history [Minsky 68][McCulloch 43].

The Petri net description is taken from self-timed circuit design, where it has proved to
be a compact and powerful way of representing concurrent asynchronous behaviour [Holt
70][Dennis 70][Seitz 70].

The analog asynchronous sequential machine performs analog arbitration, which is
exactly the computation that a flip-flop does [Mead 80]. However, in this thesis, a firm
framework is provided for translating a behavioural description to an actual circuit.

1.2 Possible Applications

Several possible applications of the analog asynchronous sequential machine exist.
First, it can be a control element for other analog circuits. For example, it might be
useful in building servomechanisms in robots, where analog position information is chang-
ing arbitrarily slowly and crisp decisions need to be based on this information.

Second, it might be useful in asynchronous perceptual tasks, where a circuit must com-
pute continuously. Contrast this to Hopfield’s associative memory or travelling salesman
[Hopfield 85], which have definite computational starts and stops, because the circuits ex-
tremize an energy function. Thus, one might expect an analog self-timed automaton to be
useful in speech recognition on an auditory chip, or motion detection on a vision chip.

Finally, the technique might be useful for composing other collective systems and for
making fault-tolerant circuits.

2 Threshold elements

This chapter of the thesis describes a simple way of making threshold elements, either
using discrete components, or a VLSI chip.

The sequential circuit consists of a group of threshold elements. The circuit is pro-
grammed by changing the connections between the threshold elements. Thus, consider an
ideal threshold element shown in figure 1.

either
—_—
autputs of
other elements

or

inputs to
system

Fig. 1. Ideal Threshold Element (sth element)

Let the output of the ¢th element be V;, with 1 < ¢ < n, where n is the number of
threshold elements. V; is a voltage between the supply rail voltages 0 and 1; i.e., V; € [0,1].
One also wants to represent inputs to the system. These inputs are also represented as V;,
with n +1 < ¢ < N. Thus, V is an eztended state vector, whose first n elements are the
output voltages and whose remaining elements are inputs controlled by the outside world.
The extended state vector is illustrated in figure 2.

The input of each element is a weighted sum. The sum can be over the output voltages
V; or some functions of the output voltages. In general, let the input be

M; -
L= Tih;(V) — i (1),
j=1

where the weights T;; may be positive or negative, «; is the threshold, and M; is the
number of inputs in element :. Ideally, the behaviour of the circuit should be independent
of the scale of the Tj; and ~;; so in this discussion about the ideal element, consider
i 1Ty + [l =1

outputs

<l

elements

inputs — 4>
N—-n

Fig. 2. Extended State Vector

The weighted sum should be integrated with a transfer function of

1
s +1°

In other words, perform a “leaky integration” on the input.

After the integration, run the signal through a non-linear transfer function, with a gain
of > 1. A non-linear transfer function with a gain greater than 1 is essential to make crisp
digital decisions from the analog inputs. An example is a flip-flop, whose stable states go
to the voltage rails for a gain greater than 1, but sink to 0.5 for a gain less than 1. In
order for any input to possibly make a change in the output from one digital level to the
other, the gain has to be more than 1/ min |T;;]|.

In the analysis in the next chapter, there is an assumption that the wires are fast
compared to the time constant of the element, so that every element sees the same output
voltage for any particular element. Thus, the elements should have a long integration time
to make wire delay negligible.

2.1 Discrete Implementation

A discrete circuit to realize the threshold element is shown in figure 3.

Here, the weighted sum is carried out by resistor summing. T;; is the conductance
of the resistor connecting the jth input of element 7. ~ is a conductance also, which is
connected to the negative power supply. Various k; functions may be implemented by no
extra circuitry (h,(V) = V;) or by CMOS logic.

The input to the element is 3°; T,-,-h,-(V) when the first op-amp is not saturated, while
the gain is Ry ¥, |T;;|. Thus, if one scales the T;;, the circuit behaviour will remain
constant, as long as Ry is scaled inversely.

The leaky integration is performed by the resistor and capacitor across the operational
amplifiers. This yields a transfer response of 1/7s+1 when the first op-amp is not saturated.
When the first op-amp saturates, the input voltage of the op-amp is no longer held at zero.
Thus, the input is no longer the proper weighted sum, and the integration eventually stops
[Millman 79].

The non-linear transfer response is merely the transfer response of the operational
amplifier, with the gain regulated by the ratio of the feedback resistor to the equivalent
input resistance. V; is kept between 0 and 1 by the diode between the output of the first
op-amp, and the input of the second op-amp. If the output of the first op-amp rises above
ground, the diode becomes reverse-biased, and — V; is tied to 0. Otherwise, — V; tracks
the output of the first op-amp. The follower gives — V; a low output impedance.

Thus, V; varied between ground and the positive power supply, and —V; varies between
the negative power supply and ground.

L1
N
Vss

Cr
| Ry
—AW
AAAA

VJ —AMWN\—

Fig. 3. Discrete Circuit

One immediate awkward question is how to implement negative conductance to achieve
anegative T;;. A negative conductance is physically impossible, thus each element produces
a positive and a negative output, using a unity gain inverting op-amp. Whenever a negative
conductance — Gj; is desired, a conductance of G;; is connected to to the negative output

—V;.
Figure 3 is only a general circuit diagram. Specific conductances are shown in Appendix

B.

2.2 VLSI Implementation

In VLSI, resistors are difficult to build, so the most natural way of implementing a
weighted sum is by using currents. The circuit shown in figure 4 is a natural way of
implementing the active elements. The element is implemented with reverse logic. Thus,
an element is “on” when the voltage is low, and visa versa.

threshold inhibitory connection
Vop VoD Voo Vob

P
"o Ty v
S Sorl>o

vl I =@ we

excitatory connection ~ ! VI VI

excitatory connection with OR

Fig. 4. VLSI Circuit

The circuit in figure 4 is far from ideal. Consider the case where A;(v) = v,Vj. The
input is 3>, T;;V; — «; only when the V; are either 0 or 1. Otherwise, the sum is really
Y; Tijy;(Vj) — vi, where y is the non-linear connection response described in Appendix C.
However, y;(0) =0 and y;(1) = 1.

In figure 4, the negative weights are built by using p-type transistors as pullups. The
weights are the current that can go through the current limiting transistors whose gates
are part of a current mirror. Thus, only a few weights should be distributed globally.

The integration comes about naturally because of parasitic capacitances of the wire.
But, the integration is 1/7s, and the integration is stopped by the voltage rails. Thus, the
integration and large gain are mixed in the current summer. The extra inverter stages on
the output give additional gain and both senses of output.

In the circuits used in this thesis, there will only be a constant number of weights
used. Thus, the T;; currents can be supplied from pads, and the current mirror gate
voltage distributed globally.

When one wants to make a ~y; connection, or any other connection that is always on,
one merely eliminates in V; transistor. A positive threshold is implemented with p-type
transistors, while a negative threshold is implemented with n-type transistors.

If the inputs to the threshold circuits are in the form of currents, then one uses the
circuit in figure 5. In figure 5, the input current is removed from the summing node,
except that the current is limited by the Tj;.

VDD

input
current

O N
B

v

summing node

Fig. 5. Analog Input Connection

The current mirrors in figure 4 and figure 5 should be operated below threshold to
keep the heat dissipation low, and to minimize the dependence of the current on the drain
voltage. However, using sub-threshold current mirrors, errors in the threshold voltage
across the chip become exponential errors in the T;;. These errors can be minimized by
keeping all the current sources for an element closc together and by keeping all the global
current-setting transistors close together. Thus, any variation in threshold over a long
spatial range is canceled out, since the threshold element only relies on the ratios of the
currents. However, if local threshold voltages vary by more than roughly 8 mV, the circuit
shown in figure 4 will not work.

Yoo Voo

Pass Gate Pass Gate
Logic Logic
Pass Gate Pass Gate
Logic Logic

¢ ¢

Fig. 6. Pass Gate Threshold Logic

VLSI presents an opportunity for making more interesting h; than with simple resis-
tors. Namely, beneath each current source that sets T;;, one can put pass gate logic that
implements compositions of min and max of any of the V;. Pass gate logic is extremely

useful, since pure threshold logic does poorly at doing min and max (the equivalent of
Boolean AND and OR). Thus, one has a new logic family, doing small Boolean computa-
tions with the pass gate logic, and large sums with the current summer. This logic family,
shown in figure 7, will be useful in implementing analog sequential circuits.

3 Sequencing Theory

In the last chapter, simple ways of building threshold clements were presented. In this
chapter, techniques are described for connecting the threshold elements to make sequential
circuits.

