Mach-Based Channel Library

Rajit Manohar
Advisor: K. Mani Chandy

Department of Computer Science
California Institute of Technology
Pasadena, CA 91125.

July 7, 1994

In partial Fulfillment of the Requirements
for the degree of
Master of Science

Acknowledgments

I foremost want to thank my research advisor Prof. K. Mani Chandy for his guidance
and support.

I would like to thank the members of my research group—Peter Carlin, Peter Hofs-
tee, Svetlana Kryukova, K. Rustan M. Leino, Berna Massingill, Adam Rifkin, Paul
Sivilotti, John Thornley—for comments, constructive criticism, and invaluable dis-
cussions.

This research was supported in part by Air Force Office of Scientific Research grant
number 91-0070.

Contents

1 Introduction 4
1.1 Motivation 4
1.2 Overview 5

2 Introduction to Mach 6
2.1 Overview 6
2.2 Threads and Tasks 7

2.2.1 Scheduling o o 7
2.2.2 Creating Tasks and Threads 8
2.3 Portsand Messages L L oo 8
231 Access Rights o o 9
2.3.2 Imternals. 9
2.4 C-Thread Library 10
2.4.1 Thread Functions 10
2.4.2 Mutex Variables 11
2.4.3 Condition Variables 11

3 Specification 12

3.1 Preliminaries 12

3.1.1 Conventions 13
3.2 Imtialization 14
3.3 Channels 14
3.4 Communication 15
3.5 Processes and Threads 16

CONTENTS CONTENTS

4 Implementation 18
4.1 Tssues . .o 18
4.1.1 Channels oL o 18

4.1.2 Threads and Processes 19

4.1.3 Termination and Channel Close 19

4.2 Network Channel Server 19
4.2.1 Channel Table 00 20

422 LogFile 21

423 Messages 22

4.24 Code Outline oo o 24

4.3 User Interface oo 26
4.3.1 Channel Table 26

4.3.2 Message Handling 0oL 27

4.3.3 Argument Passing o 0oL 28

4.34 Code Outline Lo 29

4.4 Possible Improvementso oL 31

5 Proof Outline 33
5.1 Network Channel Server 33
5.1.1 Properties 33

5.2 User Interface 36
5.2.1 Properties 36

5.3 Outline of Proof 37

6 Example programs 40
6.1 Producer-Consumer o o 40
6.2 Sorting 41

7 Conclusion 44

Chapter 1

Introduction

1.1 Motivation

We think of a parallel computation to be one that involves a number of tasks
cooperating in some fashion. The manner in which the tasks cooperate becomes an
important issue. There are two basic paradigms that describe cooperation between
tasks:

1. Use of Shared Variables. In this technique the cooperating tasks share certain
data structures, which are used to exchange information.

2. Message Passing. The message passing paradigm constrains the parallel com-
putation in two ways: (i) tasks do not share any data; (ii) the only way that
tasks can exchange information is by sending messages to each other. Some-
times, the first constraint is relaxed, resulting in a computation that uses both
shared variables and messages.

Mach, an operating system developed at Carnegie Mellon University [1], provides
support for both these paradigms. However, the flexibility provided by the operating
system makes it difficult to reason about programs. The support provided for
message passing focuses the attention of a user on the details of the communication
layer provided by the operating system.

The goal of this thesis is to write a small message-passing library—using the support
provided by Mach—for parallel computation. This library should be easy to use,
language independent, and robust. It should focus attention on the message passing
abstraction itself, rather than on the details of the underlying operating system. By
imposing restrictions on the functions that are available, the library should simplify
arguments involving program correctness.

The model chosen for the library i1s the one provided by Mach itself, in which tasks
can communicate with one another by sending messages. Communication streams
known as channels are provided that allow the user to think about the logical
connections between cooperating tasks. Since the concept of channels is central to
the library, we call it a channel library.

CHAPTER 1. INTRODUCTION 1.2. OVERVIEW

Mach provides kernel support for message passing. Since all Mach services are
accessed through the message passing mechanism, the message passing mechanism
provided is robust. As will be seen in chapter 2, the operating system enforces a
system of access rights, which prevent tasks from exchanging messages unless they
have permission to do so. In addition, the message passing mechanism provided
is reliable, even across machines. Finally, the operating system provides kernel
support for fair threads. We chose the Mach operating system as our base because
of these features.

The functions provided by the channel library can be grouped into four basic cate-
gories; functions for:

1. Initialization.

2. Creating channels.

3. Sending and receiving messages.

4. Creating new tasks or threads.

1.2 Overview

Chapter 2 provides a brief introduction to the relevant concepts of the Mach oper-
ating system. Chapter 3 describes the interface provided by the channel library, by
specifying each function provided by the library. In chapter 4, the implementation
of the library is discussed in detail. Chapter 5 shows some of the major properties
and invariants maintained by the library, and indicates how a rigorous proof of the
library implementation could be constructed. Chapter 6 provides a few example
programs that illustrate how the library is to be used.

Chapter 2

Introduction to Mach

2.1 Overview

The Mach operating system was developed at Carnegie Mellon University (CMU).
The goal of the project was to write an operating system with a small kernel that
would provide a few powerful primitives that a programmer could use to construct
complex programs. With this in mind, the Mach kernel has been written to provide
three basic services:

e Scheduling.
e Inter-process communication.

e Virtual memory management.

All other features are built on top of these three basic services. As a result, a
number of services that are part of the kernel of traditional operating systems, such
as UNIX [2], are user-level applications that run on top of the Mach kernel.

The Mach operating system is compatible with 4.3BSD UNIX, and most BSD pro-
grams can be executed under the Mach operating system without modification after
recompilation.

Our main concerns when implementing the channel library on top of Mach are the
following:

e Process creation.

e Thread creation.

e Communication.

We will therefore restrict our attention in this chapter to describing the scheduling
and inter-process communication (IPC) aspects of the Mach kernel.

CHAPTER 2. INTRODUCTION TO MACH 2.2. THREADS AND TASKS

Two tasks with a
partially shared
address space.

Each thread has

Assingle thread access rights of the
exe_cutlng within task. Threads share
a single task. a common address
space.
Traditional Process Task with many threads

Figure 2.1: Tasks and Threads

2.2 Threads and Tasks

Under the Mach operating system, the concept of a process has been divided into
two parts: the task and the thread.

A task 1s an environment in which execution of a program occurs. The task consists
of a virtual address space and access rights which give the task access to certain
services and resources provided by the system. The virtual address space of a task
cannot be accessed by another task unless explicit permission to do so is granted
by the task.

A thread is the unit of execution. Threads execute within a task, which provides
an environment for execution. Threads within a task share access rights of the task
and the virtual address space of the task. Many threads can execute within a single
task, and they all share the same address space as shown in fig. 2.1.

Thus, a traditional process consists of a single thread executing within a single task.

2.2.1 Scheduling

Mach provides a flexible thread scheduling method. Each thread has associated
with it a priority and a policy. The policy indicates the scheduling method to be
used for the thread. We will discuss the timesharing policy only, since it is the
default, and the only policy we will use.

The timesharing scheduling policy ensures that execution of threads is weakly fair:
every thread executes eventually. To ensure this, each thread is assigned a priority
which decreases with the execution time of the thread. As a result, a thread with
a high priority can never starve a low priority thread, thus ensuring that execution
1s weakly fair.

CHAPTER 2. INTRODUCTION TO MACH 2.3. PORTS AND MESSAGES

machinel machine2

@ remote procedure @

/CN

ocC

rsh machine2 |"proc"
J

Figure 2.2: Remote Shell Program

2.2.2 Creating Tasks and Threads

A thread is defined by specifying the state of the thread, i.e., the state of the
processor when the thread is being executed on i1t. This state typically consists
of the program counter, hardware registers, and the execution stack of the thread.
As a result, creating a thread also involves the assignment of a valid state to the
thread.

