Design of the Mosaic Processor

Christopher Lutz

Computer Science Department
California Institute of Technology

5129:TR:84

Design of the Mosaic Processor

by
Christopher Lutz

In Partial Fulfillment of the Requirements for the
Degree of Master of Science

May 1984

5129:TR:84
Computer Science
California Institute of Technology
Pasadena, CA 91125

The research described in this paper was sponsored by the Defense Advanced
Research Projects Agency, ARPA Order number 3771, and monitored by the Office
of Naval Research under contract number NO0014-79-C-0597.

N O OR W O

OO » W=

Contents

Introduction

Top-level View

Chronology

Processor Organization
Datapath

Ports

Controller

Instruction Set

Microcode

From Version A to Version B
Sample Instruction Execution
Memory

Circuit Design

. Design Tools
. Testing

Acknowledgements
References

APPENDIX A: Processor Version A

Instruction Set
Microcode Source
Circuit Diagrams

APPENDIX B: Processor Version B

Instruction Set
Microcode Source
- Circuit Diagrams

APPENDIX C: Selected Layout

W OO WU - =

11
12
13
14
17
18
19
20
21
22

3
26
29

48
55

59

Design of the Mosaic Processor!

1. Introduction

The Mosaic element is a fast single chip nMOS computer designed to be
used in groups for concurrent computation experiments. Each element
contains a 16-bit processor, 4 input ports, 4 output ports, and read-write
memory. This thesis describes the design of the processor and ports in
detail. The memory section, mentioned here only briefly, has been designed
separately and will later be incorporated on the same chip with the proces-
sor and ports.

Myriads of Mosaic elements can be connected together by their portsin
a variety communication plans, such as a tree, mesh, shufile, chordal ring,
or cube connected eycle, to form a family of specialized, high performance,
concurrent, and programmable computing engines. Mosaic is one of several
system building experiments in concurrent computation underway at Cal-
tech; a discussion of the rationale, programming style, and applications of
these machines is offered in [Seitz84]. In addition to its end use as a com-
ponent for experiments with concurrent computing engines, Mosaic has
been an interesting vehicle for numerous adventures in VLSI design, design
tools, and testing. '

The principle objectives in designing the processor have been speed,
simplicity, and the flexibility to serve a wide variety of applications, antici-
pated and not.

2. Top-evel view

It appears that most of the silicon area in multiple-instruction
multiple-data (MIMD) ensemble machines should be devoted to memory for
the best tradeoff between performance and generality. In cosmic cube, a
larger grain size machine of similar style to Mosaic, the fraction of the ele-
ment complexity devoted to memory is about 70%. With the precondition
that a complete Mosaic element fit on a single chip, and using today’s MOSIS
nMOS fabrication with 1.5 micron lambda (3 micron feature size) on chips 8
mm square, the complexity of today's Mosaic element is limited to 4000 by
4000 lambda, or 16 million square lambda (MSL). This area is apportioned
with about 2.5 MSL for the processor and ports, 1 MSL for the pad frame,
and 12 MSL (75%) for memory and its interconnect.

[Lutz,Rabin,Seitz&SpeckB3] is a short precursor to this thesis.

Pods

Processor

4Kbits HK brts

4K bits 4K bits YK bits

Pads

4K bits 4K bits “4Kbits

Figure 1: Mosaic Element Floorplan

The floorplan of the Mosaic element places the processor and ports in
~ one corner, and fills the rest of whatever chip area is available with copies
. of 4096-bit memory modules arranged so that the address and data buses
can be run in between. For a 18 MSL element, the chip has the floorplan

shown in figure 1.

3. Chronology

The original models for this project, from which everything else evolved,
were (1) Sally Browning's research on algorithms for a programmable tree
machine [Browning80a, Browning80b, Browning&Seitz81], and (2) the “OM”
described in [Mead&Conway80]. Mosaic started out as a tree machine ele-
ment, but we have since come to see it as a building block for a variety of
fine grain ensemble machines with connection plans up to degree 4. The
influence of the OM layout style on the floorplan and many details of the ALU
of the Mosaic processor will be apparent.

An early attempt Lo luy oul a less ambilious processor with a 4-bit path
to off-chip memory used the prototype versions of Earl, a constraint solving
geometry and composition tool [Kingsley82]. The early processor and early
Earl served as mutual guinea pigs as they were growing up together.

A major redesign followed the decision to incorporate Mosaic's memory
on-chip with the processor, rather than use commercially produced RAM

-3-

chips. Although specialized semiconductor processes provide higher
storage density than processes suitable for the Mosaic processor, putting
the storage on-chip with the processor offers the advantages of reduced
pin-count, volume, signal energy, driver delay, and cost.

A new processor, featuring a 16-bit data path intended to be connected
to on-chip memory, was designed in the 1981-82 academic year, laid out and
verified in the summer and fall of 1988, and sent to MOSIS for fabrication at
a 4 micron feature size in January 1983. It functioned nearly correctly and
at 140 nsec cycle time on first silicon in February 1983. Appendix A con-
tains the instruction set, microcode source, and circuit diagrams for this
design, called version A. The processor was subsequently redesigned with
additional functions and a faster control PLA; Appendix B describes this
latest design, called version B.

In the meanwhile, the on-chip memory sections have been designed,
and processor chips have been assembled with fast off-chip memory to
make some small prototype Mosaic elements. These elements will be used
. for programming experiments and software development in anticipation of
larger systems to be built with the fully integrated Mosaic elements.

4. Processor organization

Figure 2 is the floorplan of the core of the processor, without the sur-
rounding memory and pad frame. The processor’s organization is summar-
ized by the detailed block diagram of figure 3. The processor has two princi-
ple components: a datapath/port block, and a controller, each of which is a
demnse, regular block of layout. The datapath/port block is functionally cen-
tered around the processor’s single 16-bit internal data bus; it is controlled
by signals issued by the PLA-based controller. The Iollowing sections
describe these components (for version A) in detail. Then section 10
describes the changes that yielded version B.

The instruction register (I) holds the current macroinstruction and can
be latched from the memory data bus on command from the controller.
Parts of the instruction register are distributed in several places in the pro-
cessor depending on the bits needed locally: in the controller, near the
flags, and near the register and port selectors. Some of the bits are dupli-
cated in different places.

The Mosaic element is synchronous, with 2 sets of 2-phase non-
overlapping clocks supplied externally (figure 4). The clocks are nominally 7
volts (with Vdd = 5 volts) for reasons discussed in section 13. The primary
clocks, called ¥ and ¥2, have minimum high times of roughly 60 nsec and
30 nsec, respectively. The secondary clocks, ¥31, and g1, are used

l] !
DATAPATH [
1 ourput | INpUT "
it K
PORTS REGISTERS ALU | & i
| o
L 12zl ,
X w 9 ZE o
oy o:'_ - Do
abl |2
s w
< v z
PORT CONTROL -
& SELECT REGISTER | privems & rouTing
ROUTING
LARRE OUTPUT LATCHES & DRIVERS |LATCHES;
DRIVERS DRIVERS
INPUT OUTPUT
(AND) (oRY
PLANE PLANE
< 15002 -

Figure 2: Processor floorplan

principally in the memory sections; version A processors do not use them at
all. The memory cycle, processor microcycle, datapath operations, and
serial communication cycle occur in parallel in one clock cycle.

The processor design is the result of dozens of iterations through the
design of the instruction set, microcode, floorplan, logic design, and circuit
design. Thus the rationales for many of the design details are buried in a
long history of shuffling and trial-and-error. While many of the design deci-
sions are individually somewhat arbitrary, their justification is that they
work well together. :

For example, the choice of a single internal data bus sometimes limits
the performance, but a slower and more complex controller and address

4 ovtput 4 inpyt
po‘r?‘f.t ’;::ds po:‘":'p;;;ds —;ﬂ—‘_—lml
q’f\t‘l qrhy BUS 1
4 4 16 X .
fpuk | inpyt . ALY/
op%rpt‘; tp?:e"és registers Shifter Address
...... se.[..c.'.c..‘E. .-.......g.e..{..e.ai...u- 4 secﬁ".on
2 Iflags
ol - ;Em:m £lag | PLA] $6:42
ol & Congit ion
S| =
- a8 "
5| 2
: &l B Datapath
interrupt (2 - Feedback Control Latchl
£
Reset — ﬂ l ﬁ\ T memory
scan A Y Al/ Y<is:6) J 35 ‘ write
path—>{ input L] [atches output latches ot o
in P:},{:‘ [\

Control:i.er PLA

input plane

outpuf plane

2 version A on\y

B

Figure 3: Processor Block Diagram

version B only

section would be required to take much advantage of more busses. The pro-
cessor opts for a more leisurely approach in which simple instructions take
3 cycles: enough to do instruction decode, operand fetch, and operand use
on separate cycles. This keeps the per-cycle capabilities of the bus, ALU,

controller, ports, address section, and memory are well matched.

Yy

S

memor
oddres

mamor
data 7

—-—

]
ALU © QERATE

#

I
i
1
I
l
[_Bus_ \!
TRANSFER

|
]
|
|
|

L

1
!
|
)
i

— — - -

i

.._____....__._.,._‘__.___ -

P P ety CadiE e B

-

1
<« 1SOT—><—={S0 'T——-—H.e—msoT.-—»-:
! t
{
|

L OMNE MICROCYCLE -
~100 nsec

Figure 4: Externally Supplied Clocks
5. Datapath

The datapath contains those parts of the processor that communicate
over the internal data bus. The bus is 16 bits wide and runs the length of
the datapath. The functional blocks in the datapath are organized in a bit
slice pattern, one bit of the bus running through each bit slice, with a bit
slice pitch of 34 lambda. During 1 of each cycle the bus is precharged and
the ALU/shifter computes a new result. ¢z is used for the bus transfer and
the ALU carry chain precharge.

Except in the register section, the control signals, power, and clocks
run (vertically) on metal perpendicular to the bus. The register section was
more compactly laid out with vertical poly control signals and clocks, bus,
and power run horizontally on metal.

The datapath includes sixteen 16-bit registers which are used as gen-
eral purpose registers in the macroinstruction set. In every cycle, one of
the registers may be a bus source or bus destination. The register used is
addressed by either the J field (bits O through 3) or the K field (bits 4
through 7) of the instruction register, as determined by a signal from the
controller. The controller thus cannot specify a particular register directly.

- -

The array is composed of pseudostatic storage cells, refreshed on ¥1.

The ALU/shifter performs in one cycle any of the arithmetic, shift, and
logical operations required by the arithmetic instructions. The ALU
operands are held in a pair of latches, called X and Y, that are loaded from
the bus. The ALU is patterned after the ALU in the OM design
[Mead&Conway80], with a pair of function blocks and a precharged pass
transistor carry chain. Mosaic uses an exclusive-OR gate at the ALU output
rather than the slower and needlessly general result function block used in
the OM. Although the ALU does not use carry lookahead, it is optimized to
the extent that it is not in the critical timing path.

The ALU result serves as input to a shifter, which uses pass gates to
route correctly shifted data to the ALU/shifter output. The shifter can shift
or rotate right one bit, rotate right by 4 bits (nibble rotate), or pass the ALU
output through unchanged. The shifter could have been placed in parallel
with the ALU, rather than in series with it, since the services of both are
never required in the same cycle. However, the series orgamization is
preferable because (1) it is simpler, since only one set of latches and flag
interface logic is needed, (2) it costs nothing in speed, since compuling the
overflow flag is the slowest path. This is possible because the pass transis-
tors in the shifter are carefully placed so that the capacitive loads on the
most significant (last computed) bits out of the ALU are small when no-shift
is performed.

The processor maintains four flags in association with the ALU/shifter.
These are the familiar Z (zero result), N (negative result), V (two's comple-
ment overflow), and C (carry/not borrow). The C flag is also used as the
shift in and/or assigned the shift out in 1-bit shift and rotate instructions.
The controller does not sense the values of the flags directly. Instead, a
fixed 3-bit field in conditional branch macroinstructions specifies one of
eight branch conditions. These three bits, as well as the values of the four
flags, are inputs to a small PLA that produces one bit of output, the *'flag
condition”. This bit is an input to the controller, which tests it in perform-
ing the conditional branch instructions. Thus the controller is not burdened
with computing the flag condition itself. The branch condition codes were
assigned carefully so the flag condition PLA requires only six implicants.
Since the PLA is so small, it fits neatly next to the flags in the corner of the
processor, in a region formed by removing the top four bit slices of address
generation. The 4 flags and 12-bit program counter form a 16-bit status
word, conveniently located to communicate with the bus.