To make a sequential circuit, one wants certain elements to turn on or off based on the
present state of the system. To determine whether an element will turn on or off, one can
look at the input to element ¢,

F; = Z Tishi(V0) — (2)
J

where F; is called the “force” on element ¢ when the system is in state V°. Here, T;j is the
weight of the jth connection to element ¢, h; is a function the computes the input to the
Jth connection of element ¢ and ~; is the threshold of element z.

The force is the current going into the summing node of an element when the element
is not saturated. The sign of F; will control whether the element will turn on or off. So,
if F; > O for a particular element, then V; will increase. If F; < O for a particular element,
then V; will decrease. Since the non-linear transfer function has high gain, F; > 0 will
make V — 1 and F; < 0 will make V; — 0. Notice that the force is linear in T;; and h; (V).
Thus, it is mathematically easier to handle than the entire non-linear system

Hence, to predict what the system will do at a pa,rtlcula.r time, find VO and compute
the force vector F' from the known matrix T and 5 4. Conversely, if one wants to control
what the system will do given a particular V0 then one designs T and 4 to produce the
desired force vector F. In other words, one mampula.tes the weights between the elements
to give the desired forces. Or, in circuit terms, one manipulates the transconductances
between elements to give currents of the proper sign.

3.1 Constraints

How does one determine the values of T' and 4 to yield the desired forces?
First, one has to pick a representation for what particular elements mean. Then, one
can develop a set of behavioural constraints. The constraints are in either of two forms.

1) If an element A is on, then turn on element B.
2) If an element C is on, then turn off element D.

If one has a constraint like that of case 1, then one puts excitatory connections (T3; > 0)
from A to B. If the constraint is like that of case 2, then one puts inhibitory connections
(T3; < 0) from C to D. The weights of the connections still need to be found.

The idea of turning constraints into connections is analogous to digital asynchronous
design, where the next-state function is mapped into connections of the Boolean logic.
Notice, also, that the connections are local and Hebbian [Hebb 49], that is, any connection
depends only on the desired states of the two elements it connects.

In other circumstances, one wants to turn an element on or off based on a set of Boolean
functions of the output of some elements. In this analysis, the output of the elements are
treated as digital values. The constraints come in two forms, again.

3) If a Boolean function of a set of elements E is 1, then turn on element F.
4) If a Boolean function of a set of elements G is 1, then turn off clement H.

In case 3, make an excitatory connection from the output of the Boolean function
to element F. In case 4, make an inhibitory connection from the output of the Boolean
function to element G. Again, the weights of these connections need to found.

One can make a picture showing the results of the above decisions. Such a picture is
called a “wiring diagram”. An example of a wiring diagram is shown in figure 7.

Fig. 7. Connections for a Section of an Oscillator

The wiring diagram shows the connections between elements, without showing the
internal circuitry of the elements themselves. The notation in figure 7 will be an interme-
diate notation between the behavioural description and the final circuit. The arcs ending
in filled-in circles mean excitatory connections (T;; > 0). The arcs ending in open circles
mean inhibitory connections (T;; < 0). The t-shaped arcs that only connect to one element
are thresholds. The symbols by the arcs are the T;; or <y; of the connections, which are
parameters that need to be found.

To find the strengths of the connections, apply the behavioural constraints. A con-
straint specifies that an element should turn on or off when the system is in a certain
state. Consider the case where element ¢ should turn on when the system is in state V°.
Therefore, F; > 0. using the definition of F; yields

3 T3ih;(V0) — % > 0. (3)
i

Similarly, if the constraint states that element ¢ should be off when the system is in
state V0, then F; < 0, which implies

ZT{jhj(?o) — v < 0. (4)
M

Thus, the strengths of the connections T;; and the thresholds v; must satisfy linear
inequalities so that the behavioural constraints are satisified. Each linear inequality de-
scribes a half-space in a high dimensional space. If one picks the Tj; and the +y; inside the
intersection of all the half-spaces, then the behavioural constraints should be satisfied. One
should pick T;; and ~y; far away from the boundaries of the intersection of the half-spaces,
so that if the connection strengths are slightly in error, the constraints are still satisfied.

3.2 Ring Oscillator

A simple example should illustrate the point of the last section. Consider the task of
making an oscillator. In this section, a ring oscillator is defined in an unusual way. Namely,
the elements of the oscillator should turn on in order, usually one on at a time, with two
on transiently.

The behavioural description for the oscillator can be translated into excitatory and
inhibitory connections.

1) If element 1 is on, it should tend to remain on. Thus, there should be self-excitation.

2) If element ¢ is on, and element ¢ — 1 is off, then element 7+ 1 should turn on. Thus,
element ¢ — 1 should inhibit element ¢ 4+ 1, while element ¢ should excite element
¢+ 1.

3) If element 1 is on, then element 7 — 1 should turn off. Thus, element ¢ should inhibit
element 7 — 1.

When put together, the connections should look like figure 7, which shows a slice of
three elements out of an oscillator. The connections should be replicated for all elements
in the oscillator.

Thus, element ¢ will tend to excite ¢ + 1, inhibit + — 1 and ¢ + 2, and have hysteresis.
These connections make an asymmetric connection matrix, which was first suggested for
sequencing in Hopfield’s associative memory paper [Hopfield 82]. The asymmetry is in
contrast to the use of the symmetric matrices in the memory task and the travelling
salesman task.

Now, we start to translate behavioural constraints iuto mathematical inequalities. Us-
ing the weights s, a, b, k, and g, as noted in figure 7, the following conditions arise:

1) If element ¢ is on, it should tend to remain on, if nothing else is on. Thus, s > g.

2) If element ¢ and element ¢ — 1 are on, element 7 — 1 should shut off. Since z —1 has
hysteresis, one must take the force owing to s into account. Hence, s — b < g.

3) If element ¢ is on, and element ¢ —1 is off, then element ¢+ 1 should turn on. Thus,
a>g.

4) If both elements ¢ and ¢ — 1 are on, then element 7 + 1 should not be turned on.
Thus,a — k < g.

5) In addition, all the variables should be positive, since one wants to preserve the
sense of excitation and inhibition.

10

3.3 Race Prevention

The inequalities in the last section did not consider races between

Consider the state when element ¢ is on and element 7+ 1 is just turning on. Constraint
(3) above makes element ¢ turn element 7 4+ 1 on. Simultaneously, constraint (2) makes
element ¢+ 1 turn element ¢ off. If element ¢ is much faster than element ¢ + 1, then ¢ may
shut off before 1+ 1 is fully turned on. Therefore, the is a race between constraints (2) and
(3) in the previous section. Thus, the circuit may fail to oscillate, with all the elements

turning off.

time

or

X X O

1
1
O
O 1 0 O O

Fig. 8. Race between Self-Reinforcement and Inhibition

o O O

T 0
T X
T 1

o O O O

As can be seen in figure 8, a race happens when two conditions hold:

1) More than one constraint is applicable to a particular state of the circuit,
2) Applying the constraints in different orders

yield different next states. A race in a sequential threshold circuit is analogous to a
critical race in the synthesis of asynchronous digital machines. To resolve a race, one must
make certain that certain constraints are applied before other constraints.

Thus, to resolve the race in figure 8, one wants to make sure element ¢ + 1 is self-
reinforcing before it shuts off element . Consider the discrete circuit where the current
into a element from one connection Tj; is linear in V;. As element 7 4 1 turns on, there is
a voltage z; where element ¢ + 1 starts to shut off element z.

s—g

s——:clb—g=0=>z1::-—b——. (5)

Also, there is a voltage zo where element ¢ + 1 starts to self-reinforce.

a:zs—g=0=>:cg=% (6)

To make sure that element ¢ + 1 is self-reinforcing before ¢ shuts off requires

s —
:c1>a:2=>——b—g>§=>s(s—g)>gb (1)
Therefore, to prevent races, in a circuit with resistors, one sets up voltage inequalities,
which may result in non-linear inequalities in the parameters. If all the races in the
constraints are removed, then the circuit becomes speed-independent.

11

110 11 0
X 10 X 1 0
010 X 1 1
0 1 1 X 0 1

1 0 1

Fig. 9. Race between Self-Reinforcement and Disinhibition

Another race in the oscillator happens when 7 and 7+ 1 are on, and 7 + 2 is not yet on.
There is a race between ¢ ceasing to be self-reinforcing and 7 preventing 7 + 2 turning on.
Let z3 be the voltage at which element ¢ prevents element 7+ 2 from turning on. Thus,

a—kzz3—g=0=>z3= 2—_—];—2.
To prevent the race requires
g _a—
zz>:c3=>;>——k——:>kg>(a—g)s. (8)

The complete set of inequalities for the oscillator is presented below.

a>yg, s>y, s—b<y, a—k<g,
s—b<yg, s(s —g) > gb, kg > (a — g)s.

Thus, a good solution to these inequalities is
a=2, b=15 k=3, s=2, g=1. (10)
The experimental verification of this solution is presented in §3.5.