Tasks can be created in various ways. However, for the purpose of the channel
library we are interested in creating tasks on remote processors. As a result, the
remote shell execution program rsh can be used (Fig. 2.2). This program takes the
name of an executable and a machine as arguments, and spawns a new task with
a single thread of execution on the remote host. The rsh program comes with the
Mach operating system.

2.3 Ports and Messages

Under Mach, tasks (and threads) can communicate with each other by sending
messages. This message-passing mechanism is supported through two basic ab-
stractions: messages and ports.

A message consists of a fixed header—which contains information about the length
of the message and its destination—and a list of typed values. Messages are the
basic unit of communication. They can be of arbitrary length, and can contain
data, pointers, or ports.

In Mach, the destination of a message is specified by a port. Any message sent to a
port is stored internally by the Mach kernel. Conceptually, a port is like a mailbox:
there are a number of tasks that can insert messages into the port; threads in at
most one task can remove messages from the port.

CHAPTER 2. INTRODUCTION TO MACH 2.3. PORTS AND MESSAGES

Tasks sending
messages to

port M. =
BT /\f\

Port M,

= which contains

some messages.

Single task, removing
messages from port.

Figure 2.3: Mach communication ports

2.3.1 Access Rights

Each port has two access rights associated with it: send rights, and receive rights.
If a task has send rights for a port, it can send messages to that port. If a task has
receive rights for a port, it can receive messages that have been sent to the port.
Only one task may have receive rights for a port. Multiple tasks can have send
rights for a single port. Note that threads within a task have all the access rights of
the task. Therefore, there could be multiple threads which have receive rights for a
single port.

Port rights can be granted to a task by sending them to the task in a message. If a
message contains a port, then the port rights the task has for that port are sent to
the task that receives the message. If send rights are sent in a message, then send
rights are kept by the originator of the message as well as passed to the recipient.
Since at most one task can have receive rights for a port, if receive rights are sent
in a message, the sender no longer has receive rights for the port.

2.3.2 Internals

Internally, a port consists of a finite queue of bounded size which contains the list
of messages that have been sent to the port. The size of this queue can be specified
for a given port. A task with receive rights can dequeue messages from this internal
queue. Sending a message to a port appends the message to the queue associated
with the port. Sending a message to a port whose queue is full will result in the
suspension of the sender.

Ports can refer to tasks on the local machine or tasks across the network. The
interface to the ports is exactly the same. The only difference is that ports over
the network are handled (transparently) by the Mach network server. The network
server implements network ports, which represent ports on remote machines. These
ports are used by tasks to send messages to remote machines.

Mach provides a port server known as the network name server. This server enables
a task to associate a port with a name. Other tasks can then look up the port of
interest using the name associated with the port. This name server is used to

9

CHAPTER 2. INTRODUCTION TO MACH 2.4. C-THREAD LIBRARY

Thread t1 suspends, since the port queue is full. receive

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

send™>~—_ J

Port queue which can contain
at most three messages.

Figure 2.4: Mach ports—Internal queue

register a service, which then allows other tasks to use the service by looking up
the service port from the name server. For instance, if an application programmer
decided to write a server that provided access to a remote file system, then the
programmer could register this new server with the network name server by giving
it a name. Now any application that wants to use this new service can look up the
port for the file system server and then send requests for remote files to the server
using the port it receives from the name server.

2.4 C-Thread Library

The C-thread library consists of functions that are used to manipulate and synchro-
nize threads [3]. This library provides an interface to the Mach kernel services for
thread creation and synchronization. The following three main classes of functions
are provided by the library:

1. Functions that are used to manipulate threads.

2. Mutex variables, and functions to manipulate them.

3. Condition variables, and functions to manipulate them.

Synchronization in the C-thread library is done using condition and mutex variables.

2.4.1 Thread Functions

The thread functions can be used to create, terminate, and schedule threads. These
functions call existing Mach functions with the appropriate parameters.

The main advantage of using the thread functions from the C-thread library rather
than the ones provided by Mach is that the C-thread library is portable across
architectures. As mentioned earlier, creating a thread in Mach involves setting
up the state for the thread. This involves assigning values to hardware registers,
which differ from machine to machine. The C-thread library can be used to spawn
a thread that starts execution from a function that takes a single argument. All
the information required to set up the state can be determined by knowing the C
compiler on the system, and the address of the function being spawned.

10

CHAPTER 2. INTRODUCTION TO MACH 2.4. C-THREAD LIBRARY

2.4.2 Mutex Variables

Mutex (mutual exclusion) variables are used to protect access to shared data struc-
tures. A mutex variable can be in one of two states: locked or unlocked. A thread
attempting to lock a mutex variable will suspend if the mutex is in the locked state.
If the mutex variable was unlocked, the mutex will be locked, and execution of the
thread will continue. Unlocking a mutex will resume execution of one thread that
was suspended due to a lock operation on the mutex.

The following functions operate on mutex variables:

mutex_lock(m) is used to lock the mutex variable m.

mutex_unlock(m) is used to unlock the mutex variable m.

Initially, the mutex variable is unlocked.

Consider the following example:

mutex_lock(m);
modify data structure;
mutex_unlock(m);

If all access to the data structure are protected with the mutex m as above, then we
know that at most one thread can modify the data structure at a time.

2.4.3 Condition Variables

Condition variables are used when a thread wants to wait for another thread to
complete some action. Every condition variable must be associated with a mutex
variable. Two basic operations on condition variables are allowed: signal and wazt.

A call to function condition_wait(c,m) does the following actions:

1. The mutex m is unlocked.
2. The thread is suspended waiting for a signal on the condition variable c.
3. On receiving a signal, the mutex m is locked.
condition_signal(c) wakes up a single thread (if any) waiting on a condition

variable. Condition variables can be used to selectively wake up threads that might
be suspended waiting for some boolean condition to hold.

11

Chapter 3

Specification

3.1 Preliminaries

The channel library provides the following three basic abstractions:

e Processes.
e Threads.

e Channels.

A process can be thought of as a virtual address space. A process is similar to a
Mach task. The major difference between Mach tasks and processes is that processes
do not share memory. Therefore, two processes cannot interact through shared data
structures. The concept of a thread is the same as the one in Mach. Threads run
within a process, and they share data with other threads in the same process.

The major departure from the Mach model is in the abstraction provided for com-
munication. The channel library provides abstract communication streams known
as channels (Fig. 3.1) which are used for communication and synchronization.
These channels can be thought of as first-in-first-out (FIFO) message buffers.

Three operations can be performed on a channel:
1. Send message along channel.

Sender 1

Channel outport (one of three).
(Channel inport.

Queue of messages. First-in-First-Out. ’\

O

Sender 2

=0
L&o F-0O0

==

Sender 3

O

direction of motion. Receiver

Figure 3.1: Channel

12

CHAPTER 3. SPECIFICATION 3.1. PRELIMINARIES

2. Receive message from channel.

3. Close channel.

Sending a message along a channel is equivalent to inserting the message into the
FIFO. Receiving a message from a channel is equivalent to removing the next mes-
sage from the FIFO. The close channel operation is somewhat different in that it
inserts a special message into the buffer. This message indicates that no more mes-
sages will be received along the channel. Furthermore, the sender cannot send a
message along the channel after closing the channel. Once a receiver removes the
close channel message from a channel, the resources used by the channel can be
released.

