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Abstract

This thesis describes a new approach to the problem of Geometrical Design Rule
. Checking (DRC). f’reviotls DRC implementations have dealt with fully instantiated
geometrical artwork. As the complexity of VLSI‘.increases, it becomes infeasible to
analyze the vast amounts of information present in a fully instantiated design. The
DRC algorithm presented here introduces an approach that exploits the structural
hierarchy of a design in order to reduce the computational complexity of the
geometrical tests that need to be made. The tcchnique described is also app]i(::able to
other types of design checking such as circuit extraction, functional verification

and electrical rule verification.

A new DRC algorithm has been developed that, by making use of the structure
inherent in a hierarchical design, eliminates many redundant design rule checks.
In this approach there are two places where possible design rule violations may
occur, The first is within a symbol delfinition. The second is the area where two
symbols interact. The algorithim checks a given definition only once, and then
examines how interactions within each new environment where the definition i«
placed modify the original definition. A note is made after each interaction has

‘been scrutinized, so that a duplicate situation will not be rechecked.

An implementation of the hierarchical DRC algorithm has been written at Caltech.
This implementation extracts a minimal number of pairwise geometrical
comparisons needed to check the entire design. The program accepts as input a
design description in the Caltech Intermediate Form (CIF). The output of the
program is currently a fully instantiated version of those portions of the geometry

that need to be checked in.order to check the entire design.

A means of expressing the designer's'intent through the design description is
reguired. Current DRC's deal with geometrical artwork exclusively. Most of the
difficult design rules are involved .in the checking of devices, Rather than
restricting the designer to the use of gedmefry, the idea of a primitive element is
introduced. A primitivé element is defined to be anything that cannout be broken
down into sub-elements. A design defined using primitive elements conveys more

of the functional structure than a purely geometric definition.
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Chapter I

Introduction

1.1 Background

Hierarchical design is a design methodology which allows IC designers to cope with
the complexity of a VLSI d’.esig,n. VLSI technologies are currently capable of
fabricating chips of remarkable complexity. Chips are under development which
contain 100,000 transistors. Chips containing over a million transistors can be
visﬁallzed, and the technplogy will support fabrication of such chips in the near
future. The magnitude of the design effort required for such a chip would
overwhelm Ia_ny designer if the current design methods were used. Techniques need
to be adopted which reduce the complexity of a design. One such design
me_thodology is hierarchical deéign. A hierarchical approach to complex systems is

an important concept for reduéing the design and computational complexity[22].

A hierarchical design is a design which is defined as the composition of other
smaller designs. A hierarchical design style is bésed on a methodology that assumes
that a problem can be broken doWn into a set of smaller problems, This division of
the problem continues until a simple solution for each of the small problems is
feasiblé. Then the primitive solutions are combined together to form the larger

solution. This approach to problem solving is a hierarchical approach.

The approach of design tools should change to accommodate and exploit changes in
the design methodology used. Current design tools view an LSI design as a single
entity. This view of the chip as a s111g1e nonhierarchical entity no longer makes
sense, Design tools should use the hierarchy present in a design produced using a
hierarchical design method. Design tools which exploit the hierarchy may be the
q.m]y ones that can cope with the computational complexity of a million transistor

chip.

1
‘A Geometrical Design Rule Checker (DRC ) is one of the design tools traditionally
'avai]able to IC designers. A Geometrical Design Rule Checker is a piece of software

that accepts'a geometrical description of an integrated circuit design as input, and



lists the possible geometrical design errors implied by a set of design rules. These
errors are violations of rules dictated by the technology in which the integrated
circuit design is tolbe implemented. Current DRC programs accept a description of
the geometric artwork of the entire design as input. These programs then

determine all polygonal interactions and note any design rule violations.

Recent. DRC programs reduce the number of comparisons performed by
irﬁplemeﬁting algorithms that incorporate wvarious sorting and. windowing
schemes[1]. In the worst case, the number of comparisons performed between
polygons is proportional to the square of the number of polygons. Sorting and
windowing ensure that comparisons between two pieces of geometry occur only
when they are within a specified distance of each other. This approach reduces the
amouni of information the DRC program must process at any given time, However

the design is still regarded as a single, monolithic entity.

A hierarchical design typically contains many uses of a particular collection of
geometry, each use in a different context. A simple example of this is a memory
array. - A memory array is a memory cell repeated many times. There are two types
of repetitious structures which occur: 1) the same memory cell is repeated many

times, 2) the placement of twa cells together is repeated many times.

If a design contains repetitive structures, a DRC need not test many redundant
comparisons. The redundancy is clearly apparent in a memory array. The DRC must
check the memory cell once. Then, it must determine if the placement of two cells
next to each other introduces any new violations. In an array, howevér, the
identical placement of cells occurs many times. A comparison between two cells

need be done only once for each unique placement,

A hierarchical design rule checker can reduce dramatically the number of
comparisons needed for designs described in a structured and regular manner. The
DRC can accomplish this by checking a defined interaction only once, though the

interaction may occur many times throughout the design.

The acronym DRC has come to be associated with a Geometrical Design Rule Checker.
This abbreviation is somewhat misleading since any program that checks any part of a design
could be considered a design rule checker. For the purposes of this thesis however, the

term DRC is used to refer to a geometricatl design rule checker.



1.2 Overview

This thesis describes a new approach to design rule checking. The approach
described exploits the hierarchy of a VLSI design. The subjects covered include the

algorithm, an example implementation and experimental results.

The first section describes the three part hierarchical design rule checking
algorithm. The first part of the algorithm looks at a symbol definition. The second
part finds comparisons between elements. The third part performs polygonal

checks to reveal possible design rule vioclations,

‘The second section describes a SIMULA implementation of a hierarchical design rule
filter, The program was written and tested at Caltech. The filter takes a design
specified in the Caltech Intermediate Form (CIF) and removes many redundant

design rule checks. The program produces a fully instantiated design description

which can then be used as input to a traditional design rule checker.

. The third section contains a description of some of the results obtained by running
various IC designs through the filter. The designs used as input included Caltech

student designs and Digital Equipment Corporation (DEC) designs.

The two appendices describe features of the hierarchical design rule filter
implementation. Appendix I presents some CIF user extensions supported by the

filter. Appendix Il is a user's manual for the STMULA version of the filter.

The results of testing the filter on some large designs have been encouraging. The
filter works very well on "structured” designs. Structured design, in this thesis,
refers to a design in which there is both a minimal number of overlapping symbols
and minimal global wiring. The filter works well where the locality of a symbol
definition is preserved regardless of the placement of the symbol. Use of the filter
has demonstrated the possibility of decreasing the program run time of design rule
checking by a factor of five. This decrease is realized by introducing an awareness

of hierarchy into design analysis tools.
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The filter wuses bouhding boxes to represent all its data elements. The
implementation of the filter places no restrictions on how the design is defined, but
there is an underlying philosophy inherent in this data representation. The
bounding box is a rectangle which bounds all of the element's internal points. A
piece of geometry may contain any arbitrary angle. But the vbounding box
represents the entire piece of geometry. A bounding box also represents a symbol

instance. A rectangle, versus a polygon, was found to he an adequate represehtation

of a symbo‘l;
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Chapter II

A Description of the Approach to Design Rule Checking

There are several reasons for introducing the notion of hierarchy into a Design Rule
Checker. An obvious reason is to save computer run tine and memory usage by
avoiding redundant design rule checks. A less obvious reason is to reduce the
number of false errors generated by a DRC program. A design rule violation is

flagged once, since each unique design rule violation is a unique interaction.