3.4 VLSI Race Prevention

The VLSI circuit does not have resistors, hence does not have an input current linear
in the output voltages. Thus, the analysis of the previous section is not directly applicable.

However, one can use the gain of the inverters to order events. Consider the circuit in
figure 10.

Let the time constant of the input be much longer than any other time constants in
the inverter chain. Also, assume that V3 > V;,. Start V; at 5 volts. Then, transistor A is
ofl. As Vi decreases to 4 volts, transistor A turns on. Next, the inverter output goes high,
turning transistor B on when V; reaches 1 volt. V; keeps rising, which pulls down V3 to
4 volts, which then turns on transistor C. Thus, the gain of the inverter orders events by
steepening the rise of the output voltage.

12

Vi D(IL Va D(f V3

T

Fig. 10. Inverter Chain Used to Order Events

B turns on

AP Vs \

4| ——t—p} Cturnaon

1 jJ——————>1 Bturnson

Aturns on

4 vy 1 vy

Fig. 11. Gain Used to Order Events

When V; starts at O volts, all of the transistors are on. As V; climbs to 2.5 volts, both
V2 and V3 head towards 2.5 volts, also. When Vj is just above 2.5 volts, V3 goes to 5 volts,
shutting off transistor C. V3 goes to 5 volts first because it has the highest gain driving it.
Subsequently, V; goes to 0 volts, shutting off transistor B. Finally, V; goes to 5V, shutting
off transistor A.

Thus, the time ordering of events down the chain will be

A turns on < B turns on < C turns on

and
C turns off < B turns off < A turns off.

The time ordering can be generalized to more inverters. The lowest gain signals will
always switch on first, and switch off last.

The RC delay of the inverter chain is assumed to be negligible in the above analysis.
This assumption implies a lower bound on the time constant of the summing node. If
Teum = the timme constaut of the summing node, 7y = the time constant of the nodes in
the inverter chain, « is the gain of the inverter, and n is the number of inverters, then

n—1
Tgum > Tinv & .

13

As an example of using an inverter chain to order events, consider the oscillator. One
wants the self-excitation of ¢ to turn on before the inhibition of ¢ — 1. Excitation uses
an N-type transistor, while inhibition uses a P-type transistor. Thus, the self-excitation
synapse needs to be a transistor similar to B in figure 11, while inhibition synapse, which
needs to be slower, should be like C in figure 11. Thus, the oscillator should use the chain

shown in figure 12.

T
L

A\ 4 N N

— output + output — output
to element i+2 to elementi+1 to elementi-1
to element i

Fig. 12. Inverter Chain Used in Oscillator

In summary, the only inequalities used by the VLSI circuits are the linear ones. Namely,

a>g, s>gq, s—b<yg, a—k<g. (11)
A good solution to these inequalities is
a=2, b=2, s =2, k=2, g=1. (12)

3.5 Experimental Results

If the inequalities are relevant to the actual operation of the circuit, then violating the
inequalities should make the circuit fail. An experiment was performed on a oscillator with
4 elements. All the parameters were held fixed, except for one, which was progressively
increased or decreased until the oscillator failed. The exact circuit used is presented in
Appendix B. The theoretical and observed failure points are listed in the table of exper-
iment 1, along with the theoretical and observed failure mode. A theoretical prediction
of a “complex” failure means that two or more inequalities are violated close together in
parameter space, thus the failure mode depends on the exact capacitances of the circuit.

Experiment 1. Discrete oscillator with all capacitors same

14

Parameter | Theoretical | Observed Theoretical Observed
Minimum Minimum Failure mode Failure mode
a 1.0 0.95 1 on 1 on
b 1.0 0.95 1& 2on 1& 2on
k 2.0 0.53 oscillates with 3 oscillates with 3
s 1.8 1.3 all off All off
g 0.8 0.33 complex 1&2o0n

ig. 13. Output of Oscillating Discrete Threshold Elements

Experiment 2. Discrete oscillator with capacitors 1 and 2 100 times bigger than the rest

Parameter | Theoretical | Observed Theoretical Observed
Maximum | Maximum Failure Mode Failure Mode
a 2.5 4.3 oscillates with 3 oscillates with 3
b 2.0 48 all off all off
k o0 > 19 none none
s 2.5 2.6 1& 2on 1& 2on
g 1.1 1.5 all off all off

15

Parameter | Theoretical | Observed Theoretical Observed
Minimum Minimum Failure mode Failure mode
a 1.0 0.95 1on 1 on
b 1.0 0.95 1& 2on 1& 2on
k 2.0 2.0 oscillates with 3 oscillates with 3
8 1.8 2.0 all off all off
g 0.8 0.57 complex oscillates with 3

Parameter | Theoretical | Observed Theoretical Observed
Maximum Maximum Failure Mode Failure Mode
a 2.5 2.4 oscillates with 3 oscillates with 3
b 2.0 1.9 all off all off
k 00 > 19 none none
s 2.5 2.0 1&2on 1&2on
g 1.1 1.0 all off all off

The observed minima and maxima do not exactly match the theoretical because the
resistors corresponding to each parameter were changed by 10% increments. In experiment
1, the k, s, and g parameters’ observed minima are much lower than those predicted by
theory. Similarly, in experiment 1, the a, b and g parameters’ maxima were much higher
than that predicted by theory.

The theory was conservative because the parameters are limited by a race preventing
inequalities: s(s — g) > gb and kg > (a — g)s. The race inequalities assume a worst case:
that certain elements are infinitely fast. Thus, the inequalities are conservative, and the
system may work outside the theoretical bounds. Notice that when the capacitors are not
as well matched, the system needs to be more speed independent, and the observed bounds
on the parameters are closer to the theoretical limits.

In addition to changing the connection weights, the capacitances and the gains of the
elements were changed. These experiments were done with the parameter values in (10).

The capacitances of individual elements could be varied over a factor of 1000, and the
circuit will still oscillate. However, as the circuit slowed down, more and more gain was
needed to keep the circuit oscillating, as shown in experiment 3. The capacitance shown
is the ratio of the largest capacitor to the smallest capacitor.

Experiment 3. Gain versus capacitance

Capacitance Gain Needed
1 11
10 30
100 75
1000 200

In the VLSI case, the experiments were done with a numerical simulation of a four
element oscillator, which fully explained in Appendix C. Figure 14 shows the output of
an element and it’s sucessor. Notice that the traces sligntly overlap: one element does not

turn off until the next one turns on.
Figure 15 shows the output of elements 1 and 3. These should not overlap, and they

do not.

Again, each parameter was varied independently until the circuit failed.

16

)L L

Fig. 14. Simulated VLSI Oscillator, Elements 1 and 2

AWEANE)

V|

Fig. 15. Simulated VLSI Oscillator, Elements 1 and 3

17

Experiment 4. VLSI oscillator with all capacitors same

Parameter | Theoretical | Observed Theoretical Observed
Minimum Minimum Failure mode Failure mode
a 1.0 1.0 1 on 1 on
b 1.0 1.0 1&2on 1& 2on
k 1.0 0.2 oscillates with 3 oscillates with 3
8 1.0 1.0 all off all off
g 0.0 -0.6 complex oscillates with 3
Parameter | Theoretical | Observed Theoretical Observed
Maximum | Maximum Failure Mode Failure Mode
a 3 4.8 oscillates with 3 oscillates with 3
b 0o > 1000 none none
k oo > 1000 none none
s 3.0 3.0 1& 2on 1& 2o0n
g 2.0 1.9 all off all off

Experiment 5 VLSI oscillator with one capacitor 100 times smaller than the rest

Parameter | Theoretical | Observed Theoretical Observed
Minimum Minimum Failure mode Failure mode
a 1.0 1.0 1lon 1lon
b 1.0 1.0 1& 2on 1& 2o0n
k 1.0 1.1 oscillates with 3 oscillates with 3
s 1.0 1.1 all off all off
g 0.0 0.1 complex oscillates with 3
Parameter | Theoretical | Observed Theoretical Observed
Maximum | Maximum Failure Mode Failure Mode
a 3.0 2.9 oscillates with 3 oscillates with 3
b 0o > 1000 none none
k oo > 1000 none none
8 3.0 3.0 1&2o0n 1é& 2on
g 2.0 1.8 all off all off

Here, there are no race inequalities, so the boundaries are matched pretty well. Also
notice that there is much more room for error in the VLSI parameters, because there are

fewer constraints on the parameters.
In experiment 5, The g parameter breaks down above zero because the system is not
perfect; there is always some leakage current from various connections.

18

4 Analog Petri Nets

Petri nets arose to model systems with concurrent behaviours [Peterson 81]. In this
paper, they are used in an opposite sense: to describe compactly a concurrent behaviour
that needs to be implemented. Thus, a designer using the technique in this paper would
give a Petri net to a program, which would then produce a circuit that implements that
Petri net.