A channel can have any number of senders, but at most one receiver. If a channel
has more than one sender, then the channel is closed only when all the senders close
the channel.

To be able to send (receive) data along a particular channel, a process must have
send (receive) rights for the channel. These rights are similar to the send and
receive rights for Mach ports. However, these rights cannot be passed from one
process to another. Once the receiver for a channel is specified, the receiver cannot
be changed. However, since a channel could have many senders, different processes
could be given send rights for the same channel.

A send operation blocks only when no process has receive rights for the channel. A
receive operation blocks only when there is no message in the channel. Once some
process has receive rights for a channel, a send operation on that channel never

blocks.

The inport of a channel is the receiving end of the channel, and the outport is the
sending end.

The channel library comes with a program known as the network channel server.
This program must be running on all the machines in the computation. Chapter 4
describes the purpose of this server in detail.

3.1.1 Conventions

The main process in a concurrent computation refers to the first process that is
created 1n the computation. This process is responsible for creating any additional
processes in the computation.

The channel library can be specified by means of the functions it provides to the
user. Note that the specification is given only in terms of predicates on state, as
1s usually done for a sequential program. However, the proof of the specification
will involve the fact that there could be concurrent access to each function in the
library. Each function in the channel library is specified by the following:

e Function is the name of the function, along with its arguments and their types.
C syntax is used for the argument list.

e Precondition, Postcondition. If the function is executed in a state in which

the precondition holds, then the function will terminate, and on termination,
the postcondition will hold.

13

CHAPTER 3. SPECIFICATION 3.2. INITIALIZATION

o Wait Condition. This gives the condition under which execution of the func-
tion will suspend. If the wait condition is omitted, the function will never
suspend.

e Error Condition is the condition which will cause the function to terminate
with an error status. If the error condition is omitted, the function will never
terminate with an error status.

The channel library functions do not return any values.

3.2 Initialization

The initialization functions are used to set up the internal data structures that are
used by the channel library. One of these functions should be called once per process
before calling the channel library functions.

Function: Initialize Main ()

Precondition: The current process is the main process. No other function from the
channel library has been called.

Postcondition: The channel library has been initialized.
Error Condition: Duplicate call to Initialize Main().

Function: Initialize Process ()

Precondition: The current process is not the main process. No other function from
the channel library has been called from the current process.

Postcondition: The channel library has been initialized in this process.

Error Condition: Duplicate call to Initialize Process() by the same process.

3.3 Channels

The channel functions are used to create channels, and to manipulate send and
receive rights for a channel.

Function: New_Channel (int *chan)

Precondition: The channel library has been initialized in the calling process. chan
is a non-NULL valid pointer to an integer.

Postcondition: *chan contains the logical name of new channel which has no sender
and no receiver.

Error Condition: The channel library has not been initialized.

The following two functions are used by a process to obtain access rights for a par-
ticular channel. These functions must be called before actually sending or receiving
data along a channel.

14

CHAPTER 3. SPECIFICATION 3.4. COMMUNICATION

Function: Sending On (int chan)

Precondition: chan is the logical name of a channel. The calling process does not
hold send rights for the channel chan.

Postcondition: Send rights for the channel chan have been requested by the calling
process.

Error Conditions: chan is not a valid channel. Initialization has not been done. The
calling process already has send rights for channel chan. chan has
been closed by some process.

Function: Receiving On (int chan)

Precondition: chan is the logical name of a channel. The calling process does not
hold receive rights for the channel chan.

Postcondition: Receive rights for the channel chan have been requested by the calling
process.

Error Conditions: chan is not a valid channel. Initialization has not been done. The
calling process already has receive rights for channel chan. Another
process in the computation has receive rights for channel chan.

For instance, the following code in a process would create a new channel, and then
declare that the calling process would like to send a message on the newly created
channel.

int chan;

New_Channel (&chan);
Sending_On (chan);

3.4 Communication

The following functions are used to perform the communication actions discussed
earlier. They use a format specification—similar to the one used by the C printf
function—to specify the type of the message being sent. The format specifications
that have been implemented are: %d for integers and %f for floating-point numbers.
Spaces are not permitted in the format specification.

Function: Send (int chan, char *fmi, ...)

Precondition: chan is the logical name of a channel. The calling process has send
rights for the channel chan. fmtis a valid format specification. The
argument list following fmt matches the format specification.

Wait Condition: There is no receiver for the channel chan.
Postcondition: The specified message has been sent to the receiver for channel chan.

Error Conditions: The calling process does not have send rights for channel chan. The
channel chan has been closed. fmtis not a valid format specification.

15

CHAPTER 3. SPECIFICATION 3.5. PROCESSES AND THREADS

Function: Receive (int chan, int *closed, char *fmi, ...)

Precondition: chan is the logical name of a channel. The calling process has re-
ceive rights for the channel chan. fmtis a valid format specification.
closed 1s a valid non-NULL pointer. The argument list following fmt
are pointers to data structures which match the types specified in the
format specification.

Wait Condition: There is no message in channel chan.

Postcondition: The next message from the channel (if any) has been received, and
copied into the pointers in the list. If the channel was closed, then
*closed 1s one; otherwise *closed is zero.

Error Conditions: The calling process does not have receive rights for channel chan.
The channel chan has been closed, and an earlier receive operation
on the same channel had *closed set to one. fmtis not a valid format
specification. The received message length i1s not the same as the
length specified by the format specification.

Notes: Notice that a receive will allow typecasting of equal length messages.
However, this is not recommended since the results are machine-
dependent.

Function: Close_Channel (int chan)

Precondition: chan is the logical name of a channel. The calling process has send
rights for channel chan.

Wait Condition: There is no receiver for channel chan.
Postcondition: This outport for the channel has been closed.

Error Conditions: chan is not a valid channel identifier. The channel chan was closed.
The calling process does not have send rights for channel chan.

For instance, a process might send ten messages along a channel, and then close it
as follows:

int i, chan;
Sending_On (chan);
for (i=0; i < 10; i++)

Send (chan, "%d", i*i);
Close_Channel (chan);

3.5 Processes and Threads

The following functions are used to create and terminate processes and threads.

Function: Spawn Process (char #*proc, char *host, int n, ...)

Precondition: The channel library has been initialized. proc is a valid non-NULL
pointer. hostis a valid non-NULL pointer. proc specifies the pathname

16

CHAPTER 3. SPECIFICATION 3.5. PROCESSES AND THREADS

of an executable on host. n is the number of arguments following n,
which are channel identifiers.

Postcondition: The process proc has been spawned on host host, with arguments
specified by the channel identifiers following n in the argument list of
Spawn_Process().

Error Conditions: The remote shell program was not found. The host does not allow
remote shell access for the user without a password. There are too
many processes on the current host.

Notes: To allow remote shell access without a password, you must have a
.rhosts file in your home directory. See the man page for rsh on
your system on how to set up this file.

Function: Spawn_Thread (void (*#f)(), int =, ...)

Precondition: fis a valid non-NULL pointer. n is the number of arguments following
n, which are channel identifiers. 7 1s less than MAXARGS which is
defined to be 10.

Postcondition: A new thread has been spawned within the current task, starting in
the function specified by f. The function was called with arguments
specified by the list of arguments after n.

Error Condition: The number of arguments exceeded the maximum limit.

Function: Finished()
Precondition: true.
Postcondition: The thread has terminated.

Notes: This function terminates the main thread of control. This function
is called once per task.

For instance, the following call would create a new process nproc on machine pete,
with two channel arguments chl and ch2.

Spawn_Process ("proc", "pete'", 2, chl, ch2);

17

Chapter 4

Implementation

The implementation has been split into two parts:

1. The network channel server.

2. The user interface.

We begin by discussing the issues involved in implementing the channel library.
The network channel server is discussed in detail, followed by the user interface. A
code outline of the implementation is given for both the channel server and the user
interface.

4.1 Issues

4.1.1 Channels

Mach provides ports for communication. One possible implementation is to use
a single port for each channel. However, ports are system-wide resources that are
maintained by the Mach kernel. To conserve ports, the implementation uses a single
port for each process which is used to receive messages for all channels connected
to that process. We now need a mechanism to distinguish between messages being
sent to a process. This is done by tagging each message with an identifier which
specifies which channel the message was sent on.

For this strategy to succeed, we have to ensure that these message tags are unique
across the entire computation. The network channel server is used to provide an
identifier that is unique to a machine. As a result, the pair (hostname, identifier)
1s unique across the computation. This pair is used to identify a channel.

Since a single Mach port is used for a number of channels, each process must queue
messages for a single channel internally. Each process has an internal message
handling thread that is used for this purpose.

18

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

Internal queue of messages

for each channel. n#1 Mailbox
NULL % ‘ H ‘ %H—CET 1] for the process.
n #2 /\
NULL M New message added

to appropriate channel —

n #3
NULL queue.

Figure 4.1: Implementing Channels

4.1.2 Threads and Processes

Threads are implemented on top of the C-thread package. This package allows us
to spawn a function with a single argument. Since Spawn_Thread() takes a variable
number of arguments, we have to implement an argument passing mechanism for
newly created threads.

The rsh program is used to create processes. However, since this program is UNIX
based, it does not give us any mechanism to determine the Mach port of the newly
created process. Therefore, argument passing for processes must be handled without
using Mach messages.

4.1.3 Termination and Channel Close

The C-thread package ensures that when all the threads in the computation termi-
nate, the task itself terminates. However, the implementation uses an extra message
handling thread that is always suspended waiting for a message. To be able to ter-
minate gracefully, the channel library keeps track of the number of threads created
by the system. Every time a new thread is created, a counter is incremented. When
a thread terminates, the counter is decremented. When the number of threads in
the system created by the user is zero, the process has terminated. The message
handling thread is aborted by means of a function provided by the C-thread library,
and the process terminates since all the C-threads have terminated.

For a single sender channel, closing a channel is equivalent to sending a special
message on the channel. However, the channel close operation becomes complicated
once the number of senders is more than one. The receiver of a channel does not
know the number of senders that 1t has. Therefore, some scheme must be used to
detect the number of senders, and to close the channel only when all the senders
terminate. The network channel server is the only process that knows the number
of senders on a channel. This process 1s used to send a special close-channel message
once the channel has been closed.

4.2 Network Channel Server

The network channel server has three basic purposes:

19

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

1. Tt provides unique channel identifiers to all processes on a single machine.
2. Tt grants send and receive rights for channels.

3. It 1s used to close channels once all the senders have closed the channel.

A copy of this server must be executing on every machine in the computation.

Each channel is created by a specific network channel server. The network channel
server maintains a list of channels it has created and their current status. The
following user functions interact with the channel server:

e New_Channel()
e Sending_0On()
e Receiving On()

e Close_Channel()

New_Channel() sends a message to the channel server requesting a new chan-
nel identifier. The channel server returns an identifier it has not used before.
Sending_0n() requests send rights for a particular channel from the server that
created it. Receiving_0On() requests receive rights for a particular channel from
the server that created it. Close_Channel() sends a message to the channel server
indicating that the sender has closed the channel. Note that channel requests are
sent to the server that originally created the channel.

4.2.1 Channel Table

The network channel server maintains a table that contains the status of all the
channels 1t created. Each channel entry is of type channel_t, which 1s a structure

defined as:

typedef struct {
int channel_id;
unsigned int oneclosed:1;
unsigned int closed:1;
unsigned int nsent;
unsigned int nout;
unsigned int in_registered:1;
unsigned int in_done:1;
unsigned int out_registered:1;
unsigned int out_done:1;
port_t inport;
port_t outport;
mutex_t m;
condition_t c;

} channel_t;

20

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

channel_id is an integer which is unique to this channel server process. It is used
to distinguish between channels.

The flag oneclosed is true if any sender for the channel has performed a close
channel operation. Once any sender closes the channel, the server no longer
grants send rights for the channel to any other process.

closedis true just when the channel has been closed. To detect the end-of-channel,
two fields are used: nout is the number of senders for the channel who have
not performed a channel close operation; nsent is the number of messages
that were sent by the senders that have already closed the channel.

in_registeredis true when the receiver for the channel is known. The Mach port
of the receiver process is stored in inport.

out_registered is true when some sender for the channel is known. The Mach
port of the first sender process is stored in outport.

in_done is true when receive rights for the channel have been granted to some
process.

out_done is true when send rights for the channel have been granted to a process.

The mutex m and condition variable ¢ are used to control access to the channel

fields.

4.2.2 Log File

Each channel server creates and writes information out to a log file. This file records
the result of operations for every channel handled by the channel server, and any
errors that might be returned by the Mach operating system. The log file can
be used to aid debugging, since the status of every channel in the computation is
recorded in this file. The following messages are logged by the server:

-CTRL-START-
-CTRL-CLEAR-
-CTRL-END-

Terminated

These three messages are used to report the status of the server itself. The first
three messages denote the type of the message that was received by the server.
The last message is used to denote that the server was terminated normally. These
messages can be used to determine the type of requests received by the server.

The following messages denote various channel operations that were successful:
[chan=#] registered. This message is denotes that fact that the specified chan-

nel number was returned by the server to some user process. The log file
contains such a message whenever a new channel 1s created by the user.

closed channel [#]. This message indicates that a close channel request was
received for the channel. Note that it does not mean that the channel was
actually closed, since the channel could have more than one sender.

21

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

INport [chan=#] recvd. This message indicates that some process requested
receive rights for the specified channel. Note that the receiver could be a
process on the local machine or a remote machine.

OUTport [chan=#] recvd. This message indicates that a process requested send
rights for the specified channel.

>>warning:: [chan=#] multi-send. This message indicates that there is more
than one sender for the specified channel.

The messages mentioned above can be used to determine the status of the channels
created by the user. Note that the channel identifier in the log file is not the same as
the channel identifier used in each process. However, it is the same as the identifier
printed out by any error message you may receive.

An error message of the form
operation [chan=#] - error message

indicates that some server operation failed. The possible error messages that you
can get are:

duplicate registration of inport
multiple requests for an inport
multiple requests for an outport
specified channel was already closed
duplicate registration of channel
channel not found

4.2.3 Messages

The network channel server interacts with the user interface functions via messages.
There are two types of messages exchanged between the user interface and the server:

[request messages.

e reply messages.

The request messages are sent by the user interface to the channel server. These
messages have type request_t, defined below:

typedef struct {
msg_header_t h;
mnsg_type_t ct;
int type;
msg_type_t tO;
int channel_id;
int chan_type;
msg_type_t ti1;
port_t port;

} request_t;

22

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

The msg_header_t and msg_type_t are fields required by the Mach messaging
system. msg_header_t specifies the length of the message, the destination of the
message, and the sender of the message. The msg_type_t fields are used to specify
the types of the fields following them in the structure.

The type field is used to indicate what kind of request is being made. The following
message types are recognized by the server:

e CTRL_START is used to restart the channel server.
e CTRL_END is used to terminate the channel server.

e CTRL_CLEAR is not used by the user interface. It 1s used to kill suspended
threads.

e CTRL_REGISTER is used to create a new channel.

e CTRL_NORM is used to request send or receive rights for a channel. Tt is
also used to close a channel.

channel_id is used to specify the particular channel being referred to by the
message. Note that since the channel names created by a single channel
server are unique, the hostname is not required to identify the channel.

chan_type determines whether the message refers to the inport or to the outport
for the specified channel.

port is used to grant send rights for the receiver port when sending a receive rights
request. These send rights can then be granted to any sender for the specified
channel.

Some of the messages expect a response. These responses by the server are of type
reply_t, defined below:

typedef struct {
msg_header_t h;
msg_type_t tO;
int status;
int type;
msg_type_t ti1;
port_t port;
msg_type_t t2;
char hostname[128];
} reply_t;

status 1s used to indicate whether the request that triggered this reply message
succeeded.
type is used to indicate whether the reply refers to an inport or an outport.

port is used to grant send rights for the Mach port of a receiver to a process that
requested send rights for the channel.

hostname is used to i1dentify the channel uniquely. Notice that this field is required
for the reply message since there might be more than one channel server
sending messages to a user process.

23

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

4.2.4 Code Outline

Note: Underlined functions are potential points at which the executing thread might
suspend.

Function F4.0: server start()
mttialize data structures;
do
recetve request message.
if request.iype = CTRL_START — kill all threads;
clear all tables;
[request.type = CTRL_END — kill all threads;
terminate;

[request.type = CTRL_REGISTER — spawn handle_register_request;
[request.type = CTRLNORM — spawn handle_reqular_request;
[request.type = CTRL_CLEAR — kill all threads;
[otherwise — log error;
fi
od

Function F4.1: handle register request()
err = register_channel;

if channel id = -1 — send reply message with new id
[otherwise — skip
fi

cthread_exit;

Function F4.2: handle regular request()

if request = close — err = close_channel;

[request = inport — err = register_inport;
err = get_outport;
send reply message;

| request = outport — err = register_outport;
err = get_inport;
send reply message;

[otherwise — log error

fi

cthread_exit;

Function F4.3: register _channel()
mautez_lock(chan_lock);
channel 1d := next_valid_chan++;
create new table entry;
mutez_unlock(chan_lock);

Function F4.4: find_channel()
mautez_lock(chan_lock);
if channel in table — mautex_lock({channel. m);
mutez_unlock(chan_lock);

24

CHAPTER 4. IMPLEMENTATION 4.2. NETWORK CHANNEL SERVER

return channel;

[otherwise — muter_unlock(chan_lock);
return NULL;

fi

Function F4.5: close _channel()
chan := find_channel;
if chan = NULL — error | otherwise — skip fi
if chan.closed — error | otherwise — skip fi
chan.nsent += msgs;

chan.oneclosed := 1;
chan.nout—;
if chan.nout = 0 — chan.closed := 1;

send close channel message;
condition_broadcast(chan.c);
[otherwise — skip

fi

mutez_unlock(chan.m);

Function F4.6: register_inport()
chan := find_channel;
if chan = NULL — error | otherwise — skip fi
if chan.in_registered — error | otherwise — skip fi
chan.in_registered := 1;
condition_signal(chan.c);
mutez_unlock(chan.m);

Function F4.7: register_outport()
chan := find_channel;
if chan = NULL — error | otherwise — skip fi
chan.nout++;
if chan.out_registered — warning | otherwise — skip fi
chan.out_registered := 1;
condition_signal(chan.c);
mutez_unlock(chan.m);

Function F4.8: get_inport()
chan := find_channel;
if chan = NULL — error | otherwise — skip fi
if chan.oneclosed — error | otherwise — skip fi
do —chan.in_registered —
condition_wait{chan.c,chan.m);
if chan.oneclosed — condition_signal(chan.c);
mutez_unlock(chan.m);
error;
| otherwise — skip
fi
od
condition_signal (chan.c);

25

CHAPTER 4. IMPLEMENTATION 4.3. USER INTERFACE

if chan.oneclosed — error | otherwise — skip fi
if chan.out_done — error | otherwise — skip fi
chan.in_done := 1;

mutez_unlock(chan.m);

Function F4.9: get_outport()
chan := find_channel;
if chan = NULL — error | otherwise — skip fi
if chan.oneclosed — error | otherwise — skip fi
do —chan.out_registered —
condition_wait{chan.c,chan.m);
if chan.oneclosed — condition_signal(chan.c);
mutez_unlock(chan.m);
error;
[otherwise — skip
fi
od
condition_signal (chan.c);
if chan.oneclosed — error | otherwise — skip fi
if chan.out_done — warning | otherwise — skip fi
chan.out_done := 1;

mutez_unlock(chan.m);

4.3 User Interface

The user interface consists of the functions that were specified in chapter 3. These
functions use the network channel server to create and close channels, and to request
send or receive rights for channels.

4.3.1 Channel Table

Each process maintains a table of known channels. This table consists of elements
of the following type:

typedef struct {
int channel_id;
char *host;
port_t inport;
port_t outport;
unsigned int is_inport:1;
unsigned int in_done:1;
unsigned int is_outport:1;
unsigned int out_done:1;
unsigned int closed:1;
unsigned int rclosed:1;
unsigned int nsent;
unsigned int nrecv;

26

CHAPTER 4. IMPLEMENTATION 4.3. USER INTERFACE

list_t *list_of_msgs;
int nmsgs;
struct mutex m;
struct condition c;

} chan_tab_t;

channel_id and host together uniquely identify the channel name.
inport and outport are the Mach ports of the sender and receiver.

is_inport indicates whether or not the process has requested receive rights for
the channel. in_done is used to indicate whether the process has received
receive rights for the channel. is_outport and out_done are similar but used
to determine the status of an outport.

closed is used to determine if the channel is closed, i.e., if all senders have closed
the channel. rclosed is used to determine if at least one sender has closed
the channel. nsent and nrecv are used to detect if the channel was closed.

list_of_msgs points to a queue of messages in the channel. nmsgs is the number
of messages in the queue.

m and c are variables used for synchronization.

4.3.2 Message Handling

Each message that is sent along a channel contains the message itself, and the
unique channel name. The message structure used is:

typedef struct {
msg_header_t h;
mnsg_type_t t;
char *msg;
msg_type_t ht;
char host[128];
} generic_msg_t;

msg points to the data contained in the message. host is used to identify the
channel.

The msg field contains all the data that is sent in the message. Each data item
specified by the format specification in a Send is copied into a single buffer. Note
that the virtual memory functions of Mach are used to allocate this buffer. As a
result, when such a message is sent to a process on the local machine, Mach will
not make a second copy of the buffer, since Mach uses a copy-on-write scheme for
managing virtual memory.

The list_of_msgs field in the channel table is used to store the messages that
have been received for a particular channel. Each process has a single thread in it
that is responsible for receiving messages for all channels for which the process has
receive rights. Each channel has a count nmsgs associated with it, that refers to the

27

CHAPTER 4. IMPLEMENTATION 4.3. USER INTERFACE

number of messages that were received for the channel. To queue a message for a
channel, the following operations are done:

1. The channel mutex m is locked.

2. The received message is appended to the 1ist_of_msgs.

3. A signal action is performed on the condition variable c.

4. nmsgs is incremented.

5. The channel mutex m is unlocked.
To remove a message from the channel, the following actions are done:

1. The channel mutex m is locked.

2. A wait is done on the condition variable ¢ until nmsgs is non-zero.
3. The next message is removed from the queue.

4. nmsgs is decremented.

5. The channel mutex m 1s unlocked.

4.3.3 Argument Passing

When a Spawn_Thread() or a Spawn_Process() call is made, the list of arguments
to the thread or process must be converted into a form that can actually be passed to
the thread or process, and then reconverted back into the original arguments. Since
process and thread creation are very different internally, two separate strategies are
used to tackle the problem for each of them.

Threads

The C-thread package allows a thread to be spawned with a single argument. There-
fore, we have to convert the list of arguments to Spawn_Thread() into one single
structure that can then be passed to some function that converts the structure back
into the original argument list. The structure used for this purpose is shown below:

struct single_argument {
void (*£)();
int n;
int *chan_list;

};

n i1s the number of integers in the array chan_list. Together, these specify all the
arguments that were passed to the thread. f is a pointer to the function that is to
be spawned.

28

CHAPTER 4. IMPLEMENTATION 4.3. USER INTERFACE

Spawn_Thread () does not spawn the function specified in its argument list. Instead,
a function known as __generic_unpack is spawned. This function takes a single
argument of type struct single_argument*. The purpose of this function is to
unpack the arguments and call the function specified by £ with the appropriate
argument list.

Processes

Argument passing across processes is slightly more complex. The major problem
is that the channel identifiers that are passed as arguments do not refer to the
channel name, but to the location of the channel in the channel table. Therefore,
the channels must be entered into the channel table in the remote process, and then
converted into a valid channel identifier in the remote process. The channel names
are passed using the command-line mechanism. This list must then be unpacked
by the remote process, and entered into the channel table.

The channel library provides a simple tool known as makestub which is used to cre-
ate the main process for remote processes that are spawned using Spawn_Process ().
The main program takes the command line arguments, registers them internally,
and then calls a specified function (an argument to makestub) with the actual
channel identifiers.

4.3.4 Code Outline

Note: Underlined functions are potential points at which the executing thread might
suspend.

Function F4.10: internal msg handler()
do

receive message

if wuser interrupt — cthread_exit() [otherwise — skip fi

chan := find_channel()

if chan = NULL — mutez_lock(table_mutex);
msert new channel into table;
chan := new channel;
mutez_unlock(table_mutez);

[chan # NULL — skip

fi

mutez_lock{chan.m);

msert message 1 message queue;

condition_signal{chan.c);

mutez_unlock(chan.m);

od

Function F4.11: Sending 0On()
if chan.is_outport — error | otherwise — skip fi
chan.is_outport := 1;
chan.out_done := 0;

29

CHAPTER 4. IMPLEMENTATION 4.3. USER INTERFACE

send outport request to channel server

Function F4.12: Receiving On()
if chan.is_inport — error | otherwise — skip fi
chan.is_inport .= 1;
chan.in_done := 0;
send inport request to channel server

Function F4.13: Initialize Main()
look up channel server;
wmatialize all tables;

Function F4.14: Initialize Process()
wmatialize all tables;

Function F4.15: New Channel()
request new channel id from server;
if channel exists — error | otherwise — skip fi
mutez_lock(table_mutez);
create new table entry;
mutez_unlock(table_mutez);

Function F4.16: Send()
if —chan.is_outport — error | otherwise — skip fi
if —chan.out_done — complete_orpc() [otherwise — skip fi
mutez_lock(table_mutez);
if chan.closed — error | otherwise — skip fi
mutez_unlock(table_mutez);
package message into buffer;
send message

Function F4.17: Receive()
if —chan.issinport — error [otherwise — skip fi
if —chan.in_done — complete_irpc() | otherwise — skip fi
mautez_lock{chan.m);
if channel closed — error | otherwise — skip fi
do chan.msgs = 0 — condition_wait{chan.c,chan.m) od
take next message out of queue;
unpack message;
mutez_unlock(chan.m);

Function F4.18: Spawn Thread()
pack arguments into one structure;
mautez_lock(thread_mutex);
thread_count++;
mutez_unlock(thread_mutez);
spawn new thread

30

CHAPTER 4. IMPLEMENTATION 4.4. POSSIBLE IMPROVEMENTS

Function F4.19: Spawn Process()
create command line arguments
use rsh to spawn new process

Function F4.20: Finished()
mautez_lock(thread_mutex);
thread_count—;
if thread_count = 0 — abort internal_msg_handler() | otherwise — skip fi
mutez_unlock(thread_mutez);
thread exit;

Function F4.21: Close Channel()
if chan.closed — error | otherwise — skip fi
chan.closed := 1;
send close channel message to server;

Function F4.22: complete irpc()
mautex_lock{rpc_mutex);
do —chan.in_done —
wail for reply message from server;

enter message into table;
set done flag for appropriate channel;
mutez_unlock(rpc_mutez);
mautex_lock(rpc_mutex);

od

mutez_unlock(rpe_mutez);

Function F4.23: complete orpc()
mautex_lock{rpc_mutex);
do —chan.out_done —

wail for reply message from server;

enter message into table;

set done flag for appropriate channel;
mutez_unlock(rpc_mutez);
mautex_lock(rpc_mutex);

od

mutez_unlock(rpe_mutez);

4.4 Possible Improvements

The following modifications could be made to the Network Channel Server. These
modifications, in some cases, incur a cost which a user may or may not be willing

to pay.

e Each server could have a CTRL_SESSION message, which returns a new session
id. The channel would then be uniquely identified by the triple (hostname,

31

CHAPTER 4. IMPLEMENTATION 4.4. POSSIBLE IMPROVEMENTS

session id, channel id). This would allow multiple parallel applications to use
the channel server.

e The network channel server could be simply removed and incorporated into
the internal message handling thread in the user interface. However, this
presents the additional cost of registering all user processes with the network
nameserver.

32

Chapter 5

Proof Outline

This chapter contains an nformal proof of the channel library. Since there are two
basic parts to the channel library, we split the proof into two parts:

1. Proof of the network channel server.
2. Proof of the user interface functions.
We shall first prove some basic properties of the network channel server. These

properties, along with the properties of the user interface functions will demonstrate
that the user interface functions satisfy their specification.

5.1 Network Channel Server

We begin by defining the ghost variable ns. ns is the number of times the channel
table 1s cleared. We define the interval between two successive values of ns as a
sesslon.

5.1.1 Properties

Property P5.1: For every channel ¢, the following pairs are monotonic under
lexicographic ordering: (ns,c.oneclosed), (ns,c.closed), (ns,c.in_registered),
(ns, c.in_done), (ns, c.out_registered), (ns, c.out_done).

Proof: There are two possible values these channel fields could have: 0 or 1.
They are assigned a value of zero just when the channel table is cleared,
which increases ns. All other modifications to the channel fields given
above only assign them the value 1.

33

CHAPTER 5. PROOF OUTLINE 5.1. NETWORK CHANNEL SERVER

Property P5.2: All mutex variables used are created exactly once.

Proof: The only statements that can modify a mutex variable are the initializa-
tion and termination routines. The initialization routine is called exactly
once.

Property P5.3: There is exactly one thread in the channel server until the first
receive is done in (F4.0).

Proof: (F4.0) begins the channel server. This function is the only one that spawns
new threads. These spawn operations follow a receive operation.

Property P5.4: Only threads from the channel server can modify the data struc-
tures in the server.

Proof: The channel server is created as an independent process. Furthermore,
there are no system calls in the server that grant memory access to any
other task in the system.

Property P5.5: At most one thread can modify or read the channel table at a
time.

Proof: Initially, there are no threads in the system. From (P5.2) we know
that the mutex variables themselves do not change in value, but only in
state. The only places where the channel table is modified or read are
in functions (F4.4), (F4.3), and (F4.0). From (P5.3), and the fact that
the channel table is modified in (F4.0) before the first receive operation,
the invariant is maintained. The two functions (F4.4) and (F4.3) lock the
mutex variable chan_lock before accessing the channel table. Therefore,
the invariant is maintained.

Property P5.6: The pair (ns, next_valid_chan) is monotonic under lexicographic
ordering.

Proof: next_valid_chan is modified in two places: (i) when the channel table is
cleared; (ii) in function (F4.3). Clearing the channel table increases ns.
(F4.3) increments the value of next_valid_chan. This increment is done
only when the mutex variable chan_lock is locked. Therefore, at most one
thread can increment next_valid_chan at a time. So, (F4.3) only performs
monotonic changes to the pair.

Property P5.7: The channel identifiers returned by the network channel server
in a session are unique.

Proof: The only place where new channel identifiers are created is in the function
(F4.3). next_valid_chan is used to create new channel identifiers. From
(P5.6), we know that the modifications to next_valid_chan are monotonic
for a given session. From function (F4.3), we see that next_valid_chan is
changed every time a new channel is created. From (P5.6), we know that
no two values of the variable next_valid_chan can be the same.

34

CHAPTER 5. PROOF OUTLINE 5.1. NETWORK CHANNEL SERVER

Property P5.8: At most one thread can modify an entry in the channel table at
a time.

Proof: Initially, there are no threads in the computation. Apart from function
(F4.3), all other functions modify a channel entry only after calling (F4.4).
This function locks the mutex m associated with the channel. (F4.3)
creates a new channel entry. From (P5.7), we know that these channel
entries are identified by unique values. Since (F4.3) returns a new channel
and we know (P5.7), no other thread in the computation can access the
newly created channel entry.

Property P5.9: For a channel ¢, c.in_registered is 1 just when an inport register
request has been received for the channel c.

Proof: c.in_registered is assigned a value 1 only in function (F4.6). This function
is called only from function (F4.1) when the request was an inport request.
(F4.1) is called just when a register request is received. (F4.6) assigns a
value 1 to c.in_registered.

Property P5.10: For a channel ¢, c.out_registered is 1 just when an outport
register request has been received for the channel c.

Proof: Similar to the proof of (P5.9).

Property P5.11: For a channel ¢, c.oneclosed is 1 just when a close channel
request has been received for the channel c.

Proof: Similar to the proof of (P5.11).

Property P5.12: The number of reply messages sent for inport requests without
an error status is at most one.

Proof: A reply message is sent to an inport request only after functions (F4.6)
and (F4.9) have been called. (F4.6) returns an error if in_registered is 1
for the channel. Since in_registered is set to 1 every time (F4.6) is called
and we know (P5.9), we can conclude that an error status is returned if
(F4.6) is called more than once for the same channel. Since a reply message
is sent only after (F4.6) is called, we have established (P5.12).

Property P5.13: The reply message for an inport request on a channel is sent
only after the outport request for the channel has been received.

Proof: A reply message for an inport request is sent only after the functions
(F4.7) and (F4.8) have been called. Function (F4.8) suspends on the con-
dition variable for the channel until in_registered has value 1. From (P5.9)
we can conclude that in_registered is 1 just when the outport request for
the channel has been received.

Property P5.14: The reply message for an outport request on a channel is sent

35

CHAPTER 5. PROOF OUTLINE 5.2. USER INTERFACE

only after the inport request for the channel has been received.

Proof: A reply message for an outport request is sent only after the functions
(F4.6) and (F4.9) have been called. Function (F4.8) suspends on the con-
dition variable for the channel until out_registered has value 1. From
(P5.10) we can conclude that out_registered is 1 just when the inport
request for the channel has been received.

Property P5.15: A close channel message is sent to the receiver of a channel only
after the number of close channel requests is the same as the number of outport
requests.

Proof: Each outport request increases the value of nout for the channel. Each
close channel request decreases the value of nout. These modifications to
nout are protected by the channel mutex m. A close channel message is
sent to the receiver only when nout 1s zero.

5.2 User Interface

We use the following fact about the channel table: when a new channel table entry
is created, all the bit-fields for the newly created channel have value zero.

5.2.1 Properties

Property P5.16: At most one thread can access the channel table at a time.

Proof: All modification to the channel table are protected by the mutex variable
table_mutex. As a result, at most one thread will succeed in locking the
mutex, from which the property follows.

Property P5.17: (F4.15) creates new channels with identifiers from the local
network channel server.

Proof: Trom the code outline of (F4.15), we can see that the function satisfies
the property mentioned above. Since we have (P5.16), the channel table
update is equivalent to an atomic action.

Property P5.18: For any channel, an outport request from a process is sent at
most once to the network channel server.

Proof: An outport request is sent only from (F4.11). This function sets the
ts_outport flag to 1. It returns an error status just when is_outport has
value 1 when the function is called.

36

CHAPTER 5. PROOF OUTLINE 5.3. OUTLINE OF PROOF

Property P5.19: For any channel, an inport request from a process is sent at
most once to the network channel server.

Proof: An inport request is sent only from (F4.12). This function sets the
ts_inport flag to 1. It returns an error status just when is_inport has
value 1 when the function is called.

Property P5.20: Function (F4.11) sends an outport request to the network chan-
nel server when 1t is called for the first time.

Proof: Follows from the code outline of (F4.11).

Property P5.21: Function (F4.12) sends an inport request to the network channel
server when it is called for the first time.

Proof: Follows from the code outline of (F4.12).

Property P5.22: (F4.16) succeeds only if the process has called (F4.11) for the
channel.

Proof: The is_outport field of a channel is modified only by (F4.11). Initially,
the field has value 0. From the code of (F4.16), it is clear that the function
succeeds only when iés_outport has value 1, i.e. when (F4.11) was called
for the channel.

Property P5.23: (F4.17) succeeds only if the process has called (F4.12) for the
channel.

Proof: Similar to the proof of (P5.22).

Property P5.24: A process sends a close channel request to the network channel
server at most once.

Proof: A close channel request is sent only by (F4.5). The closed field of the
channel is set by (F4.5). An error status is returned by (F4.5) if it is called
for a channel that has the closed field set to 1.

5.3 Outline of Proof

Property P5.25: Function Initialize Main() satisfies its specification.
Proof: The program (F4.13) for the function is trivial, and the proof is left to

the reader.

Property P5.26: Function Initialize Process() satisfies its specification.

37

CHAPTER 5. PROOF OUTLINE 5.3. OUTLINE OF PROOF

Proof: The program (F4.14) for the function is trivial, and the proof is left to
the reader.

Property P5.27: Function New_Channel() satisfies its specification.
Proof: Follows from (P5.17), and (P5.7).

Property P5.28: Function Sending On() satisfies its specification.
Proof: Follows from (P5.20) and (P5.18).

Property P5.29: Function Receiving On() satisfies its specification.
Proof: Follows from (P5.21) and (P5.19).

Property P5.30: Function Send () satisfies its specification.

Proof: Follows from (P5.22).

Property P5.31: Function Receive() satisfies its specification.

Proof: Follows from (P5.23).

Property P5.32: Function Close_Channel() satisfies its specification.
Proof: Follows from (P5.24) and (P5.15).

Property P5.33: Function Spawn Process () satisfies its specification.

Proof: Follows from the code outline (F4.19).

Property P5.34: Function Spawn_Thread() satisfies its specification.

Proof: Follows from the code outline (F4.18), and the fact that modification of
thread_count is protected by the mutex thread_mutex.

Property P5.35: Function Finished() satisfies its specification.

Proof: Modification of variable thread_count is protected by the mutex vari-
able thread_mutex. This variable is initially 0. (F4.18) increases the
value of thread_count whenever it is called. (F4.20) decreases the value of
thread_count whenever it is called. Therefore, thread_count being zero is
equivalent to the condition that there are no user threads in the system.
This condition is used to terminate the process.