The DRC must examine two different types of situations in order to ensure
completeness, The first situation is a symbol definition. The second situation is a
given interaction between two elements., Redundant design rule checks are

eliminated by not making the same check more than once.

The following terms are used throughout this thesis. A symbol is a collection of
elements. The entire design definition is one example of a single symhbol. An
element is either a primitive element or an instance of a symbol. An instance of a
symbol is a reference to a symbol with an associated transformation which provides
placenient and orientation information for the symbol. Primitivle elements include
pieces of geometry, such as wires, boxes or polygons, and any other elements that

may not be subdivided.

The DRC checks both a symbol definition and an interaction between two elements
once, A definition is checked the first time the algorithm encounters it in the
design, This original check requires looking at all possible interactions of the
symbol's internal elements, When the definition is instantiated, the surrounding
elements' effect on the original definition is checked. A note is then made

indicating that these interactions have been checked.

The DRC passes through two distinct phases while checking each symbol definition.
The first phase finds and checks all unchecked definitions referenced by the
current symbol. The second phase finds and checks all pairs of elements which

interact,
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2.1 Data Structures

The symbol definitions are the basis of the DRC's data structure. TFigure 2.1
summarizes the contents of the data structure. Design rule checking is performer
on the top level symbol definition. Each lower level symbol is considered a separate
design, and treated no differently than the top level symbol. Associated with wach
symbol definition are four pieces of information. These are: 1) a list of the symhbol's
elements, 2) a list of the symbol's completed interaction checks, 3) a boolean flag

indicating whether or not the symbol has been checked, and 4) the symbal's
Minimum Bounding Box (MBRB). '

An element may be one of two types. The first type is a symbol instance. A symbol
instance has three components. These are: 1) a pointer to the associated symbol
definition, 2) the transformation describing the placement of the definition, and 3)
the transformed MBB of the symbol. The second type is a primitive element, which
may be either a piece of geometry or a predefined primitive, Geometry is defined by
three pieces of data. These are: 1) its type, e.g. wire, box or polygon, 2) it's MBB in
the symbol's environment, and 3) a pointer to coordinate data. Primitive elements
are defined by two pieces of information. These are: 1) a type and 2) a MBB. An

example of a possible primitive element is a transistor.

The interaction list associated with each symbol definition describes all interaction
checks previously performed involving this definition. This list is associated with
the symbol definition and not the symbol instance. An interaction check is

described by two pieces of information. These are: 1) the othor element and 2) an

environment relationship description.

The Boolean flag associated with the symbol is an indication of whether or not the
symbol definition has béen checked. A symbdl is checked the first time it is
encountered in the design. Checking a symbol invalves checking the symbols it

references.
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Figure 2.1 - Data Structures
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The minimum bounding box is one of the most important attributes of the entire
data structure. It is important that all elements and definitions have a MBB. The
MBB represents all elements until more detailed information is necessary. At the

appropriate time, the MBB is peeled back to display the contents of the element.

The MBB represents all elements throughout the DRC process. The simplicity of
performing operations between rectangles versus the difficulty of- performing
aperations between polygons was the reason for this decision. It is relatively simple
to detect two rectangles which overlap. This situation flags an interaction betwenn
two elements. It is possible, and highly probable, for two element's MBBs to overlap
where there is not a true interaction. If this occurs, the algorithm displays the
contents of one of the elements, and performs further interaction checks. Thus
bounding box checks will occur more frequently than bounding polygon checks.

However, the-computational complexity of a bounding polygon check is far greater.

&.2 Description Of The Algorithm

The hierarchical DRC extracts all unique elemental interactions by operating at twuo
distinct levels. First, it operates within a single symbol definition. The algorithm
extracts pairs of elements inside the symbol which might interact. It then
c:nmpi;r@s these slements 1o determine possible design rule violations. Second, the
DRC operates within the area Enmrnon 10 two symbol instances. The algorithin
processes two separate .syrnbol definitions each placed in a distinct environment,
The DRC determines the area common to both environments. This area is where
additional design rule violations might occur. Figure 2.2 is a block diagram

illustrating the basic flow of the algorithm; a detailed description follows.

2.2.1 Design Rule Checking

The DRC takes an unchecked'design definition, which is also a symbol definition,
and checks it. The input to the DRC is a set of symbol definitions. The top level
symbol is checked, and in the process the entire design is checked recursively., At
each level in the hierarchy, the DRC treats symbol definitions as complete desizn
descriptions. After checking a definition, the DRC determines how outside

influences affect the definition.
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Figure 2.2 - Algorithm Flow
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2.2.2 Check Symbol

A symbol is checked by examining all interactions between the symbol's elements.
All unchecked referenced symbols are recursively checked before interactions are
examined. The DRC determines interactions, by looking at where the elements
bloated MBBs overlap. The MBB is bloated by the largest applicable spacing rule.
The next step is to check all elemental interactions, and then mark the symbol
checked.

2.2.3 Check This Symbol

The DRC determines what pairs of elements have a possibility of interference. All
pairs of elements whose bloated MBB's overlap interact by definition. One obvious
implementation of this search for pairs is to compare each element's MDBB against
the MBB's of all other elements. A sorting algorithm may be used to improve the
efficiency of this operation. The intention is to find all the pairs of elements that
may interact. }It is then possible to do a quick bounding box check to see if the two
elements' bloated bounding boxes do indeed interfere. If the bounding boxes
overlap, then it becomes necessary to examine the two elements further to

determine where violations might occur.
2.2.4 Compare

Given two elements whose bloated bounding boxes overlap, the compare operation
determines if a design rule violation is present., The bounding box is the only
information known about the element up to this point. Now more information is
necessary. Each element is described in a separate environment. It is now time to
find how the two elements' environments interact. There are three separate cases.
In the first case, both elements are symbol instances. In the second case, one
element is a symbol instance aﬁd the other a primitive element. In the third case,

both elements are primitive elements.

When two symbol instances interact, it is necessary to find how each symbol
definition is modified by the other. The DRC knows that each definition has been
checked separately, but the interaction may introduce new wviolations. I this
interaction has been checked previously, there is no need to check it again.

Otherwise, since the MBB's have insufficient information to determine whether a
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violation is present, more information is needed. The DRC introduces this
information by peeling back the MBB of one of the symbols. Now there is a set of
elements, previously defined as one of the symbols, and the original second symbol
instance. A bounding box check determines which elements interact with the

second symbol ihstance, and then the compare operation is repeated recursively.

‘When only one of the elements is a symbol, the DRC uses a simplied version of the
symbol to symbol interactbn test. As beforé, if the interaction has not previously
heen checked, the process must continue. This is done by peeling back the symbol's
bounding box. The DRC introduces the symbol's elements, and the pfocess begins

again, recursively.

Wwhen the two elements are both primitive elements, the algorithm has reduced the
problem to the traditional DRC problem. It is now paossible to perform geometrical

manipulations on the elements to determine if design rule violations exist.
2.5 Summary

The hierarchical design rule checker uses three techniques to reduce the number of
design rule checks made to check a VLSI design. The first is to check a symbol
definition once. This is done by checking all the symbol's elemental interactions.
The second is to check an interaction between two elements once., This is done by
recording the interactions that have previously been checked. The third is to use
sorting of elements and bounding box checks to minimize the number of elemental

comparisons.
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Chapter III

SIMULA Implementation

A hierarchical design rule filter at Caltech implements the hierarchical des:ign rule
‘checker algorithm. The filter takes a design description in the Caltech Intermediate
Form (CIF) and filters out elements that are redundant. The program produces a
fully instantiated:- geométry file which can then be used as input to a traditional
geowetric Design Rule Checker (DRC). The program contains little specitication of
-geometrical properties and uses a minimal specification of the design rules

associated with the implementation technology.