A Petri net can best be described graphically.

z

Fig. 16. A typical Petri net

In figure 16, the circles are called “places”, the bars are called “transitions”, and the
small circles are called “tokens”. The arrows connecting the places and transitions are
called “arcs”. A place holds a non-negative number of tokens, and the transitions serve to
move tokens from place to place. A particular assignment of tokens to places is called a
“marking” [Peterson 81).

A Petri net moves tokens from place to place when transitions fire. When a transition
fires, it takes all the tokens from all the places that have arcs going into the firing transition
(the snput places), and it adds a token to all the places that have arcs coming from the
transition (the output places). A transition can fire when it is enabled. If the transition has
an input associated with it (denoted by a letter and arrow going through the transition),
then it is enabled when all the input places have at least one token in them, and the input
associated with the transition is on. When a transition has no input associated with it, it
is called an “automnalic transition.” and only needs a token in each of its input places to
fire.

The above definition is not the most general definition of a Petri net [Peterson 81], but
it will be enough for this paper.

4.1 Examples of Petri Nets

Some simple examples should illustrate the above rules.

19

O—

—O

~— A

Fig. 17. A simple example

In the example in figure 17, the token will only move from place 1 to place 2 when
input A is active. If the transition were automatic, thcn as soon as a token would appear

in place 1, it would get moved to place 2.
;
O,

|
O b

Fig. 18. A fork

Figure 18 illustrates behaviour that is known as a “fork”. Namely, there is more than
one place following the transition. Thus, if a token appears in place 1, and input A is
active, then a token must be put in all the places 2, 3, and 4, while eliminating the token
in place 1.

The example in figure 19 shows the reverse of a fork, known as a “oin”. Notice that a
transition can serve as both a fork and a join. The example must have a token in places 1,
2, and 3 before the transition fires, and puts a token into place 4, destroying all the tokens
in 1, 2, and 3. Notice that figure 19 shows an automatic transition.

20

0

O

Fig. 19. A join

Fig. 20. Conflict

Figure 20 shows an important property of Petri nets. Consider the case where inputs
A and B are both on, then a token comes into place 1. Both transitions are enabled, so
both can fire. Yet, if one fires, then the other becomes disabled, so it cannot fire. Thus,
there has to be mutual exclusion between all the transitions emanating from a place, since
only one may fire. Having more than one transition competing for a token is known as a
“conflict”. Conflict is important, since any decision specified by a Petri net automatically
implies conflict, hence mutual exclusion.

When more than one transition is in conflict and are enabled, there should be some
rule for determining which transition should fire. For example, one could pick at random
amongst the enabled transition, firing the picked one, and disabling the rest. Another rule
is known as arbitration. If the firing transition was the first enabled transition, then the
net is said to provide arbitration. Arbitration can lead to the system to be metastable for
an unbounded length of time, or making decisions non-deterministically.

4.2 Safe Marking

An initial marking is called “safe” when for all possible markings of the net that are
reachable from the starting marking, there is never more than one token per place.

21

SAFE UNSAFE
Fig. 21. Unsafe and Safe Markings

Safeness is a subset of a property called “boundedness”, which means that every place
must have less than a certain finite number of tokens.

The synthetic technique presented in this paper will implement only safe markings of
Petri nets.

4.3 Inhibitor Arcs

Normal Petri nets are not powerful enough to be Turing Universal, even when un-
bounded, because they cannot test for the absence a token. If the transition firing rules
are modified to include inhibstor arcs, an unbounded Petri net can become Turing Univer-
sal. Thus, inhibitor arcs are powerful.

With inhibitor arcs, a transition is enabled when all its normal input places have tokens
and none of the inhibitor places have any tokens in them. It then takes all the tokens from
the normal input places when it fires. It does not take any tokens from the inhibitor places.

An inhibitor arc is a hole sensor. One has to make sure that the hole does not dis-
appear while the inhibitor arc is preventing the transition from firing. Thus, there must
be arbitration between the destination of the inhibitor arc, and any input transitions that
could feed tokens to the origin of the inhibitor arc.

22

Fig. 22. Inhibitor Arcs

4.4 Analog Petri Nets

An analog Petri net is one where the inputs to the transitions can take on any analog
values between 0 and 1. A transition is considered enabled when its input is above a given
threshold and the normal conditions on previous places hold. As with digital Petri nets,
tokens are digital objects, but the inputs are now analog.

The main difference between a normal digital Petri net and an analog Petri net is
analog arbistration. Namely, if there is a conflict in the Petri net, and all the inputs to the
transitions are on before a token arrives at the input place, the transition with the largest
input should fire. Analog arbitration can not be done if the inputs are digitized.

In the case where the inputs turn on after the token is in the input place, the transition
with the largest input integrated over time will fire. Thus, analog arbitration and time
arbitration are performed by the same circuit.

In summary, if a designer specifies a safe analog Petri net with inhibitor arcs, then the
algorithm presented in this paper should be able to turn the net into a circuit.

23

5 An Analog Asynchronous Sequential Machine

Now let us attack the problem of making a circuit that will implement a Petri net spec-
ification. Such a machine is called an analog asynchronous sequential machine (AASM).
First, let us choose a representation for the problem, and solve the inequalities correspond-
ing to behavioural constraints.

An analog Petri net can be made of fragments, containing places and transitions, which
when composed together will form any possible analog Petri net. This section will present
implementations of the Petri net fragments that can be glued together to implement an
entire Petri net. The fragments are composed by using the same threshold elements for
the input place of a second [ragment and output place of a first fragment.

First, consider the simplest possible Petri net: one that has no conflicts, no forks or
joins, and no automatic transitions. A circuit that implements such a Petri net is simply
an oscillator that stops at each state until a certain input is given to the system. Such a
Petri Net can be composed of fragments shown in figure 23.

—_— _—
previous input place transition output place
transition

Fig. 23. A Simple Petri Net Fragment

The implementation of the fragment will b similar to the oscillator in §3. Namely, let
there be one element for each place, and one element for each transition, with the input
corresponding to the transition being a wire going into the transition element.

First, let us convert the behavioural constraints needed to implement a Petri net frag-
ment to excitatory and inhibitory connections.

1) If a place or transition is on, it will tend to remain on. Thus, there should be
self-excitation.

2) A transition turns on when the previous place is on and the input is on. Thus, there
should be an excitatory connection from a place to a transition, and an excitatory
input.

3) A place will turn on when a previous transition is on and when the place that
previously held the token is off. Thus, there should be excitation from a transitions
to an output place, and inhibition from the input place to the output place.

4) A place should turn off after it has fired a transition. Thus, put inhibition from a
transition to the input place.

24

5) However, a transition should not turn on if its input place has not turned off any
previous transitions. Thus, there should be inhibition from a transition to any
transitions following its output place.

6) A transition should turn off after it has turned on its output place. Thus, put
inhibition from the output place to the transition.

input

h
b a b
| > >
e d 9 e
S S

t p St Sy
previous . -
transition input place transition output place

Fig. 24. Wiring Diagram for Implementing Simple Petri Net

The above wiring list is summarized in figure 24. The wiring is similar to the oscil-
lator, except that the input moves the token along. The place-to-place and transition-to-
transition inhibitory connections can be used, because the net should have a safe marking.
A safe marking prevents tokens from running into each other as they travel around the
net.

Now, we have the following constraints on the weights based on the behavioural con-
straints.

1) If a place or transition is on, it will tend to remain on, if everything else is off.
Thus, sp > gp and s; > g;.

2) A transition will turn on only if its preceding place and its input is on. Thus,
at+c>g,a<gy,c< g

3) A place will turn on if its preceding transition is on and the preceding place has
been shut off. Thus, b > gp.

4) A place should turn off if its previous transition is off, and its next transition is
on. Thus, sp — d < gp.

5) Similarly, a transition will turn off when its input place is off and its output place
is on, even when the input is on, which requires s; + ¢ — e < g;.

6) A transition should not turn on if a previous transition is on. Thus, a +¢—k < gp.

7) Similarly, an output place should not turn on if its input place is still on. Thus,
b—h <gp.

25

For the VLSI circuit, these are all the constraints that are needed.
A summary of these constraints is

Sp > Gp, St > gt a+c¢> gt
a < gt ¢ < g, b>gp5 (13)
8p —d < gp, st+c—e<gi, b—h < gy, a+c—k<g,

A good solution to this system is

8 =2, Sp =2, a=0.7, b=2, ¢c=0.7,

2, e=2, h =2, k=2 gp =1, gt = 1. (14)

a
I

The races in these constraints are similar to those of the oscillator. Namely,
1) A place should self-reinforce before it inhibits its previous transition.
2) A place should cease self-reinforcement before it allows the next place to turn on.
3) A transition should self-reinforce hefore it inhibits its input place.
4) A transition should cease self-reinforcement before it allows the next transition to turn
on.
For the VLSI circuit, figure 25 shows that the races are eliminated by properly as-
signing the outputs in the inverter chain of the elements.

o>

i
I

\Z \ /
— output + output — output
bhk strspab de

Fig. 25. Inverter Chain for Simple Fragment

In the discrete circuit with resistors, non-linear inequalities are needed to prevent races.