Every cycle the address section emits a new memory address onto the
12 memory address wires that come out of the right edge of the datapath.
The address generation section houses the program counter register (PC),
the refresh address register (RA), the current memory address register (A)

-8-

and an incrementer. The microcode guarantees that the RA is incremented
and issued to the memory at least once every 8 cycles. The processor’s per-
formance is not degraded by this refresh task because only memory cycles
which would otherwise go to waste are used for refresh cycles.

A 12-bit address is sufficient to address the number of words of memory
we can currently place on-chip. If in the future more than 12 bits of
address are needed, either the word length of the processor can be
increased, or the flags can be moved to a new status word apart from the
PC, and the address section lengthened to 16 bits. Neither solution is trau-

matic.

6. Ports

Mosaic processors communicate with each other through their ports.
Each processor has 4 input ports and 4 output ports. Connecting an output
port of one processor to an input port of another (not necessarily different)
processor forms a two-word FIFQ. That is, words can be removed by the
processor with the input port in the order in which they are inserted by the
processor with the output port, and as many as two more words can be
inserted than have becen removed. The communication between input and
output ports is bit serial at the microcycle rate, about 10MHz.

Mosaic’s implementation of the ports requires only a single wire, called
the port link, to connect an input to an output port. When a port is not
ready to perform a serial transfer, because it is an output port with no data
or an input port with unremoved data, it clamps the port link to ground. On
the cycle when both ports are ready to perform a transfer, neither proces-
sor grounds the port link and an external pullup resistor pulls it to Vdd.
Both ports recognize this signal as the "start bit"’ of a transfer, much as in
RS-232 data communications. The next 18 cycles pass the data serially on
the port link, and then the ports revert to the clamp-if-not-ready state.

This protocol allows multiple input ports to be connected to the same
link: all input ports receive data from the output port beginning on the
cycle when all the ports are ready. This feature went unnoticed until after
the ports were completely designed.

Each input port is based on a 17-bit serial-in, parallel-out shift register.
The input port senses that a transfer is complete and that it should stop
shifting when the *‘start bit” reaches the 17th bit of the shift register. Then
the first 16 bits contain the transmitted word. Each output port is based on
an 17-bit parallel-in, serial-out shift register. The trailer bit is set to one
when a word to be transmitied is loaded from the bus, and is used as a
marker to determine when the last bit of the word has been shifted out.

~9-

Three bits select a port, always taken from a fixed field of the instruc-
tion register (bits 4, 5, and 8). A bit from the ports, the “port condition”,
indicates whether the selected port is ready to perform a bus operation. If
an output port is selected, the controller can direct it to read a new word to
transmit from the bus. If an input port is selected, the controller can
direct it to drive the bus, or to ‘‘advance’ (remove a word from the FIFO).
The controller is responsible for issuing these signals only when the selected
port is ready.

The use of a single fixed port specifier field allows the hardware to be
simple, but it made designing a clean instruction set difficult because it
requires that all port references, whether for input, output, or testing the
condition of a port, ceincide in the same field of the instruction word.

Early plans called for a 4-bit message number appended to each
transmitted word, which the destination could test with its own input
instructions. The message number was later deemed to be insufficient, the
design to support it was distressingly complex, and the havoc it caused at
the floorplan level was unspeakable. Thus it was discarded, as were several
other port designs.

The present is the simplest of all designs considered, but the design as
seen from the instruction set has several drawbacks: the number of ports is
limited to four; there are no facilities for referencing ports indirectly
(instructions must reference them explicitly); and functions such as block
transfers, polling for ready ports, and message routing must be done in
software at the expense of performance and code space. Furthermore, in
this implementation the serial transfer rate is stuck at the processor cycle
‘rate, which requires bounding the transfer distance or slowing the entire
processor down to accommodate the slowest communication path in the
ensemble.

7. Controller

Each cycle the Mosaic controller computes a new set of signals to con-
trol the datapath and ports in the following cycle. The original plans for the
controller assume a rather conventional organization in which microcode
words are fetched from a ROM, and a new ROM address is computed every
cycle by a conglomeration conteining an incrementer, multiplexers, and
other miscellaneous logic. Most of this complexity disappeared with the
realization that a PLA could be efficiently programed to perform most of the
controller’s function. The controller now required no additional hardware

-10 -

except input and output latches and an auxiliary PLA for controlling the
ALU/shifter. This auxiliary PLA proved to be very troublesome because all
the king’s horses and all the king's men could not find a placement fer it
that did not result in large wiring channels and expanses of white space.
The auxiliary PLA was finally eliminated by incorporating its function in Lhe
main controller PLA. The controller became merely a 2-plane PLA with
latches. In most microprocessors the datapath is the most regular part,
but in Mosaic the controller is even more regular than the datapath.

The controller is complicated somewhat by a scheme to change its
height to width ratio to better fit the space allotted to it: for every con-
troller output, the PLA OR-plane has two outputs and a 2-to-1 multiplexer.

The multiplexers are controlled by bit 8 of the instruction register (1<8>),
chosen because it allows a large reduction in the number of PLA implicants
(outputs from the AND plane). This scheme doubles the number of outputs
from the AND plane in return for a roughly 35% reduction in the number of
implicants. Programing this "'folded’ PLA is logically the same as program-
ing a PLA in which implicants are paired, the input conditions of implicants
in a pair differing only in bit 1<8>.

The AND-plane is split into two paris to make routing of inputs easier.
(See the processor floorplan, figure 2.) This splitting requires implicants to
be run on metal because poly or diffusion implicant wires would have far too
much static voltage drop to allow the processor to work, no matter where
the pullups were placed. The PLA outputs are run on diffusion; their pullups
are placed opposite the end where the outputs are sensed so that the impli-
cants’ static voltage drop does not appear at the sensed end.

The controller also incorporates a shift register through all of its input
and output latches. This “scan path” has not been used, although it might
have been useful as a diagnostic aid had anything been seriously wrong. It
is controlled by auxiliary clocks called ¥3 and ¥y which are held stable
under normal processor operation.

The controller has 17 inputs: 10 bits from the instruction register, the
flag condition, the port condition, the processor reset, and 4 feedback bits
(outputs from the controller clocked directly back to the controller input).
So little feedback state is needed because much of the state is held in the
instruction register (I), and the sequences to implement macroinstructions

are short.

Most of the 41 outputs from the controller go to clock-AND drivers (see
section 13) that drive control lines into the datapath. Five outputs specily
data bus sources; 6 specify bus destinations; 16 control the ALU/shifter and
flags; 6 control the address generation section; 4 are feedback terms; and 4
perform miscellaneous functions.

-11-

8. Instruction Set

Appendix A specifies the macroinstruction set. All instructions are one
word followed optionally by a word of immediate data. In the first instruc-
tion word, the two 4-bit fields J and K can each be used to specify one of the
general registers. In some instructions, the K fleld may specify one of the
ports or a branch condition instead.

All instructions fetch two cperands, X and Y, as specified by the 3-bit
MODE field. The X and Y operands in fact correspond to the hardware regis-
ters X and Y at the input to the ALU. Two of the MODEs involve ports; their
meanings depend on whether fleld K specifles an input or an oulput port.
Instructions that write to an output port wait until there is room in the
FIFO. Instructions that read from an input port wait until there is a word to
read, and can optionally ‘‘advance’ the port (remove the word from the

FIFO).

After fetching X and Y all instructions perform the operation specified
by the 5-bit OP field. Sixteen compute some function of X and Y and assign
the result to a destination as specified by the MODE. The RNR (Rotate Nibble
Right) Arithmetic instruction allows access to nibbles (4-bit fields) within
words, and performing two successive RNR instructions effects a byte swap.
The remaining OPs include a compare, stores, stack manipulations, and flow
control. For example, JUMP assigns X to the PC. PUSHJ performs a subrou-
tine call by pushing the PC and flags on a stack, using any register as a
stack pointer, and then assigning X to the PC. BRAT and BRAF assign X to
the PC if the condition in field X is true (for BRAT) or false (for BRAF). These
conditional branches can test the state of the ports individually, the flags
individually, or signed and unsigned relations computed from the flags.

The richness of this instruction set is justified largely by the code com-
pactness it offers in its environment of scarce on-chip memory. Perhaps
the greatest code space inefficiency is in the lack of short branches: branch
instructions take a full word of immediate value to specify the address
rather than a short offset, as in a PDP-11. Also, the lack of byte addressing
requires the use of full words to store bytes, or emulation of byte address-

ing.

On reset, the processor begins executing instructions starting from
memory location zero, which is assumed to contain ROM for an initialization
prograrm.

-12-

9. Microcode

The speed, simplicity, and compactness of this design owe much to the
realization that the controller need be nothing more than an PLA with
latches. A PLA is not merely sufficient; it is convenient and easy to program
for an instruction set such as this in which microinstruction sequences are
short but heavily branched based on varying fields in the input to the con-
troller.

Each implicant in the PLA is viewed as a word of microcode. More than
one word of microcode can be active (that is, more than one implicant can
be TRUE) in any given cycle. Usually only one word is active at a time, but
there are important exceptions. In these cases, the outputs are partitioned
into disjoint sets, such that each word has no TRUE outputs (transistors in
the OR plane) outside its set. Thus this controller does not take advantage
of ORing of the outputs for the active words, although we might reasonably
have done so if it appeared to offer much advantage. The eflect of multiple
active words used in this restricted manner is like that of multiple disjoint
- PLAs, but the physical layout retains the regularity of one PLA. In return for
this restriction, the absolute true/complemented sense of the individual
outputs is irrelevant, the microcode assembler and assembly language is
simpler, and the microcode is easier to understand.

An unpleasant feature of writing microcode for a PLA is that words
which are active on the logical OR of input conditions (other than the con-
junction implicit in don't-care bits) must be implemented with multiple
implicants, one for each condition being ORed, and the outputs duplicated
for each implicant. Unless care is taken, implicant groups of this sort tend
to hog the microcode space. Careful encoding of the macroinstruction set
is a partial solution, and the problem is certainly less severe than if the con-
troller had been ROM-based.

A simple microcode assembler, written in SIMULA, reads the source
microcode and assembles it into an runtime data structure. From here the
assermnbler can output the code in any of several formats, including Earl
source code, and a table of bits for visual checking. The whole process
takes 10 CPU seconds on a DEC-20. The assembler also contains an ad hoc
register-transfer level (and sometimes gate level) simulator of the proces-
sor. This simulator served as an initial debugger for the processor design,
and is still the initial proving ground for modifications in the processor and

its microcode.

13

10. From Version A to Version B

The version A processor has been fabricated numerous times at various
feature sizes. The version B processor has not yet been completely assem-
bled or fabricated, but is planned for future fabs. This section describes
their differences. It illusirales Lhe kind of change Llhal occurred many
times in the design history: simplifications or improvements that retain
most of the original parts and techniques. This long history of incremental
changes is largely responsible for the present design’s compactness, speed,
and simplicity.

The following changes lead Irom version A to version B:

A special purpose register, the Multiplier/Product (M), is added to the
datapath in association with the ALU. It allows the processor to perform a
multiply step in one cycle. The multiplier, initially contained in M, is shifted
out and tested by the controller one bit at a time. The least significant bits
of the product are at the same time shifted into M. A 16-bit shift register
also added to the datapath is used by the controller as an auxiliary finite
state machine to count multiply steps. The multiply macroinstruction pro-
duces a 32-bit unsigned product in 21 cycles.

The controller circuit design is redone to use precharging and clock-
AND drivers, rather than the static design which made the version A con-
troller the speed-limiting component. The controller is logically simplified
by eliminating the ‘*‘folding” technique described in section 7. The con-
troller now has 20 inputs, 49 outputs, and about 120 implicants.

The instruction set is changed to include a set of MOVEs in which 3-bit
fields specify any of 8 sources and 8 destinations. The two MODEs which
involve the ports are eliminated to make room for the MOVEs. Now all port
references must be made with MOVE instructions. The multiply and several
additional single-cycle arithmetic instructions are added.

The processor mow handles simple external interrupts. When a one-
cycle pulse appears on the interrupt pin, the processor completes the
instruction in progress, saves the PC and flags in memory location —2, and
takes the contents of location —3 as the interrupt service address. These
interrupts can be used, for example, to provide an ensemble of processors
with periodic interrupts. Periodic interrupts are useful for decoupling com-
munications from procesing, (e.g., to implement autornalic message roul-
ing, and to buffer large blocks of data) and to give the processor a sense of
time (e.g., for heuristic searches). Earlier plans called for an interrupt-
generating counter to be placed in each processor. Although the design and
layout of the interrupt counter were completed, it was replaced with the
simpler and probably more useful external interrupt.