The program is implemented in SIMULA[8], an object oriented language. In
SIMULA, data structures are defined using a CLASS construct. A CLASS has two
types of information. The first type is data, such as arrays, pointers, Booleans and so v
forth. The second type is procedures. Using these procedures, a data structure not
only contains information about itself, but also performs modifications upon itself.
The CLASS construct allows a clear association between the data declarations amd

the code which performs the data manipulations.

The design rule fiiter consists of four SIMULA modules defined exclusively for the
filter, and two already existing modules. The first four modules are data structure
descriptions, and the last two modules contain the code. A module dependency
graph is shown in figure 3.1, The following is a description of the function of each

of the modules:

Things - primitive data structure declarations[ 10].

Cif201 --the CIF2.0 parser[6].
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.- .

Figure 3.1
SIMULA Module Dependency



Ddata - the data structure declarations for the filter.

Dtable - the table declaration which will contain the information about
what the filter has done.

Dparse - the module which performs the.parsing of the design description,

creating the necessary data structures.

Drcfil - The hierarchical design rule filter. This module performs the

functions described in the DRC algorithm description.

3.1 Structured CIF2.0

CIF is a general purpose geometric language[3] which is not entirely suitable for
the hierarchical design rule filter. CIF is a high level interchange language for
pattern generators. There are many design tools available which generate CIF.
Rather than design a new langu:ige, CIF was used as the input language to the filter.
However, some restrictions had to be placed on the format of the CIF design
description in order to make the design description compatible with the DRC

approach.
The following is a brief description of each of the statements available in CIF2.0:

Symbol Manipulation

DS n - start of symbal definition n.
DF - end of symbol definition.

DD n - delete symbol definitions >=n.

Geometric Primitives

Cn -call symboln (creaté a symbol instance).
L -layer command - all following geometry declarations
will be on this layer.
P - polygon
B -box

W - wire
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R - round flash

digit - user extension ( defined by a user).

The design rule filter does not support some of the statements in the CIF language.
It does not support the round flash statement. It does not support the delete
def iniﬁon statement, since this statement disrupts the assumed integrity of a
symbol definition throughout the design. The filter does not support arbitrary user
" extensions. Appendix I describes some user extensions used to provide further
information to the filter. The filter ignores any other user extensions and issues a
warning. Traditionally, CIF user extensions are used for labeling, so this usually is

not a problem.

The filter restricts the structure of the CIF file in order to maintain the integrity of
the algorithm at all levels of the hierarchy of the design. A call to the top level
symbol is the only command allowed outside of a definition. This final call is a
pointer to the fop level symbol definition and therefore cannot have a
transformation associated with it. It is easy to see that checking the design is

eguivalent to checking a symbol definition with this type of structure enforced.
Symbols not referenced are not checked. ‘

3.2 »SIMUL‘A Data Structures

There are three t&pes of data structures. The first type is used for definitions
which will be used many times. This type includes geometry and symbol
definitions. The second type is a table which records what work the filter has
previously completed. The interaction list is of this type. The third type is used for
global structures, which once created are accessed only for information. This type

includes the dictionary of symbols and the design rules.

3.2.1 Basic Definitions

"Geometry"™ is the initial CLASS of which all geometrical primitives are a subclass.
A subclass inherits all the attributes of the original CLASS plus any additional
attributes defined within the new CLASS. The following is the SIMULA declaration
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of the CLASS geometry:

LRI IR AOKK A IR KKK A F KIHRAKK AR RK IR K AIKIF KR IO HKE N KK AKKK §
! class GEOMETRY. superclass of all elements used in the
! design description.

t *ﬂc*********#*#*****************#*#********K***X*K**********X********* H

thing CLASS geometry(geometric_name,clayer); VALUE geometric name;
TEXT geometric_name; INTEGER clayer;

VIRTUAL: .

BOOLEAN PéOCEDURE geom_okay; ‘ !geometry meets design requirements?;
'PROCEDURE compute_min_bb; !saves minimum bh of geometry;

'TEXI PROCEDURE c©if_name; Ireturns cif type;

REF(rectangle )PROCEDURE bloat_mbbj !returns mbb bloated with max rule;
PROCEDURE write_cif; lwrites geometry out as cif;

REF(geometry)PROCEDURE transf_geom; !returns the geometry transformed

! according to a specified transform;

BEGIN
REF(rectangle)min_bb; Iminimum bounding box;
REAL hiy,hix,loy,%lox; lcoordinates of bb;
INTEGER 1jneno; lcif J1ine number geometry occured onj

END of geometry;

A new object of type geometry reqﬁires two parameters at the time of creation. The
first parameter is an optional name associated with the geometry. The second
parameter is the layer on which the geometry is to be placed. A number represents
this layer, even though the CIF layer command contains a text string. The parser

.automatically translates a text layer specification into a unique number.

VIRTUAL procedures define all possible procedures of geometry. A virtual
procedure declares that a sub-class of this class may have a procedure by this name,
The SIMULA runtime system ties the actual procedure to the virtual procedure
according to which subclass of geometry the object is. For example, geometry has
Tour sub-classes (figure 3.Z). Each of these subclasses hasa procedure
declaratibn corresponding to these virtual procedure declarations. The program. -
méy access these procedures from an object of type geometry without knowing

which type of geametry the object is. The binding occurs at runtime.
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The pieces of geometry are the basic data structures of the design rule filter. The
parser translates every geometric primitive defined in the CIF file to an object
corresponding to the CIF type. There are four possible types of geometry. These are:
1') abox, 2) a wire, 3) a polygon or 4) a call.

The filter uses four lower level data structures as part of the definitions of its
geometrical primitives. These lower level data structures are all subclasses of a
superclass called a "thing". A thing can be anything. For the purposes of this
di'scussion, a thing may be: 1) a vector, 2) a point, 3) a reétangle, or 4) a transform.
A vector is a list of things, which is capable of growing dynamically as more things
are added to the list. "A point consists of an x and y coordinate. A rectangle consists
of a lowecr left and an upper right point. A transform consists of six real numbers
which define the fotational and translational components of a graphical

transformation matrix{7]. The relationship of all the sub-classes to each other is

shown in figure 3.2.

The filter creates and uses the appropriate data primitives to define the four
geometrical primitives. These data primitives become attributes of the geometry. A
box has two attributes: 1) a rectangle and 2) a direction point. The direction point
denotes a vector which specifies the direction of the new positive x axis of the box
after rotation. This vector defines the rotational components of a transform which
can then be applied to the rectangle. A polygon has a single attribute which is a
vector 6f points. There is an implied polygonal edge between each pair of
consecutive points, and between the last point and the first point. A wire has two
attributes, which are: 1) a path and 2) a width. The path is a vector of points., The
width is constant along the path, and the endpoints are capped by an arc with a
radius of half the width. A call has two attvributes which are: 1) a symbol number
and 2) a transform. The symbol number allows the program to access the associated
symbol definition.'Thg transform describes the placement of the symbol definition

in the case of this symbol instance.

The "symbbl" is the next important data structure used by the filter. The symbol
CLASS definition contains éll important attributes of a CIF symbol definition. The
~symbol definition has twb parameters which are: 1) a symbol number and 2) the CIF
' scaling factor appl.ied to all of the geometric points{a]. Internally the symbol has

several other attributes. These are: 1) a checked flag, 2) three special symbol type



flags, 3) a list of its elements, 4) its name and 5) the symbol's minimum bounding
box. The three special symbol type flags provide further information about the
symbol to the filter and are described in detail in appendix I. The three type are: 1)
primitive; 2) prechecked, and 3) leat. The list of elements is a vector of geometrical

primitives.