Following the analysis of the oscillator, let
z; = the voltage necessary for an input place to prevent an output place from turning
on,

z2 = the voltage necessary for place self-reinforcement,

z3 = the voltage necessary for a place to turn off its previous transition.

z4 = the voltage necessary for a transition to prevent a succeeding transition from turn-
ing on,

z5 = the voltage necessary for transition self-reinforcement with input,

zg = the voltage necessary for transition self-reinforcement without input,

z7 = the voltage necessary for a transition to turn off its input place.

26

Thus,

b—
b-—-zlh_‘gp=0=>$1= hgp’ (15)
228p —gp=0=> 23 = g_p’ (16)
Sp
s I
st —x3e — gt =0=> 123 = tegt, (17)
a+c—
a+c—:z:4k—gt=0=>z4:——+—k——g—t—, (18)
a1
58t +¢c— gt =0= x5 = 19
55t + gt 5 st tc (19)
TeSt — gt = 0=> 75 = %:-, (20)
s —_—
Sp—zrd —gp=0=>z7 = Pdgp. (21)
Prevention of races requires
T3 > xy3 > *1, 5 > T4, Ty > Tg. (22)
which implies
gph > ‘SP(b - gP)’ 'SP('st - gt) > gpc (23)
gtk > (a+c—gt)(st +¢), si(sp—gp) > gid.
A good solution to entire system of both (13) and (23) is
s = 1.5, Sy = 2.5, a=0.8,
b=14, c¢=04, d=20, e=10, (24)

h=16, k=06, g,=1.0, g: = 1.0.
Experimental results using this solution are presented in §5.3

5.1 Conflict in the Petri Net

A Petri net without conflicts is not useful, because it cannot make decisions. The
network developed above cannot handle net conflicts, because it does not have mutual
exclusion between the possible decisions. Mutual exclusion has to be put in explicitly.
Hence, consider the basic conflict fragment shown in figure 26.

The representation will be as before, with one element per place and transition, except
now there should be mutual inhibition between the possible decisions. The wiring diagram
is shown in figure 27.

The mutual inhibition serves as an flip-flop to make the decisions mutually exclusive.
Mutual exclusion is still needed by more than two conflicting transitions, thus the circuit
will contain an N-flop, an N-way mutual inhibition between all the conflicting transitions.

There are two ways of implementing an N-way mutual inhibition. One could make
inhibitory connections from all of the other competing transitions to a transition. In this
case, the inhibition is proportional to the sum of the outputs of the other competing
transitions, which makes the analysis for the discrete circuit easy.

27

P2
T2
m™
P1
T3
P3

Fig. 26. Basic Conflict Element

input

Fig. 27. Wiring Diagram for Conflict

One could also take the OR of all of the other competing transitions, which gives an
inhibition proportional to the maximum of the outputs of the other competing transitions.
The OR was used in the simulated VLSI N-flop, where it was implemented using pass gate
logic.

28

input competing
transitions

9t

St

previous

transition input place transition output place

Fig. 28. Wiring Diagram for Summed Mutual Inhibition

competing transitions

previous
transition

input place transition output place

Fig. 29. Wiring Diagram for ORed Mutual Inhibition

The constraints on the behaviour of the simple fragment still apply, but now the mutual
exclusion must be added explicitly. Thus, the mutual inhibition f is added.

Extra constraints are needed to solve for f. Namely, if a transition is on, no other
transition should turn on, which implies

f>a+c—gq (25)

29

Unfortunately, the mutual inhibition introduces more races. There is a race between a
transition trying to be self-reinforcing and a transition being shut off by a competitor. One
wants the mutual inhibition to win over the self-reinforcement so that only one transition
can turn on. Also, there is a race between the mutual inhibition trying to shut a transition
off and the transition trying to turn on its output place. Finally, there is a race between
the mutual inhibition and the transition trying to shut off its input place. In both these
cases, the mutual inhibition should win, because only one transition should be permitted
to do anything.

In the discrete circuit, consider the worst case: two competing transitions that start
to turn on at exactly the same time, with exactly the same input. Ideally, the N-flop
should stay at a metastable voltage V. Vo is reached when the inhibition is equal to the
excitation:

a+c—
G+C+Voost—voof=gt=>Voo=_ﬁﬂ~ (26)
— St
Since a + ¢ — g; > 0, to get metastability at V,, > 0 requires
f > 8. (27)

Thus, the race between self-reinforcement and mutual inhibition is resolved.
If the transitions are in a metastable state, they should not turn on any output places,
or turn off the input place. Thus,

which imply

gt(f — st) > bla+ ¢ — g1), (sp — 9p)(f — st) > d(a+ ¢ — g1). (29)

If one treats f as a free variable, and substitute the parameters from (24) into (29),
one gets

f>18. (30)

Thus, a good choice for f is
f =25 (31)

In the VLSI circuit, the inputs to f connections should turn on before s¢, b, or d. Thus,
the inverter chain that should be used in the threshold element is shown in figure 30. For
the VLSI circuit, it is adequate to take

f=10 (32)

5.2 Special Cases

To implement the behaviour of an arbitrary Petri net, some special case fragments
must be considered. ,

The first case to worry about is an automatic transition, which is accomplished by
tying an input permanently on. Fixing a voltage, as opposed to adding a new parameter
helps to limit the number of parameters for the system. This fragment will work with all
the other cases, including conflict.

30

el

v \'% y
— output + output — output
Ifbhk stspab de

Fig. 30. Inverter Chain for Mutual Inhibition

T

OO

T2

Fig. 31. Fork Fragment

Another type of Petri net fragment is a multiple fork or join. A multiple fork requires
a transition to wait until all of its output places are on before it can shut off. To do this
for an arbitrary number of output places requires arbitrarily accurate threshold element.
Thus, one should use an AND gate for the inhibition of the multiple fork transition.

In the VLSI circuit, the AND is implemented with pass gate logic. In the discrete
circuit, the AND is implemented with a CMOS gate, as explained in appendix B. CMOS
gates have non-linear transfer responses, however, and hence affects the race inequalities.
Namely, if the threshold of the CMOS logic is 0.5, then the output places will turn off the
transitions when all of them reach an output voltage of 0.5. Thus, the =3 in equation (17)
is always 0.5. Thus, the inequalities in (22) imply

0.5 > z; = 0.5 > gp" = sp > 2. (33)
P
The inequality in (33) is satisfied by the parameter values given in (24).

A multiple join is similar to a multiple fork, because it requires all of its input places
to be on before it can turn on. Again, this needs an AND, because there could be an
arbitrary number of input places. This AND is implemented by an AND pass gate in the
VLSI circuit, and by CMOS logic in the discrete circuit.

31

hr T4

Fig. 33. Join Fragment

Since the a connection is not involved in any of the race inequalities, there are no
extra nonlinear inequalities needed. However, in the discrete circuit, there is a difficulty
with the h and k connections. There are two different ways of treating the h connections.
One could simply OR all of the input places to the multiple join, then feed the result to
the output place with an inhibitory strength of h. Similarly, one could OR the previous
transitions to the multiple join, and feed the result to the multiple join, with an inhibitory
strength of k. The VLSI simulations handled the h and k connections in exactly this way,
using pass gate logic for the ORs.

The problem with using ORs in the discrete circuit is that the CMOS logic has non-
linear transfer functions. If one assumes a threshold of 0.5, then the z; in equation (15) is
0.5. Thus, (22) imply

z3 > 0.5. (34)

32

Fig. 34. VLSI Wiring Diagram for a Join Fragment

which directly contradicts (33).

Fig. 35. Discrete Wiring Diagram for a Join Fragment

The solution to the above problem is to use a wired OR for the k& connections. The
wired OR is shown in figure 35. Namely, make a k inhibitory connection from each previous
transition to the multiple join transition. This is permissible, since k& does not have an
upper bound in (13) or (23): inhibiting with a strength of nk will work just as well as &,

where n > 1. Using a wired OR also makes the circuit simpler, with fewer CMOS gates
to wire.

33

Similarly, the h connections of a multiple join can be implemented using a wired OR,
since h has no upper bound in (13) or (23).

L]

T2

Fig. 36. A Petri Net with a Self-Loop

Another case to consider is a self-loop. A self-loop is a place that serves as both an
input place and an output place for the same transition. This intuitively means that a

token in the place helps to enable the transition, but does not get consumed in the firing
of the transition.