_14-

If the interrupt pulse is at least 26 cycles (long enough for multiply to
finish and the controller to note that the pulse is persisting longer than a
cycle) the processor performs a ‘‘soft reset”, which completes the instruc-
tion in progress, saves the PC and flags in location —1 and then sets the PC
to zero, where reset ROM is located. Soft reset differs from hard reset in
that soft reset allows the instruction in progress to finish, but cannot force
the controller out of illegal states. Soft reset can be used to save the state
of a Mosaic ensemble. The ensemble can be restarted later with the same
state, except for the exact phase relationships of port transfers and
instructions in different processors. This feature can be used as a diagnos-
tic aid, to allow periodic checkpointing of long-running tasks, or to swap
tasks and thus allow time-sharing of an ensemble.

In order to guarantee interrupt service in bounded time, the port-wait
states must be interruptable. The microcode thus refetches and restarts
any port input or output instruction that cannot be completed immediately.
Since the instruction register (I) is now guaranteed to be latched periodi-
cally, the pseudostatic cells of version A can be replaced with dynamic
nodes. The flags are now also writable from the bus, in order to allow return
from interrupt.

The major additions yielding version B {multiply, new controller, com-
plex MOVEs, and interrupts) are essentially independent and any subset of
them could reasonably be implemented. They are lumped together as ‘‘ver-
sion B’ for convenience of presentation.

11. Sample Instruction Execution

-In order to illustrate some features of the microcode programming
style and processor timing, this section presents a long-winded blow-by-
blow description of the execution of a sample (version B) macroinstruction.
Figure 5 shows the assembly of the macroinstruction “ADD #7,R1,R2", the 4
microcode words required to execute it, and the behavior of various parts of
the processor in the vicinity of its execution. This instruction adds immedi-
ate data 7 to the contents of register 1, and stores the result in register 2.
The instruction executes in 3 cycles, corresponding to the first, second, and
last two microcode words (the last two are active simultaneously).

The tokens *‘.decede”, ‘‘.get”, and ‘‘.go” are mnemonics for feedback
states; they appear both in the input conditions and in the next state out-
puts. The first microcode word, ‘'DECODE: ", is in fact the first word of every
instruction. It becomes active any time the feedback state is “".decode”, no
interrupt is pending (“INT=0""), and the processor is not being reset (an
implied “RESET=0"). “'I= *" indicates that all bits of the instruction register

-.15-

A macroinstruction, assembly language:

rn: ADD #7,R1,R2

A macroinstruction, binary code:

10:
11:
12:
13,
14:

0110 1000 0010 0001
0000 0000 0000 0111

Clast word of previous instructionl

Lfirst word of instruction]
{immediate value = 7]
[firct word of next instructionl

[immediate value for next instruction, or

first word of instruction after next]

The syntax for a source microcode word is:

word <mnemonic>:

<inputs>

<outputs>

Source microcode for executing the instruction:

word DECODE: .decade I= * INT=0 12 IN=>I saveC RJ=> X Y D M RA++=>A .get
word #,J,K: .get I1=011 H PCH+=>A IN=> X .go
word ADD: .go I=% * * 01000 :: ALUONLY GP= 86 Cin=0 nosh setZNV setC
word ALU=>K: _go 1= 01 0% %« x & =2 NOALLU PC++~DA => RK .decade
Processor timing in executing the macroinsiruction:
microcode| microcode memary ALY
micro~{ word(s) | word{(s) address memory memory function
cycle | being controtling] being address ‘data and bus
pumber| fetched | processor computed available ltransfer
Pc+1 = 12 11
DECODE: ces (immediate (ADD instr.) cae eve
value)
RA+1 12 ADD instr.
1 #,J,K: DECODE: (new refresh| {immediate (latch into R1=>
address) value) I register)| X,YM
ADD: Pc+1 = 13 7
2 - and #,4,K: (1st word off (refresh (immediate
ALU=>K: next instr.)] address) value) 7=>X
ADD: PC+1 = 14 13 X+Y=>W
3 DECODE: and (immed. for (ist word of (refresh
ALU=>K: next instr.)| next instr.) data’ W=>R2
RA+1 14
eew DECODE: (new refresh| (immed. for (1st word of .ne
address) next instr.) |next instr.)

Figure 5: Example

macroinstruction, microcode, and timing

-16 -

are don't-cares. Previous microcode has ensured that a new macroinstrue-
tion was fetched on the previous cycle. Thus "DECCDE:” laiches it into the
instruction register ("IN—>I") at the start of the cycle. The controller has
not had time to branch based on the new instruction, but by ¥2 the J and K
fields will have arrived at the register decoder; thus this microcode word
fetches one of the registers to all of the destinations where it might be
needed (*'RI=> XY D M”). This “‘register prefetch’ saves a cycle from most
instruetions. It is too early to know what to do with the next memory cycle,
so the microcode uses it as a refresh cycle (“RA++—>A', a macro for
“RA—>inc Addl inc—>A A—>RA").

The next microcode word “#J,K:* is conditional on the MODE field of
the instruction register (1= 01 1) and corresponds to an instruction with
an immediate value and a register as operands. In the complete microcode,
there is also a microcode sequence conditional on each of the other possible
values for the MODE, though they are sometimes longer than one cycle, e.g.
for memory references. The MODE in this example specifies operand X is an
immediate value, which is obtained via the bus from the memory data input

‘buffer ("IN=> X"). The PC is incremented past the immediate value
(“PC++—>A") in order to begin fetching the next instruction. The next state
output ‘‘.go" indicates that all operands have been fetched and the code for
the operative part of the instruction should take over.

The last two microcode words, “ADD:" and *‘ALU->K:" are active simul-
taneously and complete the macroinstruction. In the “ADD:” word the
token '‘ALUONLY” indicates that this word specifies only ALU/shifter out-
puts (i.e. it has no transistors in the OR plane for other outputs) while
“NOALU " in the "‘ALU—>K: " word indicates that this word controls the rest of
the outputs. The ““ADD:” word instructs the ALU/shifter to add its inputs, X
and-Y, by specifying the appropriate Generate and Propagate codes (“'GP=
86"), the carry-in ("'Cin=0""), and the Llype of shill (*nesh*, for “no slifl™).
The complete microcode contains similar words corresponding to the other
arithmetic operations: subtract, increment, etc. These words are indepen-
dent of the MODE field of the instruction but dependent on the OP field (in
this example *I=***01 000", since the OP code for ADD is 01009).

The “ALU->K:" word deposits the ALU/shifter output in register K
(*W=> RK”). Other words in the complete microcode, dependent on the
MODE but independent of the OP code, handle the other possible destina-
tions. Thus the orthogonality in the macroinstruction set, arithmetic OPs
versus MODES, is represented directly in the microcode. Only one micro-
code word, “ALU—K:", is needed to handle twoe mode cases, since the
MODEs have been carefully encoded so that one input condition (*I= 01 *
0"), decodes both cases. Careful encoding such as this throughout the
instruction set helps to keep the microcode compact. In “ALU—>K: "~ the PC

-17 -

is incremented and used as the memory address (“PC++—>A"), as it is in
the last cycle of all instructions. This begins prefetching the word after the
next instruction, in case the next instruction takes an immediate value and
needs to use it in its second cycle.

In this example, all three memory cycles are used: instruction fetch,
immediate fetch, and refresh cycle. Typical memory cycle usage is perhaps
35% instruction and immediate data fetches, 5% reifresh cycles, 107% data
reads, 5% data stores, and 257% wasted cycles for discarded prefetches and

null reads.

12. Memory

The memory is partitioned into several smaller arrays, as suggested in
section 8.5 of [Mead&Conway80]. Each array is 4096 bits, 64 by 64, organ-
ized to interface with the processor as 256 16-bit words. The very small
amount of read-only memory required for the initialization and bootstrap
loader is implemented in a set of ‘maimed’ RAM cells.

The densest read-write memory we understand how to make with MOSIS
nMOS technology is based on a 3-transistor dymamic memory cell, which
must be refreshed periodically. This refresh function is accomplished by
the processor by referencing consecutive memory locations during other-
wise unused memory cycles. Commercial single transistor dynamic
memories require dynamic node refresh every 2 msec. Systems using such
devices typically use error detecting/correcting codes to bring soft errors
to acceptablc levels. We are depending on the use of 3-transistor cells with
fairly large storage nodes, combined with the fast (50 microsecond) refresh
rate provided by the processor, to produce sufficiently reliable memory.

The memory cells, figure 6, use separate read-data and write-data
busses. This allows simplified control circuitry and shorter cycle time
because a read and a write may occur simultaneously. Each memory
access starts with a word-line read followed almost always by a refresh write
to the same word-line on the next cycle, in parallel with the next read.
When a write is requested one of the 4 words read from the selected
memory bank is replaced with write data from the processor. This write
data is written in the next cycle, in parallel with the next read. (However, if
the read is to the same word line as the pipelined write, it accesses stale
data which should not be written back on the following cycle. For this rea-
son the refresh write-back is disabled on the second cycle after a write
cycle.) In this form of pipelining consecutive writes and write followed by
read to the same address will fail. Consecutive writes do not occur in the
microcode, and write followed by read to the same address can occur only

- 18-

READ WRITE
SELECT SELTCT
READ
DATA '8
WRITE
DATA -

Figure 6: 3-Transistor Dynamic Memory Cell

by writing into the instruction stream.

Steve Rabin is the principal designer for the memory section.

13. Circuit Design

Some of the performance and layout simplicity of Mosaic is due to a
“hot clock” design style in which the clock signals may switch between
ground and a voltage in excess of Vdd. The simple clock-AND bootstrap
driver shown in figure 7 is used extensively and in several variations both in
the processor and memory sections. In the memory, the clock-AND is used
so extensively that depletion pullup transistors are completely absent.

Although referred to as a ‘'driver”, this clock-AND does not provide
power amplification of the clock, but rather passes a replica of the hot
clock input, whatever its HIGH voltage, to the output as gated by an enable
signal of low energy. The clock signal typically switches between ground
and 7 volts with Vdd = 5 volts, but the chips also work correctly at reduced
power and spead with 5§ volt clocks and § volt Vdd. The delay and power dis-
sipation of these clock-ANDs is almost negligible, and so the clock driving
problem, together with the power dissipation usually required in control sig-
nal drivers, is exported to outside the chip where it can be dealt with using

special driver circuits.

-19-

+
A

emable ™1 l SYMBOL:
Y Aenable cnabbF:D") @A enable
¢’

1]

Figure 7: Clock-AND Circuit

This haot elock technique allows pass gates controlled by clock-AND out-
puts to pass signals with a full 5-volt swing, and makes the chip’s perfor-
mance much less sensitive to variations in the depletion threshold voltage
than in conventional Mead-Conway designs.

Precharging is also used extensively in this chip, both to save power
and for speed.

Mosaic layout uses Mead-Conway nMOS design rules, substituting buried
contacts for butting contacts. Overlaid wires of diffusion, buried contact,
and poly are used to produce low-resistance wires which we call “buried

wires’’.

14. Design Tools

The layout and verification was done on a VAX-11/780 running (limping)
Berkeley Unix, with design tools written in MAINSAIL and C. Circuit design
and optimization relied primarily on tau-model calculations. SPICE was
used to evaluate bootstrap effects, technology dependence, and critical tim-
ing paths. Extensive SPICE simulations were used to size the ALU carry
chain transistors, but the speed improvement over the initial tau-model siz-
ings was only 10% of the carry propagation time, a mere 3% of the processor
cycle time.

Cells were laid out initially using colored pencils and graph paper, and
then coded in Earl [KingsleyBZ], a constraint solving geometry and

-20_

composition tool. Although the parts are composed in a rectangular bound-
ing box discipline, the geometry internal to cells includes arbitrary angles
and approximations of circular arcs, a form of “Boston geometry” that can
be specified easily in Earl. This unusual layout style saved about 10% in area
over 45-degree angle geometry, and about 25% over Manhattan geometry.
The laycuts of the ALU, controller, and register array, due to Don Speck,
have a visceral appearance characteristic of shameless indulgence in Bos-
ton geometry (see appendix C).

For design verification, much of the logic design was coded and simu-
lated using thie lernary switch level simnulalor MOSSIM [Bryanl83] Lo verily
logical correctness. After the layout was complete, raster extraction of lay-
out using a Boston geometry circuit extractor produced a switch network
that was used in MOSSIM II [Bryant82] simulations.