3.2.2 Table-Dgfinitions

The interaction list-is a linear list kept in a disk file which represents an n by n
upper diagonal matrix, where n is ihe number of symbol definitions defined in the
CIF file. The filter remembers interactions only when they occur between two
symbol instances. The interaction list contains n(n+i)/z records, given n symbols.
These are ordered as (1,1), (1,2),...,(1,n),(2,2),..(2,n),..(n-1,n),(n,n) on the disk. The
(i,j) entry contains transformations describing the previously checked interaciions
between symbol i and symbol j. The filter accesses this record using the following

formula:

x=5ymbol1l y:gsymbo12 x{=zy
n(n+1)/2=?ina1 record in the interaction file
nfl—x((n+1—x)+1)/2=cffset from the final record to the start of
x's 1ist of interactions

y+l-x=y's offset into x's Jist of interactions

record neededs= A{n+l)/2-(n+l-x)}{n+1-x+1)/2+{y+1-x)

i

(n2+n—(n+1—x)(n+27x))/z+(y+1—x)

[

{n+n—{ n2—2nx+3n-3x+x2+2) Y/ 24+ {y+1-%)

(Znx=2nt3x-x2=2)/ 24+ {y+1=x)
2{nx-n+x(3-x}/2-1)/2+{ y+1-x)
nx—n+x(3-x)/2~-14+(y+1-x)

"

nx-n+x{1~x)/2+y

f1

Each record in the interaction list consists of a set of transformations. Each
transformation represents a previously checked interaction between the two
symbols used to index into the file. The transformation describes the placement ot
the second symb_ol instance with respect to the first symbol instance. A maximum
of four én\".ries are contained in each record. An overflow file contains all
_interactions g,reater' than four that occur between two symbols. The overflow file

is constructed using a linked list technique.
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3.2.3 Global Definitions

The filter uses two global data structures. These are: 1) the dictionary of symboi
definitions, and 2) the design rules. The symbol dictionary is a vector containing
all symbol definitions. The design rules definition consists of several arrays
containing information about the design rules of the process the current design is to

be implemented in,

The design rule filter knows some minimal information about the process design
rules. The filter knows enough to determine all patential design rule violations,
but not enough to find the violations, The design rules describing all potential
errors are expressed in terms ol either minimum spacing between two layers or
width of a single layer. The design rule data structure contains the information the

fFilter neesds.

The design rule definition consists of two one dimensional arrays, two matrices and
oune bloat factor. The first array holds the layer names used in the process. The
second array contains the minimum width for each layer. The first matrix is a
boolean array indicating whether a design rule exists between two layers. The
second matrix is a real array indicating the minimum spacing between two layers.
The final piece of information is a real Lluat factor. This number indicates the
largest minimum spacing between any two layers. The bloat factor is used for

bloating symbol instance MBBs.

3.3 SIMULA Design Rule Filter Implementation

The design rule filter implements the algorithm described in the previous chapter
with the following three differences. i’il'st, the module Check Physics, the actual
design rule chc‘.ckér, is implemented by writing the two pieces of geometry out to a
file. Second, the interaction list structure is modified, primarily because of the
memory limitations of the DEC-20. Third, the sorting algorithms used are a

quicksort in the y direction and a bucket sort along the x axis.

The module Check Physics determines whether two primitive elements represcint

a possible design rule violation. A primitive element, in the filter, is a piece of



geometry, i.e. a box, wire, or polygon. Chetk__Physics determines whether a rule
exists between the two pieces of geometry. If a rule exists, then the module writes
the pieces of geometry out to a CIF file, This file will eventually contain all the

geometry needed to determine design rule violations.

The structure of the intcrac‘tion‘ list in the filter changed from the description in
the previous chapter. First, the list contains only those interactions involving two
symbol ins.tancés. Initially the intention was to remember all interactions in which
a symbol was involved. The list initially included interactions involving a
primitive element and a symbol instance. The primitive element to symbol instance
interactions took up a great deal of memory and saved very few interaction checks..
Second, the disk array interaction list construct previously described was
developed. 'Them is vne vailry fur vach symbol (o symbol interaction rather than a
separate entry associated with each symbol definition. This construct is poszible

since only symbol to symbol interactions are remembered.

A quicksort in the y direction, and a bucket sort along the x axis implements the
sorting algorithm used for sorting a symbdl's elements. A symbol's elements are
initially sorted. linearly according to the lower y coordinates of the elements'
bounding boxes. The x axis is then divided up into the square root of n number of
buckets, where n is the number of elements. John Bentley suggested this number
of buckets [13]. Each element is placed in the applicable buckets starting with the
first element in the sorted y list. The program then compares the element to the
elements already contained in the buckets it is placed in. The filter removes
elements from a bucket as soon as the high y of the bounding box is less than the
next element's low y. This sorting approach greatly reduces the number of
comparisons that are needed. v

" The following Algol-like 'description descrihes how the SIMULA version of the

design rule filter is implemented:

!Top Level Definition;’

BEGIN
scan_cif_noting all_symbol_definitions;
check_symbol(top_level_symbol};

END;
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FUNCTION checknsymbn1(s¥mb01);
BEGIN
If prechecked(symbol) THEN note_bounding_box
ELSE IF leaf{symbol) THEN BEGIN
write_out_all_geometry(symbol);
.note_bounding_bux;
END ELSE BEGIN
FOR each symbol_element DO BEGIN
IF symbol(symbol_element) THEN BEGIN
IF-NOT cheoked
THEN check_symbol(symbol_element);
note_bounding_box;
END ELSE note_bounding_box;
END; .
check_interactions_between_symbol_elements{symbol);
mark_symbp1_;hecked;
END;
END;

FUNCTION 6heck_1nteract1ons;between_symbo1_elements(symnol);
BEGIN I
sort_elements_in_x_and_y;
FOR each a,b which_may_interact DO BEGIN
IF
b10atedvbnunding box_overlap{symbol_element(a), symbol_element{b))
THEN BEGIN
IF (symbol(symbol_element{a)) OR symbol{symbol_element(b)) THEN
ccheuvk _elemenl _interaclions

(symbol_element{a},symbol_element(b))

ELSE
design_rule_check{symbol_element{a),symbol_element(b));
END;
END;
END;

FUNCTION check_element_interactions{eiementl, element2);

BEGIN

IF symbol{elementl) OR symbol{element2) THEN BEGIN
elementl:~which_element_is_symbol;
elemnt2:~other_element;

FOR each '‘elementl_element DO
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If bloated_bounding_box_overlap({elementl_element, elemant2)
THEN 'chéck_elementﬁ%nteractions(eTement1~e1ement, element2)

END ELSE design_ruTe_check(e?ementl, element2);
END; )

FUNCTION design_rule_check({geomatryl, geometry2);
BEGIN ’ _

IF design_rule_exists(geometryl, gecme{}yz) THEN BEGIN
write _out_cif{geometryl):
write_out_cif(geumetryz);

END;,

END;

The above description contains reterences to leat and prechecked symbols. These

are CIF user extensions supported by the filter. For further information, refer to

Appendix I.