Fig. 37. Wiring for a Self-Loop (Discrete Circuit)

Thus, if a transition has a place that is both an input and an output, then

d=0, (35)

to make sure the token is not consumed. Notice that there still can be conflict between
a self-loop transition and a normal transition, and there still should be mutual inhibition
between the transitions. Also notice that the self-loop a connection should get ANDed in

34

with any other a connections, if the transition has a multiple join. An kA connection should
not be used between the self-loop place and the output place, otherwise the output place
will never turn on. There should be a k connection between the transitions before the
self-loop place and the self-loop transition.

T1

T3
T2

Fig. 38. Inhibitor Arc Petri Net

The last case to consider is making inhibitor arcs, which are similar to multiple joins.
The difference is that the logic is reversed: the transition should not fire if the inhibitor
place is on. Thus, the AND gate should receive an inverted output from any inhibitory
places. There should be no h or k connections from the inhibitor places to the inhibitor
transition or the output places. There should, however, be mutual inhibition between the
transitions before the inhibitor place and the inhibitor transition, as discussed in §4.3.

Fig. 39. Inhibitor Arc Wiring Diagram

5.3 Discrete Circuit Experimental Results

35

The following Petri net was implemented using the circuit in figure 3, using the pa-
rameter values from equations (24) and (31). Notice the Petri net has some of the special
cases, such as a conflict, a fork, and a join.

P1 T4 6 8

()
N\

«—t—E

Fig. 40. Experimental Petri Net

The circuit’s behaviour was precisely the same as the specified Petri net, thus showing
that the synthetic technique in chapter 3 does indeed work.

If one sets all the inputs greater than 0.5, and starts the circuit with one place on, then
the circuit turns into an oscillator, as can be seen in figure 41, which is an oscilloscope
trace of the output voltages of 4 sequential places in the net. One can also make an unsafe
marking by putting two tokens in the net. The two tokens still propagate through the net,
as seen in 42.

If the circuit is made to oscillate and if input A is made larger than input B, the
circuit will travel exclusively down the upper branch of the Petri net in figure 40. As A
is decreased, or B is increased, the system becomes metastable, then finally only proceeds
down the lower branch of the net. The mutual inhibition is evident in figure 43, where
the output of two mutually inhibiting transitions is shown. First, both grow, then the
N-flop makes a decision, and one transition turns on, and the other one turns off. Thus,
the circuit does analog arbitration in practice, as well as in theory.

To check if the constraints really control the behaviour of the circuit, the connection
strengths were changed systematically, until the circuit failed to oscillate. In experiments
below, the behaviour of “ringing” means that a place or transition would not turn itself

36

ing through the Net

One Token Travell

. 41.

1g

F

T
.

=

e

ing through the Net

Two Tokens Travell

. 42,

Fig

itself off. Rather, it would oscillate a few

then turn

9

on, then turn on the next element

times before finally shutt

ing off

37

Fig. 43. Output of Mutually Inhibiting Transitions

Experiment 6. Discrete AASM with equal capacitors

Parameter | Theoretical| Observed Theoretical Observed
Minimum | Minimum Failure mode Failure mode

a 0.8 0.61 Pon Pon
b 1.0 1.1 T on T on
c 0.2 0.20 P on P on
d 1.5 1.5 P& Ton P& T on
e 0.9 0.98 P& Ton P& Ton
b 1.8 1.9 no mutual inhibition [no mutual inhibition
k 0.4 0 oscillates with 2P none
h 1.0 0 oscillates with 2T none
St 1.3 0.5 token loss ' token loss
Sp 2.0 1.3 token loss token loss
gt 0.9 0.80 complex P & T on
gp 0.5 0.46 complex P& T on

38

Experiment 7. Discrete AASM with P5, P6, T7, and T8 cap

Parameter | Theoretical| Observed Theoretical Observed
Maximum | Maximum Failure mode Failure mode

a 1.0 0.89 off T fires off T fires
b 1.6 3.3 oscillates with 2P oscillates with 2P
¢ 1.0 0.88 T on with no P T on with no P
d 2.8 5.0 token loss token loss
e 2.2 > 10 token loss none
f 00 > 10 none none
k oo > 10 none none
h oo > 10 none none
St 1.6 1.7 P &Ton P& Ton
Sp 3.0 2.8 P & T on P & T on
gt 1.1 1.1 complex P on
dp 1.2 1.3 complex T on

acitors 100 times large

T

Parameter | Theoretical] Observed Theoretical Observed
Minimum | Minimum Failure mode Failure mode
a 0.6 0.61 P on P on
b 1.0 1.1 T on T on
¢ 0.2 0.20 P on P on
d 1.5 1.7 P& Ton P& Ton
e 0.9 0.98 P& Ton P& Ton
f 1.8 1.9 no mutual inhibition | no mutual inhibition
k 0.4 0.42 oscillates with 2P oscillates with 2P
h 1.0 0.81 oscillates with 2T oscillates with 2T
St 1.3 0.98 token loss token loss
Sp 2.0 2.1 token loss token loss
gt 0.9 0.74 complex “rings”
dp 0.5 0.55 complex “rings”

39

Parameter | Theoretical| Observed Theoretical Observed
Maximum | Maximum Failure mode Failure mode

a 1.0 0.89 off T fires off T fires
b 1.6 1.9 oscillates with 2P oscillates with 2P
¢ 1.0 0.88 T on with no P T on with no P
d 2.8 3.3 token loss token loss
€ 2.2 2.5 token loss none
f 0o > 10 none none
k o0 > 10 none 1noie
h (o) > 10 none none
S¢ 1.6 1.7 P& T on P& Ton
Sp 3.0 2.8 P &Ton P & T on
gt 1.1 0.97 complex local oscillation
gp 1.2 1.1 complex lost token

In experiments 6 and 7, the inputs to the transitions were applied continously. The
inequalities in (13) and (23) are therefore too strict, since they assume that the input to a
transition may go away after the transition is turned on. A weaker set of constraints that
were used to calculate the theoretical limits are

sp>gp’ st +¢ > g, a—+c¢> g,
a < gg, ¢ < g, b>gp7
sp —d < gp, st +c—e<g, b—h < gp, a+c—k<g, (36)

gph > sp(b—gp), sp(st+c—gi) > gpe
gtk > (a+c—gi)(st+¢), (st+c)(sp—gp) > ged.

Also, to test the maximum a, T7 was turned off, so that the circuit failed by oscillating.
To test maximum ¢, an initial condition of all off was given to the circuit. The circuit then
failed by turning on some elements.

As in experiment 1, when the capacitors are all the same, the theory is very conser-
vative. Again, the theory is conservative because the nonlinear inequalities assume that
certain elements are changing infinitely quickly. When the capacitors become very differ-
ent, the circuit must become more speed independent, hence the observed bounds tighten
up. The remaining 10% error can be attributed to the fact that the measurements were
done with resistors that were made in 10% intervals. In summary, it seems that the theory
matched the experiment well.

5.4 Numerical Simulations of a VLSI AASM

A VLSI AASM was simulated using the method outlined in Appendix C. To check
that mutual inhibition works for a reasonable number of elements, the Petri net in figure
44 was simulated.

In figure 45, the voltage of the summing node of the mutually inhibiting elements is
shown. Notice that the element that is pulled down fastest wins, and pulls back up all the
other transitions.

40

h
N

Fig. 45. Output of Competing Transitions

To test the special cases, two other Petri nets were tested. Figure 46shows a test of a
fork and join. The circuit still waited for all of the input places, even when one of them
was 100 times slower than the rest. Figure 47shows a test of an inhibitor arc and self-loop.

Again, the circuit behaved as specified, even when the capacitances were varied by a factor
of 100.