15. Testing

First silicon, received on 8 February 1983, only 34 days after the CIF
was submitted to MOSIS, was tested immediately and found to run code at a
7?7 MHz clock rate at room temperature. Subsequent processors fabricated
using a faster process (still with a 4 micron feature size) ran at up to 11
MHz at room temperature.

A missing contact cut due to a late change was found (missing) before
fabricated chips were returned. Subsequent testing revealed two more
bugs: an instruction MODE was microcoded incorrectly, and a controller
“output type’ specified the wrong number of half-cycle delays, causing port
read-with-advance to advance before reading. The latter bug escaped
detection by the ad hoc simulator because it involved a fractional microcy-
cle phase relationship not represented in the simulator.

Our testing experiences have been quite similar to those reported by
several other university groups, and point to two interesting developments
in testing for design verification. First, verification tools have become so
good that nearly the entire design verification task is now accomplished
before first silicon. Second, chips that are systems rather than components
turn out to be simpler to test by placing them in their system environment
than in a conventional tester.

-21-

16. Acknowledgements

Thanks to:

Chuck Seitz for management, design review, Earl coding, and patience
Don Speck for circuit optimization, layout, and verification

Steve Rabin for quality control, verification, and memory section design
Chris Kingsley for Earl

Howard Derby for early design

OM for good ideas

-922-

17. References

[BrowningB80a]
Sally A Browning
Hierarchically Organized Machines
Section 8.4 in [Mead&Conway80]

[Browning80b]
Sally A Browning
The Tree Machine: A Highly Concurrent Computing Environment
Computer Science Technical Report 3760:TR:80, Caltech, 1880

[Browning&Seitz81]
Sally A Browning and C L Seitz
Communication in a Tree Machine
Proc. Second Caltech Conference on VLSI, January 1981
Computer Science, Caltech

[Bryant8z]
Randy Bryant, Mike Schuster and Doug Whiting
MOSSIM II: A Switch-Level Simulator for MOS LSI, User's Manual
Computer Science Technical Report 5033:TR:82, Caltech 1982

[Bryant83]
Randal E Bryant
A Switch-Level Model and Stimulator for MOS Digital Systems
Ceomputer Science Technical Report 5065:TR:83, Caltech, 1983

[Kingsley82]
Chris Kingsley
Earl: An Integrated Circuit Design Language
Computer Science Technical Report 5021:TR:82, Caltech, 1982

[Lutz,Rabin,Seitz&SpeckB83]
Chris Lutz, Steve Rabin, Chuck Scitz, and Don Speck
Design of the Mosaic Element
Computer Science Technical Report 5093:TR:83, Caltech, 1983
alsa Proc. MIT Conference on Advanced Research in VLSI, pp. 1-10
Artech Books, 1984

[Mead&Conway80]
Carver A Mead and Lynn Conway
Introduction to VLSI Systems
Addison-Wesley, 1880

[Seitz84]
Charles L Seitz
Experiments with VLSI Ensemble Machines
J. VLSI & CS vol 1, no 3, Computer Science Press, 1984
also Computer Science Technical Report 5102:TR:83, Caltech, 1883

- 23 -
MOSAIC PROCESSOR VERSION A INSTRUCTION SET page 1 of 3

(1~-JUN-83)

PROCESSOR FEATURES:

Sixteen 16~bit general registers: RO ... R15
Memory addressed as 16~bit words
12~bit Program Counter (PC) contains address of next instruction
Flags: C —~~ Carry/Not Borrow
Z ~= Zero (all 16 result bits zero)
N ~~ Negative (bit 15 of result)
V — Twos~complement overflow
Ports: Four input ports
Four output ports
Connecting an input port to an output port forms a fifo
two 16~bit words long.

ALL INSTRUCTIONS:

| MODE | OPCODE | K | J]
I | | |] | I I | | | | | | i | |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
followed optionally by one word of immediate value.

When K specifies a port:

| MODE ! OPCODE |Adv|Dir| pt | J |
I | | | | | | I | | | I | | | | |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
pt 1is the port number; specifies one of 4 ports
Dir=0 for output port; Dir=1 for input port
Adv=1 to advance port (remove word from fifo) after input port is read

KEY: Rn 1s register number n.

val is the an immediate value.

@z is the memory word whose address is z.

A} B is the concatenation of bit field A and bit field B .

£<1i> means i~th bit of £ .

f<i:3> means i~th to j~th bits of £ .
Bits are numbered from least to most significant.

outport ig output port number pt.

inport is input port number pt. If Adv=1 then the port is advanced
after reading its value.

SPECIAL CASES: RESET: (Reset pin goes HIGH)
CIVIN|Z|PC -> @(~1); O ~> PC

MOSAIC PROCESSOR VERSION A INSTRUCTION SET

INSTRUCTION MODES:

- 24 ~

page 2 of 3

All instructions fetch operands X and Y as specified by MODE,
then perform the operation specified by OPCODE.

MODE Dir X Y Dest Assembly language syntax
0 RJ RK RK <Mnemonlc> Rj {, Rk}
1 val RJ RK <Mnemonic)> #val , Rj {, Rk}
2 @RrRJ RK RK Mnemonicd> @Rj {, Rk}
3 @val RJ RK <{Mnemonic> @#val , Rj {, Rk}
4 0 RJ 0 outport <{Mnemonic> Rj , Ppt
5 0 val RJ outport <{Mnemonic> #val {, Rj} , Ppt
4 1 inport RJ RJ <{Mnemonic> <input> , Rj
5 1 val inport RJ <{Mnemonic)> #val , <input> , Rj
6 @rJ RK @rRJ <{Mnemonic> M GRj {, Rk}
7 @val RJ @val Mnemonic> M @#val {, Rj}
<{input> ::= Ppt= to read input port pt without advancing
Ppt+ to read input port pt, then advance port
Note: Modes 6 and 7 are defined only for instructions that assign

a result to Dest.,

ARITHMETIC INSTRUCTIONS:

Arithmetic Instructions are those which assign a result to Dest.

All arithmetic instructions modify the Z, N, and V flags.

(Some instructions always set V to 0.
They are MOV, COM, RNR, RNR, ASR, LSR, AND, OR, and XOR.)

CARRY FLAG

OPCODE INSTRUCTION {Mnemonic> EFFECT MODIFIED?
00 MoOVe MOV X ~> Dest no
01 bitwise COMplement COoM ~X ~> Dest no
02 INCrement INC X+1 ~> Dest no
03 DECrement DEC X ~1 ~> Dest no
04 NEGate NEG ~X -> Dest yes
05 Rotate Nibble Right RNR X<3:0> | XK15:4> ~=> Dest no
06 ROtate Right ROR CiX ~> Dest|C yes
07 ROtate Left ROL X+X+C ~> Dest yes
08 Arithmetic Shift Right ASR X<15>|1X ~> Dest|C yes
09 Logical Shift Right LSR 01X ~> Dest|C yes
0A ADD ADD X+Y ~> Dest yes
0B ADD with Carry ADDC X+ Y+ C ~> Dest yes
0C SUBtract SUB Y~-X ~> Dest yes
0D bitwise AND AND X and Y => Dest no
OE bitwise OR OR XorY ~> Dest no
OF bitwise eXclusive OR XOR X exclusive or Y ~=> Dest no

- 25 ~

MOSAIC PROCESSOR VERSION A INSTRUCTION SET page 3 of 3

NON~ARITHMETIC INSTRUCTIONS:

OPCODE INSTRUCTION <Mnemonic> EFFECT

10 CoMPare CMP modify Z,N,V,C based on X~Y
11 JuMp JUMP X<11:0> ~> PC
12 undefined
13 undefined
14 PUSH PUSH Y~1 -> RK; X ~> @RK; modify Z,N,V based on X
15 STOre X at y STOX X ~> @y; modify Z,N,V based on X
16 undefined
17 undefined
18 PHSH .Tump PUSHJ Y-l ~> RK; CIVIN|ZIPC ~> @RK; X<11:0> -> PC
19 STOre Y at x STOY Y => @X; modify Z,N,V based on Y
1A POP POP @RK ~> RJ; RK+1 ~> RK; modify Z,N,V based on RJ
1B POP Jump POPJ @RK ~> PC; RK+1 -> RK
1C BRAnch True BRAT If Condition k is True then X<11:0> -> PC
1D BRAnch False BRAF If Condition k is False then X<11:0> => PC
1E undefined
1F undefined
BRANCH CONDITIONS:
Alternate <Mnemonic>
K Condition (implies OPCODE=BRAT) (implies OPCUDE=BRAF)
00pt Output port number pt Not Ready BONR BOR
(i.e. no room in port to do output)
Olpt Input port number pt Not Ready BINR BIR
(i.e. no word in input port to read)
1000 vV [overflow] BVS BVC
1001 N [negative] BNS BNC
1010 ~C [Carry = 0] BCC or BLO BCS or BHIS
1011 N xor V [signed <] BLT BGE
1100 Z [zero] BZS or BEQ BZC or BNE
1101 Z or N [<= zero] BLEZ BGTZ
1110 Z or ~C [unsigned <=] BLOS BHI
1111 Z or (N xor V) [signed <=] BLE BGT

When <OP Mnemonic)> is BONR, BOR, BINR, or BIR:

pt may be specified by writing "Ppt" in place of "Rk" field.

G s b 0 s sum b= 4 e e S B Se s S se Guw = Aew sk b—w

- 2% -

! Mosaic ver. A microcode page 1 of 3

Version 1l4~Mar~83

MACROS DEFINED IN ASSEMBLER:

Cin=0 13 Cforce

Cin=1 t: Cforce Cvall

PCH+DA 12 PC~>inc Addl inc~->A A->PC

RA+HDA s RA~>inc Addl inc~>A A~D>RA

PC~>A : PC~>inc inc~r A A~>PC

X=> :: GP= OC Cin=0 nosh W=)>

=> :: GP= 0A Cin=0 nosh W=>

RI=> t: useJ R=>

RK=> :: R=>

RJ :t useJ R

RK ¢+t R

Y+1=> : GP= OA Cin=1 nosh W=>

Y~1=> ¢t GP= A5 Cin=0 nosh W=>

saveC :: rnib

TESTX :: GP= 0C Cin=0 nosh setZNV
All alu outputs no xistors:

NOALU t+: GP= FF cforce setC saveC lsr ror asr rnib nosh
Xietore only in alu outputs:

ALUONLY t: RA=>inc PC~Yinc IN->I Advance Pt=> RJ=> RK=> Pt RJ RK .FbackF

’ ’

! Feedback mnemonics begin with a ".° .

’,

! Word names end with a ":* .

’I=' starts instr register mask starting with I<15>.
! Unspecified bits are “*°,
! When ‘I=’ not given in some row, that from last row is used.

’RESET=0’ implied when ‘RESET=1‘ not specified.,
‘Word0’ initiates outputs used when I<8>=0.

‘Wordl’ initiates outputs used when I<8>=l.
‘Word’ initiates outputs used independent of I<8>.