The limited address space available on the DEC-20 was the limiting factor. in the
development of the design rule filter. A large amount of memory management was
written into the program in order to test the filter on any reasonable sized design.
This was the most time consuming part of the project. The size of the design which
the filter can accept is currently limited by the largest symbol definition in the
design. The filter assumes that one symbol definition may be held in memory., The
filter was eventually able to process some reasonably large designs. The next

chapter describes the results of these experiments.
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Chapter IV

Experimental Results

The hierarchical design rule filter has processed several NMOS designs, both Caltech
student designs and Digital Equipment Corporation (DEC) designs. This chaplor
presents two Caltech designs, used as input to the filter. A pictorial representation
shows the initial design's geometry and the remaining geometry after the filter
_processéd the design. The first design shown is the design of a Least Recently Used
(LRU) implementation of Content Addressable Memory (CAM), done by the author as
a 1‘10‘,]":&:1 fur (e LST desiga cuurse at Cdliecll, wWhen ine rilter processed the desisn,
it did‘ not contain the pads or the routing to the pads included in the final project.
The second Caltech design shown is a self-timed FIFO. Eric Barton[19] did this
project as a student project for the LSI course at Caltech. A Tloating Point Processor
(FPP) experimental design, and the Memory Management Unit (MMU) for the LSI
11/23 were the two designs used as benchmarks at DEC. Pictures of these designs
are not available, but the statistics of the filter's processing of the designs are

contained in this chapter.

4,1 LRU CAM Example

The LRU CAM is a highly regular design. It consists of two arrays, four bits :wide. by
eight rows deep, and two columns of logic between the arrays. Symbol instances
overlap minimally. The filter took 8 minutes and 29 seconds to process the LRU
CAM on a DEC-Z2060. The LRU CAM design is shown in Figure 4.1. A picture of the
geometry remaining after the {ilter processed the design is shown in Figure 4.2.
The CIF file of fully instantiated geometry used to create this plot could be used oo

‘input to a traditional DRC.

Table 4.3 is the statistics gathered by the filter for the LRU CAM example. The
following is a detailed discussion of the various statistical quantities gathered. The
titles to the various sections correspond to the labels of the filter's statistics. The
statistics generated by the design rule [ilter are not totally self-explanatovy
therefore the following explanation is included. Table 4.6, which was generated

by the filter, follows the same format.



Figure 4.1 - LRU CAM
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Figure 4.2 - LRU CAM Filtered Geometry
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Summary of Input - gives_ an indication of the regularity of the design. There were

a7 symbol definitions within the file. The number of polygons, wires, boxes and
calls, in all the symbol definitions is 585. If the design was fully instantiated, the
resulting file would cbntain 12,505 pieces of geometry, e.g. polygons, boxes or
wires. The minimum number of elements in a symbol is 2. The maximum number

of elements in a symbol is 81 .
Check Symbol

Find Compatible Pairs - The filter compared 1,205 pairs of elements while checking

the symbol definit-ions, using the quicksort and the bucket sort. Assuming that a
worst case algorithm would make n(n-1)/2 number of comparisons for each syubul
definition, where n is the number of elements contained in a definition, the total
numbef of comparisons would have been 11,308. Therefore the quicksort and

bucket sort saved the f ilter 10,103 comparisons.
Precheck BB - After the filter extracts a pair of elements, it compares their bloated
bounding boxes to determine if an interaction really exists. In this example 824

of the 1,205 pairs revealed overlap between bounding boxes.

Bucket Sort Information - The filter placed a total of 6§30 elements in buckets. The

average number of buckets that referenced an element was 2.37. The minimum

number of buckets that referenced a given element was 1 and the maximum
number was 9. '

BB Discard - When two elements appear in the same bucket, the filter compares
their bloated Bounding Boxes to determine whether they overlap. After the
elements were sorted, the filter discarded 281 comparisons because their bounding

boxes did not overlap in the x direction.

Caompare - The routine which compares two elements interactions, shown in
figure 2.2, received a total of 4,211 interaction checks. 435 of these interaction
checks were between two symbols, 1,223 were between a symbol and a primitive

element, and 2,553 checks were between two primitive elements.
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2 Symbols

Ihteractions - 242 of the 435 interaction checks between two symbols could be
discarded because they had previously occurred.

Pre Check BB - The remaining 193 symbol interactions required expansion, such
that one of the symbols was broken apart into it's components parts. The program '
compared the_ element's of the symbols bounding boxes to the other symbol's

bounding box. Only 667 of the 2,505 elements MBBs overlapped a symbol's BB.

BB Discard - Of the 1,838 of the above interactions whose BB's did not overlap,

1,292 did not overlap in the x direction, and 546 did not overlap in the y direction.

1 Symbol

Interactions - Since previous interactions are not Kept for symbol to element

interactions, the program examines all interactions further.
Pre Check BB - After the filter expands the symbol into it's component elements, of
the 35,215 interactions which were checked, 32,595 interactions were

discarded because the bounding boxes did not overlap.

BB Discard - Of the interactions which were discarded, 28,146 did not overlap in

the x direction, and 4,449 did not overlap in the y direction.

Check Physics - There were a total of 2,553 elemental interactions. Of these

‘interactions, 1,003 were trivial, i.e. there was no design rule between the two

pieces of geometry.

Interaction List - The average length of the interaction list throughout the entire

process was 1,72. .
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Table 4.3

LRU CAM Statistics
STATISTICS FOR DRC

Input File is GUTS.CIF

Created by the DRC on 1980-10-22 at 11:58:31

Summary of Input

47 Symbol Definitions with 585 Elements defined in Symbols
12505 flattened geometries
Min elements/symbol = 2 Max elements/symbol = 81

Check Symbol

Find Qompatib1e Compatibie

Ignored Total

Pairs 1205 ‘ ' 10103 11308
Precheck BB Intersected Discarded Total
924 281 1205

Bucket Sort Information

Num Elements Avg Num Buckets Min Buckets Max Buckets
530 - 2.37 1 9
BB Discard X Discard Y Biscard Total Discard
281 0 281
Compare
2 Symbols 1 Symbol Check Physics Total

435 1223 2553 4211



Interactions
Pre Check BB

BB Discard

Interactions
. Pre Cheﬁk BB

BB Discard

Check Further
1550
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2 Symbols

Need to Expand On List: Discard

193 242
Intersected Discarded
667 - 1838
X Discard Y Discard
1292 546

1 Symbol

Need to Expand On List: Discard

1223 0
Intersected Discarded
2620 32595
X Discard Y Discard
28146 4449

Check Physics

Connected _ Trivial
0 1003
TOTAL
2553

Average Length of Interaction List

1.72

Total

435

Total

2505
Total Discard

1838

Total
1223
Total
35215
Total Discard
32595

Space 0K
0
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4.2 FIFO Example

The second Caltech design shown is a FIFO, which is also a regular design. There is
minimal overlap in the inner part of the design but the design has an interesting
structure. One symbol definition contains the pad definitions and a second symbul
definition contains the internal part of the design. Therefore, the two symbol
instances of these definitions entirely overlap. The algorithm checks both syibol
definitions separately, and then checks the interactions between the two. This
creates a large amount of overhead as the two symbol instances are compared. This
design is small enough that the overhead does not drastically increase the runtime.

However, a larger design, containing the same structure, would create
dispruportionally more overhead. The filter run time, while processing this design
on a DEC 2060, was 25 minutes and 22 seconds. A comparison of the FIFO results {o
the LRU CAM results shows that the FIF( processing ruin time was longer whereas

the design was smaller. This can be attributed to the structure described above.
Figure 4.4 shows the FIFO design. Figure 4.5 shows the fully instantiated
geometry of the FIFO after the filter has finished processing it. Table 4.6 contains

the statistics generated by the filter for the FIFO,

4.3 FPP and MMU Examples

The filter processed two DEC designs at Digital Equipment Corporation (DEC) in the
summer of 1980. One design was an experimental floating point processor (FPP)
and the second was the production chip LSI 11/23 Memory Management Unit
(MMU). The MMU is considered irregular. A DEC team assembled the FPP chip
using a design .system which enforced strict rules of composition[15,16], i.e., a

symbol's MBB was not allowed to overlap any other symbol's MBB.

