
Mach-Based Channel Library

1

12
12
12

12
12
12312
12
12123
123
1
1
12
12
12
12

12
121111 1111

1
1
12121121111
111212121
1111212121
1
1
11 1
1
1
1
11
1
11
1111

1
1

12
12
1
1
12
12

Rajit Manohar
Advisor� K� Mani Chandy

Department of Computer Science
California Institute of Technology

Pasadena� CA ������

July 	� ���

In partial Ful�llment of the Requirements

for the degree of

Master of Science

Acknowledgments

I foremost want to thank my research advisor Prof� K� Mani Chandy for his guidance

and support�

I would like to thank the members of my research group�Peter Carlin� Peter Hofs�

tee� Svetlana Kryukova� K� Rustan M� Leino� Berna Massingill� Adam Rifkin� Paul

Sivilotti� John Thornley�for comments� constructive criticism� and invaluable dis�

cussions�

This research was supported in part by Air Force O�ce of Scienti�c Research grant

number �	�

�
�

Contents

� Introduction �

��� Motivation �

��� Overview �

� Introduction to Mach �

��� Overview �

��� Threads and Tasks �

����� Scheduling �

����� Creating Tasks and Threads �

��	 Ports and Messages �

��	�� Access Rights �

��	�� Internals �

��� C�Thread Library ��

����� Thread Functions ��

����� Mutex Variables ��

����	 Condition Variables ��

� Speci�cation ��

	�� Preliminaries ��

	���� Conventions �	

	�� Initialization ��

	�	 Channels ��

	�� Communication ��

	�� Processes and Threads ��

�

CONTENTS CONTENTS

� Implementation ��

��� Issues ��

����� Channels ��

����� Threads and Processes ��

����� Termination and Channel Close � � � � � � � � � � � � � � � � � ��

��� Network Channel Server ��

����� Channel Table ��

����� Log File ��

����� Messages ��

����� Code Outline ��

��� User Interface �	

����� Channel Table �	

����� Message Handling �

����� Argument Passing ��

����� Code Outline ��

��� Possible Improvements ��

� Proof Outline ��

��� Network Channel Server ��

����� Properties ��

��� User Interface �	

����� Properties �	

��� Outline of Proof �

� Example programs ��

	�� Producer�Consumer ��

	�� Sorting ��

� Conclusion ��

�

Chapter �

Introduction

��� Motivation

We think of a parallel computation to be one that involves a number of tasks
cooperating in some fashion� The manner in which the tasks cooperate becomes an
important issue� There are two basic paradigms that describe cooperation between
tasks�

�� Use of Shared Variables� In this technique the cooperating tasks share certain
data structures� which are used to exchange information�

�� Message Passing� The message passing paradigm constrains the parallel com�
putation in two ways� �i	 tasks do not share any data
 �ii	 the only way that
tasks can exchange information is by sending messages to each other� Some�
times� the �rst constraint is relaxed� resulting in a computation that uses both
shared variables and messages�

Mach� an operating system developed at Carnegie Mellon University ��
� provides
support for both these paradigms� However� the �exibility provided by the operating
system makes it di�cult to reason about programs� The support provided for
message passing focuses the attention of a user on the details of the communication
layer provided by the operating system�

The goal of this thesis is to write a small message�passing library�using the support
provided by Mach�for parallel computation� This library should be easy to use�
language independent� and robust� It should focus attention on the message passing
abstraction itself� rather than on the details of the underlying operating system� By
imposing restrictions on the functions that are available� the library should simplify
arguments involving program correctness�

The model chosen for the library is the one provided by Mach itself� in which tasks
can communicate with one another by sending messages� Communication streams
known as channels are provided that allow the user to think about the logical
connections between cooperating tasks� Since the concept of channels is central to
the library� we call it a channel library�

�

CHAPTER �� INTRODUCTION ���� OVERVIEW

Mach provides kernel support for message passing� Since all Mach services are

accessed through the message passing mechanism� the message passing mechanism

provided is robust� As will be seen in chapter �� the operating system enforces a

system of access rights� which prevent tasks from exchanging messages unless they

have permission to do so� In addition� the message passing mechanism provided

is reliable� even across machines� Finally� the operating system provides kernel

support for fair threads� We chose the Mach operating system as our base because

of these features�

The functions provided by the channel library can be grouped into four basic cate�

gories� functions for�

�� Initialization�

�� Creating channels�

	� Sending and receiving messages�

� Creating new tasks or threads�

��� Overview

Chapter � provides a brief introduction to the relevant concepts of the Mach oper�

ating system� Chapter 	 describes the interface provided by the channel library� by

specifying each function provided by the library� In chapter
� the implementation

of the library is discussed in detail� Chapter � shows some of the major properties

and invariants maintained by the library� and indicates how a rigorous proof of the

library implementation could be constructed� Chapter � provides a few example

programs that illustrate how the library is to be used�

�

Chapter �

Introduction to Mach

��� Overview

The Mach operating system was developed at Carnegie Mellon University �CMU��
The goal of the project was to write an operating system with a small kernel that
would provide a few powerful primitives that a programmer could use to construct
complex programs� With this in mind� the Mach kernel has been written to provide
three basic services�

� Scheduling�

� Inter�process communication�

� Virtual memory management�

All other features are built on top of these three basic services� As a result� a
number of services that are part of the kernel of traditional operating systems� such
as UNIX �	
� are user�level applications that run on top of the Mach kernel�

The Mach operating system is compatible with ���BSD UNIX� and most BSD pro�
grams can be executed under the Mach operating system without modi
cation after
recompilation�

Our main concerns when implementing the channel library on top of Mach are the
following�

� Process creation�

� Thread creation�

� Communication�

We will therefore restrict our attention in this chapter to describing the scheduling
and inter�process communication �IPC� aspects of the Mach kernel�

�

CHAPTER �� INTRODUCTION TO MACH ���� THREADS AND TASKS

task. Threads share

Each thread has
access rights of the

a common address
space.

A single thread
executing within
a single task.

Two tasks with a
partially shared
address space.

Traditional Process Task with many threads

Figure ���� Tasks and Threads

��� Threads and Tasks

Under the Mach operating system� the concept of a process has been divided into

two parts� the task and the thread�

A task is an environment in which execution of a program occurs� The task consists

of a virtual address space and access rights which give the task access to certain

services and resources provided by the system� The virtual address space of a task

cannot be accessed by another task unless explicit permission to do so is granted

by the task�

A thread is the unit of execution� Threads execute within a task� which provides

an environment for execution� Threads within a task share access rights of the task

and the virtual address space of the task� Many threads can execute within a single

task� and they all share the same address space as shown in �g� ����

Thus� a traditional process consists of a single thread executing within a single task�

����� Scheduling

Mach provides a �exible thread scheduling method� Each thread has associated

with it a priority and a policy� The policy indicates the scheduling method to be

used for the thread� We will discuss the timesharing policy only� since it is the

default� and the only policy we will use�

The timesharing scheduling policy ensures that execution of threads is weakly fair�

every thread executes eventually� To ensure this� each thread is assigned a priority

which decreases with the execution time of the thread� As a result� a thread with

a high priority can never starve a low priority thread� thus ensuring that execution

is weakly fair�

	

CHAPTER �� INTRODUCTION TO MACH ���� PORTS AND MESSAGES

rsh machine2 "proc"

machine2

proc

remote procedure
 call

machine1

Figure ���� Remote Shell Program

����� Creating Tasks and Threads

A thread is de�ned by specifying the state of the thread� i�e�� the state of the
processor when the thread is being executed on it� This state typically consists
of the program counter� hardware registers� and the execution stack of the thread�
As a result� creating a thread also involves the assignment of a valid state to the
thread�

Tasks can be created in various ways� However� for the purpose of the channel
library we are interested in creating tasks on remote processors� As a result� the
remote shell execution program rsh can be used �Fig� ����� This program takes the
name of an executable and a machine as arguments� and spawns a new task with
a single thread of execution on the remote host� The rsh program comes with the
Mach operating system�

��� Ports and Messages

Under Mach� tasks �and threads� can communicate with each other by sending
messages� This message	passing mechanism is supported through two basic ab	
stractions� messages and ports�

A message consists of a �xed header
which contains information about the length
of the message and its destination
and a list of typed values� Messages are the
basic unit of communication� They can be of arbitrary length� and can contain
data� pointers� or ports�

In Mach� the destination of a message is speci�ed by a port� Any message sent to a
port is stored internally by the Mach kernel� Conceptually� a port is like a mailbox�
there are a number of tasks that can insert messages into the port� threads in at
most one task can remove messages from the port�

�

CHAPTER �� INTRODUCTION TO MACH ���� PORTS AND MESSAGES

Tasks sending
messages to

some messages.
which contains

Single task, removing
port M.

Port M,

messages from port.

Figure ���� Mach communication ports

����� Access Rights

Each port has two access rights associated with it� send rights� and receive rights�
If a task has send rights for a port� it can send messages to that port� If a task has
receive rights for a port� it can receive messages that have been sent to the port�
Only one task may have receive rights for a port� Multiple tasks can have send
rights for a single port� Note that threads within a task have all the access rights of
the task� Therefore� there could be multiple threads which have receive rights for a
single port�

Port rights can be granted to a task by sending them to the task in a message� If a
message contains a port� then the port rights the task has for that port are sent to
the task that receives the message� If send rights are sent in a message� then send
rights are kept by the originator of the message as well as passed to the recipient�
Since at most one task can have receive rights for a port� if receive rights are sent
in a message� the sender no longer has receive rights for the port�

����� Internals

Internally� a port consists of a �nite queue of bounded size which contains the list
of messages that have been sent to the port� The size of this queue can be speci�ed
for a given port� A task with receive rights can dequeue messages from this internal
queue� Sending a message to a port appends the message to the queue associated
with the port� Sending a message to a port whose queue is full will result in the
suspension of the sender�

Ports can refer to tasks on the local machine or tasks across the network� The
interface to the ports is exactly the same� The only di�erence is that ports over
the network are handled 	transparently
 by the Mach network server� The network
server implements network ports� which represent ports on remote machines� These
ports are used by tasks to send messages to remote machines�

Mach provides a port server known as the network name server� This server enables
a task to associate a port with a name� Other tasks can then look up the port of
interest using the name associated with the port� This name server is used to

�

CHAPTER �� INTRODUCTION TO MACH ���� C�THREAD LIBRARY

Thread t1 suspends, since the port queue is full.

send

receive

Port queue which can contain

t2
t1

at most three messages.

Figure ���� Mach ports�Internal queue

register a service� which then allows other tasks to use the service by looking up
the service port from the name server� For instance� if an application programmer
decided to write a server that provided access to a remote �le system� then the
programmer could register this new server with the network name server by giving
it a name� Now any application that wants to use this new service can look up the
port for the �le system server and then send requests for remote �les to the server
using the port it receives from the name server�

��� C�Thread Library

The C	thread library consists of functions that are used to manipulate and synchro	
nize threads
��� This library provides an interface to the Mach kernel services for
thread creation and synchronization� The following three main classes of functions
are provided by the library�

� Functions that are used to manipulate threads�

�� Mutex variables� and functions to manipulate them�

�� Condition variables� and functions to manipulate them�

Synchronization in the C	thread library is done using condition andmutex variables�

����� Thread Functions

The thread functions can be used to create� terminate� and schedule threads� These
functions call existing Mach functions with the appropriate parameters�

The main advantage of using the thread functions from the C	thread library rather
than the ones provided by Mach is that the C	thread library is portable across
architectures� As mentioned earlier� creating a thread in Mach involves setting
up the state for the thread� This involves assigning values to hardware registers�
which di�er from machine to machine� The C	thread library can be used to spawn
a thread that starts execution from a function that takes a single argument� All
the information required to set up the state can be determined by knowing the C
compiler on the system� and the address of the function being spawned�

�

CHAPTER �� INTRODUCTION TO MACH ���� C�THREAD LIBRARY

����� Mutex Variables

Mutex �mutual exclusion� variables are used to protect access to shared data struc�
tures� A mutex variable can be in one of two states� locked or unlocked� A thread
attempting to lock a mutex variable will suspend if the mutex is in the locked state�
If the mutex variable was unlocked� the mutex will be locked� and execution of the
thread will continue� Unlocking a mutex will resume execution of one thread that
was suspended due to a lock operation on the mutex�

The following functions operate on mutex variables�

mutex�lock�m� is used to lock the mutex variable m�

mutex�unlock�m� is used to unlock the mutex variable m�

Initially� the mutex variable is unlocked�

Consider the following example�

���

mutex�lock�m��

modify data structure�

mutex�unlock�m��

���

If all access to the data structure are protected with the mutex m as above� then we
know that at most one thread can modify the data structure at a time�

����� Condition Variables

Condition variables are used when a thread wants to wait for another thread to
complete some action� Every condition variable must be associated with a mutex
variable� Two basic operations on condition variables are allowed� signal and wait�

A call to function condition�wait�c�m� does the following actions�

�� The mutex m is unlocked�

	� The thread is suspended waiting for a signal on the condition variable c�

� On receiving a signal� the mutex m is locked�

condition�signal�c� wakes up a single thread �if any� waiting on a condition
variable� Condition variables can be used to selectively wake up threads that might
be suspended waiting for some boolean condition to hold�

��

Chapter �

Speci�cation

��� Preliminaries

The channel library provides the following three basic abstractions�

� Processes�

� Threads�

� Channels�

A process can be thought of as a virtual address space� A process is similar to a
Mach task� The major di�erence between Mach tasks and processes is that processes
do not share memory� Therefore� two processes cannot interact through shared data
structures� The concept of a thread is the same as the one in Mach� Threads run
within a process� and they share data with other threads in the same process�

The major departure from the Mach model is in the abstraction provided for com�
munication� The channel library provides abstract communication streams known
as channels �Fig� ��	
 which are used for communication and synchronization�
These channels can be thought of as �rst�in��rst�out �FIFO
 message bu�ers�

Three operations can be performed on a channel�

	� Send message along channel�

Receiver

Sender 1

Sender 2

Sender 3

Queue of messages. First-in-First-Out.

direction of motion.

Channel inport.

Channel outport (one of three).