~ 97 -

! Mousaic ver., A microcode page 2 of 3

row RESET=]1 TI= % * & ®* % & % % ¥ * yWord RESET: saveC PC~DA PC=> D .reset2
! Take FFFF off the precharged undriven bus as old PC destination.

row .reset2 Word RESET2: A A~>PC A~>RA .reset3
! Take first instruction from location 0 (=FFFF+1)

row .reset3 Word RESET3: Write PCH—>A .fetch

row .fetch Word FETCH: PCH+~—>A .decode

! All instructions begin with DECODE
row .decode Word DECODE: IN->1 RJ=> X YD RAH—-DA .,get

! Fetch operands for all instrs: Word name is "<First op)>,<Second op>,<Dest>"

row .get I= 0 0 0 Word J,K,K: saveC PC->A BRK=> Y +gO0

row .get I= 001 Word #,J,K: saveC PCH—->A IN=> XD . g0

row .get I=* 1 0 Word @J,K: saveC RJ=> A .get3
row .get3 I= 01 0 Word @J,K,K: PC~>A RK=> Y .geth
row .get3 I= 1 1 0 Word @J,K,QJ: RK=> Y .geth
row .get I=* 11 Word @#,J: saveC PCH—>A IN=> X .get2
row .get2 Word @#,J2: X=> A .get3
row .get3 I= 011 Word @#,J,K: PC~>A .getd
row .get3 I= 11 1 Word &#,J,C#: .geté

row .get4 I= * 1 * Word any@: IN=> X D .80

row .get I=1 0 0 Word iojnof: saveC PC~>A .io

row .get I=1 01 Word iojwith#: saveC PCH—>A IN=> X Y D .io

row .io I=1 0 % PortC=1 Word I/0 wait: X=> X Y D RA+DA .get?2
row .get2 I=1 0 * Word wait2: PC~>A saveC .io

row .o I=1 0% * % % % % % O PortC=0 Word Willsend: RJ=> Y .go0
row .1io =100%*% % % % 01 PortC=0 Word Get: Pt=> X D .80
row .io I=101%** % % % (0 1 PortC=0 Word Get: Pt=> Y .80
row .io =100% % %% %] 1 PortC=0 Word GetAdv: Pt=> X D Advance .go
row .io I=1 01 % % % % %] 1 PortC=0 Word GetAdv: Pt=> Y Advance .go

! Arithmetic instructions. 2 rows active simultaneocusly.
! Rows to handle results:

row .go I= 0 #* * (Word Alu~>K: PC++—>A NOALU W=> RK .decode
row .go I=1 0% 0% % % * * 1 Word Alu~>J: PC+~D>A NOALU W=> RJ .decode
row .go I=1 0% 0% % % % % 0 Word Alu~>Out: PC++>A NOALU W=> Pt .decode
Trow .go I=11%*0 Word Alu—->M: NOALU W=> D .sto

row .sto I= % % *% % Word Alu~>M2: Write PC~>A .fetch

! Mosaic ver., A microcode

! Rowe to specify

row

row

TOow

row

row

row

row

row

.go

.80

-go

y-0)

I= % % %

28 -

page 3 of 3

ALU function:
0 0 0 Word0O mov:

0

0

0

0

0

Wordl com:

0 1 WordO inc:

1

1

0

1

Wordl dec:
WordO neg:
Wordl rnib:
WordO ror:
Wordl rol:

0 0 WordO asr:

0

1

1

1

0

1

Wordl lsx:
WordOQ add:
Wordl addec:
Word suh:
Wordl and:
WordQ or:
Wordl xor:

ALUONLY GP= OC Cin=0
ALUONLY GP= 03 Cin=0
ALUONLY GP= OC Cin=1
ALUONLY GP= C3 Cin=0
ALUONLY GP= 03 Cin=1
ALUONLY GP= OC Cin=0
ALUONLY GP= 0OC Cin=0
ALUONLY GP= CO

ALUONLY GP= 0OC Cin=0
ALUONLY GP= OC Cin=0
ALUONLY GP= 86 Cin=0
ALUONLY GP= 86

ATITONT.Y GP= 29 Cin=l
ALUONLY GP= 08 Cin=0
ALUONLY GP= (OE Cin=0
ALUONLY GP= 06 Cin=0

! COMPARE (set flags based on X~Y) and JUMP

row

«Z0

=% % & 1 00 * WordO cmp:

! Pushes and explicit stores

row .go I=

row

row

TOoW

row

.802

bgo I= % % % 110
.go2

.go3

! Pops

row .go I=
row .go2
row .go3

! Conditional Branches
Tow .go I= % % % 1 11

row .gao I=

row .go I=

row .go I=

#% %110

* % % 111

% %111

£x k111

* % %101 *

0

PCl1—>A GP= 49

nosh
nosh
nosh
nosh
nosh
rnib
ror

nosh
asr

1sr

nosh
nosh
nosh
nosh
nosh
nosh

setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV
setZNV

setC

setC

setC
setC
setC

Cin=1 nosh setZNV setC

.decode
Wordl jump: X=> A A->PC .fetch
WordO push: Y~1=> RK A .go2
Wordl stoX: Y=> A .go2
WordO push2: Write PC->A testX .fetch
Wordl stoX2: Write PC->A testX .fetch
Word0 pushj: PC=> D .go2
Wordl stoY: Y=> D setZNV .go2
Word0 pushj2: Y-1=> RK A .g03
Wordl sto¥2: X=> A .ga3
WordO pushj3: Write X=> A A->PC .fetch
Wordl stoY3: Write PC~D>A .fetch
Word pop(j): =>Y A .g02
Word pop(j)2: PC->A Y+1=> RK .go3
WordO pop3: PC++—~>A IN=> RJ X .decode
Wordl popj3: IN=> A A~->PC .fetch
* 0 PortC=0 Word0 BraT Pt=0: PC++>A .decode
Wordl BraF Pt=0: X=> A A->PC .fetch
* 0 PortC=1 WordO BraT Pt=l: X=> A A-DPC .fetch
Wordl BraF Pt=1: PCH>A .decode
* 1 TFlagC=0 WordO BraT F1=0: PC++>A .decode
Wordl BraF F1=0: X=> A A~->PC .fetch
% 1 FlagC=1 WordO BraT:?l=l: X=> A A->PC .fetch
Wordl BraF Fl=l: PCH—DA .decode

- 29 -
Mosaic VErsion A Cipevir DiAacrAMS 434

Pads (46):
Grovnd Reset Address Padd(@... 1) scan_in Pod
+vdd Wrile Pota Pad €@...15D scan.ouvt Rud
@, P 1P Pud ©...3
Y, 4 OPPed @...3

Controller |npu+& (17):

Reset T(6...15)
FCond FBKD...3) (feedback)
?Cond

Controllec Outputs (41):

* indicates type "raw". All others type "CI™
Bus sources: W= P> IND RD
Bus deshinodtons: '—‘—‘>X Y =D DR

A [>F ver.B on[y]
ALU/shifter: Ppg™ Pg¥ Pig* Pyt
G Gig* Gu*
rb* ror* fsr* aer® nosh™®
setC* cetznv Corce” Cval™
Address sectiont AsRa ASPC RASIN® PComc® inedA Addd
Misc,: odvance write INST useJ FB<d...3)

B

|

Y
pY

- 30 -

Controller Mosaic ver A 4-84
SCan_in
Repeat for
"—(Pb ;V&fr eac_hP|mphcom+‘
viiers A (52)
INC®D 4+

:

}— (Pb iﬁg‘rs A

mpu+

m—————

i I&
: i..i:
o~

——(Lﬂ AINST when

in ot 1S

INCIS.. 97,62

L@

otherwise Scan_out

SCan_\n

A4 NN o=
—
‘.J'"L.u
I—
i Lﬂ.
-
~

=y + "

R}
=
—

,.,4[:

’
scan-out Connect scan_in’s fo scan-0vts.
Fiest scar.in 4o scarn.mPad

Last scan.oul 4o scan-ovt Pad.

¥

Re_Pea’r for each ouﬂ)uH‘H) RePea’r for each In p_vsf‘ué)

ALV

Cper————

- 31 -

Eg.jpao& for 1= @ 40 15 ¢

1

X<¢

Mosaic ver.-A 4-94

| o]
chA SY Propoymle —{Generate
1 function function
T J“1Y(C>I>c —«{>(>——— block — block
| > Gy
4 BRus<i> //\ C/H
s =S - —~
2233 §3%%
TYFTE TP o0
- E. ;& =
oluC< i+
? '(Fz +
=
~+— -
G<L> ﬁ o,\uou‘T(i)
L +—AN
P<¢iy 1r \ _
' restorin e
not L (=03,6,912715)7] =
restoring |
(all other i?)'

aluC <

|[{

Mosauc ver.A 4H-g4

Bi+ 15
. "P,Ar‘mb
A
alvouvt ¢33, 1
¢ Avor
Cflogy, 1§ |
§ A dsr aws
= W(‘S? "L'
+ > T Y I L —Bus«is?
¢~ asr
i
4 zerow
olvoout <185 ' (P'Anosh
A

Rejl)eo:l' for i= @ o 14:

(P‘ Armb
, A
advout <L+ Mopl6) T

¢ Aror

-
N W

G bsr

i

p—

QAW

s

L ,
alvovtdctiy 4 11 L~{>n~ Wi

£, osr
L
N

C[’,"no.dr\
_— i
oluvovt (LY, 1

———

I 1_Bus<iy

zecoW

- 33 -

Carry ‘P‘O\gc (oncl ALV Carr)/ In)

Mosaic ver. A H-94

(pl’\So\ch
¢ (=¢ Armb) LPZA P
2 |
A 1 L
,__.r'L.__.DC T B! —T—-DDT_J—L_BUSOS?
| T pewChlag (=)
— L
aluC<i6). ™ I
P ALse
L
SRt uRRR S
: ' / @ AF | (ﬁ/\asr
.

- e o e e M e o -

ALU Carry in

C-Flo.a aluC<@)
M

| SR

A

—
L

b
/

Cforce

com——

Cvol

Iod vout P>

V, N, ond glﬂﬁ

',-ﬂﬁ-._,.‘_______—_—-.._-_-._——-—-—-.—.—-——-_——,...-—-—.‘

P e

- 34

Mosaic ver.A H-84

Bus<iap —1 ! i I Ls Bus¢rn
1
!
: "‘D"‘"’DO' >V
1 P —
1 SetZNV >V
| +
i ¢,
! alvCi6?
ver. B on\)r : =L |
: alv Cisy
|
|
i
CADF ¢ PcD
PF 1 P
Bus¢iz), I~ L : [- M Bus<i2
1
| '—-Dow—b& - N
;A | _
| SetZN —> N
|
LpzA:>p: w<isy L ¢ ApC
Bus¢12 —+ | J'"'"J:L L 8
os{I2)_ T 1. | Ml Bus<i)
!
ll ' ! >° W‘Dc‘ - 7
TemmmTo T setZN —~> Z

- 35 -~

Flog Condition PLA

I<6) I(5) I(4) preFCond

g @ 0 %

¢ @ l N

@ 1 0 C

g | l NeV

| @ 0 Z

r 2 | Zv N

T N zv C

| l I ZY(Nev)
PreFCOnd = (I&) N

v (Keyn TKor T
v (T(SH A T(H)
v IEATE
vy TS ATCH)
v (T45) AT¢H)

Mosoic ver A H-84

[<@
[unsigned <]
(C\gnec(<1
i=9]
(<@

L un.cljnw(<]
[slyncd <]

Use PLA o compde No- NOR form of preFCond

____ &
preF Cond ,___J"‘L.__Do__._) FCond

(From PLA) (4o controller)

- 36 ~
Address Section

| Mosaic ver.A H-8H
R€P€&+ for 1= @ o 11:

Address
Pod <

incC{@?
= Add1

incin <

sincovt(i)

mcé(D

- 37 -

Reg:sw‘cr‘ Arroy Mosouc ver.A H-94
Repeat forn=@ +o 15:

A

Y
L
1

Re pecd* { |

it I

} . ! A Bus<o

L YA Loadn] (é Areadn]

ﬁ%} Y2
avn—+ E A

g3 : | ' r.':— | Place dotted
o bl transistors
__‘i«z) i o Pull down
KL when

= A s
- HT o
. é‘f“{[» é. h ‘{"L, S(Z)
S(BY—— + SN

- 38 -
S (Registec Select) Generodion Mosouc ver A H-94

5¢3> <__Q<J~—.__o<ll = &)
~ 7 e e __.

$<3>< . < (37
g(??) P M J€2?

| 2
1
A
[JI
o
3

’__H
A
=
=
'

124 75
-\ A
3 3
~ N
F 3 i
;l
A
1)
]
JL A
L o
Pa) e
E 2

£
Y
o
yi
<

{P>I
(K1
(9]

{

USQJ . 4o Por'l‘s

- 39 -~
Memory Data ‘n+e(“"&<;e,

Bus Precharge
V

and Instruchion Register
A4

L 91

Mosauc ver.A

Repeq+ for (=@ H IS:

In
Data Pa’Hn
GAD
1

- — T

Near Pad

Dota Pad{i)

N | DOJ[j (ristade)
| ,
write (P
Supec—
‘PI bugzer)

—— — ——— — — — P Oy

For (=4,5,6"

near ﬂag condrhon PLA
For t=@..7:

near PCSIS+CF sefect

For ‘t:G...IS:

equivalent + built-
Ira‘ro v;;n‘?ro ﬂ:—m V!

(Note dvplications for
some b *’S)

PAIN>T
T¢o o)
_ 7

TLi) j

no‘\' neec\ed

n version B

. 40 -
Ou+pu+ Por;ts P31 of 2 Mosauc ver. A H-¢4

Repeat Lor n=@ t+0 3:
| OP Pad [n]
_____J"‘"L_r"‘"""_'l_

<er'Pshnf+mA‘ |
L

N k=
I ~ -
e Polldown
. (o
é i_gmo 13
{ (‘)1 A only
- OPshif4Ln] »
"-35* -‘% emFb:[nY
.
§" ' | Bus<i)
jt’ (ﬂ AOPsmft [n]
L...Nr ﬂﬂﬂﬂﬂ — et el — —
o — — — = — —p— = — — — — —
= lemphy[nd
-4, Pty
g Aoixzﬂ 1 /\ %A?JP{MAW ‘ .
RN o SRS (o2 L) a2 py HY
. 4’ \
OP Padtn] GPaLnI¢-1? JF@n 0P

~ 41 -

Ouvtput Ports py.2.f 2 Mosawc ver. A H-g4

Re?ea& for n=0+3:

@ AOPsh 4T ¢, AOPshd T L]

' LPZ l "PI \ ('P
OP Rud(nd L
0Paln]¢1 M»—D&—

- — —0utCond
t,20PLood[n] empty[n] _.‘
_—
+ ~MA—t 1
|
ml '—‘—li
| |
. | S Place dotied
3 + ransistors
i ol 1o pull down
. Q. when
) A n7 ICH9D
H— +2TS)
...... H 1}.,. X

- 42 -
Ihpgri' Por‘l'; P3'1 on Mosaic ver. A H-84

RQJ")QCL‘}' for n= @ to4:

TP Pod [n]
.
g, ¢, 1
PRI =L L
" — ‘lﬁ— -—-\Lf — | T e e e e e e e
T ——w e N — A - = - = — — —
Rusd)
_ ‘:”"‘ (F ATPread[n]
8
:é [K'For (=@ IS
S only
I I
o 4 l—-(ﬂ ;]I—‘(PZAIPSNH[M
3
£
o ¢ +
~
: Y A
:”— ‘sz\l Pshif Tn] {——b.‘c\vm:a e[nl
A - .._SIV —_— A — — — — —— —
- T- —T _ _-T——’ B E;A;Psl:”;]m h
IP Podln] r('?\
r %)

PRl N/ @ ATPshEHn]

- 43 -

Input Porks Py 2 of 2 (and Port Condition) Mosorc ver.A 4-94
Repe_ajr for = @103

¢4 0dvance In]

(2 R Pre__Pgoncl |

— —

(3

¢ ATPread(n]l / \ IPfliEnd

A
Jr:’\/v\r-t- T+ WA+
P |
- —!
odvance | -}—’
|]
<6
IO ml — A——-h Place dotted
1¢5) y. y . tranystocs
S ,.l, A Y .; i to pull down
¢8> ‘ o
fﬁ) B .“ ..{| ,l | _}2:[(5>
$ot’ | 1.....5‘ bt

Port Cond ttion

-{—— (ﬂi . ’ r'e,PCOYd w PCOﬂd
Ou‘l‘C_(_)ﬂ(_‘.f &‘—DO— ‘

- bl -
MOSAIC PROCESSOR VERSION B INSTRUCTION SET page 1 of 4

(6~MAR-84)

PROCESSOR FEATURES:

Sixteen 16~bit general registers: RO ... Rl5
Memory addressed as l6-bit words
12~bit Program Counter (PC) contains address of next instruction
Flags: C —— Carry/Not Borrow
Z -~ Zero
N -~ Negative
V ~~ Twos—~complement overflow
Ports: Four input ports
Four output ports
Connecting an input port to an output port forms a fifo
two 16~bit words long.

ALL INSTRUCTIONS:

| | K | J I
| | | ! | | | | | | | | | | | | |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

followed by 0, 1, or 2 words of immediate value.

When K specifies a port:

| |Adv{Dir| pt | J |
! | | | | | | | | | f | i | | | |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
pt 1is the port number; specifies one of & ports
Dir=0 for output port; Dir=1 for input port
Adv=1 to advance port (remove word from fifo) after input port is read

KEY: Rn is register number n.
Rnt+ is register number n, incremented after reading.
~-Rn is register number n, decremented before reading.
val is an immediate value.
@z is the memory word whose address is z.
A | B means concatenation of bit field A and bit field B .
£<4> means the i~th bit of £ . £<i:j> means i~-th to j~th bits of f .
Bits are numbered from least to most significant.
TPC 4is the flag/PC word: C | V | N | Z | PC

SPECIAL CASES: HARD RESET: (Reset pin goes HIGH)
0 ~> PC
SOFT RESET: (Interrupt pin goes HIGH for >=26 microcycles)
FPC -> @(~1); 0 ~-> PC
INTERRUPT: (Interrupt pin goes HIGH for 1 microcycle)
FPC ~> @(-2); @(~3) ~> PC

- 45 -

MOSAIC PROCESSOR VERSION B INSTRUCTION SET page 2 of 4

MOVE INSTRUCTIONS:

| 0 0| MSOURCE | MDEST | K [J |
I 11 l___| I___| i1 I___| | |
T4 13 12 11 10 "9 8 7 6 5 & "3 "2 1 @

Assembly syntax: MOVE <source>,<{destination>
Execution time = 3 + Time(MSOURCE) + Time(MDEST) microcycles
Ri meane Rk when MSOURCE ie O, 1, 2, or 3; Ri means Rj otherwise.

All move instructions modify Z and N based on value of X, and set V to zero.

MSOURCE X {source> Time (MSOURCE)

0 Rj Rj 0
1 @R j @R j 2
2 @R j++ @R jH++ 2
3 @(Rj+val) @R j+val 3
4 val #val 0
5 @val @#val 2
6 Input Port pt Ppt+ [advance] 1

Ppt= [no advance] 1
7 0 0 0

MDEST effect {destination> Time (MDEST)

0 X ~> Ri Ri 0
1 X -> @Ri @ri 2
2 X ~> @Ri-++ QRi++ 2
3 X => @(Rit+val) @Ri+val 4
4 X => @--Ri @--Ri 3
5 X => @val @#val 3
6 X =~> Qutput Port pt Ppt 0
7 X ~> nowhere . 0

Notes: When source and destination both contain a val, then they are different
(i.e. the instruction takes two immediate values).

When source or destination is a port, instruction does not terminate
until port is ready (i.e. until input port has a word to read or
output port has room for another word).

When source is a port, destination may not be a port due to contention

for field k.

- 46

MOSAIC PROCESSOR VERSION B INSTRUCTION SET

ARTTHMETIC AND RRANCH INSTRUCTTION MODES:

page 3 of 4

| MODE | OP |
| I | I I ! I |

|
15 14 13 12 11 10 9 8 7

Execution time = 3 + Time(MODE) + Time(OP)

Assembly language syntax

MODE X Y Dest (when Rk not specified, k=j) Time(MODE)
2 Rj Rk Rk <0P Mnemonic> Rj {, Rk} 0
3 val Rj Rk <OP Mnemonic> #val , Rj {, Rk} 0
4 @R j Rk Rk <OP Mnemonic> @Rj {, Rk} 2
5 @val Rj Rk <OP Mnemonic> @#val , Rj {, Rk} 2
6 @rj Rk @rj <OP Mnemonic> M @Rj {, Rk} 4
7 @val Rj @val <OP Mnemonic> M @#val {, Rj} 4

Modes 6 and 7 are defined only for OPs

BRANCH CONDITIONS:

that assign a result to Dest.

Alternate <OP Mnemonic)>

k Condition (implies OP=BRAT) (implies OP=BRAF)
00pt Output port number pt Not Ready BONR BOR
{(i.e. no room in port to do output)
Olpt Input port number pt Not Ready BINR BIR
(i.e. no word in input port to read)
1000 Vv [overflow] BVS BVC
1001 N [negative] BNS BNC
1010 -~C [Carry = 0] BCC or BLO BCS or BHIS
1011 N xor V [signed <] BLT BGE
1100 z [zero] BZS or BEQ BZC or BNE
1101 Z or N [<= zero] BLEZ BGTZ
1110 Z or ~C {unsigned <=] BLOS BHI
1111 Z or (N xor V) [signed <=] BLE BGT

MOSAIC PROCESSOR VERSION B INSTRUCTION SET

ARTTHMETTIC INSTRUCTIONS:

- 47 ~

page 4 of 4

All Arithmetic instructions modify the Z, N, and V flags.

Some always set V to O.

They are:

ASR, ROR, LSR, RNR, AND, OR, XOR, COM, BITT, and MUL

C flag
OoP Instruction <OP Mnemonic> Effect modified? TIME(OP)
0 INCrement INC X+1 -> Dest no 0
1 DECrement DEC X~-1 -> Dest no 0
2 Arithmetic Shift Right ASR XL1551X ~> Degt|C yes 0
3 Arithmetic Shift Left ASL X+ X -> Dest yes 0
4 ROtate Right ROR CiX -> Dest|C yes 0
5 ROtate Left ROL X+X+C¢C ~> Dest yes 0
6 Logical Shift Right LSR 01X -> Dest|C yes 0
7 Rotate Nibble Right RNR X<3: 0> X<15:4> => Dest no 0
8 ADD ADD X+Y -> Dest yes 0
9 ADD with Carry ADDC X+ Y+ C -> Dest yes O
A SUBtract SUB Y~-X ~> Dest yes 0
B SUBtract with Carry SUBC Y~X~1+C ~> Dest yes O
C SUBtract Negate SUBN X-Y -> Dest yes 0
D SUBtract Negate with Carry SUBNC X -~ Y ~ 1+ C ~> Dest yes O
E NEGate NEG ~X ~> Dest yes 0
F INCrement with Carry INCC X+ C ~> Dest ves 0
10 bitwise COMplement COM ~“X -> Dest no 0
11 bitwise AND AND X and Y ~> Dest no 0
12 bitwise OR OR XoryY ~> Dest no 0
13 bitwise eXclusive OR XOR X exor Y ~> Dest no 0
14 CoMPare cMp X -YX yes 0
15 BIT Test BITT X and Y no 0
16 unsigned MULtiply MUL high word(X*Y) => RJ no 18
low word(X*Y) ~> RK
modify Z, N, V based on high word
17 undefined
BRANCH INSTRUCTIONS:
oP Instruction <0P Mnemonic> Effect TIME(OP)
18 JUMP JUMP X -> PC 1
19 Jump and ReSTore flags JRST X -> FPC 1
1A POP Jump POPJ @Rk++ ~-> PC 3
1B POP Jump and Restore flags POPJR (@Rk-H ~> FPC 3
1C Branch True BRAT X ~> PC if Condition k true Qor 1 *
1D Branch False BRAF X => PC if Condition k false O or 1 %
1E PUSH Jump PUSHJ Y~! ~> Rk; FPC ~> @Rk; X => PC 4
1F undefined

* TIME(OP) = 0 if branch is not taken; 1 if branch is taken.

When <OP Mnemonic> is BONR, BOR, BINR, or BIR:

pt may be specified by writing "Ppt" in place of "Rk" field.

! Mosaic ver,

Version 15~MAR~84

! Syntax of implicants is:

! word <inputs)>

! MACROS:

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF

Cin=0
Cin=1
PCH++—>A
RA+HHDA
PC~>A
RI=>

=>
RJ

0=>

saveC
testX

B microcode

page

st <outputs>

Cforce

Cforce Cvall
PC~>inc Addl inc~>A A~>PC
RA->inc Addl inc~>A A~DRA
PC~>inc inc~>A A~>PC
useJ R=D

R=>
useJ R
R

GP= 0OC
GP= 0A
GP= 86
GP= 0A

GP= 0OC
Gp= C3
GP= (F
GP= 00

rnib

Cin=0
Cin=0
Cin=0
Cin=1
GP= A5 Cin=0
Cin=1
Cin=0
Cin=0 nosh
Cin=0 nosh
! rnib refreshes the carry flag.
! after DISPATCH: of every instruction.

nosh
nosh
nosh
nosh
nosh
nosh
nosh

- 48 -

1 of 7

W=>
W=>
W=>
W=>
W=>
W=>
W=>
W=>
W=>

This is done on the cycle

GP= OC Cin=0 nosh setZNV

! FEEDBACK MNEMONICS:

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF

.reset2
.reset3
.reseté
.interrupt2
.interruptil
.interrupté
.interrupt5
.interruptb
.refetch
.fetch
.decode
oget

.get2

.get3

.geth

.20

.go2

.g03

.oV

.mov2

.mov3
eStOre
«RJ+—~~
QPC"Z

FB=
FB=
FB=
FB=
FB=
FB=
¥B=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=
FB=

R AR OOQOODOOODOOCOOODOOOO0O
OO0 OoOOORHFHHEMEFRFEFOOODOOOO
OHHEFHEFFOOQOOFRHFFPFOOOHEFF~S)ODOODO
O OO OO OOFOOOFODHFEOO
OO OO OFOOOHFOO O~ O-O

G S tiw w we Gs Gum Guw t=® S e pum

Ss sy mm s

- b st e tum e

b v ew bt v bmb vt om S o

— eme sem emw

V- st emm vt e s

Mosaic ver. B microucode

CONTROLLER INPUTS (21):

‘FB= <Eb&> <£fb3> ... <EbO>’
'I’: <i].5> <i14> sen <i7>'

‘RESET”

INT’
’FlagC’
‘PortC’
‘Mout”’
‘SRout’

- 49 -

page 2 of 7

5 Feedback bits
10 Instruction register bits

Unspecified bits are “*’ (don’t care).

When ‘I=’ not specified for an implicant,
that from last implicant is used.

Hard reset (’RESET=0’ implied when
‘RESET=1’ not specified)

External interrupt flip flop set

Flag Conditien

Port Condition (0 when port K is ready)

Shift out of Multiplier/Product register

Shift out of 16~bit shift register

! CONTROLLER OUTPUTS (49):

‘FB= <fbd> <fb3> ... <fHO>’ 5 Feedback bits

! Bus sources:

‘IN=>" Memory data input ‘M=>‘ Multiplier/product
‘PC=>’ Program Counter 'W=>’ ALU/shifter output
‘Pt=>’ Input port pt

‘R=>" If useJ then Register J, else Register K

! Bus destinations:
‘D’ Memory Data out ‘A’ Memory Address
‘F’ Flags (C,V,N,Z) ‘M’ Multiplier/Product
‘X’ ALU X input ‘Y’ ALU Y input

‘Yshift’ ALU Y input, bus data shifted right, Carry from ALU into high bit
‘R’ If useJ then Register J, else Register K

‘Pt’ Output port pt

! ALU/Shifter control:
‘GP= <hex digit><hex digit>’ Carry Generate and Propogate codes (7 bits)
Bits of each digit are for: (X=1,Y=1)(X=1,Y=0)(X=0,Y=1)(X=0,Y=0).
1SB of G code (X=0,Y=0) must be zero.

‘Cforce’ Carry in to ALU is (IF Cforce then (IF Cvall then 1 else 0)
‘Cvall’ else old Carry flag)

‘asr’ Arithmetic shift right ‘lsr’ Logical shift right

‘ror’ Rotate right ‘rnib’ Rotate nibble

‘nosh’ No shift, and recirculate Carry flag

‘setC’ Set C flag to Carry out ‘setZNV’ Modify Z, N, and V flags

‘Mshift’ Shift Multiplier/Product right
! Address section

‘PC~>inc’ PC goes to incrementer Refresh address to incrementer

‘RA->inc’

‘Addl’ carry in to incrementer is 1 (defaults to 0)
’inc~>A’ incrementer output goes to memory address
’A~>PC’ Address goes to PC ‘A=>RA’ Address goes to RA

! Miscellaneous
’INT:=0’ Clear external interrupt flip flop
‘IN=>I’ Latch instruction register with new memory data
‘WRITE’ Write data in D to memory location in A
“SRin=1" Inject bit into shift register for counting mulriply steps
‘useJ’ Let field J (as opposed to K) select a register
‘Advance’ Advance input port pt

- 50 =

! Mosaic ver. B microcode page 3 of 7
! HARD RESET

! X and Y are assigned to make them digital, so ALU can make constants later
word hardreset: RESET=1 FB= * I= % t: INT:=0 X Y RA+D>A .reseté

! INTERRUPT AND SOFT RESET

! Interrupt: PCF~1 ~> @(~1); @(~2) -> PC.

word interruptl: .decode I= % INT=1 :: INT:=0 PC=> X .interrupc2
word interrupt2: .interrupt2] X=-1=> D .interrupt3
word interrupt3: .interrupt3 2 ~1=> A X .interrupté
word interrupté: .interrupté INT=0 :: Write X=1=> A <interrupt5
word interrupt5: .interrupt5] .interrupté
word interrupt6: .interrupté HH IN=> A A->PC fetch

! If interrupt persists, do a soft reset: PCF~1 ~> @(~3); 0 -> PC,

word softreset: .interrupté INT=1 : X-1=> X .reset?
word reset2: .reset2 HH X~1=> A .reset3
word reset3: .Teset3 t: Write .reseté

! While waiting for INT=0, keep storage static and X and Y digital:
word reseté: .resets INT=1 :: INT:=0 X Y RAH—DA .resetd
word reseth: .reseté INT=0 :: 0=> A A~>PC .fetch
! FETCH AND DECODE
word fetch: .fetch I= * HA] PCH~>A .decode

! All instructions pass through decode: (or interruptl:)
word decode: .decode I= * INT=0 :: IN->I saveC RJ=> X YD M RAH-—D>A .get

- 5] -

! Mosaic ver, B microcede page 4 of 7

! REFETCH ON FATILED I/0 IN MOVES

word refetch: .refetch I= #% :: X=1=> A A-DPC .fetch

! MOVE SOURCES USING REGISTER J (SO DESTINATION USES K)

word RJ=>: .get I=00000 :: PC~>A «TOV

word @RJ~>: .get I=00001 :: RJ=> A .get3
word @RJ+->: ,get I=00010 :: RJ=D A Y .get2
word @RIJ+H—->2: .get2 e Y+1=> RJ PC~>A .geté
word @(RJ+#)~>: .get I=00011 =:: IN=> Y PCH—D>A ,get2
word @(RJ+#)~>2: .get2 3 X+Y=> A .get3
word @~wait: .get3 I=00% * % :: PC~>A .geth
word any-@: .geth I= 0 0% % % :: IN=> X D +MOV

! MOVE SOURCES NOT USING REGISTER J (SO DESTINATION USES J)

word #->: .get I=00100 :: IN=> X D PCH+—DA .mov

word @i#->: .get I=00101 =:: IN=> A .get2
word @#->2: .get2 o PCH-D>A .getéh
word badPt-~>: .get I= 0011 0% % % % % (Q 3 PC=> X .refetch

! Wait a cycle so controller can dispatch on port condition:

word InPt~>: .get I=0011 0% * & &% &] 1 PC~DA .getl
word InPt~>: .get2 PortC=0I= 0011 0% % * % 01 :: Pt=> XD +TOV
word InPtA~>: .get2 PortC=0I= 0011 0 #% % % % 1 1 :: Pt=> X N Advance .mov
word iofailed: .get2 PortC=1 I= 0011 0 t: PC=> X .refetch

word O~>: .get I=00111 =:: 0=> X D PC~>A MOV

! Mosaic ver.

{ STUFF ASSOCIATED WITH MOVE DESTINATIONS

B microcode

page 5 of 7

- 52 -

! Use register J in next two cycles
01 * % %

0
001 * % %

word
word

word

pickJ: MOV
pickJ2: ~mov2
store: .store

I=
I=

I=

! MOVE DESTINATIONS PROPER

word
word

word
word

word
word
word

word
word

word
word

!
!
word

word
word
word
word
word
word
word
word

word

~>R: MOV
~>@R: .mov
~>@R++; .oV

~>@R+H2: .mov2

~>@(R+#): .mov
~>@(R+#)2: .mov2
~>@(R+#)3: .mov3

~>@~—~R: MmOV
~>@~~R2: mov?2

I=

00

(&N e
oo

00

00

* ¥
*
*

* % %

* % %

! Note: Wait a cycle before taking

! independent of MOVE source:
00 * * % 1

~>@i: .moVv
~>@#2: .mov2

I=

only if
* %

* %

e
.

..

..

oe o0

MOVE source didn’t use it:

NOTRAN

WRITE

X=> R
testX

testX
Write

testX
IN=>
X+Y=>

testX
X~1=>

#value from IN

0

1

testX

: NOTRANSISTORS usel

SISTORS wusedJ

PC~>A

setZNV PCH—D>A
R=> A

R=> A X
X+1=> R PC~>A

R=> X
Y PCH-D>A

R=> X
AR

.fetch

.decode
.store

.mov2
.fetch

MOV
.mov3
.store

.mov2
.store

to guarantee correct data

PCH—>A

IN=> A

MOVE to output port: if K specifies input port, then do nothing;
if port isn’t ready, reverse side effects and refetch
00%*%*%110%*%0:: X=> Pt setZNV PCH—D>A .decode
setZNV PCH->A .decode

~>Pt: PortC=0 .mov I=
~>badPt: .mov I=
~>Ptwait: PartC=1 .mov
~>Ptwait: PortC=l .mov
RIJt++=m=: RI+H—
~>Ptwait: PortC=1 .mov
~>Ptwait: Portl=1 .mov
PC~2: .PC~2
~>Ptwait: PortC=1l .mov

~>%: MOV

00% % * 110¢%1

S o

I
I

I=
I=
I:
I=

I=

o OO
(oNe] oo
O o o
o -

o
f—

o
o *

% -
ot

-

1
1

1
1

oo

:: P

C=> X
Y=> RJ

: PC=> X
: PC=> X
s+ PC=> X
s X~-1=> X
: PC=> X

testX PC++DA

.Mov2
.store

.refetch
«RJH=—
.refetch
+PC~2
«PC~2
.refetch
.refetch

.decode

! Mosalc ver.

! ARITHMETIC AND BRANCH

word J,K,K:
word #,J,K:

word @J,K,:
word @J,K,K:

word @J,K,@J

word @#,J,:
word @#,J,K:

word @#,J,@#:

word any@:

L get
.get

.get

I=
I=

I=

.get2 I=
.getZ 1=

.get

I=

.getld I=
.get2 I=

B microcode

page 6 of 7

SOURCES

0
0

- O
oo

-y %

f—t

—

! WORDS TO SPECIFY ALU FUNCTION

word inc:
word dec:
word asr:
word asl:
word ror:
word rol:
word lsr:
word rnr:
word add:
word addc:
word sub:
word subc:
word subn:
word subnc:
word neg:
word ince:
word com:
word and:
word or:
word Xor:

.80
.g0
80
.20
.go
.go
.80
.80
«80
.80
.80
.80
.20
.g0
« 20
.80
.80
.go
«80
.80

! NORMAL ARITHMETIC

word ALU->K:
word ALU-~>K:
word ALU->K:
word ALU~>K:

word ALU->@:
word ALU~)>@:

word ALU->@J:
word ALU->3#:

~ 53 —

.e oo
ae s

e oo
as e

e« oo
*e «e ae

IN NORMAL ARITHMETICS

I=* % % 00 O
I=% % % 000
=***000
I=*%*%* 000
I= % & & 0 01
I=% % % 001
I=% % % 0 0 1
=% % % 001
I=*%% % 010
=% % % 01 0
=% %% 01 0O
=% %% 010
I=*% % % 01 1
I=% % % 011
=% % % 011
I=% % % 011
=% % %100
=% % %100
=% % %1 00
T=% % % 1 00
DESTINATIONS
« 80 I= 01 %0
» 80 I= 01 %1
.20 I=1 0% 0
+80 I=10# 1
.20 I=11%*0
« 80 I=11=*1
.store I=11 0
.store I= 111

b= O O OO OO FFDODOFRMMOO
FOHHOFRPFOFOFOFOMM O~ OMFOMO

QO *O ¥

[T

o Nole

*
bl
*

(@]

a8 ee o

..