Property P5.36: Channel identifiers in the system are unique.
Proof: Follows from (P5.7).

38

CHAPTER 5. PROOF OUTLINE 5.3. OUTLINE OF PROOF

We now define send rights and receive rights in terms of the messages exchanged
between the channel server.

e Requesting send rights is equivalent to sending an outport request to the
channel server.

e Requesting receive rights is equivalent to sending an inport request to the
channel server.

e The reply message for an outport request grants send rights to a process.

e The reply message for an inport request grants receive rights to a process.

Now, we have the following properties which needed to be established:

Property P5.37: There is at most one process in the computation that has receive
rights for a channel.

Proof: Follows from (P5.12).

Property P5.38: A send succeeds only if the calling process has send rights for
the channel.

Proof: Follows from (P5.22).
Property P5.39: A receive succeeds only if the calling process has receive rights

for the channel.

Proof: Follows from (P5.23).

39

Chapter 6

Example programs

In this chapter we discuss some example programs that were implemented using the
channel library. The purpose of these examples is to demonstrate how one might
use the channel library to write a parallel program. We have chosen the following
two examples:

e A distributed sorting program.

e A producer-consumer problem.

6.1 Producer-Consumer

In this example, there are two processes in the computation. One of the processes
(known as the producer) sends messages to the other process (known as the con-
sumer). The consumer then prints out the messages it received and terminates.

The function main() creates the channel connecting the producer and consumer,
spawns the two processes, and then terminates.

void main(void)

{
int ch;
Initialize_Main ();

Single producer thread, single consumer thread.
The dotted thread represents the internal message
handler.

Producer Consumer

Figure 6.1: Producer-Consumer Problem

40

CHAPTER 6. EXAMPLE PROGRAMS 6.2. SORTING

New_Channel (&ch);

Spawn_Process ("proc/prod", "chainsaw", 1, ch);
Spawn_Process ("proc/cons'", "pistol", 1, ch);
Finished();

The producer requests send rights for the channel that was sent to it as an argument,
and then sends messages along it. Finally, the channel is closed, and the producer
terminates.

void producer (int ch)
{

int 1i;

Sending_On (ch);

for (i=0; i < 10; i++)
Send (ch, "%d", i*i);

Close_Channel (ch);

The consumer requests receive rights for the channel that was sent to it as an
argument, and then receives messages from the channel until the close channel
message 1s received.

void consumer (int ch)

{
int i, closed;
FILE *fp;
Receiving_On (ch);
Receive (ch, &closed, "%d", &i);
fp = fopen ("log", "w");
while (!closed) {
fprintf (fp, "%d\n", 1i);
Receive (ch, &closed, "%d", &i);
¥
fclose(fp);
¥

6.2 Sorting

The program below implements the mergesort algorithm for sorting numbers. This
algorithm uses a divide-and-conquer strategy. main() is used to create the initial
sort process, and to read in the numbers that are to be sorted.

void main(void)

41

CHAPTER 6. EXAMPLE PROGRAMS 6.2. SORTING

Figure 6.2: Distributed Mergesort

int chanl, chan2;
int i, n, val, closed;

Initialize_Main();
New_Channel(&chanl);
New_Channel(&chan2);
Sending_On(chanl);
Receiving_On(chan2);

Spawn_Process (”mergesort”, "pete", 2, chanl, chan2);

printf ("Enter # of values: ");
scanf ("%d", &n);
Send (chanil, "%d", n);
printf ("Enter values:\n");
for(i=0; i < mn; i++) {
scanf ("%d", &val);
Send (chanil, "%d", val);
¥
Close_Channel(chanl);
for(i=0; i < mn; i++) {
Receive(chan2, &closed, "%d'", &val);
printf ("%d\n", val);
¥
Finished();

Process mergesort () checks the problem size. If the base case is reached, then the
process sends back the solution and exits. Otherwise, it creates two new processes
which are used to solve two sub-problems of the original sorting problem.

void mergesort(int in, int out)

{

int i, n, val;

int closed;

int c0, c1, c2, c3;
int *left, *right;

42

CHAPTER 6. EXAMPLE PROGRAMS

6.2.

SORTING

Receiving_On (in);
Sending_On (out);

Receive(in, &closed, "%d4d", &n);

if (n == 1) {
Receive (in, &closed, "%d", &val);
Send (out, "%d", val);

¥
else {
val = (int*) malloc(sizeof(int)#*n);
New_Channel(&c0); Sending On (c0);
New_Channel(&c1); Receiving On (c1);
New_Channel(&c2); Sending On (c2);
New_Channel(&c3); Receiving On (c3);
Send (c0, "%d", (int)n/2);
for (i=0; i < n/2; i++) {
Receive (in, &closed, "%d", &val);
Send (c0, "%d", val);
¥
Send (c2, "%d", n-(int)n/2);
for (i=0; i < n-n/2; i++) {
Receive (in, &closed, "%d", &val);
Send (c2, "%d", val);
¥
Close_Channel (c0);
Close_Channel (c2);
left = (int*)malloc(sizeof(int)*((int)n/2));
right = (int*)malloc(sizeof(int)*(n-(int)n/2));
for (i=0; i < n/2; i++)
Receive (c1, &closed, "%d", left+i);
for (i=0; i < n-n/2; i++)
Receive (c3, &closed, "%d", right+i);
merge(left, right);
for (i=0; i < n/2; i++)
Send (chanout, "%d", left[il);
for (i=0; i < n-n/2; i++)
Send (chanout, "%d", right[il);
¥
¥

43

Chapter 7

Conclusion

We have presented the implementation of a channel library on top of the Mach op-
erating system. From the implementation outline given, it i1s clear that the channel
library implementation was greatly simplified as a result of the support provided
by Mach itself. In fact, the entire implementation took 2000 lines of code.

Although implementing the library was a simple task, the proof for the channel
library was extremely complicated. Presenting a code outline greatly simplified the
proof, by hiding details of the implementation and focusing attention on synchro-
nization issues. In spite of using this simplification, the proof outline was complex.

The key properties in the proof established that certain variables used in the imple-
mentation were monotonic. However, all the monotonic variables could be modified
in a non-monotonic manner, but only by a single thread of execution. This leads us
to believe that reasoning about correctness of the library using shared data struc-
tures that are monotonic will greatly simplify the proof.

Reasoning about a concurrent computation in which sharing is restricted to mono-
tonic variables with a single thread of execution that can perform a non-monotonic
modification to them can be applied to a large number of existing constructs (for
instance, channels, monitors, and locks) used to restrict the interaction between
cooperating tasks.

We think that choosing Mach as the base for the channel library was a good decision
because of the services provided by the operating system. Proving correctness of
the channel library seemed to be a complex task, in spite of the fact that a number
of implementation details were hidden.

44

Bibliography

[1] Accetta, M., Baron, R., Bolosky, W., Golub, D.; Rashid, R., Tevanian, A.,
Young, M. Mach: A New Kernel Foundation for UNIX Development In Pro-
ceedings of Summer Useniz. July, 1986.

[2] Bach, M.J. The Design of the UNIX Operating System. Prentice-Hall, 1986.

[3] Cooper, E.C., and Draves, R.P. C Threads Technical Report CMU-CS-88-154,
School of Computer Science, Carnegie Mellon University. February 1988.

[4] Kernighan, B.W., and Ritchie, D.M. The C' Programming Language. Prentice-
Hall, 1988.

[6] NeXT Computer Inc. NeXTSTEP Operating System Software. Addison-
Wesley, 1992.

[6] Silberschatz, A., Peterson, J., and Galvin, P. Operating System Concepls.
Addison-Wesley, 1991.

45