Figure ��	� Channel

	�

CHAPTER �� SPECIFICATION ���� PRELIMINARIES

�� Receive message from channel�

�� Close channel�

Sending a message along a channel is equivalent to inserting the message into the
FIFO� Receiving a message from a channel is equivalent to removing the next mes�
sage from the FIFO� The close channel operation is somewhat di�erent in that it
inserts a special message into the bu�er� This message indicates that no more mes�
sages will be received along the channel� Furthermore� the sender cannot send a
message along the channel after closing the channel� Once a receiver removes the
close channel message from a channel� the resources used by the channel can be
released�

A channel can have any number of senders� but at most one receiver� If a channel
has more than one sender� then the channel is closed only when all the senders close
the channel�

To be able to send �receive� data along a particular channel� a process must have
send �receive� rights for the channel� These rights are similar to the send and
receive rights for Mach ports� However� these rights cannot be passed from one
process to another� Once the receiver for a channel is speci	ed� the receiver cannot
be changed� However� since a channel could have many senders� di�erent processes
could be given send rights for the same channel�

A send operation blocks only when no process has receive rights for the channel� A
receive operation blocks only when there is no message in the channel� Once some
process has receive rights for a channel� a send operation on that channel never
blocks�

The inport of a channel is the receiving end of the channel� and the outport is the
sending end�

The channel library comes with a program known as the network channel server�
This program must be running on all the machines in the computation� Chapter

describes the purpose of this server in detail�

����� Conventions

The main process in a concurrent computation refers to the 	rst process that is
created in the computation� This process is responsible for creating any additional
processes in the computation�

The channel library can be speci	ed by means of the functions it provides to the
user� Note that the speci	cation is given only in terms of predicates on state� as
is usually done for a sequential program� However� the proof of the speci	cation
will involve the fact that there could be concurrent access to each function in the
library� Each function in the channel library is speci	ed by the following�

� Function is the name of the function� along with its arguments and their types�
C syntax is used for the argument list�

� Precondition� Postcondition� If the function is executed in a state in which
the precondition holds� then the function will terminate� and on termination�
the postcondition will hold�

��

CHAPTER �� SPECIFICATION ���� INITIALIZATION

� Wait Condition� This gives the condition under which execution of the func�

tion will suspend� If the wait condition is omitted� the function will never

suspend�

� Error Condition is the condition which will cause the function to terminate

with an error status� If the error condition is omitted� the function will never

terminate with an error status�

The channel library functions do not return any values�

��� Initialization

The initialization functions are used to set up the internal data structures that are

used by the channel library� One of these functions should be called once per process

before calling the channel library functions�

Function� Initialize Main ��

Precondition� The current process is the main process� No other function from the

channel library has been called�

Postcondition� The channel library has been initialized�

Error Condition� Duplicate call to Initialize Main���

Function� Initialize Process ��

Precondition� The current process is not the main process� No other function from

the channel library has been called from the current process�

Postcondition� The channel library has been initialized in this process�

Error Condition� Duplicate call to Initialize Process�� by the same process�

��� Channels

The channel functions are used to create channels� and to manipulate send and

receive rights for a channel�

Function� New Channel �int �chan�

Precondition� The channel library has been initialized in the calling process� chan

is a non�NULL valid pointer to an integer�

Postcondition� �chan contains the logical name of new channel which has no sender

and no receiver�

Error Condition� The channel library has not been initialized�

The following two functions are used by a process to obtain access rights for a par�

ticular channel� These functions must be called before actually sending or receiving

data along a channel�

��

CHAPTER �� SPECIFICATION ���� COMMUNICATION

Function� Sending On �int chan�

Precondition� chan is the logical name of a channel� The calling process does not

hold send rights for the channel chan�

Postcondition� Send rights for the channel chan have been requested by the calling

process�

Error Conditions� chan is not a valid channel� Initialization has not been done� The

calling process already has send rights for channel chan� chan has

been closed by some process�

Function� Receiving On �int chan�

Precondition� chan is the logical name of a channel� The calling process does not

hold receive rights for the channel chan�

Postcondition�Receive rights for the channel chan have been requested by the calling

process�

Error Conditions� chan is not a valid channel� Initialization has not been done� The

calling process already has receive rights for channel chan� Another

process in the computation has receive rights for channel chan�

For instance� the following code in a process would create a new channel� and then

declare that the calling process would like to send a message on the newly created

channel�

int chan�

���

New�Channel ��chan��

Sending�On �chan��

���

��� Communication

The following functions are used to perform the communication actions discussed

earlier� They use a format speci�cation�similar to the one used by the C printf

function�to specify the type of the message being sent� The format speci�cations

that have been implemented are� �d for integers and �f for �oating�point numbers�

Spaces are not permitted in the format speci�cation�

Function� Send �int chan	 char
fmt	 � � ��

Precondition� chan is the logical name of a channel� The calling process has send

rights for the channel chan� fmt is a valid format speci�cation� The

argument list following fmt matches the format speci�cation�

Wait Condition� There is no receiver for the channel chan�

Postcondition�The speci�ed message has been sent to the receiver for channel chan�

Error Conditions� The calling process does not have send rights for channel chan� The

channel chan has been closed� fmt is not a valid format speci�cation�

	

CHAPTER �� SPECIFICATION ���� PROCESSES AND THREADS

Function� Receive �int chan� int �closed� char �fmt� � � ��

Precondition� chan is the logical name of a channel� The calling process has re�
ceive rights for the channel chan� fmt is a valid format speci�cation�
closed is a valid non�NULL pointer� The argument list following fmt

are pointers to data structures which match the types speci�ed in the
format speci�cation�

Wait Condition� There is no message in channel chan�

Postcondition� The next message from the channel �if any� has been received� and
copied into the pointers in the list� If the channel was closed� then
�closed is one� otherwise �closed is zero�

Error Conditions� The calling process does not have receive rights for channel chan�
The channel chan has been closed� and an earlier receive operation
on the same channel had �closed set to one� fmt is not a valid format
speci�cation� The received message length is not the same as the
length speci�ed by the format speci�cation�

Notes� Notice that a receive will allow typecasting of equal length messages�
However� this is not recommended since the results are machine�
dependent�

Function� Close Channel �int chan�

Precondition� chan is the logical name of a channel� The calling process has send
rights for channel chan�

Wait Condition� There is no receiver for channel chan�

Postcondition� This outport for the channel has been closed�

Error Conditions� chan is not a valid channel identi�er� The channel chan was closed�
The calling process does not have send rights for channel chan�

For instance� a process might send ten messages along a channel� and then close it
as follows	

int i� chan�

���

Sending�On �chan��

���

for �i	
� i � �
� i

�

Send �chan� ��d�� i�i��

Close�Channel �chan��

���

��� Processes and Threads

The following functions are used to create and terminate processes and threads�

Function� Spawn Process �char �proc� char �host� int n� � � ��

Precondition� The channel library has been initialized� proc is a valid non�NULL
pointer� host is a valid non�NULL pointer� proc speci�es the pathname

�

CHAPTER �� SPECIFICATION ���� PROCESSES AND THREADS

of an executable on host� n is the number of arguments following n�

which are channel identi�ers�

Postcondition� The process proc has been spawned on host host� with arguments

speci�ed by the channel identi�ers following n in the argument list of

Spawn Process���

Error Conditions� The remote shell program was not found� The host does not allow

remote shell access for the user without a password� There are too

many processes on the current host�

Notes� To allow remote shell access without a password� you must have a

�rhosts �le in your home directory� See the man page for rsh on

your system on how to set up this �le�

Function� Spawn Thread �void ��f���� int n� � � ��

Precondition� f is a valid non�NULL pointer� n is the number of arguments following

n� which are channel identi�ers� n is less than MAXARGS which is

de�ned to be ���

Postcondition� A new thread has been spawned within the current task� starting in

the function speci�ed by f� The function was called with arguments

speci�ed by the list of arguments after n�

Error Condition� The number of arguments exceeded the maximum limit�

Function� Finished��

Precondition� true�

Postcondition� The thread has terminated�

Notes� This function terminates the main thread of control� This function

is called once per task�

For instance� the following call would create a new process nproc on machine pete�

with two channel arguments ch� and ch��

���

Spawn	Process �
proc
�
pete
� �� ch�� ch���

���

��

Chapter �

Implementation

The implementation has been split into two parts�

�� The network channel server�

�� The user interface�

We begin by discussing the issues involved in implementing the channel library�
The network channel server is discussed in detail� followed by the user interface� A
code outline of the implementation is given for both the channel server and the user
interface�

��� Issues

����� Channels

Mach provides ports for communication� One possible implementation is to use
a single port for each channel� However� ports are system�wide resources that are
maintained by the Mach kernel� To conserve ports� the implementation uses a single
port for each process which is used to receive messages for all channels connected
to that process� We now need a mechanism to distinguish between messages being
sent to a process� This is done by tagging each message with an identi�er which
speci�es which channel the message was sent on�

For this strategy to succeed� we have to ensure that these message tags are unique
across the entire computation� The network channel server is used to provide an
identi�er that is unique to a machine� As a result� the pair 	hostname� identi�er

is unique across the computation� This pair is used to identify a channel�

Since a single Mach port is used for a number of channels� each process must queue
messages for a single channel internally� Each process has an internal message
handling thread that is used for this purpose�

��

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

NULL

NULL

NULL
Mailbox
for the process.

New message added
to appropriate channel
queue.

for each channel.

Internal queue of messages

Chan #2

Chan #1

Chan #3

Figure ���� Implementing Channels

����� Threads and Processes

Threads are implemented on top of the C�thread package� This package allows us

to spawn a function with a single argument� Since Spawn�Thread�� takes a variable

number of arguments� we have to implement an argument passing mechanism for

newly created threads�

The rsh program is used to create processes� However� since this program is UNIX

based� it does not give us any mechanism to determine the Mach port of the newly

created process� Therefore� argument passing for processes must be handled without

using Mach messages�

����� Termination and Channel Close

The C�thread package ensures that when all the threads in the computation termi�

nate� the task itself terminates� However� the implementation uses an extra message

handling thread that is always suspended waiting for a message� To be able to ter�

minate gracefully� the channel library keeps track of the number of threads created

by the system� Every time a new thread is created� a counter is incremented� When

a thread terminates� the counter is decremented� When the number of threads in

the system created by the user is zero� the process has terminated� The message

handling thread is aborted by means of a function provided by the C�thread library�

and the process terminates since all the C�threads have terminated�

For a single sender channel� closing a channel is equivalent to sending a special

message on the channel� However� the channel close operation becomes complicated

once the number of senders is more than one� The receiver of a channel does not

know the number of senders that it has� Therefore� some scheme must be used to

detect the number of senders� and to close the channel only when all the senders

terminate� The network channel server is the only process that knows the number

of senders on a channel� This process is used to send a special close�channel message

once the channel has been closed�

��� Network Channel Server

The network channel server has three basic purposes�

��

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

�� It provides unique channel identi�ers to all processes on a single machine�

�� It grants send and receive rights for channels�

�� It is used to close channels once all the senders have closed the channel�

A copy of this server must be executing on every machine in the computation�

Each channel is created by a speci�c network channel server� The network channel

server maintains a list of channels it has created and their current status� The

following user functions interact with the channel server�

� New�Channel��

� Sending�On��

� Receiving�On��

� Close�Channel��

New�Channel�� sends a message to the channel server requesting a new chan�

nel identi�er� The channel server returns an identi�er it has not used before�

Sending�On�� requests send rights for a particular channel from the server that

created it� Receiving�On�� requests receive rights for a particular channel from

the server that created it� Close�Channel�� sends a message to the channel server

indicating that the sender has closed the channel� Note that channel requests are

sent to the server that originally created the channel�

����� Channel Table

The network channel server maintains a table that contains the status of all the

channels it created� Each channel entry is of type channel�t� which is a structure

de�ned as�

typedef struct �

int channel�id�

unsigned int oneclosed���

unsigned int closed���

unsigned int nsent�

unsigned int nout�

unsigned int in�registered���

unsigned int in�done���

unsigned int out�registered���

unsigned int out�done���

port�t inport�

port�t outport�

mutex�t m�

condition�t c�

	 channel�t�

�	

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

channel�id is an integer which is unique to this channel server process� It is used

to distinguish between channels�

The �ag oneclosed is true if any sender for the channel has performed a close

channel operation� Once any sender closes the channel� the server no longer

grants send rights for the channel to any other process�

closed is true just when the channel has been closed� To detect the end�of�channel�

two �elds are used� nout is the number of senders for the channel who have

not performed a channel close operation� nsent is the number of messages

that were sent by the senders that have already closed the channel�

in�registered is true when the receiver for the channel is known� The Mach port

of the receiver process is stored in inport�

out�registered is true when some sender for the channel is known� The Mach

port of the �rst sender process is stored in outport�

in�done is true when receive rights for the channel have been granted to some

process�

out�done is true when send rights for the channel have been granted to a process�

The mutex m and condition variable c are used to control access to the channel

�elds�

����� Log File

Each channel server creates and writes information out to a log �le� This �le records

the result of operations for every channel handled by the channel server� and any

errors that might be returned by the Mach operating system� The log �le can

be used to aid debugging� since the status of every channel in the computation is

recorded in this �le� The following messages are logged by the server�

�CTRL�START�

�CTRL�CLEAR�

�CTRL�END�

�� Terminated ��

These three messages are used to report the status of the server itself� The �rst

three messages denote the type of the message that was received by the server�

The last message is used to denote that the server was terminated normally� These

messages can be used to determine the type of requests received by the server�

The following messages denote various channel operations that were successful�

�chan��� registered� This message is denotes that fact that the speci�ed chan�

nel number was returned by the server to some user process� The log �le

contains such a message whenever a new channel is created by the user�

closed channel ���� This message indicates that a close channel request was

received for the channel� Note that it does not mean that the channel was

actually closed� since the channel could have more than one sender�

	

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

INport �chan��� recvd� This message indicates that some process requested

receive rights for the speci�ed channel� Note that the receiver could be a

process on the local machine or a remote machine�

OUTport �chan��� recvd� This message indicates that a process requested send

rights for the speci�ed channel�

��warning�� �chan��� multi	send� This message indicates that there is more

than one sender for the speci�ed channel�

The messages mentioned above can be used to determine the status of the channels

created by the user� Note that the channel identi�er in the log �le is not the same as

the channel identi�er used in each process� However� it is the same as the identi�er

printed out by any error message you may receive�

An error message of the form

operation �chan��� 	 error message

indicates that some server operation failed� The possible error messages that you

can get are�

duplicate registration of inport

multiple requests for an inport

multiple requests for an outport

specified channel was already closed

duplicate registration of channel

channel not found

����� Messages

The network channel server interacts with the user interface functions via messages�

There are two types of messages exchanged between the user interface and the server�

� request messages�

� reply messages�

The request messages are sent by the user interface to the channel server� These

messages have type request
t� de�ned below�

typedef struct �

msg
header
t h�

msg
type
t ct�

int type�

msg
type
t t
�

int channel
id�

int chan
type�

msg
type
t t��

port
t port�

� request
t�

��

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

The msg�header�t and msg�type�t are �elds required by the Mach messaging

system� msg�header�t speci�es the length of the message� the destination of the

message� and the sender of the message� The msg�type�t �elds are used to specify

the types of the �elds following them in the structure�

The type �eld is used to indicate what kind of request is being made� The following

message types are recognized by the server�

� CTRL�START is used to restart the channel server�

� CTRL�END is used to terminate the channel server�

� CTRL�CLEAR is not used by the user interface� It is used to kill suspended

threads�

� CTRL�REGISTER is used to create a new channel�

� CTRL�NORM is used to request send or receive rights for a channel� It is

also used to close a channel�

channel�id is used to specify the particular channel being referred to by the

message� Note that since the channel names created by a single channel

server are unique� the hostname is not required to identify the channel�

chan�type determines whether the message refers to the inport or to the outport

for the speci�ed channel�

port is used to grant send rights for the receiver port when sending a receive rights

request� These send rights can then be granted to any sender for the speci�ed

channel�

Some of the messages expect a response� These responses by the server are of type

reply�t� de�ned below�

typedef struct �

msg�header�t h�

msg�type�t t��

int status�

int type�

msg�type�t t��

port�t port�

msg�type�t t��

char hostname���	
�

� reply�t�

status is used to indicate whether the request that triggered this reply message

succeeded�

type is used to indicate whether the reply refers to an inport or an outport�

port is used to grant send rights for the Mach port of a receiver to a process that

requested send rights for the channel�

hostname is used to identify the channel uniquely� Notice that this �eld is required

for the reply message since there might be more than one channel server

sending messages to a user process�

��

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

����� Code Outline

Note� Underlined functions are potential points at which the executing thread might

suspend�

Function F���� server start��

initialize data structures�
do

receive request message�
if request�type � CTRL START � kill all threads�

clear all tables�
request�type � CTRL END � kill all threads�

terminate�
request�type � CTRL REGISTER � spawn handle register request�
request�type � CTRL NORM � spawn handle regular request�
request�type � CTRL CLEAR � kill all threads�
otherwise � log error�

�

od

Function F���� handle register request��

err � register channel�
if channel id � �� � send reply message with new id

otherwise � skip
�

cthread exit�

Function F���� handle regular request��

if request � close � err � close channel�
request � inport � err � register inport�

err � get outport�
send reply message�

request � outport � err � register outport�
err � get inport�
send reply message�

otherwise � log error
�

cthread exit�

Function F��	� register channel��

mutex lock�chan lock��
channel id 	� next valid chan

�
create new table entry�
mutex unlock�chan lock��

Function F���� find channel��

mutex lock�chan lock��
if channel in table � mutex lock�channel�m��

mutex unlock�chan lock��

��

CHAPTER �� IMPLEMENTATION ���� NETWORK CHANNEL SERVER

return channel�
otherwise � mutex unlock�chan lock��

return NULL�
�

Function F���� close channel��

chan �� �nd channel�
if chan � NULL � error otherwise � skip �

if chan�closed � error otherwise � skip �

chan�nsent 	� msgs�
chan�oneclosed ��
�
chan�nout��
if chan�nout � � � chan�closed ��
�

send close channel message�
condition broadcast�chan�c��

otherwise � skip
�

mutex unlock�chan�m��

Function F���� register inport��

chan �� �nd channel�
if chan � NULL � error otherwise � skip �

if chan�in registered � error otherwise � skip �

chan�in registered ��
�
condition signal�chan�c��
mutex unlock�chan�m��

Function F���� register outport��

chan �� �nd channel�
if chan � NULL � error otherwise � skip �

chan�nout		�
if chan�out registered � warning otherwise � skip �

chan�out registered ��
�
condition signal�chan�c��
mutex unlock�chan�m��

Function F���� get inport��

chan �� �nd channel�
if chan � NULL � error otherwise � skip �

if chan�oneclosed � error otherwise � skip �

do �chan�in registered �

condition wait�chan�c
chan�m��
if chan�oneclosed � condition signal�chan�c��

mutex unlock�chan�m��
error�

otherwise � skip
�

od

condition signal �chan�c��

��

CHAPTER �� IMPLEMENTATION ���� USER INTERFACE

if chan�oneclosed � error otherwise � skip �

if chan�out done � error otherwise � skip �

chan�in done �� ��
mutex unlock�chan�m��

Function F���� get outport��

chan �� 	nd channel�
if chan � NULL � error otherwise � skip �

if chan�oneclosed � error otherwise � skip �

do �chan�out registered �

condition wait�chan�c
chan�m��
if chan�oneclosed � condition signal�chan�c��

mutex unlock�chan�m��
error�

otherwise � skip
�

od

condition signal �chan�c��
if chan�oneclosed � error otherwise � skip �

if chan�out done � warning otherwise � skip �

chan�out done �� ��
mutex unlock�chan�m��

��� User Interface

The user interface consists of the functions that were speci�ed in chapter �� These

functions use the network channel server to create and close channels� and to request

send or receive rights for channels�

����� Channel Table

Each process maintains a table of known channels� This table consists of elements

of the following type�

typedef struct �

int channel�id�

char �host�

port�t inport�

port�t outport�

unsigned int is�inport�	�

unsigned int in�done�	�

unsigned int is�outport�	�

unsigned int out�done�	�

unsigned int closed�	�

unsigned int rclosed�	�

unsigned int nsent�

unsigned int nrecv�

��

CHAPTER �� IMPLEMENTATION ���� USER INTERFACE

list�t �list�of�msgs�

int nmsgs�

struct mutex m�

struct condition c�

� chan�tab�t�

channel�id and host together uniquely identify the channel name�

inport and outport are the Mach ports of the sender and receiver�

is�inport indicates whether or not the process has requested receive rights for

the channel� in�done is used to indicate whether the process has received

receive rights for the channel� is�outport and out�done are similar but used

to determine the status of an outport�

closed is used to determine if the channel is closed� i�e�� if all senders have closed

the channel� rclosed is used to determine if at least one sender has closed

the channel� nsent and nrecv are used to detect if the channel was closed�

list�of�msgs points to a queue of messages in the channel� nmsgs is the number

of messages in the queue�

m and c are variables used for synchronization�

����� Message Handling

Each message that is sent along a channel contains the message itself� and the

unique channel name� The message structure used is�

typedef struct �

msg�header�t h�

msg�type�t t�

char �msg�

msg�type�t ht�

char host��	
��

� generic�msg�t�

msg points to the data contained in the message� host is used to identify the

channel�

The msg �eld contains all the data that is sent in the message� Each data item

speci�ed by the format speci�cation in a Send is copied into a single bu�er� Note

that the virtual memory functions of Mach are used to allocate this bu�er� As a

result� when such a message is sent to a process on the local machine� Mach will

not make a second copy of the bu�er� since Mach uses a copy�on�write scheme for

managing virtual memory�

The list�of�msgs �eld in the channel table is used to store the messages that

have been received for a particular channel� Each process has a single thread in it

that is responsible for receiving messages for all channels for which the process has

receive rights� Each channel has a count nmsgs associated with it� that refers to the