'

es e se oe we

% ¥ * e o0 oo so e
L

*
*

€8 64 88 48 4 Se S8 39 43 S 46 S e s e o%

PC~>A RK=> Y .80
PCH—->A IN=> X .80
RJ=> A .get2
PC~>A RK=> Y .get3
RK=> Y .get3
IN=> A .getz
PCH—DA .get3
.get3
IN=> X .20
ALUONLY GP= 0C Cin=1 nosh setZNV
ALUONLY GP= C3 Cin=0 nosh setZNV
ALUONLY GP= 0OC Cin=0 asr setZNV
ALUONLY GP= CO Cin=0 nosh setZNV setC
ALUONLY GP= 0OC Cin=0 ror setZNV
ALUONLY GP= CO nosh setZNV setC
ALUONLY GP= OC Cin=0 lsr setZNV
ALUONLY GP= 0OC Cin=0 rnib setZNV
ALUONLY GP= 86 Cin=0 nosh setZNV setC
ALUONLY GP= 86 nosh setZNV set(
ALUONLY GP= 29 Cin=1 nosh setZNV set(
ALUONLY GP= 29 nosh setZNV setC
ALUONLY GP= 49 Cin=1 nosh setZNV setC
ALUONLY GP= 49 nosh setZNV setC
ALUONLY GP= 03 Cin=1 nosh setZNV setC
ALUONLY GP= 0OC naosh setZNV setC
ALUONLY GP= 03 Cin=0 nosh setZNV
ALUONLY GP= 08 Cin=0 nosh setZNV
ALUONLY GP= OE Cin=0 nosh setZNV
ALUONLY GP= 06 Cin=0 nosh setZNV
:: PC+H—>A NOALU W=> RK .decode
¢ PC+H—D>A NOALU W=> RK .decode
. PCH—>A NOALU W=> RK .decode
:: PC+~>A NCALU W=> RK .decode
: NOALU W=> D .store
HH NOALU W=> D .store
1! Write PC~>A .fetch
11 Write PCH—>A .fetch

- 54 ~

! Mosaic ver. B microcode page 7 of 7

! SPECIAL ARITHMETICS: MULTIPLY, ETC.

word muldone: .go2 SRout=l Mshift Y=> RJ setZNV PC~>A .go3

word cmp: .go I=***1 0100 11 PCH—>A GP= 49 Cin=1 nosh setZNV setC
.decode
word bitt: .go I=** %1 0101 ¢t PCH->A GP= 08 Cin=0 nosh setZNV
.decode
word mul: ,go I=*% * %1 01 1% :: Mshift O0=>Y SRin=l .go02
word mulOs3 +g02 SRout=0 Mout=0 :: Mshift Y=> Yshift RA++PA .go2
word mull: .g0o2 SRout=0 Mout=l :: Mshift X+Y=> Y¥Yshift RAH-D>A .go2

word mulend: .zo03 M=> RK PCH+D>A .decode
! BRANCHES

word jump: +80 I=%% % 11000 :: => A A->PC .fetch
word jrst: .20 I=*% %% 11 001 :: X=>FA A->PC .fetch
word popj: .20 I=% % %11 01%* :: RK=>YA .go2
word popj2: .go2 :t Y+1=> RK .go3
word popj3: «go3 I= * % * 11 01 0 :: IN=> A A->PC .fetch
word popjr: .go3 I= %% % 11011 :: IN=>F A A->PC .fetch
word /->PC(P=0): .go PortC=0 I=* * % 111000 :: PCH-DA .decode
word ~>PC(P=1): .go PortC=1 I=% % * 111000 :: X=>A A->PC .fetch
word /~D>PC(F=0): .go FlagC=0 I=* * % 111001 :: PCH-DA .decode
word ~>PC(F=1): .go FlagC=l =%% % 111001 = => A A-DPC .fetch
word /->PC(P=1): .go PortC=1 I=% % * 111010 : PCH—>A .decode
word ~>PC(P=0): .go PortC=0 I=* % * 111010 :: X=>A A->PC .fetch
word /~>PC(F=1): .go FlagC=1 I=#* % * 111011 z:: PCH-DA .decode
word ~>PC(F=0): .go FlagC=0 I=* %% 111011 :: X=>A A->PC .fetch
word —~>PushJ: .80 =% %% 1111% :: Y-1=> RKA .go2
word ~>PushJ2: .go2 v PC=> D .ga3
word ~>PushJ3: .go3 :: Write X=> A A->PC .fetch

- 55 =

Mosaic VERSION B CIRCUIT DIAGRAMS 4-94

Some as Mosaic ver. A excepl:
l. As jndicated n ver. A Tnslrvction reyns’rer and @laﬁs
2. ReP‘&cmj controller
3. Includmg SR and M rc‘?ls’rer:t/ rerlc«onj Y reyuﬁ’r
q, Inclvdmj lrﬂrfrrulnl H:P Hop

ﬁdd:‘h mal Pads:
‘ (pll__ ((ZL |NT Pad

Additional Controller inPu’hi
INTEf SRout Moaut FBCYD

- Addtional Coniroller Ou'}puhi
* indi cates -l:ype_ raw. A\\ others erPc "c1”
M=
=>M Dchift SF
Mehoft*
SRIn*
INT<@
FBC4)

- 86 -

Controller | Moseuc ver. B 4H-94
(Replaces Mosaic ver. A
con‘h"oHCr) Repeat for each implicant
peotfortocn mp

4+
o b
—] |'»...i ‘...1 C
PR 8
' JCd , —+
< LA INZT when mput 1s I g__
TN(I5...6) oY
— (P2L G'H‘berwyse_
+ -
. (DT‘ ‘“?1) 1—1
Conpect scan_in o scan. ‘\"s_
F\:s? SCﬂn-l:: ‘-bo :can_cm P:J, <P2 —T

Lost san_out to scan_ovt Pad.

é .
L4
RePqur for each od}P\ff

Select ou‘-Pu*l' F‘Pa :E »'*
{yfe per =
oV p

u.‘..

Scan_0u+

| - 57 -
SR AND M REGISTERS

Mosaic ver. B H-94

__?___R—, Shift Reysh&r for C.ovn'Hnj m”H‘F‘/ s’reP:

SR16Y =SRin:
'"[- - SR;{H; B
-
Repeat
or 4
L=@ o IS "‘Y)z
_“L% ClsRad
SR(P)Y = SRout

M Mul+|P\ier/ Prodvet Rej\s“tf'
M6y = Y<-1D

Yot Tﬂ(i’rl) Bos <
Repeat [froM |-G Mshld bl"(@j‘ M3
for |
&,:—.¢+c>15 D>J
4

N M2
M<@y = Mout

- 58 -

Y r'ﬁs,uﬂer {and irﬂerruP’r FhP Flop) Moseuc ver. B8 “-84

Y (RePlaces Y reg:ﬂer of version A)

(()z/\ :?—_(i\r\ o+ ﬁ‘_

%f\f ’___I—L-QQ_I_L. AU CKi6)

[B (PZT:§§SHI+ B
Repeat : =
PeT) Busitlyy b

o
L:(Z‘*g lqﬁ (PZA:>Y

————— e g e — — — -

\n+errug£ flip flop

___INT L E
A INTEQ

59 -

D LAYOUT Cordrollec Cawcurt Py 30)

E

SELECT
ou+13u+ plane

-
.

APPENDIX C

|

_—
ot
from INC?D)

\

> (o

input plane

A

)

1

L

Pﬁ

ALl

’cype raw

[

n
s

i_

ty

-\-PU'\'

N0~ Uy

vdd

WIIII

.
2
2.

INC?

SRR

i3

AR
oy
b

AN

NSNS
Y

Ny

TSSANANS
S 02S
0

A ARG aA?
AR

+Pu

Qv

S Y
X SBNNNNAN.

ANANNAY
< S

oV

BN, ~ gt
AR N

X
RS
R
A
XN VTN
=

N

AT

IR

txe)

AR

XN,
PO

N A
AR oy "N

AN
AANANN

UV Tudg

SEN NS
AR A NI
S

SR RN
AN PN

ond M reqistecs

cd

§\.

s

UK RN Sue
vy vy funn

farascansbrEres

Rixsyy
N

ANAN

2
7~

W

AL
L UULTONS

R

S

S

A

AN

N

AR

AANNAY
RN,

ANSY
NP

Reaister arrow. Bug

prechacge, SR,

Nav ey
Sy

AR LR
DR e

CTTTRTTNY
AT

77

GOW=-5K

«— 1|$ Y}o Auo puo’s

[\ -

AR

LA

R 7 =V
(LS W@ gy (LS mm 117331 Qth
2

W

I RS $'9 > <& (U3na 11 5331{SHIG T Auo
R J ~ -

6d RTSEIEN m\.m . mn_ 10241)

dm de,uw;& O JO ‘.w.*w. mww

S N

61 -

ALU input ladches and Lunchion blocks (cwrcnt

py- 31

AJ v.mvvxn.x .

o0

L

S

(41508

AR

T A

)
25

Bus¢w)

Y4z

ug o=

R

AR ARARAARARA

Rosit I

=

w OS\U
Nx H0D
N\WY

vxu‘%%%w;@

(s!

=185

o

ua)ziysnyg

S5 4'9 2 Kuo

30U UY

(85 bd ‘Aot worpm141p

—

mm;u*df IT&E A

O 933

Lu*mf 3J

N

62 -

ALU Carry Chain (crcudt

P9-3l)

7

ppA PU9 PPA G {32010 pu3 PpA pug

{1>sng

RN B

Ad.v*ao.\;é

P
B IRERANR s
L R T

FANNIIATIANNN NN VALY

AAIIINAIN T A

A

-

NN N RS
NNAANANANY .\:..Kv
R A AR KRR)
EREEE AR

NN
INARALARANAAL Y
ERRP RO NN
AKX EARAN

e

0
<
o
A
3
Az

XN} eG4
[AAAAANN % R, LN
NN TR

3 RS <

B R AR

NSRAIIAN:
3

x)
ANYSANANY
SNNANANIN

2 9 L
1_ {41ysng

R
N

>

2

A~+gv*303/6

Xy

B

3 o
Rt

2
Xy

ut9ot =y

'3
%

SUORTGSGINTY
TTRE AT DA N LR

AAMANIN L SCTLOCR Y
N AINIITCCCLCINY

oy AN 3
Sl
QN
N S0

S A TR TSN AY
AR E RS R

x%xk@m
(AP

AR
7225007,

i
a4\ L peen

s‘raje

J

Restorin
Bnatl mdicates direction of carry ProFOjaJr\on)

S\‘a e

Non-rectorin

63

Flags and Flag Condition PLA (aercurt

'Pj 33'35)

newV \0\9

INCS?

——

Ad477]

&)

7 Bus {12)

R

o

Tk 26, Bk % i X
RNRRREE

47

v

T2 2R

YU AR

vl
s

20

A 330 22

5 1 H
o P N
“ N N N ZIN 3
& Nj= N N AR
] A N1 ZIN
LR . s 33 433
HRES MM% RY A g &
R
N N N 3 by N
N N X A N N
N 3 R IR 3 S
253 AT 2% T 3-
o ;Mﬂ. 2 v oy &
AR K 2 3.
s X N
AR N N R N
AN A8 N N S
AR £118 N N R
SR ST 3 T Y
AN TRAAS N8 4 328
AN / 3
AN 2 N N
21N N N
3 IR R
R R N
N N N
N N N

B R R ARRannai

YRR LR

S X N N N
< . £ o
i3 X A >
RININININNIINS 35 Ay o is
A A% 2 o S 20 s
R KRNI NN AR
N N N
NANANIANNNY < N AnSS
Ay Sy .
it o 2 oS EARS N
N NN 0 23 A 3
s RN £k N8 NS
AN 23 55 2 <! N
AN MY N b AR
S ¥y 3
B3 N <
N N s
i v Iy
Ay R 2R R
8 \ < i N . 1
AEALANITIRANY v A NILAIANANAY N YN TATINANI A
DY N ASS N SAN
A : a o
3 -
% 3 S
N AN
RSO

2 T R R R OO G

H¢z_<_&
P

PPRA

Address Section (circurt PY: 36)

AR S MOy XU oy ey RN S SN KX N N
{ ivmbm I A A S R S S R TS

X 08N

7!

N Tt S NIRREY FexYy ey ALRLIATI Y I RN
Y e SRR ey RN e NN XX NN

s e oo

S 2% Reeey
BASS RSN

R0

X
i
2
T744272%

KR 2
ALY
A N SRR

e ANNS
CONERY MR I00 CRXNNN

A . s

: RN
RS E
NSRBI S X TIVY
mu—ny \ d SN ERey
oy i Py
(8944

S3INNRTCR L, NSNS .
X N L I T T TR s Ty gexTY
3 NEE A s N
AR XEey

Raauy.

b g} PRRR STES AR XIES ARy XTT towy RERRY Srgne T EEY RSN XES Y conteny oo
Am * VM m _fz/ SRR RRRRY ArRe NN DR AN Ay karaa IR AN R wy SN ReeRy
. R
1 g So000 000K | }

PAXNLL AR IRERN TSNS
X ¥ S DR

,:1.
[ey
5 230 DN SR

iy

.

R Ny
RN RO RS

O
T
R

RS TR
PPAR S

DV o
Tm_. N&.DQ

R0
47400 K

b

[iris iy

KiTyay]
T

BN s4q 7 NS(

65

P

—

o

PR

i

by

by
Snex
L

WYY i s
A o s

=@.13

L

it from

Y
)
7|

ve
re222727.

315 vdd

e

N
DOENN

7]

Geii7il
crrreses

(2274022743
s s 777

bit from

4272
2

4.5 ydd

—

A .w...ww %

(

7

PR IR 7

TR

SiTITE
2obeas

INSANINNNNNNNLN
AEIINANMANSNNNNY
ANLALATIMANANNAN
AN
0NN

R

bt from

vdd

41202027

|
77|
77

R S Y W

9220772222077

7

Rrevduesinsnefy

v

12027227727
120722222227

0 :
T g Ky
= sfaed podut 4304 .f&c;

w‘-oz

(ol 64 F102a13)
4204 4d4rQ”

T
T>
Q-