Figure 4.7 contains the results of the comparison. We ran the test on a DEC-2020.
The regularity factor is computed as the ratio of drawn transistors to placed
transistors[20]. The regularity factor is one measure of the repetitiveness of a

design and cén give aclueto the possible effectiveness of the filter.
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Figure 4.4 - FIFO
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Figure 4.5 - FIFO Filtered Geometry
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Table 4.6

FIFO Statistics

STATISTICS FOR DRC

Tnput File is FIFO.CIF

Created by the DRC on 1980-10-17 at 14:50:08

Summary of Input

42 Symbol Definitions with 546 Elements defined in Symbols

Min elements/symbol = 2 Max elements/symbol

Find Compatible
Pairs
Precheck BB

Num Elements
410
BB Discard

Z Symbols
1399°

5990 flattened geometries

Check Symbol

Compatible Ignored
1215 3782
Intersected Discarded

842 373

Bucket Sort Information

Avg Num Buckets Min Buckets

1.76 1
X Discard Y Discard
373 0
Compare
1 Symboi Check Physics
6075 2564

39

Total
4997
Total
1215

Max Buckets
6

Total Discard -
373

Total
10038



Interactions
Pre Check BB

BB Discard

Interactions
Pre Check BB

BB Discard

Check Further
1390
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2 Symbols

Need to Expand On List: Discard

i341 58
Intersected Discarded
6484 961
X Discard Y Discard
503 _ 458

1 Symboi

Need to Expand On List: Discard

6075 0
Intersected Discarded
2712 204598
X Discard Y Discard
192392 12206

Check Physics

Connected Trivial
0 1174
TOTAL
2564

Average Length of Interaction List

4.06

Totai
1399
Total
7445

Total Discard
961

Total
6075
Total
207310
Total Discard
204598

Space 0K
0
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There is a factor of 17.5 more errors, and a factor of 5.15 greater runtime
between the nonfiltered versus the filtered designs. When a cell is repeated n
times, and there'is an error, the same error is called out n times. The filter

helps to get rid of redundant error messages.

All erroi's caught in the nonfiltered version were also caught in the filtered version.
Giwven that an error exists, the implication is that two pieces of geometry are too
close together. Therefore, the bounding boxes of the elements, once the boxes have
been bloated half the maximum spécing rule, must overlap. The filter will either
write out these two pieces of geometry, or decide that the same elemental
interaction has occured elsewhere. Thus the algorithm ensures that all spacing
violations are detected by the filter without checking the fully instantiated
geometry. width errors are caught as soon as a piece of geometry is encountered in
the CIF file.
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FPP and MMU comparison:

transistor count Filter CPU time
FPP {chipl) 22,560 1 hr. 44 min,
‘regularity factor
77K/1.U4K574
{24 without
PLA/RAM/ROM)
LST 11/23 My 10, 367 572 br.

requilarily faclor
10.4K/3.5K=3
{1.3 without RAM)

‘A portion of

the FPP chip was run through the filter, and then the Filtered geometry
was given to the NCA DRC package. The design, without any filtering,
was alse given. to the NCA DRC package.

The Following are the results:

Filter CIF to NCA and DRC-
with - oo | Total time - 3 hrs. 18 min.
Filterfl hr 1 hr Total numher af errars - 682
{44 min. 34 min.
|
|
| ,
w/0 i CIF to NCA NCA DRC
Filter} | |
4 hrs. 32 min. 12 hrs. 28 min.

Total time - 17 hrs. 1 min.
Total number of errors - 11,934

Figure 4.7 - FPP Results
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Chapter V

Conclusions

5.1 Conclusions from the Hierarchical Filter

The Design Rule Filter processed numerous designs, and the results were
encouraging. In all cases, when the program finished the processing, the remaining
geometry was substantially less than the original fully instantiated geometry. The
1mplication of this is that a design analysis tool may use the hierarchy of a VLST

design to greatly reduce the work performed.

The Design Rule Filter is a general purpose design analysis tool. It accepts any
design, regardless of the structure. The experimental results show that any design
could be processed given-infinite time, but the design must contain a certain
amount of structure to make the filtering process worthwhile. As an example, a
standard DRC could process the MMU chip in less than twelve hours. The filter.
introduced additional checking, which would not have been encountered in a f ully
instantiated design description. With this additional overhead, the runtime of the

filter was‘greater than 72 hours.

The amount of effort placed into writing memory management for the filter was
way out of proportion to the effort. The addressing limitations on memory imposed
by the SIMULA system on the DEC-20 were particularly severe when processing
large designs.- A hierarchical design rule checker becomes necessary only when
designs become large. A great deal more investigative work could have been done if

the program was written on a virtual memory system with a larger address space.

The design rule checker tried to avoid performing the same design rule check
twice. This implies that the program must record whether the check has been
- performed previously. This also implies the program must decide what pieces of
information are worth saving, such that the data will have a maximum possibilify
of being helpful in the future. The interactions between two symbol instances is

one case where redundant checks were avoided. There are several cases where the
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filter repeated an obviously redundant check. As the filter moves down the
hierarchy, it must determine which symbol definitions to break apart. The filter
may lose information by breaking  apart one symbol prior to discovering the
interaction is redundant. This phenomena occured in the case of the filtered
version of the LRU CAM (figure 4.2). The poly wires running the length of the
-design remained after filtering. An additional piece of information worth saving,
which could reduce the number of interaction checks, is the interactions between

primitive elements and symbols.

If the filter knew more information about the design system used for a design, dr if
some restrictions were placed on the design, the filter could incorporate many
optimizations. An example of such a design is the FPP chip designed at DEC. DEC
people designed this experimental chip in a restricted design eavironment[ 15,167,
The filter processed the desi_gn rapidly. In general the filter could be optimized by

exploiting the specifics of a particular design environment.

The design rule filter is.a fruitful first step in learning about analysis tools which
exploit the design hierarchy. Difficulties became more apparent as the filter was
developed. By not placing restrictions on the design structure, we learned what
restrictions would be the most beneficial both to the designer and to the design

tools,

The hierérchical design rtule filter, an analysis tool, is also helpful in the
development of design synthesis tools, Many designs make use of machine
- generated geometrj’. Some examples are PLA generatars][ 17] or Bristle Blocks[ 18].
The design rule checker could check the designs these programs generate. We nead
only check the program generated design once, just as a symbol is checked once (sce
Appendix ‘I). Many designs combine the use of machine generated. symbols with
hand coded symbols. Even though the symbols are correct, the interactions

involving machine generated geometry still need to be checked. The design rule

filter supplies this capability.

5.2. Further Research

In addition to the Design Rule Checker, other analysis tools which exploit the
hierarchy can be developed., These include: circuit extraction and verification, and

net list extraction. Then, the extracted hierarchical net list can be verified against



-46-~

a hierarchical circuit diagram system's net list. The basic approach is the'same,
though there are a different set of problems in each different type of analysis tool.
Other analysis tools which could use a similar approach are functional verification

systems, timing analyzers and electrical rules checkers.

-The problem of performing the geometric manipulations on the primitive elements
in order to do design rule checking needs to be investigated[11]. If we introduce
the concept of primitive symbols to represent devices and other structural pieces of
the design, then the design rule checker would "know" more about the designer's
intent. With primitive symbols, the design rule checker could not only perform’
design rule checks, but also extract a hierarchical net 'Ii.st as it looks at the pairs of

primitive elements. The net list information would eliminate many false errors,

The design rule filter is a first attempt at a hierarchical design analysis tocl. VLSI

designers need many tools which use or produce a hierarchy.
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Appendiﬁ( 1

Hierarchical Design Rule Checker CIF User Extensions

The following section describes the CIF user extensions supported by the
hierarchical design rule filter, and eventually the design rule checker. For each
extension, the paper presents the syntax and then describes how special cases are
handled.

In the syntax description, anything contained in curly brackets ({}) is optional, and
anything outside the brackets is not. The order in which information is given is
fixed. '

A separator (sep) is defined to be:

sep ::= blank sep | blank
blank ="' ')

‘The DRC supports the following user extensions:
User Extension Purpose

7 ~ Special Purpose cell information for DRC

8 - - Element names for boxes, wires, polygons, and calls
g9 - Symbol Definition Names

A symbol contains user extension 7 in order to define special attributes of the
sy'mbol definition for the DRC. A designer may designate a symbol as having up to
three different attributes. These attributes are not mutually exclusive, though a
preceidence exists which will be described later. All three have a separate indicator.
If more than one attribute is present, the order in which they are declared is

important.
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The syntax is as follows:
7 {sep} {C {hecked} sep} {L {eaf} sep} {P {rimitive} sep type} '’

The C indicates a symbel definition is not to be checked. The DRC assumes it has
been previously checked. A prechecked symbol is one designated as design rule
correct by the designer. The DRC assumes that any symbol referenced bv a
prechecked symbol is also correct in the given context. The implication is that if
symbol A is referenced solely by the prechecked symbol B, then the definition of A
will never be checked. But if symbol C also references A, then A's definition. is
examined. A prechecked symbol's interactions with other elements are still

vlhivcked,

The L indicates a L.eaf eell. This construct allows the designer to explicitly identify
leaf cells[12], even if instances of other symbols are used in a leaf cell definition.
The DRC replaces all instances of symbols in a leaf cell with the corresponding
geometry. If the DRC is a hierarchical filter only, the instantiated geometry of the
leaf cell is written out to the CIF ocutput file. The filter does not spend tine
checking interactions between pieces of geometry in a leaf cell, but rather spends
time more appropriately looking at the cell’s interactions with other cells. The DRC
notes cells as leaf cells automatically if they contain only geometry and references

to primitive symbols.

A leaf cell is similar to a prechecked symbol in that calls to other symbols are not
checked by the DRC. . The difference is that the DRC fully instantiates and
eventually checks a leaf cell whereas a prechecked symbol définition never gets
checked. If both a Checked flag and a Leaf flag are present in a single definition,

the Checked flag takes precedence.

The Hierarchical DRC requires that Leaf cells be design rule correct, e.g. a wire
cannot be half the minimum width. The DRC must be able to find all real errors by
checking a symbol definition once. This approach places a constraint on the methéd
by which layouts are done. One of the reasons the concept of a Leaf cell was
introduced is to allow the use of "construction cells". These cells are not necessarily
design rule correct, but they can be used to build leaf cells which are design rule

correct. A common example of this is in RAM cell designs. In the course of



designing a RAM cell, a quarter of the cell is designed, and then repeated four times
to form the RAM cell. The RAM cell is the leaf cell.

The P indicates a Primitive Symbol. A primitive symbol is any cell that should not
be broken down into pieces of geometry. All devices, and contact cuts are primitivé
symbols, Associated with each primitive symbol is a type. This type defines what
the primitive symbol is suppuséd to be or do. These types could eventually have a
one to one correspondence with a set of design rule checking procedures. An
example of a primitive symbol is an enhancement mode transistor. The transistor
could have a corresponding checking procedure which checks the transistor for

design rule violations.

There are two 1mplementations possible for the DRC, The first is a hierarrhical
filter, which extracts the minimum set of geometry that needs to be checked, in
order to check the entire chip. This minimum set of geometry is written out to a
CIF file. The leaf cell designation is used to indicate entire sets of geometry that
need to go out t6 the file. The second DRC implementation is an extension of the
filter, which incorporates true design rule checking. Primitive symbols are used in
this second implementation to represent devices. If a leaf cell is declared, all levels
of hierarchy present down to but not including primitive symbols are brought up to

the current level.

A user extension 7 command may occur anywhere within the symbol definition. If
a T is encountered outside a symbol definition, the DRC produces a CIF ‘error
message, and ignores the statement, Multiple commands may occur within a
symbol, but if a field is changed, a warning is issued, and the field is updated. As an

example, consider the following symbol definition:

DS 1

40 40 0,0}
PRIMITIVE ET24;
CHECKED

0,0 90,0 90,90 0,90;
PRIMITIVE DP44;

DF ; .

Rt T - B N R VI - ]

In this example, the DRC believes the symbol is a primitive and prechecked symbol.

When the DRC encounters the third 7 command, a warning is issued, since the
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primitive status is redefined, and the last definition is taken.

The user extension 8 command allows the designer to label pieces of geometry.
When the DRC encounters an 8, the text between the 8 and the following
semicolon, with the front and'tr.ailing blanks removed, is used to label the next
piece of geometry encountered in the file, .If the DRC encounters multiple 8's before
a piece of geometry, a warﬁing is issued, and the last label encountered ig used. A
'DF:' command will cause any 8 that has not been assigned to a piece of geometry to
be ignored. If this happehs, a warning is issued. An 8 command cah never occur
outside a symbol definition, since-nothing but the top level call may occur outside a

symbol definition. The top level call cannot be labeled.

The user extension 9 allows'designers to label a symbol definition. A 9 command
may occur anywhere in the symbol definition. If the DRC encounters multiple 9's
in a symbol, a warning is issued and the most recent label is used. The filtor
follows the same procedure described for user extension 8 while creating the label.

If a 8 is encountered outside of a symbol definition, a CIF error is generated, and the

statement is ignored.

CIF design files containing the above user extensions can easily be translated into
files for software not supporting user extensions. Since the special cell designation
indicates attributes of a symbol only, these statements may be deleted. The labeling
commands may be deleted or replaced by a comment. These extensions to CIF are
helpful, but do not in anyway destroy the integrity of the language as it exists
today. -
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User Manual

Introduction

The hierarchical design rule filter is a program that takes a Caltech Intermediate
Form (CIF2.0) file and filters out redundant geometrical information. Its purpose is
to act as a preprocessor to a standard Design Rule Checker (DRC)., If a design contains
a great number of repetitious structures, the filter .will eliyingtle much of the
design's geometrical information, and create a filtered, fully instantiated design
description which can then be design rule checked. If no design rule violations are
found in this filtered version of the design, then there are no design rule violations
in the original design description. This approach cuts down on DRC runtime and
cost besides limiting the amount of computer memory that must be available to the
DRC.

User's Manual

The hierarchical Design Rule Checker FiLter (DRCFIL) is a program that accepts as
input a CIF2.0 file, and extracts the minimum set of geometry that needs to be
checked, according to a given set of design rules, in order to check the entire design.
This set of geometry is then. written out to another CIFZ2.0 file,
In order to run DRCFIL, the following information must be available:

1. input file - must be specified, if it is not the first file name on the command
line. the filter will ask for the name. If an extension is not specified, the defanlt

extension is .CIF.

2. design rule file - must be specified, if it is not the second file name on the

comimand line, DRCFIL will ask for the name. This file may be created using the
program DESRUL, The default extension is .RUL. The specification file for the Mead
and Conway rules is NMOS.RUL.
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3. output file - may be specified as the third file on the command line, but the

default is {input file}.CNV.
An example of using the filter on the CIF design file PLA.CIF would be:
@drcfil pla nmos

DRCFIL also has several modes available in which it prints information about
what it is currently doing. The modes may be set by specifying a switch on the
command line. These may be in any order, and may be placed among the abouve file

names. By default, a given mode is off unless the switch is present. The switches

dre:

1. /4 - Debug mode. DRCFIL prints all kinds of miscellaneous infarmation

about what it is doing. This mode is probably not useful to most users.

2. /f - Nomn filter mode. The default setting for DRCFIL is in filter mode. This
means the program produces a file of geometry that needs to be checked. If this
switch is set, the program will attempt to do some real design rule checks. Since
the polygon package which it uses to do this has a great number of bugs, I would

not suggest using this switch, The program will bomb.

3. /s - Statistics mode. If this switch is set, the program will produce a file with
relevant (or irrelevant) statistics about the input file. This file will be {input

file}.85TA. Try it-once, see what it comes up with. You might be interested,

4. /i~ This is also a different kind of debugging switch, With this switch set,
the program will print out all kinds of information about the interaction list, as the

list is accessed.

5. /a - Disk accesses. This switch causes the program to issue a message each
time a symbol definition is sent out to disk, or read in from disk. If you want to see

how much thrashing is going on, this is a good switch to set.

DRCFIL performs many pairwise comparisons between pieces of geometry. Since

a piece of geometry may need to be checked in several different contexts, the
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filter does not always know whether a piece of geometry has already been written
out to the file. Therefore a great deal of redundancy occurs in the output
file. If the DRC package being used performs a merge of all pieces of geometry on
the same layer, this does not present a problem. However if a plot is needed, you
definitely want o get rid of the redundancy. There is a program to rid the file
of it's gerometric duplication, called CNVCIF, The following information is needod

by the pProgram:

1. input {ile - Once again, this must be available as the file name on the command
line. If the name is not present, the program will ask for it's name. The default

extension is .CNV,

&. output file -'muy be specified as the second file name on the command line.
The default name is {input file}.DRC.

An example of the commands needed to Filter the CIF file PLA.CIF, and then create
a file to plot is the following: '

@drcfil pla nmos

@cnveif pla
When the above commands have completed, the file to plot will be PLA.DRC.

DRCFIL has encountered certain limitations in the size of symbol definitions it
is capable of accepting. Any design which is broken into symbols, where the
number of elements contained in each symbol definition does not excead 500,
should not run into this limitation. In order to overcome this obstacle, rather
than introducing new management into DRCFIL, I decided to write a program
capable of modifying input files in order to meet the demands of the filter. This

program is called TELLE[ 14].

Program Error and Warning Messages
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Errors - Design Rule Filtering Aborted

a. Tried to place a polygon/wire/box on the ZZZ Tayer.

A piece of geometry was placed on an undefined layer. The piece of geometry

' needs to be placed inside a symbol definition in order to maintain consistency.
b. A DD statement is unsupported.

The filter is unable to handle DD statements. Since the designer's intention is not

known, design rule checking is aborted.
c. Polygon/Wire/BDox defined outside of a symbol definitivn.
The filter is unable to handle geometry defined outside of a symbal.
d. A Flash command is unsupported.
The filter is unable to handle CIF flashes.
e. Top Level Symbol is undefined.

There is a call to a symbol at the end of the file, but the symbol referenced is

undefined.
f. No final call in CIF file, so cannot check.

The Filter needs to know which symboal is the entire design in order to check it.

The file contained no final call.

Warnings - May affect the output of the filter

a. Polygon/Wire/Box defined with angles which are not a mun;iple of 45
degrees '
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A piece of geometry contained angles which were not 45 degrees, Since many

tools do not support any angles non-45, the designer may want to change the piece

of geometry.
b. Symbol n is called but not defined.

A call exists in the file to an undefined symbol or a symbol containing no

geometry. The call is ignored.
c. Redefining symbol n "symbol name (if any)'"

There are two definitions of the same symbol, The second definition is taken.

d. Cannot eject' symbol froin memory.

There are more data structures in memory than the filter thinks there should be,
and the program is unable to get rid of any information. The possibility exists of
the program blowing up with not enough memory. There isn't much to be done
about this. Normally the filter will finish if the symbol definitions are smail
enough, even if this message appears. The symbol limit set by the is somewhat

arbitrary and it leaves quite a bit of room to play with.
e. Different Scale factors in file. The first set is used on output.

CIF allows each symbol to have associated with it scale factors. The filter uses
the same scale factors in it's output file, that the input file uses. If the input file

contains multiple sets of scale factors, only the first set is used for all output

symbols. This could conceivably lead to round off errors. Usually this is not a

problem.
f. Layer command outside symbol definition - dignored.

A layer command existed outside a symbol definition. The command is ignored.
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g. Transformation not supporterd on top level symbol, so ignored.

The top level symbol is always assumed to have no transformation associated
with it. If a transformation is associated, it is ignored. The lack of a transformation
should have no affect on whether or not the design is correct.

h. User Extension n is not supported.
The filter did not recognize the given user extension, so the extension is ignored.

i. User Extension command outside symbol definition - ignored

A user extension was encountered outside any symbol definition. The statement

was ignored.
Jj. Redefining a geometry name in symbol n.

The user extension 8 which allows a user to name a piece of geometry was

encountered twice before a piece of geometry was encountered,
k. Redefining the name for symbol n.

Duplicate user extensions 9 for naming symbols were present in the symbol

definition.
1. Multiple use of prechecked status in symbol n.
A symbol was marked prechecked mqre than once,
m. Multiple use of leaf status in symbol n.
A symbol was marked a leaf symboi more than once,
n. Primitive symbols are currently not supported.

Primitive symbols are defined to be symbol definitions which are the basic

building blocks of a design, such as transistors and contacts. The intention is to
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eventually incorporate this idea into the filter. The filter recognizes the user
exlension which designates a primitive symbol, but it does not do anything with
this knowledge. The statement is ignored.

o. Currently, arrays are not supported.

The filter recognizes the CIF user extension which defines an array, but does not

yet understand arrays as a construct. The statement is ignored.
p. A geometry label was still present at the end of symbol n.

A geometry label was present and no geometry existed to use it. The statement is

ignored,

Informational Messages
a. Throwing away a call to symbol n.

A call to an undefined symbol was encountered. This call is thrown out.
b. }No,vaHd. CIF in symbol n, ‘'so not included.

If a symbol contains no elements, the definitibn is discarded.

c. Throwing out symbol n

Only a limited number of symbol definitions may be in memory at a given time.

Symbol'n is being put on disk.
d. Bh‘nging in symbol n -

A symbol definition is needed by the filter which is currently on disk. The

definition is brought in.
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Error Messages - Problem with the program - abort

a. Index into s'ymbol n's array 1is too large.

The program attempted to access more geometry then was available in the

definition,
_b' Geometry asked for in symbol n where geometry doesn't exist.
The program attempted to access a piece of geometry that didn't exist.
c. The geometry being thrown to disk is of unknown type.
The program attempted to write to disk an unknown quantity.
d. A spacing rule was requested where none exists.

The .program requested a spacing rule between two layers that were defined as

having no rule.
e .. A width rule was requested where none exists.
The program requested a width rule f or an unknown layer.
f. Problem with interaction matrix.
Interactions _between symbols are defined by a transformation matrix. Ths
inverse transformation matrix is being computed, and the divisor is 0. Some kind of

problem with the matrix computation.

g. Transformaticon stack ran out.

At all times the program keeps a transformation which tells it where in the
design it currently is. The program thought there was one more transforination

than there really‘ was, A definite problem,
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h. The information has been destroyed in the disk file.

The program creates a temporary file to take some of the information out of

memory. This file has somehow been garbaged up.
i. Attempted to write out a null interaction.

The interaction 1list is kept out on disk. The program wants to add a null

interaction to the list.