41

Fig. 46. Fork and Join Test

Fig. 47. Self-loop and Inhibitor Arc Test

42

Experiment 8. Simulated VLSI N-flop with equal capacitors

Parameter | Theoretical| Observed Theoretical Observed
Minimum | Minimum Failure mode Failure mode
a 0.3 0.4 7 P on P on
b 1.0 1.0 T on T on
c 0.3 0.4 P on P on
d 1.0 1.0 P& Ton P & T on
e 1.7 1.7 P & Ton P & T on
f 04 0.4 no mutual inhibition | no mutual inhibition
k 0.4 0 extra tokens none
h 1.0 0.1 extra tokens extra tokens
8¢ 0.3 0 token loss none
Sp 1.0 1.1 token loss token loss
gt 0.7 0.8 T always fires T always fires
gp 0.7 0.1 complex all P on
Parameter | Theoretical| Observed Theoretical Observed
Maximum | Maximum Failure mode Failure mode
a 1.0 1.0 off T fires off T fires
b 3.0 3.7 extra tokens extra tokens
c 1.0 1.0 T fires without P T fires without P
d 00 > 1000 none none
e o0 > 1000 nomne none
f o0 > 1000 none none
k o0 > 1000 none none
h 00 > 1000 none none
8t 3.3 3.3 P& T on P & T on
Sp 3.0 3.0 P& Ton P& T on
gt 14 1.3 P on P on
dp 2.0 2.0 token loss token loss

43

Experiment 9. Simluated VLSI N-flop with P2 and T3 capacitors 100 times smaller

Parameter | Theoretical| Observed Theoretical Observed
Minimum | Minimum Failure mode Failure mode
a 0.3 0.4 P on P on
b 1.0 1.0 T on T on
c 0.3 0.4 P on P on
d 1.0 1.0 P & T on P & T on
e 1.7 1.7 P & T on P& T on
f 0.4 0 no mutual inhibition none
k 0.4 0.4 extra tokens extra tokens
h 1.0 1.1 extra tokens extra tokens
S¢ 0.3 0.3 token loss token loss
Sp 1.0 1.1 token loss token loss
Gt 0.7 0.8 T always fires T always fires
dp 0.7 0.1 complex local oscillation
Parameter | Theoretical | Observed Theoretical Observed
Maximum | Maximum Failure mode Failure mode
a 1.0 1.0 off T fires off T fires
b 3.0 2.9 extra tokens extra tokens
c 1.0 1.0 T fires without P T fires without P
d fore > 100 none none
e 00 > 100 none none
f 00 > 100 none none
k 00 > 100 none none
h o0 > 100 none none
St 3.3 3.3 P& Ton P&Ton
Sp 3.0 3.0 P & T on P & T on
a: 1.4 1.2 P on P on
dp 2.0 1.9 token loss token loss

As in experiments 6 and 7, the experiments were carried out with the inputs on con-
tinuously. Thus, the theoretical limits were based on

Sp > 9gp; 8t + ¢ > gi,
a—+c> g, a < gt,

c< g, b> gp, (37)
sp —d < gp, st+c—e<g,
b—h < g, at+c—k<g,

Also, the maximum of ¢ and the minimum of g; was tested with all inputs off. The
maximum of ¢ was tested with an initial condition of all off.

44

The h and k observed minima are much lower than the theoretical minima in experi-
ment 8, because the capacitors are all equal, which means that there are no fast places or
transitions that can turn on faster than their predecessors turn off.

The mutual inhibition never failed in experiment 9, because T3 was so much faster
than the rest of the competing transitions.

In general, the theoretical parameters matched the observed parameters.

45

6 Conclusions

In this thesis, a method of designing asynchronous sequential circuits using threshold
elements was presented. Using threshold elements is useful for making a sequential machine
that is sensitive to the analog value of inputs. A digital circuit could be desgined to do
analog arbitration, but it would need analog-to-digital converters and ALUs, and thus be
inefficient.

However, threshold elements are inaccurate. To construct a many-input AND or OR
gate using one threshold element would require exact weights. This thesis showed that one
could easily mix Boolean logic with analog threshold elements.

The VL.ST implementation of threshold logic presented in this thesis is cheap: only
two transistors per input. The summing is accomplished by a wired OR. Thus, threshold
elements are easy to build, and one could potentially put many threshold elements on a
chip to build interesting systems. If one uses current summing in sub-threshold, however,
threshold variations may cause the circuit to fail.

A simple generalization of a weighted sum of outputs was presented in this thesis,
namely, a weighted sum of Boolean functions of the outputs, seen in figure 48. Perhaps
one could use this new logic family to build interesting collective circuits.

d &

Pau Gate Pasgs Gate
Logic

Pass Gate Pass Gate
Logic Logic

¢ ¢

Fig. 48. New Logic Family

One can also compare the threshold circuits presented in this thesis with other col-
lective circuits done with threshold elements. The circuits in this thesis used asymmetric
connections between the elements. In previous work [Hopfield 82|, only symmetric connec-
tions were truly controllable, with an energy function.

An analysis by forces was presented in this thesis. Forces can be thought of as a
generalization of energy to asymmetric matrices. By constructing matrices with specified
forces, asymmetry was shown to generate simple, controllable behaviours. The force anal-
ysis isn’t restricted to sequential circuits. Any threshold circuit should be amenable to
force analysis.

46

6.1 Future Work

There are several interesting ideas that grow out of this thesis. First, there is the direct
application of these circuits to real-world problems. For example, an analog sequential
circuit might be useful in speech recognition.

Another route to take is to design special purpose collective circuits using force analysis,
analogous to the energy function analysis done in the travelling salesman problem [Hopfield
85]. Namely, if the desired behaviour of a circuit is an asynchronous transition between
states, then force analysis should yield a design.

In this thesis, states that had only one element on were made temporarily stable. As
can be seen in Appendix A, the temporarily stable states can have more than one element
on, thus introducing redundancy into the circuit. Redundancy makes the circuit fault-
tolerant: if any element fails, the circuit can still function. Thus, threshold elements could
potentially be made fault-tolerant and the force analysis still applies.

Finally, one can possibly compose collective circuits using the techniques presented in
this thesis. Consider the sequential machine of §5. The tokens travel through the Petri net,
until a conflict is reached. The mutual inhibition of the conflict circuit fragment does the
real computation of the circuit: analog arbitration. Instead of mutual inhibition, perhaps
a more complicated collective circuit could be substituted. For example, the simple Petri
net fragments could asynchronously activate associative memories, or travelling salesman
circuits, which would then make decisions, and activate other collective circuits in the
network. Perhaps these circuits are amenable to force analysis, also.

47

[Dennis 70]

[Hebb 49]

[Hollaar 83]

[Holt 70|

[Hopfield 82]

[Hopfield 84]

[Hopfield 85]

[McCulloch 43]

[Mead 80|

[Millman 79|

[Minsky 68]

[Peterson 81]

[Seitz 70]

Bibliography

Dennis, Jack B., Modular, Asynchronous Control Structures for a High Per-

formance Processor, Record of the Project MAC Conference on Concurrent

Systems and Parallel Computation, pp 55-80, 1970.
Hebb, D. O., The Organization of Behavior, Wiley, 1949.

Hollaar, L., Direct Implementation of Asynchronous Control Units, IEEE Trans.
on Computers, Vol 31, No. 12, pp 1133-1141.

Holt, Anatol W. and F. Commoner, Events and Conditions, Record of the

Project MAC Conference on Concurrent Systems and Parallel Computation,
pp 3-52, 1970.

Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective
Computational Ahilities, Proc. Natl. Acad. Sci. USA, Vol 79, pp 2554-2558,
1982.

Hopfield, J.J., Neurons with Graded Response Have Collective Properties Like
Those of Two-State Neurons, Proc. Natl. Acad. Sci. USA, Vol 81, No. 10, pp
3088-3092.

Hopfield, J.J., “Neural” Computation of Decisions in Optimization Problems,
Caltech, preprint.

McCulloch, W. 8. and W. Pitts, A logical calculus of the ideas imminent in
nervous activity, Bull. Math. Biophys., Vol 5, p 115.

Mead, Carver and Lynn Conway, Introduction to VLSI Systems, Addison-
Wesley, 1980.

Millman, Jacob, Microelectronics: Digital and Analog Circuits and Systems,
McGraw-Hill, 1979.

Minsky, M. and S. Papert, Perceptrons, MIT Press, 1968.

Peterson, James L., Petri Net Theory and the Modeling of Systems, Prentice-
Hall, 1981.

Seitz, Charles L., Asychronous Machines Ezhibiting Concurrency, Record of the
Project MAC Conference on Concurrent Systems and Parallel Computation, pp
93-106, 1970.

48

Appendix A: The Relationship to Hopfield's Model

The idea of constraints on forces is more general than shown in §4. Namely, one does
not need to just manipulate the forces on one element, one can manipulate the forces on an
entire vector of elements. In the Petri net, the one-element representation is analogous to
a one-hot code in asynchronous digital design[Hollaar 83], where each state is represented
by one feedback path turning on. Using full state vectors is like using a more complicated
coding scheme for states. This can be done to make the network redundant and fault-
tolerant.

For example, if one wants a group of five elements, represented by

M?® = 1111100000 (38)
to turn on the next five elements,
M = 0000011111 (39)

one simply makes excitatory connections from the first group of five to the second group
of five (h; (V) = V;). This generalization of link-by-link wiring can be represented as an

outer product. Namely, if one wants to give a force o to the elements on in M? when the
system is in state MO , one simply uses

T;; = BM}h;(M°) (40)

To find the force owing to this matrix, one plugs equation (40) into the force equation (2),
without the threshold. _ L o o
F(M°) = Y- BM}h; () hy (31°)

i
_ (41)
= ﬁM} Z h? (Mo)
. J
Thus, all the elements on in M? get a force with strength 83, h? (M 9). Thus,
a
f=——"—5— (42)
5 ()

Because the force is linear in 7', one can superimpose force components made by outer
products by superimposing outer products in the matrix T. Thus, the idea of wiring up
the forces separately still holds, even when the forces act on entire vectors.

With the introduction of multi-element representations, the idea of state space becomes
useful. State space is the space of all possible output voltages, thus is continuous. Adding
outer products to the matrix attributes meaning to particular points in state space. But,
because of the continuity of the analog sum done by the elements, regions around these
points also mean the same thing. Thus, using multi-bit representations is analogous to
using error correcting codes to tolerate faults.

49

Thus, the connection to Hopfield’s associative memory becomes clear [Hopfield 82].

To make an associative memory, one uses symmetric outer products to make attractors.
Thus, to make state A stable, one uses

Tij = AiAja

which generates a force Lo
Fy = AjA;V; = A;(A-V).

Thus, the associative memory gets forced to a memory with a strength proportional to the
distance the system is from the memory. Thus, the system usually proceeds to the nearest
memory, since that has the strongest force.

Hopfield’s associative memory is fault-tolerant because of multiple bits per memory.
One can use multi-element state vectors with the AASM, also. Consider a circuit with m
element per state. If any element is stuck on or off, or if any connection is broken, there
will be a relative error of 1/m in some parameter. The VLSI parameters can withstand
a 1/3 error, so that using three elements per state will be fault tolerant. Namely, one
element per place or transition can be destroyed, and the circuit will still work.

There are some problems with using the simple redundancy described above. First,
the circuit requires nine times the number of synapses than the irredundant circuit. This
may be too costly. Second, the circuit becomes much less fault-tolerant if there are large
multiple forks or joins, since the AND gates break if any one of their inputs is stuck on or
off. Third, the connections are still local, so that faults that are spatially correlated might
destroy the circuit.

50

Appendix B: The Experimental Discrete Circuits

To test the theory in §3, a 4-stage ring oscillator was built. The circuit diagram of
one element is presented in figure 49. Let this be element 7. All the connections are

translation invariant, so a connection to 1 — 1 means a connection to the previous element
in the oscillator.

+ out

—AAMA—
i—2
47K
i—i-—mllt A K]
62 K o
— out
P41 W 1" 20 K
AAAA WV
47 K YYVY
+ out 20 K
Vss Vss i
[110K/ p 1M 3 TLO74
= TLO74 = TLO74
— v
— out + out

4503

Fig. 49. One-fourth of the 4-Ring Oscillator

The circuit runs on a dual-rail power supply of -9V /+9V.

The resistances of the summing network shown in figure 49 correspond to the weights
in (10). All the connections that have the same parameter are put in the same resistor
pack, so that changing a resistor pack will globally change the parameter.

The starting state of the system is applied through the 5K resistors hooked up to the
tri-state buffer. Then, the drivers are disabled, and the system evolves.

The experimental circuit for the AASM is similar to that of the four-ring oscillator.
The connections were designed to implement the Petri net in figure 40.

Here, the conductances shown in figure 50 and figure 51 correspond to the weights in

(24) and (31).

51

— out 30K

previous places

36K
—AA—t

25 K

+ out
previous transitions

— out
next transitions

+out 20K
self —-ww—¢

VbD

Vss —I—

3}

e & o

o—

E

Vss
62 K +
1——'ww—

1M

TLO74

Fig. 50. Experimental Circuit for a Place in the AASM

82 K

— out AAAA

previous transitions
4012 4049

+ out j p ‘>C 6,,2”K _ g
all previous places
— out j >0 >O 4,,7,,K | { |
all next places 1M
4002 4049 AN
+ outjE.K +
self "
150 K _
input-vww—t
= TLO74

VoD —[VSS 62K

Vss 5K

II;::/;;

1M

R0 K
——AMA———
20K
—AW—
— TLO74
\\%
— out + out
20K
- 20
.
TLO74
y
— out

Fig. 51. Experimental Circuit for a Transition in the AASM

Again, a power supply of -9V/0/9V is used. A full 15V is not used to protect the
CMOS logic. The output swing of the op-amp is -7.5V to +7.5V. Thus, the full output of
an op-amp through a fixed resistance does not generate the same current as the output of
the CMOS logic, or a power supply connected through the same resistance.
A simple remedy is applied to the mis-matched voltage problem. First, the CMOS
logic (except for the tri-state drivers) is run on a power supply of 0V/+7.5V, to make the
outputs consistent with the op-amps and to make the switching threshold for the CMOS

52

logic to be at 0.5. The extra power supply is generated by a voltage follower op-amp whose
positive input is held at the proper voltage. Notice that all inputs to the CMOS must be
between OV and 7.5V. Thus, to get a inverted input to a CMOS NOR gate, one must
invert the non-inverted output of the op-amp, instead of using the inverted output.

The CMOS logic whose inputs are hooked to positive outputs have a power supply of
0V/+7.5V. The CMOS whose inputs are hooked to negative outputs have a power supply
of -7.5V/0V. As in the oscillator case, all inputs to this CMOS logic must be in the voltage
rails, which requires extra inverters. The extra voltages are generated from two voltage
followers.

The circuits shown for the AASM are really particular examples of an element. In the
place circuit, one resistor per previous and next transitions must be used. In the transition
circuit, if the transition is a multiple fork, then the inhibition from all output places must
be fed through the NAND gate. Otherwise, a simple resistor will suffice. Similarly, if the
transition is a multiple join, then excitation from all the input places must be fed into the
NOR gate. For all of the other connections, one resistor per connection should be used.

53

Appendix C: VLSI Simulation

The VLSI circuit was simulated using Gear’s method for stiff non-linear ordinary dif-
ferential equations. The differential equation that approximates the behaviour of the VLSI
threshold elements is

b = 5 2 15 (0) B0 (9), (43)

where v; = the voltage on the summing node of threshold element 7, assumed to go
between 0 and 1; T;; = the connection strength from element j to element ¢, and C;
is the capacitance of the summing node of element <.

Here, f;(v;) represents the saturation of the individual connections. Thus, f; depends
on the type of transistor used in the connection. Namely,

v;/(v; +1/s), if T;; > 0;
fi(v) = { (1/£ ;) /({ l v; +1/s), if Ty, i 0. (44)

Here, s regulates the width of the ohmic region. The larger s is, the narrower the ohmic
region. In the simulations,

s = 100 (45),

which corresponds to an ohmic region of 50mYV for a VDD of 5V.
The g; function is a composition of two functions y; and z;:

95(vi) = yj(2;(¥)). (46)

Here, y; is the connection non-linearity and z; is the inverter chain non-linearity combined
with any AND or OR used. y; depends on the type of transistor, again,

0.98 + 0.1v, if T;; > 0 and v > 0.2 (above threshold);
_) exp(100v — 20), if T;; > 0 and v < 0.2 (below threshold);

yi(v) = 1.08 — 0.1v, if T;; < 0 and v < 0.8 (above threshold); (47)
exp(80 — 100v), if T;; < 0 and v > 0.8 (below threshold).

The exponential behaviour simulates the exponential dependence of the current on v below
threshold. But, there is a current limit imposed by the T};, which is reflected in the slow
linear growth in the current when the connection is fully turned on.

In the simplest case, with no AND or OR, z; is rather simple. Notice, in figure 30,
there are three possible outputs of a threshold element: a fast inverted output, used for f
and b type connections; a non-inverted output; and a slow inverted output, used for d and
e type connections. z; depends on which of these outputs are needed. Thus, define a new
function z*,
if fast inverted output;

i) if non-inverted output; . (48)

vy,
(v
(w(vg)), if slow inverted output.

Zj(f;) =2 (vj) = {z

54

Here, w(v) is the inverter transfer response, approximated by
w(v) = (0.5 —v)/(|2v — 1] + 1/a) + 0.5, (49)

where « is the gain of the inverter, assumed to be 10 in the simulations.
A connection with an OR is simulated with taking either the minimum or the maximum
of the set of z;-‘ being ORed. Namely,

min(z*(v;)), if inhibitory OR;
zj('t'f) — { (*(J)) y

max(z*(v;)), if excitatory OR. (50)

Simlarly, a connection with an AND is simulated by taking a minimum or a maximum
of the set of z; being ANDed. Namely,

(o _ | max(z*(v;)), if inhibitory AND;
z(V) = { min(2*(v;)), if excitatory AND. (51)

There are still some special cases to be taken care of. For a excitatory connection that
is always on, use z;(¥) = 2*(1.0). For an inhibitory connection that is always on, e.g., a
threshold, use z;(¥) = 2*(0.0). For an input, just use a current
'iinput = Tij X,

where X is the input, which is restricted to [0,1].

85