�	

CHAPTER �� IMPLEMENTATION ���� USER INTERFACE

number of messages that were received for the channel� To queue a message for a

channel� the following operations are done�

�� The channel mutex m is locked�

�� The received message is appended to the list�of�msgs�

�� A signal action is performed on the condition variable c�

�� nmsgs is incremented�

	� The channel mutex m is unlocked�

To remove a message from the channel� the following actions are done�

�� The channel mutex m is locked�

�� A wait is done on the condition variable c until nmsgs is non
zero�

�� The next message is removed from the queue�

�� nmsgs is decremented�

	� The channel mutex m is unlocked�

����� Argument Passing

When a Spawn�Thread�� or a Spawn�Process�� call is made� the list of arguments

to the thread or process must be converted into a form that can actually be passed to

the thread or process� and then reconverted back into the original arguments� Since

process and thread creation are very di�erent internally� two separate strategies are

used to tackle the problem for each of them�

Threads

The C
thread package allows a thread to be spawned with a single argument� There

fore� we have to convert the list of arguments to Spawn�Thread�� into one single

structure that can then be passed to some function that converts the structure back

into the original argument list� The structure used for this purpose is shown below�

struct single�argument �

void ��f����

int n�

int �chan�list�

��

n is the number of integers in the array chan�list� Together� these specify all the

arguments that were passed to the thread� f is a pointer to the function that is to

be spawned�

��

CHAPTER �� IMPLEMENTATION ���� USER INTERFACE

Spawn�Thread�� does not spawn the function speci�ed in its argument list� Instead�
a function known as ��generic�unpack is spawned� This function takes a single
argument of type struct single�argument�� The purpose of this function is to
unpack the arguments and call the function speci�ed by f with the appropriate
argument list�

Processes

Argument passing across processes is slightly more complex� The major problem
is that the channel identi�ers that are passed as arguments do not refer to the
channel name� but to the location of the channel in the channel table� Therefore�
the channels must be entered into the channel table in the remote process� and then
converted into a valid channel identi�er in the remote process� The channel names
are passed using the command�line mechanism� This list must then be unpacked
by the remote process� and entered into the channel table�

The channel library provides a simple tool known as makestub which is used to cre�
ate the main process for remote processes that are spawned using Spawn�Process���
The main program takes the command line arguments� registers them internally�
and then calls a speci�ed function �an argument to makestub� with the actual
channel identi�ers�

����� Code Outline

Note� Underlined functions are potential points at which the executing thread might
suspend�

Function F����� internal msg handler��

do

receive message
if user interrupt � cthread exit�� otherwise � skip �

chan �� �nd channel��
if chan � NULL � mutex lock�table mutex��

insert new channel into table�
chan �� new channel�
mutex unlock�table mutex��

chan �	 NULL � skip
�

mutex lock�chan�m��
insert message in message queue�
condition signal�chan�c��
mutex unlock�chan�m��

od

Function F����� Sending On��

if chan�is outport � error otherwise � skip �

chan�is outport �� 	�
chan�out done �� ��

��

CHAPTER �� IMPLEMENTATION ���� USER INTERFACE

send outport request to channel server

Function F����� Receiving On��

if chan�is inport � error otherwise � skip �

chan�is inport �� ��
chan�in done �� ��
send inport request to channel server

Function F����� Initialize Main��

look up channel server�
initialize all tables�

Function F����� Initialize Process��

initialize all tables�

Function F���	� New Channel��

request new channel id from server�
if channel exists � error otherwise � skip �

mutex lock�table mutex	�
create new table entry�
mutex unlock�table mutex	�

Function F���
� Send��

if �chan�is outport � error otherwise � skip �

if �chan�out done � complete orpc�	 otherwise � skip �

mutex lock�table mutex	�
if chan�closed � error otherwise � skip �

mutex unlock�table mutex	�
package message into bu
er�
send message

Function F����� Receive��

if �chan�is inport � error otherwise � skip �

if �chan�in done � complete irpc�	 otherwise � skip �

mutex lock�chan�m	�
if channel closed � error otherwise � skip �

do chan�msgs � � � condition wait�chan�c�chan�m	 od
take next message out of queue�
unpack message�
mutex unlock�chan�m	�

Function F����� Spawn Thread��

pack arguments into one structure�
mutex lock�thread mutex	�
thread count���
mutex unlock�thread mutex	�
spawn new thread

��

CHAPTER �� IMPLEMENTATION ���� POSSIBLE IMPROVEMENTS

Function F����� Spawn Process��

create command line arguments
use rsh to spawn new process

Function F����� Finished��

mutex lock�thread mutex��
thread count��
if thread count � � � abort internal msg handler�� otherwise � skip 	

mutex unlock�thread mutex��
thread exit�

Function F����� Close Channel��

if chan�closed � error otherwise � skip 	

chan�closed 	�
�
send close channel message to server�

Function F����� complete irpc��

mutex lock�rpc mutex��
do �chan�in done �

wait for reply message from server�
enter message into table�
set done �ag for appropriate channel�
mutex unlock�rpc mutex��
mutex lock�rpc mutex��

od

mutex unlock�rpc mutex��

Function F���
� complete orpc��

mutex lock�rpc mutex��
do �chan�out done �

wait for reply message from server�
enter message into table�
set done �ag for appropriate channel�
mutex unlock�rpc mutex��
mutex lock�rpc mutex��

od

mutex unlock�rpc mutex��

��� Possible Improvements

The following modi�cations could be made to the Network Channel Server� These
modi�cations� in some cases� incur a cost which a user may or may not be willing
to pay�

� Each server could have a CTRL SESSION message� which returns a new session
id� The channel would then be uniquely identi�ed by the triple �hostname�

��

CHAPTER �� IMPLEMENTATION ���� POSSIBLE IMPROVEMENTS

session id� channel id�� This would allow multiple parallel applications to use
the channel server�

� The network channel server could be simply removed and incorporated into
the internal message handling thread in the user interface� However� this
presents the additional cost of registering all user processes with the network
nameserver�

��

Chapter �

Proof Outline

This chapter contains an informal proof of the channel library� Since there are two
basic parts to the channel library� we split the proof into two parts�

�� Proof of the network channel server�

�� Proof of the user interface functions�

We shall �rst prove some basic properties of the network channel server� These
properties� along with the properties of the user interface functions will demonstrate
that the user interface functions satisfy their speci�cation�

��� Network Channel Server

We begin by de�ning the ghost variable ns� ns is the number of times the channel
table is cleared� We de�ne the interval between two successive values of ns as a
session�

����� Properties

Property P���� For every channel c� the following pairs are monotonic under

lexicographic ordering� �ns� c�oneclosed	� �ns� c�closed	� �ns� c�in registered	�
�ns� c�in done	� �ns� c�out registered	� �ns� c�out done	�

Proof� There are two possible values these channel �elds could have�
 or ��
They are assigned a value of zero just when the channel table is cleared�
which increases ns� All other modi�cations to the channel �elds given
above only assign them the value ��

��

CHAPTER �� PROOF OUTLINE ���� NETWORK CHANNEL SERVER

Property P���� All mutex variables used are created exactly once�

Proof� The only statements that can modify a mutex variable are the initializa�
tion and termination routines� The initialization routine is called exactly
once�

Property P���� There is exactly one thread in the channel server until the �rst
receive is done in �F���	�

Proof� �F���� begins the channel server� This function is the only one that spawns
new threads� These spawn operations follow a receive operation�

Property P���� Only threads from the channel server can modify the data struc

tures in the server�

Proof� The channel server is created as an independent process� Furthermore�
there are no system calls in the server that grant memory access to any
other task in the system�

Property P���� At most one thread can modify or read the channel table at a
time�

Proof� Initially� there are no threads in the system� From �P	�
� we know
that the mutex variables themselves do not change in value� but only in
state� The only places where the channel table is modi�ed or read are
in functions �F����� �F����� and �F����� From �P	���� and the fact that
the channel table is modi�ed in �F���� before the �rst receive operation�
the invariant is maintained� The two functions �F���� and �F���� lock the
mutex variable chan lock before accessing the channel table� Therefore�
the invariant is maintained�

Property P���� The pair �ns� next valid chan� is monotonic under lexicographic
ordering�

Proof� next valid chan is modi�ed in two places
 �i� when the channel table is
cleared� �ii� in function �F����� Clearing the channel table increases ns�
�F���� increments the value of next valid chan� This increment is done
only when the mutex variable chan lock is locked� Therefore� at most one
thread can increment next valid chan at a time� So� �F���� only performs
monotonic changes to the pair�

Property P��	� The channel identi�ers returned by the network channel server
in a session are unique�

Proof� The only place where new channel identi�ers are created is in the function
�F����� next valid chan is used to create new channel identi�ers� From
�P	���� we know that the modi�cations to next valid chan are monotonic
for a given session� From function �F����� we see that next valid chan is
changed every time a new channel is created� From �P	���� we know that
no two values of the variable next valid chan can be the same�

��

CHAPTER �� PROOF OUTLINE ���� NETWORK CHANNEL SERVER

Property P���� At most one thread can modify an entry in the channel table at

a time�

Proof� Initially� there are no threads in the computation� Apart from function
�F����� all other functions modify a channel entry only after calling �F�����
This function locks the mutex m associated with the channel� �F����
creates a new channel entry� From �P��	�� we know that these channel
entries are identi
ed by unique values� Since �F���� returns a new channel
and we know �P��	�� no other thread in the computation can access the
newly created channel entry�

Property P���� For a channel c� c�in registered is � just when an inport register

request has been received for the channel c�

Proof� c�in registered is assigned a value � only in function �F����� This function
is called only from function �F���� when the request was an inport request�
�F���� is called just when a register request is received� �F���� assigns a
value � to c�in registered�

Property P����� For a channel c� c�out registered is � just when an outport

register request has been received for the channel c�

Proof� Similar to the proof of �P��
��

Property P����� For a channel c� c�oneclosed is � just when a close channel

request has been received for the channel c�

Proof� Similar to the proof of �P������

Property P���	� The number of reply messages sent for inport requests without

an error status is at most one�

Proof� A reply message is sent to an inport request only after functions �F����
and �F��
� have been called� �F���� returns an error if in registered is �
for the channel� Since in registered is set to � every time �F���� is called
and we know �P��
�� we can conclude that an error status is returned if
�F���� is called more than once for the same channel� Since a reply message
is sent only after �F���� is called� we have established �P������

Property P���
� The reply message for an inport request on a channel is sent

only after the outport request for the channel has been received�

Proof� A reply message for an inport request is sent only after the functions
�F��	� and �F���� have been called� Function �F���� suspends on the con�
dition variable for the channel until in registered has value �� From �P��
�
we can conclude that in registered is � just when the outport request for
the channel has been received�

Property P����� The reply message for an outport request on a channel is sent

��

CHAPTER �� PROOF OUTLINE ���� USER INTERFACE

only after the inport request for the channel has been received�

Proof� A reply message for an outport request is sent only after the functions
�F���� and �F���� have been called� Function �F���� suspends on the con	
dition variable for the channel until out registered has value
� From
�P��
�� we can conclude that out registered is
 just when the inport
request for the channel has been received�

Property P����� A close channel message is sent to the receiver of a channel only
after the number of close channel requests is the same as the number of outport
requests�

Proof� Each outport request increases the value of nout for the channel� Each
close channel request decreases the value of nout� These modi
cations to
nout are protected by the channel mutex m� A close channel message is
sent to the receiver only when nout is zero�

��� User Interface

We use the following fact about the channel table� when a new channel table entry
is created� all the bit	
elds for the newly created channel have value zero�

����� Properties

Property P����� At most one thread can access the channel table at a time�

Proof� All modi
cation to the channel table are protected by the mutex variable
table mutex� As a result� at most one thread will succeed in locking the
mutex� from which the property follows�

Property P����� �F����� creates new channels with identi	ers from the local
network channel server�

Proof� From the code outline of �F��
��� we can see that the function satis
es
the property mentioned above� Since we have �P��
��� the channel table
update is equivalent to an atomic action�

Property P����� For any channel
 an outport request from a process is sent at
most once to the network channel server�

Proof� An outport request is sent only from �F��

�� This function sets the
is outport �ag to
� It returns an error status just when is outport has
value
 when the function is called�

��

CHAPTER �� PROOF OUTLINE ���� OUTLINE OF PROOF

Property P����� For any channel� an inport request from a process is sent at
most once to the network channel server�

Proof� An inport request is sent only from �F������ This function sets the
is inport �ag to �� It returns an error status just when is inport has
value � when the function is called�

Property P����� Function �F����	 sends an outport request to the network chan

nel server when it is called for the �rst time�

Proof� Follows from the code outline of �F������

Property P����� Function �F����	 sends an inport request to the network channel
server when it is called for the �rst time�

Proof� Follows from the code outline of �F������

Property P����� �F���
	 succeeds only if the process has called �F����	 for the
channel�

Proof� The is outport 	eld of a channel is modi	ed only by �F������ Initially

the 	eld has value �� From the code of �F�����
 it is clear that the function
succeeds only when is outport has value �
 i�e� when �F����� was called
for the channel�

Property P���	� �F����	 succeeds only if the process has called �F����	 for the
channel�

Proof� Similar to the proof of �P
�����

Property P���
� A process sends a close channel request to the network channel
server at most once�

Proof� A close channel request is sent only by �F��
�� The closed 	eld of the
channel is set by �F��
�� An error status is returned by �F��
� if it is called
for a channel that has the closed 	eld set to ��

��� Outline of Proof

Property P����� Function Initialize Main�� satis�es its speci�cation�

Proof� The program �F����� for the function is trivial
 and the proof is left to
the reader�

Property P����� Function Initialize Process�� satis�es its speci�cation�

��

CHAPTER �� PROOF OUTLINE ���� OUTLINE OF PROOF

Proof� The program �F����� for the function is trivial� and the proof is left to
the reader�

Property P����� Function New Channel�� satis�es its speci�cation�

Proof� Follows from �P���	�� and �P��	��

Property P����� Function Sending On�� satis�es its speci�cation�

Proof� Follows from �P��
�� and �P������

Property P����� Function Receiving On�� satis�es its speci�cation�

Proof� Follows from �P��
�� and �P���
��

Property P��	
� Function Send�� satis�es its speci�cation�

Proof� Follows from �P��

��

Property P��	�� Function Receive�� satis�es its speci�cation�

Proof� Follows from �P��
���

Property P��	�� Function Close Channel�� satis�es its speci�cation�

Proof� Follows from �P��
�� and �P������

Property P��		� Function Spawn Process�� satis�es its speci�cation�

Proof� Follows from the code outline �F���
��

Property P��	�� Function Spawn Thread�� satis�es its speci�cation�

Proof� Follows from the code outline �F������ and the fact that modi�cation of
thread count is protected by the mutex thread mutex�

Property P��	�� Function Finished�� satis�es its speci�cation�

Proof� Modi�cation of variable thread count is protected by the mutex vari�
able thread mutex� This variable is initially �� �F����� increases the
value of thread count whenever it is called� �F��
�� decreases the value of
thread count whenever it is called� Therefore� thread count being zero is
equivalent to the condition that there are no user threads in the system�
This condition is used to terminate the process�

Property P��	
� Channel identi�ers in the system are unique�

Proof� Follows from �P��	��

��

CHAPTER �� PROOF OUTLINE ���� OUTLINE OF PROOF

We now de�ne send rights and receive rights in terms of the messages exchanged
between the channel server�

� Requesting send rights is equivalent to sending an outport request to the
channel server�

� Requesting receive rights is equivalent to sending an inport request to the
channel server�

� The reply message for an outport request grants send rights to a process�

� The reply message for an inport request grants receive rights to a process�

Now� we have the following properties which needed to be established�

Property P����� There is at most one process in the computation that has receive

rights for a channel�

Proof� Follows from �P���	
�

Property P����� A send succeeds only if the calling process has send rights for

the channel�

Proof� Follows from �P��		
�

Property P����� A receive succeeds only if the calling process has receive rights

for the channel�

Proof� Follows from �P��	�
�

��

Chapter �

Example programs

In this chapter we discuss some example programs that were implemented using the
channel library� The purpose of these examples is to demonstrate how one might
use the channel library to write a parallel program� We have chosen the following
two examples�

� A distributed sorting program�

� A producer�consumer problem�

��� Producer�Consumer

In this example� there are two processes in the computation� One of the processes
�known as the producer� sends messages to the other process �known as the con�
sumer�� The consumer then prints out the messages it received and terminates�

The function main�� creates the channel connecting the producer and consumer�
spawns the two processes� and then terminates�

void main�void�

�

int ch�

Initialize�Main ���

Single producer thread, single consumer thread.
The dotted thread represents the internal message
handler.

ConsumerProducer

Figure ��	� Producer�Consumer Problem

�

CHAPTER �� EXAMPLE PROGRAMS ���� SORTING

New�Channel ��ch��

Spawn�Process ��proc�prod�	 �chainsaw�	
	 ch��

Spawn�Process ��proc�cons�	 �pistol�	
	 ch��

Finished���

�

The producer requests send rights for the channel that was sent to it as an argument�

and then sends messages along it� Finally� the channel is closed� and the producer

terminates�

void producer �int ch�

�

int i�

Sending�On �ch��

for �i
�� i �
�� i���

Send �ch	 ��d�	 i�i��

Close�Channel �ch��

�

The consumer requests receive rights for the channel that was sent to it as an

argument� and then receives messages from the channel until the close channel

message is received�

void consumer �int ch�

�

int i	 closed�

FILE �fp�

Receiving�On �ch��

Receive �ch	 �closed	 ��d�	 �i��

fp
 fopen ��log�	 �w���

while ��closed� �

fprintf �fp	 ��d�n�	 i��

Receive �ch	 �closed	 ��d�	 �i��

�

fclose�fp��

�

��� Sorting

The program below implements the mergesort algorithm for sorting numbers� This

algorithm uses a divide�and�conquer strategy� main�� is used to create the initial

sort process� and to read in the numbers that are to be sorted�

void main�void�

��

CHAPTER �� EXAMPLE PROGRAMS ���� SORTING

Figure ���� Distributed Mergesort

�

int chan�� chan��

int i� n� val� closed�

Initialize�Main���

New�Channel�	chan���

New�Channel�	chan���

Sending�On�chan���

Receiving�On�chan���

Spawn�Process �
mergesort
�
pete
� �� chan�� chan���

printf �
Enter � of values�
��

scanf �

d
� 	n��

Send �chan��

d
� n��

printf �
Enter values��n
��

for�i��� i � n� i��� �

scanf �

d
� 	val��

Send �chan��

d
� val��

�

Close�Channel�chan���

for�i��� i � n� i��� �

Receive�chan�� 	closed�

d
� 	val��

printf �

d�n
� val��

�

Finished���

�

Process mergesort�� checks the problem size� If the base case is reached� then the

process sends back the solution and exits� Otherwise� it creates two new processes

which are used to solve two sub�problems of the original sorting problem�

void mergesort�int in� int out�

�

int i� n� val�

int closed�

int c�� c�� c�� c��

int �left� �right�

��

CHAPTER �� EXAMPLE PROGRAMS ���� SORTING

Receiving�On �in��

Sending�On �out��

Receive�in� �closed� �	d�� �n��

if �n

 �� �

Receive �in� �closed� �	d�� �val��

Send �out� �	d�� val��

else �

val
 �int�� malloc�sizeof�int��n��

New�Channel��c��� Sending�On �c���

New�Channel��c��� Receiving�On �c���

New�Channel��c��� Sending�On �c���

New�Channel��c��� Receiving�On �c���

Send �c�� �	d�� �int�n����

for �i
�� i � n��� i��� �

Receive �in� �closed� �	d�� �val��

Send �c�� �	d�� val��

Send �c�� �	d�� n��int�n����

for �i
�� i � n�n��� i��� �

Receive �in� �closed� �	d�� �val��

Send �c�� �	d�� val��

Close�Channel �c���

Close�Channel �c���

left
 �int��malloc�sizeof�int����int�n�����

right
 �int��malloc�sizeof�int���n��int�n�����

for �i
�� i � n��� i���

Receive �c�� �closed� �	d�� left�i��

for �i
�� i � n�n��� i���

Receive �c�� �closed� �	d�� right�i��

merge�left� right��

for �i
�� i � n��� i���

Send �chanout� �	d�� left�i���

for �i
�� i � n�n��� i���

Send �chanout� �	d�� right�i���

��

Chapter �

Conclusion

We have presented the implementation of a channel library on top of the Mach op�
erating system� From the implementation outline given� it is clear that the channel
library implementation was greatly simpli�ed as a result of the support provided
by Mach itself� In fact� the entire implementation took ���� lines of code�

Although implementing the library was a simple task� the proof for the channel
library was extremely complicated� Presenting a code outline greatly simpli�ed the
proof� by hiding details of the implementation and focusing attention on synchro�
nization issues� In spite of using this simpli�cation� the proof outline was complex�

The key properties in the proof established that certain variables used in the imple�
mentation were monotonic� However� all the monotonic variables could be modi�ed
in a non�monotonic manner� but only by a single thread of execution� This leads us
to believe that reasoning about correctness of the library using shared data struc�
tures that are monotonic will greatly simplify the proof�

Reasoning about a concurrent computation in which sharing is restricted to mono�
tonic variables with a single thread of execution that can perform a non�monotonic
modi�cation to them can be applied to a large number of existing constructs �for
instance� channels� monitors� and locks	 used to restrict the interaction between
cooperating tasks�

We think that choosing Mach as the base for the channel library was a good decision
because of the services provided by the operating system� Proving correctness of
the channel library seemed to be a complex task� in spite of the fact that a number
of implementation details were hidden�

Bibliography

��� Accetta� M�� Baron� R�� Bolosky� W�� Golub� D�� Rashid� R�� Tevanian� A��
Young� M� Mach� A New Kernel Foundation for UNIX Development In Pro�

ceedings of Summer Usenix� July� �����

�	� Bach� M�J� The Design of the UNIX Operating System� Prentice
Hall� �����

��� Cooper� E�C�� and Draves� R�P� C Threads Technical Report CMU
CS
��
��
�
School of Computer Science� Carnegie Mellon University� February �����

�
� Kernighan� B�W�� and Ritchie� D�M� The C Programming Language� Prentice

Hall� �����

��� NeXT Computer Inc� NeXTSTEP Operating System Software� Addison

Wesley� ���	�

��� Silberschatz� A�� Peterson� J�� and Galvin� P� Operating System Concepts�

Addison
Wesley� �����

�

